
Provenance-aware
Versioned

Dataworkspaces
Xing Niu,

Bahareh Sadat Arab,
Boris Glavic

Dieter Gawlick,
Zhen Hua Liu,

Vasudha Krishnaswamy
Oliver Kennedy

Oracle

Introduction
• Data preparation, curation, and analysis

• Interactive, iterative process with ample uncertainty

• What datasources to use?

• How to clean them?

• How to integrate heterogeneous sources?

• Requires a lot of backtracking and propagation of changes

• e.g., find mistake in a previous curation step and correct it

• How to support user in this process?

Our Vision

• Build a model and system implementing the model that supports:

• 1) Incremental workflow construction with immediate feedback

• Any change to a curation workflow is immediately reflected in the data

• 2) Regret-free exploration through sandboxing

• Any past choice can easily be undone/changed

• Derived data is automatically refreshed

• 3) Full accountability through provenance tracking

• All data and transformations are versioned

• Workflow provenance as well as fine-grained data provenance

Our Vision

• 4) Automatic conflict detection and resolution

• Detect conflicts during automatic refresh of derived data

• Provide a toolbox of automated resolution techniques for
conflicts

• 5) Merging of transformation pipelines

• Update an analysis result if the input data is refreshed

• 6) Uncertainty as a first-class concept

• Expose and propagate uncertainty that naturally arises in data
curation

Virtual Version Graph Model

• Version control mechanism for data and transformations

• Multiple parallel histories can co-exit

• Explicit tracking of transformations

• Automatic refresh of derived data

• A principled and non-invasive way of changing past
transformations

• A lightweight way to represent data and versions

• Enables data to be materialized on-demand

PVDs

• Provenance-aware Versioned Dataworkspaces

• A sandboxed environment for data curation
and analysis backed up by the VVG model

• Can be implemented on top of existing data
processing platforms (e.g., relational DBMS)

Virtual Version Graph Model

• A directed acyclic hyper-graph

• Nodes are relation versions

• Edges are data transformations

• Two types of edges

• Derivation hyper-edge (Green edge)

• Version edge (Red edge)

R

V1

V2

V1’

V2’

Q2

U

Q2

R’

Q1 Q1
Query

Update

Running Example
{"Treatment" : [
 {
 "Patient": "John",
 "Disease": "Lung Cancer",
 "Doctor": "Xing",
 "Treatment": "Chemotherapy",
 "Suc:" false,
 "Finish:" true
 },
 {
 "Patient": "Bob",
 "Disease": "Stomach Cancer",
 "Doctor": "Bahareh",
 "Treatment": "Radiation",
 "Suc:" false,
 },
 …
]}

Alex: “I want to build a
workflow to determine the
success rate of different
treatments for lung
cancer .”

Json Document J J

Jason Document J
->

- add node J

Running Example

Treatment Disease Success

Chemotherapy Lung Cancer TRUE

Chemotherapy Stomach Cancer TRUE

Surgery Lung Cancer FALSE

Radiation Lung Cancer FALSE
J

Q1

T

Relation T

Alex: “Extract data into table T.”

For every transformation Q with
input I
output O

->
- add node O
- add derivation edge labelled Q

from I to O

Running Example

J

Q1

T

S

Q2

Alex: “Calculate the success
rate of different treatment
methods for Lung Cancer.”

Query Q2

Queries are transfromations
that create new relations

SELECT SUM (CASE WHEN Success = TRUE)
 THEN 1 ELSE 0 END / count(*))
AS SuccessRate,
FROM T
WHERE Disease = “Lung Cancer”
GROUP BY Treatment

Running Example

J

Q1

T

S

Q2

Result Relation S

SuccessRate

1/3

For transformation Q2 with
input T
output S

->
- add node S
- add derivation edge labelled

Q2 from T to S Alex: “Calculate the success
rate of Lung Cancer.”

Running Example

Json Document J

Alex: “*&@#!, I made a
mistake when extracting data
from the JSON doc. I retrieved
the values of attribute Success
from the field Finish in the
JSON document.”

{"Treatment" : [
 {
 "Patient": "John",
 "Disease": "Lung Cancer",
 "Doctor": "Xing",
 "Treatment": "Chemotherapy",
 "Suc:" false,
 "Finish:" true
 },
 {
 "Patient": "Bob",
 "Disease": "Stomach Cancer",
 "Doctor": "Bahareh",
 "Treatment": "Radiation",
 "Suc:" false,
 },
 …
]}

Treatment Disease Success

Chemotherapy Lung Cancer TRUE

Chemotherapy Stomach
Cancer

TRUE

Surgery Lung Cancer FALSE

Radiation Lung Cancer FALSE

Running Example

J

Q1

T

S

T’

Q2

Q1’

Alex: “I correct the query
Q1 to Q1’.”

Treatment Disease Success

Chemotherapy Lung Cancer FALSE

Chemotherapy Stomach Cancer TRUE

Surgery Lung Cancer TRUE

Radiation Lung Cancer TRUE

Relation T’

When modify existing transformation Q to Q’
with input I and output O’ (the new version of O)

->
- add node O’
- add derivation edge labelled Q’ from I to O’
- add version edge (dash line) from O’ to O

Running Example

J
Q1

T

S

T’

Q2

Q1’

Alex: “I want the derived
relations can be automatic
refreshed.”

Automatic refresh of derived relations
Create new versions of relations (S) derived from modified relation (T).
• In this case, create new version (S’)

->
- add node S’
- add derivation edge labelled Q from T’ to S’
- add version edge (dash line) from S’ to S

S’

Q2

Result Relation S’

SuccessRate

2/3

Running Example

{"Treatment" : [
 {
 "Patient": "John",
 "Disease": "Lung Cancer",
 "Doctor": "Xing",
 "Treatment":
"Chemotherapy",
 "Suc:" false,
 "Finish:" true
 },
 ……
]}

Treatment Disease Success

Chemotherapy Lung Cancer John

Chemotherapy Stomach
Cancer

Bob

Surgery Lung Cancer Kile

Radiation Lung Cancer Bill
“true” or “false”

Strings

• Conflict
• Retrieve values of attribute Success <— Patient
• Success : “TRUE“ or “FALSE”
• Patient : Just strings
• Running Q2 —> Conflicts

J
Q1

T

S

T’
Q2

Q1’

Q2

S’

Running Example

J

Q1

T

S

T’

Q2

Q1’

Alex: “I got a conflict when
doing automatic refresh.”

Detecting and Dealing with conflicts
Automatic refresh => ill-defined relation versions
• Mark this relation as invalid
• Make semi-automatic and automatic conflict detection
• Provide available resolution strategies

Q2
Q2

Fix

F

S’S’
In this case, fix the relation T’ firstly, then do
automatic refresh (Q2) based on the fixed
relation F.

->
- add node F (fixed relation)
- add node S’
- add derivation edge labelled Fix from T

to F
- add derivation edge labelled Q2 from F

to S’
- add version edge (dash line) from S’ to S

Related Work

Version Control Systems

Scientific workflow
management systems

VisTrails

Workflow and Database
Provenance

PVD
• An interface similar to iPython

• System maintains a VVG for the users actions

• Relation versions can be stored in, e.g., a DBMS

• Visualizations are represented as special VVG nodes

PVD building blocks
• Data curation with lenses [1]

• Powerful uncertainty aware data curation operations

• Uses probabilistic database techniques to keep track of uncertainty

• Provenance tracking and reenactment for updates [2]

• Declarative replay technique

• Retroactively compute provenance for updates

• Translates an update into an equivalent query

1. Y. Yang, N. Meneghetti, R. Fehling, Z. H. Liu, and O. Kennedy. Lenses: an on-demand
approach to ETL. PVLDB. 8(12):1578-1589,2015.

2. B. Arab, D. Gawlick, V. Radhakrishnan, H. Guo, and B. Glavic. A generic provenance
middleware for database queries, updates, and transactions. In TaPP, 2014.

Implementation Challenges

• Strategies for materializing
Which relation versions, when and how

• Methods for compressing VVGs

• Incremental view maintenance techniques

• Conflicts and merging VVGs

Conclusion

• A novel version model (VVG) and system vision (PVDs)

• Keep all track of users’ operations and data provenance

• Supports exploratory application of data curation and
analysis operators

• Features

• Simple and clean model
• Automatic refresh
• Past transformations can be modified
• Automatic conflict detection (and resolution)

Questions?
• My Webpage

• http://www.cs.iit.edu/~dbgroup/people/xniu.php

• Our Group’s Webpage

• http://cs.iit.edu/~dbgroup/research/index.html

• GProM

• http://www.cs.iit.edu/~dbgroup/research/gprom.php

• Mimir

• http://odin.cse.buffalo.edu/research/mimir/

• Vizier (The ODIn Lab)

• http://www.vizierdb.info

http://www.cs.iit.edu/~dbgroup/research/gprom.php
http://odin.cse.buffalo.edu/research/mimir/
http://www.vizierdb.info/

