Towards Secure User-space Provenance Capture

Nikilesh Balakrishnan, Thomas Bytheway, Lucian Carata, Ripduman Sohan, and Andy Hopper University of Cambridge

OPUS

Observed Provenance in User Space

Data Scientists

Low Intrusion

User Space Provenance

Low Privilege Requirement

Easier Install Path

Semantically Closer

User Space Provenance Techniques

LD_PRELOAD

Binary Rewriting

ptrace

FUSE

How can we rely on user-space provenance?

Assumptions

Malicious User

Malicious Application

Trusted Kernel/Hardware

5 Attack Classes

Circumvention

Direct Library Call

Direct Syscall

Denial of Service

Falsification

Man in the Middle

Time of Check Time of Use

5 Attack Classes

Circumvention

Direct Library Call

Direct Syscall

Denial of Service

Falsification

Man in the Middle

Time of Check Time of Use

Direct Call

Direct Call

Man In The Middle

Man In The Middle

Denial of Service

Our Approach

Intel Secure Guard Extensions (SGX)

Existing Sandboxing Techniques

Dynamic Binary Rewriting

Conclusions

System-level provenance is not always preferable to userspace provenance

User-space provenance suffers from some threats

It can still be made secure

Thank you

Any Questions?

For more Info:

http://www.cl.cam.ac.uk/research/dtg/fresco/