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Abstract

Keyloggers are a prominent class of malicious software
that surreptitiously logs all the user activity. Traditional
approaches aim to eradicate this threat by either pre-
venting or detecting their deployment. In this paper,
we take a new perspective to this problem: we explore
the possibility of tolerating the presence of a keylog-
ger, while making no assumption on the keylogger in-
ternals or the system state. The key idea is to confine
the user keystrokes in a noisy event channel flooded with
artificially generated activity. Our technique allows le-
gitimate applications to transparently recover the origi-
nal user keystrokes, while any deployed keylogger is ex-
posed to a stream of data statistically indistinguishable
from random noise. We evaluate our solution in realistic
settings and prove the soundness of our noise model. We
also verify that the overhead introduced is acceptable and
has no significant impact on the user experience.

1 Introduction
Privacy-breaching malware is a class of malicious soft-
ware that discloses sensitive user data to third parties.
Keyloggers are one of the most serious examples of this
class, given their ability to surreptitiously log all the user
activities [6]. Despite significant research and commer-
cial effort, keyloggers still pose an important threat to
users. This threat is further exacerbated by the surge of
user-space keyloggers [4, 9], which are easy to imple-
ment and can be executed with no special permission.
For this reason, our work explicitly focuses on this class
of keyloggers. Current approaches aim to counter this
threat by either preventing their deployment or detecting
their execution [9, 1, 2, 14, 5].

To the user, however, all these approaches are merely
informative, which means that they do not offer a prac-
tical solution in case of positive detection. Users of the
Windows operating system are well-aware of the chal-
lenges posed by removing a piece of malicious code: the

subverted OS facilities are generally so numerous that
Anti-virus programs regularly bail out of the removal
phase and instead point the user to security bulletins with
step-by-step removal instructions. In addition, many are
the cases in which users have insufficient permissions to
perform a complete removal of the malicious application.
For example, many companies provide their employees
with only non-administrative user accounts. The situa-
tion is even more problematic for users temporarily ac-
cessing untrusted machines, e.g., Internet cafés. In this
scenario, the user is literally entrusting his private data to
strangers who may or may not honor his trust.

To address these concerns, a number of commercial
solutions [13, 11] have been recently proposed. The gen-
eral idea is to encrypt the keystrokes before they leave the
kernel and decrypt them upon arrival at the intended user
application. This approach has two fundamental limita-
tions. First, it requires a new kernel module which can
only be installed with privileged rights. Second, it does
not attempt to hide or disguise the typing dynamics of
the user. Unfortunately, keystroke dynamics have been
proved to be sufficiently accurate to crack passwords,
with surprisingly good results in case of dictionary-based
attacks for the English language [15].

In this paper we introduce NoisyKey, the first un-
privileged and statistically sound approach to tolerate
the presence of a user-space keylogger. Unlike pre-
vious methods [13, 11], we confine the user keystro-
kes in a noisy event channel by artificially generating
dummy keystroke data. Our technique exposes the noisy
keystroke stream only to keyloggers, while allowing le-
gitimate applications to transparently recover the origi-
nal data. The generation of dummy keystrokes is backed
by a privacy model that ensures that the resulting stream
is indistinguishable from random noise. The key idea
is to adopt a predetermined reference keystroke distribu-
tion and adaptively generate dummy keystroke data such
that the combination of the user activity and the gen-
erated noise always matches the reference distribution.



The result is that details on the original user activity are
no longer exposed to the adversary. We prototyped our
technique in a lightweight library that does not require
any privilege to be deployed. To verify the effectiveness,
we evaluated our prototype against a real dataset of user
inputs [7]. Our experiments show that our technique suc-
cessfully eliminates any evidence of the original user be-
havior from the overall keystroke distribution, and only
impacts marginally the user experience.

2 Our Approach
The key idea is to transparently flood with dummy data
the event channel used to deliver the user keystrokes to
the intended application. If the generated noise is indis-
tinguishable from user activity, any malicious application
peeking on the same channel will only eavesdrop a ran-
dom stream of data, with no means to recover the original
keystrokes.

Figure 1: The event channel used to deliver the issued
keystrokes to the intended user application.

On Windows, a single keystroke leaving the kernel is
first delivered to the process csrss.exe. Its task is to
reroute the user input to the intended application. At des-
tination, the keystroke is handled by the GUI application
thread, which eventually calls user32.dll to update the
user interface. Figure 1 depicts all the components in-
volved in the process and highlights those that can po-
tentially be subverted by user-space keyloggers. We have
verified this claim by analyzing all the samples available
at [12] and found no exception. Our solution is imple-
mented in the library noisykey.dll. Although it does
not mingle with the internals of the event channel, it does
control its ends (a) and (b). On one side, it injects well-
crafted noise in the form of dummy keystrokes. On the
other, it removes the noise before it reaches the graphi-
cal routines included in user32.dll. Unlike alternative
approaches establishing a separate event channel, our ap-
proach is entirely unprivileged. Also, deploying our so-
lution does not require the user to recompile or restart the
application, but, as we later explain, is completely on-
line. To preserve keyboard shortcut functionalities, our
solution explicitly handles well-known hotkey modifiers
(i.e., CTRL, ALT, WIN, and SHIFT). Dead-keys and user-
defined shortcuts, in turn, can be explicitly white-listed

by the user. Finally, to minimize the impact on the per-
formance, noisykey.dll automatically interrupts its
activities when the target application is not on-focus.
Architecture. The architecture of our solution, depicted
in Figure 2, comprises four different components: the
Noise Factory, the Normalizer, the Injector Thread, and
the Silencer Thread. The Noise Factory is a repository of
dummy keystroke sequences. These sequences have to
be well-forged in order to mimic human-like keystroke
dynamics. The Normalizer acts as middle-man between
the Noise Factory and the Injector Thread. Its goal is to
generate context-aware noise, shaping the dummy data
according to the user activity. The importance of context
awareness is immediately evident when we consider the
case of a user typing a credit card number. A context-
agnostic noise may not include any digits at all, allow-
ing a context-aware attacker to easily recover the original
data. The last two components are two loosely synchro-
nized threads designed to inject the dummy keystrokes
into the event channel and subsequently exfiltrate the
original user activity. The Injector Thread completes an
iteration every It ms and injects the dummy keystrokes
using the API keybd event(). We duly investigate the
choice of It in Section 5, as it may considerably affect
the performance hit imposed by our solution. The Silen-

Figure 2: Architecture of noisykey.dll.

cer Thread, in turn, is invoked each time a keystroke
traverses the event channel. This is made possible by
the Detour framework, which enables online interception
of all the calls to the DispatchMessage() function in
user32.dll. In our tests, this practice alerted the in-
stalled AntiVirus, suggesting that our technique would
require whitelisting for realistic large-scale deployment.
This behavior, however, also guarantees that keyloggers
cannot rely on the same strategy to subvert our technique.
At each invocation, the Silencer Thread interrupts the
Injector Thread to retrieve all the dummy data injected
from the last invocation. Once the real keystrokes are ex-
filtrated, the thread updates the Normalizer with the new
user activity found.

3 Keystroke Model

We model a keystroke using the following factors: (i)
scancode (i.e., the code associated to the keydown event),
(ii) typing timestamp (i.e., the timestamp of the keydown



event), and (iii) hold time (the time between the keydown
and the keyup event). Note that a typable symbol does
not necessarily correspond to a visible character. For in-
stance, the capital letter A is obtained by the combination
of scancodes SHIFT+a. Our model merges these combi-
nations in a single scancode defined over the alphabet of
typable symbols Σ. To model the typing timestamp and
the hold time, we assume a discretized time model, i.e.,
T= {t0, . . . , tn}. More formally:

Definition 1. A keystroke is a triple, 〈k, t,h〉 represented
by the scancode k ∈ Σ, the typing timestamp t ∈ T, and
the hold time h ∈ T.

User-generated keystrokes are generally issued in logi-
cally related sequences, e.g., passwords, usernames, and
credit card numbers. Thus:

Definition 2. A keystroke sequence S is a set of n triples,
S = {〈k0, t0,h0〉, . . . ,〈kn, tn,hn〉}, where 0≤ i≤ n.

To reason over the typing dynamics of a keystroke se-
quence, we adopt a probabilistic approach, with timing
information modeled by random variables. In partic-
ular, given a generic keystroke sequence S, we model
the number of keystrokes pressed over a time interval
Ti, j = {tl | ti≤ tl ≤ t j} using the random variable XS (Ti, j).
This allows us to quantitatively model the typing dynam-
ics of any given keystroke sequence. To qualitatively
model the typing dynamics, we resort to a second ran-
dom variable, YS,Ti, j (k), which, given S and Ti, j, measures
the number of keystrokes with scancode k issued in the
time interval. The random variable ZS,Ti, j (k,h), finally,
measures the number of keystrokes with scancode k and
hold time h issued in the time interval. More formally:

Definition 3. Let S be a keystroke sequence of length n,
and Ti, j a generic time interval. Then:

The function fS : Σ× T× T → {0,1} determines if
a keystroke, as identified by its triple, is part of the
keystroke sequence S, where the ∈ operator treats nil ar-
guments as wildcards:

fS (k, t,h) =

{
1 if 〈k, t,h〉 ∈ S
0 otherwise,

The random variable XS (Ti, j) counts the number of
keystrokes issued in Ti, j:

XS (Ti, j) = ∑
tl∈Ti, j

fS (nil, tl ,nil) (1)

The random variable YS,Ti, j (k) counts the number of
keystrokes with scancode k in Ti, j:

YS,Ti, j (k) = ∑
tl∈Ti, j

fS (k, tl ,nil) (2)

The random variable ZS,Ti, j (k, t) counts the number of
keystrokes with scancode k and hold time t in Ti, j:

ZS,Ti, j (k,h) = ∑
tl∈Ti, j

fS (k, tl ,h) (3)

4 Privacy Model

Our privacy model is based on the work of Pfitzmann
et al. [10]. Their work defines a consolidated terminol-
ogy for privacy properties in the context of distributed
systems where senders and receivers (i.e., actors), are
assumed to exchange messages (i.e., items of interest).
Our setting is slightly simplified, as we do not have to
consider different actors. Under the assumption that the
adversary has no way to tell real and dummy keystrokes
apart, we consider just one sender, the keyboard, and one
receiver, the application. Our goal is to generate dummy
events so that the original keystrokes and their dynamics
are no longer explicitly exposed to the adversary.

In messaging contexts, the highest grade of pri-
vacy is named undetectability, namely that an adversary
has no ability to identify a real message among other
(dummy) messages. This definition swiftly translates to
keystrokes. We say that a keystroke sequence (i.e., the
user activity) is undetectable if an adversary has no abil-
ity to discriminate it from other dummy keystroke se-
quences. Following the findings in [8], we define the un-
detectability property in terms of behavioral similarities
between the random variables that describe the sensitive
items of interests, i.e., the keystroke sequences.

Privacy-definition 1. Given a statistical test T , two
random variables, R1 and R2, are said to be α-undetect-
able with respect to each other, i.e., R1 ≈α R2, if the null
hypothesis that their two datasets are from different dis-
tributions is rejected by T with confidence 1−α .

Privacy-definition 2. Given a time interval Ti, j, two
keystroke sequences S1, S2 are α-undetectable with re-
spect to each other, i.e., S1 ≈α S2, if all their random
variables are α-undetectable given any scancode k ∈ Σ,
and hold time h ∈ T:

XS1 (Ti, j) ≈α XS2 (Ti, j)

YS1,Ti, j (k) ≈α YS2,Ti, j (k)

ZS1,Ti, j (k,h) ≈α ZS2,Ti, j (k,h)

In the ideal case of constant human activity, i.e., ran-
dom variables with a steady underlying distribution, our
goal would be to inject dummy keystroke sequences that
yield identical random variables. Unfortunately, this is
hardly a realistic assumption, given the complexity of the
typing dynamics of a typical user, which are known to
exhibit high variability over time. Reasons range from



adaptation to new environments to variations in the emo-
tional state of the user [7]. These observations sug-
gest that a robust injection strategy must adapt to the
real user activity in real time. For example, intense
user activity should result in lower injection rates for
the dummy keystroke sequences. The injection should
be also context-aware, e.g., a user typing his credit card
number should result in lower frequencies of dummy nu-
meric scancodes. To meet these goals, our strategy is to
keep the overall behavior steady, with dummy keystroke
sequences tuned according to the user activity over time.

Privacy-definition 3. Let Sr be a user-issued keystroke
sequence, and Sd a dummy keystroke sequence injected.
Sr is per se α-undetectable if Sr ∪ Sd ≈α Sref, where Sref
is the reference keystroke sequence.

It is of great importance to choose a suitable Sref by
accurately tuning its random variables. For instance, the
rate of keystrokes per time interval XSref (Ti, j) must be se-
lected orders of magnitude greater than the rate found
in a typical user-issued keystroke sequence XSr (Ti, j).
Failing to meet this requirement would break the α-
undetectability property and potentially allow an adver-
sary to recover the original user-issued keystrokes. Like-
wise, YSref,Ti, j (k) must agree with the subset of scan-
codes used by the user and also provide higher frequen-
cies for every possible scancode ∈ Sr. Failure to do so
would again break the α-undetectability property and po-
tentially allow a context-aware adversary to recover the
original user-issued keystroke sequences defined over a
limited set of scancodes, e.g., credit card numbers. Sim-
ilar concerns apply to ZSref,Ti, j (k,h).

We now introduce the Sref used in our evaluation. The
3 random variables are selected with uniform probability
distributions, with ranges chosen on a per-variable basis:

XSref (Ti, j) ∼ UniformX (0,400)
YSref,Ti, j (k) ∼ UniformY (L(Σ) ,U (Σ))

ZSref,Ti, j (k,h) ∼ UniformZ(0,2000)

Based on our findings, further explained in Section 5,
we set the maximum keystroke rate for UniformX to 400
keystrokes. The range of UniformY reflects, in turn, the
idea that each scancode k ∈ Σ should have an equal prob-
ability of occurrence in the reference keystroke sequence
Sref (L and U are, respectively, the lower and the upper
bound). Choosing a proper range for UniformZ proved
to be more challenging, as the maximum user hold time
cannot be easily estimated in advance. Our strategy is to
resort to the maximum hold time found in the dataset
published by Killourhy et. al in [7]. We believe this
dataset to be authoritative and fairly comprehensive, col-
lecting more than 20000 keystrokes timings typed by
more than 50 different subjects. In conclusion, we point

out that choosing a proper Sref is merely a parameter of
our model, and can thus be tuned according to domain-
specific requirements at deployment time.

5 Evaluation

We implemented our prototype in a dynamic linked li-
brary written in C++ and evaluated it in Windows 7 SP1.
All the experiments were performed on a machine with
an Intel Core i7 processor and 4GB of RAM. While
we tested many different user applications (e.g., Fire-
fox, Thunderbird, Notepad) without incurring any com-
patibility issue, we adopted Firefox as our application of
choice due to its widespread adoption.
Preliminaries. To validate our technique against real
user activity, we implemented a user keystroke sequence
simulator. Using the patterns from the dataset published
by Killourhy et al. in [7], we simulated the activity of
51 different subjects typing the password .tie5Roanl

400 times. We split the evaluation in two different parts.
First, we select a single keystroke sequence and investi-
gate the performance impact of our solution in terms of
additional CPU load and latency perceived by the user.
Subsequently, we verify the effectiveness of our tech-
nique by ascertaining whether the simulated user activity
is α-undetectable regardless of the typing subject.

For each experiment we set Sr from the keystroke tim-
ings of the selected subject and we initialize the Noise
Factory with the reference keystroke sequence (i.e., Sd =
Sref), ready to be adapted at runtime by the Normalizer.
During each run we continuously assess whether the as-
sumption Sr ∪ Sd ≈α Sref holds. To this end, we break
down each run into two different phases: (i) a first phase
simulating the absence of user activity; (ii) a second
phase loading the keystroke sequence simulator with Sr
and instructing the Normalizer to adapt the sequence of
dummy keystrokes Sd. Finally, in order to assess whether
Sr is α-undetectable, we apply the Privacy-definition 1
by instantiating the statistical test T with a Pearson
χ2 two samples test with significance α = 0.01—hence
ascertaining whether Sr is 0.01-undetectable. To sat-
isfy Privacy-definition 2, we formulate the following hy-
potheses test for each random variable R = {X ,Y,Z}:{

H0 : RSr ∪RSd ∼ RSref

H1 : RSr ∪RSd � RSref

The test accepts the null hypothesis (H0) with confidence
1−α if the values generated by both groups of random
variables are consistent with a single probabilistic distri-
bution. We calculate the outcome of the test by deriving
the frequencies of the values and determining the result-
ing p-value via the same methodology adopted in [8].
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Figure 3: Impact of It and kmax on performance (load and latency) and accuracy (percentage of successful χ2 tests).
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Figure 4: Accuracy (It = 10, kmax = 400) against all the subjects included in the dataset [7].

Performance. As discussed in Section 2, the injection
cycle of the Injector Thread can be configured by tun-
ing the time interval between consecutive runs It . Small
time intervals yield a more prolific noise generation, but
can also degrade performance. The performance impact
is also influenced by the number of dummy keystrokes
injected at each run. For these reasons, it is crucial to
carefully choose both the value of It and the parameters
of UniformX . The maximum distribution value kmax, in
particular, should be tuned to achieve an optimal privacy-

performance tradeoff. To evaluate the performance hit
perceived by the user, we focus on two different measure-
ments: the CPU load and the keystroke latency, i.e., the
delay between the physical generation of a keystroke and
the final keydown event in the intended application. Fig-
ure 3a shows the results for It = 10ms, and kmax varying
between 1−1450 keystrokes/run. The average keystroke
latency remains steady at 250ms for kmax ≤ 900. On the
other hand, the CPU load increases linearly, breaking the
50% boundary when the distribution UniformX is config-



ured to inject a maximum of 900 keystrokes/run.
Figure 3b visually depicts the outcome of the χ2 tests

performed on all the random variables. Results are av-
eraged over all the subjects in the dataset. The time
interval associated to each random variable was set to
Ti, j = 100ms, but we obtained similar results with other
values. Each random variable was tested twice, yielding
two different sets of bars. In the first row, we report the
outcome of evaluating Sr ∪ Sd ≈α Sref. The second row
further verifies that the exhibited behavior matches the
intended distribution by testing the timings produced by
Sr∪Sd against the underlying distribution. We performed
as many χ2 tests as the number of time intervals in which
the random variables are defined. The results are aggre-
gated in a single bar depicting the percentage of success
for each value of kmax. The experiment shows that all the
random variables are negatively affected by low values of
kmax. The reason is that, for those values, the intensity of
the user activity dominates that of the dummy keystroke
sequences. However, setting kmax = 200 is sufficient to
obtain a 100% success rate for all the random variables.
The same value in Figure 3a yields a CPU load of less
than 10% and a perceived latency of 240ms, values that
are typically sufficient in real-time interactions [3].

The second batch of experiments in Figure 3c and 3d
depicts the effect of varying It (kmax = 400). Since the
Injector Thread is queried every time some keystrokes
are issued to the user application, we expect low It val-
ues to yield low keystroke latencies and high CPU load.
Figure 3c confirms this intuition. A reasonable trade-
off is found at 50ms, as both latency and CPU load are
still within acceptable values, i.e., 250ms and 21% re-
spectively. For these values, Figure 3d shows that Sr is
0.01-undetectable in all cases with the notable exception
of the variable YS,Ti, j (k), which yields low success rates
for It ≥ 100. This demonstrates that the exhibited dis-
tribution of scancodes is highly dependent on the overall
keystroke rate, which in turn decreases for higher values
of It . However, we note that an injection cycle It = 50ms
is sufficient to obtain a 100% success rate.
Effectiveness. Similar percentages can be observed re-
gardless of the subject. Figure 4 shows the results of our
statistical tests for all the 51 subjects in the dataset. In
almost all the cases, our technique was able to make the
keystroke sequences 0.01-undetectable, a value realisti-
cally sufficient to safeguard the privacy of the user.

6 Conclusion

Existing malware countermeasures are generally focused
on preventing or detecting malicious software instances.
In this paper, we take a new perspective to the prob-
lem. We present NoisyKey, a technique that allows the
user to live together with a keylogging malware without

putting his privacy at stake. The key idea is to confine
the user private data in a noisy event channel flooded
with artificially generated keystroke activity. Our tech-
nique transparently allows legitimate applications to re-
cover the original data, while exposing the keylogger to
the original noisy stream. Our evaluation shows that the
resulting stream of data is statistically undetectable from
arbitrary stream of data. We also implemented our tech-
nique in a lightweight library, and tested it on modern op-
erating systems and applications. Our work shows a new
interesting paradigm in dealing with malicious software,
and we believe our strategy to have possible applications
in other domains and classes of malware.
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