
Towards Secure User-space
Provenance Capture

Nikilesh Balakrishnan, Thomas Bytheway, Lucian Carata,
Ripduman Sohan, and Andy Hopper

University of Cambridge

https://www.usenix.org/conference/tapp16/workshop-program/presentation/balakrishnan
https://www.usenix.org/conference/tapp16/workshop-program/presentation/balakrishnan
https://www.usenix.org/conference/tapp16/workshop-program/presentation/balakrishnan
https://www.usenix.org/conference/tapp16/workshop-program/presentation/balakrishnan

OPUS
Observed Provenance in User Space

Data Scientists

Low Intrusion

User Space Provenance

Low Privilege Requirement

Easier Install Path

Semantically Closer

User Space Provenance Techniques

LD_PRELOAD

Binary Rewriting

ptrace

FUSE

How can we rely on user-space provenance?

Assumptions

Malicious User

Malicious Application

Trusted Kernel/Hardware

5 Attack Classes

Circumvention

Direct Library Call

Direct Syscall

Denial of Service

Falsification

Man in the Middle

Time of Check Time of Use

5 Attack Classes

Circumvention

Direct Library Call

Direct Syscall

Denial of Service

Falsification

Man in the Middle

Time of Check Time of Use

Provenance Library

def open(file):
 log(“open”, file)
 return real_open(file)

Direct Call

Application

open(“foo.txt”)

C Library

def open(file):
 /* */
 syscall
 /* */

Provenance Library

def open(file):
 log(“open”, file)
 return real_open(file)

Direct Call

Application

open(“foo.txt”)

func_ptr real_open = 0x45211f
*real_open(“foo.txt”)

C Library

def open(file):
 /* */
 syscall
 /* */

Provenance Library

def open(file):
 log(“open”, file)
 return real_open(file)

Man In The Middle

Application

open(“foo.txt”)

C Library

def open(file):
 /* */
 syscall
 /* */

Provenance
Library

def open(file):
 log(“open”, file)
 return real_open(file)

Man In The Middle

Application

open(“results.txt”)

C Library

def open(file):
 /* */
 syscall
 /* */

Malicious User Library

def open(file):
 return real_open(“fake_results.
txt”)

User
Application
Resources

Denial of Service

Provenance
System Resources

File Descriptors

Memory

Our Approach

Intel Secure Guard Extensions (SGX)

Existing Sandboxing Techniques

Dynamic Binary Rewriting

Conclusions

System-level provenance is not always preferable to user-

space provenance

User-space provenance suffers from some threats

It can still be made secure

Thank you

Any Questions?

For more Info:
http://www.cl.cam.ac.uk/research/dtg/fresco/

