
When Good Services Go Wild:
Reassembling Web Services for Unintended Purposes

Feng Lu, Jiaqi Zhang, Stefan Savage

University of California, San Diego

Abstract
The rich nature of modern Web services and the emerg-
ing “mash-up” programming model, make it difficult
to predict the potential interactions and usage scenarios
that can emerge. Moreover, while the potential secu-
rity implications for individual client browsers have been
widely internalized (e.g., XSS, CSRF, etc.) there is less
appreciation of the risks posed in the other direction—
of user abuse on Web service providers. In particular,
we argue that Web services and pieces of services can be
easily combined to create entirely new capabilities that
may themselves be at odds with the security policies that
providers (or the Internet community at large) desire to
enforce. As a proof-of-concept we demonstrate a fully-
functioning Web proxy service called CloudProxy. Con-
structed entirely out of pieces of unrelated Google and
Facebook functionality, CloudProxy effectively launders
a user’s connection through these provider’s resources.

1 Introduction

The modern Web service ecosystem is one built on
composition; using Web-based server APIs and client
Javascript to create new services and capabilities. With a
few lines of code one can connect a Google Maps widget
to a Facebook app with a Microsoft datasource and, in
so doing, “mash-up” an entirely new Web service neither
envisioned, nor endorsed, by any of the individual ser-
vice providers. Overall, this programming environment
promotes reuse and agility, but inevitably at the expense
of encapsulation or clean semantic guarantees. It is no
surprise then that this dynamic style of programming can
create new security risks; cross-site scripting, cross-site
request forgery and so on. However, to date most of the
attention on these problems has focused on violations of
theclient’s security policy—what can a Web site do to a
browser? [10, 13, 14].

In this paper, we opine that there is another class of
security concerns that involve the lack and difficulty of
policy enforcement by theproviders of Web services.
As a trivial example, Google’s GMail was designed and
intended as a free e-mail service, but systems such as
gmailfs[4] bypass this intent by wrapping the APIs
to create a free file system service. Similarly, the Graf-
fiti network, abusively implements file storage using blog
spam on open forums [11].

However, these simple examples belie the potential

complexity that can arise from exploitingcombinations
of services, both within and across providers. Many
modern Web services can have both local and remote
side-effects, can fetch objects from other sites, can
change local state, and can invoke additional services
encapsulated as arguments. In this manner, a user may
leverage the reputation of a collection of Web service
providers to engage with a third-party on their behalf.

In this paper, we explore this issue by example,
demonstrating the creation of a functioning Web proxy
from unrelated components. In a manner metaphor-
ically similar to Shacham’s “return-oriented program-
ming” [12] we demonstrate how pieces of correctly-
functioning Web services from different providers can
be stitched together to create completely new function-
ality. The resulting free service, CloudProxy, launders
a user’s connection through the servers of Google and
Facebook. This capability could be used to bypass IP-
level access restriction (e.g., such as commonly used
to restrict streaming video or purchasing options within
geo-locked regions), to commit mass Web spam without
fear of blacklisting (i.e., no Web site depending on adver-
tising can afford to blacklist Google IPs since Google-
bot visits are what fills the Google search index), or
to mount denial-of-service attacks on third parties us-
ing these provider’s resources (e.g., by repeatedly down-
loading large objects). In the remainder of this paper
we detail the design process for building our Cloud-
Proxy service and some of these risks it creates. How-
ever, our service is less a threat in and of itself than a
proof-of-concept that abusive Web service composition
can be used to synthesize new threats from benign pieces.
Moreover, since these threats can be inherently cross-
domain, there are interesting new challenges for how to
best address such problems.

2 Design Overview

In designing our Web proxy, we focused our efforts on
the most widely used HTTP methods: GET and POST.1

Our design approach is summarized as follows:

• We make use of public Web service APIs that have,
either explicitly or implicitly, core functionality that
allows us to retrieve content given an URL,

1Note that while other HTTP methods can be implemented in a sim-
ilar way, we omit the details due to space constraints.

1



• If necessary, each request is rewritten to meet the
constraints of these Web service APIs; this pre-
processing step is itself accomplished by exploiting
(other) existing Web services,

• The responses from these Web services are reassem-
bled in order to make the final response transparent
to the user’s Web browser;

While this approach is inelegant at times (made so in
particular by our need to transform arguments to meet
API restrictions or requirements) we will show that it is
sufficient to construct a fully functional Web proxy, ca-
pable of handling the majority of requests that might be
made by a Web browser (e.g., page views, forms, real-
time video streaming, etc.)

In the remainder of this section, we explain in general
how Web service APIs are repurposed, how we find ap-
propriate APIs and how we handle per-API constraints.

2.1 The Building Blocks of Our Implemen-
tation

Unlike normal Web servers, which implement HTTP
commands directly, the building blocks for our imple-
mentation are the APIs provided by third-party Web ser-
vices such as Facebook or Google. A typical such API
can be a well-documented function call. For instance, it
might be provided in a public library that is written in
any language such as Python or Java (e.g., the Google
Document API[3]).

In our design, we make use of APIs that themselves
perform HTTP commands; such building blocks that
widely exist in current Web services. For example, con-
sider the scenario in which a user wishes to provide some
input data to an online document processing service. If
the data is available on the Internet (e.g., such as via a
Web server), rather than requiring the user to download
the data to local storage and then upload it again, docu-
ment service APIs typically provide an interface for users
to specify the Internet location of the content, which is
then downloaded directly to the service provider. This
“loads for” capability, suggests that such document ser-
vice APIs may provide a likely base “gadget” for build-
ing a Web retrieval interface.

2.2 Discovering the Useful APIs
The APIs we target can be provided explicitly as the ma-
jor functions of a popular Web service (e.g., such as a
URL shortening service), or implicitly as an ingredient
of such an original service. In the former case, the work
of finding the APIs devolves to enumerating the set of
services and their attendant side-effects (e.g., as with the
document API example) to find an appropriate set of can-
didates. On the other hand, if the needed API is not pro-

vided explicitly, or is provided with undesirable restric-
tions, additional transformation may be required to pro-
vide the desired functionality. For example, the Google
Spreadsheet service supports importing images and dis-
playing them on the Web. However, if one wants to fetch
an individual image using this service, it may require de-
composing the service into its constituent parts to iden-
tify the key unbundled piece of functionality.

Given the limited structure imposed on Web APIs, we
do not currently have a good mechanism for system-
atically and automatically detecting all possible build-
ing blocks. However, we observe that our own mod-
est knowledge combined with some manual investigation
has been sufficient for the goals of this paper. As major
providers regularize their APIs into well-formed catalogs
this process will only become easier and we further be-
lieve that implicit APIs will be susceptible to automated
discovery and enumeration through techniques such as
program analysis of Web service Javascript.

2.3 Adjusting the Input and Output
Finally, standard HTTP requests can include URLs and
other parameters, which are represented as strings. How-
ever, these strings sometimes may not meet the input re-
quirements of the APIs we wish to use. In this case, we
need to craft the request string so that it is recognizable
by the target APIs. There is a similar problem on out-
put. Depending on the API we use, the output may be
transformed to match the formatting rules of the API’s
specifications. For these situations, we must implement
the reverse transformation and normalize the content rep-
resentation between service interfaces. Surprisingly, we
have found that even these transformations can be per-
formed entirely using third-party Web service APIs (de-
tailed in Section 3).

3 Implementation

In this section, we detail the concrete steps involved in
making our proxy implementation fully functional. To
be specific, our goal is to reimplement the functionality
of HTTP GET and POST as well as obtaining the final
URL of a Web object. We next explain how we imple-
ment each piece of functionality in turn, including iden-
tifying its requirements, finding appropriate service APIs
and, when necessary, how services are composed to work
around per-API restrictions.

3.1 HTTP GET
Retrieving Web content is typically accomplished with
HTTP GET method. We first describe how regular
ASCII HTML content is fetched and then discuss how
non-ASCII content requires its own work-arounds.

2



Figure 1: Importing Webpage in Spreadsheet. When
a Webpage is loaded into Google Spreadsheet, the raw
content of the HTML page is displayed.

3.1.1 ASCII Based Content

As discussed in the design section, most Web services
aim to process all data inside the cloud and provide only
the final results to end users. However, there is a fun-
damental similarity between a service retrieving online
Web objects for cloud processing and a browser retriev-
ing online Web objects for display — both require a full
implementation of HTTP GET.

The first such API that came into our attention is
the ImportData(.) function provided by Google Spread-
sheet. It is designed for users to quickly populate their
spreadsheets based on online CSV or TSV files. This
function takes a single parameter—the URL of the CSV
or TSV file. Interestingly, we notice that this function
can be used to retrieve any Web object, not only spread-
sheets. Figure 1 shows a screenshot of retrieving a Web-
page in spreadsheet.

Unfortunately, as Figure 1 shows, Web content fetched
via this interface is split across multiple spreadsheet cells
as opposed to staying in the same cell. In particu-
lar, the newline character ‘\n ’ splits the content across
rows, while the comma ‘,’ splits content across multiple
columns in the same row. Thus, we must reconstruct the
original content by reversing this process; we scan cells
from the first row and for each row, we start from the first
column, adding newline characters and commas accord-
ingly.

Since most Web browsers will request multiple Web
objects simultaneously, we use multiple spreadsheets
as workers and dynamically assign retrieval requests to
available workers. In our implementation, we create
four Google Doc accounts, with each account hosting ten
spreadsheets. Thus, at any point in time, forty spread-
sheets are available for web content download. For the
web tasks we performed, forty workers seem to be ade-
quate. One could always add more workers by creating
more spreadsheets or Google Doc accounts (exploiting
the fact that these cloud services are essentially free of

charge).
However, one limitation we identified in using theim-

portData(.) function is that it only supports ASCII based
contents (not surprising since binary data is not evalu-
able in a spreadsheet cell). Unfortunately, not all Web
content contain pure ASCII characters, and this is espe-
cially true for multimedia files such as images, sounds
or video. Thus, to support non-ASCII content, we must
turn to alternative APIs.

3.1.2 Non-ASCII Content

Even though theImportData(.) function does not sup-
port binary data, Google spreadsheet and other document
types (e.g., document, presentation) do support embed-
ded images. For example, in the Google document GUI,
users can specify the URL of an image they want to im-
port into their documents, and the corresponding image
will appear in the document once the URL is submit-
ted. Inspecting the corresponding Javascript code, we
observed that the Google cloud downloads the image,
stores it in Google’s server’s and then assigns a new URL
to the image. It is this new URL that is then passed
to Google documents (the same approach is shared by
Google presentation as well). Unfortunately, the Google
document/presentation service does not export APIs for
image insertions.

However, returning to Google spreadsheets, we found
that images are handled quite differently. In particular,
a content server API function call is used to retrieve the
image with the original image URL as part of the func-
tion parameters.2 Even though there are many parame-
ters in the content server API invocation example found
in the spreadsheet (Figure 2), only two parameters are
compulsory: ‘URL’ and ‘container’.3 Figure 2 gives the
original API call example found in spreadsheet as well
as our simplified version. Further exploration on the
Google content server API suggests that not only images
are supported but in general all UTF-8 encoded contents
are handled as well.

3.2 HTTP Redirect
Finally, if the URL of a requested web object has
changed, the Web server typically returns a HTTP redi-
rect or location update message with the new URL em-
bedded. On seeing such a redirect message, the Web
browser simply makes another request and updates the
browser address bar accordingly. In practice, to reduce
the number of URL changes that a Web server has to re-
member, the locations of many Web objects are specified

2Note that “content server API” is our own name for this service.
We have been able to find any documentation for this functionality nor
a public name for its API.

3Eventually we discovered that the actual value of parameter ‘con-
tainer’ does not play any role, and the mere presence of this parameter
is sufficient.

3



Full API: 

images-docs-opensocial.googleusercontent.com/

gadgets/proxy?url=http%3A%2F%2Fopencage.info%2fpics

%2Ffiles%2F800_13785.jpg&container=docs&gadget=a&

rewriteMime=image%2F*&resize_h=8008resize_w=800

Essential Parameters:

images-docs-opensocial.googleusercontent.com/

gadgets/proxy?url=xxxx&container=### 

Figure 2:API Invocation Examples. The upper exam-
ple shows the original format of the API; we show the
simplified version in the bottom, where onlyurl and
container are necessary parameters.

as relative paths with reference to some known Web ob-
jects.

During our implementation for the HTTP GET
method, we realized that Google APIs hide such HTTP
redirect messages when fetching Web contents. In other
words, the Google cloud service will automatically fol-
low the updated location and download the final Web ob-
ject. We consider this a rational design for cloud service
providers as users do not need to know such details and
only the final outcome matters. However, not being able
to observe HTTP redirect messages proves to be a hurdle
for us. In particular, a Web object can contain references
to other objects. For example, a Web page may include
an image and the location is specified by a relative path
based on the current location of the Web page. If the
original URL of the Web page is not the same as the fi-
nal URL (i.e., due to redirects), it is impossible for us
to obtain get the URL for the image object. This is ex-
acerbated because Web servers do not routinely redirect
requests for Web objects specified by relative path names
and thus accesses to embedded objects relative to the old
URL will fail.

Given these limitations, we must find another mech-
anism to check whether the requested URL has been
changed. If changed, we must also obtain the final URL
location and update the client Web browser accordingly.
In service to this goal, we observed that Facebook has a
debug API which allows developers to enter the URL of
their open graph protocol [2] based Web page, and ob-
tain a variety of high level meta-data about the page. In
fact, the Facebook debug API is able to return this in-
formation about a URL regardless of whether the corre-
sponding Web page contains open graph protocol or not.
Since the HTTP 301/302 redirect information is part of
the meta-data returned, we were able to use this approach
to first query each URL before fetching data from its final
location using our GET implementation.

3.3 HTTP Post
While data can be delivered to a Web server via the
HTTP GET method (i.e., using URL-encoding), HTTP
POST is generally the preferred mechanism for send-
ing data. In particular, POST is not limited the amount
or structure of data to be sent and is harder to abuse
via encoding attacks[7]. However supporting the HTTP
POST method within CloudProxy is not a simple exten-
sion to our GET implementation since neither the Google
spreadsheet or content server API use POST. Instead, in
searching the available Google service, we discovered
the Google gadgets caching API, which is designed to
cache gadgets on the Google cloud in order to speed up
subsequent gadget access. This API allows the caller to
issue an HTTP POST request, NOT to Google but to the
actual URL as specified in the API function call (i.e., the
location of the gadget to be cached).

3.4 API Friendly URL Design
So far, all of our work assumes that URLs can inter-
preted. Unfortunately, this is not also the case. While
our experience is that the Facebook APIs we used were
robust across URL encoding, several of the Google APIs
were highly sensitive to the form of URL. In particu-
lar URLs wither special syntax characters such as space,
comma(‘,’), and ampersand(‘&’) or their encoded equiv-
alents (e.g., a space might be encoded as ‘%20’) are
not handled well by Google’s content server or gadget
caching APIs we use and thus these calls fail on such
URLs. Thus, we need to convert all URLs into a normal-
ized that is supported by all of our APIs.

To address this problem, we repurpose URL short-
ening as a form of normalization. URL shorten-
ing is a technique by which a service represents a
URL in a compact manner and subsequently expands
it using associated state. For example, the URL
“http://bit.ly/aUAdWi” when presented to bit.ly will
redirect to “http://www.cs.ucsd.edu/”. URL shorteners
are popular in messaging services that limit the num-
ber of characters in a message (e.g., such as Twitter).
Since the output is typically only consists of 26 letters
(lower and upper cases) and 10 numbers, it is ideal for
our purpose of normalization. In our implementation, we
used the Google URL shortener service, and the encoded
URLs are passed to the various APIs.

3.5 Invocation Sequence for a Proxy
We combined these techniques to build a full functional
Web proxy. Figure 3 shows the underlying workflow of
the proxy.

First, when a user submits an URL, the proxy con-
sults the Facebook debug API to obtain the final URL.
If there is a redirect, we will construct a HTTP redi-
rect response and send it back to the browser. With the

4



Google Content 

Server APIGoogle Gadgets

Insertion API 

1. HTTP Request

2. HTTP Redirection

3. Shorten URL

5a. ASCII Content

5b. non-ASCII Content

5c. HTTP Post

7. Response

CloudProxy

Figure 3: Detailed Architecture Design. The numbers
indicate the execution order of each step. Depending on
the requested content and type, we may choose one ser-
vice from 5.a, 5.b, and 5.c

correct URL, we then invoke the Google URL shortener
service to obtain an API friendly representation of the
URL. If the requested content is ASCII based (deter-
mined via the MIME type in the HTTP response header),
the Google spreadsheet API will be called. Otherwise,
the Google content server API is used to obtain UTF-8
encoded non-ASCII Web contents. If the browser issues
an HTTP POST request, we forward it to the Google gad-
get caching API. When a response is returned, we con-
struct an appropriate HTTP response message and send
it back to browser. Inside the HTTP response header,
we purposely specify no-cache in the cache-control field
since we have no idea about the cache validity period.
In our actual implementation, we also introduce a num-
ber of optimization techniques to reduce processing over-
head. For example, we do not check the URL for a pos-
sible redirect if it is constructed based on relative path.

Note that we do not believe our implementation is the
only or even best implementation of this functionality.
With the growth of Web services, there are a tremen-
dous number of documented and undocumented APIs
that could be exploited, sometimes with equivalent ca-
pabilities (there are tens of URL shorteners) and some-
times with different strengths and weaknesses. For ex-
ample, we suspect that much of our functionality could
have been replicated using the online document process-
ing services of other providers equally well [8, 6].

4 Evaluation

We implemented the HTTP GET and POST commands
and built the proxy glue using Python. To test our imple-
mentation, we instantiated the CloudProxy service and
configured our Web browser to use it for all Web proto-
cols based on HTTP requests. We tested a range of Web-

Web Task Video Demo Link

HTTP POST http://youtu.be/74ari2Cgb9k
IP hiding http://youtu.be/Rg2x_dbSNuI
HTTP redirect http://youtu.be/8f82n-R-zsI
Video demo http://youtu.be/PTZptNdOg-A
Spreadsheet demo http://youtu.be/vKnb8Gg0wl0
Bing search demo http://youtu.be/vEGG1wT5Evs

Table 1:Video Demo Links

IP Host Name

66.220.149.53 star-11-02-snc5.facebook.com
66.220.153.28 star-11-03-ash2.facebook.com
69.171.224.29 star-12-01-prn1.facebook.com
173.194.64.95 oa-in-f95.1e100.net
74.125.224.202 lax02s02-in-f10.1e100.net
74.125.224.204 lax02s02-in-f12.1e100.net
74.125.224.211 lax02s02-in-f19.1e100.net

Table 2: Reverse DNS Lookup for Captured Source IP Ad-
dresses

sites, from simple static web pages to complicated inter-
active Web applications. Table 14 lists the Web tasks we
performed and the corresponding screen recording video
for that task.

In order to confirm that there is no traffic between our
local machine and the Website visited, we used Wire-
shark to record all incoming and outgoing packets to a
Web server under our control. For each of the source
IPs identified by Wireshark, we perform a reverse DNS
look up to obtain its corresponding host name. Table 2
displays the results for one of the several Web tasks per-
formed (the video example). All of these hosts are either
owned by Facebook or Google, and the results indeed
confirm that our proxy does not connect to Web servers
directly.

Finally, even though CloudProxy can perform many
useful Web tasks, there are two limitations that we need
to address in the future. The first is that cookies are not
supported in our current version. All of the cloud APIs
we utilized ignore the cookie values sent by our proxy.
Similarly on the reverse direction, no cookie data is re-
turned from the cloud API invocation results. The other
limitation is that the largest Web object size supported
by the APIs we used is exactly 10 Megabytes. Any sin-
gle response with size greater than this value will be dis-
carded by the APIs. We believe that the size limitation is
not a fundamental flaw of our approach, rather it is due
to the particular content server API we employed. The
Google content server API is intended to support images,

4Note, the name “Larry Lau” that appeared in these videos is an
alias solely created for the purpose of this work.

5

http://youtu.be/74ari2Cgb9k
http://youtu.be/Rg2x_dbSNuI
http://youtu.be/8f82n-R-zsI
http://youtu.be/PTZptNdOg-A
http://youtu.be/vKnb8Gg0wl0
http://youtu.be/vEGG1wT5Evs


the 10Mbytes threshold will not be a problem for most
images provided by their customers.

5 Security Implications

Proxies, by their nature, have security implications since
they remove a layer of information about the user. Some-
times this level of indirection can offer benefits (e.g.,
anonymity) while in other cases the same property pro-
vides opportunities for abuse (attacks with impunity). In
this section, we review some of the direct security impli-
cations of a free proxy service such as we have described,
from the viewpoint of different parties:

Web Content Providers: IP-based geo-restriction is a
popular way to prevent certain users from accessing on-
line resources [1]. It is frequently employed by Internet
content providers to ensure that only users from certain
geographical regions are able to view their contents (or,
with e-commerce sites, to restrict who may purchase an
item). The technical basis for such restriction is IP-based
geo-location services [5], which implicitly depend on the
source IP of the user being from their country of resi-
dence. Thus, using a system like CloudProxy, users can
effectively bypass the aforementioned restrictions by ex-
ploiting Web service replicas in the country of interest.

End Users: CloudProxy makes it possible for entirely
anonymous Web access using services that are, on their
face, unrelated to such a capability (unlike dedicated
proxy services such as Tor [9]). Using the service, a
user’s IP footprint would always appear to originate from
Google or Facebook IP blocks.

Black Hats: The very fact that CloudProxy’s requests
are satisfied by Google and Facebook provides a resource
asymmetry that attacks can exploit. Google, for ex-
ample, has tremendous bandwidth and server capacity
available to it that could be brought to bear on innocent
third-parties. For example, during the implementation
of CloudProxy, we noticed that the HTTP range field is
only respected between our proxy and Google. How-
ever, Google servers will still retrieve the full content re-
quested from a third-party Web server. This asymmetry
allows a nefarious CloudProxy user to mount a denial-
of-service attack by repeatedly requesting small portions
of large files from a third party site, letting Google and
the site manage the bandwidth of the full download.

Web Service Providers: Finally, while Google and
Facebook have prodigious resources, most services are
designed around a particular usage mode and may not
operate efficiently in a different regime. For example,
when Web contents are retrieved using Google gadget
cache API, a copy of the Web content will be retained.
If there is a substantially large user population access-
ing web through CloudProxy, this could quickly create
undesirable resource demands.

6 Conclusion

In this paper, we argued that Web services, or pieces of
Web services, could be easily combined to create new
capabilities that may largely deviate from the service
providers’ original intention. As a proof of concept, we
demonstrated that a web service based proxy, namely
CloudPRoxy, can be constructed from Google and Face-
book’s APIs without much difficulty. Our evaluation
suggested that CloudProxy is able to accomplish most
typical Web tasks. Furthermore, we discussed the direct
security implications of such a proxy imposed on content
providers, end users and web service providers. We be-
lieve that these security concerns are rooted from the lack
and difficulty of policy enforcement by the providers of
Web services, a research topic which deserves attention
going forward.

References
[1] Dynamic ip restrictions. http://www.iis.net/

download/dynamiciprestrictions.

[2] Facebook open graph protocol.https://developers.
facebook.com/docs/opengraph/.

[3] Google document api. https://developers.google.
com/google-apps/documents-list/.

[4] How to convert gmail into 8 gb of free remote stor-
age. http://pcmichiana.com/how-to-convert-gmail-into-8-gb-of-
free-remote-storage/.

[5] Ip to geo-location lookup.http://www.maxmind.com.

[6] Microsoft office 365. http://office365.microsoft.
com.

[7] Url encoding attack.http://www.technicalinfo.net/
papers/URLEmbeddedAttacks.html.

[8] Zoho online word processor.http://writer.zoho.com.

[9] D INGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:
the second-generation onion router. InProceedings of the 13th
conference on USENIX Security Symposium - Volume 13 (Berke-
ley, CA, USA, 2004), SSYM’04, USENIX Association, pp. 21–
21.

[10] HOWELL, J., JACKSON, C., WANG, H. J., AND FAN , X.
Mashupos: Operating system abstractions for client mashups. In
Proceedings of the 11th USENIX workshop on Hot topics in oper-
ating systems (Berkeley, CA, USA, 2007), HOTOS’07, USENIX
Association, pp. 16:1–16:7.

[11] PAVLO , A., AND SHI , N. Graffiti networks: A subversive,
internet-scale file sharing model.CoRR abs/1101.0350 (2011).

[12] SHACHAM , H. The geometry of innocent flesh on the bone:
Return-into-libc without function calls. InProceedings of CCS
2007 (2007), pp. 552–561.

[13] WANG, H. J., FAN , X., HOWELL, J.,AND JACKSON, C. Protec-
tion and communication abstractions for web browsers in mashu-
pos. InProceedings of the 21st ACM Symposium on Operating
Systems Principles (2007).

[14] WANG, H. J., GRIER, C., MOSHCHUK, A., K ING, S. T.,
CHOUDHURY, P.,AND VENTER, H. The multi-principal os con-
struction of the gazelle web browser. InProceedings of the 18th
Conference on USENIX security symposium (2009).

6

http://www.iis.net/download/dynamiciprestrictions
http://www.iis.net/download/dynamiciprestrictions
https://developers.facebook.com/docs/opengraph/
https://developers.facebook.com/docs/opengraph/
https://developers.google.com/google-apps/documents-list/
https://developers.google.com/google-apps/documents-list/
http://www.maxmind.com
http://office365.microsoft.com
http://office365.microsoft.com
http://www.technicalinfo.net/papers/URLEmbeddedAttacks.html
http://www.technicalinfo.net/papers/URLEmbeddedAttacks.html
http://writer.zoho.com

	Introduction
	Design Overview
	The Building Blocks of Our Implementation
	Discovering the Useful APIs
	Adjusting the Input and Output

	Implementation
	HTTP GET
	ASCII Based Content
	Non-ASCII Content

	HTTP Redirect
	HTTP Post
	API Friendly URL Design
	Invocation Sequence for a Proxy

	Evaluation
	Security Implications
	Conclusion

