Towards Secure User-space
Provenance Capture

Thomas Bytheway

University of Cambridge


https://www.usenix.org/conference/tapp16/workshop-program/presentation/balakrishnan
https://www.usenix.org/conference/tapp16/workshop-program/presentation/balakrishnan
https://www.usenix.org/conference/tapp16/workshop-program/presentation/balakrishnan
https://www.usenix.org/conference/tapp16/workshop-program/presentation/balakrishnan

OPUS

Observed Provenance in User Space
Data Scientists

Low Intrusion



User Space Provenance

Low Privilege Requirement
Easier Install Path

Semantically Closer



User Space Provenance Techniques
LD PRELOAD
Binary Rewriting
ptrace

FUSE



How can we rely on user-space provenance?



Assumptions

Malicious User
Malicious Application

Trusted Kernel/Hardware



5 Attack Classes




5 Attack Classes

Direct Library Call Man in the Middle

Denial of Service




Direct Call

Provenance Library

def open(file):
log(“open”, file)
return real_open(file) —1




Direct Call

Provenance Library

def open(file):
log(“open”, file)
return real_open(file)




Man In The Middle

Provenance Library

def open(file):
log(“open”, file)
return real_open(file) —1




Man In The Middle

Provenance
Library

def open(file):
log(“open”, file)
return real_open(file)




Denial of Service

File Descriptors

Memory




Our Approach

Intel Secure Guard Extensions (SGX)
Existing Sandboxing Techniques

Dynamic Binary Rewriting



Conclusions

System-level provenance is not always preferable to user-

space provenance
User-space provenance suffers from some threats

It can still be made secure



Thank you
Any Questions?

For more Info:

http://www.cl.cam.ac.uk/research/dtg/fresco/



