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Refreshing ATC — USENIX ATC ’19 Program Co-Chairs Message

Dan Tsafrir

Technion — Israel Institute of Technology

and VMware Research

1 Introduction

Welcome to ATC °19: the 2019 USENIX Annual Technical
Conference. The scope of ATC covers all practical aspects
related to systems software, and its goal is to improve and
further the knowledge of computing systems of all scales,
from small embedded mobile devices to large data centers,
while emphasizing implementations and experimental results.

The ATC *19 program is the result of tremendous efforts
by many in our community. We are most thankful to the
authors who submitted their high-quality work and to the
reviewers who undertook the challenging task of evaluating
hundreds of submissions and providing constructive feedback
to the authors. While working on creating the program, we
have been repeatedly inspired by our reviewers’ competence,
experience, patience, and dedication. Thanks to their efforts,
we are happy to report that the excellent program of ATC ’19
achieves its aforementioned goal.

Briefly, we received 356 submissions and accepted 71
(19.9% acceptance rate) through a double-blind, two-rounds
review process. The statistics that describe the submitted and
accepted papers, along with the details of the review process,
are summarized in Table | and are further discussed below.

This document is somewhat longer than is typical for a
“message from the ATC program co-chairs”. What motivated
us to write this detailed report is the many changes that have
been introduced to ATC this year, the reasoning underlying
them, and the new things we have learned while working on
creating the program. The potential target audience for this
document is future chairs, or readers who wish to learn more
about the process.

2 Changes

We have introduced some notable changes to ATC this year,
primarily to meet higher reviewing standards used by other
major systems conferences. We discuss these changes next.

2.1 Increased Number of Reviews

Top-tier system conferences typically employ a two-rounds
reviewing process in which each submission receives at least
three reviews in the first review round (R1), and then, if the

Dahlia Malkhi
VMware Research
and Calibra

count  description

i. all submissions (short & full):

356  submitted (458 registered)
29  violated format, given 24 hour to fix
2 rejected+withdrawn due to said format violations
2 withdrawn before review process ended
352 underwent the full review process
184  promoted to review round #2 (R2)
80 R2 submissions pre-rejected during online discussions
37  R2 submissions pre-accepted during online discussions
67 R2 submissions discussed at PC meeting (accepted 34)
71  accepted (19.9% acceptance ratio)

ii. short submissions:

32 submitted
1 rejected+withdrawn due to format violations
8  promoted to R2
7  R2 submissions pre-rejected during online discussions
1 discussed at the meeting and accepted
1 full submission accepted as short

iii. committee & reviewing load:

66  heavy weight PC members; 18—19 reviews per member

28  light weight PC members; 13 reviews per member

22  external review committee (ERC) members; 5 reviews
116  committee members

51 external reviewers; 1 review

iv. reviews:

3-4  per submission in R1 (at least 2 by heavy members)
5-6  per submission in R2 (at least 4 by heavy members)
1,347  reviews in R1
405 reviews in R2
1,752  total, consisting of 1,097,815 words (6.7MB)

V. authors:

1,695  all submissions (1,442 unique, with 409 affiliations)
384  accepted (361 unique, with 118 affiliations)

Table 1: ATC ’19 submissions and reviewing statistics.

submission is promoted to the second round (R2) based on its
R1 reviews, it gets at least two additional reviews, amounting
to at least five reviews per R2 submission.

In contrast, until this year, ATC R1 and R2 submissions
received only two and four reviews, respectively. Upon inves-
tigation, we have learned that the decision to employ fewer
reviews than other systems conferences has been made more
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than a decade ago, by the program co-chairs of ATC 2008.

We and many others believe that making review-round
promotion decisions based on only two R1 reviews is less
informed, and hence leads to higher variability in the result.
We further feel that the minimal number of R2 reviews should
be similar to that of the other main system conferences, to
allow for a better, more rigorous paper selection process. Con-
sequently, this year, all submissions have indeed received at
least three R1 reviews and at least five R2 reviews.

2.2 Double Blindness

Ever since ATC has been established, and until this year, the
conference has employed a single-blind reviewing process,
whereby reviewers see the names of the authors of the submis-
sions that they review. While simplifying the review process,
studies show that single-blindness might lead to bias against
minorities and in favor of well-known authors and organiza-
tions. For example, Tomkins et al. show that

“Reviewers in the single-blind condition typically
bid for 22% fewer papers and preferentially bid
for papers from top universities and companies.
Once papers are allocated to reviewers, single-
blind reviewers are significantly more likely than
their double-blind counterparts to recommend for
acceptance papers from famous authors, top uni-
versities, and top companies. The estimated odds
multipliers are tangible, at 1.63, 1.58, and 2.10, re-
spectively.” [14]

Similarly, Goues et al. show that

“Reviewers with author information were 1.76x
more likely to recommend acceptance of papers
from famous authors, and 1.67x more likely to rec-
ommend acceptance of papers from top institutions.
[...] When reviewers knew author identities, review
scores for papers with male-first authors were 19%
higher, and for papers with female-first authors 4%
lower.” [4]

The latter study also shows that reviewers are usually unable
to deanonymize authors of submissions by guessing, even if
they believe themselves to be experts on a submission’s topic.

Accordingly, major systems conferences (including SOSP,
OSDI, ASPLOS, Eurosys, FAST, NSDI, and USENIX Secu-
rity) employ a double-blind reviewing process by keeping
author identities concealed from reviewers.

For ATC ’19, we employed this policy as well, and we hope
future chairs will continue to do so. The ATC ’19 call for pa-
pers (CFP) requires authors to make a good faith attempt to
anonymize their submissions by avoiding identifying them-
selves or their institution, either explicitly or by implication,
e.g., through references, acknowledgments, online reposito-
ries that are part of the submission, or direct interaction with

committee members. When authors cite their own studies, the
CFP specifies two possibilities: either cite them as written
by a third party (preferable), or as anonymized supplemental
material uploaded to the HotCRP submission management
system (most useful when the cited work is currently under
review or awaiting publication). Prior publication as a tech-
nical report or in an online repository does not constitute a
violation of anonymity.

2.3 Author Responses

Most premier systems conferences — e.g., OSDI, SOSP,
ASPLOS, USENIX Security — give authors a few days to
write a response to the reviews. The authors’ response is
known as “rebuttal”, and it is optional. It allows authors to
provide answers to specific questions raised by reviewers and,
importantly, to correct factual errors or misunderstanding in
the reviews. (It may not provide new results or reformulate the
presentation.) Some researchers perceive rebuttals as essential
for the reviewing process, to keep it fair and transparent [6],
and some ACM SIGs encourage program chairs and steer-
ing committees of SIG-sponsored events to employ rebuttals,
based on feedback from their members [13].

Therefore, for ATC ’19, we chose to allow authors to rebut.
Similarly to our past experiences in forming programs while
serving in committees of conferences that employ rebuttals,
our sense is that the author responses have contributed to
the ATC 19 process. Primarily because they allowed the
reviewers to make better informed decisions in certain cases.
But also because they implicitly encouraged reviewers to
write more accountable reviews and, importantly, to submit
them on time so as to be visible during the authors response
period; the latter allowed the online discussion period to start
on time with all the required material available.

We used a 500-words soft limit on the size of the rebuttal;
reviewers were not required to read more. The reviews were
made visible to authors in the rebuttal period, during which
reviewers were asked to avoid modifying them. After the re-
buttal period ended, reviews became invisible to authors again,
allowing reviewers to update them based on the rebuttal, the
online discussions, and the program committee (PC) meeting.

2.4 Submission Chairs

The ever-increasing number of submissions to systems con-
ferences (approaching 400 in the last two ATCs) makes it
increasingly challenging for everyone involved to create a
program. For example, it is challenging for reviewers to bid
on hundreds of submissions so as to express review prefer-
ences. It is likewise challenging to arrange things such that
the submission system accurately reflects conflicts associated
with more than a hundred reviewers and an order of magni-
tude more authors (experience repeatedly shows that many
conflicts are missing because reviewers and authors neglect
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to declare all their conflicts). It is also challenging to manage
a “dual track” PC meeting (where the PC is split between
two rooms part of the time) in a manner that ensures that all
committee members are found in the right room at the right
time in order to discuss the submissions they have reviewed.
Many other examples exist.

For this reason, we decided to formalize the role of a “sub-
mission chair” as part of the official organizers of ATC. The
job of the submission chair is to help the program chair in
accomplishing tasks such as those listed above by, for exam-
ple: adding missing conflicts to HotCRP based on DBLP;
helping reviewers’ bidding by identifying the submissions
that cite their papers and communicating this information to
the reviewers; checking format violation in uploaded PDFs
and communicating with authors to quickly fix those through
reformatting and content deletion; helping to ensure that the
quality of the reviews assignment is high (HotCRP assign-
ments might be far from optimal); helping to make sure that
per-submission administrative tasks are being carried out and
progress is achieved, e.g., by following up on submissions
that were not yet tagged as passing the “review sufficiency
check”; helping in scheduling of the dual track meeting; and
serving as scribes during the meeting while making sure the
scheduling of PC members in rooms works as expected.

Submission chairs get admin privileges in the HotCRP sys-
tem in order to carry out their duties. Their role, however,
never requires them to make decisions that affect the outcome
of the review process. For example, they do not steer online
discussions. It is productive for the program chair and sub-
mission chair to be geographically located near each other,
allowing them to physically meet when the need arises.

2.5 Extended Review Committee (ERC)

Most of the premier systems conferences, which must review
a few hundreds of submissions, typically employ a light-heavy
program committee model, where “light” PC members review
fewer submissions but do not attend the PC meeting, whereas
“heavy” members review more submissions and attend the
meeting. This model is needed in order to decrease the high
reviewing load of PC members, while keeping in mind that
the number of people who can sit in one room and conduct a
productive discussion is bounded.

Last year, unpredictably, ATC *18 received nearly a hun-
dred additional submissions as compared to ATC 17 (377
submissions as compared to 283 submissions, respectively).
To our knowledge, the PC of 2018 was the the first ATC PC
to employ the light-heavy model. In previous years, all ATC
PC members were “heavy”, which was viable because the
number of submissions was much lower, albeit, even so, past
ATC-s reviewing load was sometimes in the range of 25-30
submissions per member. (Some of us were members of those
PCs and still remember the pain.)

Our goal for this year was to ensure that the reviewing load

of heavy members will not exceed 20 submissions. In parallel,
USENIX instructed us to be prepared for an additional sizable
increase in the number of submissions. Therefore, to be safe
and have some flexibility, we decided to supplement the light-
heavy model with an Extended Review Committee (ERC),
consisting of members whose review load will be light: about
5 submissions per member.

Notably, due to the light reviewing load, ERC members
were easy to draft regardless of their seniority: they typically
accepted our invitation (which specified that the expected
reviewing load will be 3—-7). Additionally, more than a quarter
of the ERC members were initially invited to serve as heavy
or light members and opted for the lighter alternative instead
of declining altogether.

Ultimately, having an ERC was a contributing factor that
allowed us to assign four reviewers in R1 to most submissions
(without increasing the load on light and heavy members be-
yond our planned upper bound). Having an initial assignment
of four reviews proved to be invaluable when making R2 pro-
motion decisions in the face of multiple late reviews, as three
reviews were typically enough to confidently make the call.
The ERC members additionally contributed by augmenting
the expertise of our pool of reviewers.

2.6 No Abstract Submission Deadline

Last year, in their welcome message, the program co-chairs
of ATC 18 stated that

“We required authors to submit abstracts a week
before the paper submission in the hope of ensur-
ing proper subject area coverage by the program
committee and to get an idea of the reviewing load.
This did not work. We had over 550 submitted ab-
stracts, meaning almost 40% of the submissions
were abandoned. In the end, requiring abstracts to
be submitted early did not help with planning due
to such a large number of abstracts that did not
result in a submission” [5].

To that we add that requiring committee members to indi-
cate reviewing preferences before the submission deadline
would be a waste of their valuable time, as they will inevitably
bid on submissions that will not materialize. Stating review
preferences given hundreds of finalized submissions is already
time-consuming and challenging enough, and needlessly mak-
ing this task even harder is counterproductive.

Bidding on registered abstracts that will not materialize into
submissions would additionally negatively affect the quality
of the review assignment, because committee members fre-
quently stop bidding when they feel they have already placed
“enough” bids on submissions.

Consequently, this year, we have to cancel the requirement
to register abstracts in advance, and we eliminated the corre-
sponding deadline.
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2.7 Submission Deadline Closer to New Year

The date at which accept/reject notifications for ATC submis-
sions are sent to authors is typically set by USENIX to around
mid April." Accordingly, since 2013, the submission deadline
of ATC has been scheduled at the end of January or in early
February, which thus far allowed the committee to complete
the reviewing process in time to comply with a mid-April
author notification date. This year, however, we set an earlier
submission deadline: January 10, 2019.

Three issues necessitated this change. First, we needed
additional time for the authors response period (Section 2.3)
and for the “review sufficiency check” period that preceded
it (described in Section 8). Second, as noted in Section 2.6,
we had to allocate a few days following the deadline to allow
reviewers to place bids on submissions indicating their review
preferences; traditionally, such bidding took place before the
submission deadline, as authors were required to register an
abstract a week in advance.

The third issue that motivated an earlier deadline is the in-
creased number of submissions. To cope with this increase, we
allocated two weeks for online committee discussions sched-
uled before the PC meeting, in order to allow the committee
to converge to a decision regarding as many submissions as
possible—failing to do so would mean ending up with too
many submissions to discuss at the meeting. The increased
submission number also required allocating the week follow-
ing the bidding period in order to assign reviews to members
in a manner that would later allow us to reasonably conduct a
dual track PC meeting (see details in Section 6).

Scheduling the submission deadline to occur soon after
New Year may partially explain this year’s somewhat smaller
number of submissions as compared to last year: 377 vs. 356
in ATC °18 and ATC ’ 19, respectively.

2.8 Uniform Shepherding

In the past, shepherding in ATC was not used by default. This
approach reduces the load from both committee members and
authors. A main drawback, however, is the increased likeli-
hood that some of the issues that the reviewers expect authors
to address in the camera-ready version remain unresolved.

The alternative approach, used by most of the premier sys-
tems conferences, is to assign shepherds to all accepted papers
and thereby generally improve quality assurance. As part of
our efforts to update the ATC reviewing process in order
to make it aligned with that of its sibling conferences, this
year, we decided that all accept decisions are conditional and
depend on the approval of shepherds.

'In odd years, if the appropriate coordination takes place (as is the case
this year), ATC notifications occur shortly before the SOSP submission
deadline, to allow rejected authors of the former conference to submit an
improved version of their study to the latter conference, assuming they have
kept working on it while it was under submission at ATC.

After the (conditional) accept notification, authors were
given a few days to consider how to address the reviewers’
comments and email a revision plan to their shepherd. Au-
thors and shepherds then agreed on a timeline that allows the
authors to complete the revision, providing enough time for
the shepherd to read, consider, and discuss the revision with
the authors, while permitting a final round of text polishing
if necessary before the camera-ready deadline. At the end of
this process, shepherds explicitly “signed off” the inclusion
of papers in the program using HotCRP tags, allowing the
program chairs to track the progress of turning all conditional
accepts to accepts.

2.9 Accept as Short

As members of former ATC PCs, we are aware of full sub-
missions that were accepted to past ATC-s on the condition
that their authors will reduce their size to meet the short pa-
per page-limit requirement. ATC program committees made
such decisions rarely, limiting them to situations where the
alternative is to otherwise reject the paper.

Surprisingly, past ATC call-for-papers were not clear about
the possibility to accept as short; the practice was only anec-
dotally documented in the messages from chairs [2]. Seeing
that this practice has been used in the past and may be used
in the future, in the interest of transparency, we decided to
explicitly declare it in the CFP, which now states that “the
program committee may rarely decide to accept a full sub-
mission on the condition that it is cut down to fit in the short
paper page limit” [19].

This CFP update initiated a discussion with USENIX board
members who were concerned that the effort required to trans-
form a full submission to a short paper might be too significant
to accomplish between the authors notification date and the
camera-ready date. They cited the FAST policy—which states
that “the program committee will not accept a full paper on
the condition that it is cut down to fit in the short paper page
limit” [20]—as potentially preferable.

After consideration, we decided to keep the ATC accept-
as-short policy because we believe it produces a significantly
better outcome for both the authors and for the community,
provided the alternative is to reject. In such rare cases, disal-
lowing the PC to accept as short would result in a lose-lose
situation: the authors lose because they are rejected instead of
being given a chance to shorten and thereby get accepted; the
ATC program loses a short paper; and the systems community
loses because the paper would be subsequently resubmitted
and hence re-reviewed, requiring the community to spend ad-
ditional reviewing cycles, whereas reviewing load is already
too high.
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2.10 Shorter Presentations

Last year’s aforementioned 33% increase in the number of
ATC submissions (377 in ATC ’18 vs. 283 in ATC ’17)
and the consequent 27% increase in accepted papers (76 in
ATC 18 vs. 60 in ATC ’17) motivated the program co-chairs
of ATC *18 to avoid hosting “best of the rest” sessions in their
program, as well as to generate a longer-than-usual program
that ends in the evening of the third day of the conference
rather than around lunch time.

Despite having a similarly-sized program this year (71 pa-
pers), we wanted to have our cake and eat it too, namely: bring
back the “best of the rest” sessions; further add lightning ses-
sions to the program (see Section 2.12); while still end the
program around lunch time at the third day, as was done in
previous years prior to ATC *18.

To this end, this year, we decided to shorten the presentation
time from 25 minutes per paper to 20 minutes. We believe that
this change constitutes a reasonable compromise, allowing
the conference to accommodate the additional sessions within
the traditional time frame, while still providing enough time
for presenters to convey the gist of their ideas.

2.11 Poster Requirement

To partially compensate for the shorter presentation time slots,
this year, we dedicated the two poster sessions exclusively
to accepted papers, and we required all paper-presenting au-
thors to additionally present a poster in one of these sessions.
Hopefully, this format will promote and facilitate interaction
between authors and attendees who are interested in their
work.

2.12 Lightning Sessions

In recent years “lightning sessions” have become standard in
top-tier computer architecture conferences (ISCA, ASPLOS,
etc.), and this year we decided to adopt them in ATC. Light-
ning sessions are typically interesting and fun, and, impor-
tantly, they are particularly suitable for conferences that have
parallel sessions, which inevitably means attendees miss some
of the presentations they are interested in. Lightning sessions
give attendees a chance to make more informed decisions
regarding what interests them the most and which talks are
more worthy of their time. Speakers indeed often treat their
lightning session presentations as previews aimed at soliciting
listeners to attend the associated talks.

A lightning session is a joint session at the beginning of the
day, which includes all the talks that will be given on that par-
ticular day. After the daily lightning session, the conference
splits into its parallel tracks. Shortly before the daily lightning
session, the speakers of that day queue in order—they do not
sit until they present. Then, each lightning talk is allocated
120 seconds.

Each daily lightning session has a session chair. The chair is
responsible for: interacting with speakers to get their slides be-
forehand; ordering slides on her laptop based on their order in
the program, and making sure they display nicely; informing
the speakers regarding the order; and regulating time during
the session if necessary (we have never witnessed a lightning
session chair having to actually exercise this authority).

Lightning speakers are additionally requested to submit
lightning videos beforehand, which are made available in
the conference web page before the conference. Both light-
ning presentations and videos are currently available in the
ATC ’19 technical sessions webpage.

In the past, USENIX conference talks were videoed, a very
useful service that largely stopped due to financial reasons.
Our hope is that lighting videos, which do not incur video
recording costs, can partially provide some of this service:
optimally, lightning videos would allow people who wish to
only understand the gist of the idea to do so in 120 seconds.

3 Changes to Consider

3.1 Steering Committee

The one remaining notable difference between ATC and its
sibling academic systems conferences (USENIX-sponsored:
FAST, NSDI, OSDI, USENIX Security; SIGOPS-sponsored:
ASPLOS, Eurosys, SOSP) is that ATC does not have a formal,
broad, long-term steering committee. To make ATC more
valuable to the community, we—nearly all ATC program
chairs since 2015—believe that ATC should have such a com-
mittee, and we propose to form it, thus completing the tran-
sition of ATC into a conference that is governed by policies
generally acceptable in the academic systems community.

We propose that the newly formed ATC steering commit-
tee will assume all responsibilities typically assigned to such
committees, including providing advice and guidance to the
current program co-chairs, selecting future program co-chairs,
sustaining organizational memory, suggesting and consider-
ing new ideas when the need arises; and ultimately shaping
the role of ATC. The identity of the steering committee mem-
bers should be publicized along with call-for-papers to allow
interested parties to address the committee with respect to
matters that concern the conference long-term.

The members of the committee could, for example, be the
USENIX executive director, relevant members of the USENIX
board, and the program chairs from the last n ATC instances,
such that members who chaired ATC in year Y —n will be
replaced by the ATC chairs of year Y shortly after the latter
conference takes place. Joining the steering committee will
of course be voluntary.

In October 9, 2018, a letter consisting of the content of this
subsection has been submitted to the USENIX board. The
letter was signed by all the ATC program chairs since 2015
except two (one responded too late and the other serves on
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Figure 1: (a) Submission and acceptance statistics of ATC papers (including both full and short) in the last decade, based on the corresponding
proceedings’ message from the ATC program chairs. (b) The same, but only for short papers. In 2010-2011, short submission numbers were
not reported. In 2019 and 2013, one and three of the accepted short papers were submitted as full, respectively; we do not have this information

for the other years.

the Usenix board and is one of the decision makers regarding
the steering committee issue). All who signed volunteered
to serve on the steering committee when it is formed. The
response of the relevant people in USENIX seems positive,
but a steering committee has not yet been established.

3.2 Test of Time Award

All the premier systems conferences—except ATC—annually
recognize historical, influential papers that have stood the
test of time. This includes: USENIX Test of Time Award
for FAST, NSDI, and USENIX Security [18]; SIGOPS Hall
of Fame Award, which is typically handed to SOSP and
OSDI papers [17]; Eurosys Test of Time Award [16]; and
SIGARCH/SIGPLAN/SIGOPS ASPLOS Influential Paper
Award [15].

The procedure to select the awarded papers varies. A com-
mon way employed is for the program committee of the con-
ference to nominate influential papers published in that confer-
ence around ten years ago, with the final selection being made
by the conference’s steering committee (which, as noted, ATC
still does not have). ATC is much older than ten years and,
arguably, has changed its nature and goals over the years. So
when/if an ATC test of time award is established, the steering
committee will need to decide how to address older papers
and handle the backlog. Jeff Mogul documented some of
SIGOPS’s considerations when establishing its Hall of Fame

Award in 2005 and addressing similar questions [12].

3.3 Short Submissions

Figure 1a shows the submission and acceptance numbers of
ATC papers in the last decade. Figure Ib shows the same
statistics for short papers only. Getting a short submission ac-
cepted to ATC is clearly harder. We do not know why and can
only speculate about the reason. Perhaps there is a mismatch
between PC members’ expectations and what can actually be
accomplished in the scope of a short paper. Perhaps authors
wrongfully believe that the bar for short submissions is lower.
And perhaps there is a loose negative correlation between
the increasing number of full submissions and the decreasing
number of accepted short papers because PC members feel
they have stronger papers to accept, relatively speaking.
Regardless of the reason, the fact that ATC PCs have re-
viewed 29-35 short submissions per year in the last five years
only to accept 1-4 of them raises the question of whether the
effort is worth it, since the reviewing effort to accept short
papers is significantly greater than the effort to accept full
papers (3%—13% vs. about 20% acceptance rate for short and
short+full submissions in the last five years, respectively).
This year provides an extreme demonstration of how much
harder the PC has to work in order to accept short papers.
Table 2 specifies the number of reviews that the ATC *19 PC
wrote for full and short submissions, as well as the resulting
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scenario submission  written accepted work
type reviews  papers  ratio
real (worst case) full 1620 70  23:1
short 132 1 132:1
extrapolated (best case) short 132 4 331

Table 2: The number of reviews that the ATC 19 PC wrote for full
and short submissions demonstrates that the PC had to work much
harder in order to accept a single short paper (“real”). Even if we
hypothetically assume that the PC had accepted four short paper
instead of one as in last year (best case scenario in the last five years),
the reviews-to-accepts work ratio would still be nearly 1.5x higher
(“extrapolated”).

number of accepts. It turns out that the PC wrote 132 reviews
in order to accept a single short paper, as opposed to writing
“only” 23 reviews in order to accept a full submission. Namely,
the PC had to work nearly 6x times as hard.

That said, as can be seen in Figure 1b, this year has been
especially bad for short submissions. But even if we hypothet-
ically assume the best case scenario across the last five years
of accepting four short papers, the corresponding reviews-to-
accepts ratio would have been 35:1, which is still nearly 1.5x
harder than accepting a full paper.

ATC enjoys a steadily increasing number of full submis-
sions. As a consequence, the reviewing load becomes heavier,
requiring bigger PCs that already hardly fit into one room.
Considering the relatively low return on investment (a signifi-
cantly higher reviews-to-accepts ratio), it may make sense for
future ATCs to consider to stop soliciting short papers.

We note in passing that, this year, we revised the CFP defi-
nition of short submissions to exclude workshop-style papers
(“a short paper is not like a workshop paper—it presents a
complete idea, which does not require full length to be appre-
ciated” [19]). We introduced this change hoping to increase
the short submission success rate by discouraging authors
from submitting work that (our experience suggests) ATC re-
viewers tend to reject. The data shown in Figure 1b suggests
this change was ineffective .

3.4 Early Rejects or R1 Rebuttals

The program co-chairs of this year debated about the issue
of whether or not to send early reject notifications to authors
of submissions who did not make it to R2. The reasoning to
oppose sending early rejects was that such notifications might
provide an unfair advantage to R1 rejects over R2 submissions
that will be rejected later on, because the authors of the former
will be free to resubmit their work elsewhere much sooner.
Additionally, early rejects might translate to even higher re-
viewing loads that the community must handle due to said
earlier resubmissions. Lastly, and importantly, postponing the
R1 reject notification would allow PC members to re-calibrate
during the second round and the deliberations and potentially

change their opinion.

The reasoning to supported early rejects was that delaying
reject notifications would be counterproductive for authors
who do not abuse the system but rather leverage the review-
ers’ feedback to improve their work before they resubmit.
Arguably, the ATC reviewing process should not replace one
evil (“helping” authors who might abuse the system by ignor-
ing the reviewers’ feedback and resubmitting prematurely)
with another (allowing authors to believe that they have a
chance to get accepted for a good few weeks whereas in fact
they do not).

Eventually, since we already introduced many changes to
ATC this year (Section 2), we decided to leave things as they
are in this particular case and avoid sending early reject notifi-
cations. But we encourage future ATC program chairs (and/or
the ATC steering committee if it is established) to reconsider.

Because decisions were collectively sent to authors shortly
after the PC meeting, R1 rejects were given a chance to write a
rebuttal (Section 2.3), which the committee members read and
considered. Two R1 rejected submissions were resurrected as
aresult. These submissions were promoted to R2 and urgently
assigned two additional reviewers. In the end, however, both
were rejected. We speculate that allowing authors to rebut
(also) after R1 (as is done by some conferences) would have
had a bigger effect. But doing so would require more labor and
an even earlier deadline, which would be closer to New Year,
which might result in fewer submissions (see Section 2.7).

3.5 Physical PC Meeting

The number of submissions the PC can discuss in one day
(let us denote it as c) is bounded. For example, it takes more
than eight hours to discuss ¢ = 70 submissions if allocating
7 minutes per submission, as is typical. PCs also usually
dedicate 2—-3 minutes to present each submission that was
pre-accepted in the online discussion phase (ATC *19 had 37
such submissions), and they take about 30 minutes for lunch.
It is challenging to squeeze all these activities into one day.

Let mm denote a member of the PC, and let r denote the num-
ber of submissions reviewed by m. Similarly to c, the value of
r is bounded. At the risk of overgeneralizing, we roughly ap-
proximate that r = 15, r = 20, and r = 25 reviews per member
are nowadays considered light, average, and heavy review-
ing loads in academic systems conferences, respectively. The
value of r cannot be raised arbitrarily.

In contrast to ¢ and r, the total number of submissions that
the PC must review (let us denote it as n) is unbounded and
keeps increasing. The practical meaning of this increase is
that, on average, fewer and fewer of the r submissions that
m reviewed are getting discussed at the meeting. Figure 2
demonstrates this trend, assuming ¢ = 70 submissions are
discussed at the meeting, and that 2/3 and 1/3 of the » submis-
sions assigned to m are reviewed in R1 and R2, respectively.
The x axis shows n, and the y axis shows the corresponding
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Figure 2: Increased number of submissions translates to fewer
submissions that each PC member gets to discuss at the PC meeting;
see Appendix A for details.

expected number of submissions that have been reviewed by
m and ended up being discussed at the meeting (let us denote
it as d), which is monotonically decreasing.

In Appendix A, we show that under our assumptions,
d =~ 4rc/3n is a reasonable approximation of the expected
number of submissions that m reviewed and discussed at the
meeting. As noted, because » and ¢ (numerator) are bounded,
d asymptotically behaves like 1/n (denominator).

Our PCs received n = 356 submissions and used an upper
bound of 18-19 reviews per heavy member, which more or
less corresponds to the line associated with r = 20 in Figure 2.
In the relevant range of n, we see that d = 5.5 submissions
discussed at the meeting per member. Because d is just an av-
erage, some members discussed more submissions, but others
discussed less: as little as 2—3 submissions in certain cases.
Flying to California to discuss such a small number of sub-
missions is, arguably, counterproductive.

In 2018, the PC meeting spanned across two days, allowing
the committee to make fewer decisions during the online
discussions period and instead discuss ¢ = 124 submissions in
person at the meeting (with n =377 and r = 18). Therefore, by
our calculation, each member discussed about 8 submissions
on average, alleviating the problem somewhat. On the other
hand, 8 submissions during two days means 4 submissions
per day (as compared to 5.5 per day in 2019), which is not
necessarily preferable.

When discussing this issue with some of the members dur-
ing the PC dinner, it seemed like most agreed that there is a
problem: the time overhead and carbon emission associated
with physical PC meetings are possibly becoming excessive
considering the smaller number of submissions that each mem-

ber gets to discuss. Still, there was a sense that the program
turned out better due to the physical meeting, which allowed
the members to calibrate. Additionally, several members—
both junior and senior—pointed out that a notable value they
get from PC meetings is the chance to network and interact
with their peers.

In light of the above, it may be advisable for future program
chairs to consider if in-person, physical PC meetings are worth
it, at least in their current format. If they decide in favor of
physical meetings, one conceivable way to increase their value
is, for example, to couple them with workshop-style events,
where committee members briefly present their ideas and get
feedback from their peers.

4 Assembling the Committee

After we accepted the position of the ATC ’19 program co-
chairs, we were asked by USENIX to take into account that
the number of submissions in 2019 might exhibit the same
growth rate as it did in 2018, which would bring us to about
500 submissions (a.k.a. “the nightmare scenario” :-)), re-
quiring 3 x 500 + 2 x 250 = 2000 reviews assuming 50%
of the submissions move to R2 (see Section 2.1). A smaller,
more conservative estimate of 400 submissions would require
3 x 400+ 2 x 200 = 1600 reviews. In comparison, a sizable
heavy PC of 60 members each contributing 20 reviews—
a threshold we were hoping and planning not to exceed—
provides 60 x 20 = 1200 reviews. Taking into account these
numbers, we decided to draft a heavy PC, a light PC, and
an ERC (see Section 2.5) with target sizes of 65, 25, and 25,
respectively.

Drafting about 115 committee members is a challenging
task. In preparation for it, we compiled a list of all those
who served on PCs in the last three instances of the main
systems conferences, such that we had a pool of candidates
to helps us (we used: ASPLOS 2017-2019, ATC 2016-2018,
Eurosys 2017-2019, FAST 2017-2019, NSDI 2017-2019,
OSDI/SOSP 2016-2018, and USENIX Security 2016-2018).

Analyzing this database brought up an interesting insight,
which might indicate that our community has scalability is-
sues in terms carrying out the reviewing load. Table 3 shows
the relevant statistics. The aggregated sum of the size of the
21 PCs we have included in our analysis is 1118. These mem-
bership positions were manned by 655 unique individuals, a
finding that could be interpreted to mean that members serve
in 1118/655 = 1.7 PCs in three years, on average. A deeper
look at the data, however, reveals that 284 individuals partic-
ipated in two or more of the PCs in our database, and these
individuals are responsible for manning 783 (70%) of the
1118 positions. This finding implies that a relatively small
group of people shoulders most of the reviewing load.

Figure 3 depicts the histogram of how many of the mem-
bers in our database (y) served in how many of the PCs that
we included (x), which demonstrates the reviewing effort dis-
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memberships (aggregated sum of PC sizes) 1,118
number of unique members 655
number of unique recurring members 284

Table 3: Membership statistics of the PCs of the main systems
conferences in the last three years.
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Figure 3: Histogram showing how many of the members of the
PCs of the main systems conferences in the last three years (y axis)
served in how many of these PCs (x axis).

parity. We can see, for example, that one member served in 8
PCs, and four members served in 7.

The list we compiled was helpful in drafting the commit-
tee. When sending heavy member invitations, we allowed the
candidates to accept as light or ERC, and when sending light
member invitations, we allowed the candidates to accept as
ERC. The number, type, and outcome of the invitations are
specified in Table 4, and the demographic information of the
resulting PC is specified in Table 5. Nearly 2/3 of the invita-
tions sent were accepted, and as can be seen, this relatively
high success rate is partially because we allowed candidates
to opt for roles that involve a smaller reviewing load.

S Conflicts and Bidding

5.1 Missing Conflicts

Before assigning submissions to reviewers, it is important for
the submission management system, HotCRP, to have accu-
rate conflict of interest information as defined by the ATC °19
call for papers [19]. In addition to the conflict information
that authors and reviewers explicitly specify, HotCRP helps
by highlighting potential conflicts based on the information
available to it, which is productive. This year, we also used
the PC Chair Kit [3] that was written for ISCA *18 to find

invite  invite accepted accepted accepted declined
type sent  as heavy as light as ERC

heavy 131 66 16 3 46
light 22 - 12 3 7
ERC 27 - - 16 11
sum 180 66 28 22 64

Table 4: Number of invitations to serve on the ATC 19 committee
sent to candidates, and the corresponding responses.

seniority  junior 31 country USA 62
senior 63 Canada 7

gender female 14 Switzerland 6
male 80 Israel 4

sector university 64 UK 4
industry 25 Germany 2

both 5 Netherlands 2

continent N. America 69 Korea 2
Europe 15 Australia 1

Asia 5 China 1

Middle East 4 France 1

Australia 1 Hong Kong 1

Sweden 1

Table 5: Demographic information of the PC (heavy and light,
excluding program co-chairs).

missing conflicts based on authorship information available
via DBLP.” The script downloads the relevant DBLP infor-
mation and checks if there are any co-authors of submission
authors from the last n years that are not already listed as
HotCRP conflicts.

Our submission co-chairs found 150 such undeclared con-
flicts and verified them manually. They identified a few false
positives (e.g., two researchers with identical name, a summer
school report authored by many authors that should not be
considered as a real conflict), but the rest of the conflicts were
valid.

5.2 Helping Committee Members to Bid

Authors associate topics from a predetermined list with their
submissions, and committee members declare their per-topic
level of (dis)interest for each such topic. This information is
important, because it is utilized by HotCRP to compute a per-
member score for each submission, and members use these
scores to sort through hundreds of submissions and thereby
ease the process of bidding—the act of associating integers
with submissions to indicate reviewing preference. HotCRP
then uses bids (as well as topic scores when, e.g., bids are
absent) to assign reviews to reviewers.

Instructions for Committee Members We requested com-
mittee members to favor bidding on submissions for which

2More accurately, we used a fork of that kit [7].
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they can provide expert or knowledgeable reviews, rather than
on submissions that they find interesting but do not fall in their
area of expertise.

We additionally requested committee members to limit the
range of the numeric values they use to express preference to
-20 to 20. The HotCRP system does not compare preference
values of different users in the automatic review assignment
algorithm and so members need not use the same scale. Some
review assignments, however, are inevitably done manually by
program chairs, and then having a common scale is helpful.

Defining Topics Last year, in ATC 2018, the aforemen-
tioned predetermined list consisted of 62 topics, as opposed to
years 2017 and 2016, at which ATC used a list consisting of
17 topics. Some speculate that having this many topics is cum-
bersome, overly verbose, and unhelpful [9], and we seriously
considered minimizing the list and consolidating topics when
defining it for 2019. But a closer look at the historical data
(from ATC ’18, as well as from ASPLOS ’19, which used a
similarly sized list) indicated that authors and reviewers do
use most topics in the longer lists.

Considering that (1) the task of bidding is really hard when
there are hundreds of submissions, and that (2) PC members
do primarily rely on topics when bidding as a way to cope
with this submission volume, we eventually decided that it
might be counterproductive to shrink the topic list and risk
making bidding harder. A concise (or at least coarser grained)
list could be preferable, and mining past data more seriously
may provide evidence that support this hypothesis. But as
we currently do not know, we decided to stick with the more
sizable, finer grained list (although we made changes).

Figure 4 shows the 59 topics used in ATC ’19, ranked by
the number of submissions that used them. It could be ar-
gued that even our least popular topic (“cryptography”, which
was associated with only three submissions) is worthwhile,
because it is preferable for the associated submissions to be
reviewed by the appropriate committee members who are
actually capable of doing it, and it seems reasonable to specu-
late that the odds of that happening would have been smaller
without the topic.

Grouping Topics Given that there are dozens of topics, it
makes sense to group related topics when they are presented
to authors and committee members within HotCRP, which
makes using them easier. In ATC 18, the program co-chairs
did so in an ad hoc manner by adding grouping prefixes to
topic strings that are separated from the topic names by a
colon (for example: “storage:deduplication”, “storage:disk
(CMR, SMR, etc.)”, “storage:erasure coding”, and so on). In
ATC ’19, we used the same notation but also kindly requested
the HotCRP maintainer to directly support the concept, which
he did [9], making the HotCRP presentation of grouped topics
more elegant, usable, and effective. The topic groups we used
are: general, devices, networking, OS, PL/SE (abbreviation of

total number of citations of committee papers 1266

average number of citations per member 11.6
median number of citations per member 7
standard deviation 11.5
citations of top-most cited member 67
citations of 2nd-most cited member 61
citations of 3rd-most cited member 43

Table 6: Statistics of citations of committee member papers found
in the ATC ’19 submissions and communicated to members to help
with their bidding.

programming languages and software engineering), security,
storage, systems, and techniques/aspects.

Pinpointing Submissions that Cite Members As noted,
having to place bids to decide which submissions to review
is becoming more challenging due to the increasing number
of submissions. Merely reading the titles of 300—400 sub-
missions is time-consuming, and many reviewers need more
information than just the title to decide to bid. Attempting to
ease the process of bidding, we generated for, and shared with
each committee member a list that specifies all the ATC *19
submissions that cite that member’s papers. The list was gen-
erated by our submission co-chairs using the aforementioned
PC Chair Kit [7].

Table 6 provides some statistics about the citations we have
found. Since there are more than a thousand of them, hope-
fully, they provided a usable signal to some of the committee
members.

Dealing with Unpopular Submissions Despite the fact
that nearly 90% of the committee members placed positive
bids on 20 submissions or more (and 2/3 of the members
placed positive bids on 40 submissions or more), some sub-
missions were associated with relatively few positive bidders.
Perhaps unsurprisingly, some submissions are much more
popular than others. The line associated with “before” in Fig-
ure 5 depicts the disparity of popularity. The x axis shows the
rank of each submission based on the the number of members
that bade positively on it, and y axis shows the corresponding
number of bids.

Focusing on the bottom right, we can see that 60 submis-
sions received only 6 positive bids or less, which would have
likely hampered the review assignment process. We therefore
labeled these 60 as “lowbids” in HotCRP and asked our com-
mittee members to consider positively bidding on some of
them if they are within their domain of expertise, stating that
if everyone does this truthfully, no one will be tasked with
arbitrary submission assignments. The line associated with
“after” in Figure 5 demonstrates that this request was effective.
(Albeit the data is distorted somewhat by the fact that the
“after” line additionally accounts for bids we solicited before
the beginning of R2.)
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Figure 5: Disparity of popularity among ATC ’19 submissions.

Interestingly, out of those 60 “unpopular” submissions, only
three (5%) were accepted to the ATC *19 program, which
is 4x lower than the overall acceptance rate. Perhaps this
poor success rate suggests that bidding information could
be leveraged somehow to make the reviewing process more
efficient? A positive answer to this question would be helpful,
because the ATC °19 committee wrote 281 reviews for these
particular 60 submissions, which is a lot of effort in order to
accept only three.

On the other hand, one of these three has been awarded
best paper, which is another demonstration of what all of us
already know: popularity isn’t everything... :)

6 Planning for a Dual-Track PC Meeting

Due to the increasing number of submissions to system con-
ferences, in order to be able to finish the PC meeting on time,
several recent program chairs resorted to splitting the meeting
into two parallel tracks for part of the time, such that each

track is simultaneously headed by a different co-chair. As-
suming that the number of submissions is not going down any
time soon, it seems like dual-track meetings are here to stay.

However, properly organizing a dual-track meeting is chal-
lenging. Notably because it may affect how submissions are
assigned to reviewers, as it is nontrivial to arranges things
such that all PC members are always found in the right room
at the right time while the meeting takes place.

Currently, there is no standard, generally accepted best-
practice for how to arrange a successful dual-tack PC meeting.
Program chairs typically need to apply creativity and to spend
much effort to come up with an appropriate model they feel
would work and would be suitable for their committee. For
this reason, before we describe the model we used, we survey
the models of dual-track meetings used by program chairs
before us, and we briefly discuss their pros and cons. Hope-
fully, this discussion would be useful for future chairs when
deciding upon the model that works best for them, as the state
of the art of dual-track PC meetings evolves.

ASPLOS ’17 Model The first PC that we are aware of that
split into tracks occurred spontaneously at the PC meeting of
ASPLOS ’17, when attending members and chairs realized
it was not realistic for them to finish on time. They there-
fore split in an ad hoc manner to flexible, parallel discussion
groups. The approach was reported to have worked: the pro-
gram was ready at the end of the day, and the members lived
to tell the tale.

ASPLOS ’18 Model In the subsequent year, having experi-
enced the difficulties from the previous year, the program
co-chairs of ASPLOS ’18 carefully planned for the dual-
track meeting. They split their PC members into two disjoint
equally-sized sets M and M, with the stated goal of having
equal expertise in both, in all the relevant conference topics.
They likewise split the submissions into two equally sized
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sets So and S, and they exclusively assigned submissions
from S; to M;, such that no PC member reviewed outside of
her sub-committee’s pool of submissions. Consequently, by
design, running the dual track meeting was easy.

A main concern with this model is that it splits the exper-
tise and thus runs the risk of arbitrarily preventing the most
appropriate experts who happen to belong to M; from review-
ing submissions that happen to belong to the “wrong” pool

S(i+1) mod 2-

ASPLOS ’19 Model In an effort to alleviate this drawback,
the program co-chairs of ASPLOS *19 employed the follow-
ing approach in deciding how to define M; and S;. ASPLOS is
an interdisciplinary venue of three communities: SIGARCH
(50% sponsorship), SIGOPS (25% sponsorship), and SIG-
PLAN (25% sponsorship). Accordingly, the chairs initially
divided their PC into Mg and Mpy containing members from
the operating systems community and the programming lan-
guages community, respectively. They then searched for an
“optimal” division of the PC members from the architecture
community into two parts, each added to the initial Mg and
Mpy, to form two equally-sized Mg’SCh and M;’,’LCh sets that,
together, comprise the entire PC.

The said optimality was achieved as follows. The chairs and
their helpers used a script that exhaustively enumerated all the
possible equally-sized M“OrSCh and M;ifh group partitions. For
each partition, they assigned every submission to the group
that maximizes the submission’s “affinity” (a combination of
reviewer citations, topic score, and normalized bids). Then,
they scored that partition by aggregating the affinity across all
submissions within their assigned group. The final partition
was the one that scored the highest by this metric.

They then calculated the “partitioning penalty” for each
submission, which is the total affinity of the submission for
the whole PC minus its affinity to the group it was assigned to.
They assigned high partitioning penalty papers to the whole
PC, thus adding a requirement for a joint session at the meet-
ing, in addition to the dual track. To make workload for the
two groups even, they took the most highly penalized papers
from the larger group and assigned them to the whole PC.

The ASPLOS ’19 model is more careful in how it splits
S; and M; as compared to the ASPLOS ’18 model, trying to
minimize the penalty associated with splitting. It additionally
supports submissions that are discussed jointly. Still, while
minimized, the penalties do exist.

We note in passing that the ASPLOS 19 program co-chairs
received extensive help in planning for their dual-track meet-
ing from individual whose role was similar to what we for-
malized as “submission chairs” (Section 2.4).

ATC’18 Model The program co-chairs of ATC *18 decided
not to split the PC beforehand and globally assign reviews
across all members without any constraints. This approach is
simple and entirely eliminates the penalties of splitting. The

cost, however, is shifting all the administrative complexity
to the PC meeting itself: it raises the question of how to run
the dual-track meeting without resorting to the ASPLOS ’17
model, which seems to have heavily relied on luck.

The ATC ’18 program co-chairs did not rely on luck. They
were successful in planning the dual-track PC meeting after
(1) all the reviews have been uploaded, (2) the online dis-
cussions have been concluded, (3) the list of submissions to
be discussed at the meeting have been finalized, and (4) it
became known which PC members will call-in rather than
attend physically.

The PC meeting timeline was divided into several consecu-
tive sessions 7; (i = 1,2,...), such that in each session T; the
PC was split into two groups 7} and T/ that met in parallel.
The group membership changed across sessions, so group Tli
was different than group 74, for example.

In some sessions, groups 7} and T} were disjoint. But in
other sessions, some PC members were instructed to physi-
cally move to the other group at some point, but such transi-
tions were limited to one move per one member per session.
In such non-disjoint sessions, PC members were asked to be
aware of the discussion schedule so as to know when to make
the transition. But inevitably this did not always work, and so
occasionally members were called from the other room. Still,
the program co-chairs reported that, overall, the movement
between rooms was minimal and not distracting.

One ATC ’18 co-chair concluded that “if I would repeat, 1
would not change what [we] did because it worked fine, and
the PC didn’t seem to be bothered to move around.” But the
other co-chair reported that “I would avoid doing what we
did in the future even though it worked amazingly well. We
lucked out [...], and we barely pulled it off.”

Similarly to ASPLOS °19, the ATC ’19 program co-chairs
received extensive help in scheduling the PC meeting from
individuals whose role was similar to what we formalized as
submission chairs.

ATC ’19 Model Like the program co-chairs of ATC *18,
we wanted to refrain from the penalties and complexities in-
volved in splitting the PC beforehand in a manner that affects
how reviews are assigned. But we also wanted to completely
avoid the aforementioned transitions between rooms, the occa-
sional missing members that must be fetched from elsewhere,
and—perhaps most importantly—the sense of uncertainty
associated with the “barely pulled it off” sentiment quoted
above. We achieved all these goals as described next.

Immediately after the submission deadline passed, the com-
mittee members placed their bids, and missing conflicts were
identified and uploaded, we repeatedly applied the following
simulation procedure.

1. Using standard HotCRP functionality, simulate assign-
ing three R1 reviewers to all submissions as if for real.
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2. Randomly select 50% of these submissions (177 in our
case) to be the simulated R2 submissions; let us denote
this random set as S».

3. Using HotCRP functionality yet again, simulate assign-
ing two additional R2 reviews by heavy members to all
the submissions in S.

4. Randomly select 50% of the S, submissions (88 in our
case) to be the simulated set of submissions to be dis-
cussed at the meeting; denote this random set as Ss.

5. Using a constraint solver, find a split of the heavy PC
into two groups that allow for the longest simulated dual-
track parallel session of submissions from S3 (without
any transitions of members between the two groups);
submissions that cannot be discussed in parallel in this
split, will be discussed in a simulated joint session.

6. Compute the time it takes to run these simulated parallel
and joint sessions, assuming a 6—7 minutes discussion
per submission. If the simulated meeting takes less than
eight hours, declare success; otherwise declare failure.

Our submission co-chairs repeated the above procedure
multiple times using multiple random selections, and they
verified that it always declared success. We therefore gained
confidence that scheduling our dual-track meeting using a
constraint solver is doable, despite using a global review as-
signment. This was indeed the case in the actual PC meeting.

Before running the above experiment, we did not know
whether or not it would be successful, and we were prepared
to get a negative result. In this case, we planned to use the
framework we developed to attempt to understand the root
cause of the failure, and to try to devise constraints for the
baseline HotCRP review assignment algorithm that would
resolve the underlying issue. Thankfully, we did not have to
do that.

HotCRP Multi Live-Meeting Trackers HotCRP has a
useful live meeting tracker feature, which helps program
chairs run the meeting by keeping attendees in sync, pre-
senting the current and next submissions discussed and the
relevant conflicts. The problem was that HotCRP assumed
a single track meeting, making the tracker unusable in the
case of dual tracks. Thankfully, again, the HotCRP maintainer
was willing to accommodate our request to add support for
multiple live-meeting trackers [10], which we indeed used in
our meeting.

7 Review Assignment Improvements

The review assignment is done by HotCRP using a min-cost
max-flow algorithm [8, 11]. This assignment utilizes member
bids and topic scores in order to distribute the reviews among

reviewers in a manner that attempts to be balanced and fair,
both in terms of number of reviews assigned to each member,
and in terms of the bidding preferences, such that everyone
would hopefully get as many of their top bids as possible.

The review assignment process of the individual confer-
ences frequently involves some constraints that must be taken
into account when the assignment takes place. In the case of
the first review round of ATC ’19, these were: (1) each PC
member gets an assignment of 13 reviews; (2) each ERC mem-
ber gets an assignment of 5 reviews; and (3) each submission
gets at least 2, and at most 3, reviews by heavy members.

There is no way we are aware of to express multiple con-
straints such as these all at once in HotCRP (nor in the under-
lying min-cost max-flow algorithm, we believe). Instead, a
sequence of assignments is conducted that is applied to the
various types of members: first heavy, then light, then ERC,
and some creativity is involved to get the desired outcome,
which is an assignment that adheres to all the constraints.

With the goal of checking the quality of the resulting assign-
ment, we have defined the per-reviewer “goodness” metric
as follows. Let n be the number of reviews assigned to the
reviewer, namely, in our case, n is 13 and 5 for PC and ERC
members, respectively. The goodness metric measures how
many of the reviewer’s most-preferred n submissions, asso-
ciated with her highest bid values, were actually assigned to
that reviewer. For example, if an ERC member was assigned
her five most preferred submissions, then her goodness is
5/5 = 100%, but if she was assigned only one of them, then
her goodness is 1/5 = 20%.

The line that approaches 0% in the bottom right of Figure 6
shows the goodness produced by the default HotCRP assign-
ment algorithm for all PC/ERC members. The committee
members are ranked based on their review goodness value,
from highest to lowest, and this rank is displayed along the
x axis; the y axis shows the goodness value of the correspond-
ing members. The drop towards zero at the right indicates
that the default algorithm might produce an unfair assignment
when used as described above. Some members get all their
top picks and some get none, with 31 members (more than 1/4
of the committee) members getting less than 60% of their top
picks. Moreover, the default algorithm made 38 and 6 assign-
ments where the bid placed by the corresponding members
was zero or negative, respectively.

For these reasons, we implemented a script that helps im-
prove the assignment as follows. Let r; be a reviewer, s; be
some submission that r; was assigned to review, and b(r;, s;)
be the numeric bid value that r; placed on s;. Our script ini-
tially attempts to exploit the fact that the default algorithm
does not produce a stable marriage [21]. Namely, it is pos-
sible to find a subset of n reviewers r; (i =0, 1, ...,n), each
assigned with a certain submission s;, such that if »; hands
8i 10 T(j1 1) mod n aNd TEVIEWS $(;_1) mod » iNStead, then: (i) no
conflict of interest is violated; (i) b(ri, i) < b(ri,S(i—1) mod n)>
namely, the new assignment is at least as good as the previ-
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Figure 6: Per-member goodness of the default HotCRP review
assignment, which we improved, obtaining a lower bound of 60%
through (i) review swaps that improved the assignments for all re-
viewers involved, or (ii) at the expense of reviewers who enjoy a
much higher goodness value.

ous for all reviewers involved; (iii) there exist at least one k
(0 <k < n) for which b(ri,s;) < b(ri,S(i—1) mod n)» Namely, the
new assignment is better than the old for at least one reviewer;
and (iv) each submission still gets at least two and at most
three heavy reviewers.

The script is repeatedly applied to the member currently
associated with the lowest goodness value, who assumes the
role of ry, defined in constraint (iii). The script attempts to find
a submission switch as defined above, using n =2 and n = 3.
If no such swap exist, the script relaxes constraint (ii) so as
to tolerate goodness reductions due to the swap, provided
that the reviewers that suffer the reduction still enjoy a high
goodness value after the switch.

Our script initiated 748 HotCRP events to adjust the origi-
nal default assignment, as specified in Table 7. In the end, as
shown in Figure 6, we were able to ensure a minimal good-
ness value of 60% to all members (namely, PC members got
at least 8 of their top-13 preferences assigned to them, and
ERC members got at least 3 of their top-5). Additionally, we
were able to arrange things such that all committee members
were exclusively assigned submissions associated with their
positive bids, with two types of rare exceptions: (1) reviewers
whose number of positive bids was smaller than 13 for PC or
smaller than 5 for ERC; and (2) submissions with only one
positive bid by a heavy PC member. In the latter case, the
heavy member with the highest topic score was assigned as
the second heavy reviewer.

Processing of the review assignment for R2 was similar
albeit somewhat more challenging to improve, due to having

HotCRP
events
215 eliminate assignments with zero or negative bids
12 at most 3 heavy reviewers per submission
494 increase low goodness to promote fairness
748  sum

purpose

Table 7: Number of individual HotCRP events affecting review
assignment that were generated by our script to improve upon the
default assignment of R1.

fewer usable bids, because only heavy members were assigned
reviews, and also because of the additional constraint that we
could only assign submissions to members who did not yet
review them in R1.

Out of the 5-6 additional R2 reviews assigned to heavy
members, the initial HotCRP review assignment assigned
about 1/4 of the members with 1-5 submissions with which
they associated a zero or negative bid. Anecdotally, one such
member started off with all of his assignments having nega-
tive bids. Subsequently, we were able to adjust things such
that all committee members were assigned submissions that
are exclusively associated with their positive bids, with a few
exceptions similar to those found in R1. Overall, half of the
heavy PC members were assigned at least three of their (re-
maining) top picks, and all the them were assigned at least
two of their top picks.

8 Reviewing Process

We employed a double-blind reviewing process consisting
of two rounds, and we followed standard procedures for han-
dling conflicts of interest. The PC consisted of 66 heavy and
28 light members, assisted by 22 ERC members. Additionally,
51 external reviewers contributed when specific expertise was
required. The committee members were allowed to submit pa-
pers to the conference; the program co-chairs and submission
co-chairs avoided it.

Table | summarizes the reviewing process. Out of 458
HotCRP registrations, we received a total of 356 submissions,
divided into 324 full submissions (11 pages plus references)
and 32 short submissions (5 pages plus references).

Format Violations We visually inspected all the submitted
PDFs as well as used the HotCRP style checker to identify
29 submissions that violated the formatting rules. These were
given a day to rectify the problem without making any content
modifications; if fixing increased the size beyond the page
limit, authors were required to remove (never change) content
to meet the limit. All violating submissions complied except
two, which were then rejected and withdrawn by the co-chairs.

Round 1 In Review Round 1 (R1), the PC members mostly
contributed 13 reviews, and the ERC members mostly con-
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tributed 5 reviews. Out of all R1 submissions, 277 were as-
signed four reviewers, and 75 were assigned three reviewers.
Regardless, all of the submissions were assigned at least two
reviews by heavy members (typical), and at most three. The
committee wrote a total of 1,347 R1 reviews.

Round2 We promoted 184 submissions to Review Round 2
(R2). We assigned each R2 submission with two additional
reviewers from the heavy PC. A submission was promoted
to R2: (i) if two or more reviewers gave it a positive score
(“weak accept” or above); (ii) if a single positive reviewer
decided that she supports promotion after considering the
other reviews and despite of them, and, if she has so chosen,
discussing the matter with the other, negative reviewers; or
(iii) if the submission had fewer than three reviews due to late
members.

To qualify to be the aforementioned “single positive re-
viewer”’, a member must have assigned a score of “accept” or
“strong accept”. For submissions with three (rather than four)
reviews, a “weak accept” also qualified, provided the associ-
ated expertise was at least “knowledgeable” or the confidence
was “high”. Out of the 40 single-supporter submissions (24
with one “accept” or higher), we promoted 17 to R2 (13 with
“accept” or higher). The committee wrote 405 R2 reviews and
a total of 1,752 reviews in the two review rounds.

Review Sufficiency Check A few days before the rebut-
tal period, we applied a Review Sufficiency Check (RSC)
procedure to all R2 submissions, to ensure that the reviews
provide sufficient feedback to authors, as well as sufficient
information to the committee to make an informed decision
regarding the submission. To this end, for each R2 submission,
we appointed one of the reviewers who is a heavy PC member
as the “lead” of the submission. Leads were responsible for
conducting the RSC by: (1) reading all the associated reviews;
(2) asking the relevant reviewers to revise their reviews when
the need arises (e.g., by calling out subjective claims that a
submission is incremental without adequate citations of prior
work, by identifying unclear statements, etc.); and (3) decid-
ing together with the other reviewers if additional reviews are
needed when expertise is low.

Online Discussions  After the authors uploaded their rebut-
tals, we discussed the submissions online. Our goal until the
meeting was to: (1) revise reviews if needed due to rebut-
tals; (2) revive R1 submissions if their rebuttals justify it
(this happened in only two cases); (3) discuss submissions
and attempt to reach consensus, color-tagging them as red
to indicate preliminary reject, green to indicate preliminary
accept, and yellow to indicate that reviewers are unable to
reach consensus, so the submission should be discussed at
the meeting; and (4) for red submissions that have a rebut-
tal, as well as for green submissions, write a post-discussion

summary comment, which will be made visible to authors
after the PC meeting, briefly explaining the primary reasons
for rejections and possibly ways to improve (red), or what is
required for the camera-ready (green). Such a summary was
eventually written for all submissions that uploaded a rebuttal.

Reviewers who changed their mind about a submission due
to the rebuttal or to the other reviews were asked to consider
adding a “post-rebuttal feedback” section to their review and
explain why. (We requested not to make substantive changes
to reviews outside this section, as the reviews have already
been seen by the authors and so any changes need to be clearly
identified and justified.)

All the submissions, including R1, were assigned discus-
sions leads, whose job was to drive discussion, write the
summaries, and ensure progress. We asked leads to make an
honest effort to ensure that the opinions of non-heavy review-
ers were adequately voiced and represented at the meeting.
Non-heavy members were warmly encouraged to champion
submissions that they believe should be accepted, and all re-
viewers were encouraged not to feel pressured to adopt a
common denominator point of view, and not to hesitate to go
against the majority. Reviewers were encouraged to reflect on
each others’ opinions, e.g., by considering previous work or
confirming an opinion from an expert.

We asked the reviewers to stay positive when possible
(particularly when it comes to out-of-the-box ideas) and to
keep in mind that we should be looking for reasons to accept
a paper rather than reject.

When reviewers were unable to reach consensus (yellow),
the online discussion was expected to reconcile as many dif-
ferences among the reviewers as possible, leaving only a few
substantive differences for a focused PC meeting discussion.
Namely, tagging yellow was not used as a way to procrastinate
or reduce work, because it is impossible to discuss all R2 sub-
missions in one day. The meeting was planned to be dedicated
primarily to those submissions that actually require it, focus-
ing on differences that the reviewers had already identified as
important.

When making decisions, we requested reviewers to assume
shepherding but not for adding new results. (All accepted pa-
pers were indeed assigned shepherds, responsible for making
sure that revision expectations are met.) Of the R2 submis-
sions, we pre-rejected 80, pre-accepted 37, and tagged 67 as
yellow to discuss at the meeting.

During the online discussions, we recognized that about a
dozen R2 submissions might not have reviews with enough
expertise, so we urgently solicited additional reviews from
relevant experts after the rebuttal period. In these cases, we
emailed the authors and allowed them to rebut the additional
review(s), copy-pasting their response as a comment in the
HotCRP relevant page.

Program Committee Meeting The PC meeting took place
between 8am—6pm, 12 April 2019, in the VMware campus in
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Palo Alto, CA. The program co-chairs, submission co-chairs,
and 60 heavy PC members attended the meeting in person,
five called in, and one could not participate. The meeting
consisted of a morning joint session (8am—12pm), a split
session in two rooms (12:30pm-3pm), and an afternoon joint
session (3:15pm—-6pm), followed by a lively PC dinner.

The split session composition was determined with the
help of a constraint solver as described in Section 6. The par-
tition was completely disjoint, and no members transitioned
between rooms while it took place. We discussed 12 green
(preliminary accept) and 25 yellow (discuss) submissions in
the morning joint session, and 7 green and 12 yellow submis-
sions in the afternoon joint session. In the split session, one
group discussed 8 green and 16 yellow submissions, and the
other group discussed 10 green and 14 yellow submissions.
We allocated 3 and 7 minutes discussion time for each green
and yellow submissions, respectively.

Out of the 67 yellow submissions discussed, the PC ac-
cepted 34, which, together with the 37 preliminary accepts,
resulted in a program of 71 papers, of which 2 are short. Ac-
cept decisions were reached by consensus, except in two cases
that required a PC vote.

9 Best Paper Selection

The best paper award selection process proceeded in two
phases. In the first phase, we combined several signals. One
was an explicit ranking by reviewers marking papers worthy
of consideration for best-paper; any paper marked for such
consideration by two or more PC members was passed to
the second phase. Additionally, we considered general re-
view ranks and deliberations (both online and during the PC
meeting), moving several additional top-ranking papers to the
second phase. Last, we collected explicit nominations by PC
members for the best paper award.

At the end of the first phase, we generated a short-list of
eight papers. At this stage, we appointed a swat team of six
PC members consisting of senior and experienced members
of the systems research community. During a period of four
weeks, the team read papers, and we deliberated each one sep-
arately for best-paper worthiness. Conflicted members were
excluded from discussions of the relevant papers. We did not
place a quota on the number of best-paper awards. Generally,
the committee favored papers with original or surprising con-
tribution, and/or ones that would spark interest and establish
a new direction for follow on works.

At the end of the second stage, we elected three papers to
receive best-paper awards for USENIX ATC ’19.
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Appendix A Submissions Discussed by Each
Member at the Meeting

Let n denote the number of papers that have been submitted
to the conference. Let ny denoted the total number of R2
submissions that have been promoted from R1. Let m denote
one PC member, and assume that m has reviewed exactly r
submissions out of the n. Further assume that the number of
m’s R1 and R2 reviews are r; and r;, respectively
(r=r1+r). Let ¢ be the total number of submissions that
have been discussed at the PC meeting, and let d denote how
many of these ¢ submissions have been reviewed by m

(d <'r). These notations are summarized in Table 8.

Recall that Figure 2 shows that as n grows, d decreases, to
the point that m has little to do at the PC meeting because d
is small. The computation underlying Figure 2 assumes a
typical setup for systems conferences where ny = n/2 (half
of the submissions have been promoted to R2), r; = % -r and
rn= % -r (two thirds of m’s reviews are written during R1),
and the number of discussed submissions is ¢ = 70. With our
assumptions, an intuitive approximation of d on average is

c c c 4rc
mr—4rn-—=04+2n)—-=— (D
n no n 3n
because (1) the probability that a single R1 submission that
has been reviewed by m will be discussed at the meeting is
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¢/n, and, similarly, (2) the probability that a single R2
submission that has been reviewed by m will be discussed is
approximately c¢/n,, if disregarding the fact that the latter
probability is in fact affected by the specific number of R1
submissions reviewed by m that have made it into R2. (For
example, if all the submissions that m reviewed in R1 were
promoted to R2, then the latter probability should actually be
nz o seeing that m cannot be assigned R2-submissions that
she has already reviewed in R1.)

Figure 2, however, does not depict the approximation of d
but rather computes it accurately, as follows. Let p(n,c,ry,k)
denote the probability that exactly k of the r| submissions
that m reviewed in R1 have been discussed at the meeting,

then
pln,e,ri k) = (r,j) : (”C__;j) + (’;) )

Thus, e(n,c,r1), which is the expected number of
submissions that m reviewed in R1 and were discussed at the
meeting, can (also) be computed with the following
summation

an c,ri,k) k. 3)

Now, by using Equations 2—3 and the law of total probability,
we can compute e (n,c,ry,r2), which is the expected number
of submissions that m reviewed in R2 and were discussed at
the meeting, as follows

ex(n,c,ri,r2) ZPnnz,rh e(m—k,c,r2).  (4)

Notice that Equation 4 uses p(n,ny,r|,k) instead of the

earlier p(n,c,r,k), because here the probability corresponds
to the event that k of the | submissions reviewed by m in R1
were promoted to R2. Using Equations 3—4, we conclude that

d:E(H,C,V1)+€2(H,C,V1,}"2), (5)

which allows us to compute d accurately instead of
approximating it. That said, in the range plotted in Figure 2,
the difference between the real value of d (Equation 5) and
its approximation (Equation 1) is always smaller than 0.52,
which is reasonably close.
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Given the highly empirical nature of research in cloud
computing, networked systems, and related fields, testbeds
play an important role in the research ecosystem. In this
paper, we cover one such facility, CloudLab, which supports
systems research by providing raw access to programmable
hardware, enabling research at large scales, and creating a
shared platform for repeatable research.

We present our experiences designing CloudLab and oper-
ating it for four years, serving nearly 4,000 users who have
run over 79,000 experiments on 2,250 servers, switches, and
other pieces of datacenter equipment. From this experience,
we draw lessons organized around two themes. The first set
comes from analysis of data regarding the use of CloudLab:
how users interact with it, what they use it for, and the impli-
cations for facility design and operation. Our second set of
lessons comes from looking at the ways that algorithms used
“under the hood,” such as resource allocation, have important—
and sometimes unexpected—effects on user experience and
behavior. These lessons can be of value to the designers and
operators of laaS facilities in general, systems testbeds in
particular, and users who have a stake in understanding how
these systems are built.

1 Introduction

CloudLab [31] is a testbed for research and education in cloud
computing. It provides more control, visibility, and perfor-
mance isolation than a typical cloud environment, enabling it
to support work on cloud architectures, distributed systems,
and applications. Initially deployed in 2014, CloudLab is now
heavily used by the research community, supporting nearly
4,000 users who have worked on 750 projects and run over
79,000 experiments.

On the surface, CloudLab acts like a provider of cloud com-
puting resources: users request on-demand resources, config-
ure them with software stacks of their choice, and perform
experiments. Much like a cloud, the testbed simplifies many
of the procedures surrounding access to resources, including
selection of hardware configuration, creation of custom im-
ages, automation for software installation and configuration,
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and more. CloudLab staff take care of the construction, main-
tenance, operation, etc. of the facility, letting users focus on
their research. CloudLab gives the benefits of economies of
scale and provides a common environment for repeatability.

CloudLab differs significantly from a cloud, however, in
that its goal is not only to allow users to build applications,
but entire clouds, from the “bare metal” up. To do so, it
must give users unmediated “raw” access to hardware. It
places great importance on the ability to run fully observable
and repeatable experiments. As a result, users are provided
with the means not only to use but also to see, instrument,
monitor, and modify all levels of investigated cloud stacks and
applications, including virtualization, networking, storage,
and management abstractions. Because of this focus on low-
level access, CloudLab has been able to support a range of
research that cannot be conducted on traditional clouds.

As we have operated CloudLab, we have found that, to
a greater extent than expected, “behind the scenes” algo-
rithms have had a profound impact on how the facility is
used and what it can be used for. CloudLab runs a number
of unique, custom-built services that support this vision and
keep the testbed operational. This includes a resource mapper,
constraint system, scheduler, and provisioner, among others.
CloudLab has had to make several trade-offs between general-
purpose algorithms that continue to work well as the system
evolves, and more tailored ones that provide a smoother user
experience. The right choices for many of these trade-offs
were not apparent during the design of the facility, and re-
quired experience from the operation of the facility to resolve.

The primary goal of this paper is to provide the architects
of large, complex facilities (not only testbeds, but other IaaS-
type facilities as well) with lessons from CloudLab’s design
choices and operational experiences. CloudLab is one of
many facilities that serve the research community in various
capacities [8} 16} [16}133, 121} 134,131,135, and we aim to general-
ize the lessons from this specific facility. As a secondary goal,
we hope that users of these facilities benefit from a closer
look into the way they are designed and operated. With these
goals in mind, this paper makes two contributions:

e In Section 2| we describe the CloudLab facility as it
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has been built and analyze its basic usage patterns and
the research conducted on it. This analysis, and the
dataset that goes with it, represent a contribution to the
community understanding of the practical operation
of IaaS-type facilities.

e In Section[3] we analyze specific design choices using
data from the operational system, looking at some of the
trade-offs inherent in the facility’s design. This analysis
yields important insights about how these choices af-
fect user behavior and point to design principles for
other facilities.

Sections M and 3] cover related work and conclude.

2 Development and Use of CloudLab

We begin with background on CloudLab; our goal is not a
complete summary of its goals, design, and deployment, but
to provide sufficient context for the analyses that follow. We
then examine usage patterns: how the use of the facility has
evolved over time, the availability of resources, and the types
of research that are conducted on it. From these analyses, we
draw lessons about user behavior and look at the implications
for the design of testbeds and IaaS facilities in general.

2.1 The Deployed CloudLab Facility

The primary CloudLab hardware is hosted at three sites: the
University of Utah, Clemson University, and the University
of Wisconsin—-Madison. Though every site supports a wide
variety of hardware-agnostic experimentation, each site spe-
cializes in a different area of research. Wisconsin’s hardware
is designed for networking and storage work, Clemson’s for
analytics and high-performance workloads, and Utah’s for
scale-out workloads. This equipment has come online in
batches as CloudLab has been built out and evolved in re-
sponse to user demand. Identical nodes in the same batch
are all labeled with the same hardware type to help users
request nodes with specific properties and to enable experi-
ments to be repeated on the same types of resources. Since
its initial public availability in December 2014, CloudLab
has added devices such as programmable Ethernet switches,
GPUs, Infiniband, and high-disk-count servers in response
to user feedback. A full description of CloudLab’s hardware
can be found in its manual [36].

In addition to the hardware that it owns, CloudLab is fed-
erated [30, [7] with several other facilities, including Emu-
lab [39] and Apt [32]]. This brings the total number of servers
available to CloudLab users up to about 2,250, and for the
rest of the paper we include these resources in our analysis
and discussion of CloudLab’s hardware.

CloudLab is operated using software developed in-house
specifically for running research testbeds: its control soft-
ware is directly descended from software developed for the

Emulab [39]], GENI [25] 32], and Apt [32] testbeds. We
have extended this software to better support experimentation
on clouds and have made a number of improvements (such
as those documented in Section [3)) based on our experience
running the facility.

CloudLab provides access to its devices at the lowest layer
possible with a minimum of virtualization and abstraction
between users and hardware. The reason for this is twofold.
First, CloudLab’s goal is to support research that is not pos-
sible on public (or typical private) clouds: it allows users
to modify aspects of the software stack that would be fixed
on those platforms, such as the storage, virtualization, and
networking layers. Second, this supports more repeatable
experimentation than facilities that virtualize and share their
resources, as it provides strong performance isolation be-
tween tenants, factoring out the unpredictable ‘“background
noise” that makes it harder to draw sound, scientific con-
clusions. CloudLab takes pains to ensure that all servers of
the same hardware type have comparable performance: in
prior work [22]], we have developed techniques for identifying
servers whose performance is not statistically representative
of the whole, and we exclude such servers from the popula-
tion seen by experimenters. The facility takes the principle of
low-level access beyond just servers and also provides “raw”
access to other types of hardware such as programmable Eth-
ernet switches [37]] and servers with many drives from which
users can build their own SANS.

Experiments in CloudLab are instances of profiles. A pro-
file contains a description of the hardware resources (servers,
switches, etc.) that the experiment will run on, and the soft-
ware needed to run the experiment (in the form of disk images,
git repositories, and scripts to run). When a profile is in-
stantiated, CloudLab selects available hardware that matches
the profile’s specification and provisions that hardware with
the software and configuration options described in the pro-
file. Every instance of the profile runs on a separate set of
hardware resources, and many instances of the same profile
can run simultaneously. The CloudLab operators provide
standard profiles for popular cloud software stacks, such as
OpenStack [28]], as well as bare-metal profiles that load stan-
dard Linux distributions. Users can also create their own pro-
files, which they can share with others. A typical workflow
for creating a new profile involves starting with CloudLab-
provided disk images, installing custom software, and creat-
ing a hardware description meeting the experiment’s needs.
All experiments have an expiration: when they are first cre-
ated, they are set to expire after a few hours. Users can
then request that their experiments be extended to last longer;
short extensions (hours to days) are granted automatically
(assuming resources do not need to be reclaimed to satisfy
reservations), and administrators evaluate requests for longer
periods (weeks to months). When deciding whether to grant
these requests, administrators look at coarse-gained idleness
statistics, such as CPU load and network packet counts, to de-
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termine whether the user is using resources efficiently; other
than this, CloudLab does not collect information about use
inside of experiments. It is typical for there to be 200-300
experiments active on CloudLab at any point in time.

It is possible to fully script the workloads that run inside of
an experiment, but in practice, most research done on Cloud-
Lab involves a great deal of development time and exploratory
experiments, so most use is interactive. A key difference
between CloudLab and typical cloud (as well as research
and academic cyberinfrastructures such as Jetstream [33],
Chameleon Cloud [21]], and the Mass Open Cloud [33]) is
that clouds place emphasis on elasticity, and therefore tends to
treat ensembles of VMs working together as an orchestration
problem. CloudLab’s profiles place the emphasis instead on
describing a complete, repeatable environment. This makes it
less elastic, but makes it easier to describe entire networks and
to repeat experiments in a consistent environment. We have
found that some users do have initial confusion regarding this
different focus, but that they tend to find it an easier way to
run repeated experiments in the long run.

2.2 Hardware Overview

CloudLab Utah has a large number of servers, each with
relatively modest specifications. 585 of the servers use HPE’s
high-density Moonshot platform, which places 45 low-power
servers (Intel Xeon-D or ARM64 SoC) in each chassis. Each
chassis contains two 10 Gbps switches, which effectively
function as “top of rack” switches and are interconnected
at 160 Gbps through a core switch. Another 200 servers
connect to both a traditional Ethernet network (at 25 Gbps)
and to a “layer-1” network. The latter allows control of
the physical-layer topology, configurably “wiring”” nodes to
user-controllable Ethernet switches or directly to each other.
These user-controllable Ethernet switches are allocated to one
user at a time, allowing users to have full control over their
configuration and even, in some cases, to program them.
CloudLab Wisconsin’s goal is to reflect the type of tech-
nology and architecture found in a typical modern enterprise
datacenter. All servers (which come from Cisco) are dual-
socket and have a mix of spinning hard drives (HDDs) and
solid state drives (SSDs). Several servers have large numbers
of disks (up to 14), allowing users to build their own SAN
configurations. Many are equipped with GPUs, enabling work
on machine learning and applications of GPU computing to
other areas, including network packet processing and other
systems tasks. The network is arranged in a Clos topology.
CloudLab Clemson focuses on putting more CPU cores
in each server (from Dell) and on a greater amount of RAM
per core. This makes it suitable for hosting big data analytics
(such as Hadoop and Spark), for running high-performance
computing workloads, and for hosting large numbers of vir-
tual machines. The Ethernet experiment network topology
uses three interconnected core switches, each connected to a
companion top-of-rack switch handling direct server connec-
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Figure 1: Growing testbed capacity and utilization. To pro-
duce a consistent scale, we divide monthly values by the
all-time maximum value for each metric.

tions. In addition to its Ethernet network, CloudLab Clemson
has a 40 Gbps QDR Infiniband network used for HPC and
RDMA experiments.

The hardware at each site has grown over time: the number
of servers has increased approximately fourfold over the pe-
riod covered in this paper. No hardware has yet been retired.

2.3 Usage Patterns

Figure [I| shows how CloudLab’s userbase has grown along
with its capacity. Starting in early 2015, when CloudLab
exited its “preview”” phase and became open for general use,
it has grown steadily. As its capacity has increased, so too
have its users: the more capacity, the more active users there
are at a time, and the more projects (roughly corresponding
to research groups and classes) are supported. Within the
general upward trend, specific yearly cycles can be seen.
CloudLab has lower usage during the summer, when there are
few classes and research activity is slow. CloudLab’s peak
usage typically comes in the late spring: this is due to the
confluence of major paper deadlines (OSDI, SOSP, SOCC,
NSDI spring deadline, etc.) and end-of-year coursework.
CloudLab needs to gracefully handle periods of both high
and low utilization. While we expected variation in usage
over time, the extent to which it drives user behavior was
somewhat surprising. Because most of CloudLab’s usage is
interactive, periods of low utilization are simply times when
users are able to start experiments at will, without having
to wait for resources to become available. We have there-
fore focused on improving user experience during periods of
heavy utilization: as detailed in Section [3.3] we have built an
optional reservation system which allows users to schedule
resources ahead of time. Another strategy would be to incen-
tivize users to shift their work from periods of high demand to
periods of lower demand. In commercial clouds, one way of
doing this is through spot pricing [[1]], which offers economic
incentives. Because CloudLab’s users do not pay to use it,
economic incentives are not available; while various “virtual
currency” approaches have been proposed for use in related
facilities such as PlanetLab [18]], none have seen widespread
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Figure 2: Evolving distribution of profile usage.

success. Demand in CloudLab’s core communities appears
hard to shift: Figure |1| suggests that CloudLab’s users are
heavily deadline-driven; it is not feasible to do coursework
outside of the school-year, and not many research projects can
run their experiments months before conference deadlines. If
CloudLab is to “fill in” lightly-loaded periods, it will need to
adopt backfill strategies [[L1, 23] that enable use by work that
is easier to shift in time, such as the queueing systems used
by high performance and high throughput computing.

Like the number of active users, the number of profiles
in use at any time has grown as shown in Figure The
bottom half of the figure shows the forty most used profiles,
as measured by the cumulative node-hours. We can see that
usage patterns vary significantly by month. In some months,
such as in early summer 2016, the top forty profiles constitute
nearly 70% of the testbed’s utilization, while in other months,
such as recently, this fraction is less than 40%. The remaining
node-hours are allocated by experiments representing over
5,820 other profiles. Users run experiments using up to 572
unique profiles monthly; the median is 233.

The long-tailed distribution we observe indicates that there
is a large number of profiles with relatively low and infre-
quent use, but their combined utilization constitutes most of
the user activity. This holds important implications for analy-
sis of usage patterns and for design choices. In Section [2.5]
we reflect on the fact that the testbed’s major practical value
is attributed to facilitating not merely a handful of common
use cases, but rather a large variety of experiments in this
“long tail.” In quantitative analysis, it means we should use
medians rather than means as the preferred measure of central
tendency due to the highly skewed distributions. The analysis
of other percentiles (e.g., 75th or 95th percentiles) provides
complementary insights, as we discuss in Section [3.3] Fur-
thermore, this diverse and evolving utilization distribution
suggests that we cannot draw reliable conclusions about the

impact of testbed’s capabilities on usage patterns based solely
on comparison of usage statistics from different periods of
time. For example, if we compare statistics for 2017 and
2018, it would be difficult to determine the extent to which
evolving usage patterns were due to changes in the system or
due to the natural evolution of user interests. For the same
reason, month-to-month comparisons are also unlikely to pro-
vide sufficient evidence for “before and after” analyses for
system capabilities.

Fundamentally, periods of time that seem similar by one
statistical measure (such as the number of active users) can
look very different for other measures (such as the distribu-
tion of profile use). We posit that this is likely to be true for
many laaS-type facilities: while multi-tenancy smooths out
some measures into predictable shapes (e.g., the top half of
Figure|2), others are quite chaotic (e.g., the bottom half of the
same figure). Taking these patterns into account when design-
ing facilities can improve their utility and user experience.

2.4 Resource Availability

Availability and diversity of resources play critical roles in
the adoption and continued use of a testbed or other IaaS
facility. If users’ needs frequently cannot be satisfied due to
insufficient availability, those users will likely move to other
facilities. Users also tend to seek out hardware with cutting-
edge features and the highest performance characteristics.
New hardware types have been introduced to CloudLab over
time in order to satisfy both capacity and the capability re-
quirements. Not only did the new hardware attract new users,
but it also reduced contention for older, already deployed
resources.

In Figure 3] we show both short- and long-term availability
trends for the major CloudLab hardware types. The X-axis
represents a fraction of all nodes of a particular type, and
the Y-value at each point shows what fraction of the time at
least that many nodes were available. Lines on these graphs
that fall steeply signify the types that are in use most of the
time, while higher curves represent more available types. For
example, we can compare d430 and m400: the former type is
more heavily used across all three graphs.

As we saw in the previous analysis, metrics that look
smooth when viewed from a high level show much more
variability when we look at the details. This is important
because it is often the details that influence users’ experience:
e.g., for an individual user, availability of the specific node
type(s) needed for their experiment is important, rather than
the availability of the testbed as whole. To illustrate this,
we include the two monthly plots showing the variation that
occurs between “slow” and “busy” months. For example, the
curves for pc3000 indicate that in January 2018 users found
80% of these nodes available for use 80% of the time. In
contrast, in April of that year, there were no times at which
80% of these nodes were available. For several other hard-
ware types (such as c220g1 and d710), resources were even
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Figure 3: The availability of CloudLab resources. The left plot shows availability over the entire period of time each hardware
type was available; the other two plots show availability during low-utilization (center) and high-utilization (right) months.

scarcer, and at no time are more than 30-40% of these nodes
free. We also note that d430’s low availability is reflected
in two ways: it can be seen in these graphs, and we will
discuss it in Section where we find that users commonly
make reservations to schedule access to this in-demand hard-
ware. The curves in these figures highlight that the extent
to which system changes and evolving utilization patterns
impact individual hardware types varies significantly across
the types.

2.5 Research Use of CloudLab

To understand the research conducted on CloudLab, we sur-
veyed 93 papers published in 2017-2018 that used CloudLab
for part or all of their experimental evaluations. Table
presents a categorization of the papers by the primary area
of contribution, using a list of systems and related research
areas. These areas are quite broad, and no one area dominates.
Given that the most prevalent area, Networking, is an area
where typical clouds provide very little transparency [14] and
control only as an overlay [2], it is intuitive that research
in this area benefits from CloudLab’s greater visibility and
control. Research in the second area, Security, benefits from
the “closed world” of CloudLab, allowing experiments that
involve attacks that would be considered hostile in a typical
cloud and defenses that need to be implemented within the
cloud framework itself.

In this analysis, we found two primary motivations that
drove experimenters to CloudLab. The first is low-level ac-
cess to hardware because of features that could not be de-
veloped in virtualized environments. Almost every paper in
this set used some different aspect of CloudLab, such as the
ability to re-configure Ethernet switches, the ability to build
an HPC-like environment with root access, the SDN available
on most of the CloudLab networks, the ability to monitor
power use, the ability to build a complete OpenStack cloud
inside the infrastructure, etc. The second motivation is the
performance predictability and isolation that are difficult to
come by in environments that use multi-tenancy on hosts and
storage. When the primary metric of interest in a system is
its performance, anything that adds variability requires, at
a minimum, a far greater number of experiment repetitions
to achieve statistical confidence [22,[17]]. There is also the

Networking 30%
Security 16%
Storage 11%
Applications 10%
Computing 9%
Virtualization 8%
Databases 7%
Middleware 4%
Energy & Power 2%
Other 15%

Table 1: Research areas in 93 papers that used CloudLab.

question of the extent to which an evaluation is measuring ar-
tifacts of the platform vs. the actual system under test: while
a more transparent environment does not guarantee that no
system artifacts are present, it does give the experimenter
more opportunities to observe, understand, and correct for
these effects.

The main lesson we take from this analysis is that, as
facility operators, we are constantly surprised by the uses to
which users put the facility. Had we started from a position
of virtualizing everything, then providing lower-level access
to specific systems as needed, we think it is unlikely that we
would have been able to anticipate all of the use cases found
in this survey. Starting from a position of maximizing user
control helps to maximize use of the facility.

3 High-Level Effects of Low-Level Decisions

We now move from examining how people use CloudLab to
looking at the interactions between design decisions, oper-
ational experience, and user behavior. We have found that
the choice of algorithms deep within the implementation of a
system like CloudLab has a profound effect on the ways that
users interact with the system, and even what they are able
to accomplish. As a result, we have made many changes to
the CloudLab facility during its lifetime; in this section, we
present individual subsystems that we had to evolve based on
facility’s usage patterns. The high-level theme of this section
is that the choices made at these low levels are not, contrary
to what one might expect, simply implementation details, nor
are they neutral with respect to the utility of the facility. When
building an IaaS facility, designers cannot consider aspects
such as resource mapping separately from user goals, require-
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ments, and workflows. These aspects of the system must be
co-designed, so that users can work with these subsystems
rather than having to fight against them to get work done.

3.1 Resource Mapping

There exist several approaches to the problem of mapping
user requests to physical resources. For instance, commer-
cial clouds do not provide control over this mapping within
selected instance classes; they manage the placement and con-
solidation for effective utilization and hide the details from
the users. In contrast, Chameleon [21]], which is designed
as a testbed for repeatable experiments (similar to CloudLab
but serving a different research community), has its users do
the mapping by asking them to specify IDs of the particular
servers they want to use in their requests.

CloudLab takes a unique approach where it recognizes two
aspects in this mapping. It is a constraint-satisfaction problem
in the sense that the user’s request is a specification that must
be satisfied; specifically, it resembles the subgraph isomor-
phism problem [[10]] in that both the requested and physical
topologies are graphs consisting of servers, switches, etc. It
is also an optimization problem, because the mapping must
be done in a way that maximizes the possibilities for future
mappings: it should avoid using scarce resources unless they
are specifically requested or there is no available alternative.
CloudLab exposes the outcomes of the mapping to the users
and allows them to reuse hardware IDs if necessary.

CloudLab’s mapping algorithm is derived from the one
developed for Emulab [29], and uses simulated annealing
to address this NP-hard problem. The advantage of using a
powerful, general-purpose algorithm is that it enables the
expression of complex constraints and preferences. The
disadvantage, however, is that when a mapping cannot be
found for a request, it can be difficult for users—and even
administrators—to understand why. In CloudLab, we have
had to evolve this system to improve the intelligibility of the
responses that it provides.

The fundamental trade-off exposed here is between a gen-
eral algorithm that makes few assumptions about the facility
(and therefore is easily adaptable to new resources) and a
more specialized algorithm that understands facility seman-
tics and can provide actionable suggestions when a mapping
fails. The general algorithm fundamentally lacks semantic
information about what the user may be trying to accom-
plish and the classes of requests that “make sense” on this
particular testbed. A mapping algorithm more tailored to a
specific use case could embed such information and make
assumptions about user goals.

Our response to this trade-off has been to retain the general
algorithm, but to develop a set of heuristics that turn some
of the more common failure modes into messages that are
easier for users to understand. A major challenge in design-
ing these heuristics is that they must be conservative: that
is, every mapping that would have succeeded without the

heuristic must still succeed. Our experience has been that
it is preferable to build such heuristics around the mapping
algorithm rather than info it. Building conservative checks
into the randomized setting of the mapper itself is extremely
difficult and can easily cause unexpected changes in behav-
ior. It is easier—and more informative for the user—to build
conservative checks as a deterministic wrapper around the
mapper. We now describe some of these checks, which we
have added over time in response to common error patterns
and common questions from users.

In an ideal situation, all mapping errors would be explained
to the user by concise, actionable error messages. In theory,
the universe of possible mapping errors is so vast that not all
have simple explanations. We have found that in practice,
however, it is possible to catch most mapping errors with
heuristics. We now describe the set of heuristics we have
developed over time in response to use patterns and frequent
user questions.

Looking in Table[2]at the last year (L.Y.) of mapping errors,
approximately 84% of all errors are explained by the top 10
error messages, and of that top 10, only 13.5% are ones that
we classify as “unhelpful.” If we look at this as a percentage of
all experiments, only 1.2% of all attempts to start experiments
in the last year have received these four unhelpful mapper
messages.

The top two messages (lines 1 and 2 in the table) together
account for about half of all mapper errors, and they sim-
ply indicate a lack of free nodes (servers or user-controlled
switches) at the current time. The first message indicates that
there are insufficient nodes free right now while the second
says that this would occur in the near future due to the reser-
vation system described later in this section. There is a third
variation on this message (line 7); this is an older version of
line 1, which we updated partway through the year to clarify
its meaning and provide more specific information. Note that
this class of messages are per-type, so experiments that re-
quest, for example, both servers and user-controlled switches
get specific feedback on which is the limitation. The number
of available nodes is reported in order to allow the user to
decide whether they would prefer to request fewer nodes or
to wait until enough nodes become available. When users
request specific nodes, in contrast with asking for any nodes
of a selected type, they receive explicit messages indicating
that those nodes are unavailable (line 10).

Other frequent errors (lines 3, 6, and 8) indicate that there
is some node in the request that cannot map to anything
available. Our heuristics try to report the specific reason,
such as requesting too many physical interfaces, an OS image
that is incompatible with the hardware type, or a specific
feature (such as a GPU add-on). The distinction between
lines 6 and 8 presents an interesting illustration of our use of
heuristics: underneath, the mapper uses the same mechanism
to handle both of these constraints (support for a particular
image is considered a “‘feature”). We found that the raw
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% of

Error Message (a(l:-tlie(:rljiltl)lle) Mapping Errors All/(];(r)rfors All Ex/pae‘;ifments
LY ALL LY. LY.
1. Resource reservation violation: X nodes of type HW requested, but only Y available v 27.79 1433 16.07 241
2. X nodes of type HW requested, but only Y available nodes of type HW found v 21.86 33.01 12.64 1.89
3. No Possible Mapping for X: Too many links of type Y v 6.64  6.96 3.84 0.58
4. No Connection X 522 262 3.02 0.45
5. Insufficient Bandwidth X 488 7.53 2.82 0.42
6. No Possible Mapping for X: OS *Y’ does not run on this hardware type v 474 3.50 2.74 0.41
7. Not enough nodes because of policy restrictions or existing resource reservations v 437 218 2.53 0.38
8. No Possible Mapping for X: No physical nodes have feature Y v 3.54 240 2.05 0.31
9. Insufficient Nodes: Unexplained X 339 215 1.96 0.29
10. Fixed physical node X not available. v 256  3.15 1.48 0.22

Table 2: Distribution of recorded mapping errors. “ALL” denotes the distribution of all errors recorded since October 20, 2015.
“L.Y.” columns refer to the percentages reported for the last year (starting on August 1, 2017).

message, however, was unhelpful and confusing to users,
so we recognize the specific case of image-related mapping
failures and transform the message into something that the
user can act on: she needs to either pick a different image or
a different hardware type.

Lines 4 and 5 are the error messages that are the least
helpful to users, and they have a similar cause: the mapper
is unable to find a solution that satisfies all links and LANs
with the bandwidths specified in the requests. These error
messages are produced directly by the simulated annealing
portion of the mapper, and it is no coincidence that they are the
hardest to explain. They are highly dependent on the details of
the topology requested by the user and the switch topology at
each CloudLab site. There are many potential actions to take
in response to such failures: change the topology, reduce the
bandwidth requested, try a different CloudLab site, wait for a
different set of physical resources to be free, etc. In essence,
the more degrees of freedom the user has with respect to
reacting to a failure, the harder it is for the facility to guess
which one best addresses the user’s actual goals, and the more
difficult it is to provide a useful message.

3.2 Interactive Topology Design Feedback

Giving users actionable messages when their profiles don’t
map is helpful, but it comes fairly late in the process of experi-
ment design. Our experience has been that users can find even
the “helpful” mapper errors frustrating, as they come after the
user has already invested significant time. A useful analogy
is to compile-time errors and syntax checking in IDEs: com-
piling is complex and slow, and feedback from the editor as
the user writes code, while not perfect, leads to a workflow
with fewer surprise errors. What we discovered was that we
needed the equivalent of realtime syntax checking for net-
work topology design, and our answer to this is CloudLab’s
topology constraint system. The biggest challenge in building
it has been to design a system with a simplified model of the
mapping process that does not produce a specific mapping,

but instead checks whether such a solution should exist; it
must do so quickly enough to run interactively in the browser.

The constraint system is used in two contexts, and has
slightly different goals in each. In the first context, it is in-
voked as part of Jacks: CloudLab’s GUI that gives users a
“drag and drop” interface for constructing profiles. In this
setting, its goal is to assist novice users by disabling UI op-
tions that conflict with their existing choices and to warn
them when the topology they have drawn is unlikely to be
instantiatable. It does not need to admit every possible re-
quest that can be instantiated on CloudLab (there are more
sophisticated interfaces for that), but to provide an assurance
that, if a topology passes at this stage, it is virtually guar-
anteed to succeed in mapping (assuming there are enough
resources free). In the second setting, it is used at the final
stage of profile instantiation, when the user selects which
CloudLab cluster to run their experiment on. Here, it checks
the request against each cluster and disables selection of any
cluster where the request cannot be instantiated. The goal in
this case is the inverse, and we must be more conservative:
We want the constraint system to block instantiation if the
request will definitely fail, but do not want to over-zealously
block instantiation that might succeed.

The described two-phase experiment design is unique to
CloudLab. On the surface, the first phase can be compared
to how responsive web interfaces for clouds—e.g., Ama-
zon EC2’s dashboard and the OpenStack’s Horizon dash-
board [27]], hide or disable infeasible configurations. At the
same time, EC2 goes as far as “attaching” storage character-
istics to instance classes (even though networking is actually
what is being customized) when listing the storage optimized
solutions among the feasible configurations. CloudLab’s con-
straint system makes the design process more explicit by offer-
ing interactive control over all components of interconnected
experiment environments. In the second phase, requests act
analogously to HTCondor’s classads [9]]. In practice, sys-
tems like HTCondor without interactive design capabilities
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make working with complex configurations laborious and
error-prone.

Generating and checking candidates To check con-
straints, we generate a set of candidates which are tested
against a number of groups. A candidate is a set of node
or link resource properties which we check for mutual com-
patibility. A group is a whitelist of acceptable combinations
relating two or more resource properties. For example, a
group might include all allowed combinations of hardware
type and disk image. Our constraint system also supports
wildcards in both candidates (for unspecified resource prop-
erties) and groups (for cases where one resource property is
universally allowed). A candidate passes if it matches all
groups. Our approach uses a Boolean expression in the prod-
uct of sums form: a set of terms containing conditions that
are OR-ed together, with all terms being AND-ed together.

This process is defined in terms of sets and Boolean opera-
tions as follows: for a set of candidates X = {x,x2,...,x¢},
we define an evaluation procedure f(X) that checks all indi-
vidual candidates. We define g(x) for a given configuration
candidate x such that the candidate must match against all
groups (A, B, etc.): g(x) = A(x) AB(x) A... For each group,
the candidate must match at least one condition. As an ex-
ample, suppose the following table described the conditions
allowed for each group:

Group relating site, hardware, and type: Group relating hardware and image:

by (x) ={m400, ubuntul6-64-ARM}C x
by(x) ={m510, ubuntu16-64-STD}C x

ay(x) ={utah, m510, xen}C x
a(x) ={utah, m400, pc}C x

b (x) ={c220g2, £bsd110-64-STD}C x
B(x) = by (x) Vbo(x) V...V by (x)

a,,(x) ={wisconsin, ¢220g2, pc}C x
A(x) =ai(x) Vaz(x) V... Va,(x)

In this case, a candidate x={utah, m400, pc,
ubuntul6-64-ARM} evaluates to true, as az(x) Aby(x) = 1.

In the Jacks GUI, the candidates that we generate represent
the UI element (node, link, etc.) that the user has selected
and the actions they may take on it: OS images they may
select, other nodes they may connect it to, etc. Each candi-
date represents a different possible action, and we disable
(“gray out”) UI elements for candidates that do not pass (g(x)
evaluates to false). In the profile instantiation process, the
candidates represent all nodes as they appear in the request,
and the request may only be submitted to clusters for which
all candidates pass (f(X) evaluates to true).

Checking Constraints Quickly The set of candidates can,
in practice, be quite large: in Jacks, it grows with the number
of options the user can set on the node (including other nodes
to connect to), and in the instantiation process, it grows with
the size of the request. We have run containerized experiments
with as many as 5,000 nodes. At least one candidate must be
evaluated per node in a topology, and if there are LANS, the
number of candidates is quadratic in the number of nodes in
each LAN. The number of conditions in each group can grow
even larger, as it depends in part on the product of the number

of hardware types, images, sites, and other node properties.
On our current system, every candidate is evaluated against
at least 10,000 conditions across all groups. However, the
number of groups remains small in all cases (the current
number of groups in our testbed is just 7), and in practice,
there are several optimizations that allow us to take advantage
of the facility environment to make checks fast.

Large requests have many nodes and thus require many

candidates to be tested, but many of these candidates will
likely be identical. Similarly, when Jacks evaluates which
items in a drop-down box are valid, there is no need to re-
evaluate combinations that have already been tested on a
previous drop-down box instance. Memoizing test results and
culling identical candidates yields large speed improvements
for our use cases. Even with memoization, every unique
candidate has to be checked once, so we have optimized
the evaluation of the Boolean expression as well. Naively
testing each condition in turn using set arithmetic yields a
speed that is linear on the number of conditions. Instead,
we can uniquely encode conditions as entries in hash tables,
and each group can be tested with an (amortized) constant-
time lookup. This lookup means that testing a candidate
for the first time is linear in the number of groups rather
than the much larger number of conditions across all groups.
Together, these optimizations reduce the complexity of the
checks from O(c- g -s) (where c is the number of candidates,
g is the number of groups, and s is the size of each group) to
O(unique(c) - g).
Impact on User Workflow CloudLab’s topology con-
straint system is built around the idea of using a quantitative
advantage (fast constraint checking) to provide a qgualitative
improvement in user experience. It has done so by dramati-
cally reducing the number of submitted requests that could
not possibly map—even if all resources on the testbed were
available. In many situations, builders of TaaS-type facilities
face a choice: to ensure that any request that a user makes for
any set of resources configured in any way can be instanti-
ated on the facility, or to constrain user requests in some way.
While the former is attractive, it can be expensive to guarantee
and can result in situations where users can request certain
combinations but would be better off not doing so because
these combinations do not perform well together. Cloud-
Lab’s topology constraint system shows one possible path
forward on the latter alternative: constrain users’ requests,
and give them early, interactive feedback while they design
their configurations.

3.3 Reserving Resources

Until recently, resource allocation in CloudLab was done
in a First-Come-First-Served (FCFS) manner. While FCFS
works well for the interactive “code, compile, debug, gather
results” workflow used in the systems research community,
it has a number of shortcomings: it favors small experiments
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(whatever fits into the available resources at the time the user
is active), it can be difficult to plan for deadlines (such as
the paper and class deadlines seen in Section[2.3), and it can
be problematic for events that must occur at a specific time
(such as tutorials and demonstrations). In response to these
competing needs, we have developed a reservation system
to support these use cases while continuing to support the
dominant FCFS model.

A reservation is not an experiment scheduled to run at a
specific time, but a guarantee of available resources at that
time. This allows users to run many experiments either in
series (e.g., to test different scenarios) or in parallel (e.g., one
experiment per student in a class). This loose experiment-
reservation coupling is one of the key design attributes of our
reservation system and the subject of much of the analysis
presented in this section.

What we found in designing our reservation system was
that it needed to have a fundamentally different design than
the resource mapping described in Section[3.1] Resource map-
ping answers the question, “Given a specific request and a set
of available resources, which ones should we use?” The reser-
vation system needs to answer “Given the current schedule
of experiments and reservations, would a given action (creat-
ing a new experiment, extending an existing one, or creating
a new reservation) violate that schedule?” Answering this
question must be fast: like the constraint system, we need the
reservation system to run at interactive speeds so that we can
give users immediate feedback about their ability to create
or extend experiments. Our other challenge is to support late
binding of resources: the reservation system should promise
some set of resources in the future, but should wait until the
time comes to select specific ones.

Our approach diverges from the scheduling schemes of-
fered by other facilities. On Chameleon [21]], users request
specific servers (using server IDs) as mentioned previously;
therefore, their requests require only the early binding, and
the system trades flexibility for simplicity (presumably at the
expense of utilization). In contrast, clouds do not offer control
over future scheduling decisions. They provide an illusion of
infinite resources, and handle all user requests interactively,
at the time of submission. In High Performance Computing,
solutions are built upon job queues where job and user priori-
ties impact scheduling, yet making sure that exact deadlines
are met in the future is a constant challenge.

We describe our design using the following terms and op-
erations: A request for reservation r asks for N, nodes of the
specified hardware type h, to be available within the time
window [s,,e,]. Once submit-ed, a request typically requires
approval from CloudLab staff, though small requests are auto-
approved. In addition to the approve operation, staff can
delete reservations, both pending and active. At any time,
users can change their experimentation plans and delete
their reservations or submit modified requests.

Late Binding Considering that CloudLab’s hardware is ho-
mogeneous within each hardware type #, the reservation sys-
tem does not need to decide which specific nodes will be
counted as N, nodes of type i, € {h}: any N, such nodes will
satisfy the needs of reservation r with these parameters. This
increases efficiency of resource use and helps accommodate
FCFS users: it does not require us to force experiments out
just because the specific nodes they have allocated happen to
be reserved. As long as there are enough free nodes for ev-
eryone who has requested them, all experiments can continue.
Therefore, we spare the reservation system the task of finding
exact mappings between reservations and specific nodes and
implement reservation operations as node counting tasks. The
“binding” occurs later, when the user instantiates their exper-
iment(s) near or within the [s,,e,] window. The reservation
system simply ensures that the capacity is sufficient.

Checking Reservations Quickly Given the data about ac-
tive experiments—node counts and their current expiration
times—and parameters of approved upcoming reservations,
our reservation system constructs a tentative schedule describ-
ing how the number of available nodes is expected to change
over time. This schedule can be constructed in O(nlogn)
time (it must sort upcoming events by time), and takes O(n)
time to check. Here, n is the number of events, which is
a sum of the number of current experiments (typically hun-
dreds) and the number of future reservations (typically tens).
Effectively, this creates a two-phase process, in which the
reservation phase involves tasks that are lightweight and fast,
while the laborious resource mapping phase runs as part of
lengthy resource provisioning process.

This fast checking is enabled by a key design decision:
reservations are per hardware type—we do not allow reserva-
tions for broader categories such as “any server type.” While
the latter would be attractive, it would also raise the time to
check the schedule far above O(n). In our design, we can
check the schedule for each type independently because the
sets of nodes of each type do not overlap. There is only one,
binary solution at each point in the schedule: either the sum
of nodes in experiments plus the reservations exceeds the
total number of nodes of that type, or it does not. If we were
to have overlapping sets (e.g., specific and generic types),
this would create dependencies both between sets and across
time. Each point in the schedule would have multiple poten-
tial solutions, using different numbers of nodes from each
node set. Checking the solution would not only be a matter
of checking the solution at each point in time, but ensuring
each solution is consistent with the solutions at other time
points. The combinatorial complexity that this would entail
would prevent us from quickly re-calculating and checking
schedules, so we accepted the tradeoff of being more rigid
with respect to node types.

Enforcing Reservations The CloudLab reservation system
essentially works by “accumulating” free nodes up to the
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Figure 4: 38 d430 nodes reserved and used for over 9 days.
The highlighted box depicts the reserved resources: the num-
ber of nodes (up to the horizontal dotted line) reserved for the
reservation’s time window (between the vertical dotted lines).

point at which the reservation starts. As the beginning of the
reservation approaches, it scrutinizes two types of operations:
creation of new experiments, and extending the duration of
existing experiments. If either of these operations would
overlap with the reservation and would result in there being
insufficient free nodes to satisfy it, they are denied. For an
illustration, refer to Figure ] which shows a large reserva-
tion r requesting over 8200 node-hours worth of d430 nodes.
Prior to r, d430’s availability was insufficient for most of
the preceding week (below the horizontal line). As r’s start
approached, the admission control system began denying
overlapping use, and the free nodes rose until the reservation
could be satisfied. Almost immediately, the project created
a large experiment (the exact size of r), and ran two other
subsequent experiments. We can see that the final experiment
outlasted the reservation: because there were no other reser-
vations directly afterwards, the user was allowed to extend
the duration of the experiment. Another interesting behavior
visible in this graph is that the project was running smaller
experiments before their reservation started; once it did start,
they were able to double the size of their experiments.

Parameter Exploration In addition to submit, approve,
and delete, CloudLab’s reservation system supports a
validate operation. validate allows users to explore po-
tential reservations without submitting them, giving them the
ability to try different times, hardware types, and reservation
sizes to find configurations that fit their needs. If a validation
succeeds, the user may submit the reservation. Taking a
cue from our mapping and constraint systems, the validation
procedure provides users with actionable feedback when the
validation fails: messages take the form “Insufficient free
nodes at Fri Sep 21 18:00:00 2018 (12 more needed).” This
feedback suggests that reducing the number of nodes, short-
ening the reservation’s duration, or moving the reservation
further into the future can help the user proceed with submit-
ting a valid reservation.

To understand how users explore different possibilities,
we analyzed operations performed on our reservation sys-
tem between December 6, 2017 and November 30, 2018.

Experiments

Approved Reservations
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Figure 5: Comparing experiments and reservations. Empirical
percentiles are labeled using ‘%’.

Among the 3,500 events in this dataset, there are approxi-
mately 1,800 validate and 900 submit operations. These
events represent the activity of 200 users working on over
130 unique projects. Nearly 51% of reservation events are
validate operations. On average, 2.1 validations preceded
each submitted reservation (at least one is required, because
users must validate a reservation before they submit it).
Further analysis of the operations uncovers infrequent but
revealing scenarios. For each submit-ed reservation, we
consider validate operations preceding it to be indicative
of a user exploring possible candidate reservations. These
form a long-tailed distribution: 71% of submit operations
were preceded by a single validate, and 14% by two. The
remaining 15% of this distribution stretches to a maximum
of 32 validate trials. We interpret such cases as empirical
evidence for the validation procedure being sufficiently fast
to allow users repeatedly check and update reservation param-
eters when searching for combinations that satisfy both their
needs and the testbed’s schedule.

Size and Duration We next compare reservations with ex-
periments, to see whether reservations succeed in enabling
larger experiments than are possible with FCES alone. Using
the same time period and reservation data as the previous anal-
ysis, we also look at records for 33,300 experiments. Figure[3]
illustrates the long-tailed distributions we observe in both.
Because these distributions are highly skewed, we character-
ize and compare them using medians (i.e., 50th percentiles),
75th, and 95th percentiles. The ratios between the pairs of
the corresponding percentiles indicate that the reservations
are 2.2—-10.2 times larger and 3.0-5.3 times longer than ex-
periments. We conclude that reservations do indeed enable
larger experiments, though interestingly, the largest experi-
ments were larger than the largest reservations by about 50%.
Our analysis of monthly distributions also reveals that the
95th percentile for experiment durations shows significantly
less volatility after we introduced the reservation system and
stabilizes at its high values, around 300 hours. The same is
not true of the node count statistics; the timing of the largest
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Figure 6: Utilization of reservations.

spikes suggests that they are caused by testbed expansions.

Utilization CloudLab does not automatically instantiate ex-
periments for users at the beginning of a reservation, nor does
it require the end of a reservation to coincide with the end
of an experiment. The current system has no direct penalties
for under-using reserved nodes. This leads to an obvious
utilization question: How fully do experimenters use their
reservations? Put another way, this can be framed as a ques-
tion of trust: Can we trust users to reserve only what they
need and then use what they have reserved?

Before answering this question, we note several operational
nuances that stem from the loose coupling between experi-
ments and reservations in our design. First, we do not stop
users from allocating more resources than they have reserved:
the reservation indicates a minimum guaranteed availability,
and if more are available, experimenters are free to use them.
Second, if multiple experiments run on 4, hardware within
[sr,er], we cannot distinguish experiments that are meant to
use the studied reservation r from the ones that are run op-
portunistically, in addition to the planned experiments. Third,
reservations are associated with projects (groups of users),
so the user that creates the reservation may or may not be
the one who actually uses it. If users in the same project
coordinate their activities, one user submits a reservations
on behalf of the group; otherwise, when working indepen-
dently, one or multiple users submit their reservations and
run planned experiments, while others run their unrelated
FCFS experiments. Since the studied usage record does not
allow us to distill exact user intentions, we estimate aggregate
project-specific usage of hardware A, within [s,,e,] and view
it as the upper bound of the intended r’s utilization.

Figure[6] visualizes whole-project resource utilization for
nearly 450 approved reservations. The highest point, de-
picting a utilization of almost 11x the quantity of resources
reserved, represents a reservation where a single node was
reserved for 33 hours. (The figure omits fifteen small reserva-
tions that would stretch the Y axis even further, up to 25x.)
That reservation was deleted 3 hours into its time window,
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Figure 7: Use of reservations and experiments. For each
metric, we divide monthly values by the all-time maximum.

and, at the same time, the same or other users from the same
project ran multi-node experiments up to 32 node-hours in
aggregate. The result is that the project as a whole used far
more resources during this time than it had reserved. La-
bels for several large reservations highlight instances where
the utilization is near 100%. We find these and many other
large experiments that conform well with the the correspond-
ing reservations. With the median utilization for the shown
instances at 96.1%, we conclude that the majority of reser-
vations see high utilization, and we can indeed trust users to
reserve what they need and use what they reserve.

In contrast, we found a fairly large number of reservations,
123 (not shown on the graph) with no identified usage. These
seem to come from the cases in which the users changed their
minds but did not delete their reservations, forgot about the
reservations (CloudLab does send reminder emails), or, most
interestingly, did run experiments but used wrong types of
nodes. This final case seems to stem from misunderstandings
about either how the reservation system works (the specific
hardware type reserved) or the profile being used (the specific
hardware type requested). CloudLab does have measures in
place to encourage use of the appropriate node type: when
the user has a reservation, the cluster selection box defaults to
the relevant cluster, and the mapper applies a preference for
nodes of the reserved type. Still, it is clear that this is an area
for additional work. With the median size at 96 node-hours,
however, these unused reservations add up to less than 12%
of all node-hours reserved.

Reservations in Action We conclude our discussion of the
reservation system by looking at how its use relates to the use
of the testbed as a whole. As shown in Figure [/} rises and
falls in use of the testbed (as measured by the number of node-
hours used per month) are correlated perfectly with rises and
falls in submission of reservations. April 2018, CloudLab’s
busiest month to date (previously seen in Figures [T] and [3))
also saw a large spike in reservations: an astonishing 193
requests were submitted that month, or more than six per day.
During that month, there were 140k node-hours of approved
reservations, as compared with 724k node-hours used in gen-
eral, telling us that approximately 19% of all node-hours used
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that month were used through reservations. During the pre-
ceding January, a lighter month, these numbers were 67Kk,
552k, and 12%, respectively. Another place where the effects
of the reservation system appear is Table 2} if we look at
the entire time period, simple resource unavailability is the
top reason for mapping failures. If we look at just the last
year, however, when the reservation system was more stable,
better advertised, and more heavily used, node shortages due
to upcoming reservations have become more common than
“simple” shortages. The April spike was followed by a similar
increase in usage in September 2018.

We postulate that, as the use of the testbed approaches its
total capacity, (or, as the free resources approach zero), the
notional value of a reservation to a user grows super-linearly.
By analogy to queuing theory, as the demand rate approaches
the service rate, the expected wait time approaches infin-
ity [20]. Facing the possibility that they may have to wait
an unbounded amount of time for the resources they need to
become available through the FCFS system, users have far
greater incentive to submit reservation requests. This results
in the pattern that holds true for the aggregate and also spe-
cific hardware types. The demand for specific types of nodes
fluctuates over time, and users naturally adjust, using reserva-
tions only for the types that are in high demand. Overall, our
analysis confirms that the reservation system constitutes a suc-
cessful “social engineering” project on the part of CloudLab
in that the system did change user behavior in the desired way:
they use reservations heavily during periods of high demand,
but then reservations “fade into the background” when they
are not needed, letting the traditional FCFS model dominate.

4 Related Work

There is a body of literature focused on design and analysis
of computing testbeds. The work that has shaped the research
in this area includes the studies of large-scale experimen-
tation environments such as PlanetLab [8]], Grid’5000 [6],
Emulab [[16l], Open Cirrus [, and PRObBE [12]. There are
also recent studies that examine the Jetstream [33] “pro-
duction” cloud for science and engineering research, the
Chameleon [21] cloud computing testbed, and the Comet [|34]]
supercomputer, among other facilities. These facility studies
describe specific needs of research communities, document
major design and implementation efforts, and share the unique
lessons learned in the process of deploying and operating each
system. Our work complements them by describing different
aspects of facility operations and yielding insights into differ-
ent kinds of design decisions. Studies of relevant commercial
installations with similar amounts of detail are scarce.
Another relevant theme relates to using academic and com-
mercial cyberinfrastructures to investigate systems topics and
solutions with broad applicability, including the topological
issues in testbeds [[15], performance and repeatability [26,22],
failure analysis [24], individual subsystems such as disk imag-

ing [19, 4] monitoring infrastructure [38], virtualization [16],
and cloud federation [13]], among others. Our study comple-
ments these by focusing on the way that the control framework
(the software that manages, assigns, and provisions resources),
and the abstractions it offers affect user experience and be-
havior. The key difference from the related work lies in the
unique facility- and user-centered scope of our analysis; none
of aforementioned facilities has been studied from this angle.
Additionally, this paper describes CloudLab’s functionality
that extends the control framework used in GENI [25] [32],
Emulab [39], and Apt [32].

5 Conclusion

Testbeds for computer science research occupy a unique place
in the overall landscape of computing infrastructure. They
are often used in an attempt to overcome a basic impasse [3]:
as computing technologies become popular, research into
their fundamentals becomes simultaneously more valuable
and more difficult to do. The existence of production systems
such as the Internet and commercial clouds motivates work
aimed at improving them, but production deployments offer
service at a specific layer of abstraction, making it difficult or
impossible to use them for research that seeks to work under
that layer or to change the abstraction significantly.

The design and operation of testbeds—and other IaaS
infrastructures—benefits greatly from analyzing data about
how these facilities are used. In this paper, we have pre-
sented new analysis of the way that one particular facility,
CloudLab, is used in practice. This analysis, and the under-
lying dataset (which we have made public) have shown that
user behavior is highly variable, bursty, and long-tailed. In
addition, algorithms that may be thought of as being “deep
within” the system have large, visible effects on user expe-
rience and on user behavior. Together, these findings point
towards design decisions that more carefully take user expec-
tations and behavior into account “end-to-end” throughout
the entire facility.

Data and Code

Data and code used for our analyses are available athttps://
gitlab.flux.utah.edu/emulab/cloudlab-usage|/with
the tag atc19. This data covers CloudLab’s resource avail-
ability and events such as experiment instantiations.
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Abstract

File Storage Service (FSS) is an elastic filesystem pro-
vided as a managed NFS service in Oracle Cloud In-
frastructure. Using a pipelined Paxos implementation,
we implemented a scalable block store that provides lin-
earizable multipage limited-size transactions. On top of
the block store, we built a scalable B-tree that provides
linearizable multikey limited-size transactions. By us-
ing self-validating B-tree nodes and performing all B-
tree housekeeping operations as separate transactions,
each key in a B-tree transaction requires only one page
in the underlying block transaction. The B-tree holds
the filesystem metadata. The filesystem provides snap-
shots by using versioned key-value pairs. The entire sys-
tem is programmed using a nonblocking lock-free pro-
gramming style. The presentation servers maintain no
persistent local state, with any state kept in the B-tree,
making it easy to scale up and failover the presentation
servers. We use a non-scalable Paxos-replicated hash ta-
ble to store configuration information required to boot-
strap the system. The system throughput can be pre-
dicted by comparing an estimate of the network band-
width needed for replication to the network bandwidth
provided by the hardware. Latency on an unloaded sys-
tem is about 4 times higher than a Linux NFS server
backed by NVMe, reflecting the cost of replication.

1 Introduction

This paper describes Oracle Cloud Infrastructure File
Storage Service (FSS), a managed, multi-tenanted NFS
service. FSS, which has been in production for over a
year, provides customers with an elastic NFSv3 file ser-
vice [15]. Customers create filesystems which are ini-
tially empty, without specifying how much space they
need in advance, and write files on demand. The per-
formance of a filesystem grows with the amount of data
stored. We promise customers a convex combination of

100 MB/s of bandwidth and 3000 operations per sec-
ond for every terabyte stored. Customers can mount a
filesystem on an arbitrary number of NFS clients. The
size of a file or filesystem is essentially unbounded, lim-
ited only by the practical concerns that the NFS pro-
tocol cannot cope with files bigger than 16 EiB and
that we would need to deploy close to a million hosts
to store multiple exabytes. FSS provides the ability
to take a snapshot of a filesystem using copy-on-write
techniques. Creating a filesystem or snapshot is cheap,
so that customers can create thousands of filesystems,
each with thousands of snapshots. The system is robust
against failures since it synchronously replicates data
and metadata 5-ways using Paxos [44].

We built FSS from scratch. We implemented a Paxos-
replicated block store, called DASD, with a sophisti-
cated multipage transaction scheme. On top of DASD,
we built a scalable B-tree with multikey transactions
programmed in a lockless nonblocking fashion. Like
virtually every B-tree in the world, ours is a B+-tree. We
store the contents of files directly in DASD and store file
metadata (such as inodes and directories) in the B-tree.

Why not do something simpler? One could imag-
ine setting up a fleet of ZFS appliances. Each appli-
ance would be responsible for some filesystems, and we
could use a replicated block device to achieve reliability
in the face of hardware failure. Examples of replicated
block devices include [2,4,25,54,61]. We have such
a service in our cloud, so why not use it? It’s actually
more complicated to operate such a system than a sys-
tem that’s designed from the beginning to operate as a
cloud service. Here are some of the problems you would
need to solve:

e How do you grow such a filesystem if it gets too
big to fit on one appliance?

e How do you partition the filesystems onto the ap-
pliance? What happens if you put several small
filesystems onto one appliance and then one of the
filesystems grows so that something must move?
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e How do you provide scalable bandwidth? If a
customer has a petabyte of data they should get
100 GB/s of bandwidth into the filesystem, but a
single appliance may have only a 10 Gbit/s net-
work interface (or perhaps two 25 Gbit/s network
interfaces).

e How do you handle failures? If an appliance
crashes, then some other appliance must mount the
replicated block device, and you must ensure that
the original appliance doesn’t restart and continue
to perform writes on the block device, which would
corrupt the filesystem.

This paper describes our implementation. Section 2
provides an architectural overview of FSS. The paper
then proceeds to explain the system from the top down.
Section 3 describes the lock-free nonblocking program-
ming style we used based on limited-size multipage
transactions. Section 4 shows how we organize meta-
data in the B-tree. Section 5 explains how we imple-
mented a B-tree key-value store that supports multikey
transactions. Section 6 explains DASD, our scalable
replicated block storage system. Section 7 describes our
pipelined Paxos implementation. Section 8 discusses
congestion management and transaction-conflict avoid-
ance. Section 9 describes the performance of our sys-
tem. Sections 10 and 11 conclude with a discussion of
related work and a brief history of our system.

2 FSS Architecture

This section explains the overall organization of FSS.
We provision many hosts, some of which act as stor-
age hosts, and some as presentation hosts. The storage
hosts, which include local NVMe solid-state-drive stor-
age, store all filesystem data and metadata replicated 5-
ways,! and provide an RPC service using our internal
FSS protocol. The presentation hosts speak the standard
NEFS protocol and translate NFS into the FSS protocol.
A customer’s filesystems appear as exported filesys-
tems on one or more IP addresses, called mount targets.
A single mount target may export several filesystems,
and a filesystem may be exported by several mount tar-
gets. A mount target appears as a private IP address
in the customer’s virtual cloud network (VCN), which
is a customizable private network within the cloud.
Most clouds provide VCNs in which hosts attached to
one VCN cannot even name hosts in another VCN.
Each mount target terminates on one of our presentation
hosts. A single mount target’s performance can be lim-
ited by the network interface of the presentation host,
and so to get more performance, customers can create
many mount targets that export the same filesystem.

Data is erasure coded, reducing the cost to 2.5, see Section 3.
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Figure 1: FSS architecture. The NFS clients are on the
left, and belong to various customers. Hosts are shown
as boxes with solid edges and processes are shown with
dashed lines. The presentation hosts are in the mid-
dle, each running several Orca processes. The Orca
processes are connected to the various customer virtual
cloud networks (VCNs) on the left. The IP addresses
of each Orca’s mount target is shown. The Orca pro-
cess are also connected to our internal VCN, where they
can communicate with the storage hosts. The storage
hosts contain NVMe drives and run both the Dendron
and DASD processes.

Figure 1 shows how the FSS hosts and processes
are organized. The customer sets up NFS clients in
their VCN. Our presentation hosts terminate NFS con-
nections from the clients in per-mount-target Orca pro-
cesses. The Orca processes translate NFS requests into
the FSS protocol, and send the FSS to our storage hosts.
In the future, the presentation hosts might speak other
client protocols, such as SMB [55] or NFSv4 [68].

To ensure isolation between filesystems we depend on
a combination of process isolation on our servers, VCN
isolation, and encryption. All data stored in the storage
hosts or in flight in the FSS protocol is encrypted with
a file-specific encryption key that derives from a filesys-
tem master key. The NFSv3 protocol is not encrypted,
however, so data arriving at an Orca is potentially vul-
nerable. To mitigate that vulnerabilty, we rely on VCN
isolation while the data is in flight from the NFS client
to the presentation host, and use the presentation host’s
process isolation to protect the data on the presentation
host. All data and file names are encrypted as soon as
they arrive at an Orca, and each Orca process serves only
one mount target.

Each storage host contains NVMe drives and runs two
processes, DASD and Dendron. DASD, described in
Section 6, provides a scalable block store. Dendron im-
plements a B-tree (Section 5) in which it maintains the
metadata (Section 4) for the filesystem.

We chose to replicate filesystems within a data cen-
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ter rather than across data centers within a metropoli-
tan area or across a long distance. There is a tradeoff
between latency and failure tolerance. Longer-distance
replication means the ability to tolerate bigger disas-
ters, but incurs longer network latencies. We chose lo-
cal replication so that all of our operations can be syn-
chronously replicated by Paxos without incurring the la-
tency of long-distance replication. It turns out that most
of our customers rely on having a functional disaster-
recovery plan, and so they’re more interested in single-
data center file system performance than synchronous
replication. In the future, however, we may configure
some filesystems to be replicated more widely.

Within a data center, hosts are partitioned into groups
called fault domains. We typically employ 9 fault do-
mains. In a small data center, a fault domain might be
a single rack. In a large data center, it might be a group
of racks. Hosts within a fault domain are likely to fail
at the same time (because they share a power supply or
network switch). Hosts in different fault domains are
more likely to fail independently. We employ 5-way
Paxos replicated storage that requires at least 3 out of
each group of 5 Paxos instances in order to access the
filesystems. We place the Paxos instances into different
fault domains. When we need to upgrade our hosts, we
can bring down one fault domain at a time without com-
promising availability. Why 5-way replication? During
an upgrade, one replica at a time is down. During that
time, we want to be resilient to another host crashing.

We also use the same 5-way-replicated Paxos machin-
ery to run a non-scalable hash table that keeps track of
configuration information, such a list of all the presen-
tation hosts, needed for bootstrapping the system.

All state (including NLM locks, leases, and idem-
potency tokens) needed by the presentation servers is
maintained in replicated storage rather than in the mem-
ory of the presentation hosts. That means that any Orca
can handle any NFS request for the filesystems that it
exports. The view of the filesystem presented by differ-
ent Orcas is consistent.

All memory and disk space is allocated when the host
starts. We never run malloc () after startup. By con-
struction, the system cannot run out of memory at run-
time. It would likely be difficult to retrofit this memory-
allocation discipline into old code, but maintaining the
discipline was relatively straightforward since the entire
codebase is new.

3 Multi-Page Store Conditional

FSS is implemented on top of a distributed B-tree, which
is written on top of a a distributed block store with multi-
page transactions (see Figure 2). This section describes
the programming interface to the distributed block store

Customer program
Operating system
NFS
FSS filesystem

B-tree
MPSC
Paxos

Figure 2: Each module is built on the modules below.

and how the block store is organized into pages, blocks,
and extents.

The filesystem is a concurrent data structure that must
not be corrupted by conflicting operations. There can
be many concurrent NFS calls modifying a filesystem:
one might be appending to a file, while another might
be deleting the file. The filesystem maintains many in-
variants. One important invariant is that every allocated
data block is listed in the metadata for exactly one file.
We need to avoid memory leaks (in which an allocated
block appears in no file), dangling pointers (in which
a file contains a deallocated block), and double alloca-
tions (in which a block appears in two different files).
There are many other invariants for the filesystem. We
also employ a B-tree which has its own invariants. We
live under the further constraint that when programming
these data structures, we cannot acquire a lock to protect
these data structures, since if a process acquired a lock
and then crashed it would be tricky to release the lock.

To solve these problems we implemented FSS us-
ing a nonblocking programming style similar to that of
transactional memory [32]. We use a primitive that we
call multi-page store-conditional (MPSC) for access-
ing pages in a distributed block store. An MPSC op-
eration is a “mini-transaction” that performs an atomic
read-and-update of up to 15 pages. All page reads and
writes follow this protocol:

1. Read up to 15 pages, receiving the page data and a
slot number (which is a form of a version tag [38]).
A page’s slot number changes whenever the page
changes. You can read some pages before deciding
which page to read next, or you can read pages in
parallel. Each read is linearizable [34].

2. Compute a set of new values for those pages.

3. Present the new page values, along with the pre-
viously obtained slot numbers, to the MPSC func-
tion. To write a page requires needs a slot number
from a previous read.

4. The update will either succeed or fail. Success
means that all of the pages were modified to the
new values and that none of the pages had been oth-
erwise modified since they were read. A successful
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Figure 3: Pages, blocks, and extents. Three extents are
shown, each with an array of pages. Each page has a
slot. E.g., page O of extent 1 has slot 19. Each block
has ownership. The first block of extent 1 is owned by
customer 80 (“C80”), is read-write (“RW”), and is on its
9th allocation generation (“G9”). Extents 1 and 2 each
have 2 pages per block and 4 blocks, whereas extent 20
has 4 pages per block and only 2 blocks.

update linearizes with other reads and MPSC up-
dates. A failure results in no changes.

In addition to reading and writing pages, an MPSC can
allocate or free space in the distributed block store.

An MPSC could fail for many reasons. For example,
if, between reading a page and attempting an MPSC,
some other transaction wrote the page, the MPSC will
fail. Even if there is no conflict, an MPSC may fail due
to, e.g., packet loss or Paxos leadership changes. Even
if a transaction succeeds, the caller may receive an error
indication, e.g., if network fails between the update’s
commit and the caller notification. Our implementa-
tion deliberately introduces failures (sometimes called
fuzzing [56]) with a small probability rate, so that all of
the error-handling code paths are exercised frequently,
even in production.

Pages and Blocks. We subdivide the distributed block
store into a hierarchy of pages, blocks, and extents, as
shown in Figure 3. An MPSC performs an atomic up-
date on a set of pages. A block includes one or more
pages, and is the unit on which we do bookkeeping for
allocation. To reduce bookkeeping overheads on small
pages, we allocate relatively large blocks. To keep trans-
actions small, we update relatively small pages. An ex-

Geometry Page Block  Extent RF EC
size size size

B-tree 8 KiB IMiB 16GiB 5 1

8 KiB 8 KiB 8KiB 32GiB 5 5:2

32KiB 32KiB  32KiB 128GiB 5 52

256KiB  32KiB 256KiB 256 GiB 5 52

2MiB 32KiB 2MiB 256 GiB 5 5:2

Figure 4: Extent geometries. The B-tree extents con-
tain metadata organized as a B-tree. The other extents
contain file contents, and are identified by their block
size. For each extent the page size, block size, extent
size, replication factor (RF), and erasure-coding (EC)
are shown.

tent is an array of pages, up to 256 GiB total, and is
implemented by a replicated Paxos state machine.

For example, one kind of extent contains 256 GiB
of disk-resident data, organized in 2 MiB blocks with
32 KiB pages, and is replicated 5 ways using 5:2 era-
sure coding (an erasure-coding rate of 2/5) [62]. Thus
the 256 GiB of disk-resident data consumes a total of
640 GiB of disk distributed across 5 hosts.

An extent’s geometry is defined by its page size, block
size, extent size, replication factor, and erasure-coding
rate. Once an extent is created, its geometry cannot
change. Figure 4 shows the extent geometries that we
use for file data and metadata. All of our extents are 5-
way replicated within a single data center. The pages in
extents used for file contents are erasure coded using a
5:2 erasure coding rate, so that the overhead of storing
a page is 2.5 (each replica stores half a page, and there
are 5 replicas). The B-tree data is mirrored, which can
be thought of as 5:1 erasure coding.

We size our extents so there are hundreds of extents
per storage host to ease load balancing. We use paral-
lelism to recover the missing shards when a host crashes
permanently—each extent can recover onto a different
host.

Block ownership. When operating a storage system
as a service, it is a great sin to lose a customer’s data. It
is an even greater sin to give a customer’s data to some-
one else, however. To avoid the greater sin, blocks have
ownership information that is checked on every access.
A block’s ownership information includes a version
tag, called its generation, as well as 64-bit customer
identifier, and a read-only bit. When accessing a block,
the generation, customer id, and read-only bit must
match exactly. This check is performed atomically with
every page access. When a block is allocated or deallo-
cated its generation changes. A tagged pointer to a page
includes the block ownership information, as well as the
extent number and page number. A block’s pointer is
simply the tagged pointer to the block’s first page.
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The problem that block ownership solves can be il-
lustrated as follows. When data is being written into
a new file, we allocate a block and store the block’s
pointer in the B-tree as a single transaction. To read data
from a file, Orca first obtains the block pointer by ask-
ing Dendron to read the B-tree. Orca caches that block
pointer, so that it can read the data without the over-
head of checking the B-tree again on every page access.
Meanwhile, another thread could truncate the file, caus-
ing the block to be deallocated. The block might then
be allocated to a file belonging to a different customer.
We want to invalidate Orca’s cached pointers in this sit-
uation, so we change the block ownership. When Orca
tries to use a cached pointer to read a deallocated page,
the ownership information has become invalid, and the
access fails, which is what we want.

Each of our read operations is linearizable, meaning
that they are totally ordered with respect to all MPSC
operations and the total ordering is consistent with real
time. Although our read operations linearize, if you
perform several reads they take place at different times,
meaning that the reads may not be mutually consistent.
It’s easy to trick a transactional-memory-style program
into crashing, e.g., due to a failed assertion. For ex-
ample, if you have two pages in a doubly linked list,
you might read one page, and then follow a pointer to
the second page, but by the time you read the second
page it no longer points back to the first page. Getting
this right everywhere is an implementation challenge,
leading some [10, 16] to argue that humans should not
program transactional memory without a compiler. We
have found this problem to be manageable, however,
since an inconsistent read cannot lead to a successful
MPSC operation, so the data structure isn’t corrupted.

4 A Filesystem Schema

This section explains how we represent the filesystem
metadata in our B-tree. FSS implements an inode-based
write-in-place filesystem using a single B-tree to hold its
metadata. What does that mean? “Inode-based” means
that each file object has an identifier, called its handle.
The handle is used as an index to find the metadata for
a file. “Write-in-place” means that updates to data and
metadata usually modify an existing block of data. (As
we shall see, snapshots introduce copy-on-write behav-
ior.) “Single B-tree to hold the metadata” means there
is only one B-tree per data center. Our service provides
many filesystems to many customers, and they are all
stored together in one B-tree.

The B-tree must support various metadata operations.
For example, given an object’s handle, we need to find
and update the fixed-size part of the object’s metadata,
which includes the type of the object (e.g., regular, di-

Key-value pairs:

leaderblock: 0 — next F'.

superblock: F,0 — next D, next C, keys.

inode: F,1,D,C,2,S — stat-data.

name map: F,1,D,C=0,3,N,S— F,D',C’,S.

cookie map: F,1,D,C =0,4,¢c,S — F,D',C’,S,N.

block map: F,1,D,C,5,0,S — block ID and size.
Glossary:

F filesystem number.

D Directory unique id.

C File unique id.

S Snapshot number.

0 Offset in file.

N Filename in directory.

c Directory iteration cookie.

F,D',C',S The handle of a file in a directory.

Figure 5: Filesystem schema showing key — value pair
mappings. The small numbers (e.g., “1”) are literal num-
bers inserted between components of a key to disam-
biguate key types and force proper B-tree sort ordering.
For directories, C = 0.

rectory, symlink), permissions bits (rwxrwxrwx), Owner,
group, file size, link count, and timestamps. Given a file
handle and an offset, we need to find the tagged pointer
of the block holding data at that offset, so that reads or
write can execute. Given a directory handle and a file-
name we need to be able perform a directory lookup,
yielding a file handle. For a directory, we need to iterate
through the directory entries. In NFS this is performed
using a 64-bit number called a cookie. Given a directory
handle and a cookie we need to find the directory entry
with the next largest cookie.

Our strategy is to create B-tree key-value pairs that
make those operations efficient. We also want to min-
imize the number of pages and extents that we access
in each transaction. Every B-tree key is prefixed with
a filesystem number F', so that all the keys for a given
filesystem will be adjacent in the B-tree. Our handles are
ordered tuples of integers (F,D,C,S), where D a unique
number for every directory, C is a unique number for ev-
ery file (C = O for directories), and S is a snapshot num-
ber. A file’s handle depends on the directory in which
it was created. The file can be moved to another direc-
tory after it is created, but the file’s handle will always
mention the directory in which the file was originally
created.

Figure 5 shows the schema for representing our
filesystems. We encode the B-tree keys in a way that
disambiguates the different kinds of key value pairs and
sorts the key-value pairs in a convenient order. For ex-
ample, all the pairs for a given filesystem F appear to-
gether, with the superblock appearing first because of
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the “0” in its key. Within the filesystem, all the non-
superblock pairs are sorted by D, the directory number.
For a directory, the directory inode sorts first, then come
the name map entries for the directory, and then the
cookie map, then come all the inodes for the files that
were created in that directory. In that set for each file,
the file inode sorts first, followed by the block maps for
that file. Finally two entries that are the same except for
the snapshot number are sorted by snapshot number.

We implement snapshots using copy-on-write at the
key-value pair level, rather than doing copy-on-write in
the B-tree data structure or at the block level [13, 28,
35,43,49,63,65,66,72]. In the interest of space, we
don’t show all the details for snapshots, but the basic
idea is that each key-value pair is valid for a range of
snapshots. When looking up a pair for snapshot S, we
find the pair whose key has the largest snapshot number
that’s no bigger than S.

Our key-value scheme achieves locality in the B-tree.
When a file is created it is lexicographically near its par-
ent directory, and the file’s block maps and fixed-sized
metadata are near each other. (If the file is later moved,
it still appears near the original parent directory.) This
means that if you create a file in a directory that has
only a few files in it, it’s likely that the whole transac-
tion to update the directory inode, add directory entries,
and create the file inode will all be on the same page,
or at least in the same extent, since the B-tree maintains
maintains block as well as page locality (see Section 5).

We use multiple block sizes (which are shown in Fig-
ure 4) to address the tension between fragmentation and
metadata overhead. Small blocks keep fragmentation
low for small files. Big blocks reduce the number of
block map entries and other bookkeeping overhead for
big files. In our scheme the first few blocks of a file are
small, and as the file grows the blocks get bigger. For
files larger than 16 KiB, the largest block is no bigger
than 1/3 the file size, so that even if the block is nearly
empty, we have wasted no more than 1/3 of our stor-
age. We sometimes skip small-block allocation entirely.
For example if the NFS client writes 1 MiB into a newly
created file, we can use 256 KiB blocks right away.

5 The B-tree

To hold metadata we built a B-tree [7] on top of MPSC.
MPSC provides transactions that can update up to 15
pages, but we want to think about key-value pairs, not
pages, and we want B-tree transactions to be able in-
clude non-B-tree pages and blocks, e.g., to allocate a
data block and store its tagged pointer in a B-tree key-
value pair. The B-tree can perform transactions on a
total of 15 values, where a value can be a key-value pair,
or a non-B-tree page write or block allocation.

Consider the simple problem of executing a B-tree
transaction to update a single key-value pair. How many
pages must be included in that transaction? The standard
B-tree algorithm starts at the root of the tree and follows
pointers down to a leaf page where it can access the pair.
To update the leaf we need to know that it is the proper
page, and the way we know that is by having followed a
pointer from the leaf’s parent. Between reading the par-
ent and reading the leaf, however, the tree might have
been rebalanced, and so we might be reading the wrong
leaf. So we we need to include the parent in the transac-
tion. Similarly, we need to include the grandparent and
all the ancestors up to the root. A typical B-tree might be
5 or 6 levels deep, and so a single key-value pair update
transaction involves 5 or 6 pages, which would limit us
to 2 or 3 key-value pairs per transaction. Furthermore,
every transaction ends up including the root of the B-
tree, creating a scalability bottleneck.

Our solution to this problem is to use self-validating
pages, which contain enough information that we can
determine if we read the right page by looking at that
page in isolation. We arrange every page to “own” a
range of keys, for the page to contain only keys in that
range, and that every possible key is owned by exactly
one page. To implement this self validation, we store in
every page a lower bound and upper bound for the set
of keys that can appear in the page (sometimes called
“fence keys” [26,47]), and we store the height of the
page (leaf pages are height 0). When we read a page to
look up a key, we verify that the page we read owns the
key and is the right height, in which case we know that
if that page is updated in a successful transaction, that
we were updating the right page. Thus, we do not need
to include the intermediate pages in the MPSC operation
and we can perform B-tree transactions on up to 15 keys.

We usually skip accessing the intermediate B-tree
nodes altogether by maintaining a cache that maps keys
to pages. If the cache steers us to a wrong page, either
the page won’t self validate or the transaction will fail, in
which case we simply invalidate the cache and try again.
If a key is missing from the cache, we can perform a
separate transaction that walks the tree to populate the
cache. It turns out that this cache is very effective, and
for virtually all updates we can simply go directly to the
proper page to access a key-value pair.

Another problem that could conceivably increase the
transaction size is tree rebalancing. In a B-tree, tree
nodes must generally be split when they get too full or
merged when they get too empty. The usual rule is that
whenever one inserts a pair into a node and it doesn’t fit,
one first splits the node and updates the parent (possi-
bly triggering a parent split that updates the grandpar-
ent, and so on). Whenever one deletes a pair, if the
node becomes too empty (say less than 1/4 full), one
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Figure 6: The B-tree comprises block (in blue) and
pages (in pink). The pages form a tree. The leaf
pages, where the key-value pairs are stored, form a dou-
bly linked list (shown with dashed green lines). Each
leaf page is responsible for a range of keys, e.g., [C,F)
means the keys from C inclusive to F exclusive. Each
block holds a key range of pages for one level. For ex-
ample, Block 5 has all the leaf pages in the range [G, P).

merges nodes, updating the parent (which can possibly
trigger a parent merge that updates the grandparent, and
so on). This means that any insertion or deletion can
add as many pages to a transaction as the height of the
tree. Those rebalancings are infrequent so they don’t in-
troduce a scalability bottleneck, but they do make our
MPSC operations too big.

Our solution to the rebalancing problem is to rebal-
ance in a separate transaction. When inserting if we en-
counter a page overflow, we abort the transaction, split
the page in a separate transaction, and restart the origi-
nal transaction. We split the page even if it is apparently
nearly empty: as long as there are two keys we can split
the page. For merges, we delete keys from the page, and
then do a separate transaction afterward to rebalance the
tree. It’s possible that a page could end up empty, or
nearly empty, and that due to some crash or packet loss,
we forget to rebalance the tree. That’s OK because we
fix it up the next time we access the page.

To improve locality we exploit both the page and
block structure of MPSC. Figure 6 shows how the B-tree
is organized to exploit block locality as well as page lo-
cality. Each page is responsible for a key range, and the
union of the key ranges in a block is a single key range.
When splitting a page, we place the new page into the
same block as the old page, and if the block is full,
we insert a new block. If the B-tree schema strives to
keep keys that will appear in the same transaction lexi-
cographically near each other, locality causes those keys
to likely be in the same page, or at least the same block.
Our MPSC implementation optimizes for the case where
some pages of a transaction are in the same extent. With
the schema described in Section 4, this optimization is
worth about a 20% performance improvement for an op-
eration such as untarring a large tarball.

The choice of 15 pages per transaction is driven by
the B-tree implementation. There is one infrequent op-
eration requiring 15 pages. It involves splitting a page

in a full block: a new block is allocated, block headers
are updated, and the pages are moved between blocks.
Most transactions touch only one or two pages.

6 DASD: Not Your Parent’s Disk Drive

This section explains how we implemented MPSC using
Paxos state machines (which we discuss further in Sec-
tion 7). MPSC is implemented by a distributed block
store, called DASD?. A single extent is implemented by
a Paxos state machine, so multipage transactions within
an extent is straightforward. To implement transactions
that cross extents, we use 2-phase commit.

Given that Paxos has provided us with a collection
of replicated state machines, each with an attached disk,
each implementing one extent, we implement two-phase
commit [29,46,50] on top of Paxos. The standard prob-
lem with two-phase commit is that the transaction coor-
dinator can fail and the system gets stuck. Our extents
are replicated, so we view the participants in a transac-
tion as being unstoppable.

It would be easy to implement two-phase commit
with 3n messages. One could send n ‘prepare’ mes-
sages that set up the pages, then n ‘decide’ messages
that switch the state to commited, and then n ‘release’
messages that release the resources of the transaction.
(Each message drives a state transition, which is repli-
cated by Paxos.) The challenge is to implement two-
phase commit on n extents with only 2n messages and
state changes. Every filesystem operation would benefit
from the latency being reduced by 1/3.

To perform an atomic operation with only 2n mes-
sages, for example on 3 pages, the system progresses
through the states shown in Figure 7. The system will
end up constructing and tearing down, in the Paxos state
machine, a doubly-linked (not circular) list of all the
extents in the transaction. Each of these steps is initi-
ated by a message from a client, which triggers a state
change in one Paxos state machine (which in turn re-
quires several messages to form a consensus among the
Paxos replicas). The client waits for an acknowledgment
before sending the next message.

1. Extent A receives a prepare message. A enters the
prepared state, indicated by “P(data)”, and records
its part of the transaction data and its part of the
linked list (a null back pointer, and a pointer to B).

2. Extent B receives a prepare message, enters the pre-
pared state, and records its data and pointers to A
and C.

3. Extent C receives a prepare-and-decide message,
enters the decided state (committing the transac-

2Direct-Access Storage Device (DASD) was once IBM’s terminol-
ogy for disk drives [37].
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Figure 7: Three extents performing a DASD transaction.
Each column is an extent, and each row is a point in
time, with time moving downward. A double-arrowed
line shows two extents pointing at each other. A single-
arrowed line shows one extent pointing at the other, with
no pointer back. Ground represents a null pointer.

tion), and records its data and the back pointer to
B, indicated by “D(wrote)”.

4. Extent A receives a decide-and-release message,
notes that the transaction is committed, and re-
leases its resources (such as memory) associated
with the transaction, indicated by “R(wrote)”. The
head of the linked list is now gone.

5. Extent B receives a decide-and-release message,
notes the commit, and releases its resources.

6. Extent C receives a release message (it had already
decided) and releases its resources.

Thus we implement two-phase commit in exactly 2n
messages with 2n state transitions. Note that the final
transition of state C doesn’t actually need to be done
before replying to the client, and could be piggybacked
into the prepare step of the next transaction, potentially
reducing the latency to 2n — 1 messages.

The system maintains the invariant that either a pre-
fix or a suffix of the linked list exists, which is useful
if the transaction is interrupted. There are two ways
that the system can be interrupted, before the commit (in
which case the transaction will abort), or after (in which
case the cleanup is incomplete). The prefix-suffix prop-
erty helps in both of these cases. If the transaction gets
aborted (at or before step 3) then a prefix exists. If we
encounter a prepared state, we can follow the linked list
forward until we either find a dangling pointer or a de-
cided state. If we find a dangling pointer, we can delete
the prepare record that contained the dangling pointer,
preserving a prefix. (At the final point, C, of the linked
list, we must extract a promise that C will never decide
that the transaction commits. This can be accomplished

by introducing a conflict on the read slot for the page.) If
we find a decided state then the cleanup was interrupted,
so it can proceed back along the linked list until we find
the beginning or a dangling pointer, and move the state
forward to released.

Our scheme relies on the fact that each state transition
occurs one after the other, and hence the critical path of
the transition is also 2n messages. There are schemes in
which one can move the states forward in parallel. For
example, one could broadcast “prepare” messages to all
the extents, then have one extent decide, and then broad-
cast decide messages to them all, then release messages,
so that the critical path would be only 4 long. This re-
sults in 37 state transitions (minus one or two, depend-
ing on how clever you are.) If you think that big trans-
actions are common, that’s valuable, but we have found
that most transactions are short so it’s better to do the
transaction serially.

We optimize the case when there are several pages in
a single extent to use fewer messages.

7 Pipelined Paxos

In this section we explain our Paxos implementation,
and in particular how we pipeline Paxos operations.

Lamport-Paxos [44, 45] is an algorithm to achieve
consensus on a single value. Lamport-Paxos requires
two phases, called phase 1 and phase 2 by Lamport.

To achieve consensus on a log (as opposed to one
value), one common algorithm is Multi-Paxos [17],
which treats the log as an array indexed by slot, run-
ning Lamport-Paxos independently on each array ele-
ment. It turns out that you can run a “vector” phase 1
for infinitely many elements of the array with a single
pair of messages, and that you can reuse the outcome
of phase 1 for as many phase 2 rounds as you want. In
this setup, people tend to call phase-1 “master election”
and infer all sorts of wrong conclusions, e.g. that there
is only one master at any time and that phase 1 is some
kind of “failover”.

In Multi-Paxos, if the operation on slot S+ 1 depends
on the state after slot S, you must wait for slot S (and
all previous slots) to finish phase 2. (We don’t say
“commit” to avoid confusion with two-phase commit,
which is a different protocol.) This Multi-Paxos is not
pipelined.

You can pipeline Multi-Paxos with a small modifica-
tion. You tag each log entry with a unique log sequence
number (LSN) and you modify Paxos so that an accep-
tor accepts slot S+ 1 only if it agrees on the LSN of
slot S. Thus, the Paxos phase 2 message is the Lamport
phase 2 plus the LSN of the previous slot. By induction,
two acceptors that agree on a LSN agree on the entire
past history.
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Now you can issue phase 2 for S+ 1 depending on
S without waiting for S to complete, because the accep-
tance of S+ 1 retroactively confirms all speculations that
you made.

The pipelined Multi-Paxos state, per slot, is the
Lamport-Paxos state (a ballot B and the slot’s contents)
plus the LSN. You can use whatever you want as LSNs,
as long as they are unique, but a convenient way to gen-
erate LSNs is to use the pair (E,S) where the epoch E
must be unique. As it happens, Lamport phase 1 desig-
nates a single winner of ballot B, so you can identify E
with the winner of ballot B in phase 1, and be guaran-
teed that nobody else wins that ballot. In the E = B case,
you can reduce the per-slot state to the single-value E,
with the dual-role of LSN for pipelining and of ballot
for Lamport-Paxos.

Our Paxos algorithm is almost isomorphic to
Raft [60]. Essentially Raft is Multi-Paxos plus condi-
tional LSNs plus E = B. However, Raft always requires
an extra log entry in order to make progress, and cannot
be done in bounded space. If you recognize that you are
just doing good-old Paxos, then you can make progress
by storing a separate ballot B in constant space.

The idea of the acceptance conditional on the pre-
vious LSN appeared in viewstamped replication [58]
(which didn’t discuss pipelining). It is used specifically
for pipelining in Zookeeper, except that Zookeeper tries
to reinvent Paxos, but incorrectly assumes TCP is an
ideal pipe [6]. Conditional acceptance is also used in
Raft in the same way as in viewstamped replication, ex-
cept that Raft lost the distinction between proposer and
acceptor, which prevents it from having a speculative
proposer state that runs ahead of acceptors.

Recovery. Here we explain how our Paxos system re-
covers from failures.

The on-disk state of a Paxos acceptor has two main
components: the log (of bounded size, a few MB), and a
large set of page shards (tens of GB). A shard comprises
an erasure-coded fragment of a page and some header
information such as a checksum. To write a shard, the
Paxos proposer appends the write command to the log
of multiple acceptors. When a quorum of acceptors has
accepted the command, the write is considered done (or
“learned” in Paxos terminology). The proposer then in-
forms acceptors that a command has been learned, and
acceptors write the erasure-coded shard to disk.

As long as all acceptors receive all log entries, this
process guarantees that all acceptors have an up-to-date
and consistent set of shards. However, acceptors may
temporarily disappear for long enough that the only way
for the acceptor to make progress is to incur a log dis-
continuity. We now must somehow rewrite all shards
modified by the log entries that the acceptor has missed,
a process called recovery.

The worst-case for recovery is when we must rewrite
the entire set of shards, for example because we are
adding a new acceptor that is completely empty. In this
long-term recovery, as part of their on-disk state, accep-
tors maintain a range of pages that need to be recovered,
and they send this recovery state back to the proposer.
The proposer iterates over such pages and overwrites
them by issuing a Paxos read followed by a conditional
Paxos write, where the condition is on the page still be-
ing the same since the read. When receiving a write, the
acceptor subtracts the written page range from the to-be-
recovered page range, and sends the updated range back
to the proposer.

Long-term recovery overwrites the entire extent. For
discontinuities of short duration, we use a less expensive
mechanism called short-term recovery. In addition to
the long-term page range, acceptors maintain a range of
log slots that they have lost, they update this range when
incurring a discontinuity, and communicate back this
slot range to the proposer. The proposer, in the Paxos
state machine, maintains a small pseudo-LRU cache of
identifiers of pages that were written recently, indexed
by slot. If the to-be-recovered slot range is a subset of
the slot range covered by the cache, then the proposer
issues all the writes in the slot range, in slot order, along
with a range R whose meaning is that the present write
is the only write that occurred in slot range R. When
receiving the write, the acceptor subtracts R from its to-
be-recovered slot range and the process continues un-
til the range is empty. If the to-be-recovered slot range
overflows the range of the cache, the acceptor falls into
long-term recovery.

In practice, almost all normal operations (e.g., soft-
ware deployments) and unscheduled events (e.g., power
loss, network disruption) are resolved by short-term re-
covery. We need long-term recovery when loading a
fresh replica, and (infrequently) when a host goes down
for a long time.

Checkpointing and logging. Multi-Paxos is all about
attaining consensus on a log, and then we apply that log
to a state machine. All memory and disk space in FSS
is statically allocated, and so the logs are of a fixed size.
The challenge is to checkpoint the state machine so that
we can trim old log entries. The simplest strategy is
to treat the log as a circular buffer and to periodically
write the entire state machine into the log. Although
for DASD extents, the state machine is only a few MB,
some of our other replicated state machines are much
larger. For example we use a 5-way replicated hash ta-
ble, called Minsk, to store configuration information for
bootstrapping the system: given the identity of the five
Minsk instances, a Dendron instance can determine the
identity of all the other Dendron instances. If the Paxos
state machine is large, then checkpointing the state ma-
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chine all at once causes a performance glitch.

Here’s a simple scheme to deamortize checkpointing.
Think of the state machine as an array of bytes, and ev-
ery operation modifies a byte. Now, every time we log
an update to a byte, we also pick another byte from the
hash table and log its current value. We cycle through
all the bytes of the table. Thus, if the table is K bytes
in size, after K update operations we will have logged
every byte in the hash table, and so the most recent 2K
log entries have enough information to reconstruct the
current state of the hash table. We don’t need to store
the state machine anywhere, since the log contains ev-
erything we need.

This game can be played at a higher level of abstrac-
tion. For example, suppose we think of the hash table
as an abstract data structure with a hash_put opera-
tion that is logged as a logical operation rather than as
operations on bytes. In that case every time we log a
hash_put we also log the current value of one of the
hash table entries, and take care to cycle through all the
entries. If the hash table contains K key-value pairs, then
the entire hash table will be reconstructable using only
the most recent 2K log entries. This trick works for a
binary tree too.

8 Avoiding Conflicts

This section outlines three issues related to transaction
conflicts: avoiding too much retry work, avoiding con-
gestion collapse, and reducing conflicts by serializing
transactions that are likely to conflict.

In a distributed system one must handle errors in a
disciplined fashion. The most common error is when a
transaction is aborted because it conflicts with another
transaction. Retrying transactions at several different
places in the call stack can cause an exponential amount
of retrying. Our strategy is that the storage host does not
retry transactions that fail. Instead it attempts to com-
plete one transaction, and if it fails the error is returned
all the way back to Orca which can decide whether to
retry. Orca typically sets a 55 s deadline for each NFS
operation, and sets a 1 s deadline for each MPSC. Since
the NFS client will retry its operation after 60, it’s OK
for Orca to give up after 55 s.

In order to avoid performance collapse, Orca employs
a congestion control system similar to TCP’s window-
size management algorithm [71]. Some errors, such as
transaction conflicts, impute congestion. In some situ-
ations the request transaction did not complete because
some “housekeeping” operation needed to be run first
(such as to rebalance two nodes of the B-tree). Doing
the housekeeping uses up the budget for a single trans-
action, so an error must returned to Orca, but in this case
the error does not impute congestion.

When two transactions conflict, one aborts, which is
inefficient. We use in-memory locking to serialize trans-
actions that are likely to conflict. For example, when
Orca makes an FSS call to access an inode, it sends
the request to the storage host that is likely to be the
Paxos leader for the extent where that inode is stored.
That storage host then acquires an in-memory lock so
that two concurrent calls accessing the same inode will
run one after another. Orca maintains caches that map
key ranges to extent numbers and extent numbers to the
leader’s IP address. Sometimes one of the caches is
wrong, in which case, as a side effect of running the
transaction, the storage host will learn the correct cache
entries, and inform Orca, which will update its cache.
The in-memory lock is used for performance and is not
needed for correctness. The technique of serializing
transactions that are likely to conflict is well known in
the transactional-memory literature [48, 73].

9 Performance

In the introduction we promised customers a convex
combination of 100MB/s of bandwidth and 3000 IOPS
for every terabyte stored. Those numbers are through-
put numbers, and to achieve those numbers the NFS
clients may need to perform operations in parallel. This
section first explains where those throughput numbers
come from, and then discusses FSS latency.

In order to make concrete throughput statements, we
posit a simplified model in which the network band-
width determines performance. The network bottle-
neck turns out to be on the storage hosts. If VNICs on
the NFS clients are the bottleneck, then the customer
can add NFS clients. If the presentation host is the
bottleneck, then additional mount targets can be provi-
sioned. The performance of the NVMe is fast compared
to the several round trips required by Paxos (in contrast
to, e.g., Gaios, which needed to optimize for disk la-
tency instead of network latency because disks were so
slow [11]).

We define performance in terms of the ratio of band-
width to storage capacity. There are four components to
the performance calculation: raw performance, replica-
tion, scheduling, and oversubscription. The raw perfor-
mance is the network bandwidth divided by the disk ca-
pacity, without accounting for replication, erasure cod-
ing, scheduling, or oversubscription.

Replication consumes both bandwidth and storage ca-
pacity. Using 5:2 erasure coding, for each page of data,
half a page is stored in each of five hosts. This means
we can sell only 40% of the raw storage capacity. The
network bandwidth calculation is slightly different for
writes and reads. For writes, each page must be received
by 5 different storage hosts running Paxos. That data is
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erasure-coded by each host then written to disk. Thus,
for writes, replication reduces the raw network band-
width by a factor of 5.

For reads we do a little better. To read a page we col-
lect all five erasure-coded copies, each of which is half
a page and reconstruct the data using two of the copies.
We could probably improve this further by collecting
only two of the copies, but for now our algorithm col-
lects all five copies. So for reads, replication reduces the
bandwidth by a factor of 5/2.

Scheduling further reduces the bandwidth, but has a
negligible effect on storage capacity. Queueing theory
tells us that trying to run a system over about 70% uti-
lization will result in unbounded latencies. We don’t do
quite that well. We find that we can run our system at
about 1/3 of peak theoretical performance without af-
fecting latency. This factor of 3 is our scheduling over-
head.

Since not all the customers are presenting their peak
load at the same time, we can sell the same performance
several times, a practice known as oversubscription. In
our experience, we can oversubscribe performance by
about a factor of 5.

The units of performance simplify from MB /s/TB to
s~!, so 100MB/s/TB is one overwrite per 10000s.

For input-outputs per second (IO/s) we convert band-
width to IOPS by assuming that most IOs are operations
on 32KiB pages, so we provide 300010/s/TB. The
cost of other IOs can be expressed in terms of reads: A
write costs 2.5 reads, a file creation costs 6 reads, an
empty-file deletion costs 8 reads, and a file renaming
costs about 10 reads.

This performance model appears to work well on ev-
ery parallel workload we have seen. To test this model,
we measured how much bandwidth a relatively small
test fleet can provide. (We aren’t allowed to do these
sorts of experiments on the big production fleets.) We
measured on multiple clients, where each client has its
own mount target on its own Orca. This fleet has 41
storage instances each with a 10 Gbit/s VNIC for a to-
tal raw performance of 51.25GB/s. After replication
that’s 10.25 GB/s of salable bandwidth. Dividing by 3
to account for scheduling overhead is 3.4 GB/s. Those
machines provide a total of 200 TB of salable storage,
for a ratio of 17MB/s/TB. According to our model,
with 5-fold oversubscription, this fleet should promise
customers 85 MB /s /TB.

Figure 8 shows measured bandwidth. The variance
was small so we measured only 6 runs at each size. The
measured performance is as follows. When writing into
an empty file, block allocation consumes some time,
and a single client can get about 434 MB/s, whereas
12 clients can get about 2.0 GB/s. When writing into
an existing file, avoiding block allocation overhead, the

|
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Figure 8: Measured bandwidth. The X-axis is the num-
ber of NFS clients. The Y-axis is the cumulative band-
width achieved. The crosses (in black) show measured
performance writing into a preallocated file. The x’s
(in blue) show measured performance including block
allocation. The functions S are the curves fit to a
simple-speedup model, with the corresponding linear-
speedup shown as lines passing through the origin and
the asymptotic speedups shown as horizontal lines. The
number of clients at the intercepts are also shown.

performance is about 536 MB /s and 2.4 GB/s for 1 and
12 clients respectively.

We hypothesized that we could model this data as a
simple-speedup curve [9] (a variant of Amdahl’s law or
of Brent and Graham’s Theorem [5,12,27]). In a simple-
speedup scenario, as we increase the number of clients,
we see a linear speedup which eventually flattens out to
give an asymptotic speedup. The curve is parameterized
by two numbers / and a. The first value, [, is the linear-
speedup slope which applies when the number of clients
C is small where the performance will be /- C. The sec-
ond value, a, is the asymptotic speed, and indicates the
performance for large numbers of clients. The simple
speedup curve,

S1a(C) = 1/(1/IC+1/a),

is simply half the harmonic mean of the linear-speedup
curve [C and the asymptotic speed a.

We fitted of our data to the simple-speedup model and
plotted the resulting curves in Figure 8. The asymptotic
standard error for the curve fit is less than 1.7%. Visu-
ally, the curves fit the data surprisingly well.

We can interpret these curves as follows: When writ-
ing to an empty file (which includes block allocation), a
few clients can each achieve about 0.52 GB/s, and many
clients can achieve a total of 2.98 GB/s. The cutover be-
tween “few” and “many” is about 6 clients for this fleet.
When writing to a preallocated file, a few clients can
each achieve 0.70 GB/s, and many clients can achieve
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a total of 3.31 GB/s, which is close to our estimate
of 3.4GB/s. The intercept of the speedup curve lines
tells us the half-power points, where half the peak ca-
pacity is consumed: 4.7 clients consume half of the
fleet’s allocate-and-write capacity, and 5.8 clients con-
sume half of the write-without-allocation capacity.

Low latency is hard to achieve in a replicated dis-
tributed system. Latency is the elapsed time from an
NFES client’s request to response in an otherwise un-
loaded system. For serial workloads, latency can dom-
inate performance. For example, when running over
NFS, the tar program creates files one at a time, wait-
ing for an acknowledgment that each file exists on sta-
ble storage before creating the next file. After looking at
various benchmarks, we concluded that we should sim-
ply measure tar’s runtime on a well-known tarball such
as the Linux 4.19.2 source code distribution, which is
839 MB and contains 65825 objects. Untarring Linux
onto local NVMe device takes about 10s. The same
NVMe served over NFS finishes in about 2.5 minutes.
FSS finishes in about 10 minutes. Amazon’s EFS, which
replicates across a metropolitan region, finishes in about
an hour. According to this limited experiment, NFS
costs a factor of 15, replication within a datacenter costs
another factor of 4, and synchronous replication over
metropolitan-scale distances costs another factor of 6.
Achieving local-filesystem performance in a replicated
distributed fault-tolerant filesystem appears ... difficult.

10 Related Work

MPSC is a variation of load-link/store-conditional [41],
and seems less susceptible to the ABA problem (in
which the same location is read twice and has the same
value for both reads, tricking the user into thinking that
no transaction has modified the location in the mean-
while) than compare-and-swap [20,21,33]. Version tag-
ging and the ABA problem appeared in [38, p. A-44].

Sinfonia has many similarities to our system. Sin-
fonia minitransactions [1] are similar to MPSC. Sin-
fonia uses uses primary-copy replication [14] and can
suffer from the split-brain problem, where both primary
and replica become active and lose consistency [19]. To
avoid split-brain, Sinfonia remotely turns off power to
failed machines, but that’s just another protocol which
can, e.g., suffer from delayed packets, and doesn’t solve
the problem. We employ Paxos [44], which is a correct
distributed consensus algorithm.

Many filesystems have stored at least some their
metadata in B-trees [8, 22,39, 53, 63, 66, 67] and some
have gone further, storing both metadata and data in a
B-tree or other key-value store [18,40, 64,74,75]. Our
B-tree usage is fairly conventional in this regard, except
that we store many filesystems in a single B-tree.

ZFS and HDFS [30,69,70,72] support multiple block
sizes in one file. Block suballocation and tail merging
filesystems [3,63,66] are special cases of this approach.

Some filesystems avoid using Paxos on every opera-
tion. For example, Ceph [42] uses Paxos to run its mon-
itors, but replicates data asynchronously. Ceph’s crash
consistency can result in replicas that are not consis-
tent with each other. Some systems (e.g., [23, 24, 52])
use other failover schemes that have not been proved
correct. Some filesystems store all metadata in mem-
ory [24,31,36,42,57], resulting in fast metadata access
until the metadata gets too big to fit in RAM. We go to
disk on every operation, resulting in no scaling limits.

11 Conclusion

History: The team started with Frigo and Kuszmaul,
and the first code commit was on 2016-07-04. Paxos
and DASD were implemented by the end of July 2016,
and the B-tree was working by November 2016. San-
dler joined and started Orca implementation on 2016-
08-03. Mazzola Paluska joined on 2016-09-15 and im-
plemented the filesystem schema in the B-tree. The
team grew to about a dozen people in January 2017,
and is about two dozen people in spring 2019. Control-
plane work started in Spring 2017. Limited availability
was launched on 2017-07-01, less than one year after
first commit (but without a control plane — all configu-
ration was done manually). General availability started
2018-01-29. As of Spring 2019, FSS hosts over 10,000
filesystems containing several petabytes of paid cus-
tomer data and is growing at an annualized rate of 8-
to 60-fold per year (there’s some seasonal variation).
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Abstract

Determining whether online users are authorized to access
digital objects is central to preserving privacy. This pa-
per presents the design, implementation, and deployment
of Zanzibar, a global system for storing and evaluating ac-
cess control lists. Zanzibar provides a uniform data model
and configuration language for expressing a wide range of
access control policies from hundreds of client services at
Google, including Calendar, Cloud, Drive, Maps, Photos,
and YouTube. Its authorization decisions respect causal or-
dering of user actions and thus provide external consistency
amid changes to access control lists and object contents.
Zanzibar scales to trillions of access control lists and millions
of authorization requests per second to support services used
by billions of people. It has maintained 95th-percentile la-
tency of less than 10 milliseconds and availability of greater
than 99.999% over 3 years of production use.

1 Introduction

Many online interactions require authorization checks to
confirm that a user has permission to carry out an operation
on a digital object. For example, web-based photo storage
services typically allow photo owners to share some photos
with friends while keeping other photos private. Such a ser-
vice must check whether a photo has been shared with a user
before allowing that user to view the photo. Robust autho-
rization checks are central to preserving online privacy.

This paper presents Zanzibar, a system for storing per-
missions and performing authorization checks based on the
stored permissions. It is used by a wide array of services
offered by Google, including Calendar, Cloud, Drive, Maps,
Photos, and YouTube. Several of these services manage bil-
lions of objects on behalf of more than a billion users.

A unified authorization system offers important advan-
tages over maintaining separate access control mechanisms
for individual applications. First, it helps establish consistent

*Work done while at Google.

semantics and user experience across applications. Second,
it makes it easier for applications to interoperate, for exam-
ple, to coordinate access control when an object from one ap-
plication embeds an object from another application. Third,
useful common infrastructure can be built on top of a unified
access control system, in particular, a search index that re-
spects access control and works across applications. Finally,
as we show below, authorization poses unique challenges in-
volving data consistency and scalability. It saves engineering
resources to tackle them once across applications.

We have the following goals for the Zanzibar system:

* Correctness: It must ensure consistency of access con-
trol decisions to respect user intentions.

e Flexibility: It must support a rich set of access control
policies as required by both consumer and enterprise
applications.

* Low latency: It must respond quickly because autho-
rization checks are often in the critical path of user in-
teractions. Low latency at the tail is particularly impor-
tant for serving search results, which often require tens
to hundreds of checks.

* High availability: It must reliably respond to requests
because, in the absence of explicit authorizations, client
services would be forced to deny their users access.

* Large scale: It needs to protect billions of objects
shared by billions of users. It must be deployed around
the globe to be near its clients and their end users.

Zanzibar achieves these goals through a combination of
notable features. To provide flexibility, Zanzibar pairs a sim-
ple data model with a powerful configuration language. The
language allows clients to define arbitrary relations between
users and objects, such as owner, editor, commenter, and
viewer. It includes set-algebraic operators such as inter-
section and union for specifying potentially complex access
control policies in terms of those user-object relations. For
example, an application can specify that users granted edit-
ing rights on a document are also allowed to comment on the
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document, but not all commenters are given editing rights.

At runtime, Zanzibar allows clients to create, modify, and
evaluate access control lists (ACLs) through a remote proce-
dure call (RPC) interface. A simple ACL takes the form of
“user U has relation R to object O”. More complex ACLs
take the form of “set of users S has relation R to object O”,
where S is itself specified in terms of another object-relation
pair. ACLs can thus refer to other ACLs, for example to
specify that the set of users who can comment on a video
consists of the users who have been granted viewing rights
on that specific video along with those with viewing permis-
sions on the video channel.

Group memberships are an important class of ACL where
the object is a group and the relation is semantically equiv-
alent to member. Groups can contain other groups, which
illustrates one of the challenges facing Zanzibar, namely that
evaluating whether a user belongs to a group can entail fol-
lowing a long chain of nested group memberships.

Authorization checks take the form of “does user U have
relation R to object O?” and are evaluated by a collection of
distributed servers. When a check request arrives to Zanz-
ibar, the work to evaluate the check may fan out to multiple
servers, for example when a group contains both individual
members and other groups. Each of those servers may in turn
contact other servers, for example to recursively traverse a
hierarchy of group memberships.

Zanzibar operates at a global scale along multiple dimen-
sions. It stores more than two trillion ACLs and performs
millions of authorization checks per second. The ACL data
does not lend itself to geographic partitioning because au-
thorization checks for any object can come from anywhere
in the world. Therefore, Zanzibar replicates all ACL data in
tens of geographically distributed data centers and distributes
load across thousands of servers around the world.

Zanzibar supports global consistency of access control de-
cisions through two interrelated features. One, it respects the
order in which ACL changes are committed to the underlying
data store. Two, it can ensure that authorization checks are
based on ACL data no older than a client-specified change.
Thus, for example, a client can remove a user from a group
and be assured that subsequent membership checks reflect
that removal. Zanzibar provides these ordering properties by
storing ACLs in a globally distributed database system with
external consistency guarantees [[15}[18]].

Zanzibar employs an array of techniques to achieve low
latency and high availability in this globally distributed en-
vironment. Its consistency protocol allows the vast majority
of requests to be served with locally replicated data, with-
out requiring cross-region round trips. Zanzibar stores its
data in normalized forms for consistency. It handles hot
spots on normalized data by caching final and intermediate
results, and by deduplicating simultaneous requests. It also
applies techniques such as hedging requests and optimizing
computations on deeply nested sets with limited denormal-

ization. Zanzibar responds to more than 95% of authoriza-
tion checks within 10 milliseconds and has maintained more
than 99.999% availability for the last 3 years.

The main contributions of this paper lie in conveying the
engineering challenges in building and deploying a consis-
tent, world-scale authorization system. While most elements
of Zanzibar’s design have their roots in previous research,
this paper provides a record of the features and techniques
Zanzibar brings together to satisfy its stringent requirements
for correctness, flexibility, latency, availability, and scalabil-
ity. The paper also highlights lessons learned from operating
Zanzibar in service of a diverse set of demanding clients.

2 Model, Language, and API

This section describes Zanzibar’s data model, configuration
language, and application programming interface (API).

2.1 Relation Tuples

In Zanzibar, ACLs are collections of object-user or object-
object relations represented as relation tuples. Groups are
simply ACLs with membership semantics. Relation tuples
have efficient binary encodings, but in this paper we repre-
sent them using a convenient text notation:

tuple) ::= (object)‘# (relation)‘@ {user)
object) ::= (namespace):’{object_id)

user) = (user_id) | (userset)

(
(
(
(userset) ::= (object)‘#’ (relation)

where (namespace) and (relation) are predefined in client
configurations (§2.3)), (object id) is a string, and (user_id)
is an integer. The primary keys required to identify a relation
tuple are (namespace), {(object_id), (relation), and (user).
One feature worth noting is that a (userser) allows ACLs to
refer to groups and thus supports representing nested group
membership.

Table[T|shows some example tuples and corresponding se-
mantics. While some relations (e.g. viewer) define access
control directly, others (e.g. parent, pointing to a folder)
only define abstract relations between objects. These ab-
stract relations may indirectly affect access control given
userset rewrite rules specified in namespace configs (§2.3.1).

Defining our data model around tuples, instead of per-
object ACLs, allows us to unify the concepts of ACLs and
groups and to support efficient reads and incremental up-
dates, as we will see in §2.4]

2.2 Consistency Model

ACL checks must respect the order in which users modify
ACLs and object contents to avoid unexpected sharing be-
haviors. Specifically, our clients care about preventing the
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Example Tuple in Text Notation

Semantics

doc:readme#owner@10
group:eng#member@11
doc:readme#viewer@group: eng#member

doc:readme#parent@folder:A#. ..

User 10 is an owner of doc: readme
User 11 is a member of group: eng
Members of group: eng are viewers of doc: readme

doc:readme is in folder:A

Table 1: Example relation tuples. “#...” represents a relation that does not affect the semantics of the tuple.

“new enemy”” problem, which can arise when we fail to re-
spect the ordering between ACL updates or when we apply
old ACLs to new content. Consider these two examples:

Example A: Neglecting ACL update order

1. Alice removes Bob from the ACL of a folder;

2. Alice then asks Charlie to move new documents to
the folder, where document ACLs inherit from folder
ACLs;

3. Bob should not be able to see the new documents,
but may do so if the ACL check neglects the ordering
between the two ACL changes.

Example B: Misapplying old ACL to new content

1. Alice removes Bob from the ACL of a document;

2. Alice then asks Charlie to add new contents to the
document;

3. Bob should not be able to see the new contents, but
may do so if the ACL check is evaluated with a stale
ACL from before Bob’s removal.

Preventing the “new enemy” problem requires Zanzibar to
understand and respect the causal ordering between ACL or
content updates, including updates on different ACLs or ob-
jects and those coordinated via channels invisible to Zanz-
ibar. Hence Zanzibar must provide two key consistency
properties: external consistency [18|] and snapshot reads
with bounded staleness.

External consistency allows Zanzibar to assign a times-
tamp to each ACL or content update, such that two causally
related updates x < y will be assigned timestamps that reflect
the causal order: T, < T;. With causally meaningful times-
tamps, a snapshot read of the ACL database at timestamp
T, which observes all updates with timestamps < T', will re-
spect ordering between ACL updates. That is, if the read
observes an update x, it will observe all updates that happen
causally before x.

Furthermore, to avoid applying old ACLs to new contents,
the ACL check evaluation snapshot must not be staler than
the causal timestamp assigned to the content update. Given a
content update at timestamp 7, a snapshot read at timestamp

> T, ensures that all ACL updates that happen causally be-
fore the content update will be observed by the ACL check.

To provide external consistency and snapshot reads with
bounded staleness, we store ACLs in the Spanner global
database system [15]. Spanner’s TrueTime mechanism as-
signs each ACL write a microsecond-resolution timestamp,
such that the timestamps of writes reflect the causal ordering
between writes, and thereby provide external consistency.
We evaluate each ACL check at a single snapshot timestamp
across multiple database reads, so that all writes with times-
tamps up to the check snapshot, and only those writes, are
visible to the ACL check.

To avoid evaluating checks for new contents using stale
ACLs, one could try to always evaluate at the latest snapshot
such that the check result reflects all ACL writes up to the
check call. However, such evaluation would require global
data synchronization with high-latency round trips and lim-
ited availability. Instead, we design the following protocol to
allow most checks to be evaluated on already replicated data
with cooperation from Zanzibar clients:

1. A Zanzibar client requests an opaque consistency token
called a zookie for each content version, via a content-
change ACL check (§2.4.4) when the content modifi-
cation is about to be saved. Zanzibar encodes a current
global timestamp in the zookie and ensures that all prior
ACL writes have lower timestamps. The client stores
the zookie with the content change in an atomic write to
the client storage. Note that the content-change check
does not need to be evaluated in the same transaction as
the application content modification, but only has to be
triggered when the user modifies the contents.

2. The client sends this zookie in subsequent ACL check
requests to ensure that the check snapshot is at least as
fresh as the timestamp for the content version.

External consistency and snapshot reads with staleness
bounded by zookie prevent the “new enemy” problem. In
Example A, ACL updates A1 and A2 will be assigned times-
tamps Ty < Ty, respectively. Bob will not be able to see
the new documents added by Charlie: if a check is evalu-
ated at T < Ty, the document ACLs will not include the
folder ACL; if a check is evaluated at T > Typ > Ty, the
check will observe update A1, which removed Bob from the
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folder ACL. In Example B, Bob will not see the new contents
added to the document. For Bob to see the new contents, the
check must be evaluated with a zookie > Tp», the timestamp
assigned to the content update. Because Tpy > Tp1, such a
check will also observe the ACL update B1, which removed
Bob from the ACL.

The zookie protocol is a key feature of Zanzibar’s consis-
tency model. It ensures that Zanzibar respects causal order-
ing between ACL and content updates, but otherwise grants
Zanzibar freedom to choose evaluation timestamps so as to
meet its latency and availability goals. The freedom arises
from the protocol’s at-least-as-fresh semantics, which allow
Zanzibar to choose any timestamp fresher than the one en-
coded in a zookie. Such freedom in turn allows Zanzibar to
serve most checks at a default staleness with already repli-
cated data (§3.2.T) and to quantize evaluation timestamps to

avoid hot spots (§3.2.5).
2.3 Namespace Configuration

Before clients can store relation tuples in Zanzibar, they
must configure their namespaces. A namespace configura-
tion specifies its relations as well as its storage parameters.
Each relation has a name, which is a client-defined string
such as viewer or editor, and a relation config. Storage pa-
rameters include sharding settings and an encoding for object
IDs that helps Zanzibar optimize storage of integer, string,
and other object ID formats.

2.3.1 Relation Configs and Userset Rewrites

While relation tuples reflect relationships between objects
and users, they do not completely define the effective ACLs.
For example, some clients specify that users with editor
permissions on each object should have viewer permission
on the same object. While such relationships between rela-
tions can be represented by a relation tuple per object, storing
a tuple for each object in a namespace would be wasteful and
make it hard to make modifications across all objects. In-
stead, we let clients define object-agnostic relationships via
userset rewrite rules in relation configs. Figure [I] demon-
strates a simple namespace configuration with concentric re-
lations, where viewer contains editor, and editor con-
tains owner.

Userset rewrite rules are defined per relation in a names-
pace. Each rule specifies a function that takes an object ID as
input and outputs a userset expression tree. Each leaf node
of the tree can be any of the following:

e _this: Returns all users from stored relation tuples for
the (objecti#relation) pair, including indirect ACLs ref-
erenced by usersets from the tuples. This is the default
behavior when no rewrite rule is specified.

* computed userset: Computes, for the input object,
a new userset. For example, this allows the userset ex-
pression for a viewer relation to refer to the editor
userset on the same object, thus offering an ACL inher-

name: "doc"
relation { name: "owner" }

relation {
name: "editor"
userset_rewrite {
union {
child { _this {} }
child { computed_userset { relation: "owner" } }

} 1}

relation {
name: "viewer"
userset_rewrite {
union {
child { _this {} }
child { computed_userset { relation: "editor" } }
child { tuple_to_userset {
tupleset { relation: "parent" }
computed_userset {
object: $TUPLE_USERSET_OBJECT # parent folder
relation: "viewer"
}r}
}r}

Figure 1: Simple namespace configuration with concentric
relations on documents. All owners are editors, and all ed-
itors are viewers. Further, viewers of the parent folder are
also viewers of the document.

itance capability between relations.

* tuple to userset: Computes a tupleset (§2.4.1)
from the input object, fetches relation tuples matching
the tupleset, and computes a userset from every fetched
relation tuple. This flexible primitive allows our clients
to express complex policies such as “look up the parent
folder of the document and inherit its viewers”.

A userset expression can also be composed of multiple
sub-expressions, combined by operations such as union, in-
tersection, and exclusion.

24 API

In addition to supporting ACL checks, Zanzibar also pro-
vides APIs for clients to read and write relation tuples, watch
tuple updates, and inspect the effective ACLs.

A concept used throughout these API methods is that of
a zookie. A zookie is an opaque byte sequence encoding a
globally meaningful timestamp that reflects an ACL write, a
client content version, or a read snapshot. Zookies in ACL
read and check requests specify staleness bounds for snap-
shot reads, thus providing one of Zanzibar’s core consistency
properties. We choose to use an opaque cookie instead of the
actual timestamp to discourage our clients from choosing ar-
bitrary timestamps and to allow future extensions.
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2.4.1 Read

Our clients read relation tuples to display ACLs or group
membership to users, or to prepare for a subsequent write.
A read request specifies one or multiple fuplesets and an op-
tional zookie.

Each tupleset specifies keys of a set of relation tuples. The
set can include a single tuple key, or all tuples with a given
object ID or userset in a namespace, optionally constrained
by a relation name. With the tuplesets, clients can look up
a specific membership entry, read all entries in an ACL or
group, or look up all groups with a given user as a direct
member. All tuplesets in a read request are processed at a
single snapshot.

With the zookie, clients can request a read snapshot no
earlier than a previous write if the zookie from the write re-
sponse is given in the read request, or at the same snapshot as
a previous read if the zookie from the earlier read response
is given in the subsequent request. If the request doesn’t
contain a zookie, Zanzibar will choose a reasonably recent
snapshot, possibly offering a lower-latency response than if
a zookie were provided.

Read results only depend on contents of relation tuples and
do not reflect userset rewrite rules. For example, even if the
viewer userset always includes the owner userset, reading
tuples with the viewer relation will not return tuples with
the owner relation. Clients that need to understand the ef-
fective userset can use the Expand API (§2.4.5).

2.4.2 Write

Clients may modify a single relation tuple to add or remove
an ACL. They may also modify all tuples related to an object
via a read-modify-write process with optimistic concurrency
control [21] that uses a read RPC followed by a write RPC:

1. Read all relation tuples of an object, including a per-
object “lock” tuple.

2. Generate the tuples to write or delete. Send the writes,
along with a touch on the lock tuple, to Zanzibar, with
the condition that the writes will be committed only if
the lock tuple has not been modified since the read.

3. If the write condition is not met, go back to step 1.

The lock tuple is just a regular relation tuple used by
clients to detect write races.

2.4.3 Watch

Some clients maintain secondary indices of relation tuples
in Zanzibar. They can do so with our Watch API. A watch
request specifies one or more namespaces and a zookie rep-
resenting the time to start watching. A watch response con-
tains all tuple modification events in ascending timestamp
order, from the requested start timestamp to a timestamp en-
coded in a heartbeat zookie included in the watch response.
The client can use the heartbeat zookie to resume watching
where the previous watch response left off.

244 Check

A check request specifies a userset, represented by
(objectitrelation), a putative user, often represented by an au-
thentication token, and a zookie corresponding to the desired
object version. Like reads, a check is always evaluated at a
consistent snapshot no earlier than the given zookie.

To authorize application content modifications, our clients
send a special type of check request, a content-change check.
A content-change check request does not carry a zookie and
is evaluated at the latest snapshot. If a content change is
authorized, the check response includes a zookie for clients
to store along with object contents and use for subsequent
checks of the content version. The zookie encodes the evalu-
ation snapshot and captures any possible causality from ACL
changes to content changes, because the zookie’s timestamp
will be greater than that of the ACL updates that protect the

new content (§2.2)).
2.4.5 Expand

The Expand API returns the effective userset given an
(objectitrelation) pair and an optional zookie. Unlike the
Read API, Expand follows indirect references expressed
through userset rewrite rules. The result is represented by
a userset tree whose leaf nodes are user IDs or usersets
pointing to other (objecti#relation) pairs, and intermediate
nodes represent union, intersection, or exclusion operators.
Expand is crucial for our clients to reason about the com-
plete set of users and groups that have access to their ob-
jects, which allows them to build efficient search indices for
access-controlled content.

3 Architecture and Implementation

Figure [2] shows the architecture of the Zanzibar system.
aclservers are the main server type. They are organized
in clusters and respond to Check, Read, Expand, and Write
requests. Requests arrive at any server in a cluster and that
server fans out the work to other servers in the cluster as
necessary. Those servers may in turn contact other servers to
compute intermediate results. The initial server gathers the
final result and returns it to the client.

Zanzibar stores ACLs and their metadata in Spanner
databases. There is one database to store relation tuples for
each client namespace, one database to hold all namespace
configurations, and one changelog database shared across all
namespaces. aclservers read and write those databases in
the course of responding to client requests.

watchservers are a specialized server type that respond
to Watch requests. They tail the changelog and serve a
stream of namespace changes to clients in near real time.

Zanzibar periodically runs a data processing pipeline to
perform a variety of offline functions across all Zanzibar data
in Spanner. One such function is to produce dumps of the re-
lation tuples in each namespace at a known snapshot times-
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Figure 2: Zanzibar architecture. Arrows indicate the direction of data flow.

tamp. Another is to garbage-collect tuple versions older than
a threshold configured per namespace.

Leopard is an indexing system used to optimize operations
on large and deeply nested sets. It reads periodic snapshots
of ACL data and watches for changes between snapshots. It
performs transformations on that data, such as denormaliza-
tion, and responds to requests from aclservers.

The rest of this section presents the implementation of
these architectural elements in more detail.

3.1 Storage
3.1.1 Relation Tuple Storage

We store relation tuples of each namespace in a separate
database, where each row is identified by primary key (shard
ID, object ID, relation, user, commit timestamp). Multi-
ple tuple versions are stored on different rows, so that we
can evaluate checks and reads at any timestamp within the
garbage collection window. The ordering of primary keys
allows us to look up all relation tuples for a given object ID
or (object ID, relation) pair.

Our clients configure sharding of a namespace according
to its data pattern. Usually the shard ID is determined solely
by the object ID. In some cases, for example, when a names-
pace stores groups with very large numbers of members, the
shard ID is computed from both object ID and user.

3.1.2 Changelog

Zanzibar also maintains a changelog database that stores a
history of tuple updates for the Watch APIL. The primary
keys are (changelog shard ID, timestamp, unique update ID),
where a changelog shard is randomly selected for each write.

Every Zanzibar write is committed to both the tuple stor-

age and the changelog shard in a single transaction. We des-
ignate the Spanner server hosting the changelog shard as the
transaction coordinator to minimize blocking of changelog
reads on pending transactions.

3.1.3 Namespace Config Storage

Namespace configs are stored in a database with two ta-
bles. One table contains the configs and is keyed by names-
pace IDs. The other is a changelog of config updates and is
keyed by commit timestamps. This structure allows a Zanz-
ibar server to load all configs upon startup and monitor the
changelog to refresh configs continuously.

3.14 Replication

To reduce latency, Zanzibar data is replicated to be close to
our clients. Replicas exist in dozens of locations around the
world, with multiple replicas per region. The 5 voting repli-
cas are in eastern and central United States, in 3 different
metropolitan areas to isolate failures but within 25 millisec-
onds of each other so that Paxos transactions commit quickly.

3.2 Serving

3.2.1 Evaluation Timestamp

As noted in §2.4] clients can provide zookies to ensure a
minimum snapshot timestamp for request evaluation. When
a zookie is not provided, the server uses a default staleness
chosen to ensure that all transactions are evaluated at a times-
tamp that is as recent as possible without impacting latency.

On each read request it makes to Spanner, Zanzibar re-
ceives a hint about whether or not the data at that timestamp
required an out-of-zone read and thus incurred additional la-
tency. Each server tracks the frequency of such out-of-zone
reads for data at a default staleness as well as for fresher
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and staler data, and uses these frequencies to compute a bi-
nomial proportion confidence interval of the probability that
any given piece of data is available locally at each staleness.

Upon collecting enough data, the server checks to see if
each staleness value has a sufficiently low probability of in-
curring an out-of-zone read, and thus will be low-latency. If
s0, it updates the default staleness bound to the lowest “safe”
value. If no known staleness values are safe, we use a two-
proportion z-test to see if increasing the default will be a sta-
tistically significant amount safer. In that case, we increase
the default value in the hopes of improving latency. This
default staleness mechanism is purely a performance opti-
mization. It does not violate consistency semantics because
Zanzibar always respects zookies when provided.

3.2.2 Config Consistency

Because changes to namespace configs can change the re-
sults of ACL evaluations, and therefore their correctness,
Zanzibar chooses a single snapshot timestamp for con-
fig metadata when evaluating each client request. All
aclservers in a cluster use that same timestamp for the
same request, including for any subrequests that fan out from
the original client request.

Each server independently loads namespace configs from
storage continuously as they change (§3.1.3). Therefore,
each server in a cluster may have access to a different range
of config timestamps due to restarts or network latency.
Zanzibar must pick a timestamp that is available across all
of them. To facilitate this, a monitoring job tracks the times-
tamp range available to every server and aggregates them,
reporting a globally available range to every other server.
On each incoming request the server picks a time from this
range, ensuring that all servers can continue serving even if
they are no longer able to read from the config storage.

3.2.3 Check Evaluation

Zanzibar evaluates ACL checks by converting check requests
to boolean expressions. In a simple case, when there are
no userset rewrite rules, checking a user U against a userset
(objectitrelation) can be expressed as

CHECK (U, (objecttrelation)) =
3 tuple (objectitrelation@U )
V 3 tuple (objectirelation@U’"), where
U’ = (object #relation’) s.t. CHECK(U,U").

Finding a valid U’ = (object'#relation’) involves evaluat-
ing membership on all indirect ACLs or groups, recursively.
This kind of “pointer chasing” works well for most types of
ACLs and groups, but can be expensive when indirect ACLs
or groups are deep or wide. §3.2.4] explains how we han-
dle this problem. Userset rewrite rules are also translated to
boolean expressions as part of check evaluation.

To minimize check latency, we evaluate all leaf nodes of
the boolean expression tree concurrently. When the outcome

of one node determines the result of a subtree, evaluation of
other nodes in the subtree is cancelled.

Evaluation of leaf nodes usually involves reading relation
tuples from databases. We apply a pooling mechanism to
group reads for the same ACL check to minimize the number
of read RPCs to Spanner.

3.24 Leopard Indexing System

Recursive pointer chasing during check evaluation has diffi-
culty maintaining low latency with groups that are deeply
nested or have a large number of child groups. For se-
lected namespaces that exhibit such structure, Zanzibar han-
dles checks using Leopard, a specialized index that supports
efficient set computation.

A Leopard index represents a collection of named sets us-
ing (T,s,e) tuples, where T is an enum representing the set
type and s and e are 64-bit integers representing the set ID
and the element ID, respectively. A query evaluates an ex-
pression of union, intersection, or exclusion of named sets
and returns the result set ordered by the element ID up to a
specified number of results.

To index and evaluate group membership, Zanzibar repre-
sents group membership with two set types, GROUP2GROUP
and MEMBER2GROUP, which we show here as functions
mapping from a set ID to element IDs:

* GROUP2GROUP(s) — {e}, where s represents an ances-
tor group and e represents a descendent group that is
directly or indirectly a sub-group of the ancestor group.

* MEMBER2GROUP(s) — {e}, where s represents an in-
dividual user and e represents a parent group in which
the user is a direct member.

To evaluate whether user U is a member of group G, we
check whether

(MEMBER2GROUP(U) N GROUP2GROUP(G)) # 0

Group membership can be considered as a reachability
problem in a graph, where nodes represent groups and users
and edges represent direct membership. Flattening group-to-
group paths allows reachability to be efficently evaluated by
Leopard, though other types of denormalization can also be
applied as data patterns demand.

The Leopard system consists of three discrete parts: a
serving system capable of consistent and low-latency oper-
ations across sets; an offline, periodic index building system;
and an online real-time layer capable of continuously updat-
ing the serving system as tuple changes occur.

Index tuples are stored as ordered lists of integers in
a structure such as a skip list, thus allowing for efficient
union and intersections among sets. For example, evaluat-
ing the intersection between two sets, A and B, requires only
O(min(|A[,|B])) skip-list seeks. The index is sharded by el-
ement IDs and can be distributed across multiple servers.
Shards are usually served entirely from memory, but they
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can also be served from a mix of hot and cold data spread
between memory and remote solid-state devices.

The offline index builder generates index shards from a
snapshot of Zanzibar relation tuples and configs, and repli-
cates the shards globally. It respects userset rewrite rules and
recursively expands edges in an ACL graph to form Leop-
ard index tuples. The Leopard servers continously watch for
new shards and swap old shards with new ones when they
become available.

The Leopard system described thus far is able to effi-
ciently evaluate deeply and widely nested group member-
ship, but cannot do so at a fresh and consistent snapshot
due to offline index generation and shard swapping. To sup-
port consistent ACL evaluation, Leopard servers maintain an
incremental layer that indexes all updates since the offline
snapshot, where each update is represented by a (T, s, e,t,d)
tuple, where ¢ is the timestamp of the update and d is a dele-
tion marker. Updates with timestamps less than or equal to
the query timestamp are merged on top of the offline index
during query processing.

To maintain the incremental layer, the Leopard incremen-
tal indexer calls Zanzibar’s Watch API to receive a tem-
porally ordered stream of Zanzibar tuple modifications and
transforms the updates into a temporally ordered stream of
Leopard tuple additions, updates, and deletions. Generat-
ing updates for the GROUP2GROUP tuples requires the incre-
mental indexer to maintain group-to-group membership for
denormalizing the effects of a relation tuple update to poten-
tially multiple index updates.

In practice, a single Zanzibar tuple addition or deletion
may yield potentially tens of thousands of discrete Leop-
ard tuple events. Each Leopard serving instance receives the
complete stream of these Zanzibar tuple changes through the
Watch API. The Leopard serving system is designed to con-
tinuously ingest this stream and update its various posting
lists with minimal impact to query serving.

3.2.5 Handling Hot Spots

The workload of ACL reads and checks is often bursty and
subject to hot spots. For example, answering a search query
requires conducting ACL checks for all candidate results,
whose ACLs often share common groups or indirect ACLs.
To facilitate consistency, Zanzibar avoids storage denormal-
ization and relies only on normalized data (except for the
cases described in §3.2.4). With normalized data, hot spots
on common ACLs (e.g., popular groups) may overload the
underlying database servers. We found the handling of hot
spots to be the most critical frontier in our pursuit of low
latency and high availability.

Zanzibar servers in each cluster form a distributed cache
for both reads and check evaluations, including intermediate
check results evaluated during pointer chasing. Cache en-
tries are distributed across Zanzibar servers with consistent
hashing [20]. To process checks or reads, we fan out re-

quests to the corresponding Zanzibar servers via an internal
RPC interface. To minimize the number of internal RPCs,
for most namespaces we compute the forwarding key from
the object ID, since processing a check on (objecti#relation)
often involves indirect ACL checks on other relations of the
same object and reading relation tuples of the object. These
checks and reads can be processed by the same server since
they share the same forwarding key with the parent check
request. To handle hot forwarding keys, we cache results at
both the caller and the callee of internal RPCs, effectively
forming cache trees. We also use Slicer [12] to help dis-
tribute hot keys to multiple servers.

We avoid reusing results evaluated from a different snap-
shot by encoding snapshot timestamps in cache keys. We
choose evaluation timestamps rounded up to a coarse granu-
larity, such as one or ten seconds, while respecting staleness
constraints from request zookies. This timestamp quantiza-
tion allows the vast majority of recent checks and reads to be
evaluated at the same timestamps and to share cache results,
despite having microsecond-resolution timestamps in cache
keys. It is worth noting that rounding up timestamps does
not affect Zanzibar’s consistency properties, since Spanner
ensures that a snapshot read at timestamp 7" will observe all
writes up to T—this holds even if 7 is in the future, in which
case the read will wait until TrueTime has moved past 7.

To handle the “cache stampede” problem [3], where con-
current requests create flash hot spots before the cache is
populated with results, we maintain a lock table on each
server to track outstanding reads and checks. Among re-
quests sharing the same cache key only one request will be-
gin processing; the rest block until the cache is populated.

We can effectively handle the vast majority of hot spots
with distributed caches and lock tables. Over time we made
the following two improvements.

First, direct membership checks of a user for an object and
relation (i.e. (object#relation@ user)) are usually handled by
a single relation tuple lookup. However, occasionally a very
popular object invites many concurrent checks for different
users, causing a hot spot on the storage server hosting rela-
tion tuples for the object. To avoid these hot spots, we read
and cache all relation tuples of (objectirelation) for the hot
object, trading read bandwidth for cacheability. We dynam-
ically detect hot objects to apply this method to by tracking
the number of outstanding reads on each object.

Second, indirect ACL checks are frequently cancelled
when the result of the parent ACL check is already deter-
mined. This leaves the cache key unpopulated. While ea-
ger cancellation reduces resource usage significantly, it neg-
atively affects latency of concurrent requests that are blocked
by the lock table entry. To prevent this latency impact, we
delay eager cancellation when there are waiters on the corre-
sponding lock table entry.
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3.2.6 Performance Isolation

Performance isolation is indispensable for shared services
targeting low latency and high availability. If Zanzibar or
one of its clients occasionally fails to provision enough re-
sources to handle an unexpected usage pattern, the following
isolation mechanisms ensure that performance problems are
isolated to the problematic use case and do not adversely af-
fect other clients.

First, to ensure proper allocation of CPU capacity, Zanz-
ibar measures the cost of each RPC in terms of generic
cpu-seconds, a hardware-agnostic metric. Each client has
a global limit on maximum CPU usage per second; its RPCs
will be throttled if it exceeds the limit and there is no spare
capacity in the overall system.

Each Zanzibar server also limits the total number of out-
standing RPCs to control its memory usage. Likewise it lim-
its the number of oustanding RPCs per client.

Zanzibar further limits the maximum number of concur-
rent reads per (object, client) and per client on each Spanner
server. This ensures that no single object or client can mo-
nopolize a Spanner server.

Finally, we use different lock table keys for requests from
different clients to prevent any throttling that Spanner applies
to one client from affecting other clients.

3.2.7 Tail Latency Mitigation

Zanzibar’s distributed processing requires measures to ac-
commodate slow tasks. For calls to Spanner and to the Leop-
ard index we rely on request hedging [16] (i.e. we send
the same request to multiple servers, use whichever response
comes back first, and cancel the other requests). To reduce
round-trip times, we try to place at least two replicas of
these backend services in every geographical region where
we have Zanzibar servers. To avoid unnecessarily multiply-
ing load, we first send one request and defer sending hedged
requests until the initial request is known to be slow.

To determine the appropriate hedging delay threshold,
each server maintains a delay estimator that dynamically
computes an Nth percentile latency based on recent mea-
surements. This mechanism allows us to limit the additional
traffic incurred by hedging to a small fraction of total traffic.

Effective hedging requires the requests to have similar
costs. In the case of Zanzibar’s authorization checks, some
checks are inherently more time-consuming than others be-
cause they require more work. Hedging check requests
would result in duplicating the most expensive workloads
and, ironically, worsening latency. Therefore we do not
hedge requests between Zanzibar servers, but rely on the pre-
viously discussed sharding among multiple replicas and on
monitoring mechanisms to detect and avoid slow servers.
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Figure 3: Rate of Check Safe and Check Recent requests
over a 7-day period in December 2018.

4 Experience

Zanzibar has been in production use for more than 5 years.
Throughout that time, the number of clients using Zanzibar
and the load they place on Zanzibar have grown steadily.
This section discusses our experience operating Zanzibar as
a globally distributed authorization system.

Zanzibar manages more than 1,500 namespaces defined
by hundreds of client applications. The size of a namespace
configuration file serves as a rough measure of the complex-
ity of the access control policy implemented by that names-
pace. These configuration files range from tens of lines to
thousands of lines, with the median near 500 lines.

These namespaces contain more than 2 trillion relation tu-
ples that occupy close to 100 terabytes. The number of tuples
per namespace ranges over many orders of magnitude, from
tens to a trillion, with the median near 15,000. This data is
fully replicated in more than 30 locations around the world
to maintain both proximity to users and high availability.

Zanzibar serves more than 10 million client queries per
second (QPS). Over a sample 7-day period in December
2018, Check requests peak at roughly 4.2M QPS, Read at
8.2M, Expand at 760K, and Write at 25K. Queries that read
data are thus two orders of magnitude more frequent than
those that write data.

Zanzibar distributes this load across more than 10,000
servers organized in several dozen clusters around the world.
The number of servers per cluster ranges from fewer than
100 to more than 1,000, with the median near 500. Clusters
are sized in proportion to load in their geographic regions.

4.1 Requests

We divide requests into two categories according to the re-
quired data freshness, which can have a large impact on la-
tency and availability of the requests. Specifically, Check,
Read, and Expand requests carry zookies to specify lower
bounds on evaluation timestamps. When a zookie timestamp
is higher than that of the most recent data replicated to the
region, the storage reads require cross-region round trips to
the leader replica to retrieve fresher data. As our storage
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Figure 4: Latency of Check Safe responses at different per-
centiles over a 7-day period in December 2018.

is configured with replication heartbeats with 8-second in-
tervals, we divide our requests into two categories: Safe re-
quests have zookies more than 10 seconds old and can be
served within the region most of time, while Recent requests
have zookies less than 10 seconds old and often require inter-
region round trips. We report separate statistics for each.

Figure [3| shows the rate of Check Safe and Check Recent
requests over 7 days. Both exhibit a diurnal cycle. The rate
of Safe requests is about two orders of magnitude larger than
that of Recent requests, which allows Zanzibar to serve the
vast majority of ACL checks locally.

4.2 Latency

Zanzibar’s latency budget is generally a small fraction of the
few hundreds of milliseconds of total response time that its
clients must provide to be viable interactive services. Con-
sider for example a client that performs authorization checks
on multiple documents before it can show the results of a
search on those documents.

We measure latency on the server side using live traffic
because (1) latency is heavily influenced by our caching and
de-duplication mechanisms so that it is only realistically re-
flected by live traffic, and (2) accurately measuring latency
from clients requires well-behaving clients. Provisioning of
client jobs is outside of Zanzibar’s control and sometimes
client jobs are overloaded.

Figure [4 shows the latency of Check Safe responses over
7 days. At the 50th, 95th, 99th, and 99.9th percentiles it
peaks at roughly 3, 11, 20, and 93 msec, respectively. This
performance meets our latency goals for an operation that is
frequently in the critical path of user interactions.

Table [2] summarizes the latency distributions of Check,
Read, Expand, and Write responses over the same 7 days. As
intended, the more frequently used Safe versions of Check,
Read, and Expand are significantly faster than the less fre-
quently used Recent versions. Writes are the least frequently
used of all the APIs, and the slowest because they always
require distributed coordination among Spanner servers.

Latency in milliseconds, u (o)
API 50%ile 95 %ile 99 %ile
Check 0(0.091) 9.46(0.3)  15.0(1.19)
2 | Read 2. 18(0031) 3.71(0.094)  8.03 (3.28)
Expand | 4.27 (0.313) 8.84(0.586) 34.1(4.35)
Check | 2.86(0.087) 60.0(2.1)  76.3(2.59)
£ | Read 2.21(0.054) 40.1(2.03)  86.2(3.84)
Q
S | Expand | 5.79(0.224) 45.6(3.44) 121.0(2.38)
Write | 127.0(3.65) 233.0(23.0) 401.0(133.0)

Table 2: Mean and standard deviation of RPC response la-
tency over a 7-day period in December 2018.

4.3 Availability

We define availability as the fraction of “qualified” RPCs
the service answers successfully within latency thresholds:
5 seconds for a Safe request, and 15 seconds for a Recent re-
quest as leader re-election in Spanner may take up to 10 sec-
onds. For an RPC to be qualified, the request must be well-
formed and have a deadline longer than the latency threshold.
In addition, the client must stay within its resource quota.

For these reasons, we cannot measure availability directly
with live traffic, as our clients sometimes send RPCs with
short deadlines or cancel their in-progress RPCs. Instead,
we sample a small fraction of valid requests from live traffic
and replay them later with our own probers. When replaying
the requests, we set the timeout to be longer than the avail-
ability threshold. We also adjust the request zookie, if one
is specified, so that the relative age of the zookie remains
the same as when the request was received in the live traffic.
Finally, we run 3 probers per cluster and exclude outliers to
eliminate false alarms caused by rare prober failures.

To compute availability, we aggregate success ratios over
90-day windows averaged across clusters. Figure [5] shows
Zanzibar’s availability as measured by these probers. Avail-
ability has remained above 99.999% over the past 3 years of
operation at Google. In other words, for every quarter, Zanz-
ibar has less than 2 minutes of global downtime and fewer
than 13 minutes when the global error ratio exceeds 10%.

4.4 Internals

Zanzibar servers delegate checks and reads to each other
based on consistent hashing, and both the caller and the
callee sides of the delegated operations cache the results to
prevent hot spots (§3.2.5). At peak, Zanzibar handles 22 mil-
lion internal “delegated”” RPCs per second, split about evenly
between reads and checks. In-memory caching handles ap-
proximately 200 million lookups per second at peak, 150
million from checks and 50 million from reads. Caching for
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Figure 5: Zanzibar’s availability over the past three years has
remained above 99.999%.

checks has a 10% hit rate on the delegate’s side, with an ad-
ditional 12% saved by the lock table. Meanwhile, caching
on the delegator’s side has a 2% hit rate with an additional
3% from the lock table. While these hit rates appear low,
they prevent 500K internal RPCs per second from creating
hot spots.

Delegated reads see higher hit rates on the delegate’s
side—24% on the cache and 9% on the lock table—but
the delegator’s cache is hit less than 1% of the time. For
super-hot groups, Zanzibar further optimizes by reading and
caching the full set of members in advance—this happens for
0.1% of groups but further prevents hot spots.

This caching, along with aggressive pooling of read re-
quests, allows Zanzibar to issue only 20 million read RPCs
per second to Spanner. The median of these requests reads
1.5 rows per RPC, but at the 99th percentile they each read
close to 1 thousand rows.

Zanzibar’s Spanner reads take 0.5 msec at the median, and
2 msec at the 95th percentile. We find that 1% of Spanner
reads, or 200K reads per second, benefit from hedging. We
note that Zanzibar uses an instance of Spanner that runs in-
ternally to Google, not an instance of Cloud Spanner [6].

The Leopard index is performing 1.56M QPS at the me-
dian, or 2.22M QPS at the 99th percentile, based on data ag-
gregated over 7 days. Over the same 7 days, Leopard servers
respond in fewer than 150 psec at the median, or under 1
msec at the 99th percentile. Leopard’s incremental layer dur-
ing those 7 days writes roughly 500 index updates per second
at the median, and approximately 1.5K updates per second at
the 99th percentile.

4.5 Lessons Learned

Zanzibar has evolved to meet the varied and heavy demands
of a growing set of clients, including Google Calendar,
Google Cloud, Google Drive, Google Maps, Google Photos,
and YouTube. This section highlights lessons learned from
this experience.

One common theme has been the importance of flexibility
to accommodate differences between clients. For example:

* Access control patterns vary widely: Over time we have
added features to support specific clients. For instance,

we added computed userset to allow inferring an
object’s owner ID from the object ID prefix, which re-
duces space requirements for clients such as Drive and
Photos that manage many private objects. Similarly, we
added tuple to userset to represent object hierar-
chy with only one relation tuple per hop. The bene-
fits are both space reduction and flexibility—it allows
clients such as Cloud both to express ACL inheritance
compactly and to change ACL inheritance rules without
having to update large numbers of tuples. See §2.3.1]

* Freshness requirements are often but not always loose:
Clients often allow unspecified, moderate staleness dur-
ing ACL evaluation, but sometimes require more pre-
cisely specified freshness. We designed our zookie pro-
tocol around this property so that we can serve most
requests from a default, already replicated snapshot,
while allowing clients to bound the staleness when
needed. We also tuned the granularity of our snap-
shot timestamps to match clients’ freshness require-
ments. The resulting coarse timestamp quanta allow
us to perform the majority of authorization checks on
a small number of snapshots, thus greatly reducing the
frequency of database reads. See §3.2.1]

Another theme has been the need to add performance opti-
mizations to support client behaviors observed in production.
For example:

* Request hedging is key to reducing tail latency: Clients
that offer search capabilities to their users, such as
Drive, often issue tens to hundreds of authorization
checks to serve a single set of search results. We in-
troduced hedging of Spanner and Leopard requests to
prevent an occasional slow operation from slowing the
overall user interaction. See

* Hot-spot mitigation is critical for high availability:
Some workloads create hot spots in ACL data that can
overwhelm the underlying database servers. A com-
mon pattern is a burst of ACL checks for an object that
is indirectly referenced by the ACLs for many differ-
ent objects. Specific instances arise from the search
use case mentioned above, where the documents in the
search indirectly share ACLs for a large social or work
group, and Cloud use cases where many objects indi-
rectly share ACLs for the same object high in a hier-
archy. Zanzibar handles most hot spots with general
mechanisms such as its distributed cache and lock ta-
ble, but we have found the need to optimize specific
uses cases. For example, we added cache prefetching
of all relation tuples for a hot object. We also delayed
cancellation of secondary ACL checks when there are
concurrent requests for the same ACL data. See

e Performance isolation is indispensable to protect
against misbehaving clients: Even with hot-spot mit-
igation measures, unexpected and sometimes unin-
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tended client behaviors could still overload our sys-
tem or its underlying infrastructure. Examples include
when clients launch new features that prove unexpect-
edly popular or exercise Zanzibar in unintended ways.
Over time we have added isolation safeguards to ensure
that there are no cascading failures between clients or
between objects of the same client. These safeguards
include fine-grained cost accounting, quotas, and throt-

tling. See

5 Related Work

Zanzibar is a planet-scale distributed ACL storage and eval-
uation system. Many of its authorization concepts have been
explored previously within the domains of access control and
social graphs, and its scaling challenges have been investi-
gated within the field of distributed systems.

Access control is a core part of multi-user operating sys-
tems. Multics [23] supports ACLs on segments and direc-
tories. ACL entries consist of a principal identifier and a
set of permissions bits. In the first edition of UNIX [9],
file flags indicate whether owner and non-owner can read or
write the file. By the 4th edition, the permissions bits had
been expanded to read/write/execute bits for owner, group,
and others. POSIX ACLs [4] add an arbitrary list of users
and groups, each with up to 32 permissions bits. VMS [7, (8]
supports ACL inheritance for files created within a direc-
tory tree. Zanzibar’s data model supports permissions, users,
groups, and inheritance as found in the above systems.

Taos [24} [10] supports compound principals that incor-
porate how an identity has been transformed as it passes
through a distributed system. For example, if user U logged
into workstation W to access file server S, S would see re-
quests authenticated as “W for U” rather than just U. This
would allow one to write an ACL on a user’s e-mail that
would be accessible only to the user, and only if being ac-
cessed via the mail server. Abadi et al. discuss in [[11]
a model of group-based ACLs with support for compound
identities. Their notion of “blessings” are similar to Zanz-
ibar tuples. However, Zanzibar adopts a unified represen-
tation for ACLs and groups using usersets, while they are
separate concepts in [[11].

Role-based access control (RBAC), first proposed in [17],
introduced the notion of roles, which are similar to Zanzibar
relations. Roles can inherit from each other and imply per-
missions. A number of Zanzibar clients have implemented
RBAC policies on top of Zanzibar’s namespace configura-
tion language.

A discussion of ACL stores in 2019 would be remiss with-
out mentioning the Identity and Access Management (IAM)
systems offered commercially by Amazon [1], Google [5],
Microsoft [2], and others. These systems allow customers of
those companies’ cloud products to configure flexible access
controls based on various features such as: assigning users to

roles or groups; domain-specific policy languages; and APIs
that allow the creation and modification of ACLs. What all
of these systems have in common is unified ACL storage and
an RPC-based API, a philosophy also core to Zanzibar’s de-
sign. Google’s Cloud IAM system [5]] is built as a layer on
top of Zanzibar’s ACL storage and evaluation system.

TAO [13]] is a distributed datastore for Facebook’s social
graph. Several Zanzibar clients also use Zanzibar to store
their social graphs. Both Zanzibar and TAO provide au-
thorization checks to clients. Both are deployed as single-
instance services, both operate at a large scale, and both
are optimized for read-only operations. TAO offers eventual
global consistency with asynchronous replication and best-
effort read-after-write consistency with synchronous cache
updates. In contrast, Zanzibar provides external consistency
and snapshot reads with bounded staleness, so that it respects
causal ordering between ACL and content updates and thus
protects against the “new enemy” problem.

Lamport clocks [22]] provide partially ordered vector
timestamps that can be used to determine the order of events.
However, Lamport clocks require explicit participation of
all “processes”, where in Zanzibar’s use cases some of the
“processes” can be external clients or even human users. In
contrast, Zanzibar relies on its underlying database system,
Spanner [15], to offer both external consistency and snapshot
reads with bounded staleness. In particular, Zanzibar builds
on Spanner’s TrueTime abstraction [[15] to provide lineariz-
able commit timestamps encoded as zookies.

At the same time, Zanzibar adds a number of features on
top of those provided by Spanner. For one, the zookie proto-
col does not let clients read or evaluate ACLs at an arbitrary
snapshot. This restriction allows Zanzibar to choose a snap-
shot that facilitates fast ACL evaluation. In addition, Zanz-
ibar provides resilience to database hotspots (e.g. authoriza-
tion checks on a suddenly popular video) and safe pointer
chasing despite potentially deep recursion (e.g. membership
checks on hierarchical groups).

The Chubby distributed lock service [14] offers reliable
storage, linearizes writes, and provides access control, but it
lacks features needed to support Zanzibar’s use cases. In
particular, it does not support high volumes of data, effi-
cient range reads, or reads at a client-specified snapshot with
bounded staleness. Its cache invalidation mechanism also
limits its write throughput.

Finally, ZooKeeper offers a high-performance coordina-
tion service [19] but also lacks features required by Zanz-
ibar. Relative to Chubby, it can handle higher read and write
rates with more relaxed cache consistency. However, it does
not provide external consistency for updates across different
nodes since its linearizability is on a per-node basis. It also
does not provide snapshot reads with bounded staleness.
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6 Conclusion

The Zanzibar authorization system unifies access control
data and logic for Google. Its simple yet flexible data model
and configuration language support a variety of access con-
trol policies from both consumer and enterprise applications.

Zanzibar’s external consistency model is one of its most
salient features. It respects the ordering of user actions, yet
at the same time allows authorization checks to be evaluated
at distributed locations without global synchronization.

Zanzibar employs other key techniques to provide scal-
ability, low latency, and high availability. For example, it
evaluates deeply or widely nested group membership with
Leopard, a specialized index for efficient computation of set
operations with snapshot consistency. As another example, it
combines a distributed cache with a mechanism to dedupli-
cate in-flight requests. It thus mitigates hot spots, a critical
production issue when serving data on top of normalized,
consistent storage. These measures together result in a sys-
tem that scales to trillions of access control rules and millions
of authorization requests per second.
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Abstract

We address the problem of “fail-slow” fault, a fault where
a hardware or software component can still function (does
not fail-stop) but in much lower performance than expected.
To address this, we built IASO, a peer-based, non-intrusive
fail-slow detection framework that has been deployed for
more than 1.5 years across 39,000 nodes in our customer
sites and helped our customers reduce major outages due to
fail-slow incidents. IASO primarily works based on timeout
signals (a negligible overhead of monitoring) and converts
them into a stable and accurate fail-slow metric. IASO can
quickly and accurately isolate a slow node within minutes.
Within a 7-month period, IASO managed to catch 232 fail-
slow incidents in our large deployment field. In this paper,
we have also assembled a large dataset of 232 fail-slow in-
cidents along with our analysis. We found that the fail-slow
annual failure rate in our field is 1.02%.

1 Introduction

Maintaining high availability of distributed storage services
in real deployment fields is challenging due to the various
types of faults that can occur. In the last few years, there
has been an emphasis on “fail-slow” fault mode [28, 32].
This means that a hardware or software component can still
function (does not fail-stop) but in much lower performance
than expected. Such faults have been studied under differ-
ent names such “gray failure” [32], “limping” [24, 37], and
“partial failures” [29]. We chose the term “fail-slow” for
simplicity and reflecting a recent term [28].

The urgency here is that many distributed systems are still
designed based on a binary model of no failure and fail-stop
failures. Recent works shows that many distributed systems
cannot gracefully tolerate fail-slow mode, i.e. the system
cannot isolate and hide a fail-slow component, causing la-
tency spikes or throughput degradation to users [24, 28, 31,
32, 56]. Worse, it has been reported that a fail-slow com-
ponent can cause cascade of performance failures across the
cluster, bringing down services for hours [24, 28]. This calls
for the importance of designing systems that tolerate not just

University of Chicago*

absolute failure of sub-components but can also gracefully
handle the occurrence of performance faults.

In this context, our work in this paper makes the two fol-
lowing contributions:

(1) Design and implementation of a fail-slow mitigation
framework. The first contribution of the paper is IASO, our
peer-based, non-intrusive fail-slow detection framework that
has been deployed for more than 1.5 years across 39,000
nodes in our customer sites. Before the integration with
IAso we had more than 25 full outages (IOPS went to zero)
due to cascading impacts of fail-slow incidents, not to men-
tion many other occurrences of partial slowdowns. Since the
integration with IASO, we had only 2 major outages (false
negative cases) caused by fail slow.

Motivation: 1ASO is motivated by the following reasons.

First, we found that fail-slow faults can be caused by many
root causes. Sole dependence on low-level detection tools
[38, 40, 15, 4] at various levels of the software and hardware
stack might not be sufficient. Thus, we need a fail-slow de-
tection system that works at the service (distributed system)
level. Most existing work focuses on hardware level outlier
detection or software performance bugs but they might not
cover all of the detailed root causes occurring in the field
(§4.2.3).

Second, most existing efforts focus only on detection but
not mitigation. We are only aware of a handful of works that
perform mitigation in real deployments (more in §5). Yet,
our findings suggest that if fail-slow incidents are not quickly
and automatically isolated, it can cascade and directly affect
users for hours or days. For this reason, it is paramount that
deployed systems are equipped with fail-slow mitigation.

Third, although some computing frameworks such as
MapReduce [1, 23] are equipped with fail-slow mitigation
(e.g., via speculative execution [58] or cloning [10]), the tail
tolerance is built in their abstractions (e.g., “jobs”, “tasks”)
and not directly generalizable to many other distributed sys-
tems. Recent works revealed that many other distributed sys-
tems are still not fail-slow tolerant [24, Figure 1][56, Figure
12]. Hence, we need a more general way of addressing fail-
slow faults in many distributed storage services.
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Challenges and solutions: A fail-slow detection frame-
work must be non-intrusive (negligible overhead), stable and
accurate, and not accidentally make wrong decisions (e.g.,
quarantine healthy nodes). To achieve this, we make IASO
peer-based, i.e., a slow service instance should be compared
against its peers of the same service (e.g., the performance of
Cassandra instance should not be compared to ZooKeeper’s).
We also make IASO load aware, i.e., the relative performance
of a service instance must not be improved or worsen just be-
cause the load on the node on which the instance is running
on is different.

To achieve all of these, we created an algorithm (§2.2)
that can work solely based on timeout signals. Our algo-
rithm can convert timeout and successful-response statistics
into a stable and accurate fail-slow detector. Our framework
does not need to monitor every request latency, hence achiev-
ing a neglibible overhead. IASO can quickly and accurately
isolate a slow node within minutes. Within a 7-month pe-
riod, TASO managed to catch 232 fail-slow incidents in our
large deployment field. IASO also automatically quarantined
the slow nodes and restored the clusters back to a healthier
performance. We only encountered 9 confirmed false posi-
tives. Other false positives are because the fail-slowness dis-
appeared when our engineers started diagnosing them (e.g.,
perhaps caused by unknown external conditions).

(2) A dataset and analysis of fail-slow incidents With IASO
integration, we were able to capture many fail-slow incidents
in the field. We have assembled a large dataset of fail-slow
incidents along with our analysis [7]. To the best of our
knowledge, this is the largest dataset of fail-slow cases pub-
licly reported from within a company. Furthermore, existing
accounts of fail-slow accidents are anecdotal [12, 28, 32],
while our contribution includes some quantitative analysis
(e.g., AFR, age correlation).

The dataset: The dataset contains 232 validated cases col-
lected from the deployment of 39,000 nodes throughout a
period of 7 months.! This data pertains to a type of fully
hyperconverged system [9] that we deploy in customer sites.

Findings: Our rich dataset allows us to make some sta-
tistical findings. First, given 232 independent cases across
39,000 nodes over 7 months, we can derive that the annual
failure rate is 1.02% (232 x 12 /7 / 39,000), which is rel-
atively significant compared to rates of other types of faults
(§4.2.1). Second, we uncovered a wide range of root causes
(and the low-level sub-causes), which again accentuates the
need for detection at the service level, not just at the individ-
ual hardware level. Third, we also observed the “infant mor-
tality” pattern where younger machines exhibit more fail-
slow incidents. Fourth, we show that if not mitigated prop-
erly, fail-slow cases can take hours or days to fully resolve,
which again highlights the importance of automatically quar-

!For this publication we only have analyzed the dataset for a 7 month
period in 2017. Data from 2018 is still being perused and cleaned.

antining slow nodes.

The following sections present the design and implemen-
tation of IASO (§2), experimental results (§3), our dataset and
findings (§4), related work and conclusion.

2 IASO

This section presents IASO, our framework for detecting the
presence of an unhealthy node and enabling self healing of
the cluster. We name our system after “Iaso”, the Greek god-
dess of recuperation from illness [8]. IASO is comprised of
three stages:

1. Detection (§2.1-2.2): This step reduces the time to de-
tect fail-slow incidents from hours to minutes while
keeping false positives low.

2. Mitigation (§2.3): This step quarantines the faulty node
and brings the cluster back to operation.

3. Resolution (§2.4): 1ASO automatically pages site relia-
bility engineers (SREs) to identify the failed component
and help support to do breakfix and assimilate the fixed
component back into operation.

When building IASO, we adhere to the following design
principles.

e Non intrusive: We attempt to reach a near 0% overhead,
hence we use raw metrics that the deployed services al-
ready collect (e.g., number of timeouts and successful
responses).

e Peer based: A slow service instance should be com-
pared against its peers of the same service, e.g., the
performance of Cassandra instance should be compared
to other Cassandra instances, not ZooKeeper instances,
as different types of services observe different types of
workload. For this reason, we monitor at service-level
requests, not at OS or hardware level.

e Load aware: The slowdown detection system must be
aware of the service load. The relative performance of
a peer must not be improved or worsen just because the
load on the node the peer is running on is different. This
means that the performance of a node must be normal-
ized based on the capacity of the node; in our deploy-
ment, a cluster can have different machine capacities
with different loads.

e Stable and accurate: As a degraded node will be quar-
antined, it is important to have a stable and accurate
algorithm that does not accidentally make wrong deci-
sions (false positives).
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Figure 1: IASO components. The figure is described in the
last paragraph of page 2 and also in Section 2.1. “Scr” denotes the
hook that sends score table to ScoreDB.

The following are the terms we use in this paper. As
shown in Figure 1, our system S is a cluster of high-end
machines (gray shades) running VMs wherein services are
running (boxes). For example, S comprises a ZooKeeper
(ZK) service for cluster configuration manager, a Cassandra
service (CS) for storing metadata, and our own blob-store
service for storing data. Each VM runs an instance of each
of the services (e.g., a VM runs three service instances, Cas-
sandra, ZooKeeper and blob-store instances). These VMs
are also known as controller VMs.

2.1 Detection

Our first goal is to detect which service instance is experienc-
ing a slowdown. Currently we only address persistent fault,
i.e., the instance is not being slowed down due to an intermit-
tent condition such as a one-off high GC time. This section
describes the main components of IASO as shown in Figure
1. The next section (§2.2) presents the detailed algorithm.

RAW METRICS (LATENCY VS. TIMEOUTS): One naive
method to measure degradation is to measure the latency of
every request. However, with today’s high-throughput ser-
vices it is not amenable (e.g., per-node Cassandra throughput
can reach 20,000 IOPS [5]). Sampling can be a solution, but
we explored a different method.

In this work, we try a much cheaper method to detect
degradation: counting timeouts. Many services such as Cas-
sandra already have a built-in metric that collects how many
responses were successful as well as the failed ones due to
timeouts. Another advantage of using timeouts is that our
monitoring system is not intrusive to the performance of the
service itself (a nearly 0% overhead as counting timeouts and
successful responses is a simple increment operation).

SCORES:  We found that using raw timeout counts as a
direct metric to measure outlier is not a stable and accurate
way. Thus, we need to introduce the concept of “score”.
Given a cluster of N nodes with /N instances of a service,
every instance can observe the performance of its /N —1 peers

and maintain a “score table” (as shown in Figure 1).

STABLE SCORES: The primary challenge we address in
this work is how to convert timeout and success statistics into
a stable and accurate degradation detector. Noisy scores
can lead to more false positives where healthy nodes might
be accidentally removed and vice versa. Later, the exper-
iment section shows other unsuccessful algorithms that we
tried (§3) which then led us to the current algorithm (§2.2).
One key to prevent scores from fluctuating along with the
number of timeouts is by incorporating additive increase and
multiplicative decrease (AIMD) [18] such as used in TCP
congestion avoidance. Thus, our custom algorithm employs
a technique similar to AIMD.

SCOREDB SERVER: The scores collected from the ser-
vice instances are stored in a database server called ScoreDB
(Figure 1). For every peer, every instance keeps a score,
hence in total ScoreDB maintains N x (N—1) score vari-
ables (per every service monitored) including their histor-
ical values. Given these scores, ScoreDB runs an outlier
detection part of our algorithm and quarantines the outlier.
ScoreDB is also a replicated system (to anticipate degrada-
tion within itself).

2.2 Detection Algorithm

We now describe how IASO calculates the score metric and
detects an outlier. The challenge is to convert timeout and
success statistics into a stable and accurate degradation de-
tector. For every equation listed below, the explanation is in
the paragraph preceding the equation. Symbols T and * are
used for backward references.

2.2.1 Peer Scores

Given a cluster of N instances within a service (e.g., Cas-
sandra), every instance observes the performance of its peers
and puts the corresponding scores in a score table contain-
ing N—1 peer scores. In our scoring system below, a score
ranges from 1 to 100 where a higher value implies more se-
vere degradation. For example, in the score table in Figure 1,
Cassandra instance on Node2 believes that Cassandra instane
on Node1 is slow (a score of 98).

As score continues to change, below we use prev and
score to represent the scores in the last and current epoch
respectively. An epoch is the interval at which every ser-
vice instance runs the equations below (i.e., calculates a new
score). The epoch is set to be 5 seconds and prev to 1 in the
beginning.

Next, we introduce ToRespRatio, the ratio of the number
of timeouts and total responses between two peers within an
epoch. This is essential to the load-awareness part of our
algorithm, that timeout counts should be relative to the num-
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ber of total responses as the number of responses will vary
across peers.

ToRespRatio = #timeouts / #responses

We then set ratioThresh, a timeout-response ratio thresh-
old, with a constant value of 0.1 (e.g., 10 timeouts for every
100 responses). In our experience, 10% timeouts from a peer
can cause a whole-cluster degradation. A higher value may
make TASO react too late, while a lower may lead to more
false positives (i.e., too sensitive). If ToRespRatio is larger
than the ratioThresh, itis likely a heavy degradation. Other-
wise, it is likely caused by a temporary high load or a benign
cause.

ratioThresh = (.1

Next, we introduce minTTR as the minimum time to ob-
serve zero timeout from a peer before the score assigned to
it decreases from 100 to 1 (slow to healthy). We set the time
to be 2 minutes. The idea is that when a peer exhibits a zero
timeout, it might mean that this peer is temporarily healthy
but might suffer degradation again soon. The 2-minute mark
is the time window in which a peer must “prove” itself that
it is really healthy. A smaller window increases the risk that
we may start assigning good scores to a temporarily good
peer and thereby creating an unstable score pattern. A larger
window has the disadvantage that we may mark a peer as
fail-slow even if it has just completely recovered but the 2-
minute window hasn’t passed. However, the latter scenario
should be infrequent.

minTTR = 2 mins

With all of the values above, now we can stitch them into
the score calculation. In every epoch, if ToRespRatio is 0 (no
timeout), then the score will be calculated as shown below.
This is the “additive decrease” part of our algorithm — the
score will be slowly decreasing back to zero to show that the
peer is really healthy.

[ if ToRespRatio is O ]
score = prev — ( 100 X epoch / minTTR )

Now, we discuss the case where some timeouts are ob-
served (ToRespRatio is not zero). First, we introduce
minRatio as a higher bound of the timeout-response ratio
and threshold values. The idea here is that ToRespRatio can
be very high (e.g., 90%, when a peer is highly unrespon-
sive). This high value will make our algorithm below unsta-
ble. Thus, we cap it to the ratioThresh value (0.1), i.e., 10%
already represents enough degradation.

minRatio = min ( ToRespRatio , ratioThresh )T

Finally, the last variable we introduce is nearThresh to
measure how far the timeout-response ratio to the threshold
(how far from the 10% timeouts). This threshold nearness
ranges from 0 to 1.0.

nearThresh = minRatio / ratioThresh ¥

With all the new variables above, we now can calculate the
score when timeout-response ratio is higher than zero. The
equation below represents the “multiplicative increase” part
of our algorithm where the score is increased by the thresh-
old nearness. We put more examples below.

[ if ToRespRatio isnot 0 ]
score = prev + ( prev X nearThresh )

Let’s use an example where an instance gave a score of
32 for a peer instance in the last epoch. Now, the current
epoch sees too many timeouts beyond the threshold such that
nearThresh is 1.0. Thus, the current score will jump from 32
to 32+32 (i.e., the score increases multiplicatively).

score =32+ (32 x 1.0) = 64

Let’s imagine another scenario where the ToRespRatio is
as small as 0.01 (1% timeouts) . Here, the minRatio will
be 0.01 (see equation 1) and the nearThresh be 0.1 (see ¥).
Thus, the next score will only increment fractionally:

score =32+ (32 x 0.1)=35.2

To sum up, our algorithm prevents scores from fluctuat-
ing along with the number of timeouts. That is, we linearly
decrement the score when we do not observe any timeouts
from a peer, but multiplicatively increase the score when we
observe timeouts from the peer.

2.2.2 Scores Set

Every instance X then sends the scores of its peers (A, B, ...)
to the ScoreDB server, which will then maintain a history of
the scores. For example for a given peer A, there are N—1
scores for A collected in every 5-second epoch.

For every peer, all the scores given for that peer are col-
lected within a 10-minute sliding window, where ScoreDB
then picks the 30*"-percentile value to be the representa-
tive score for that peer, such as for instance A. The 30"-
percentile value implies that the peer instance must have
70% high score values within a 10-minute interval such that
we do not inadvertently quarantine instances with mere tran-
sient faults. In our deployments, we have observed that a
10-minute window is wide enough to detect persistent faults.
It may not be the absolute minimum but it does put an upper
bound on the time to isolate a fail-slow peer.

At this point, ScoreDB has N representative scores for
all the instances in the cluster and it submits these scores
to the DBSCAN algorithm [6]. ScoreDB performs this every
minute, but using the data from the past 10 minutes (a sliding
window). DBSCAN [6] is an algorithm that takes a set of

2To make the score multiplication increases faster/slower (i.e., more con-
figurable), we can introduce a score multiplier with a usage such as: e.g., 32
+ scoreMultiplier X 32. Weuse scoreMultiplier =1.
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points and groups them such that points that are spatially
close are grouped together while points which do not have
enough close neighbors are classified as outliers. Thus, we
configure DBSCAN to output a binary decision (whether an
instance is “fast” or “slow”). We also only mark at most one
outlier at a time to make sure we do not remove too many
service instances (explained later in §2.3).

Finally, we emphasize that we only compare instances
(scores) of the same service. We do not compare instance
scores of Cassandra with those of ZooKeeper, thus the algo-
rithm above runs for every service deployed. For example in
Figure 1, the ScoreDB server maintains history of Cassandra
and ZooKeeper peer scores separately.

2.3 Mitigation

After a service instance is marked as an outlier, IASO starts
the mitigation process. Below are the three options that our
customers can set in [ASO configuration. The first one (ser-
vice instance reboot) is the default configuration. The phi-
losophy of our mitigation is that it is better to remove a
highly degraded instance than allowing it to induce a cas-
cading problem to the entire cluster. Other works [24, 56]
already show how running with one less instance (/N —1) can
give a better performance than running a full cluster (V) with
a degraded instance. IASO only quarantines at most one in-
stance to prevent the cluster drops below its fault-tolerant
level.

(1) SERVICE INSTANCE REBOOT AND LEADERSHIP
REMOVAL: Here, IASO will restart the slow instance and
remove leadership leases (if any) from the service instance
running on that node. We emphasize here that we only re-
move the service instance (e.g., Cassandra/ZooKeeper slow
instance), but not the underlying VM or the machine. As
a reason, imagine a machine where an instance of service X
uses the underlying slow disk, but another instance of service
Y only utilizes the memory (still fast). Here, we want X to
be rebooted and its leadership removed, but let Y continue
to run normally as it is not affected by the slow disk.

Regarding the removal of leadership, in ZooKeeper, if the
instance is a leader, rebooting the instance will automatically
make ZooKeeper choose a new leader. This way the old slow
leader is no longer the single point of performance failure.
The only cost associated with this action is the rebuilding of
leader state on some other healthy peer.

In Cassandra, every instance is responsible for a key range
(our deployment does not use Cassandra’s virtual node fea-
ture). Here, we have two opposing options for mitigation.
The expensive option is to remove the instance from the ring
and trigger a whole-cluster key-range rebalancing, which
might be a premature action as the instance perhaps can be
fixed soon. The cheaper option is to let the slow instance be
in the ring but not allow it to be part of the data transfer.

We chose the latter option and modified Cassandra slightly
to achieve this. In this mode, the slow instance is no longer
the primary owner of its key range, but rather one of the other
replicas becomes the primary owner. The upside is that we
postpone the need for whole-cluster key-range rebalancing.
The downside is that the fault tolerance of newly added data
will be down by one (e.g., we can only write to two replica
nodes as the instance on the slow node is being isolated) and
read throughput may be degraded due to the loss of one in-
stance. We note that the fault tolerance of old data does not
go down as the data is still there in the slow instance.

Regardless of the limitations of this default option, cus-
tomers who have smaller clusters tend to choose this option
as they do not have options to migrate the instance or VMs
to another healthy machine. Below we discuss other options
for customers with larger clusters.

(2) VM SHUTDOWN: This is a more severe action than the
default option above. In this mode, the controller VM of the
slow service instance is shut down and no services are started
on the VM. The difference between this action and the de-
fault one above is that when VM is shut down, the services
above will automatically run their recovery protocols (e.g.,
whole ring rebalancing). Thus, the fault tolerance of the data
stays the same (e.g., 3-way replication is still maintained).
The similarity is that there may also be a performance drop
to the loss of a VM. When the problem is fixed, the VM is
added backed and full performance can be restored.

(3) HOST MACHINE SHUTDOWN: This option is similar
to VM shutdown. The difference is that our system will au-
tomatically migrate the entire VM from this host to another,
which is a process transparent to the services running on the
VM. There may be a potential VM rebalancing issue (e.g.,
a machine has too many VMs). For VM balancing, we em-
ploy our own proprietary VM rebalancing that is outside the
scope of the paper. We also emphasize that in our deploy-
ment, these machines are running the services that we de-
ploy. The machines are not shared with other tenants, hence
we have a full control of when to shut down the machine.

2.4 Resolution

The last stage, resolution, is the manual part of the whole
IASO operational procedure, which we describe here for
completeness.

When detecting a fail-slow node, IASO generates a user
alert on the customer monitoring UI. IASO also pages our
site-reliability engineers (SREs) such that they can work
with the affected customer to fix the problem. If there had
been a cluster outage (i.e., cluster IOPS went to almost zero)
before the mitigation, IASO helps the customer and our SREs
in identifying the faulty node and service.

It is also possible that before the SREs perform the full
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Components | LOC
Cassandra modification 585
ZooKeeper modification 199
IASO node-level library 547
ScoreDB server 3377

Table 1: Implementation complexity (§2.5).  The table

shows our 1ASO integration effort.

diagnosis, the problem already went away by itself from re-
booting the slow node. We see this happens in cases such
as CPU locks-ups or high heap usage levels. In such cases,
IAso will no longer mark the node as a degraded node. In
overall, when the problem is fixed, IASO immediately rolls
back the fail-slow node actions executed before, and service
instances on the newly recovered node regain their leader-
ship responsibilities.

Temporary fail-slow faults can be recurrent (e.g., high
heap usage level). To prevent such recurrent faults, the root
cause must be fixed. For example, we could apply some cus-
tom optimizations to our services to prevent it from entering
such a state again.

2.5 Other Implementation Details

INTEGRATION: So far we have integrated IASO with Cas-
sandra and ZooKeeper. The implementation complexity is
shown in Table 1. The changes to the target services are
non-intrusive (less than 600 LOC). The service instances use
IASO library to measure local scores and send them to the
ScoreDB server where the rest of the complexity lies. The
total score data size of ScoreDB server is only 0.27 MB per
day per cluster on average as it only needs to keep the score
history of the last 10 minutes. The CPU overhead is near 0%.

We envision that IASO can be easily integrated to other
master-worker systems where data flows across workers. For
example, in HDFS, write replication forms a pipeline of
datanodes where each datanode can sense the performance
of its peers. For systems like ZooKeeper, the integration in-
volves a different type of modification due to ZooKeeper’s
“pure” leader-follower architecture (i.e., followers do not in-
teract with each other). We describe these changes later be-
low. As mentioned before, we also run our own blob-store
service which can be integrated with IASO as well. This pro-
cess is still in progress, not because of integration difficulty,
but because so far our IASO integration in Cassandra and
Zookeper seems to be sufficient. One limitation of our de-
ployment is that a single blob-store instance can be miscon-
figured causing a fail-slow fault, but goes undetected (which
again so far never happened).

ZOOKEEPER MODIFICATION:  In our deployment, the
Cassandra-side IASO so far has been very effective. But as

we deal with deployments of tens of thousands of nodes, we
can potentially cover a wider set of failure types if we can
integrate IASO with another service as well. Hence, we at-
tempted to integrate IASO to ZooKeeper, but ZooKeeper em-
ploys a pure leader-follower architecture where followers do
not transfer data with each other (i.e., 3-way writes flow from
the leader to three followers, unlike in HDFS or Cassandra).
The leader is a single point of performance failure [24]; if
the leader’s NIC is slow, the writes to all the followers will
slow down, hence no outlier.

For this, we add a simple, lightweight background ping-
pong thread between ZooKeeper peers (only <200 LOC).
Every 10 seconds, every instance picks a maximum of 7 ran-
dom peers and makes an RPC that includes a synchronous
disk write. Checking the disk latency this way is also bene-
ficial since most data operations in Cassandra hit the cache,
hence disk monitoring is a bit lacking. Besides these small
changes, we emphasize that the rest of the algorithm is the
same — the instances send the median latencies of their peers
(median of 1 minute window) to ScoreDB and the DBSCAN
algorithm will compute the outlier.

THRESHOLDS: We would like to emphasize that the
threshold values we use in our algorithms (§2.2) are based
on our specific deployment experiences. It is possible that
the values might not work in other cases.

3 Results

This section presents our experimental results, starting with
unsuccessful experiences (§3.1) and then the successful ones
(§3.2) and the false positive rates (§3.3).

3.1 Unsucessful Attempts

The first strawman approach we tried was to use the raw
timeout count as a metric to sense service instance level per-
formance degradation. Figure 2 shows the number of time-
outs observed in three samples of real degraded instances (in
different time periods and clusters). As shown, the timeouts
observed occur in bursts although the fault is severe through-
out the time interval. Thus, without saving the ratio of time-
outs and responses for every peer over a given period, there
is no way to detect whether these high scores were merely
transient or if they were truly persistent and possibly catas-
trophic faults.

For this reason, we next attempted to create a more stable
algorithm by defining a score to be the percentage of time-
outs over the total responses in every epoch. The first line
below is the same as the first equation in §2.2, and in the
second line, a peer score is essentially the ToRespRatio.

ToRespRatio = #timeouts / #responses
score — ToRespRatio
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Figure 2: Timeout fluctuations (§3.1). The figures show the
number of timeouts observed over time in three samples of degraded
nodes (different time period).

Figure 3a shows the result. Ideally the score should stay
high throughout the degraded period, but instead we see one
big spike and one small spike. We then modified the scoring
algorithm slightly by using the median of the last 3-minute
window:

score — median ( ToRespRatio in last 3 mins )

The result, as shown in Figure 3b, still shows the same be-
havior (a dip between the two spikes). We tried replacing the
median using average and weighted average and the result is
similar (Figures 3c-d).

3.2 Successful Results

The previous section provides the reason we invented our
custom outlier detection. Figure 4a shows the resulting
scores from our custom algorithm, as detailed in Section
2.2. We can see that the metadata service (Cassandra/MS)
instance on the degraded node has high scores assigned to it
from 11:30 to 13:15 hours. Note that this is the case where
we have not enabled the mitigation procedure, i.e., the cus-
tomer was experiencing degradation for almost 2 hours!

Correspondingly, to check that the scores are accurate, we
checked the standard network performance graphs and we
found that there had been a network issue at the exact time
interval. Figure 4b shows the TCP SEND_Q size on the net-
work connection between another node with this unhealthy
node. Furthermore, Figure 4c shows the ping latencies to the
degraded machine.

From these graphs, we can see that bad network perfor-
mance on the slow machine correlated perfectly with the bad
scores assigned to the nodes running on it. As a side note, we
can see that the two metrics in Figures 4b-c cannot be used
as raw scores as they also fluctuate.
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Figure 3: Unstable scores (§3.1).

stable scores using timeout-response ratio as explained in §3.1.

Other attempts to create

Next, Figure 5 shows what is happening in the ScoreDB
server side for a different fail-slow incident. The picture
shows the representative scores by instance X measured for
its N—1 peers on other nodes. For simplicity, the data here
is from a cluster of 4 nodes. Figure 5a shows that Node3
has a high score compared to other peers. But at this point
Node3 has not been marked as a definite outlier because its
30%"percentile score is not high yet. However, two minutes
later, as shown in Figure 5b, we have sufficient scores for
the 30" percentile score to be high. When we plug this score
into the DBSCAN algorithm, Node3 was marked as a definite
outlier.

IASO automatically quarantines an outlier to prevent it
slowing down the entire cluster. Figure 6 shows another
case after we deploy IASO. Here, the figure shows that the
cluster-level IOPS drops to almost zero with the presence of
one degraded machine, essentially showing how a degraded
node can impact the entire cluster, as also shown by other
works [24, 56]. Packet losses and the cluster-level degra-
dation started occurring at around 09:15am but just after 10
minutes, IASO’s mitigatory actions kicked in and the perfor-
mance of the cluster was completely restored. Thus, with
1AS0, the time taken to quarantine a degraded node has now
been brought down to the order of minutes. Note that the
IOPS returns to “normal” although we lost a node, which is
because in this scenario the 100K IOPS were far from the
maximum throughput of the cluster.

3.3 True and False Positives

Figures 7a and 7b show the number of true and false posi-
tives we encountered every month across the 7 months, re-
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Figure 4: Stable scores (§3.2).  The figures show (a) the
score of a degraded peer over time, (b) the SEND_Q size of the
network connection to the degraded node, and (c) ping latencies to
the degraded node monitored by our systat collector.

spectively. For Figure 7b, the figure combines the number
of “confirmed” and “probable” false positives as explained
below.

Over a 7-month period, we encountered 9 confirmed false
positives over the 232 true positives (confirmed fail-slow in-
cidents), which brings our false positive rate to 3.7%. One
major reason for our false positive is in our earlier versions
of IASO where the cluster still sends data to a dead service
instance and a healthy instance already becomes affected
and “looks” slow as well. Here IASO incorrectly marks the
healthy instance as an outlier. Due to space constraints, we
put more false positive stories in our anonymized supple-
mental material [7].

We also encountered 41 probable false positives. We la-
bel these cases as “probable” because they do not necessarily
suggest that IASO is imprecise. In these cases, by the time
our SREs started debugging, the issue was no longer present
and the service instances, VMs, and machines were healthy.
Existing works gave some hints on the reasons behind this,
for example, fail-slow incidents can be triggered by tempo-
rary environmental causes such as high temperature [28].
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Figure 5: Mitigation (§3.2). The top figure shows that Node3’s
score is high as observed by NodeO however it is not being marked
as an outlier yet as its 30" percentile score is still low. In the bottom
figure, Node3 is marked as a definite outlier.
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Figure 6: Restored performance (§3.2).  Within 10 min-
utes, IASO made the cluster-level IOPS return back to normal after
isolating the slow node.

While we managed to record the false positives, we were
not able to collect many false-negative reports (i.e., unde-
tected fail-slow incidents). This is because the reality of a
large company and our SREs have their own priorities and
might not contact us when they found cases that were not but
should have been detected by IASO. The false negatives we
were aware of came from two 2 outages that happened after
the deployment of IASO, which can be found in our supple-
mental material [7]. Other false negatives we noticed include
low workloads as fail-slow faults with low workloads might
not necessarily result in timeouts. We did not fix this prob-
lem as almost all our customers heavily utilize their clusters.

From our perspective, we prefer false positives over false
negatives as in our system IASO pages site-reliability en-
gineers whenever it detects a fail-slow failure. This gives
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Figure 7: True and false (confirmed+probable) positives
(83.3).  The figure shows the number of (a) true and (b) false
positives every month. The false positives include the “confirmed”
and “probable” false positives as described in §3.3.

us a way to easily track and investigate such issues and im-
prove our system over time. As for the worst case impact,
a false positive can cause a cluster to temporarily operate in
a reduced fault tolerance state as IASO’s extreme mitigation
strategy can bring down a node. However, in case of a false
negative, there can be an entire cluster outage which can stay
undetected for hours.

4 Fail-Slow Dataset and Analysis

The deployment of IASO allows us to analyze fail-slow inci-
dents in our vast field of clusters, which then enables us to
perform new statistical studies. This section first describes
our dataset (§4.1) followed with our findings (§4.2).

4.1 Dataset

We first describe our deployment settings. Our field consists
of 39,000 nodes spread across many clusters. A cluster size
ranges from 3 to 56 nodes. Our various cluster models and
configurations (RAM size, storage, etc.) can be found in our
supplemental material [7]. A cluster can contain heteroge-
neous nodes as we support heterogeneous applications and
a broken hardware can be replaced with a higher-end one.
Each node in a cluster runs a special VM called a controller
VM where our data and control path services run. Among
these services, Cassandra and Zookeeper run with TASO in-
tegration.

Failure AFR Notes

SSD error 5-15.7% > one uncorrectable error [53]
SSD failure 1-2% Dead SSDs [16]

Disk error 1.7-8.6% | > one failure event [46, 52]
DRAM error | 2.2-9.0% | > one memory error [33, 54]

fail-slow 1.02% Node-level fail-slow faults

Table 2: Fail-slow AFR (§4.2.1).
failure rates of different types of failures

Comparisons of annual

#Faults
O~ NWPrhOOTO

Date (Month)

Figure 8: Fail-slow per day (§4.2.1). The figure shows the
number of fail-slow incidents per day in our field over 7 months.

As mentioned before, every time IASO detects a fail-slow
fault, it raises an alert that triggers the opening of a support
ticket to investigate the issue. The support case is investi-
gated by a team of trained site reliability engineers (SREs),
who in turn coordinate with the customer and debug the is-
sue. Once the problem is identified, the SREs update the
support ticket with a category of the root cause found and
the steps to resolve the issue. Other information that is up-
dated as part of the case includes the time of the incident,
a cluster identification number, the software version on the
customer’s cluster, the model family of the node that was af-
fected and the number of months the node has been with the
customer at the time of the incident.

With 232 fail-slow related tickets, our dataset can be seen
as the largest fail-slow data from within a company. The pre-
vious largest dataset was 101 cases from 12 different institu-
tions (more in §5). The next section presents our findings
from studying the support tickets. The dataset that we will
make public and discuss here comes from a period of seven
months in 2017. The dataset for 2018 is still being perused
and cleaned, hence not part of this submission.

4.2 Findings
4.2.1 Frequency

With a large dataset, we are able to measure the annual fail-
ure rate (AFR) of fail-slow incidents. Given 232 independent
cases across 39,000 nodes over 7 months, we can derive that
fail-slow AFR is 1.02% (232 x 12 /7 / 39,000).

Table 2 compares fail-slow AFR with the rates of other
types of failures. As shown, fail-slow fault frequency is rel-
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Figure 9: Fail-slow root causes (§4.2.2). The figure shows
the breakdown of fail-slow root causes (and the comparison to fail-
stop causes).

atively significant and cannot be ignored. Figure 8 breaks
down the number of fail-slow incidents observed per day
in our field over the 7 months. We see that barring a cou-
ple of days in between, there is at least one failure per day.
These statistics accentuate the importance of fail-slow detec-
tion and mitigation frameworks such as IASO.

4.2.2 Root Causes

Next, we analyze the root causes of fail-slow incidents. To
compare the frequencies of various different root causes of
fail-slow incidents with those of fail-stop failures [51], we
group the causes into six categories: Hardware, Software,
Network, Environment, Human and Unknown. For example, all
issues that had a tag of “memory” or “disk” in our support
tickets are grouped under Hardware.

Figure 9 shows the breakdown of fail-slow root causes
(and the comparison to fail-stop causes from a related work
[51, Figure 4a]). Hardware and Network failures turn out to
be the highest contributors of fail-slow incidents in our field.
Their total is roughly the same as in the fail-stop cases. In
the next section, we break down the sub-causes to understand
more about the root causes.

The Unknown count is quite significant because of a cou-
ple of reasons. One common reason is when a customer be-
comes unresponsive during the support case or does not want
the issue to be investigated further without providing a clear
reason. We believe this can be either because the customer
did not notice any issue around the time the fail-slow alert
was generated (thereby a false positive) or fixed the issue
themselves without our help. The other reason is when the
SREs could not find a specific root cause for the issue or did
not tag the support case with a clear cause.

4.2.3 Root Sub-Causes

Table 3 shows further the breakdown of the sub-causes
within each of the five root categories in the previous sec-
tion. The numbers in the parentheses are the count of tickets.

Root Sub-causes

Hardware Faulty dimm (15), ECC error (10), low mem-
ory (9), SATADOM (5), CRC error (1), RAID
controller (1), LSI controller (1), unknown (5)
Software upgrade (8), VM issue (6), GC (3),
BIOS (1), scheduler (1), unknown (6)

Faulty device (13), network outage (9), device
replace(7), unreachability (6), packet drop (5),
network contention (2), device reboot (1), un-
known (18)

Incorrect setting (11), high load (1), energy is-
sue (1)

Misconf (10), network migration (4), install
/deploy (3), unplugged cable (2), unknown (4)

Software

Network

Environment

Human error

Table 3: Root sub-causes (§4.2.3). The table shows the sub-
causes within each of the five categories of known root causes. The
dataset will be released publicly.
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Figure 10: Fail-slow vs. age (§4.2.4). The figure correlates
fail-slow incidents with machine ages.

For example, for hardware-induced slowdown, it can be be-
cause of faulty dimm, ECC/CRC errors, low memory, etc.,
while network-induced slowdown can be because of faulty
NICs/switches, bad cables, packet drops, and network con-
tention.

Our goal here is to show that fail-slow root causes vary
widely. We believe this is a strong motivation why fail-slow
detection and mitigation should be also deployed at the ser-
vice level (not just low-level hardware level). Our findings
are also consistent with those reported in a recent paper [28];
we observed in our field how fault conversions take place and
how different failure types such as fail-stop (e.g., disk/SSD
failure), fail-transient (e.g., GC), and fail-partial (ECC er-
rors) can transform into fail-slow failures at the service level
[28, §3.2].

4.2.4 Age and Model

As our ticketing system automatically collects machine age
data, we are able to correlate fail-slow failures with machine
ages, as shown in Figure 10, bucketed into months ranging
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Figure 11: Tickets TTR (§4.2.5). The figure shows the CDF

of time to resolve tickets across different root-cause categories.

| Nt Unk HW SW Human Envy

Median | 79 145 126 234 108 65
Mean | 149 220 244 323 165 149
Max | 721 1033 1705 1238 625 964

Table 4: TTR tickets (§4.2.5).

mean, and maximum values of the data in Figure 11.

The table shows the median,

from 1 to 48. We can see the “infant mortality” trend where
younger machines exhibit more issues, but older (perhaps
more stable) machines exhibit fewer issues. This follows the
same failure trend in fail-stop failures [51, Figure 4]. This
also supports a continuous paradigm where when the rate of
fail-stop errors drops so does the fail-slow ones.

We also attempted to correlate fail-slow failures with the
node model family and found no significant correlation, that
every node model family suffers from faults across a major-
ity of component types (see [7] for more).

4.2.5 Tickets TTR

Finally, Figure 11 shows the distribution of time to resolve
the tickets (in hours) across different root causes. Table 4
shows the median, mean, and max values of the data in Fig-
ure | 1. We emphasize that this metric does not represent the
time for IASO to mitigate the issues (which is in the order
of 10 minutes), but rather how long it takes to close a ticket.
When a ticket is closed, the customer’s cluster is guaranteed
to be back fully healthy.

The reason we show this data is to point out that a fail-
slow root cause can take days to be fully resolved. This is
consistent with anecdotal experiences shared by large-scale
operators from various institutions [28, §3.5]). Hence, it is
important to quickly quarantine the fail-slow component be-
fore the performance problem cascades to the entire cluster.

HW SW Service
Bug SymDrive[47], | MacePC[38], Orca[15]
finding DDT[39] PCatch[40],
SPV[55]

Detection | IPMI[2], UBL[20], PeerReview([30],
SNMPI[3], Toddler[43] AFDI[45]
SMART[4],

Ganglia[42]

Diagnosis | Roy[49], Xray[13], Canopy[36],

PerfBlower[25] | Hytrace[19], PivotTracing[41],
PerfScope[21], Pip[48],
PerfCompass[22]} Panorama[31]
Deepview[59],

Stitch[60],
FaultLocalize[50]

Mitigation| Carburizer[35], | Mantri[11], PREPARE[57],
DisturbMLC[14], DeepDive[44], IASO
VibrateSSD[17]| PBSE[56]

Table 5: Related work (IASO).

that relate to fail-slow detection, diagnosis, and mitigation across

The table categorizes works

hardware-, software-, and service levels.

5 Related Work

We now discuss related work beyond the papers that we al-
ready cited earlier. In particular, we break the discussion
here to two categories: (1) works related to fail-slow detec-
tion and mitigation systems and (2) publications that release
information about fail-slow incidents.

Table 5 shows that there are many tools, frameworks, and
approaches that have been introduced or deployed for dif-
ferent levels of the hardware, software, and service stack.
First, there are many bug-finding tools such as MacePC [38],
PCatch [40], and Orca [15], but they are offline approaches.
Second, there are online fail-slow detection tools across the
hardware/software stack. For example, SMART [4] is a
monitoring tool that can be used to detect hardware degra-
dation but does not include diagnosis capability. Third, Pip
[48], PivotTracing [41] and many others provide diagnosis
approaches that work at the service level (not just one par-
ticular software) but they do not make quarantine decisions.
Finally, IASO is in a category that performs detection and au-
tomated mitigation. In this space, we are not aware of many
published works. The limitation of IASO is that it does not
come with diagnosis tools. Thus, the diagnosis approaches
in the 3rd row of Table 5 are orthogonal to our work.

Table 6 shows publications that release datasets on perfor-
mance problems. The table shows the year span (Y r), num-
ber of fail-slow failures/bugs reported (#F'), deployment
size/number of nodes (# V), the number of systems/services
the data is collected from (#5) and the scope of the root-
cause analysis (A). The top part of the table represents inci-
dents that appear in live deployments while the bottom of the
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Related Work Yr #F #N #S A

I1ASO ’16-17 232 39k 1  ehmnsu
Fail-slow[28] ’00-17 101 >10k 12 hn

GrayFailure[32] - 4 - 1 -
Panoramal[31] ’17-18 15 20 4 -

COSJ[27] ’09-15 126 - 32  ehmnsu
CBS[26] ’11-14 860 - 6 S
PerfBugs[34] ’00-11 109 - 5 S
Limplock[24] 13 28 >30 5 S

Table 6: Related work (fail-slow dataset). For each

related work, the columns show the year span (Yr), number of
fail-slow failures/bugs reported (#F), deployment size/number of
nodes (#N), the number of systems/services the data is collected
from (#S) and the scope of the root-cause analysis (A). In the
last column (analysis), “h” represents hardware, “s” software, “n”
network, “e” environment, and “m” human. Papers with “s”-only

label implies bug-study papers.

paper represents works that study/test software bugs. In the
former category, our dataset can be considered as the largest
dataset of fail-slow cases publicly reported from within a
company. Our work strongly supplements existing anecdotes
that fail-slow faults at all levels, hardware and software, have
to be addressed.

6 Conclusion

We have described our successful 1.5-year deployment of
Iaso. We found fail-slow detection and automated miti-
gation schemes are crucial in preventing fail-slow induced
outages in our large deployment field. We would like to em-
phasize again that automatic fail-slow mitigation/quarantine
schemes (beyond detection only) are relatively a new area
of research. We hope our paper can provide insights to the
development of better frameworks in the future.

As future work, we look forward to building a more ag-
gressive algorithm that can quarantine a slow node shorter
than our current 10-minute interval (and do so with low false
positives) as well as automatically marking fail-slow faults
that are resolved by themselves without depending on our
customers or SREs (more in [7]). Furthermore, as we con-
tinue to collect peer scores reported in the field, we hope to
learn more detailed characteristics.
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PARTISAN: Scaling the Distributed Actor Runtime
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Abstract

We present the design of an alternative runtime system for
improved scalability and reduced latency in actor applications
called PARTISAN. PARTISAN provides higher scalability by al-
lowing the application developer to specify the network over-
lay used at runtime without changing application semantics,
thereby specializing the network communication patterns to
the application. PARTISAN reduces message latency through a
combination of three predominately automatic optimizations:
parallelism, named channels, and affinitized scheduling. We
implement a prototype of PARTISAN in Erlang and demon-
strate that PARTISAN achieves up to an order of magnitude in-
crease in the number of nodes the system can scale to through
runtime overlay selection, up to a 38.07x increase in through-
put, and up to a 13.5x reduction in latency over Distributed
Erlang.

1 Introduction

Building distributed applications remains a difficult task for
application developers today due to the challenges of con-
currency, state management, and parallelism. One promising
approach to building these types of applications is by using
distributed actors; the actor-based programming paradigm is
one where actors can live on different nodes and communicate
transparently to actors running on other nodes. Actor-based
programming is well suited to the challenges of distributed
systems; actors encapsulate state, allowing controlled, serial
access for state manipulation. A single machine can typically
run hundreds of thousands of actors, allowing efficient use of
resources per machine and thereby enabling high-scalability
and high-concurrency by elastically scaling the number of
machines in a cluster. Taken together with the fact that actors
communicate through unidirectional asynchronous message
passing with no shared memory between them, the actor-
based programming paradigm is well suited to the nature of
distributed systems. In addition to providing developers of
distributed systems with a convenient programming model,
distributed actor systems can also be efficiently implemented,

Peter Alvaro
UC Santa Cruz

which has resulted in significant adoption and large-scale
success in many areas of industry.

There exist three primary industrial-grade distributed actor
systems; Distributed Erlang [31], Akka [21] (for Scala) and
Microsoft’s Orleans [8, 10] (for C#). Distributed Erlang has
been used as the underlying infrastructure for message bro-
kers [2,25], distributed databases [4, 6, 18], and has provided
infrastructure for the chat functionality for applications like
WhatsApp, Call of Duty, and League of Legends. [14,15,27]
Similarly, Akka has been used by Netflix for the manage-
ment of time series data [23], and Microsoft’s Orleans has
been used as the underlying infrastructure for Microsoft’s
popular online multiplayer games, Halo and Gears of War
for the Xbox [24]. In all of these cases, these applications
have benefited from both the state encapsulation and perva-
sive concurrency that actors provide and the fault isolation
of actors by reducing the use of shared memory. However,
these distributed actor systems are still limited in terms of
both scalability and latency.

Scalability. Compared to other distributed frameworks
which can support hundreds to thousands of nodes, these
production-grade distributed actor systems are still limited in
the number of nodes that they can support. Distributed Erlang,
for instance, has not been operated on clusters larger than 200
nodes [1], whereas one of the more popular applications built
on Distributed Erlang, the distributed database Riak, has been
demonstrated to not scale beyond 60 nodes [15]. As we will
later show, this limited scalability is related to the rigidity of
the overlay network—the communication pattern between the
nodes in the application—used in the runtime system. This
rigidity has been the subject of previous research on alterna-
tive designs to improve the scalability of the system [11], and
efforts to find a “one-size-fits-all” overlay, which can equally
serve all types of distributed applications, have not been suc-
cessful [28]. Thus, especially in the context of Distributed
Erlang, scalability is still a major challenge.

Latency. Due to their underlying model of computation—
unidirectional asynchronous message passing between ac-
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tors with independent queues that are multiplexed onto a
single queue between nodes—distributed actor systems fre-
quently suffer from the problem of head-of-line blocking.
For example, the distributed database Riak avoids using Dis-
tributed Erlang for background data synchronization (e.g.,
hinted and ownership handoff) to avoid head-of-line blocking
in the read/write request path. While alleviating head-of-line
blocking has been the subject of much research [12,30] and
remains a relevant problem in today’s large-scale systems [9],
the general solution of introducing more queues and partition-
ing communication across those queues does not necessarily
yield better performance without a priori knowledge of the
application’s workload.

Application-specific information exists that can be used
to reduce the effects of head-of-line blocking. Given (i) the
knowledge of the identities of the actors that are sending
messages, (ii) the identities of the recipients, and (iii) the
knowledge that actors will process their messages sequen-
tially, this application-specific information can be provided in
the form of a small number of lightweight annotations to the
runtime. These annotations can help the runtime to separate
network traffic over specialized channels (e.g., cluster mainte-
nance, high-priority application behavior, failure detection),
in turn leading to the reduction of head-of-line blocking in an
application-specific manner.

In this paper, we present the design of an alternative run-
time system for improving the scalability and performance
of distributed actor systems, along with an implementation
of this runtime called PARTISAN. PARTISAN enables greater
scalability by allowing the application developer to specialize
the overlay network to the communication pattern required
by the application at runtime without altering application se-
mantics. PARTISAN facilities lower latency by providing the
application developer with three ways to customize messaging
behavior, without altering application semantics or requiring
changes to application code. PARTISAN enables the applica-
tion developer to (i) customize parallelism (for increasing
the number of communication channels between nodes), (ii)
utilize named channels (for separating different types of mes-
sages sent between actors), and (iii) affinitize scheduling (for
partitioning traffic across communication channels depending
on message source, destination and type).

We implement PARTISAN using Erlang without requiring
changes to the Erlang VM, in an effort to make these scalabil-
ity and latency benefits immediately available to production
Erlang applications with minimal changes to application code.
We provide a detailed experimental evaluation which, be-
yond microbenchmarks, includes a port of an existing widely-
deployed Erlang distributed computing framework to take
advantage of PARTISAN’s optimizations. In our evaluation,
we demonstrate that the use of each of these optimizations in-
dependently results in latency reduction, but the combination
of these techniques yields significant reductions in latency.

The contributions of this paper are the following:

We present the design of the PARTISAN runtime system
that enables the runtime selection of overlay, enabling
greater scalability by specializing the overlay to the ap-
plication’s communication patterns (Sections 3 & 5);

We present a collection of predominantly automatic op-
timizations for latency reduction, realized in PARTISAN,
that enable more efficient scheduling of messages on
the network, specifically by exploiting (i) parallelism,
(i1) named channels, and (iii) affinitized scheduling (Sec-
tions 4 & 5);

We provide an open source implementation of PARTI-
SAN that supports the runtime selection of overlay with
implementations of four different overlay networks (Sec-
tion 5);

We port an existing widely-deployed open source dis-
tributed computing framework, Riak Core, from Dis-
tributed Erlang to PARTISAN, and provide an analysis of
the process (Section 6);

We present a detailed empirical evaluation of PARTISAN
on (i) microbenchmarks, (ii) an industrial-grade actor-
based distributed programming framework (Riak Core),
and (iii) a research framework for distributed program-
ming over replicated shared state (Lasp). We go on to
show that PARTISAN demonstrates greater scalability (in
some experiments, an order of magnitude increase in
the number of nodes the system can scale to) through
runtime overlay selection and lower latency (in some
experiments, up to a 38.07x increase in throughput, and
a 13.5x reduction in latency) through latency reduction
optimizations (Section 6).

2 Background: Distributed Actors

Actors provide a simple programming model for building
highly concurrent applications. Programming with actors in-
volves two primary concepts: actors: lightweight processes
that act sequentially, respond to messages from other actors,
and sent messages to other actors; and asynchronous mes-
sage passing: unidirectional, asynchronous messages that are
sent between actors. Applications built using the actor model
typically achieve their task through the cooperation of many
actors sending messages to one another. No state is shared
between actors: the only way for data to be shared between
actors is through message passing'. Actors are designed to be
extremely lightweight and typically implementations allow
for ten to hundreds of thousands of actors per machine. As
no data is shared, and actors are relatively independent with
loose coupling to other actors — strictly through message pass-
ing — if a particular actor happens to fail, the fault remains
isolated to that actor. Actors are not static: actors are allowed
to “spawn” other actors as the system is running.

'Pony is a unique exception here, which uses a capability system to know
when it is safe to share memory. However, this is an implementation detail as
the programming model remains that of message passing.
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Actors are a popular mechanism for building highly con-
current applications as they allow both users and user actions
to be modeled as actors themselves. For instance, in the afore-
mentioned Halo and Call of Duty examples, actors are use
for modeling the presence service for the online functionality
of the game. Therefore, a single actor, dynamically created,
is used to model a connection to the service for a single user.
In the Riak distributed database, an actor is spawned for ev-
ery single read or write request made to the database. As
the number of actors can range several orders of magnitude
higher than the parallel computing capacity of a single ma-
chine, preemptive (e.g., Erlang) or cooperative scheduling
(e.g., Orleans) is used for actor scheduling within the runtime.

Distributed actor systems extend the actor functionality
from a single machine to a cluster of machines. Distribution
adds a number of complexities to the model: (i) failure de-
tection: actors may be unavailable under network partitions
or crash failures of remote machines; (ii) message omission:
messages are no longer guaranteed to arrive at a destination
due to failure; (iii) membership: or what nodes are currently
members of the cluster and how the membership overlay is
organized; (iv) binding: the location of actors may not be
known at runtime when actors are dynamically created; (v)
contention: contention for access to network resources may
slow down actors; (vi) congestion: and the varying location
of actors results in non-uniform latency with inter-actor mes-
saging when actors are located on different machines.

2.1 Framework Commonalities

These concerns are addressed by the contemporary industrial
distributed actor systems through various mechanisms. Each
of these mechanisms introduces additional network overhead
that the application developer may not be aware of, contribut-
ing to reduced scalability and higher latencies.

Failure detection. Actors may become unreachable due to
crash failures or network partitions. To detect failures, nodes
typically send heartbeat messages to the other nodes in the
cluster. When a node is suspected as failed, it’s assumed that
the actors that were running on that node failed.

Message omission. Distributed actor systems try to address
the problem of message omission by using TCP. With a single
connection, TCP ensures FIFO ordering of messages between
pairs of actors and best-effort delivery using retransmission
based on sequence numbers and acknowledgements.

However, as failure detection is imperfect and nodes may
be disconnected and reconnected under network partitions
or crash failures, message delivery is not guaranteed by the
runtime system. Therefore, distributed actor systems typically
require the user to program as if message omission is always a
possibility. Put more generally, TCP connections are session-
oriented and in these frameworks delivery guarantees do not
hold across sessions.

Membership. Membership determines which nodes are
part of the cluster and are available for hosting actors. Failure
detection is combined with membership to determine who the
active members of the cluster are at any given moment.

Binding. When sending a message from one actor to an-
other, the location of that actor may or may not be known at
a given time. Most of these systems encode a node identifier
into the process identifier, or leverage a replicated, global pro-
cess registry, for determining the location of an actor by a
registered name instead of a process identifier.

2.2 Challenges

The problems of both network contention and network con-
gestion remain challenges for distributed actor systems.

Network contention. All of the aforementioned actor sys-
tems support inter-machine communication through the use of
a single TCP connection, therefore multiplexing actor-to-actor
communication on a single channel. Not only does actor-to-
actor communication (data) use this channel, but background
communication from the membership and failure detection
systems (control) also contribute to congestion on this link.
Taken together with CPU-intensive activities that may block
access to the socket (message serialization/deserialization,
for example) and non-uniform distribution of message load
(slow-senders vs. fast-senders), the possibility for contention
increases, which in turn increases latency and reduces through-
put of the system. This is further exacerbated by certain over-
lays; for example, the full-mesh overlay must perform failure
detection from all nodes to all other nodes.

Network congestion. Network congestion, in the form of
latency or congestion control, may further impact perfor-
mance. Under situations where the frequency of message
sends exceeds what can be transmitted over the network, caus-
ing queueing delays on these multiplexed connections be-
tween nodes, other senders on the same node may be penal-
ized and forced to wait for other senders to transmit.

3 Opverlay Networks

To address the problems that arise from a fixed overlay, PARTI-
SAN supports the selection of overlay at runtime. PARTISAN’s
API exposes an overlay agnostic programming model — only
asynchronous messaging and cluster membership operations
— that easily allows programmers to build applications that
can operate over any of the supported overlays. Selection of
the overlay at runtime only affects the performance of the
application, and does not change the application semantics.
Selection of the overlay is done with a configuration parame-
ter specified at runtime; therefore, changing the overlay does
not require recompilation and the selection is fixed for the
lifetime of the application.
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PARTISAN supports four overlays and exposes an API for
developers to extend the system with their own overlays:
static, full-mesh, client-server, and peer-to-peer.

3.1 Static, Full-mesh, Client-server Overlays

The static, full-mesh, and client-server overlays are similar.
Each overlay uses a single connection for communication
between each node in the cluster. Failure detection is per-
formed by monitoring this connection; when this connections
is dropped, the node is reported as down.

With the static overlay, membership is fixed at runtime
whereas with the full-mesh overlay, membership is dynamic
and can be altered while the system is running. With the
client-server overlay, connections are only maintained be-
tween servers and from servers to clients, similar to a tradi-
tional hub-and-spoke topology.

3.2 Peer-to-peer Overlay

The peer-to-peer overlay builds upon the HyParView [20]
membership protocol and the Plumtree [19] broadcast proto-
col, both of which use a two-phase approach to pair an effi-
cient dissemination protocol with a resilient repair protocol
used to ensure operation during network partitions.

HyParView. HyParView is an algorithm that provides a re-
silient membership protocol by using partial views to provide
global system connectivity in a scalable way. Using partial
views ensures scalability; however, since each node only sees
part of the system, it is possible that node failures break con-
nectivity. To overcome this, HyParView uses two different
partial views that are maintained with different strategies.

Plumtree. Plumtree is an algorithm that provides reliable
broadcast by combining a deterministic tree-based broadcast
protocol with a gossip protocol. The tree-based protocol con-
structs and uses a spanning tree to achieve efficient broadcast.
However, it is not resilient to node failures. The gossip proto-
col is able to repair the tree when node failures occur.

Semantics. However, with partial views, nodes may want to
message other nodes that are not directly connected. To main-
tain the existing semantics of existing actor systems, PAR-
TISAN needs to support messaging between any two nodes
in a cluster. To achieve this, PARTISAN’s peer-to-peer mem-
bership backend uses an instance of the Plumtree protocol to
compute a spanning tree rooted at each node. When sending
to a node that is not directly connected, the spanning tree is
used to forward the message down the leaves of the tree in a
best-effort method for delivering the message to the desired
node. This is similar to the approach taken by Cimbiosys [26]
to prevent livelocks in their anti-entropy system.

4 Latency Reduction

In Section 2, we discussed a number of features of distributed
actor systems that operate in the background to maintain
cluster operation. These included binding, membership, and

failure detection. Each of these features of actor systems can
be expensive in terms of network traffic and contributes to in-
creasing the overall message latency by delaying application-
specific messaging behind cluster maintenance messaging. In
addition to background traffic, it’s also possible that one type
of application-specific messaging may also delay different
types of application-specific messaging, as in the case where a
slow sender is arbitrarily delayed behind a fast sender. These
are all specific cases of head-of-line blocking.

To alleviate these issues, we provide the application devel-
oper with three ways to customize messaging behavior in a
distributed actor system; by (i) customizing parallelism, (ii)
utilizing named channels, and (iii) affinitized scheduling.

4.1 Parallelism

To reduce the effects of head-of-line blocking with a single
message queue, additional message queues can be introduced
in an attempt to parallelize as much work as possible. We refer
to this mechanism as parallelism. With little input from the
application developer—only a specification of the number of
queues to operate at each node for each destination node—the
system can either use random or round-robin scheduling to
assign work to queues. In most cases, the system can optimally
choose this parameter based on available system resources.

4.2 Named Channels

While parallelism serves to increase the amount of work per-
formed in parallel, background messages may be queued in
front of application-specific messages, resulting in diminish-
ing returns if this is the only technique used to reduce latency.

If we further classify these message queues as either queues
for background messaging or application-specific messaging,
we can be more intelligent in our scheduling. This can be
achieved using named channels, and it is similar to Quality-of-
Service (QoS) present in many modern networking systems.
This mechanism only requires the application developer to
annotate what type of message is being sent, and dedicated
queues based on type are used for scheduling these messages.
This mechanism allows the system to automatically place
background messaging on a queue where it will not interfere
with application-specific messaging.

4.3 Affinity

While named channels prevent background messaging from
directly interfering with application-specific messaging,
application-specific messaging may still suffer from inter-
ference between actors that send at different rates.

Under the assumption that multiple outgoing queues are
available (parallelism), random or round-robin scheduling
may still produce schedules that lead of head-of-line blocking
issues. With the knowledge that actors have (i) a distinct iden-
tity (unique references which point to each actor and which
can itself be exchanged), (ii) and act sequentially, we can fur-
ther refine our message scheduling algorithm by selecting an
outgoing message queue based on the sending actor’s identity.
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Analogous Call (Erlang)

Feature API

Join node to cluster join(Node)
Remove self from the cluster leave()
Return locally known peers members ()

Forward message to registered name
Forward message to process id

forward(Node, Name, Msg, Opts)
forward(Pid, Msg, Opts)

net_kernel:connect_node(Node)
net_kernel:stop()

nodes ()

erlang:send({Name, Node}, Msg)
erlang:send(Pid, Msg)

call(Dst, Msg, Timeout) ->

Table 1: PARTISAN’s API

call(Dst, Msg, Timeout) ->

Dst ! Msg, partisan_pluggable_peer_service_manager:forward(Dst, Msg, [1),
receive receive
Response —> Response ->
Response Response
after after

Timeout ->
{error, timeout}

Timeout ->
{error, timeout}

end end
end. end.
(a) Distributed Erlang (b) PARTISAN
Listing 1: Sending messages using Distributed Erlang and PARTISAN. PARTISAN’s API is designed to be a drop-in replacement
for Distributed Erlang.
%% Use “N' to partition with affinitized scheduling.

partisan_pluggable_peer_service_manager:forward(
Dst, Msg, [ {partition_key, N} 1)

%% Use ‘Channel' to partition by channel.
partisan_pluggable_peer_service_manager:forward(
Dst, Msg, [ {channel, Channel} 1)

Listing 2: Sending messages using PARTISAN. PARTISAN’s
API allows both affinitized scheduling and channels to be
specified for a single message send.

This scheduling technique is known as affinitized scheduling
and results in a further reduction in latency for network in-
tensive processes by avoiding interference between different
actors that send messages at different rates—for example, two
actors on the same node sending at different rates to the same
remote actor can be scheduled on different queues.

The application developer can take advantage of affinitized
scheduling either by enabling affinitized scheduling for all
messages, where a partition key is automatically derived by
the system, or by annotating individual message sends with
a partition key. This partition key is then concatenated with
the identity of the recipient and, using a hash function, is
used to select the appropriate queue. By hashing both the
sender and the recipient together, the system will attempt
to collocate pairwise communication between the same two
actors together, providing best-effort FIFO when the system
is not operating under failure.

5 PARTISAN

PARTISAN is a runtime system that enables greater scala-
bility and reduced latency for distributed actor applications.
PARTISAN improves scalability by allowing the application
developer to specialize the overlay network to the applica-
tion’s communication patterns. PARTISAN achieves lower
latency by leveraging several predominately automatic opti-
mizations that result in the efficient scheduling of messages.
PARTISAN is the first distributed actor system to expose this
level of control to the application developer, improving the
performance of existing actor application and enabling new
types of actor applications.

5.1 Design

All three industrial-grade actor systems follow the same un-
derlying assumptions that define the actor model. The de-
sign of PARTISAN is therefore based upon a lowest-common-
denominator view of distributed actor systems. In all cases:

* actors will act sequentially, sending and receiving unidi-
rectional, asynchronous messages;

* actors can be located on any node on the network, known
only at runtime, and the system will be able to locate,
though a system specific mechanism, on which machine
an actor is located;

* message delivery is not guaranteed and node failures
will be detected eventually.

PARTISAN follows this lowest-common-denominator view
of distributed actor systems for the sake of portability of these
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ideas; the same principles behind our work can be applied to
realizations of PARTISAN for the other industrial-grade actor
systems, such as Akka and Orleans. Applying these ideas
to Akka would be straightforward, given the programming
model is directly inspired by Erlang. Orleans has a slightly
different programming model involving remote method in-
vocations, but the underlying execution model is composed
of unidirectional, asynchronous message sends and receives,
the same as the Erlang programming model (and, extremely
similar to Erlang’s included RPC abstraction.)

Based on this view of actor systems, PARTISAN adds (i)
the runtime selection of overlay network, and (ii) a collection
of predominantly automatic latency reduction optimizations.

Latency Reduction Optimizations. PARTISAN applies the
above three optimizations, parallelism, named channels, and
affinitized scheduling (Section 4) to this lowest-common-
denominator view of actor systems to achieve sometimes
significant latency reduction (demonstrated in Section 6).

While some of these ideas for latency reduction have been
explored in the context of networking, these optimizations are
not exposed to the developer in distributed actor systems—this
work is the first to do so, to the best of our knowledge.

In order to enable the application developer to directly take
advantage of these optimizations when it makes sense for
their application, application developers only need to specify
the number of outgoing message queues (parallelism) and the
types of messages that are being sent (named channels); affini-
tized scheduling is automatically performed by the runtime.

5.2 API

PARTISAN is designed to be a drop in replacement for Dis-
tributed Erlang, with each API command in PARTISAN pro-
viding a 1-to-1 correspondence with Distributed Erlang. The
API of PARTISAN, and its corresponding calls in Distributed
Erlang, is provided in Table | and an example of the trans-
formation of a program from using Distributed Erlang to
PARTISAN is provided in Listing 1. Performing this 1-to-1
transformation converts a Distributed Erlang application to
use PARTISAN with optimizations disabled.

Like all distributed actor systems, PARTISAN’s API pro-
vides both membership operations, that are used for join-
ing/removing nodes from the cluster, and messaging oper-
ations, that are used for asynchronously sending messages.
PARTISAN’s programming model is both overlay-agnostic and
asynchronous. Therefore, all operations return immediately
and have overlay-specific behavior.

5.3 Implementation

PARTISAN is implemented as a library for Erlang and requires
no modifications to the Erlang VM. This was in an effort to
make PARTISAN’s scalability and latency benefits immedi-
ately available to production Erlang applications with mini-
mal changes to application code. PARTISAN is implemented
in 6.7 KLOC and is available as an open source project on

{partisan, [%% Enable affinity scheduling for all messages.
{affinity, enabled},

%% Enable parallel connections.
{parallel, enabled},

%% Optional: override default.
{parallel_connections, 163},

%% Specify available channels.
{channels, [vnode, gossip, broadcastl},

%% Selection of overlay.
{membership_strategy,
partisan_full_mesh_membership_strategy}1}.

Listing 3: Riak Core configuration for PARTISAN using op-
tions in Table 2 for experiments run in Section 6.2.

GitHub. This implementation of PARTISAN has several indus-
try adopters and a growing community.

5.4 Configuration

Configuration options to select overlay, enable parallelism,
and specify named channels are outlined in Table 2. List-
ing 3 demonstrates a configuration used in our Riak Core
evaluation which enables parallelism, named channels, and
affinitized scheduling for all messages. Users can choose to
annotate message sends with a channel for targeted use of
named channels and affinitized scheduling can be enabled for
all messages or for an individual message; these options are
demonstrated in Listing 2.

If the number of parallel connections is not specified by
the user, the system will default to a reasonable value for this
parameter based on the number of Erlang schedulers avail-
able. Under a default configuration of the Erlang VM, a single
scheduler maps to a single vCPU. This default configura-
tion and heuristic is discussed in detail in our experimental
evaluation. (Section 6.1).

5.5 Bring Your Own Overlay

PARTISAN exposes an API for users to implement their
own overlays; application developers must simply implement
the membership_strategy interface for handling messages.
PARTISAN automatically uses this membership strategy for
processing incoming and outgoing messages to the system —
the application developer only needs to handle internal state
transitions and supplying the system with an updated list of
members. PARTISAN automatically sets up required connec-
tions, serializes and deserializes messages, performs failure
detection, and message forwarding. This makes it possible to
implement protocols with very little code; our implementation
of the full-mesh membership protocol is 152 LOC.

6 Experimental Evaluation

To evaluate PARTISAN, we designed a set of experiments to
answer the following questions:
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Feature

Configuration Option

Enable parallelism with default number of connections
Specify number of N connections to each peer

Open N parallel connections for each of the named channels

Enable affinitized scheduling for all messages
Specification of overlay

{parallel, enabled}
{parallel_connections, N}

{channels, [Channell, Channel2]}
{affinity, enabled}
{membership_strategy, MembershipStrategy}

Table 2: PARTISAN’s configuration options

* RQ1: What are the benefits of affinitizing actor messag-
ing across a number of parallel TCP connections?

* RQ2: Can these optimizations be used on real-world
applications to achieve reduction in message latencies?

* RQ3: Does the selection of the overlay at runtime pro-
vide better scaling properties for the application?

We begin with a set of microbenchmarks (Section 6.1),
where we seek to examine the benefits of affinitizing actor
communication across a number of parallel connections. We
demonstrate that PARTISAN’s optimizations can provide re-
ductions in latency for workloads containing large objects, or
when deployed in high latency scenarios.

Next, we examine the applicability of these optimizations
on real-world applications (Section 6.2). Using a real-world
distributed programming framework with an example key-
value store, we show a significant reduction in latency under
both high latency scenarios (datacenter-to-datacenter com-
munication) and large object workloads through the use of a
combination of optimizations: parallelism, named channels,
and affinitized scheduling.

Finally, we explore the selection of the overlay on scaling
to larger clusters (Section 6.3). We demonstrate that we can
scale to order-of-magnitude larger clusters while maintaining
the same application semantics by specializing the overlay at
runtime to the application.

6.1 Microbenchmarks

To evaluate the optimizations in PARTISAN around latency
reduction (RQ1), we set out to answer the following questions:
(1) what is the effect of affinitizing actors; (ii) how does one
know how many parallel connections to use when affinitizing
actors; (iii) does affinitized parallelism benefit workloads in
high latency scenarios; and (iv) does affinitized parallelism
benefit workloads with large object sizes? We present a set of
microbenchmarks that address each of these questions.

Experimental Setup. For the microbenchmarks, we used
a single Linux virtual machine with 16 vCPUs with 64 GB of
memory. On this machine, we ran two instances of the Erlang
VM that communicate with one another using TCP with either
a simulated RTT latency of 1ms (RTT within a single AWS
availability zone) or 20ms (RTT between two availability
zones in the same AWS region.) A single Linux VM is used
for hosting both instances of the Erlang VM to ensure no

interference from the external network and to guarantee a
fixed latency during the duration of the experiment. This
virtual machine is purposely kept underloaded, as to not see
the effects of resource contention inside the Linux VM on
latency. Each Erlang VM is configured to run 16 schedulers
with kernel polling enabled.

Each of the microbenchmarks runs multiple configurations
of PARTISAN under both increasing latency and payload size,
with a fixed number of 10,000 messages per actor, per ex-
periment. We consider PARTISAN with parallelism disabled,
PARTISAN with parallelism, and PARTISAN with affinitized
parallelism. We do not consider named channels in the mi-
crobenchmarks, as named channels and affinitized parallelism
serve the same function: partitioning communication across a
number of TCP connections either automatically or by using
a user-specified partitioning key.

At the start of each experiment, N actors are spawned on
each of two instances of the Erlang VM (unless otherwise
specified, as in Figure 2), based on the desired concurrency
level. Each actor will send a single message to an actor on the
other node and wait for acknowledgement before proceeding.
Experiments were run using the full-mesh overlay, but the
optimizations are implemented for all overlays. Latency is
reported as the time to send a single message from the source
to the destination.

Results. We start by showing a baseline configuration of
Distributed Erlang compared with PARTISAN in Figure 1. Our
results show that leveraging additional connections and affini-
tizing communication increases performance regardless of
concurrency. With 128 actors, 512KB payload, and 1ms RTT,
PARTISAN with affinitized parallelism performs 1.69x better
than Distributed Erlang. Considering parallelism, but with-
out affinity, yields a 1.90x performance improvement. With a
uniform workload and without the network as a bottleneck,
affinitized scheduling yields a performance benefit over Dis-
tributed Erlang, but introduces a slight performance penalty
when compared to purely random scheduling.

In Figure 1, the number of parallel connections is specified
as 16; however, picking this number is not necessarily trivial!
Figure 2 shows the effects on outliers based on the number of
connections the system needs to maintain to its peers. Here,
we demonstrate that 16 connections is a good choice for
connections (and, the number selected as our best case in all
experiments.) But why 16? 16 is selected using the heuristic
that each Erlang VM is running 16 schedulers, one mapped
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Figure 3: Performance of Distributed Erlang and PAR-
TISAN broken out by optimization under a high latency
workload: round trip time between actors is set at 20ms,
object size is set at 512KB.

to a particular vCPU, and when the system needs to maintain
more connections than available schedulers, context switching
penalties manifest themselves as outliers (shown in Figure 2).

Focusing on these outliers, we might ask how bad does it
get? With 128 actors, 512KB payload, and 1ms RTT, moving
from 16 connections to 128 connections increases outliers
from a max value of 176ms to 1791ms, a 10.17x increase!

In Figure 3, we turn our attention to the question of net-
work conditions. In our first experiment (Figure 1), we chose
a Ims RTT to explore performance in a scenario where we
can assume our application is running within a single AWS
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Figure 2: Effects of scaling connections with the number
of actors on outliers.
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Figure 4: Performance of Distributed Erlang and PARTI-
SAN broken out by optimization under a large payload
workload: round trip time between actors is set at 1ms,
object size is set at SMB.

availability zone. But what happens if we don’t have such fa-
vorable network conditions? What if our application is spread
out between two AWS availability zones and suffers from
RTTs closer to 20ms instead? Figure 3 shows the effects of
running our earlier experiment this time with a 20ms RTT
latency between actors located on different nodes. As we can
see, as the latency increases, the system can take advantage of
more communications channels to parallelize inter-actor com-
munication on the network. With 128 actors, 512KB payload,
and 20ms RTT, PARTISAN with parallelism performs 10.92x
better than Distributed Erlang. By affinitizing parallelism, per-
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formance increases to 13.50x better than Distributed Erlang.

In the Erlang community, large message sizes are not un-
common. Consider again Riak, the distributed key-value store
which could contain user-stored and arbitrary-sized data. An
Erlang message then could contain a user-provided piece
of data megabytes in size. However, it’s well-known in the
Erlang community that Distributed Erlang doesn’t handle
large message sizes well. In fact, the Riak documentation
suggests to avoid storing objects larger than 1-2MB due to
the performance degradation that occurs due to Distributed
Erlang [5, 15]. Cognizant of this, we turn our attention to ques-
tion of how large payload size affects performance in PAR-
TISAN. Can PARTISAN overcome some of the performance
issues faced by Distributed Erlang with large payloads?

Figure 4 explores the effects of increasing payload size
on PARTISAN as compared to Distributed Erlang. Keeping
in line with the community-observed limits of Distributed
Erlang, we vary the message size from 512kb (below the IMB
performance degradation threshold) to 8MB (far above the
IMB performance degradation threshold). With 128 actors,
8MB payload, and 1ms RTT, PARTISAN with parallelism
performs 1.20x better than Distributed Erlang! By affinitizing
parallelism, performance increases to 2.63x.

Discussion. So far, we’ve seen that PARTISAN outperforms
Distributed Erlang in all of our microbenchmarks. We’ve
shown that the collection of optimizations made available to
Erlang applications by PARTISAN (that is, leveraging addi-
tional connections, and affinitizing work to those connections
based on the type of message and the node that the message
is being sent to), can drastically improve performance by
reducing latency, in some cases by over 30x.

But what does this mean practically? From these experi-
ments, it’s clear that Distributed Erlang was designed when
the sort of applications being written was limited as compared
to what we would like to write today; i.e., applications that
send small payloads within a single data center.

As we have shown in these experiments, PARTISAN goes
beyond this, and seems to be well-suited for enabling new
types of applications, such as: (i) applications that operate
with large data-centric workloads; (ii) applications that oper-
ate at a geo-distributed scale; (iii) the combination of both.

6.2 Evaluation: Latency Reduction in Riak

To determine the applicability of these optimizations to real-
world programs (RQ2), we asked the following questions:
(1) is it possible to modify existing application code to take
advantage of the PARTISAN optimizations through the use of
PARTISAN’s API, and (ii) do these optimizations result in the
reduction of latency for these programs?

To answer these, we ported the distributed systems frame-
work, Riak Core, to PARTISAN and built two example applica-
tions: (i) a simple echo service — an application that’s designed
to only be bound by the speed of the actor receiving messages
and the network itself; and (ii) a memory-based key-value

store that operates using read/write quorums — more represen-
tative of a workload where more data is being transmitted and
more CPU work has to occur.

6.2.1 Background: Riak Core

Riak Core is a distributed programming framework written
in Erlang and based on the Amazon Dynamo [13] system
that influenced the design of the distributed database Riak,
Apache Cassandra, and the distributed actor framework Akka.
In Riak Core, a distributed hash table is used to partition a
hash space across a cluster of nodes. These virtual nodes—the
division of the hash space into N partitions—are claimed by a
node in the cluster, and the resulting ownership is stored in a
data structure known as the ring that is periodically gossiped
to all nodes in the cluster. Requests for a given key are routed
to a node in the cluster based on the current partitioning of
virtual nodes to cluster nodes in the ring structure using con-
sistent hashing, which minimizes the impact of reshuffling
when nodes join and leave the cluster. Background processes
are used for cluster maintenance; ownership handoff, (trans-
ferring virtual node ownership) metadata anti-entropy (an
internal KVS for configuration metadata) and ring gossip (in-
formation about the cluster’s virtual node to node mapping.)
In our experimental configuration we use 1,024 virtual
nodes, the largest possible ring configuration for Riak Core.
This ring size requires the largest amount of system resources
— we account for this in our experiment — however, provides
the most fine-grained partitioning for individual requests.

6.2.2 Modifications to Riak Core to Support PARTISAN
To perform our evaluation of PARTISAN using Riak Core, it
was necessary to modify the existing application to take ad-
vantage of PARTISAN’s APIs. Our changeset to Riak Core in
order to use PARTISAN instead of Distributed Erlang is fairly
minimal: 290 additions and 42 removals including additional
logging for debugging, additional tests, and configuration.

The authors of Riak Core already realized that request
traffic and background traffic could be problematic, so one
mechanism inside of Riak Core—ownership handoff, respon-
sible for moving data between virtual nodes when partitioning
changes—already manages it’s own set of connections. This
mechanism alone contains roughly 900 LOC for connection
maintenance — code that could be eliminated and replaced
with calls to the PARTISAN API.

6.2.3 Echo Service

Experimental Setup. Our first application is a simple echo
service, implemented on a three node Riak Core cluster. For
each request, we generate a binary object, uniformly select a
partition to send the request to, and wait for a reply containing
the original message before issuing the next request. For each
request, we draw a key from a uniform distribution over 1,024
keys — matching the ring size of the cluster — and run the
key through Riak Core’s consistent hashing algorithm for
placement of the request. Requests originate at all of the nodes
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Figure 5: Performance of Distributed Erlang and PARTI-
SAN with affinitized parallelism using the echo service /
low latency workload: round trip time between actors is
set at 1ms, object size varies 1, 512, and 8192KB.
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Figure 7: Performance of Distributed Erlang and PAR-
TISAN with affinitized parallelism using the KVS / low
latency workload: round trip time between actors is set at
1ms, object size varies 1, 512, and 8192KB.

in the cluster, and based on the key placement, are routed to
the node responsible for handling the request. To ensure we
can compare the results between runs, we wait for the cluster
to stabilize before beginning the experiment.

Binary objects are generated for three payload sizes, 1KB,
512KB and 8192KB. Concurrency is increased during the
test execution and parallelism is configured at 16. We test two
latency configurations: 1ms, shown in Figure 5, and 20ms,
shown in Figure 6. We run a fixed duration of 120 seconds.

Results. Figure 5 demonstrates that with 128 actors, 1ms
RTT, and large payloads (8MB), PARTISAN is 2.84x faster
than Distributed Erlang. With medium (512KB) and small
payloads (1KB), PARTISAN is on par with Distributed Erlang
(0.95x - 1.00x).

Figure 6 demonstrates that with 128 actors, 20ms RTT,
and larger payloads (8MB), PARTISAN is 38.07x faster than
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Figure 6: Performance of Distributed Erlang and PARTI-
SAN with affinitized parallelism using the echo service /
high latency workload: round trip time between actors is
set at 20ms, object size varies 1, 512, and 8192KB.
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Figure 8: Performance of Distributed Erlang and PAR-
TISAN with affinitized parallelism using the KVS / high
latency workload: round trip time between actors is set at
20ms, object size varies 1, 512, and 8192KB.

Distributed Erlang (which achieves only 5 ops/second before
reaching peak throughput). With medium payloads (512KB),
PARTISAN is 7.25x faster than Distributed Erlang. With small
payloads (1KB), PARTISAN is on par with Distributed Erlang
(0.99x).

6.2.4 Key-Value Store

Experimental Setup. Our second application is a memory-
based key-value store, similar to the Riak database, imple-
mented on a three node Riak Core cluster.

Each key is hashed and mapped to a virtual node using the
ring structure that is gossiped in the cluster. The virtual node
that the key is hashed to, along with that virtual nodes’ two
clockwise neighbors on the ring, represent the three virtual
nodes that contain the three replicas for the data item. Each
request (either a get operation or put operation) to the key-
value store uses a quorum request pattern, where requests are
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made to these three replicas, and the response is returned to
the user when a majority (2 out of 3) replicas reply.

This pattern involves multiple nodes in the request path,
and each partition simulates a 1ms storage delay in the request
path. We reuse the aforementioned benchmarking strategy:
test execution is fixed at 120 seconds.

For each request, we draw a key from a normal distribu-
tion across 10,000 keys and run the key through Riak Core’s
consistent hashing algorithm for placement. The consistent
hashing placement algorithm aims for uniform partitioning of
keys across the cluster. Requests originate at all of the nodes
in the cluster, and based on the key placement, are routed to
the node(s) responsible for handling the request. To ensure we
can compare the results between runs, we wait for the cluster
to stabilize before beginning the experiment. We use a 10:1
read/write ratio for the experimental workload. Concurrency
is varied in our experiments (x-axis) and parallelism is con-
figured at 16. We test two latency configurations: 1ms, shown
in Figure 7, and 20ms, shown in Figure 8.

Results. Figure 7 demonstrates that with 128 actors, 1ms
RTT, and both medium (512KB) and small (1KB) payloads,
PARTISAN performs on par with Distributed Erlang (0.99x-
1.00x). With larger payloads (8MB), PARTISAN is 1.42x faster
than Distributed Erlang.

Figure 8 demonstrates that with 128 actors, 20ms RTT,
and small (1KB) payloads, PARTISAN performs on par with
Distributed Erlang (0.98x). With medium payloads (512KB),
PARTISAN is 1.50x faster than Distributed Erlang. With large
payloads (8MB), PARTISAN far exceeds the performance of
Distributed Erlang, achieving 102 ops/second; Distributed
Erlang only completes 1 operation during the entire 120s
execution.

6.2.5 Discussion

As we have shown in these experiments, PARTISAN is not only
well-suited as a replacement for Distributed Erlang, given its
similar performance under workloads that Distributed Erlang
was designed for, but PARTISAN also enables new classes of
applications in distributed actor frameworks. Our experiments
have shown increased throughput in applications with large
data-centric workloads: an example of this would be the Riak
distributed database without 1MB storage limitations.

6.3 Evaluation: Improving Scalability in Lasp
In our previous experiment on latency reduction in Riak Core,
we demonstrated optimizations for latency reduction in a dis-
tributed database that communicates with all of the nodes in
the cluster. This is one example of an application that benefits
from the full-mesh overlay. However, not all applications ben-
efit from, nor require, the full-mesh model that is default case
in Distributed Erlang. In this section, we address the question
of whether or not an application can benefit from selection of
the overlay at runtime (RQ3): specifically, the client-server
and peer-to-peer overlays.

100GB ¢

10GB - |

IGB -

100MB

10MB J I

32 64 128 256 512 1024
# Nodes

Figure 9: Comparison of data transmission for Lasp deployed
on the client-server and peer-to-peer overlays for different
cluster sizes (32 to 1024 nodes).

In order to understand the effect of overlay on scalability,
we focus on how many nodes we can scale our application to
under each overlay for an advertisement counter application
implemented with Lasp.

6.3.1 Lasp

Lasp [22] is a programming framework designed for large
scale coordination-free programming. Applications in Lasp
are written using shared state; this shared state is stored in
an underlying key-value store and is replicated between all
nodes. Applications modify their own replica and propagate
the effects of their changes to their peers. Lasp ensures that ap-
plications converge to the same result on every node through
the use of data structures known as Conflict-Free Replicated
Data Types [29], combined with monotone programming [3].

For our Lasp evaluation, the application is a simulated ad-
vertisement counter, modeled after the Rovio counter scenario
for Angry Birds [22]. In this application, each client keeps a
replica of a distributed counter that is incremented every time
an advertisement is displayed to the user and whose state is
periodically propagated to other peers in the system. When a
certain number of impressions is reached, the advertisement
is disabled and no longer displayed to the user.

The distributed counter used was a particular type of CRDT:
a Grow-Only Counter (G-Counter). The G-Counter maps
node identifiers at each of the clients to a monotonically in-
creasing counter. Clients increment their position in the map
and when merging state propagated from other nodes in the
system, the pair-wise maximum is taken for each component
in the map. To determine when an advertisement can be dis-
abled, a lower bound is checked according to the sum of the
components in the map: this represents a lower bound on the
total number of times an advertisement has been displayed.

Experimental Setup. For this evaluation, a total of 70
m3.2xlarge Amazon EC2 instances in the same region and
availability zone. Mesos [16], is used to subdivide each of
these machines into smaller, fully-isolated machines. Each
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container in Mesos represents a single Lasp node that com-
municates with other nodes in the cluster using PARTISAN.

The increment interval for each counter was fixed at 10s,
and the propagation interval for the counter was fixed at 5s.
The total number of impressions was configured to ensure that
the experiment would run for 30 minutes under all configura-
tions. The evaluation is performed on both the client-server
and peer-to-peer overlays for different cluster sizes, ranging
from 32 all the way up to 1,024 node clusters. For both over-
lays, the system propagates the full state of the counter to the
node’s peers at each propagation interval.

Note that since the Rovio advertisement counter scenario
was designed for mobile applications, we do not run the full-
mesh topology because it would be unrealistic. That is, in
the context of mobile apps, clients would not connect to all
other nodes, nor will they have knowledge of who all of the
clients in the system are. Rather, either mobile apps will com-
municate with some number of nearby peers (peer-to-peer) or
they will communicate through a server (client-server). Client-
server also serves as the standard model of deploying mobile
applications today. Thus, we designed our experiments to re-
flect this—we examine client-server and peer-to-peer overlays
for this application in our experiments.

Results. Figure 9 presents the total data transmission re-
quired for the experiment to finish as we scale the size of
the cluster from 32 to 1024 nodes. For smaller clusters of
nodes, client-server is the more efficient overlay in terms of
the amount of data that must be transmitted to finish the ex-
periment. However, this improved efficiency comes at a cost:
the client-server configuration is unable to scale beyond 256
nodes. More specifically, the experiment fails to complete
because of a crash failure of the server. This crash failure oc-
curs because of unbounded message queues: when the server
is unable to process the incoming messages from the clients
quickly enough, the Erlang VM allocates all available memory
for storage of the message queue. This unbounded allocation
results in termination of the Erlang by the Linux OOM killer
once the instance runs out of available memory.
Peer-to-peer is more resilient in the face of a node failure
allowing it to support larger clusters of nodes—up to 1024!
However, peer-to-peer is less efficient due to this—the redun-
dancy of communication links used by the overlay causes it
to transmit more data in order to complete the experiments.

Discussion. Perhaps the most interesting takeaway from
the results of this real-world large-scale experiment is that
the experiment was even possible at all with Erlang. As Dis-
tributed Erlang permits one to only use a full-mesh overlay,
it’s possible that the previous results observed by Ericsson [1]
on the maximum size of Erlang clusters—only 200 nodes—are
due to this full-mesh-only restriction.

This experiment suggests that PARTISAN may enable the
development of new applications with actors systems that
have not been previously possible by enabling the application

developer to, at runtime, change the pattern of communication
between nodes, without altering application semantics. Per-
haps the lack of mobile applications or even IoT applications
written using distributed actor systems is a symptom of the
full-mesh-only restriction.

7 Related Work

Head-of-line blocking is a well-known issue in the systems
and networking community, especially in systems that use
multiplexed connections. Facebook’s TAO [9] relies on multi-
plexed connections but allows out-of-order responses to pre-
vent head-of-line blocking issues. Riak CS [7], an S3-API
compatible object storage system build on Riak, arbitrarily
chunks data into IMB segments to prevent head-of-line block-
ing. Geo-replicated Riak [6] contains an ad hoc implementa-
tion of node-to-node messaging to avoid Distributed Erlang at
cross-region latencies. Distributed Erlang now includes a fea-
ture for arbitrarily segmenting messages into smaller chunks
to reduce the impact of head-of-line blocking [17].

Ghaffari et al. [15] identified several factors limiting Er-
lang’s scalability: (i) increasing payload size and (ii) head-
of-line blocking with Erlang’s RPC mechanism — two of the
limiting factors in Riak 1.1.1’s ~ 60 node limit on scalabil-
ity. Chechina et al. [11] proposed partitioning the graph of
nodes into subgraphs and using supernodes for connecting
the groups, avoiding the problems of full-mesh connectivity.

8 Conclusion

We presented PARTISAN, an alternative runtime system for
improved scalability and reduced latency in actor applications.
PARTISAN provides higher scalability by allowing the applica-
tion developer to specify the network overlay used at runtime
without changing application semantics, thereby specializ-
ing the network communication patterns to the application.
PARTISAN reduces message latency through a combination
of three predominately automatic optimizations: parallelism,
named channels, and affinitized scheduling. We implemented
PARTISAN in Erlang and showed that PARTISAN achieves up
to an order of magnitude increase in the number of nodes the
system can scale to through runtime overlay selection, up to
a 38.07x increase in throughput, and up to a 13.5x reduction
in latency over Distributed Erlang.
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Availability

PARTISAN is available at https://github.com/
lasp-1lang/partisan. Instructions for reproducing our re-
sults are available at https://github.com/cmeiklejohn/
partisan-usenix-atc-2019.
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Abstract

Dynamic binary translation (DBT) is a key system tech-
nology that enables many important system applications such
as system virtualization and emulation. To achieve good per-
formance, it is important for a DBT system to be equipped
with high-quality translation rules. However, most translation
rules in existing DBT systems are created manually with high
engineering efforts and poor quality. To solve this problem, a
learning-based approach was recently proposed to automati-
cally learn semantically-equivalent translation rules, and sym-
bolic verification is used to prove the semantic equivalence
of such rules. But, they still suffer from some shortcomings.

In this paper, we first give an in-depth analysis on the con-
straints of prior learning-based methods and observe that the
equivalence requirements are often unduly restrictive. It ex-
cludes many potentially high-quality rule candidates from
being included and applied. Based on this observation, we
propose an enhanced learning-based approach that relaxes
such equivalence requirements but supplements them with
constraining conditions to make them semantically equivalent
when such rules are applied. Experimental results on SPEC
CINT2006 show that the proposed approach can improve the
dynamic coverage of the translation from 55.7% to 69.1%
and the static coverage from 52.2% to 61.8%, compared to
the original approach. Moreover, up to 1.65X performance
speedup with an average of 1.19X are observed.

1 Introduction

Dynamic binary translation (DBT) is a key enabling tech-
nology for many critical system applications such as system
virtualization and emulation [20, 28], whole program/system
analysis [6, 13], software development and debugging [14], se-
curity vulnerability detection and defense [15, 17], computer
architecture simulation [22,27,29], and mobile computation
offloading [26]. There have been many widely-used DBT
systems, such as Pin [18], Valgrind [21] and QEMU [2].

In general, a DBT system takes an executable binary code
in one instruction set architecture (called guest ISA) and

dynamically translates it into the binary code in another in-
struction set architecture (called host ISA). The translation
process is mostly driven by translation rules that translate
guest instructions into a sequence of semantically-equivalent
host instructions [23].

For a DBT system, its performance is dominated by the
quality of the translated host binary code [25]. Therefore,
it is very important for a DBT system to be equipped with
high-quality translation rules. However, due to the complex-
ity and opacity of modern ISAs, it is difficult to manually
construct such high-quality translation rules as it poses a
significant engineering challenge. Even worse, to support re-
targetable DBTs (from multiple guest ISAs into multiple host
ISAs) in the same framework, a set of pseudo-instructions
are commonly used as their internal representations [2]. As
the execution time is directly proportionate to the number
of host instructions executed, such a multiplying effect has a
significant impact on the overall DBT performance.

To improve the quality of translation rules and reduce en-
gineering efforts, a learning-based approach [23] is recently
proposed to learn automatically binary translation rules. Since
the translation rules are learned from the optimized binary
codes generated by the compiler, this approach is capable of
yielding higher quality translation rules than existing manual
schemes. Moreover, the whole learning process can be fully
automated without manual intervention. Although the above
approach is attractive, it still suffers from some fundamental
limitations. That is, a translation rule can be harvested (i.e.,
learned) only if the guest and the host binary code that cor-
respond to the same program source statement(s) are strictly
semantically equivalent. This is enforced through a symbolic
verification process.

On the surface, this equivalence verification process is nec-
essary and appropriate because it guarantees the correctness
of the learned rules. However, further investigation reveals
that this equivalence requirement is often unduly restrictive. It
excludes many potentially high-quality rule candidates from
being harvested and applied. In particular, such restrictions
usually keep architecture-specific instructions in guest and/or
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host ISAs from being included for more efficient translation
as they are mostly architecturally specific, and thus inherently
different and more challenging to prove semantic equivalence.

To overcome this limitation, this paper presents an en-
hanced learning-based approach that relaxes such restrictions
and allows more translation rules to be harvested and ap-
plied. More specifically, it purposely relaxes the requirements
of semantic equivalence and allows semantic discrepancies
between the guest and host instructions to exist in the trans-
lation rules, e.g., different condition codes or the different
number of operands in matching guest and host instructions.
Symbolic verification process is no longer just to check the
strict semantic equivalence between the matching guest and
host instructions, but also to identify the specific semantic
discrepancies between them that can be used during the rule
application phase to verify whether such discrepancies either
will not cause ill effect, or are satisfied in the context of the
rules being applied (for more details see Section 4). We call
such semantic equivalence in the translation rules constrained
semantic equivalence as the specific semantic discrepancies
of the translation rules become the constraining conditions
for such rules to be safely applied. This requires some run-
time program analysis (mostly in a very limited scope) during
the rule application phase, which usually incurs very small
overhead. Those with very complicated constraining condi-
tions that require extensive runtime program analysis will be
discarded.

To demonstrate the feasibility and the benefit of such
constrained-equivalent translation rules, we have imple-
mented a prototype based on the proposed approach. The
prototype includes an enhanced learning framework and a
DBT system that applies the constrained-equivalent trans-
lation rules to generate host binary code. We evaluate the
implemented prototype using SPEC CINT2006. Experimen-
tal result shows that the proposed approach can significantly
improve the harvest rate of the learning process from 20.3%
to 25.1% and dynamic coverage from 55.7% to 69.1% while
static coverage from 52.2% to 61.8%, compared to the orig-
inal learning approach in [23]. Moreover, no degradation is
observed for the learning efficiency, i.e., around 2 seconds to
yield a translation rule, which is the same as the original learn-
ing process. After applying the enhanced translation rules, we
achieve up to 1.65X performance speedup with an average of
1.19X compared to the original approach.

In summary, this paper makes the following contributions:

e We propose an enhanced learning-based approach that
can harvest and apply constrained-equivalent translation
rules discarded by the original approach, and allows DBT
systems to generate more efficient host binary code.

e We implement the proposed learning-based approach in
a prototype, which includes a learning framework based
on LLVM and a DBT system extended from QEMU to
accept the constrained-equivalent translation rules.

e We conduct some experiments to evaluate the proposed
learning-based approach. Experimental results on SPEC
CINT2006 shows that our approach can achieve up to
1.65X speedup with an average of 1.19X compared to
the original learning approach.

The rest of this paper is organized as follows. Section 2
presents some background of the original non-constrained
semantically-equivalent learning-based approach. In Sec-
tion 3, we identify some technical challenges in learning and
applying constrained-equivalent translation rules. Section 4
presents the design issues of our enhanced learning-based
approach. In Section 5, we describe some implementation
details of the prototype and evaluate the proposed approach
and show some experimental results. Section 6 presents some
related work and Section 7 concludes the paper.

2 Background

In this section, we introduce some background information
on how a DBT and a learning-based approach such as the one
proposed in [23] work.

2.1 Dynamic Binary Translation (DBT)

Typically, a DBT system adopts a guest basic block (or block
for short) as the translation unit to translate guest binary code
into host binary code. A basic block comprises a sequence of
instructions with only one entry and one exit, and thus when-
ever the first instruction of a basic block is executed, the rest
of the instructions in this block will be executed exactly once
in order. It is worth noting that, due to the semantic differ-
ences between the guest and host ISAs, one guest block may
be translated into multiple host blocks by the DBT system.

To translate a guest basic block, the DBT system firstly
disassembles the guest binaries to obtain guest assembly in-
structions. Then, it tries to match the guest instructions with
available translation rules. After a matched translation rule
is found, the corresponding guest instructions are translated
into host instructions as specified in the translation rule. This
process could be iterated multiple times until all instructions
in the guest block are translated. Finally, the generated host
instructions are assembled into host binaries and executed
directly on host machines. Figure | shows an example of such
a translation process, where ARM is the guest ISA, and x86 is
the host ISA. In this example, two translation rules are applied
to translate two ARM instructions into two x86 instructions,
respectively.

To mitigate the performance overhead incurred during the
translation process, especially for short-running guest applica-
tions, the translated host binary code is stored into a memory
region called code cache, and reused in the later execution.
After all instructions in a guest block are translated, the execu-
tion flow of the DBT system is transferred to the code cache.
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Figure 1: Dynamic binary translation from ARM to x86
driven by manually-constructed translation rules. Here, for
simplicity, we assume the guest registers r0 and r1 are emu-
lated using the host registers eax and edx, respectively.

A hash table is employed to establish the mapping between
the guest binary code and the corresponding translated host
binary code in the code cache. Each time a guest block is
encountered, the hash table is looked up to find out whether
there exists a host code in the code cache that corresponds to
this guest block. If yes, the translation process will be skipped,
and the stored host binary code will be executed. Otherwise,
the guest block is translated, and the hash table is updated
with the added translated host binary.

2.2 Learning Translation Rules

As mentioned earlier, the translation process in a DBT system
is mainly directed by translation rules, which also determine
the quality (i.e., performance) of the translated host binary
code. Therefore, it is vital for a DBT system to have high-
quality translation rules for better performance. However, in
practice, it is a significant engineering challenge to develop
high-quality translation rules as most translation rules in ex-
isting DBT systems are constructed manually by developers.
Moreover, modern ISAs are often documented in obscure
and tediously long manuals. For example, Intel’s manual has
around 1500 pages for the x86 ISA. It requires substantial
engineering efforts to understand both the guest and the host
ISAs to construct high-quality translation rules.

To solve this problem, a recent approach proposes to auto-
matically learn binary translation rules [23]. More specifically,
this approach uses the same compiler for different ISAs, i.e.,
LLVM-ARM and LLVM-x86, to compile the same source
program. During the compilation process, it extracts binary
translation rules from ARM and x86 binary code that cor-
respond to the same program source statement(s). This is
inspired by the observation that the binary code compiled

Source code

char *e=s+(n- 1);

LLVM-ARM LLVM-x86
ARM instruction x86 instruction
addrl, rl, r0 leal -0x1(%edx, %eax), Y%edx
subrl, rl, #1

Guest (ARM)
add reg0, reg0, regl A learned
sub reg0, reg0, #immO translation
Host (x86) rule
leal -immO(reg0, regl), reg0

Figure 2: Automatically learning binary translation rules
during the compilation process of program source code. Com-
pared to the translation rules used in Figure 1, the learned
translation rule can generate more efficient host binary code.

by the same compiler for different ISAs from the same pro-
gram source code should be equivalent in program semantics.
To further enforce such equivalence requirement, a symbolic
verification engine is developed to filter out rule candidates
in which guest and host binary code are not semantically
equivalent.

Figure 2 illustrates an example of the above learning pro-
cess, In this example, the program source statement is com-
piled into two ARM instructions and one x86 instruction by
LLVM-ARM and LLVM-x86, respectively. Using symbolic
execution, we can verify that the guest ARM register r1 and
the host x86 register edx should have the same value assum-
ing the same initial condition. We can thus prove that the
sequence of the two ARM instructions is semantically equiva-
lent to the single x86 instruction in the example. A translation
rule that maps the sequence of the two ARM instructions into
one x86 instruction can then be harvested. Recall the example
in Figure 1. If we use this learned rule to translate the guest
binaries, we only need one host instruction instead of two as
shown in the example, i.e. more efficient host binary code can
be generated.

3 Issues and Challenges

The significance of the above learning approach is two folds.
Firstly, it can automatically learn binary translation rules for
DBT systems with less burden on developers. Secondly, given
that the translation rules are learned directly from binary
code generated by the native compilers, it is more likely that
the harvested translation rules are more optimized than the
translation rules naively constructed by hand, as shown in
Figure 2 and Figure 1.

Theoretically, if we keep training such a learning-based
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Figure 3: Two examples to demonstrate the limitation of
the learning approach in [23]. These two rule candidates are
discarded because the guest registers r0 in (a) and r1 in (b)
have no equivalent host register.

system with a large number of source programs, we should be
able to harvest a large number of translation rules and apply
them to guest binaries with good coverage. Unfortunately,
after a more thorough study of this approach, we found it
suffers from a fundamental limitation that prohibits it from
harvesting many high-quality translation rules. In this section,
we explain in more details such limitations and identify some
technical challenges if we want to overcome them.

A Fundamental Limitation. To guarantee the correctness
of the learned translation rules, it employs a symbolic veri-
fication engine to check the exact semantic equivalence be-
tween the guest and host binary code sequences. More specif-
ically, the semantic equivalence is verified in three aspects
that include matching register operands, memory operands
and branch conditions. More details can be found in [23].

If the verification results show that the guest and host binary
code sequences are not strictly equivalent, the rule candidate
is discarded and no translation rule is harvested. Undoubtedly,
such a verification process is necessary and appropriate. How-
ever, by a more detailed study on the discarded rule candidates,
we found that the requirement of exact semantic equivalence
is too restrictive. Many high-quality rule candidates are forced
to be discarded, especially those guest and host binary code
sequences that are more architecturally specific and their ISAs
are significantly different, such as ARM (a reduced instruction
set computer (RISC)) and Intel x86 (a complex instruction
set computer (CISC)) in our example.

Figure 3 shows two examples of this limitation. Here, simi-
lar to the previous examples, the guest ISA is ARM and the
host ISA is Intel x86. In Figure 3(a), the value of the vari-
able x is increased by one through the increment operator as
shown in the source code. With its RISC ISA, the ARM com-
piler generates three instructions for this source statement:
loading the original value of x, performing the addition, and
then storing the result back to x. In contrast, the Intel x86
compiler needs only one instruction, incl, with its CISC ISA.

Source code Source code

while (iters-- > 0)

LLVM-x86 LLVM-ARM

if (--x == 0)

LLVM-ARM LLVM-x86

ARM instruction x86 instruction ARM instruction x86 instruction

1dr 10, [r1, #56] decl 0x38(%eax)  subsr2, 12, #1 leal -0x1(%ecx), %ecx
subs 10, r0, #1
strr0, [rl, #56]

Discarded Discarded

(@ (b)

Figure 4: Another two rule candidates discarded by the learn-
ing approach in [23] because of the different condition codes
in guest and host ISAs.

Similarly, in Figure 3(b), the x86 instruction cmpl can have
a memory operand, but an ARM 1dr instruction is required
before the cmp instruction. In these two cases, the verifica-
tion will fail because there is a mismatch of register operands
between the guest and the host code sequences, i.e. there is
no host register that matches and holds the same value as the
guest register r0.

However, if we examine these two examples more care-
fully, we will find that the root cause of the failed verification
stems from the inherent differences between the guest and
the host ISAs. In practice, such architectural differences are
quite common and pervasive in different ISAs, even if they are
both RISCs or CISCs. For instance, a post-indexed memory
load instruction in ARM will modify the address register after
the loading operation, while there is no similar instruction in
MIPS, which is another representative RISC ISA.

In fact, these differences represent the essence of the ar-
chitectural design unique to each ISAs. It is indeed a huge
loss for a learning-based approach to discard such rule can-
didates simply because of their ISA differences. As they are
architecturally specific, they are often the most efficient code
sequences selected by the native compilers for specific pro-
gram contexts and thus have a high potential to turn into
high-quality translation rules.

Another shortcoming resulted from the aforementioned
limitation is that it also excludes many rule candidates that
contain instructions associated with architecture-specific hard-
ware support. For instance, many architectures have condi-
tion codes (also known as eflags in x86 machines). They are
single-bit registers used to store the execution summary of
an instruction and can influence the control flow of the later
instructions. In particular, ARM has four condition codes: neg-
ative (NF), zero (ZF), carry (CF), and overflow (VF), while
x86 has seven condition codes: carry (CF), parity (PF), adjust
(AF), zero (ZF), sign (SF), direction (DF), and overflow (OF).

Figure 4 shows two examples with instructions related to
condition codes. In Figure 4(a), the source code decreases the

80 2019 USENIX Annual Technical Conference

USENIX Association



value of x by one and then checks the result to see whether
it is zero or not. An ARM instruction subs is generated to
perform the subtraction and update the condition codes. Here,
subs updates all four ARM condition codes, including CF.
Similarly, an x86 instruction decl is used to decrease the
value stored in the memory operand by one and update the
condition codes. However, decl updates all x86 condition
codes, except CF. As a result, the verification process in the
original learning-based approach will consider the ARM and
x86 code are not semantically equivalent and discard this rule
candidate. Similarly, the rule candidate in Figure 4(b) is also
discarded because the x86 instruction leal does not update
any condition code. In fact, the source code in Figure 4(a)
only needs to check whether the result is zero or not, which
only requires the condition code ZF. Thus, it is unnecessary to
update the condition code CF, as it is never used in this context.
That means, it is still possible to harvest this translation rule
and apply it, if the ARM condition code CF is not used (i.e.
dead) in the later code before it is updated. Similarly, the rule
candidate in Figure 4(b) can also be harvested.

Technical Challenges. Although such limitations could
exclude many high-quality translation rules during the learn-
ing process, it faces several technical challenges if we want
to harvest them and apply them in a DBT system for a better
performance and higher coverage.

First, we have to relax the original verification objectives
as they are designed to verify the exact equivalence between
the guest and host code sequences.

Second, given that most of those translation rules are not
strictly equivalent, it is imperative that we have a mechanism
to enforce their correctness when we apply them. Equally
important is that the performance overhead incurred by such
enforcement should be less than the performance gain they
can provide.

Last but not least, in the original learning approach, a
learned translation rule only needs to include two parts, i.e.,
the guest and host instructions, and this is typically sufficient
for a DBT system. However, for the constrained-equivalent
translation rules, whether we can apply these rules at runtime
or not depends on the context they are being applied. As a
result, we need to extend the structure of translation rules to
include such constraining requirements.

4 An Enhanced Learning-Based Approach

In this section, we present the design of the proposed en-
hanced learning-based scheme, starting with an overview of
the system framework.

4.1 Overview

The major goal of our enhanced learning-based approach is to
learn and apply high-quality translation rules excluded by the
original learning approach. These translation rules contain

constrained-equivalent guest and host instructions, and thus
cannot be harvested using the original learning approach. To
this end, we redesign the learning process, reorganize the
structure of the learned translation rules, and make necessary
extensions to the DBT system to allow the application of the
constrained-equivalent translation rules.

Figure 5 illustrates the workflow of our enhanced learning-
based approach. To learn translation rules, we also compile the
same program source code using the same compiler for guest
and host ISAs to generate two versions of the binary code. We
then extract guest and host code sequences that correspond to
the same learning scope and consider them as the candidates
for the translation rules. The learning scope is defined at the
program source code level. In the original learning system,
the default learning scope is set to be one source statement.
The extracted guest and host code sequences then form a rule
candidate. For each rule candidate, the next step is to verify
whether the corresponding guest and host code sequences are
constrained equivalents or not. If yes, a translation rule can
be harvested. Otherwise, the rule candidate is discarded.

As an example to demonstrate our approach and by study-
ing the rule candidates discarded by the original learning
scheme, we consider the guest and host code sequences in
arule candidate as constrained equivalent if every modified
guest storage operand contains the same value as a modified
host storage location at the end of the code sequences and
vice versa. Here the storage operand is broadly defined, as
it can be either a register, a memory location, or a condition
code (i.e., eflag). Furthermore, it is allowed that there is no
corresponding modified storage location in the host code se-
quences, e.g., a corresponding condition code as mentioned
earlier.

Using this relaxed and constrained equivalence definition,
the guest and host code sequences can be semantically equiv-
alent only if all modified guest storage operands without the
corresponding host storage operands (e.g., condition codes)
are not used in the following guest binaries before they are
modified again. These modified guest storage operands with-
out the corresponding host storage operands can be considered
as the constraining condition of this constrained-equivalent
translation rule.

In our framework, the semantic equivalence can be relaxed
in other ways as long as the discrepancies can be identified
and shown either having no ill effect in the context they are
applied or can be compensated to make them semantically
equivalent when they are applied. In other words, their con-
straining conditions can be identified and satisfied when these
rules are applied. To simplify our prototype design, we only
consider relaxing the requirement of exact mapping of the
storage operands as defined earlier. The identified constrain-
ing conditions are integrated into the learned translation rules
to determine whether it is safe to apply them or not. It is
worth noting that for strictly equivalent translation rules the
constraining condition is null.
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Figure 5: The work flow of the proposed enhanced learning-based approach.

To determine whether the constraining condition is met or
not, a lightweight runtime analysis is employed to determine
the program context in which the guest instructions is to
be translated. In our case, the program context includes the
information about which guest storage operand is modified
by the guest instructions and used in the later code before it
is modified again. The program context is then used to verify
whether the constraining condition is satisfied or not. If yes,
the translation rule can be applied, otherwise, it is discarded.

4.2 Varying Learning Scopes

In the original learning scheme, the learning scope is limited
to one source statement. Although it appears to be reasonable,
it may miss potential rule candidates as it is very common
for compilers to perform optimization across multiple source
statements. Therefore, our enhanced learning approach varies
the learning scope from one to n source statements, and apply
each learning scope over the source program.

More specifically, a sliding window is employed. The slid-
ing window of size n covers n contiguous source statements,
i.e. the sliding window covers the learning scope of n state-
ments. Guest and host instructions that correspond to the n
statements in this window are extracted as a rule candidate.
The sliding window moves from the first line of the source
code toward the end of the code. The window size is initially
set to 1, and incremented by one after each pass through the
sources code. When the window of size i is moved through
all the source code, the number of rules learned from current
window size will be compared to the number of rules learned
from window sizes 1 to i — 1. If new rules learned from win-
dow size i are less than 10% of all learned rules from window
sizes 1 to i — 1, the learning process will be stopped.

4.3 Learning Constrained-Equivalent Rules

To verify the constrained equivalence of the guest and host
instructions in a rule candidate, we use the same symbolic
verification engine, but relax the requirements for semantic
equivalence.

First, we establish an initial mapping between guest and
host live-in operands the same way as the original learning
approach, i.e., guest registers — host registers, guest memo-

ries — host memories, and guest immediate values — host
immediate values (i.e. constants). Then, we initialize the
mapped guest and host operands with the same symbol values
and symbolically execute the guest and host code sequences,
respectively. After the symbolic execution, we extract the
symbol results of the modified guest and host registers, mem-
ories, and condition codes. These results are then fed into
a SMT solver to figure out, for each modified guest regis-
ter/memory/condition code, whether there exists a modified
host register/memory/condition code corresponding to it or
not. If each modified guest operand is mapped to a modified
host operand, an original rule is generated.

If the SMT solver indicates that there exists a modified
guest memory operand that does not have a matching host
memory operand, we discard this rule candidate. If a modified
guest register/condition code has no matching modified host
register/condition code, we can harvest this rule candidate as
the guest and host instructions can still be constrained equiv-
alent. Moreover, such unmatched guest registers/condition
codes are recorded as constraining conditions of the learned
rules and will be checked when the rules are applied. The rea-
son for discarding candidate rules with unmatched memory
operands is that the resulting constraining conditions will re-
quire time-consuming data dependence analysis to determine
whether the constrained equivalence is satisfied or not when
such rules are applied.

Otherwise, all other rules are considered as a non-
equivalent rule and be discarded.

4.4 Lightweight Online Analysis

For each constrained-equivalent rule to be applied, an online
analysis is invoked to analyze the program context of the
guest code sequence. The context information includes the
data flow of the guest registers and condition codes, which
can be obtained by statically analyzing the guest instructions.
The context information is then used to determine whether the
constraining condition of the matched constrained-equivalent
rule is satisfied. For instance, if the analysis shows that a mod-
ified guest register is not mapped to any modified host register
in the rule, and this modified guest register is not used in the
following guest code, we can determine that the constraining
condition has been satisfied in the program context, and the
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translation rule can be applied.

In general, to collect the context information, the online
analysis examines guest instructions that are executed after
the matched guest instruction sequence. Each instruction is
examined to see whether it defines or uses the register(s) or
condition code(s) specified in the constraining condition of
the matched translation rule. If a definition can be found
before usage on all paths following the matched guest code
sequence, the matched rule can be applied safely. Otherwise,
if usage is found, the matched rule should not be applied
as the modified guest register/condition code is used but the
matched rule does not update it.

For indirect branch instructions, it is quite difficult to iden-
tify all possible branch targets statically. For simplicity, we
stop the online analysis when an indirect branch is encoun-
tered and the translation rule will not be applied for safety
consideration.

4.5 Handling Predicated Instructions

Predicated instructions are very common in many ISAs, e.g.,
ARM and MIPS. A predicated instruction executes only if its
predicate bit is "True". Otherwise, the instruction is a "nop".
For example, "add ne 10, 10, r1" in ARM will be executed
only when the condition code is not equal ("ne"). Some ISAs
like x86 do not support predication, and conditional branches
are used instead. It is worth noting that the original learning
approach cannot handle predicated instructions. So how to ef-
ficiently support predicated instructions is another important
design issue for a learning-based approach because the predi-
cate tag in predicated instructions and conditional branch are
not equivalent although the execution results are the same.

In translation, we use a lightweight analysis to divide pred-
icated instructions into multiple blocks and generate condi-
tional branches around those blocks according to their pred-
icate information to support the translation of predicate in-
structions. Before translating a basic block, we first check the
predicated condition of all instructions and divide the basic
block into multiple condition blocks. Each condition block
includes instructions with the same predicated condition. In
one condition block, the translation rules can be directly ap-
plied without considering the predicated condition. After a
condition block is translated, a branch instruction with the
opposite condition is added to the host basic block before
the translated condition block is added to the host block. The
branch target is the instruction following the end of the host
block. This analysis is very lightweight and each basic block
only needs to be checked once.

Note that an instruction with a predicated condition may
change the condition codes itself. For example, cmp ne r0,
0 will update the condition code if the last condition code is
not equal. So, instructions after these instructions that may
change condition codes should be divided into a new condi-
tion block even the predicated condition is the same.

4.6 Discussion

Our enhanced learning approach currently only supports user-
level applications. The translation for full-system level ap-
plications is not supported because full-system translation is
more complex with mechanisms such as system calls, inter-
rupts and device I/0O. These mechanisms make the learning
and matching of rules more difficult. It is left in our future
work.

ABIs and many instructions such as indirect branches are
not supported either. For ABIs, the calling conventions, such
as how parameters are passed and how many parameters are
used, are difficult to be identified and translated by rules. For
example, ARM use registers to pass parameters but no specific
instructions are used. But in X86, the push instructions will
be used for passing parameters. For indirect branches, DBT
systems usually search the branch target address according to
a branch table maintained at runtime, which is not available
at compile time. It makes it impossible to translate by our
learned rules.

5 Experimental Results

In this section, we evaluate our prototype and address the
following research questions:

1. How much performance improvement can be obtained
by our enhance learning scheme in which we relax the
requirement of matching storage operands as described
in Section 47

2. Where does the performance improvement come from
when we include the added constrained-equivalent trans-
lation rules?

3. What is the effect of relaxing the strict semantic equiva-
lence requirement?

4. How much overhead will the dynamic analysis incur?

5.1 Experimental Setup

Our enhanced learning-based DBT prototype is implemented
based on QEMU (version 2.6.0) which is the same as the
original learning scheme. The guest ISA is ARM, and the
host ISA is x86. The LLVM compiler (version 3.8.0) is used
to generate binary code for guest/host ISAs. All binary codes
are generated using the same optimization level -O2. The
same version of source code and guest/host binary code are
used for comparison. One machine with 3.33GHz Intel Core
17-980x with six cores (12 threads) and 16GB memory is
set up exclusively for performance evaluation. The operating
system is the 32-bit Ubuntu 14.04 with Linux 3.13 for both
machines. We used an older version of the system because we
need to compare our new approach with the original approach,
which used the same older version of the system. Besides, our
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Figure 6: Performance comparison of the original and en-
hanced learning-based approaches.

experimental results are valid regardless of the system version
used.

We use the 12 benchmarks in SPEC CPU INT 2006 with
the reference inputs in our studies. To be as close to the
real-world usage scenarios as possible, the performance of
each benchmark is evaluated by the rules learned from other
11 benchmarks excluding evaluated benchmark itself. Each
benchmark is run three times to reduce the random influence.
The enhanced learning scheme described earlier is imple-
mented in Python. The enhanced verification is implemented
based on FuzzBALL [19], a symbolic execution engine. The
tiny code generator (TCG) in QEMU is also enhanced to sup-
port the translation of predicated instructions as described
in the last subsection, As mentioned earlier, to apply the
constrained-equivalent translation rules, the dynamic anal-
ysis should be performed before such rules are applied.

5.2 Performance Results

Figure 6 shows the performance comparison of our enhanced
learning-based scheme (marked as enhanced) and the original
learning-based approach (marked as origin). The performance
of QEMU without using any of the learning schemes is used
as the baseline. Table | shows the MIPS of performance of
original and enhanced approaches.

Using the ref input for all SPEC benchmarks, the quality
of the translated host code is the major factor that impacts
the overall performance. As shown in Figure 6, our enhanced
learning scheme can achieve a performance improvement of
up to 2.55X with an average of 1.74X compared to QEMU,
which is a 1.19X improvement over the original learning
approach on average.

By studying the learned translation rules and how they are
applied using our enhanced learning approach, we have the
following observations on how they impact the overall per-
formance. First, constrained-equivalent translation rules can
usually be applied quite successful. The modified guest reg-
isters/condition codes that have no matching modified host
registers/condition codes will usually be modified quickly
again. This means they are only used to hold temporary value
as we expected. Hence, relaxing strict matching requirements

Table 1: MIPS of the original and enhanced learning-based

approaches
Benchmarks Original enhanced
perlbench 221.63 250.15
bzip2 1211.32 1388.92
gce 521.78 575.09
mcf 603.99 739.93
gobmk 372.18 616.31
hmmer 1448.56 1632.93
sjeng 474.71 485.23
libquantum 1469.59 1532.97
h264ref 189.99 215.69
omnetpp 195.28 284.74
astar 396.10 562.51
xalan 283.19 290.52
GEOMEAN 475.15 567.29

for storage operands can yield more translation rules, albeit
constrained-equivalent rules, and can be applied quite effec-
tively.

Second, by relaxing the equivalence constraints to allow
constrained-equivalent translation rules that can include pred-
icated and condition instructions greatly improve the overall
performance. This is because typical DBTs such as QEMU
usually use memory locations to emulate the condition codes.
Such an approach will incur many additional memory opera-
tions to access and update those condition codes in memory
and incur very high overhead. But the constrained-equivalent
translation rules can take advantage of the host condition
codes to emulate guest condition codes, which can signifi-
cantly reduce such overheads.

Figure 7(a) and Figure 7(b) show the static and dynamic
coverage of the guest binaries using the origin and our en-
hanced learning-based schemes, respectively. The "Coverage”
here is defined as the percentage of guest instructions that can
be translated by the learned rules. So the "static” coverage is
the percentage of static code translated by learned rules and
"dynamic" coverage here is the percentage of "executed” guest
instructions translated by learned rules. Compare to the origi-
nal learning-based scheme, our enhanced learning scheme can
improve the static coverage from 52.2% to 61.8%, and the dy-
namic coverage from 55.7% to 69.1% on average. It is worth
noting that gcc and libquantum have a much higher dynamic
coverage improvement than others, but do not get an expected
higher performance improvement. Conversely, gobmk attains
a high performance improvement but not as much coverage
improvement. The reason is that many high-quality rules are
applied when translating gobmk, but in gcc and libquantum,
the applied rules can only attain moderate improvement. This
seems to indicate that the coverage improvement does not
translate directly to the overall performance improvement,
but could be an important secondary effect.
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Figure 7: Static and dynamic coverage of translation rules.

To address the question of "where does the performance im-
provement come from when we include the added constrained-
equivalent translation rules?", we analyze the coverage of the
added translation rules when they are applied in each pro-
gram. The results are shown in Figure 8. As described in
Section 4, there are three major components in our relaxed
equivalence constraints, i.e. we remove the strict requirement
of exact matching. They are (1) register operands (marked as
register), (2) condition-code operands (marked as condition),
and (3) predicated-related instructions (marked as predicate).
We did not include memory operands because they require
more complicated data dependence analysis when they are
applied.

A very interesting observation is that, among the added
constrained-equivalent translation rules (their increased cov-
erage is shown in Figure 7), the register-related constrained-
equivalent translation rules constitute 58.83% of the static in-
structions on average. However, they only constitute 13.58%
of added dynamic coverage. But the dynamic coverage of
condition-code related rules is increased to 54.02% on av-
erage, while their static coverage is only 18.52%. This is
because the condition codes are usually associated with the
bound check, such as at the end of a loop. So, these instruc-
tions will be executed more frequently than others in their
dynamic coverage.

To study the quality/efficiency of translated rules, Figure 9
shows the percentages of the reduced host instructions. On
average, our enhanced learning scheme can reduce 11.28% of
the total dynamic host instructions compared to the original
learning scheme. We observe that the reduction in the host
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Figure 8: Distribution of the improved rule coverage.
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Figure 9: Reduction in dynamic host instruction counts by
enhanced learning and translation.

instructions of gobmk is higher than 30%, and in omnetpp, it
is higher than 20%. However, in gcc and libquantum, the re-
duction is only about 10%. This also confirm our observation
that rules applied in gobmk and omentpp translation have a
higher quality, i.e. fewer host instructions in those translation
rules, than rules in gcc and libquantum. But, we also notice
that bzip2 and astar attain a high performance improvement
but only a moderate number of host instructions are reduced.
One probable explanation is that even though they may have
similar dynamic host instruction counts, more efficient and
architecture-specific host instructions may have been used.

5.3 Learning Results

We further study the effect of our proposed relaxed learn-
ing scheme in other related aspects. The first is about the
"yield" obtained during the learning phase, which shows how
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many translation rules can be harvested among the candidate
rules during the learning phase. The other aspects include
the effect of using the sliding window, and the distribution of
the constrained-equivalent rules learned based on our relaxed
equivalence constraints, i.e. relaxing the strict matching re-
quirement on three storage operand types described in Section
4.

Figure 10 shows the yield obtained during the learning
phase using the original learning scheme (marked as origin)
and our enhanced learning scheme (marked as enhanced).
The learning yield is increased from 20.3%to 25.1%. Even
though the improvement in learning yield is moderate as we
only made moderate relaxation on the semantic equivalence
requirements, but as the obtained performance results show
the quality of these rules is quite high. The moderate yield
improvement also shows that there is a high potential for
more high-quality rules to be learned and harvested. Another
interesting question is that if a significant number of more
source programs is used in the training phase, even with a low
yield, how much more rules can be learned, and how much
more performance improvement can be achieved by applying
those added rules. These questions are beyond the scope of
this paper.

Figure 11 shows the distribution of the translation rules
learned using a flexible sliding window. We only show the
data for a window size of up to three source statements be-
cause significantly fewer rules can be learned beyond 3 source
statements. As the result shows, 13.16% of new rules can be
learned from a window size of 2 and 3 source statements. The
rules learned from window size 3 and beyond are less than
3.31%. So, a larger learning window is not necessary.

Figure 12 shows the distribution of the rules we learned
using our enhanced learning scheme. On average, 16.84%
of the learned rules are register-related (marked as register),
while 8.16% are condition-code related (marked as condi-
tion) rules. We find that many constrained-equivalent rules
related to local registers are used to load values from the
memory before some computation, and are stored back to the
memory after the computation. This is because RISCs are
primarily "load/store" architectures, i.e. values in memory
must be loaded into registers before computation and stored
back to memory when the computation is completed. So many

window size 1 ezl window size 2 EXX3 window size 3

100 %

Figure 12: Distribution of rules learned by enhanced learning.

temporary/local registers are used. Another observation is that
the amount of register reuse is minimal on RISCs, only 3.57%
in total. So, only in rare situations, the compiler will use mul-
tiple registers instead of only one register. Such behavior is
reflected in the use of the learned rules in the application
phase.

5.4 Performance Overhead of Online Analysis

As the lightweight dynamic analysis is needed in the applica-
tion of the constrained-equivalent translation rules, its runtime
overhead needs to be evaluated. Figure 13 shows such runtime
overhead with and without dynamic analysis. To measure such
overheads, we collected the performance data with original
approach and compare them with those with only the online
analysis but without applying the constrained-equivalent rules.
As Figure 13 shows, the dynamic analysis will introduce very
little overhead, which is less than 1% on average. The low
overhead is due to two main reasons. First, the dynamic analy-
sis typically only needs to check a few registers and condition
codes. And the percentage of the rules that requires dynamic
analysis is not very high. Second, the relaxed register and
condition-code operands are usually updated very quickly, so
only a very small number of instructions need to be analyzed
in practice. Both factors greatly reduce the analysis overhead.
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6 Related Work

To improve the efficiency of the translated host binaries,
many manual optimization techniques have been proposed.
For example, some try to efficiently translate guest single-
instruction-multiple-data (SIMD) instructions [7, 10, 16]. An-
other work proposes to leverage host hardware features to
apply post-optimization to host binary code after the trans-
lation [30]. Some recent work also proposes to optimize
dynamically-generated guest binary code [8]. Different from
those approaches, most of which rely on manually constructed
translation rules, our enhanced learning-based approach pro-
posed in this paper can automatically learn binary translation
rules.

Previous work in [1] also proposes to use peephole super-
optimizer to generate binary translation rules for static binary
translators. For each potential guest code sequence, an ex-
haustive search is employed to explore all possible sequences
of host instructions to examine their equivalence. However, it
takes a very long time to collect sufficient translation rules,
i.e., could be up to one week as mentioned in the paper. More-
over, due to the exponential increase in the number of possible
instruction sequences, this approach can only generate trans-
lation rules with a guest code sequence of up to 3 instructions.
This can significantly limit the quality of the generated trans-
lation rules because many high-quality translation rules have
more than 3 guest instructions.

Although the learning-based approach was originally pro-
posed in [23], our enhanced learning-based approach differs
from the original approach in a significant way. Our proposed
enhanced approach allows relaxation of semantic equivalence,
thus can learn constrained-equivalent translation rules while
the original approach simply discards them. These relaxed
translation rules can improve the total coverage of the guest
binaries and improve the yield of rule generation. More im-
portantly, these constrained-equivalent translation rules can
further improve the performance of the translated host binary
code.

Another DBT system, HQEMU [9], which is also based
on QEMU, translates guest binary code into LLVM interme-
diate representation (IR) and then leverages LLVM JIT to

generate more optimized binary code. However, the overhead
introduced by the LLVM optimization can offset the benefit
gained from the optimized host binary code, especially for
short-running guest binaries. Moreover, due to the lack of
source-level information in the LLVM IR translated from
the guest binary code, e.g., type information, it is quite chal-
lenging to take full advantage of the LLVM optimization. In
contrast, the translation overhead for applying the learned
translation rules are much smaller, and no additional informa-
tion is required to apply the learned rules.

There has been a lot of research to improve the performance
of the DBT system itself [3-5, 11, 12,24,25]. These methods
can typically be used in conjunction with our approach to
further improve their performance.

7 Conclusion

As one of the core enabling technologies, DBT has been ex-
tensively used in many important applications. To improve
the efficiency of DBT systems, this paper proposes an en-
hanced learning-based approach, which can automatically
learn optimized binary translation rules. The learned transla-
tion rules can then be applied to a DBT system to generate
more efficient host binary code. Compared to the original
learning approach, our enhanced learning-based approach re-
laxes the semantic equivalence requirements to allow more
efficient constrained-equivalent translation rules. We redesign
the original learning process and the verification engine to
accommodate such constrained equivalence. Moreover, to
preserve the correct semantics of the translated code when
such constrained-equivalent translation rules are applied, a
lightweight online analysis is employed in the enhanced DBT
system to check the constraining conditions. The constrained-
equivalent translation rules are applied only when the con-
straining conditions are satisfied. We have implemented the
proposed approach in a prototype and extended a widely-used
DBT system, i.e., QEMU, to accept such enhanced translation
rules through learning.

Experimental results on SPEC CINT2006 show that the
proposed approach can improve the dynamic coverage of
the translation from 55.7% to 69.1% and the static coverage
from 52.2% to 61.8%, compared to the original approach.
Moreover, up to 1.65X performance speedup with an average
of 1.19X are observed.
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Abstract

A large class of IoT applications read sensors, execute appli-
cation logic, and actuate actuators. However, the lack of high-
level programming abstractions compromises correctness es-
pecially in presence of failures and unwanted interleaving
between applications. A key problem arises when operations
on IoT devices or the application itself fails, which leads to
inconsistencies between the physical state and application
state, breaking application semantics and causing undesired
consequences. Transactions are a well-established abstraction
for correctness, but assume properties that are absent in an
IoT context. In this paper, we study one such environment,
smart home, and establish inconsistencies manifesting out
of failures. We propose an abstraction called transactuation
that empowers developers to build reliable applications. Our
runtime, Relacs, implements the abstraction atop a real smart-
home platform. We evaluate programmability, performance,
and effectiveness of transactuations to demonstrate its poten-
tial as a powerful abstraction and execution model.

1 Introduction

Building reliable IoT applications that interact with the phys-
ical world on top of existing solutions is difficult. Current
IoT solutions (e.g., Smartthings [14] and OpenHAB[12]) pro-
vide simple abstractions that allow developers to easily read
sensors and actuate actuators. However, they lack high-level
abstractions for writing reliable and fault-tolerant applications
that can tolerate different types of failures that might happen.
Therefore, application programmers need to implement te-
dious and error-prone code for not only handling all kinds of
failures happening in the physical world, but also to guarantee
consistency between operations on application states (called
soft states hereafter) and states of IoT devices (called hard
states). For instance, an actuation to turn on an alarm might

*Work done at Samsung Research America. Now at Microsoft Research.
TWork done at Samsung Research America. Now at Uber Technologies.
*Work done at Samsung Research America.

fail while the alarm state in an application might have been
set to true.

The use of serverless functions as a de facto platform for
running IoT applications has exacerbated the reliability issues
of these applications even further. This is because serverless
computing infrastructure can terminate running applications
at any point [2]. This again leaves incomplete operations on
some hard states (e.g., lock all doors) inconsistent with an
operation on soft state inside the application (e.g., set the
home state to safe after all doors are locked).

Transactions seem like the right mechanism for addressing
the above issues. Interestingly though, a transactional abstrac-
tion cannot fix these issues because of intrinsic properties of
IoT devices (and their associated hard states). A transactional
abstraction is ideal for ensuring isolation and all-or-nothing
guarantees among soft states. Moreover, a transactional sys-
tem can easily rollback soft states without other transactions
or users noticing effects of a rolled back transaction. However,
rolling back a hard state has consequences. The state might
have already been observed by a user and rolling it back may
be undesirable. Or even worse, some states cannot be rolled
back (e.g., undoing actuation of a water dispenser).

This paper proposes an abstraction called transactuation.
Transactuations hide the complexity of handling various fail-
ures and allow developers to easily maintain soft states to
be consistent with respect to reads and writes to hard states
— states of sensors and actuators. Objectively, transactuations
allow a developer to specify dependencies among operations
on soft and hard states along with a sensing/actuating policy
which specifies the conditions under which soft states can
commit despite failures.

We provide a runtime system called Relacs that imple-
ments the abstraction for the smart home environment. Relacs
transforms an application into a serverless function, and re-
liably executes the application in the cloud while enforcing
transactuation specific semantics. We note that while the fo-
cus of this paper is on smart homes, the transactuation ab-
straction is not particularly specific to smart homes, and can
be applied to other IoT environments as well.
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Concretely, this paper has the following contributions:

1. Study of smart-home applications. Using static analysis,
we conduct a comprehensive study of smart-home applica-
tions written for two popular platforms [12, 14] and identify
drawbacks of existing platforms in writing reliable and fault-
tolerant applications (Section 3).

2. Transactuations. We present our abstraction that al-
lows developers to simply write reliable IoT applications.
Transactuations preserve the dependencies between opera-
tions on hard states and soft states, which when broken, break
application semantics (Section 4).

3. Relacs. Our runtime, Relacs, enforces a serializable exe-
cution of transactuations without rolling back hard states (i.e.,
states of actuators) while enforcing the specified sensing and
actuating policies (Section 4 and Section 5).

4. Evaluation. We evaluate representative smart-home ap-
plications to reveal the correctness issues due to lack of appro-
priate abstractions. Our evaluation further demonstrates that
(a) Transactuations are an effective high-level abstraction for
building reliable IoT applications and reduce lines of code sig-
nificantly compared to manually handling failures. (b) Relacs
guarantees reliable execution of transactuations while impos-
ing reasonable overheads over a baseline that does not provide
consistency between operations on hard states and soft states
(Section 6).

2 Background & Model

In this section, we first review existing smart-home platforms
and their programming models. We focus on smart homes
as a case study of class of IoT environments that deal with
real world state since many smart home applications and
platforms are publicly available. We then discuss different
types of failures that occur in IoT environments.

2.1 Smart-home Platforms

To setup a smart home, a user installs centralized gateways,
called smart-home hubs or simply hubs, to connect in-home
devices (e.g., light bulbs, outlet strip, and motion sensor) that
typically communicate through low-energy wireless proto-
cols (e.g., Zigbee [17], ZWave [16], and Bluetooth Low En-
ergy [4]). The user then installs smart-home applications to
create her desired home automation. For instance, to turn on
a balcony light when motion is detected outside.

Currently, cloud-centric smart-home solutions (e.g., Smart-
things [14]) are the most widely used architecture [28]. In this
model, a hub is only responsible for collecting device events,
and forwarding them to the cloud, where applications run.
The applications running in the cloud then process events and
send actuation commands back to the hub, which forwards
the commands to corresponding devices. An alternative ar-
chitecture is to run applications inside hubs. OpenHAB [12]
follows this hub-centric approach.

1 preferences {

2 input (sensor, "capa.co2", req:true)

3 input (switches, "capa.switch", multi:true)
4 input (level, "number", req:true)

5 }

6 def initialize() {

7 state.active = false;

8 subscribe (sensor, "co2", handlelLevel)

9 }

10 def handlelevel (evt) {

11 def co2 = sensor.currentValue ("co2");

12 if(co2 >= level && !state.active) {

13 switches.each { it.on(); }

14 state.active = true;

15 } else if(co2 < level && state.active) {
16 switches.each { it.off (); }

17 state.active = false;

18 }

19 }

Listing 1: CO, vent application that turns exhaust fans on
when CO; level is high and turns off otherwise.

2.2 Programming Model

In most smart-home platforms, an application is written in a
trigger-action programming model [45] where an application
comprises event handlers. Handlers can subscribe to changes
in sensor/actuator states, updates to shared states, or timer-
based events. Handlers can issue the following operations:

e Hard read: reading sensor/actuator values.

e Hard write: sending actuation commands to actuators.

o Soft read: reading application states from shared storage.

e Soft write: writing application states to shared storage.

In the remainder of this section, and for simplicity, we
solely detail SmartThings [14] programming model. Yet, we
note that other platforms have very similar constructs.

SmartThings uses capabilities, attributes, and commands
to manage devices. Each device has one or more capabili-
ties, and each capability has one or more associated attributes
and commands. For example, a smart light bulb has two ca-
pabilities, switch and color. The switch capability allows an
application to control the bulb status via on/off commands.
The color capability has three attributes, color, hue and sat-
uration that can be controlled via setColor, setHue, and
setSaturation commands.

Listing 1 shows a SmartThings application, named CO;
vent, written in the Groovy language [5]. It reads CO; level
from sensors, and turns on an exhaust fan if the level is high.
Similarly, it turns off an exhaust fan if the level is low. A devel-
oper first declares mapping of variable names to capabilities
in the preference section (lines 1-5). Consequently, a variable
is mapped to an array of devices with the same capability. For
example, variable switches (line 3) gets mapped to an array
of exhaust fans having the switch capability.

A developer then subscribes event handlers to value
changes of some capabilities or timer schedules. In line 8§,
she subscribes an event handler called handleLevel to co2
capability. Observe that inside the handler, she can perform
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hard read on sensor data (sensor.currentValue () in line
11) and soft read on shared states (reading state.active in
line 12 and 15). Also, the developer can issue hard writes to
list of actuators (line 13 and 16). She can also perform soft
writes to application states (assignments to state.active in
line 14 and 17).

2.3 Failures in IoT Environments

Previous work [20, 33] have shown a variety of failures in IoT
environments. For instance, hubs can fail due to plug discon-
nection, hardware failure, and driver crash. IoT devices can
fail due to battery drainage, plug disconnection, and failure
in a sensor subsystem. Additionally, network loss occurs due
to RF interference, concrete slab flooring and copper siding.
These failures lead to permanent or intermittent unavailability
of devices in an IoT environment.

Although, these failures are common, existing platforms do
not provide a simple way to detect and handle them. A failed
hard read can produce a null or stale value that a developer
needs to handle or explicitly validate its timestamp (fresh-
ness). Detecting a failed hard write is even more difficult due
to the asynchronous nature of IoT programming model. For
instance, a developer needs to subscribe to an event triggered
by a hard write, and periodically check if the event is fired.
As shown in other systems [30, 35, 37], inserting failure de-
tection and handling code for asynchronous environments is
challenging and error prone. Moreover, due to inherent event-
driven concurrency in applications, it is notoriously difficult
to prevent interleaving and concurrency-related bugs in IoT
platforms [40].

3 Problem Study

Existing smart-home solutions do not guarantee any consis-
tency between soft reads/writes (i.e., reads/writes from/to
shared storage) and reads/writes to hard states (i.e., sensor
reads and actuation commands sent to actuators) in case of
failures. Application developers need to carry the burden and
ensure the correctness of an application when a failure occurs.

In this section, we present a systematic study of open source
smart-home applications, using static analysis, in order to
unearth various inconsistencies, that surface under failure,
between operations on soft and hard states.

3.1 Inconsistency

Listing 2 shows a simplified code excerpt from a smart secu-
rity application. This application associates a soft state named
alarmActive with the status of an alarm. If the application
detects an intruder when the alarm is not active, it activates
the alarm and sets alarmActive to true. However, an in-
consistency arises if the alarm is not activated properly. For
example, RF interference may cause an actuation command

1 def intruderMotion (evt) {
2
3 if (isIntruder (evt) && !state.

alarmActive) {
alarm.strobe ();
state.alarmActive = true;

[l e Y

}

Listing 2: A simplified code excerpt from Smart Security
application that detects an intruder using sensors, and
activates an alarm if it has not been activated previously.

to be lost. This problem is so common that some brands (e.g.,
Fortrezz [15]) give warnings regarding RF interference, and
explicitly ask consumers to not use the alarm in life support-
ing situations. Observe that even though alarmActive is set,
the states of the physical world and application have diverged.
Further, if the sensors detect the intruder again, the applica-
tion will not retry to activate the alarm because as per the
application’s state the alarm is ringing. Clearly, the devel-
oper does not anticipate such a failure, and this divergence is
irreversible without manual intervention. Such inconsisten-
cies cause changes in application semantics and compromise
correctness, and may severely affect smart-home users.

Moreover, stale hard reads may also break correctness of
an application. For example, recent CO; level events might
never get delivered to the CO; vent application in Listing 1.
By reading a stale CO; level, the application may incorrectly
turn off the exhaust fans.

Besides device failures, similar issues arise if an application
crashes. For instance, an inconsistency arises if the smart
security application fails between sending a command to set
the alarm (line 4) and setting the active state to true (line 5).

Finally, applications may modify shared soft and hard states
concurrently [40] which can cause canonical interleaving
based inconsistencies [39].

As an example, the following quote from a disgruntled
SmartThings customer [9] who got robbed during his vaca-
tion shows the impact of the inconsistency problem: “More
importantly, we were robbed when we were out on vacation. ...
The logs show the motion of the robbers, but it never sounded
the alarm ... I no longer trust it to do what it is supposed to
do when it is supposed to do.”

3.2 Dependency

In the previous section, we showed connections between hard
states and soft states that are potential sources of inconsisten-
cies due to hard read/write failure. We call these connections
between two operations on hard states or two operations be-
tween soft and hard states that are semantically associated, a
dependency. By identifying dependencies in an application,
we can study the effects of failures on its correctness.

In order to systematically analyze smart-home applications,
and understand how failures can affect them, we categorize
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dependencies into four classes, using the following notations:
we represent a hard read to device D as HRp, and denote a
hard write to device D with value V as HWp (V). A soft read
from application state X is denoted as SRy, and a soft write
to state X with value V' is represented as SWx (V).

1. HRp — HWpy (V): a dependency in this category cap-
tures the effect of a failure in a HRp. The read might fail to
return any value if device D is unavailable, or it might return
a stale value. In either case, it implies that the application
may exercise the dependency incorrectly, thus breaking its
semantic. Such a dependency in an application can be because
of a control dependence [27] or a data dependence.

If the dependency is a control-dependence [27], the value
of HRp controls the execution of HWyy (V). For example, in
Listing 1, the dependency between lines 12 and 13, and also
between lines 15 and 16 are control dependences. The hard
read in line 11 flows into the control statements in lines 12
and 15. Therefore, a stale read at line 12 might incorrectly
switch off the exhaust fans, and update the soft state even
though the CO; levels are unsafe. A read value can also flow
into a hard write via data dependencies. For example:

a = HRp,; ¢ = foo(a, b); HWp,(c).

2. HRp — SWx(V): this dependency affects the execution
of a soft write. Analogous to HRp — HWpy (V), this results
in a missing soft write or an incorrect soft write, because of
control and data dependences. In turn, the incorrect soft write
leads to unexpected program behavior when the state is read
elsewhere. In our running example, this dependency exists
between lines 12 and 14, and also lines 15 and 17.

3. HWp(V) — SWx(V’): a hard write to soft write depen-
dency is more subtle since SWx (V') is not a control or a data
dependence on a HWp (V). Nevertheless, we observe that se-
mantically tying a soft state with a hard state — meaning the
soft state is an indicator of the hard state — is a common prac-
tice in many smart-home applications. Developers use this
technique mainly to save battery: by associating a soft state
with an actuation, developers can use the soft state elsewhere
in the code instead of reading hard states.

For example, in the CO; Vent application, the developer
implicitly creates a HWyitches(ON) — SWocrive (true) depen-
dency between lines 13 and 14, and also between lines 16 and
17. Thus, a failure in turning on switches, even if temporary,
leaves a permanent inconsistency. Any subsequent change in
the CO, level, even above the level, precludes turning on
the exhaust fans.

To find a HW — SW dependency in the code, we compute
the postdominance relation [23]: a code point b postdominates
a code point a, if b is executed on every path from a to the end
of the analyzed entity, which in our case, is an event handler.
After computing postdominance instances, we manually look
at all instances to confirm if the pair is semantically tied.
Accordingly, we infer a case for semantic error if the soft
state is read elsewhere in the application.

4. SWx(V) — HWp(V'): this dependency has the same

semantic effect as HWp (V) — SWx(V').

Note that all dependencies with soft reads (i.e., SRx — ),
are not directly related to device failures. However, we still
statically compute all such control and data dependences as
an incorrect soft read can produce unintended behavior. Con-
cretely, a soft read can be on a state determined by an incor-
rect, inconsistent, or missing soft write originating from the
dependencies described above.

3.3 Analysis and Findings

We statically analyzed 147 SmartThings applications [19]
and 35 OpenHAB applications chosen from IoTBench [10]
by adding phases to the Groovy compiler. The AST visitors,
GroovyClassVisitor [8], allow us to build a call graph per
entry point and an intermediate representation (IR) amenable
to data and control-flow analysis.

We analyzed the applications using inter-procedural data
and control-flow analysis to understand the dependencies
and their implications. Our analysis yields two key benefits:
(1) understand the implications and the extent of failures on
a large set of smart-home applications, and (ii) mitigate or
eliminate the problems with our programming abstraction,
called transactuation.

On average, the studied applications have three triggers,
and manage a diverse set of devices (45 capabilities). In
order to get a holistic view of the home state, on average,
the applications perform three hard reads. They also perform
between seven to nine hard writes on average. This shows that
many of these applications try to provide automation among
a set of devices (e.g., turning on restroom light, preparing
coffee, and playing music, when a user wakes up), instead of
managing a single device. Additionally, our analysis revealed
that developers regularly use soft states to share states not
only among handlers, but also among different applications.
These results indicate that smart-home applications are fairly
complex, and their behavior could be complicated through
the use of handlers triggered by events that read/write both
hard and soft states.

More specifically, we observed that, on average, applica-
tions have 3-10 instances of HR—HW, 1-2 instances of
HR—SW and 1-2 instances of HW—SW dependencies. We
inspected these dependencies to find their potential implica-
tions on systems lacking appropriate abstractions to capture
failures. We categorized the implications as follows: (i) miss-
ing actuation, (ii) wrong actuation, (iii) inconsistent soft state,
(iv) missing notification, and (v) wrong notification . These
implications can lead to unwanted outcomes, some of which
have serious consequences such as security threats, health
hazards, and missing critical alerts, e.g., a fire alarm not rung.
They may also cause inconveniences, €.g., erroneous automa-
tion, incorrect notifications, sirens not turned off. Out of all
182 applications, our analysis unearthed 67 SmartThings and
32 OpenHAB applications, that have unintended effects. Due
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Application Type Consequence Dependency Correction/Mitigation
Smart Humidifer (ST) Automation | Wrong status flag causes humidifier | HW— SW Correct status flag to retry
to never be turned on/off. SR— * turning humidifier on/off later.
Incorrect notification. Notify glitch to user.
Thermostat Auto Off (ST) | Energy Wrong status flag causes thermostat | HW— SW Correct status flag to retry
to never be turned on/off. turning thermostat on/off later.
CO2 Vent (ST) Safety Wrong status flag causes exhaust HW— SW Correct status flag to retry
fans to never be turned on/off. SR— * turning exhaust fans on/off later.
Elder Care (ST) Safety Missing elder inactivity notification | HR— HW Notify glitch to user.
Smart Care (ST) Safety Alarm not armed. Bad interleaving | Notify glitch to user.
Missing notification. HW— SW
Alarm (OH) Security Wrong status flag causes sirens to HR— SW Correct status flag to retry
never be turned off. SR— HW turning sirens off.
Fire Detection (OH) Security Wrong status flag causes fire alarm | HW— SW Correct status flag to retry
to never ring SR— * ringing alarm later.
Forgiving Security (ST) Security Alarm does not ring. HW— SW Notify glitch to user.
Incorrect notification. SR— *
Lock It When I Leave (ST) | Security Door not locked but home vacant. HR— HW Notify user to lock manually.

Table 1: Critical undesirable consequences in smart-home applications if failures are not handled and how developers can correct
or mitigate the problems. ST and OH are abbreviations for SmartThings and OpenHAB, respectively.

to space constraint, we only show a subset of them with unin-
tended semantics and potential fixes in Table 1.

To address these implications, a developer needs to pre-
serve the semantic invariants of the dependencies to avoid
discrepancy between the physical and application realms. One
key trait of these applications is that their semantics tolerate
different numbers of failed hard reads and writes. For exam-
ple, for HR—HW in the application that computes average
humidity level and reacts accordingly, even if some hard reads
are stale based on their timestamp (i.e., some humidity sen-
sors fail), the application can proceed with correct semantics
as long as some sensors function properly. On the other hand,
for HW—SW in the application that locks all doors and set
the home state to safe, the developer needs to ensure that the
home state is not set, even if only one door fails to be locked.
To summarize, the following two key aspects are missing in
existing IoT abstractions: 1. identifying the inherent con-
nection between application semantics and number of failed
operations, and 2. recomputing application states to preserve
invariants under failed hard reads/writes.

4 Transactuations

To address the issues discussed in the previous section, we
introduce a new abstraction called transactuation that al-
lows a developer to build a reliable smart-home application.
Transactuations provide the following two guarantees: (1)
preserve dependencies between reads/writes to hard states
and soft writes (i.e., HR—SW and HW—SW) even in cases
of hardware and communication failures. (2) ensure isolation
among transactuations that execute concurrently.

The concept of transactuations is very similar to database
transactions. Yet, due to the intrinsic nature of physical world,

it is impossible to ensure similar transactional guarantees.
We note that transactuations are not meant to replace trans-
actions completely. Instead, they are designed to address a
similar problem in a cyber-physical environment which inher-
ently prevents us from making strong assumptions. Precisely,
transactuations and transactions differ as follows:

1. Atomic durability: atomic durability [36] guarantees
that either all updates inside a transaction eventually become
durable, or none of them becomes durable. Since IoT de-
vices can neither be locked nor rolled back (e.g., in case of
some failures), transactuation cannot guarantee atomic dura-
bility of hard writes. More specifically, unlike a transaction, a
transactuation only guarantees atomic durability of soft writes
but not hard writes inside it. Thus, if a hard write fails, a
transactuation still commits by forcing its soft states to be
consistent with its hard states, as per developer specified poli-
cies (see Section 4.1).

2. Isolation & Atomic visibility: strong isolation models
(e.g., serializability or snapshot isolation) requires a trans-
action to read a consistent snapshot of a system (e.g., the
last committed state) and precludes a use of partially com-
mitted states. A transactuation executes on the latest known
consistent snapshot of the physical world, in isolation from
other concurrent transactuations. However, two concurrent
transactuations can execute on different snapshots of the phys-
ical world in absence of any committing transactuation. Addi-
tionally, (internal) atomic visibility ensures that effects of all
updates in a transaction become visible to another transaction
atomically [36]. Transactuations are also capable of guaran-
teeing internal atomic visibility: effects of a transactuation
become atomically visible to other transactuation. However,
in a smart home domain, consumers will unavoidably ob-
serve the effect of a hard write operation the moment it gets
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executed in an actuator. Thus, it is impossible to provide ex-
ternal atomic visibility. For instance, one cannot expect that
a smart-home user to observe all door locks become locked
instantaneously.

Transactuations, further add to the definition of consistency
based on consistency between hard reads/writes and soft
writes. Transactuations preserve two invariants as follows:
(D1) A transactuation guarantees that if it executes, the stal-
eness of its hard reads is bounded, as per the developer speci-
fied tolerance. A developer leverages this invariant to ensure
inconsistencies arising out of breaking HR— * dependencies
are detected, and appropriate actions are taken.

(D2) If writes to soft states are committed, it implies that
sufficient number of hard writes as per developer specifica-
tion have successfully executed. A developer leverages this
invariant to enforce consistency of HW— SW dependencies.

4.1 Abstraction & API

Transactuations contain three pieces of logic which a devel-
oper writes as lambda expressions. A lambda expression is a
function that can be passed as an argument to another func-
tion [1, 7, 11]. In the rest of this paper, we refer to these
lambda expressions as lambdas. A transactuation can have the
following three lambdas: perform lambda, onSuccess lambda,
and onFailure lambda.

perform lambda. A perform lambda contains the core
logic of a transactuation. Inside a perform lambda, a devel-
oper can perform hard writes (actuate (Device, Value)),
soft reads (read(State)), and soft writes (write (State,
Value)) as shown in Listing 3.

To assign a perform lambda to a certain transactuation, a de-
veloper calls the perform () method and passes the lambda as
an argument as shown in lines 5—15 of Listing 3. The method
signature is perform(performLambda, [sensorList,
timeWindow, sensingPolicy], [actuatingPolicy]).

A developer cannot explicitly issue a hard read inside a
perform lambda. Instead, she has to specify a list of required
hard states as an argument (i.e., sensorList) to perform()
method. The required hard states are read before perform
lambda is executed, and a list of available hard states are ac-
cessible as key-value pairs to perform lambda, using sensors
parameter of a perform lambda (line 5). Disallowing explicit
hard reads inside a transactuation prevents reading stale or
null sensor values, which can break application semantics.

To preserve consistency between hard reads and soft writes
in case of a sensor unavailability, a developer can use a time
window along with a sensing policy. The time window speci-
fies that the sensor list must be validated such that, after vali-
dation, the list of available sensors includes those that have
received events close in time. Specifically, a time window
defines the duration when the transactuation triggering event
and read hard states remain valid. For instance, a window of

1 function handler (evt) {

2 let tx = Transactuation (evt);

3 // executes if all CO2 sensors received

4 // events in past 5s w.r.t. triggering event
5 tx.perform(func (sensors) {

6 let co2 = sensors[’co2’'];

7 let active = read(’active’);

8 if (co2 >= threshold && 'active) {

9 //if all fans can be on, set active to true
10 actuateAll (' fans’, 'on');

11 write (’"active’, true);

12 } else if (co2 < threshold && active) {
13

14 }

15 }, ['co2"], 5, ’Tall’, "all’);

16 // executes if both policies are met

17 tx.onSuccess (func (evt) {

18 let txs = Transactuation (evt);

19 txs.perform ({

20 actuate (‘msg’, 'C02 is high’);

21 }, ’'none’, ’'none’);

22 txs.execute () ;

23 P

24 // executes if either one policy is not met
25 tx.onFailure (func (evt) {

26 let txf = Transactuation (evt);

27 .

28 1)

29 tx.execute (); }

Listing 3: CO2 Vent written with transactuation. The
code presented here is in synchronous style but our
implementation uses asynchronous Node JS.

10 seconds has the following intent: a hard state passes valida-
tion if its most recent event and the transactuation triggering
event are not more than 10 seconds apart.

A sensing policy is an acceptable level of hard-read failures
that a transactuation can tolerate. It specifies that under what
condition a perform lambda can be executed over a returned
list of window-validated sensors. The perform lambda in turn
may or may not execute depending on the sensing policy.
Transactuations support three sensing policies:

e All: ensures that the perform lambda executes only if
all hard states in the sensor list pass validation. Consider an
application that reads presence sensors of every user and turns
on cameras if no one is present. For privacy, all sensors need
to pass validation. If even one presence sensor fails, it should
not risk turning on the cameras since it violates privacy.

e Any: guarantees the execution of the perform lambda
as long as at least one hard state in the sensor list passes
validation. For example, an application that computes average
humidity level from multiple sensors to control fans, executes
accordingly with correct semantics, even if some sensors fail,
but not all.

e None: states that the perform lambda executes over the
returned validated list of hard states regardless of how many
hard states are unavailable.

Observe that a time window along with a sensing policy
helps preserve HR—* dependency as per the developer’s in-
tention to preserve invariant (D1). To preserve invariant (D2),
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a developer needs to specify an actuating policy. The actuat-
ing policy is an acceptable level of hard-write failures that is
tolerable. To meet an actuating policy in case of a failure, soft
writes inside a transactuation roll back to their initial values,
and onFailure lambda executes. Similar to a sensing policy,
an actuating policy supports the following semantics:

e All: states that modifications to soft states commit if all
hard writes successfully finish. An example of this policy is
an application that locks all doors and sets home state to safe.
If even one door fails, the home state should not be set.

e Any: guarantees that soft state modifications inside a
lambda commits if at least one hard write succeeds. For ex-
ample, an application that actuates all sirens and sets the flag
ringing. Even if only one siren rings, the flag should be set.

e None: states that soft writes commit despite of failures.

onSuccess lambda. An onSuccess lambda executes if the
perform lambda of a transactuation succeeds (i.e., sensing
and actuating policies are met). A developer can assign an
onSuccess lambda to a transactuation via onSuccess () as
shown in line 17 of Listing 3.

onFailure lambda. An onFailure lambda executes if a
transactuation cannot meet its sensing or actuating policies. It
is assigned to a transactuation via onFailure () as depicted
in line 25 of Listing 3.

When a developer has set up all the lambdas for a transactu-
ation, she executes the transactuation by invoking execute ()
(line 29), which is an asynchronous call that executes the
perform lambda in the background.

Listing 3 illustrates the CO, Vent rewritten with the
transactuation abstraction. The perform lambda is parame-
terized with 5s time window. The transactuation only reads
one hard state, co2. The lambda executes if the latest sensor
update from co2, and the triggering event, which is also co2
fall in the 5 second time interval. switches, which binds
to an array of fans, requires the “all” policy if we want the
soft writes to be consistent with the actuations. The soft state
active will be set to true only if all fans can be turned on,
otherwise, active remains unchanged.

4.2 Chaining transactuations

A transactuation can be chained to other transactuations by
invoking it in their onSuccess and onFailure lambdas. As we
shall see in the next section, the runtime guarantees to execute
chained transactuations sequentially: if a transactuation T;
is invoked in onSuccess lambda of T;, T; is guaranteed to
see the updates T; makes. We call this ordered execution of
transactuations as T-Chain. This is particularly relevant in
an asynchronous runtime where high latency operations can
finish in arbitrary order, executing outside the critical path
such as in worker threads [25, 44]. Thus, if T; wants to use a
soft state written by T;, T; needs to be invoked in onSuccess

lambda of 1;. In addition, if T; requires actuations of T; to
complete before it, these two transactuations must form a
T-Chain.

5 Relacs

In this section, we detail the design of our runtime, called
Relacs, that execute smart-home applications, along with a
supporting key-value store called Relacs Store.

5.1 Relacs Store

All soft and hard states inside a transactuation are stored in a
key-value store called Relacs Store. It hides all complexities
of working with sensors and actuators by allowing developers
to not only perform read/write operations on soft states inside
a transactuation, but also to issue hard reads/writes.

Conceptually, every state inside the Relacs Store maintains
two values, speculative and final. A speculative value means
that the state has been updated logically in the Relacs Store,
but is not confirmed to be final (i.e., issued to an IoT device).
For example, a transactuation that wants to unlock a door will
have the speculative value of the door set to unlocked, before
the actuation command succeeds. When Relacs receives an
ack event confirming the success of an actuation command,
it updates the final value and discards the speculative value.
Along with setting the final value, the Relacs Store also logs
the timestamp of the ack event for validating a time window
of a transactuation reading that hard state. In Section 5.2, we
explain how speculative states help Relacs to speculatively
execute transactuations.

Since multiple hard writes on the same state can execute
before the system receives an ack from the corresponding de-
vice, Relacs Store needs to record all versions of speculative
values that have not been finalized yet. When reading a state,
Relacs Store returns the latest speculative value, or the final
value if no speculative value exists. For instance, consider
the following transactuations: a transactuation T; sets a lamp
color to red. While the lamp is changing its color, T; changes
the lamp color to green. In this example, Relacs Store logs
both speculative values. Thus, if T tries to read the state of
the lamp, Relacs Store returns green, even if the lamp has not
completed executing the first actuation command to change
its color to red.

5.2 Execution Model

A transactuation execution model comprises of the following
three phases:

1. Hard read phase: to start executing a transactuation, the
system first needs to determine if it can read the required hard
states in the sensor list which satisfy the specified window
and the sensing policy. If so, the system proceeds to the next
phase. For a poll-based sensor, if Relacs fails to validate the
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window, it polls the sensor to check if it can get a fresh value.
For a push-based sensor, Relacs simply waits, as long as the
window is valid, to receive an event from the sensor. Observe
that the window is valid as long as the specified time window
has not passed since the transactuation triggering event. If the
window becomes invalid, and the list of received events fails
staleness validation, it cannot execute the perform lambda,
and proceeds to execute the onFailure lambda.

2. Speculative Commit Phase: since IoT devices cannot
roll back, Relacs needs to make sure that a transactuation will
definitely commit before performing real actuations. There-
fore, it employs a speculative execution model where a per-
form lambda first executes speculatively, without perform-
ing any real actuation. Once the perform lambda finishes, it
tries to speculatively commit like a normal transaction inside
Relacs Store. Therefore, new speculative values are commit-
ted for modified soft and hard states. Additionally, committing
new speculative values may trigger other handler functions
subscribed to these states. Finally, Relacs starts executing
the onSuccess lambda of the transactuation when it commits.
Note that these lambdas triggered by speculative commit exe-
cute their transactuations speculatively.

3. Final Commit Phase: in the last phase, Relacs sends
actuation commands that correspond to hard writes. A
transactuation T; can start its final phase, when the following
three conditions hold: first, all transactuations that precede
7; in the T-Chain finally commit. Second, all transactuations
updating states that T; read, finally commit. Third, no other
finally committing T; conflicts with T;. More specifically, the
readset of T; does not have any intersection with the writeset
of some finally committing transactuation, and the writeset
of T; does not intersect with both readset and writeset of some
finally committing transactuation.

Relacs finally commits the transactuation when sufficient
acks are received from actuators to satisfy its actuating pol-
icy. If the transactuation times out without satisfying its ac-
tuating policy, all soft writes inside the transactuation roll
back to their initial state, and the transactuation finally com-
mits. Next, onFailure lambda executes if it has been de-
fined. Moreover, all speculative transactuations invoked by
the failed transactuation abort (e.g., chained transactuations),
and transactuations that bear data dependencies with the
failed transactuation need to re-execute.

5.3 Relacs Runtime

Relacs is built atop serverless computing [32, 42]. The run-
time comprises two classes of functions namely application
functions and system functions. We explain these functions
in detail here.

Application Functions. An application can comprise sev-
eral handlers which are triggered when particular states in
the Relacs Store change (publish-subscribe model), and each

handler can comprise several transactuations. An application
submitted to run by Relacs system is transformed into a set of
application functions to run on serverless instances as follows:

1. For each handler, Relacs transforms the logic of an em-
bedded transactuation (i.e., perform lambda) into a transaction
that can execute transactionally inside the Relacs Store.

2. The logic inside onSuccess lambda and onFailure
lambda are transformed into stand-alone serverless functions
called success and failure functions, respectively, hereafter. If
onSuccess lambda or onFailure lambda is comprised of trans-
actuations with their own onSuccess lambda and onFailure
lambda (T-Chain), the transformations are applied recursively.

3. Finally, every handler is transformed into a runnable
stand-alone serverless function, called handler function.

System Functions. Relacs comprises a serverless function
called updater function that is invoked whenever the state of
a sensor or an actuator changes. Upon receiving a notifica-
tion, the updater updates the hard state corresponding to the
event in Relacs Store, and launches an instance of subscribed
handler function(s).

Final-committer is a designated function to perform the
final commits. It selects speculative transactuations that can
finally commit without breaking the final commit rules, issues
all of their actuation commands, and marks the actuations as
issued. When a successful actuation receives a notification
(ack) from an IoT device, the updater function updates its
corresponding state in Relacs Store, and marks the actuation
command as done transactionally.

In order to detect an actuation failure, Relacs has a failure-
detector function that runs periodically, and checks whether
an ack is received for an actuation command. If after certain
threshold no ack is received, the failure detector marks the
actuation as failed. If actuating policy is not met, the enclosing
transactuation commits with rollback of soft writes, which
triggers a re-executor function to re-execute transactuations
that have data dependencies with the failed transactuation.

5.4 Fault Tolerance

A function in serverless computing is not guaranteed to com-
plete, and can terminate at any arbitrary point of execution.
Yet, Relacs guarantees applications to execute reliably despite
failures as follows.

Relacs ensures that all transactuations are executed exactly-
once even if an application function (handler, success, or fail-
ure) fails during its execution. To this end, Relacs maintains
two logs: function log and transactuation log. Function log
is a write-ahead log for application functions. The function
name along with ID of the triggering event is recorded in the
function log before the function executes. Transactuation log
atomically records a transactuation name and the event ID
during the speculative commit of a transactuation along with
updates to soft/hard states.
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A system function called serverless checker runs periodi-
cally, and inspects the function log to execute functions which
have failed. In either case, the serverless checker invokes the
failed functions again. This might lead to duplicated execu-
tions of transactuations that have executed. To prevent this,
Relacs checks if a particular transactuation is in the transactu-
ation log, and skips its execution if present. !

Currently, the updater failure is treated as an equivalent of
sensor or actuator failure and it is handled by transactuation
semantics. To address final committer failure, Relacs runs
the final committer periodically to complete pending final
commits by actuating unissued actuations. To preclude con-
tention between the periodic and the regular final committer
that can run concurrently, Relacs uses leases and ETAGS a la
Tuba [21] in the final committer to ensure correctness.

5.5 Implementation

We implemented Relacs runtime and Relacs Store on top of
Microsoft Azure. We used Azure Function (serverless com-
puting) to implement the runtime, and used Azure Cosmos
DB to build Relacs Store. All serverless functions were im-
plemented with Azure Function. Application functions are
triggered by HTTP calls and system functions are triggered
on Cosmos DB updates or periodic timers. The parts of the
protocol that need to update Relacs Store transactionally (in-
cluding perform lambda) are transformed into Cosmos DB
stored procedures [3].

Currently, Relacs has only been integrated with Samsung
SmartThings. SmartThings allows a developer to build a web
service that connects with devices in a home [18]. We built
a gateway that forwards actuation commands from Relacs to
actuators and also polls sensor data.

5.6 Discussion

As described, Relacs validates sensor failures through event
timestamps and actuator failures through timeouts. For sen-
sor validation, as explained, if validation fails and a device
is pollable, Relacs polls the device within the window con-
straints. If a device is push-based but pollable, Relacs polls
the device and if the validation fails again, it waits for its push-
interval within the time window. However, if the device is
purely push-based, Relacs cannot differentiate between inac-
tivity and failure. We inspected 188 SmartThings-compatible
devices and found that 113 of them are pollable. Likewise, ac-
tuation failures are detected with timeouts, first on initial ack
from smart-home connector, followed by notification on final
actuator state change. Again, if the ack message is lost, Relacs
can incorrectly rollback soft states. However, transactuations

'Note that any failure during the speculative commit results in a reg-
ular transactional abort and transactuation log is not updated. Hence the
transactuation is retried when the function reexecutes.

can still help developers to prioritize home safety over con-
venience such as always setting a soft state to a conservative
value; e.g., in Smart Security (Listing 2) to ensure that the
alarm eventually rings.

6 Evaluation

In this section, we report our evaluation results on pro-
grammability, effectiveness of transactuations in enforcing
correctness, and the overhead incurred by Relacs to provide
transactuation semantics.

We selected 10 SmartThings applications from the appli-
cations that we statically analyzed. These applications are
publicly available on SmartThings repository [19]. The ap-
plications cover the four most common categories—Security
(Sc), Safety (Sf), Convenience (Cn), and Energy Efficiency
(Ee). Instead of using the original version that runs on Smart-
Things cloud, we implemented the following three versions of
the applications, that run on Azure Functions, using Javascript
Node JS [44]. This allows us to compare an application with
transactuations against an application without transactuations
in an apple-to-apple fashion.

e BE: we wrote a best-effort version (BE) of the appli-
cations without the transactuation abstraction. The BE ver-
sion follows the default semantics that ignores device failure,
exactly-once execution, and isolation.

e BE+Con: since the BE version ignores potential failures
in devices or applications, we implemented a best-effort with
consistency (BE+Con) version of an application which adds
code that keeps device states consistent with application states.
More specifically, BE+Con introduces both sensor window
validation and soft state rollback code. However, it ignores
the isolation guarantee that transactuations provide.

e TN: we also implemented these applications with the
transactuation abstraction (TN). 5 applications out of the eval-
uated 10 applications used T-Chain to establish order among
hard and soft states.

Experimental setup. We set up SmartThings compatible
devices and measured the round trip latency of four devices in
a typical smart home: a door lock, a bulb, a power strip, and a
smart power plug. The door lock has a significant latency of
nearly 3.6s on average and maximum of nearly 9.8s, over 100
trials. The other devices incur an average latency of nearly
0.7s with the maximum at nearly 3.7s. Since we had a limited
set of devices, we parallelized our experiments by simulating
the devices using latency data on a Raspberry Pi Model 3 [13].
It comes with a 1.2 GHz 32-bit quadcore ARM Cortex-AS53
processor and 1 GB RAM. In addition, the simulator also
allowed us to easily inject failures for our experiments.
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Application #HR #HW Transactuation Policy LOC

BE BE+Con TN
Rise And Shine (Cnl) 1 (%) 1 2 (none, none) 72 195 68
Whole House Fan (Cn2) 10,3 |20 1 (none, none) 29 176 26
Thermostat Auto Off (Cn3) 1 (%) 2 1 (all, none), 1 (all, all), 1 (none, all) 70 198 68
Auto Humidity Vent (Eel) 1(*),1 | 3(*%),1 | 1 (any, none), 1 (none, any), 49 170 100

1 (none, none), 1 (all, any)

Lights Off With No Motion (Ee2) | 1 (*),1 | 1 (%) 2 (all, all) 56 161 67
Cameras On When Away (Scl) 2 (%) 2 (%) 1 (all, none), 1 (any, none) 31 149 88
Nobody Home (Sc2) 1 (%) 1 1 (all, none), 1 (any, none), 1 (none, none) | 65 175 62
Smart Security (Sc3) 2 (%) 2 (%) 1 (all, all) 144 323 144
CO2 Vent (Sf1) 1 2 (%) 1 (all, all) 29 152 26
Lock It When I Leave (Sf2) 3 (%) 2 (*),2 | 2 (none, none), 1 (all, none) 51 180 54

Table 2: Properties of each benchmark application including the number of hard reads and hard writes (* denotes an operation
to an array of devices with a single command, for example, 2 (*) means 2 operations, each accessing a device group); the
fault-tolerance policies for the TN configuration in a format of (sensing, actuating) (Col 4); and programability shown by LOC
comparison among transactuation (TN), best effort (BE), and best effort with consistency (BE+Con) (Col 5).

6.1 Programmability

In order to evaluate the programmability and convenience of
using transactuation in contrast to manually writing failure
handling code, we compare lines of code (LOC) of applica-
tions, using CLOC [6].

Table 2 shows the programmability evaluation (LOC) along
with the number of hard reads and writes, and transactuation
policies we employ for each application. Observe that TN and
BE versions are comparable in LOC despite no guarantees
in the BE version, except in Eel where we introduce new
soft states and four transactuations, each part of T-Chains, in
order to ensure consistency. BE+Con version requires sub-
stantial code to explicitly handle failures. As mentioned ear-
lier, BE+Con version validates sensor freshness similar to
transactuation and may roll back soft states after determining
the outcome of actuations for hard write to soft write depen-
dencies. Finally, although transactuations require more code
in order to create T-Chains, it automatically handles failure,
and simplifies writing reliable applications considerably.

6.2 Correctness

Table 3 shows the applications that we evaluated with their
inherent undesirable behaviors on transient or longer dura-
tion failures. The second column shows the undesirable be-
haviors, and the third column shows the outcome of using
transactuations. The last column explains the mechanism
transactuations use to resolve or mitigate the issue. We con-
sidered different types of failures that transactuations can ad-
dress (i.e., unavailable sensors and failed actuations), and in-
jected these failures by dropping event or actuation messages.
Transactuation addresses these issues with three techniques.
First, sensor staleness validation prevents the execution of per-
form lambda and executes onFailure lambda that can notify

a user. Second, actuation losses are detected automatically
and associated soft writes are rolled back to ensure consis-
tency. Third, when one actuation depends on another, we used
an intermediate soft state to chain two transactuations each
having actuations. For example, in Sc3 (Smart Security) ap-
plication, inconsistency between the alarm actuation and the
soft write is resolved using roll back to eliminate the issue.
However, some applications need to use multiple chained
transactuations to correctly address actuation dependencies.

6.3 Overhead

To evaluate the overhead of transactuations, we measured
execution time of the applications as follows. We started
timing when an application began executing, and stopped
when every soft write committed and all actuations completed.
Our performance results are summarized in Figure 1. Each
value is the mean of 30 runs, with 95% confidence intervals.

Failure-free. We first compare the execution times of TN
and BE versions without any injected failures. The overhead
of transactuations is attributed to (1) safeguarding against
inconsistencies due to inherently concurrent execution, (2)
providing fault tolerance, and (3) enforcing actuation orders of
T-Chains. We note that the final committer function imposes
significant overhead on Relacs since it is invoked” automati-
cally by CosmosDB updates. For instance, we observed that
its start may be delayed between zero to five seconds. The
periodic final committer which we set to run every second
helps to mitigate this overhead.

Figure 1a shows that, on average (geomean), the TN version
incurs 1.5 times slowdown compared to BE. Observe that the

2Qther functions except the re-executor are invoked by HTTP calls.
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App | Undesirable consequence Transactuation effect Mechanism used

Cnl | Mode not set permanently v’ Soft state rollback

Cn2 | Incorrect behavior Issue detected and user notified | Sensor staleness validation
Fans not ON irreversibly v’ Soft state rollback

Cn3 | Thermostat not OFF v’ Soft state rollback
Incorrect mode v’ Soft state rollback

Eel | Incorrect energy and operation time reported | v~ Soft state rollback and chaining
Incorrect behavior Issue detected and user notified | Sensor staleness validation

Ee2 | Incorrectly turning lights ON/OFF Issue detected and user notified | Sensor staleness validation

Scl | Incorrect behavior Issue detected and user notified | Sensor staleness validation
Actuation failure v’ Chaining

Sc2 | Incorrect mode set Issue detected and user notified | Sensor staleness validation
Home mode change w/o notification v’ soft state rollback

Sc3 | Intruder motion not detected Issue detected and user notified | Sensor staleness validation
Alarm not active irreversibly v’ soft state rollback

Sf1 Incorrect behavior Issue detected and user notified | Sensor staleness validation
Exhauts not ON irreversibly Vv’ soft state rollback

Sf2 | Door unlocked but home vacant Issue detected and user notified | Sensor staleness validation
Door locked at arrival v’ Chaining

Table 3: Applications with undesirable consequences on induced failures. Column 3 shows failure avoidance or mitigation when
written with transactuations. Column 4 shows the internal mechanism used by the transactuations. A checkmark implies that

transactuation automatically resolves the issue.

speculative commit duration (TN.SC) is significantly smaller
than the final commit duration (TN.FC). Figure 1a also breaks
down the final commit time into actuation time (TN.FC.ACT)
and the final-committer triggering overhead (TN.FC.TRIG).
As mentioned earlier, the triggering overhead is significantly
large, especially, in the case of a long T-Chain like Eel (4
transactuations).

With failure. In this scenario, we conducted two experi-
ments. In each experiment, we used a dummy application
that issued a dummy actuation, and updated a dummy soft
state. In the first experiment, the dummy actuation turned on
a smart switch (low-latency actuation). In the second one, it
actuated a door lock (high-latency actuation). We introduced
an artificial data dependency (RAW) by forcing all benchmark
applications to read the dummy soft state before executing
their core logic. Lastly, we injected a failure to the dummy ac-
tuation to trigger failure detection and handling in the dummy
application and re-execution of the benchmark applications
to repair the broken data dependency. Because devices have
different actuation latencies, the timeout thresholds to declare
failed actuations are specific to each device. More specifically,
we used the maximum observed latency for each device (i.e.,
4s for the smart switch and 10s for the door lock).

Figure 1b compares the execution time of the failure-free
case against the two failure experiments. The additional over-
head we observe here is the failure detection overhead which
includes the timeout (TN.FD.TO) and the overhead of trigger-
ing the re-executor function (TN.FD.TRIG). Similar to the
final committer, the re-executor is invoked automatically by
Cosmos DB when actuations are marked as failed, thus it

incurs similar overhead. Observe that the failure experiments
have two stacked bars of speculative commits. The second
bar shows the re-execution of transactuations with broken
dependencies.

As expected, introducing a failure results in longer exe-
cution times for the applications. This slowdown is caused
by the timeout threshold plus the re-executor triggering over-
head (~2s). Moreover, the difference between the middle and
right bars for each application is the difference in timeout
thresholds for low and high latency actuations (~6s).

7 Related Work

Checking Correctness. Soteria [22] employs model check-
ing to identify contradicting interactions between IoT appli-
cations. For example, water leak detection turns off a water
valve while smoke detection attempts to turn on a fire sprin-
kler. Prior work like DeLorean [24] models absolute and
relative time to find timing bugs in event driven programs,
e.g., door open at unsafe times. In contrast, our work tackles a
different problem, the lack of reliability and isolation, using a
dynamic technique. IoT analyses also use dynamic taint anal-
yses like techniques to detect source of security breaches [46]
and dynamic program slicing to explain behaviors [40]. We
use static dependence analysis to report potential problems.

Programming abstractions. Using speculative execution
for improving latency and performance is a common tech-
nique in many transactional and replicated systems. These
can be classified into two categories: systems [34, 41, 47]
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(a) Execution times for BE and TN versions in failure-free
case. We break down the execution time of TN into speculative
commit (TN.SC) and final commit (TN.FC). TN.FC is shown
as actuation time (TN.FC.ACT) and as overhead to trigger the
final-committer function (TN.FC.TRIG).
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(b) Execution time comparison for failure-free and failure cases. For each
application, we show 3 bars, failure-free case (the left bar), low-latency
actuation failure case (the middle bar), and high-latency actuation failure
case (the right bar). For the failure cases, the breakdown includes fail-
ure detection time (TN.FD) which is subdivided into timeout detection
(TN.FD.TO) and re-execution triggering overhead (TN.FD.TRIG).

Figure 1: The execution time of 10 applications chosen from SmartThings repository and their geomean (gm) for BE and TN

versions of applications in failure-free and failure scenarios.

that hide the effects of speculation from applications, and
work [29, 31, 43] that expose speculation results to applica-
tions. While certain applications in the latter case can benefit
by reading speculative values, they need to handle possible
side effects of acting on misspeculated values. With Relacs, ef-
fects of speculatively committed transactuations are exposed
to other transactuations. Yet, no transactuation can finally
commit, and actuate devices until all transactuations that it
speculatively read from finally commit.

Planet [43] provides a mechanism to speculate on partial
state of a transaction in distributed environments. The ab-
straction allows a developer to continue based on a predictive
outcome, and later receive a confirmation or an apology. In
contrast, we target a different environment and problem, and
provide a simplified way to address device failure handling.

Execution semantics and conflict detection. IOTA [40]
defines a calculus for programs in IoT domain. They also
define an execution semantics to eliminate races on actions
against the same physical event. Similar races can be resolved
in our system by reordering transactuations according to pro-
grammer annotations similar to Zave et al. [48]. IOTA also
shows offline analyses to detect device conflicts. Conflict de-
tection in a home can include static model checking [38] or
dynamic analyses [48] to detect feature interactions [38] and
accesses to the same device [26]. They detect commands due
to single event or concurrent independent events to the same
device, e.g., simultaneous turning on and off on a device. The
execution semantics of our system provides isolation naturally

and can easily be enhanced to report device interactions by
intersecting read-write sets of transactuations dynamically.

8 Conclusion

In this paper, we identified a fundamental problem that arises
due to failures in IoT systems that interact with the physical
world. We analyzed smart-home applications, and showed
how application semantics is broken due to different failures
that occur in an IoT environment. We introduced an abstrac-
tion, called transactuation, that allows a developer to build re-
liable IoT applications. Our runtime, called Relacs, enforces
the semantic guarantees of transactuations. Our evaluation
demonstrated programmability, performance, and effective-
ness of the transactuation abstraction on top of our runtime.
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Not So Fast:
Analyzing the Performance of WebAssembly vs. Native Code
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Abstract

All major web browsers now support WebAssembly, a low-
level bytecode intended to serve as a compilation target for
code written in languages like C and C++. A key goal of Web-
Assembly is performance parity with native code; previous
work reports near parity, with many applications compiled
to WebAssembly running on average 10% slower than na-
tive code. However, this evaluation was limited to a suite
of scientific kernels, each consisting of roughly 100 lines of
code. Running more substantial applications was not possi-
ble because compiling code to WebAssembly is only part of
the puzzle: standard Unix APIs are not available in the web
browser environment. To address this challenge, we build
BROWSIX-WASM, a significant extension to BROWSIX [29]
that, for the first time, makes it possible to run unmodified
WebAssembly-compiled Unix applications directly inside the
browser. We then use BROWSIX-WASM to conduct the first
large-scale evaluation of the performance of WebAssembly
vs. native. Across the SPEC CPU suite of benchmarks, we
find a substantial performance gap: applications compiled to
WebAssembly run slower by an average of 45% (Firefox) to
55% (Chrome), with peak slowdowns of 2.08 x (Firefox) and
2.5x (Chrome). We identify the causes of this performance
degradation, some of which are due to missing optimizations
and code generation issues, while others are inherent to the
WebAssembly platform.

1 Introduction

Web browsers have become the most popular platform for run-
ning user-facing applications, and until recently, JavaScript
was the only programming language supported by all major
web browsers. Beyond its many quirks and pitfalls from the
perspective of programming language design, JavaScript is
also notoriously difficult to compile efficiently [12, 17, 30,
31]. Applications written in or compiled to JavaScript typ-
ically run much slower than their native counterparts. To
address this situation, a group of browser vendors jointly
developed WebAssembly.

WebAssembly is a low-level, statically typed language
that does not require garbage collection, and supports in-
teroperability with JavaScript. The goal of WebAssembly
is to serve as a universal compiler target that can run in a
browser [15, 16, 18].! Towards this end, WebAssembly is
designed to be fast to compile and run, to be portable across
browsers and architectures, and to provide formal guarantees
of type and memory safety. Prior attempts at running code at
native speed in the browser [4, 13, 14, 38], which we discuss
in related work, do not satisfy all of these criteria.

WebAssembly is now supported by all major browsers [8,
34] and has been swiftly adopted by several programming
languages. There are now backends for C, C++, C#, Go,
and Rust [1, 2, 24, 39] that target WebAssembly. A curated
list currently includes more than a dozen others [10]. Today,
code written in these languages can be safely executed in
browser sandboxes across any modern device once compiled
to WebAssembly.

A major goal of WebAssembly is to be faster than
JavaScript. For example, the paper that introduced Web-
Assembly [18] showed that when a C program is compiled
to WebAssembly instead of JavaScript (asm. js), it runs 34%
faster in Google Chrome. That paper also showed that the per-
formance of WebAssembly is competitive with native code:
of the 24 benchmarks evaluated, the running time of seven
benchmarks using WebAssembly is within 10% of native
code, and almost all of them are less than 2x slower than
native code. Figure 1 shows that WebAssembly implementa-
tions have continuously improved with respect to these bench-
marks. In 2017, only seven benchmarks performed within
1.1x of native, but by 2019, this number increased to 13.

These results appear promising, but they beg the question:
are these 24 benchmarks representative of WebAssembly’s
intended use cases?

IThe WebAssembly standard is undergoing active development, with
ongoing efforts to extend WebAssembly with features ranging from SIMD
primitives and threading to tail calls and garbage collection. This paper
focuses on the initial and stable version of WebAssembly [18], which is
supported by all major browsers.
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The Challenge of Benchmarking WebAssembly The
aforementioned suite of 24 benchmarks is the PolybenchC
benchmark suite [5], which is designed to measure the ef-
fect of polyhedral loop optimizations in compilers. All the
benchmarks in the suite are small scientific computing ker-
nels rather than full applications (e.g., matrix multiplication
and LU Decomposition); each is roughly 100 LOC. While
WebAssembly is designed to accelerate scientific kernels on
the Web, it is also explicitly designed for a much richer set of
full applications.

The WebAssembly documentation highlights several in-
tended use cases [7], including scientific kernels, image edit-
ing, video editing, image recognition, scientific visualization,
simulations, programming language interpreters, virtual ma-
chines, and POSIX applications. Therefore, WebAssembly’s
strong performance on the scientific kernels in PolybenchC
do not imply that it will perform well given a different kind
of application.

We argue that a more comprehensive evaluation of Web-
Assembly should rely on an established benchmark suite of
large programs, such as the SPEC CPU benchmark suites.
In fact, the SPEC CPU 2006 and 2017 suite of bench-
marks include several applications that fall under the intended
use cases of WebAssembly: eight benchmarks are scien-
tific applications (e.g., 433.milc, 444 .namd, 447.dealll,
450.soplex, and 470. 1bm), two benchmarks involve image
and video processing (464 .h264ref and 453.povray), and
all of the benchmarks are POSIX applications.

Unfortunately, it is not possible to simply compile a sophis-
ticated native program to WebAssembly. Native programs,
including the programs in the SPEC CPU suites, require oper-
ating system services, such as a filesystem, synchronous I/O,
and processes, which WebAssembly and the browser do not
provide. The SPEC benchmarking harness itself requires a file
system, a shell, the ability to spawn processes, and other Unix
facilities. To overcome these limitations when porting native
applications to the web, many programmers painstakingly
modify their programs to avoid or mimic missing operating
system services. Modifying well-known benchmarks, such
as SPEC CPU, would not only be time consuming but would
also pose a serious threat to validity.

The standard approach to running these applications today
is to use Emscripten, a toolchain for compiling C and C++ to
WebAssembly [39]. Unfortunately, Emscripten only supports
the most trivial system calls and does not scale up to large-
scale applications. For example, to enable applications to use
synchronous I/O, the default Emscripten MEMFS filesystem
loads the entire filesystem image into memory before the
program begins executing. For SPEC, these files are too large
to fit into memory.

A promising alternative is to use BROWSIX, a framework
that enables running unmodified, full-featured Unix appli-
cations in the browser [28, 29]. BROWSIX implements a
Unix-compatible kernel in JavaScript, with full support for
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Figure 1: Number of PolyBenchC benchmarks performing
within xx of native. In 2017 [18], seven benchmarks per-
formed within 1.1 x of native. In April 2018, we found that
11 performed within 1.1x of native. In May 2019, 13 per-
formed with 1.1 x of native.

processes, files, pipes, blocking I/O, and other Unix fea-
tures. Moreover, it includes a C/C++ compiler (based on
Emscripten) that allows programs to run in the browser un-
modified. The BROWSIX case studies include complex ap-
plications, such as I&IEX, which runs entirely in the browser
without any source code modifications.

Unfortunately, BROWSIX is a JavaScript-only solution,
since it was built before the release of WebAssembly. More-
over, BROWSIX suffers from high performance overhead,
which would be a significant confounder while benchmarking.
Using BROWSIX, it would be difficult to tease apart the poorly
performing benchmarks from performance degradation intro-
duced by BROWSIX.

Contributions

o BROWSIX-WASM: We develop BROWSIX-WASM, a
significant extension to and enhancement of BROWSIX
that allows us to compile Unix programs to Web-
Assembly and run them in the browser with no modifi-
cations. In addition to integrating functional extensions,
BROWSIX-WASM incorporates performance optimiza-
tions that drastically improve its performance, ensuring
that CPU-intensive applications operate with virtually
no overhead imposed by BROWSIX-WASM (§2).

o BROWSIX-SPEC: We develop BROWSIX-SPEC, a har-
ness that extends BROWSIX-WASM to allow automated
collection of detailed timing and hardware on-chip per-
formance counter information in order to perform de-
tailed measurements of application performance (§3).
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e Performance Analysis of WebAssembly: Using
BROWSIX-WASM and BROWSIX-SPEC, we conduct
the first comprehensive performance analysis of Web-
Assembly using the SPEC CPU benchmark suite (both
2006 and 2017). This evaluation confirms that Web-
Assembly does run faster than JavaScript (on average
1.3 x faster across SPEC CPU). However, contrary to
prior work, we find a substantial gap between Web-
Assembly and native performance: code compiled to
WebAssembly runs on average 1.55 % slower in Chrome
and 1.45 x slower in Firefox than native code (§4).

e Root Cause Analysis and Advice for Implementers:
We conduct a forensic analysis with the aid of perfor-
mance counter results to identify the root causes of this
performance gap. We find the following results:

1. The instructions produced by WebAssembly have
more loads and stores than native code (2.02x
more loads and 2.30x more stores in Chrome;
1.92x more loads and 2.16x more stores in Fire-
fox). We attribute this to reduced availability of
registers, a sub-optimal register allocator, and a
failure to effectively exploit a wider range of x86
addressing modes.

2. The instructions produced by WebAssembly have
more branches, because WebAssembly requires
several dynamic safety checks.

3. Since WebAssembly generates more instructions,
it leads to more L1 instruction cache misses.

We provide guidance to help WebAssembly imple-
menters focus their optimization efforts in order to close
the performance gap between WebAssembly and native
code (§5,6).

BROWSIX-WASM and BROWSIX-SPEC are available at
https://browsix.org.

2 From BROWSIX to BROWSIX-WASM

BROWSIX [29] mimics a Unix kernel within the browser and
includes a compiler (based on Emscripten [33, 39]) that com-
piles native programs to JavaScript. Together, they allow
native programs (in C, C++, and Go) to run in the browser
and freely use operating system services, such as pipes, pro-
cesses, and a filesystem. However, BROWSIX has two major
limitations that we must overcome. First, BROWSIX compiles
native code to JavaScript and not WebAssembly. Second, the
BROWSIX kernel has significant performance issues. In partic-
ular, several common system calls have very high overhead in
BROWSIX, which makes it hard to compare the performance
of a program running in BROWSIX to that of a program run-
ning natively. We address these limitations by building a new

in-browser kernel called BROWSIX-WASM, which supports
WebAssembly programs and eliminates the performance bot-
tlenecks of BROWSIX.

Emscripten Runtime Modifications BROWSIX modifies
the Emscripten compiler to allow processes (which run in
WebWorkers) to communicate with the BROWSIX kernel
(which runs on the main thread of a page). Since BROWSIX
compiles native programs to JavaScript, this is relatively
straightforward: each process’ memory is a buffer that is
shared with the kernel (a SharedArrayBuffer), thus system
calls can directly read and write process memory. However,
this approach has two significant drawbacks. First, it pre-
cludes growing the heap on-demand; the shared memory
must be sized large enough to meet the high-water-mark heap
size of the application for the entire life of the process. Sec-
ond, JavaScript contexts (like the main context and each web
worker context) have a fixed limit on their heap sizes, which
is currently approximately 2.2 GB in Google Chrome [6].
This cap imposes a serious limitation on running multiple pro-
cesses: if each process reserves a 500 MB heap, BROWSIX
would only be able to run at most four concurrent processes.
A deeper problem is that WebAssembly memory cannot be
shared across WebWorkers and does not support the Atomic
API, which BROWSIX processes use to wait for system calls.
BROWSIX-WASM uses a different approach to process-
kernel communication that is also faster than the BROWSIX
approach. BROWSIX-WASM modifies the Emscripten runtime
system to create an auxiliary buffer (of 64MB) for each pro-
cess that is shared with the kernel, but is distinct from process
memory. Since this auxiliary bufferis a SharedArrayBuffer
the BROWSIX-WASM process and kernel can use Atomic API
for communication. When a system call references strings
or buffers in the process’s heap (e.g., writev or stat), its
runtime system copies data from the process memory to the
shared buffer and sends a message to the kernel with locations
of the copied data in auxiliary memory. Similarly, when a
system call writes data to the auxiliary buffer (e.g., read),
its runtime system copies the data from the shared buffer to
the process memory at the memory specified. Moreover, if
a system call specifies a buffer in process memory for the
kernel to write to (e.g., read), the runtime allocates a cor-
responding buffer in auxiliary memory and passes it to the
kernel. In case the system call is either reading or writing
data of size more than 64MB, BROWSIX-WASM divides this
call into several calls such that each call only reads or writes
at maximum 64MB of data. The cost of these memory copy
operations is dwarfed by the overall cost of the system call
invocation, which involves sending a message between pro-
cess and kernel JavaScript contexts. We show in §4.2.1 that
BROWSIX-WASM has negligible overhead.

Performance Optimization While building BROWSIX-
WASM and doing our preliminary performance evaluation,
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Figure 2: The framework for running SPEC benchmarks in browsers. Bold components are new or heavily modified (§3).

we discovered several performance issues in parts of the
BROWSIX kernel. Left unresolved, these performance issues
would be a threat to the validity of a performance comparison
between WebAssembly and native code. The most serious
case was in the shared filesystem component included with
BROWSIX/BROWSIX-WASM, BROWSERFS. Originally, on
each append operation on a file, BROWSERFS would allocate
a new, larger buffer, copying the previous and new contents
into the new buffer. Small appends could impose substantial
performance degradation. Now, whenever a buffer backing a
file requires additional space, BROWSERFS grows the buffer
by at least 4 KB. This change alone decreased the time the
464 .h264ref benchmark spentin BROWSIX from 25 seconds
to under 1.5 seconds. We made a series of improvements that
reduce overhead throughout BROWSIX-WASM. Similar, if
less dramatic, improvements were made to reduce the num-
ber of allocations and the amount of copying in the kernel
implementation of pipes.

3 BROWSIX-SPEC

To reliably execute WebAssembly benchmarks while cap-
turing performance counter data, we developed BROWSIX-
SPEC. BROWSIX-SPEC works with BROWSIX-WASM to
manage spawning browser instances, serving benchmark as-
sets (e.g., the compiled WebAssembly programs and test
inputs), spawning perf processes to record performance
counter data, and validating benchmark outputs.

We use BROWSIX-SPEC to run three benchmark suites
to evaluate WebAssembly’s performance: SPEC CPU2006,
SPEC CPU2017, and PolyBenchC. These benchmarks are
compiled to native code using Clang 4.0, and WebAssembly
using BROWSIX-WASM. We made no modifications to
Chrome or Firefox, and the browsers are run with their stan-
dard sandboxing and isolation features enabled. BROWSIX-
WASM is built on top of standard web platform features and
requires no direct access to host resources — instead, bench-
marks make standard HTTP requests to BROWSIX-SPEC.

3.1 BROWSIX-SPEC Benchmark Execution

Figure 2 illustrates the key pieces of BROWSIX-SPEC in play
when running a benchmark, such as 401 .bzip2 in Chrome.
First (1), the BROWSIX-SPEC benchmark harness launches
a new browser instance using a WebBrowser automation tool,
Selenium.? (2) The browser loads the page’s HTML, har-
ness JS, and BROWSIX-WASM kernel JS over HTTP from
the benchmark harness. (3) The harness JS initializes the
BROWSIX-WASM kernel and starts a new BROWSIX-WASM
process executing the runspec shell script (not shown in Fig-
ure 2). runspec in turn spawns the standard specinvoke
(not shown), compiled from the C sources provided in SPEC
2006. specinvoke reads the speccmds.cmd file from the
BROWSIX-WASM filesystem and starts 401 .bzip2 with the
appropriate arguments. (4) After the WebAssembly mod-
ule has been instantiated but before the benchmark’s main
function is invoked, the BROWSIX-WASM userspace runtime
does an XHR request to BROWSIX-SPEC to begin record-
ing performance counter stats. (5) The benchmark harness
finds the Chrome thread corresponding to the Web Worker
401.bzip2 process and attaches perf to the process. (6) At
the end of the benchmark, the BROWSIX-WASM userspace
runtime does a final XHR to the benchmark harness to end
the perf record process. When the runspec program exits
(after potentially invoking the test binary several times), the
harness JS POSTs (7) a tar archive of the SPEC results di-
rectory to BROWSIX-SPEC. After BROWSIX-SPEC receives
the full results archive, it unpacks the results to a temporary
directory and validates the output using the cmp tool provided
with SPEC 2006. Finally, BROWSIX-SPEC kills the browser
process and records the benchmark results.

4 Evaluation

We use BROWSIX-WASM and BROWSIX-SPEC to evaluate
the performance of WebAssembly using three benchmark

Znttps://www.seleniumhqg.org/
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Figure 3: The performance of the PolyBenchC and the SPEC CPU benchmarks compiled to WebAssembly (executed in Chrome
and Firefox) relative to native, using BROWSIX-WASM and BROWSIX-SPEC. The SPEC CPU benchmarks exhibit higher
overhead overall than the PolyBenchC suite, indicating a significant performance gap exists between WebAssembly and native.

suites: SPEC CPU2006, SPEC CPU2017, and PolyBenchC.
We include PolybenchC benchmarks for comparison with
the original WebAssembly paper [18], but argue that these
benchmarks do not represent typical workloads. The SPEC
benchmarks are representative and require BROWSIX-WASM
to run successfully. We run all benchmarks on a 6-Core Intel
Xeon E5-1650 v3 CPU with hyperthreading and 64 GB of
RAM running Ubuntu 16.04 with Linux kernel v4.4.0. We run
all benchmarks using two state-of-the-art browsers: Google
Chrome 74.0 and Mozilla Firefox 66.0. We compile bench-
marks to native code using Clang 4.0% and to WebAssembly
using BROWSIX-WASM (which is based on Emscripten with
Clang 4.0).* Each benchmark was executed five times. We
report the average of all running times and the standard error.
The execution time measured is the difference between wall
clock time when the program starts, i.e. after WebAssembly
JIT compilation concludes, and when the program ends.

4.1 PolyBenchC Benchmarks

Haas et al. [18] used PolybenchC to benchmark Web-
Assembly implementations because the PolybenchC bench-
marks do not make system calls. As we have already argued,
the PolybenchC benchmarks are small scientific kernels that
are typically used to benchmark polyhedral optimization tech-
niques, and do not represent larger applications. Nevertheless,
it is still valuable for us to run PolybenchC with BROWSIX-
WASM, because it demonstrates that our infrastructure for

3The flags to Clang are -02 -fno-strict-aliasing.

4BROWSIX-WASM  runs Emscripten  with the flags -02
-s TOTAL_MEMORY=1073741824 -s ALLOW_MEMORY_GROWTH=1
-fno-strict-aliasing.

system calls does not have any overhead. Figure 3a shows the
execution time of the PolyBenchC benchmarks in BROWSIX-
WASM and when run natively. We are able to reproduce the
majority of the results from the original WebAssembly pa-
per [18]. We find that BROWSIX-WASM imposes a very low
overhead: an average of 0.2% and a maximum of 1.2%.

4.2 SPEC Benchmarks

We now evaluate BROWSIX-WASM using the C/C++ bench-
marks from SPEC CPU2006 and SPEC CPU2017 (the new
C/C++ benchmarks and the speed benchmarks), which use
system calls extensively. We exclude four data points that
either do not compile to WebAssembly® or allocate more
memory than WebAssembly allows.® Table 1 shows the abso-
lute execution times of the SPEC benchmarks when running
with BROWSIX-WASM in both Chrome and Firefox, and when
running natively.

WebAssembly performs worse than native for all bench-
marks except for 429 .mcf and 433.milc. In Chrome, Web-
Assembly’s maximum overhead is 2.5 over native and 7
out of 15 benchmarks have a running time within 1.5x of na-
tive. In Firefox, WebAssembly is within 2.08 x of native and
performs within 1.5 x of native for 7 out of 15 benchmarks.
On average, WebAssembly is 1.55% slower than native in
Chrome, and 1.45 x slower than native in Firefox. Table 2
shows the time required to compile the SPEC benchmarks

5400 .perlbench, 403.gcc, 471. omnetpp, and 456 . hmmer from SPEC
CPU2006 do not compile with Emscripten.

SFrom SPEC CPU2017, the ref dataset of 638.imagick_s and
657.xz_s require more than 4 GB RAM. However, these benchmarks
do work with their test dataset.
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Benchmark Clang 4.0 | Google Chrome
401.bzip2 1.9 £ 0.018 | 0.53 +0.005
429.mct 0.3 £0.003 | 0.15 % 0.005
433.milc 2.2+0.02 0.3 £ 0.003
444 ,namd 4.6 £0.02 | 0.78 +£0.004
445, gobmk 12.1 £0.2 1.4+0.014
450.soplex 6.9 + 0.01 1.2 £ 0.009
453.povray 153+ 0.03 1.2 £0.012
458.sjeng 1.9+ 0.01 | 0.35£0.001
462 .1ibquantum 6.9 +£0.03 | 0.15 £ 0.002
464 .h264ref 10.3 £ 0.06 1.0 £ 0.03
470. 1bm 0.3 +£0.001 | 0.14 + 0.004
473.astar 0.73 £ 0.005 | 0.24 £ 0.004
482 .sphinx3 3.0+ 0.04 | 0.48 £0.007
641.leela_s 43+£0.05 | 0.74 £0.003
644 .nab_s 4.1+£0.03 | 0.41=£0.001

. Google Mozilla
Benchmark Native Chrogme Firefox
401.bzip2 370 + 0.6 864 + 6.4 730+ 1.3
429 .mcf 221 £ 0.1 180 + 0.9 184 £ 0.6
433.milc 375+ 2.6 369 + 0.5 378 + 0.6
444 .namd 271 £0.8 369 +£9.1 373 £ 1.8
445 . gobmk 352 +£2.1 537+£0.8 549 £33
450.soplex 179 £ 3.7 265+ 1.2 238+ 0.5
453.povray 110+ 1.9 275+ 1.3 229+ 1.5
458.sjeng 358+ 1.4 602 + 2.5 580 + 2.0
462 .libquantum 330 + 0.8 444 £ 0.2 385+ 0.8
464 .h264ref 380 4+0.7 | 807 £11.0 733+ 24
470.1bm 209 + 1.1 248 + 0.3 249 + 0.5
473.astar 299 £ 0.5 474 £3.5 408 £ 1.0
482 .sphinx3 381 +7.1 834 + 1.8 713 +3.6
641.leela_s 466 + 2.7 825+ 4.6 717 +£1.2
644 .nab_s 2476 £ 11 | 3639 £5.6 | 3829 +6.7
Slowdown: geomean - 1.55x 1.45x
Slowdown: median - 1.53 % 1.54 %

Table 1: Detailed breakdown of SPEC CPU benchmarks exe-
cution times (of 5 runs) for native (Clang) and WebAssembly
(Chrome and Firefox); all times are in seconds. The median
slowdown of WebAssembly is 1.53 x for Chrome and 1.54 x
for Firefox.

using Clang and Chrome. (To the best of our knowledge, Fire-
fox cannot report WebAssembly compile times.) In all cases,
the compilation time is negligible compared to the execution
time. However, the Clang compiler is orders of magnitude
slower than the WebAssembly compiler. Finally, note that
Clang compiles benchmarks from C++ source code, whereas
Chrome compiles WebAssembly, which is a simpler format
than C++.

4.2.1 BROWSIX-WASM Overhead

It is important to rule out the possibility that the slowdown that
we report is due to poor performance in our implementation
of BROWSIX-WASM. In particular, BROWSIX-WASM imple-
ments system calls without modifying the browser, and sys-
tem calls involve copying data (§2), which may be costly. To
quantify the overhead of BROWSIX-WASM, we instrumented
its system calls to measure all time spent in BROWSIX-WASM.
Figure 4 shows the percentage of time spent in BROWSIX-
WASM in Firefox using the SPEC benchmarks. For 14 of
the 15 benchmarks, the overhead is less than 0.5%. The
maximum overhead is 1.2%. On average, the overhead of
BROWSIX-WASM is only 0.2%. Therefore, we conclude that
BROWSIX-WASM has negligible overhead and does not sub-
stantially affect the performance counter results of programs
executed in WebAssembly.

Table 2: Compilation times of SPEC CPU benchmarks (aver-
age of 5 runs) for Clang 4.0 and WebAssembly (Chrome); all
times are in seconds.

2.0

x

E

3 15

[a4)]

£

€

o 1.0

Q

7]

[

E

> o051

5)

: i
00**_.—.* ——— e el L = ______i

| | | | | | | | | | | | | | | | |
9 &N O N & 6 6 @

$° q~‘<\°f5 §<\7> X oQ\QLo“O\\e\ZQ%&\\'& bV@Q\tOé\ & & \Q&z\”/%"/@%@o
DA% < D QN : 7
g é’)é"@'&?fq DN S

&
SPEC CPU Benchmarks

Figure 4: Time spent (in %) in BROWSIX-WASM calls in
Firefox for SPEC benchmarks compiled to WebAssembly.
BROWSIX-WASM imposes a mean overhead of only 0.2%.

4.2.2 Comparison of WebAssembly and asm. js

A key claim in the original work on WebAssembly was that
it is significantly faster than asm. js. We now test that claim
using the SPEC benchmarks. For this comparison, we modi-
fied BROWSIX-WASM to also support processes compiled to
asm. js. The alternative would have been to benchmark the
asm. js processes using the original BROWSIX. However, as
we discussed earlier, BROWSIX has performance problems
that would have been a threat to the validity of our results.
Figure 5 shows the speedup of the SPEC benchmarks using
WebAssembly, relative to their running time using asm. js
using both Chrome and Firefox. WebAssembly outperforms
asm. js in both browsers: the mean speedup is 1.54x in
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Relative execution time
(WebAssembly = 1.0)
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Figure 5: Relative time of asm.js to WebAssembly for
Chrome and Firefox. WebAssembly is 1.54x faster than
asm. js in Chrome and 1.39x faster than asm. js in Firefox.
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Figure 6: Relative best time of asm. js to the best time of
WebAssembly. WebAssembly is 1.3 faster than asm. js.

Chrome and 1.39 % in Firefox.

Since the performance difference between Chrome and
Firefox is substantial, in Figure 6 we show the speedup of
each benchmark by selecting the best-performing browser for
WebAssembly and the best-performing browser of asm. js
(i.e., they may be different browsers). These results show
that WebAssembly consistently performs better than asm. js,
with a mean speedup of 1.3x. Haas et al. [18] also found that
WebAssembly gives a mean speedup of 1.3x over asm. js
using PolyBenchC.

5 Case Study: Matrix Multiplication

In this section, we illustrate the performance differences be-
tween WebAssembly and native code using a C function that
performs matrix multiplication, as shown in Figure 7a. Three

matrices are provided as arguments to the function, and the re-
sults of A (N; x Nk) and B (Ng x Njy) are stored in C (N; X Ny),
where Ny, Nk, N; are constants defined in the program.

In WebAssembly, this function is 2x-3.4x slower than
native in both Chrome and Firefox with a variety of matrix
sizes (Figure 8). We compiled the function with -02 and
disabled automatic vectorization, since WebAssembly does
not support vectorized instructions.

Figure 7b shows native code generated for the matmul
function by clang-4.0. Arguments are passed to the function
in the rdi, rsi, and rdx registers, as specified in the System
V AMDG64 ABI calling convention [9]. Lines 2 - 26 are the
body of the first loop with iterator i stored in r8d. Lines 5
- 21 contain the body of the second loop with iterator k stored
in r9d. Lines 10 - 16 comprise the body of the third loop
with iterator j stored in rcx. Clang is able to eliminate a cmp
instruction in the inner loop by initializing rcx with —Ny,
incrementing rcx on each iteration at line 15, and using jne
to test the zero flag of the status register, which is set to 1
when rcx becomes 0.

Figure 7c shows x86-64 code JITed by Chrome for the
WebAssembly compiled version of matmul. This code has
been modified slightly — nops in the generated code have been
removed for presentation. Function arguments are passed in
the rax, rcx, and rdx registers, following Chrome’s calling
convention. At lines 1—- 3, the contents of registers rax, rdx,
and rcx are stored on the stack, due to registers spills at lines 7
- 9. Lines 745 are the body of the first loop with iterator i
stored in edi. Lines 18—42 contain the body of second loop
with iterator k stored in r11. Lines 27-39 are the body of
the third loop with iterator j stored in eax. To avoid memory
loads due to register spilling at lines 7- 9 in the first iteration
of the first loop, an extra jump is generated at line 5. Similarly,
extra jumps are generated for the second and third loops at
line 16 and line 25 respectively.

5.1 Differences

The native code JITed by Chrome has more instructions, suf-
fers from increased register pressure, and has extra branches
compared to Clang-generated native code.

5.1.1 Increased Code Size

The number of instructions in the code generated by Chrome
(Figure 7c¢) is 53, including nops, while clang generated code
(Figure 7b) consists of only 28 instructions. The poor instruc-
tion selection algorithm of Chrome is one of the reasons for
increased code size.

Additionally, Chrome does not take advantage of all avail-
able memory addressing modes for x86 instructions. In Fig-
ure 7b Clang uses the add instruction at line 14 with register
addressing mode, loading from and writing to a memory ad-
dress in the same operation. Chrome on the other hand loads
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1void matmul (int C[NI] [NJ],

2 int A[NI] [NK],

3 int B[NK][NJ]) {

4+ for (int 1 = 0; 1 < NI; i++) {

5 for (int k = 0; k < NK; k++) {

6 for (int j = 0; k < NJ; j++) {
) Cli][§] += A[i][k] * B[k][J];

1xor r8d, r8d

(a) matmul source code in C.

#1 <=0

2Ll: tstart first loop
3 mov rl0, rdx

4 xor r9d, rod #k <= 0

s L2: #start second loop
6 imul rax, 4*NK, r8

7 add rax, rsi

8 lea rll, [rax + r9*4]

9 mov  rcx, -NJ #3 <= -NJ

10 L3: #start third loop
1 mov eax, [rll]

12 mov ebx, [rl0 + rcx*4 + 4400]

13 imul ebx, eax

14 add [rdi + rcx*4 + 4*NJ], ebx

15 add recx, 1 #3 <- 3 +1

16 jne L3 #end third loop

17

18 add r9, 1 ¥tk <- k + 1

19 add rl0, 4*NK

20 cmp r9, NK

21 jne L2 #end second loop
22

» add r8, 1 #1 <- 1+ 1

« add rdi, 4*NJ

s cmp 8,

% jne L1
27pOp  rbx
nret

(b) Native x86-64 code for matmul generated by Clang.

NI
#end first loop

imov [rbp-0x28], rax
2mov [rbp-0x20], rdx
smov [rbp-0x18], rcx
4xor edi,edi

s jmp L1’

6L1:

7 mov ecx, [rbp-0x18]
s mov edx, [rbp-0x20]
9  mov eax, [rbp-0x28]
o L17:

n imul r8d,edi, 0x1130
2 add r8d,eax

13 imul r9d,edi, 0x12c0
14 add ro9d,edx

s xor rlld,rlld

6 Jjmp L2'

7 L2:

18 mov ecx, [rbp-0x18]

19 L2':

20 imul rl2d,rl11d,0x1130
21 lea rl4d, [r9+rl1l1*4]

2 add rl2d,ecx

23 X0or esi,esi

2 mov rl5d,esi

25 jmp L3’

2 L3:

27 mov rl5d,eax

28 L3':

29 lea eax, [r15+0x1]

30 lea edx, [r8+r15*4]
31 lea rlb5d, [r12+rl15*4]
32 mov esi, [rbx+rld*1]
3 mov rl5d, [rbx+rl5*1]
34 imul rl5d,esi

35 mov ecx, [rbx+rdx*1]
36 add ecx,rl5d

37 mov [rbx+rdx*1],ecx
38 cmp eax,NJ

39 jnz L3

9 add rll,Ox1
4 cmp rlld,NK
2 jnz L2
sadd edi, 0x1
acmp edi,NI

45 jnz L1

wretl

#i <=0

#start first loop

tk <=0

#start second loop

#3 <=0

#start third loop

3 <- 3+ 1

#9 < NJ

#end third loop
tk++

#k < NK

#end second loop
#i++

#i < NI

tend first loop

(c) x86-64 code JITed by Chrome from WebAssembly matmul.

Figure 7: Native code for matmul is shorter, has less register pressure, and fewer branches than the code JITed by Chrome. §6
shows that these inefficiencies are pervasive, reducing performance across the SPEC CPU benchmark suites.

the address in ecx, adds the operand to ecx, finally storing
ecx at the address, requiring 3 instructions rather than one on

lines 35—37.
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Figure 8: Performance of WebAssembly in Chrome and Fire-
fox for different matrix sizes relative to native code. Web-
Assembly is always between 2 to 3.4 x slower than native.

perf Event
all-loads-retired (r81d0) (Figure 9a)

Wasm Summary
Increased register

all-stores-retired (r82d0) (Figure 9b) pressure
branches-retired (r00c4) (Figure 9c) More branch
conditional-branches (r0lc4) (Figure 9d) | statements

instructions-retired (rlc0) (Figure 9e) Increased code size
cpu-cycles (Figure 9f)

Ll-icache-load-misses (Figure 10)

Table 3: Performance counters highlight specific issues with
WebAssembly code generation. When a raw PMU event
descriptor is used, it is indicated by rn.

5.1.2 Increased Register Pressure

Code generated by Clang in Figure 7b does not generate any
spills and uses only 10 registers. On the other hand, the code
generated by Chrome (Figure 7c) uses 13 general purpose
registers — all available registers (r13 and r10 are reserved by
V8). As described in Section 5.1.1, eschewing the use of the
register addressing mode of the add instruction requires the
use of a temporary register. All of this register inefficiency
compounds, introducing three register spills to the stack at
lines 1-3. Values stored on the stack are loaded again into
registers at lines 7-9 and line 18.

5.1.3 Extra Branches

Clang (Figure 7b) generates code with a single branch per
loop by inverting the loop counter (line 15). In contrast,
Chrome (Figure 7c) generates more straightforward code,
which requires a conditional jump at the start of the loop. In
addition, Chrome generates extra jumps to avoid memory
loads due to register spills in the first iteration of a loop. For
example, the jump at line 5 avoids the spills at lines 7— 9.

6 Performance Analysis

We use BROWSIX-SPEC to record measurements from all
supported performance counters on our system for the SPEC
CPU benchmarks compiled to WebAssembly and executed in
Chrome and Firefox, and the SPEC CPU benchmarks com-
piled to native code (Section 3).

Table 3 lists the performance counters we use here, along
with a summary of the impact of BROWSIX-WASM perfor-
mance on these counters compared to native. We use these
results to explain the performance overhead of WebAssembly
over native code. Our analysis shows that the inefficiences
described in Section 5 are pervasive and translate to reduced
performance across the SPEC CPU benchmark suite.

6.1 Increased Register P