

conference

proceedings

Proceedings of the 2019 U
SEN

IX A
nnual Technical Conference	

Renton, W
A

, USA 
July 10–12, 2019

Sponsored by

ISBN 978-1-939133-03-8

2019 USENIX
Annual Technical Conference

Renton, WA, USA
July 10–12, 2019

USENIX Supporters

USENIX Patrons
Bloomberg • Facebook • Google

Microsoft • NetApp

USENIX Benefactors
Amazon • Oracle • Two Sigma • VMware

USENIX Partners
Cisco Meraki • ProPrivacy • Restore Privacy

Teradactyl • TheBestVPN.com

Open Access Publishing Partner
PeerJ

USENIX ATC ’19 Sponsors

Gold Sponsors

Bronze Sponsors

Silver Sponsor

USENIX Association

July 10–12, 2019
Renton, WA, USA

Proceedings of the
2019 USENIX Annual Technical Conference

© 2019 by The USENIX Association

All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the author or the author’s
employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research
purposes. Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings.
USENIX acknowledges all trademarks herein.

ISBN 978-1-939133-03-8

Conference Organizers

Program Co-Chairs
Dahlia Malkhi, VMware Research
Dan Tsafrir, Technion—Israel Institute of Technology &

VMware Research

Program Committee
Nitin Agrawal, ThoughtSpot
Irfan Ahmad, Magnition
Deniz Altinbuken, Google
Nadav Amit, VMware Research Group
Saurabh Bagchi, Purdue University
Mahesh Balakrishnan, Yale University and Facebook
Antonio Barbalace, Stevens Institute of Technology
Andrew Baumann, Microsoft Research Redmond
Adam Belay, Massachusetts Institute of Technology
Ken Birman, Cornell University
Edward Bortnikov, Yahoo
Herbert Bos, Vrije Universiteit Amsterdam
Andre Brinkmann, Johannes Gutenberg-University Mainz
Edouard Bugnion, École Polytechnique Fédérale de

Lausanne (EPFL)
Randal Burns, Johns Hopkins University
Anton Burtsev, University of California, Irvine
Haibo Chen, Shanghai Jiao Tong University
Vijay Chidambaram, The University of Texas at Austin and

VMware Research
Asaf Cidon, Barracuda Networks
Austin Clements, Google
David Cock, ETH Zurich
Paolo Costa, Microsoft Research
John Criswell, University of Rochester
Charlie Curtsinger, Grinnell College
Dilma Da Silva, Texas A&M University
Nathan Dautenhahn, Rice University
Eyal de Lara, University of Toronto
Christina Delimitrou, Cornell University
Angela Demke Brown, University of Toronto
Fred Douglis, Perspecta Labs
Eric Eide, University of Utah
Michael Factor, IBM Research—Haifa
Pascal Felber, University of Neuchâtel
Christof Fetzer, TU Dresden
Moshe Gabel, University of Toronto
Ada Gavrilovska, Georgia Institute of Technology
Phillip Gibbons, Carnegie Mellon University
Cristiano Giuffrida, Vrije Universiteit Amsterdam
Ashvin Goel, University of Toronto
Boris Grot, University of Edinburgh

Steven Hand, Google
Liting Hu, Florida International University
Yu Hua, Huazhong University of Science and Technology
Jian Huang, University of Illinois at Urbana-Champaign
Bill Jannen, Williams College
Sudarsun Kannan, Rutgers University
Manos Kapritsos, University of Michigan
Kimberly Keeton, Hewlett Packard Labs
Samira Khan, University of Virginia
Taesoo Kim, Georgia Institute of Technology
Sam King, University of California, Davis
Aasheesh Kolli, The Pennsylvania State University
Dejan Kostic, KTH Royal Institute of Technology
Geoff Kuenning, Harvey Mudd College
Patrick P.C. Lee, The Chinese University of Hong Kong
Xing Lin, NetApp
Ethan Miller, University of California, Santa Cruz,

and Pure Storage
Changwoo Min, Virginia Polytechnic Institute and State

University
Adam Morrison, Tel Aviv University
Gilles Muller, Inria
Dushyanth Narayanan, Microsoft Research
David Nellans, NVIDIA
Ed Nightingale, Microsoft Research
Sam H. Noh, UNIST (Ulsan National Institute of Science

and Technology)
Aurojit Panda, New York University
Peter Pietzuch, Imperial College London
Don Porter, The University of North Carolina at Chapel Hill
Michael Reiter, The University of North Carolina

at Chapel Hill
Scott Rixner, Rice University
Timothy Roscoe, ETH Zurich
Chris Rossbach, The University of Texas at Austin and

VMware Research
Leonid Ryzhyk, VMware Research
Bianca Schroeder, University of Toronto
Liuba Shrira, Brandeis University
Keith A. Smith, NetApp
Patrick Stuedi, IBM Research
Michael Stumm, University of Toronto
Ryan Stutsman, University of Utah
Steve Swanson, University of California, San Diego
Michael Swift, University of Wisconsin−Madison
Nisha Talagala, Pyxeda AI
Theodore Ts’o, Google

External Reviewers

Divyakant Agrawal
Mohammad Alizadeh
Jia-Ju Bai
Hitesh Ballani
Tom Barbette
Kirill Bogdanov
Mihai Budiu
Aaron Carroll
Mosharaf Chowdhury
Israel Cidon
Tudor David
Quentin De Coninck
Giovanni Di Crescenzo
Aleksandar Dragojevic
Haggai Eran
Anshul Gandhi
Manya Ghobadi

Amir Gholaminejad
Adrien Ghosn
James Gleeson
William Hatch
Shachar Itzhaky
Anand Iyer
David M. Johnson
Rob Johnson
Antonis Katsarakis
Eric Keller
Marios Kogias
Richard Li
Shan Lu
Peter Macko
Haohui Mai
Ketan Mayer-Patel
Arif Merchant

Ben Pfaff
Mia Primorac
Amna Shahab
Philip Shilane
Dongkun Shin
Alex Shraer
Igor Smolyar
Weijia Song
Robert Soule
Angelos Stavrou
Swami Sundararaman
Amy Tai
Dmitrii Ustiugov
Shivaram Venkataraman
Udi Wieder
Matei Zaharia
Bowen Zhou

Chia-Che Tsai, Texas A&M University
Joseph Tucek, Amazon
Haris Volos, Google
Marko Vukolic, IBM Research Zurich
Carl Waldspurger, Carl Waldspurger Consulting
Ric Wheeler, Facebook
Dan Williams, IBM T.J. Watson Research Center
Youjip Won, Korea Advance Institute of Science and

Technology (KAIST)
Gala Yadgar, Technion—Israel Institute of Technology
Yuval Yarom, University of Adelaide and Data61
Erez Zadok, Stony Brook University
Zheng Zhang, Rutgers University

Extended Review Committee
Irina Calciu, VMWare Research Group
Orr Dunkelman, University of Haifa
Ittay Eyal, Technion—Israel Institute of Technology
David Grove, IBM Research
Ajay Gulati, ZeroStack
Tim Harris, Amazon UK
Gernot Heiser, University of New South Wales
Asim Kadav, NEC Labs
Julia Lawall, Inria/LIP6
Kfir Lev-Ari, Apple

Carlos Maltzahn, University of California, Santa Cruz
Jason Nieh, Columbia University
Erik Riedel, EMC
Mark Silberstein, Technion—Israel Institute of Technology
Animesh Trivedi, Vrije Universiteit Amsterdam
Ymir Vigfusson, Emerson University
Lluis Vilanova, Technion—Israel Institute of Technology
Yang Wang, Ohio State University
Michael Wei, VMWare Research Group
Keith Winstein, Stanford University
Guoqing (Harry) Xu, University of California, Los Angeles
Noa Zilberman, University of Cambridge

Best of the Rest Session Co-Chairs
Amy Tai, VMware Research
Chia-Che Tsai, Texas A&M University

Lightning Talks Co-Chairs
Deniz Altinbuken, Google
Aasheesh Kolli, The Pennsylvania State University and

VMware Research

Submissions Co-Chairs
Lalith Suresh, VMware Research
Gerd Zellweger, VMware Research

USENIX ATC ’19:
2019 USENIX Annual Technical Conference

July 10–12, 2019
Renton, WA, USA

Refreshing ATC – USENIX ATC ’19 Program Co-Chairs Message. . xi

Real-World, Deployed Systems
 1

 15

 33

 47

 63

The Design and Operation of CloudLab .
Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller, Mike
Hibler, David Johnson, and Kirk Webb, University of Utah; Aditya Akella, University of Wisconsin–Madison;
Kuangching Wang, Clemson University; Glenn Ricart, US Ignite; Larry Landweber, University of Wisconsin–Madison;
Chip Elliott, Raytheon; Michael Zink and Emmanuel Cecchet, University of Massachusetts Amherst; Snigdhaswin Kar
and Prabodh Mishra, Clemson University

Everyone Loves File: File Storage Service (FSS) in Oracle Cloud Infrastructure .
Bradley C. Kuszmaul, Matteo Frigo, Justin Mazzola Paluska, and Alexander (Sasha) Sandler, Oracle Corporation

Zanzibar: Google’s Consistent, Global Authorization System .
Ruoming Pang, Ramon Caceres, Mike Burrows, Zhifeng Chen, Pratik Dave, Nathan Germer, Alexander Golynski,
Kevin Graney, and Nina Kang, Google; Lea Kissner, Humu, Inc.; Jeffrey L. Korn, Google; Abhishek Parmar,
Carbon, Inc.; Christina D. Richards and Mengzhi Wang, Google

IASO: A Fail-Slow Detection and Mitigation Framework for Distributed Storage Services .
Biswaranjan Panda and Deepthi Srinivasan, Nutanix Inc.; Huan Ke, University of Chicago; Karan Gupta and
Vinayak Khot, Nutanix Inc.; Haryadi S. Gunawi, University of Chicago

Runtimes
Partisan: Scaling the Distributed Actor Runtime .
Christopher S. Meiklejohn and Heather Miller, Carnegie Mellon University; Peter Alvaro, UC Santa Cruz

Unleashing the Power of Learning: An Enhanced Learning-Based Approach for Dynamic Binary Translation. 77
Changheng Song, Fudan University; Wenwen Wang, Pen-Chung Yew, and Antonia Zhai, University of Minnesota;
Weihua Zhang, Fudan University

Transactuations: Where Transactions Meet the Physical World . . 91
Aritra Sengupta, Tanakorn Leesatapornwongsa, and Masoud Saeida Ardekani, Samsung Research; Cesar A. Stuardo,
University of Chicago

Not So Fast: Analyzing the Performance of WebAssembly vs. Native Code. . 107
Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun Guha, University of Massachusetts Amherst

Filesystems
Extension Framework for File Systems in User space . . 121
Ashish Bijlani and Umakishore Ramachandran, Georgia Institute of Technology

FlexGroup Volumes: A Distributed WAFL File System. . 135
Ram Kesavan, Google; Jason Hennessey, Richard Jernigan, Peter Macko, Keith A. Smith, Daniel Tennant, and
Bharadwaj V. R., NetApp

EROFS: A Compression-friendly Readonly File System for Resource-scarce Devices. . 149
Xiang Gao, Huawei Technologies Co., Ltd.; Mingkai Dong, Shanghai Jiao Tong University; Xie Miao, Wei Du, and
Chao Yu, Huawei Technologies Co., Ltd.; Haibo Chen, Shanghai Jiao Tong University / Huawei Technologies Co., Ltd.

QZFS: QAT Accelerated Compression in File System for Application Agnostic and Cost Efficient Data Storage. . . 163
Xiaokang Hu and Fuzong Wang, Shanghai Jiao Tong University, Intel Asia-Pacific R&D Ltd.; Weigang Li, Intel Asia-
Pacific R&D Ltd.; Jian Li and Haibing Guan, Shanghai Jiao Tong University

Big-Data Programming Models & Frameworks
Apache Nemo: A Framework for Building Distributed Dataflow Optimization Policies. . 177
Youngseok Yang and Jeongyoon Eo, Seoul National University; Geon-Woo Kim, Viva Republica; Joo Yeon Kim,
Samsung Electronics; Sanha Lee, Naver Corp.; Jangho Seo, Won Wook Song, and Byung-Gon Chun, Seoul National
University

Tangram: Bridging Immutable and Mutable Abstractions for Distributed Data Analytics . . 191
Yuzhen Huang, Xiao Yan, Guanxian Jiang, Tatiana Jin, James Cheng, An Xu, Zhanhao Liu, and Shuo Tu, The Chinese
University of Hong Kong

STRADS-AP: Simplifying Distributed Machine Learning Programming without Introducing a New
Programming Model . . 207
Jin Kyu Kim and Abutalib Aghayev, Carnegie Mellon University; Garth A. Gibson, Carnegie Mellon University, Vector
Institute, University of Toronto; Eric P. Xing, Petuum Inc, Carnegie Mellon University

Sophia: Online Reconfiguration of Clustered NoSQL Databases for Time-Varying Workloads. 223
Ashraf Mahgoub, Purdue University; Paul Wood, Johns Hopkins University; Alexander Medoff, Purdue University;
Subrata Mitra, Adobe Research; Folker Meyer, Argonne National Lab; Somali Chaterji and Saurabh Bagchi,
Purdue University

Security #1: Kernel
libmpk: Software Abstraction for Intel Memory Protection Keys (Intel MPK) . . 241
Soyeon Park, Georgia Institute of Technology; Sangho Lee, Microsoft Research; Wen Xu, Georgia Institute of
Technology; Hyungon Moon, Ulsan National Institute of Science and Technology; Taesoo Kim, Georgia Institute
of Technology

Effective Static Analysis of Concurrency Use-After-Free Bugs in Linux Device Drivers. . 255
Jia-Ju Bai, Tsinghua University; Julia Lawall, Sorbonne Université/Inria/LIP6; Qiu-Liang Chen and Shi-Min Hu,
Tsinghua University

LXDs: Towards Isolation of Kernel Subsystems. . 269
Vikram Narayanan, University of California, Irvine; Abhiram Balasubramanian, Charlie Jacobsen, Sarah Spall, Scott
Bauer, and Michael Quigley, University of Utah; Aftab Hussain, Abdullah Younis, Junjie Shen, Moinak Bhattacharyya,
and Anton Burtsev, University of California, Irvine

JumpSwitches: Restoring the Performance of Indirect Branches In the Era of Spectre . . 285
Nadav Amit, VMware Research; Fred Jacobs, VMware; Michael Wei, VMware Research

Parallelism & Synchronization
Multi-Queue Fair Queuing . . 301
Mohammad Hedayati, University of Rochester; Kai Shen, Google; Michael L. Scott, University of Rochester;
Mike Marty, Google

BRAVO—Biased Locking for Reader-Writer Locks. . 315
Dave Dice and Alex Kogan, Oracle Labs

Mitigating Asymmetric Read and Write Costs in Cuckoo Hashing for Storage Systems. . 329
Yuanyuan Sun, Yu Hua, Zhangyu Chen, and Yuncheng Guo, Huazhong University of Science and Technology

Programmable I/O Devices
NICA: An Infrastructure for Inline Acceleration of Network Applications. . 345
Haggai Eran, Technion–Israel Institute of Technology & Mellanox Technologies; Lior Zeno, Maroun Tork, Gabi Malka,
and Mark Silberstein, Technion–Israel Institute of Technology

E3: Energy-Efficient Microservices on SmartNIC-Accelerated Servers . . 363
Ming Liu, University of Washington; Simon Peter, The University of Texas at Austin; Arvind Krishnamurthy, University
of Washington; Phitchaya Mangpo Phothilimthana, University of California, Berkeley

Insider: Designing In-Storage Computing System for Emerging High-Performance Drive. . 379
Zhenyuan Ruan, Tong He, and Jason Cong, UCLA

Cognitive SSD: A Deep Learning Engine for In-Storage Data Retrieval. . 395
Shengwen Liang and Ying Wang, State Key Laboratory of Computer Architecture, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing; University of Chinese Academy of Sciences; Youyou Lu and Zhe Yang, Tsinghua
University; Huawei Li and Xiaowei Li, State Key Laboratory of Computer Architecture, Institute of Computing
Technology, Chinese Academy of Sciences, Beijing; University of Chinese Academy of Sciences

Graph Processing Frameworks
simd-x: Programming and Processing of Graph Algorithms on GPUs. . 411
Hang Liu, University of Massachusetts Lowell; H. Howie Huang, George Washington University

Lumos: Dependency-Driven Disk-based Graph Processing. . 429
Keval Vora, Simon Fraser University

NeuGraph: Parallel Deep Neural Network Computation on Large Graphs. . 443
Lingxiao Ma and Zhi Yang, Peking University; Youshan Miao, Jilong Xue, Ming Wu, and Lidong Zhou, Microsoft
Research; Yafei Dai, Peking University

Pre-Select Static Caching and Neighborhood Ordering for BFS-like Algorithms on Disk-based Graph Engines 459
Eunjae Lee, UNIST; Junghyun Kim, TmaxOS; Keunhak Lim, Nexon; Sam H. Noh, UNIST; Jiwon Seo, Hanyang University

Virtualization Flavors
From Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of Transient Functional Containers 475
Sadjad Fouladi, Francisco Romero, Dan Iter, and Qian Li, Stanford University; Shuvo Chatterjee, unaffiliated;
Christos Kozyrakis, Matei Zaharia, and Keith Winstein, Stanford University

Hodor: Intra-Process Isolation for High-Throughput Data Plane Libraries. . 489
Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell, and Michael L. Scott, University of Rochester;
Kai Shen and Mike Marty, Google

A Retargetable System-Level DBT Hypervisor. . 505
Tom Spink, Harry Wagstaff, and Björn Franke, University of Edinburgh

MTS: Bringing Multi-Tenancy to Virtual Networking. . 521
Kashyap Thimmaraju and Saad Hermak, Technische Universität Berlin; Gabor Retvari, BME HSNLab; Stefan Schmid,
Faculty of Computer Science, University of Vienna

Security #2: Isolation
StreamBox-TZ: Secure Stream Analytics at the Edge with TrustZone . . 537
Heejin Park and Shuang Zhai, Purdue ECE; Long Lu, Northeastern University; Felix Xiaozhu Lin, Purdue ECE

CoSMIX: A Compiler-based System for Secure Memory Instrumentation and Execution in Enclaves. 555
Meni Orenbach, Technion; Yan Michalevsky, Anjuna Security; Christof Fetzer, TU Dresden; Mark Silberstein, Technion

Secured Routines: Language-based Construction of Trusted Execution Environments . . 571
Adrien Ghosn, James R. Larus, and Edouard Bugnion, EPFL

Supporting Security Sensitive Tenants in a Bare-Metal Cloud. . 587
Amin Mosayyebzadeh, Boston University; Apoorve Mohan, Northeastern University; Sahil Tikale, Boston University;
Mania Abdi, Northeastern University; Nabil Schear, MIT Lincoln Laboratory; Trammell Hudson, Two Sigma; Charles
Munson, MIT Lincoln Laboratory; Larry Rudolph, Two Sigma; Gene Cooperman and Peter Desnoyers, Northeastern
University; Orran Krieger, Boston University

Exotic Kernel Features
Asynchronous I/O Stack: A Low-latency Kernel I/O Stack for Ultra-Low Latency SSDs. . 603
Gyusun Lee, Seokha Shin, and Wonsuk Song, Sungkyunkwan University; Tae Jun Ham and Jae W. Lee, Seoul National
University; Jinkyu Jeong, Sungkyunkwan University

M³x: Autonomous Accelerators via Context-Enabled Fast-Path Communication. . 617
Nils Asmussen, Michael Roitzsch, and Hermann Härtig, Technische Universität Dresden, Germany; Barkhausen Institut,
Dresden, Germany

(continued on next page)

Deduplication
SmartDedup: Optimizing Deduplication for Resource-constrained Devices. . 633
Qirui Yang, Runyu Jin, and Ming Zhao, Arizona State University

Data Domain Cloud Tier: Backup here, backup there, deduplicated everywhere!. . 647
Abhinav Duggal, Fani Jenkins, Philip Shilane, Ramprasad Chinthekindi, Ritesh Shah, and Mahesh Kamat, Dell EMC

Exotic Kernel Features #2
GAIA: An OS Page Cache for Heterogeneous Systems . . 661
Tanya Brokhman, Pavel Lifshits, and Mark Silberstein, Technion—Israel Institute of Technology

Transkernel: Bridging Monolithic Kernels to Peripheral Cores. . 675
Liwei Guo, Shuang Zhai, Yi Qiao, and Felix Xiaozhu Lin, Purdue ECE

Detecting Asymmetric Application-layer Denial-of-Service Attacks In-Flight with FineLame. 693
Henri Maxime Demoulin, Isaac Pedisich, Nikos Vasilakis, Vincent Liu, Boon Thau Loo, and Linh Thi Xuan Phan,
University of Pennsylvania

SemperOS: A Distributed Capability System . . 709
Matthias Hille, Technische Universität Dresden; Nils Asmussen, Technische Universität Dresden; Barkhausen Institut;
Pramod Bhatotia, University of Edinburgh; Hermann Härtig, Technische Universität Dresden; Barkhausen Institut

Key-Value Stores
Pragh: Locality-preserving Graph Traversal with Split Live Migration. . 723
Xiating Xie, Xingda Wei, Rong Chen, and Haibo Chen, Shanghai Jiao Tong University

ElasticBF: Elastic Bloom Filter with Hotness Awareness for Boosting Read Performance in Large
Key-Value Stores. . 739
Yongkun Li, Chengjin Tian, Fan Guo, Cheng Li, and Yinlong Xu, University of Science and Technology of China

SILK: Preventing Latency Spikes in Log-Structured Merge Key-Value Stores. . 753
Oana Balmau, Florin Dinu, and Willy Zwaenepoel, University of Sydney; Karan Gupta and Ravishankar Chandhiramoorthi,
Nutanix Inc.; Diego Didona, IBM Research–Zurich

Unification of Temporary Storage in the NodeKernel Architecture. . 767
Patrick Stuedi, IBM Research; Animesh Trivedi, Vrije Universiteit; Jonas Pfefferle, IBM Research; Ana Klimovic,
Stanford University; Adrian Schuepbach and Bernard Metzler, IBM Research

Solid-State & Hard Disk Drives
Evaluating File System Reliability on Solid State Drives. . 783
Shehbaz Jaffer, Stathis Maneas, Andy Hwang, and Bianca Schroeder, University of Toronto

Alleviating Garbage Collection Interference Through Spatial Separation in All Flash Arrays. 799
Jaeho Kim, Virginia Tech; Kwanghyun Lim, Cornell University; Youngdon Jung and Sungjin Lee, DGIST; Changwoo Min,
Virginia Tech; Sam H. Noh, UNIST

Practical Erase Suspension for Modern Low-latency SSDs. . 813
Shine Kim, Seoul National University and Samsung Electronics; Jonghyun Bae, Seoul National University;
Hakbeom Jang, Sungkyunkwan University; Wenjing Jin and Jeonghun Gong, Seoul National University; Seungyeon Lee,
Samsung Electronics; Tae Jun Ham and Jae W. Lee, Seoul National University

Track-based Translation Layers for Interlaced Magnetic Recording. . 821
Mohammad Hossein Hajkazemi, Northeastern University; Ajay Narayan Kulkarni, Seagate Technology; Peter Desnoyers,
Northeastern University; Timothy R Feldman, Seagate Technology

Networking
Your Coflow has Many Flows: Sampling them for Fun and Speed. . 833
Akshay Jajoo, Y. Charlie Hu, and Xiaojun Lin, Purdue University

PostMan: Rapidly Mitigating Bursty Traffic by Offloading Packet Processing. . 849
Panpan Jin, Jian Guo, and Yikai Xiao, National Engineering Research Center for Big Data Technology and System, Key
Laboratory of Services Computing Technology and System, Ministry of Education, School of Computer Science and
Technology, Huazhong University of Science and Technology, China; Rong Shi, The Ohio State University, USA; Yipei
Niu and Fangming Liu, National Engineering Research Center for Big Data Technology and System, Key Laboratory
of Services Computing Technology and System, Ministry of Education, School of Computer Science and Technology,
Huazhong University of Science and Technology, China; Chen Qian, University of California Santa Cruz, USA; Yang
Wang, The Ohio State University, USA

R2P2: Making RPCs first-class datacenter citizens. . 863
Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard Bugnion, EPFL

Lancet: A self-correcting Latency Measuring Tool. . 881
Marios Kogias, EPFL; Stephen Mallon, University of Sydney; Edouard Bugnion, EPFL

Non-Volatile Memory
Pangolin: A Fault-Tolerant Persistent Memory Programming Library. . 897
Lu Zhang and Steven Swanson, UC San Diego

Pisces: A Scalable and Efficient Persistent Transactional Memory. . 913
Jinyu Gu, Qianqian Yu, Xiayang Wang, Zhaoguo Wang, Binyu Zang, Haibing Guan, and Haibo Chen, Shanghai Jiao Tong
University

Scheduling Things
EdgeWise: A Better Stream Processing Engine for the Edge. . 929
Xinwei Fu, Talha Ghaffar, James C. Davis, and Dongyoon Lee, Virginia Tech

Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads. . 947
Myeongjae Jeon, UNIST and Microsoft Research; Shivaram Venkataraman, University of Wisconsin and Microsoft
Research; Amar Phanishayee and Junjie Qian, Microsoft Research; Wencong Xiao, Beihang University and Microsoft
Research; Fan Yang, Microsoft Research

Storage Failure & Recovery
Lessons and Actions: What We Learned from 10K SSD-Related Storage System Failures. . 961
Erci Xu, Ohio State University; Mai Zheng, Iowa State University; Feng Qin, Ohio State University; Yikang Xu and
Jiesheng Wu, Alibaba Group

Who’s Afraid of Uncorrectable Bit Errors? Online Recovery of Flash Errors with Distributed Redundancy 977
Amy Tai, Princeton University and VMware Research; Andrew Kryczka and Shobhit O. Kanaujia, Facebook;
Kyle Jamieson and Michael J. Freedman, Princeton University; Asaf Cidon, Columbia University

Dayu: Fast and Low-interference Data Recovery in Very-large Storage Systems. . 993
Zhufan Wang and Guangyan Zhang, Tsinghua University; Yang Wang, The Ohio State University; Qinglin Yang,
Tsinghua University; Jiaji Zhu, Alibaba Cloud

OPTR: Order-Preserving Translation and Recovery Design for SSDs with a Standard Block Device Interface 1009
Yun-Sheng Chang and Ren-Shuo Liu, National Tsing Hua University

Machine Learning Applications & System Aspects
Optimizing CNN Model Inference on CPUs . . 1025
Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, and Yida Wang, Amazon

Accelerating Rule-matching Systems with Learned Rankers . . 1041
Zhao Lucis Li, University of Science and Technology China; Chieh-Jan Mike Liang and Wei Bai, Microsoft Research;
Qiming Zheng, Shanghai Jiao Tong University; Yongqiang Xiong, Microsoft Research; Guangzhong Sun, University of
Science and Technology China

(continued on next page)

MArk: Exploiting Cloud Services for Cost-Effective, SLO-Aware Machine Learning Inference Serving. 1049
Chengliang Zhang, Minchen Yu, and Wei Wang, Hong Kong University of Science and Technology; Feng Yan, University
of Nevada, Reno

Cross-dataset Time Series Anomaly Detection for Cloud Systems. . 1063
Xu Zhang, Microsoft Research, Nanjing University; Qingwei Lin, Yong Xu, and Si Qin, Microsoft Research; Hongyu
Zhang, The University of Newcastle; Bo Qiao, Microsoft Research; Yingnong Dang, Xinsheng Yang, Qian Cheng, Murali
Chintalapati, Youjiang Wu, and Ken Hsieh, Microsoft; Kaixin Sui, Xin Meng, Yaohai Xu, and Wenchi Zhang, Microsoft
Research; Furao Shen, Nanjing University; Dongmei Zhang, Microsoft Research

USENIX Association	 2019 USENIX Annual Technical Conference  xi

Refreshing ATC – USENIX ATC ’19 Program Co-Chairs Message

Dan Tsafrir
Technion – Israel Institute of Technology

and VMware Research

Dahlia Malkhi
VMware Research

and Calibra

1 Introduction

Welcome to ATC ’19: the 2019 USENIX Annual Technical
Conference. The scope of ATC covers all practical aspects
related to systems software, and its goal is to improve and
further the knowledge of computing systems of all scales,
from small embedded mobile devices to large data centers,
while emphasizing implementations and experimental results.

The ATC ’19 program is the result of tremendous efforts
by many in our community. We are most thankful to the
authors who submitted their high-quality work and to the
reviewers who undertook the challenging task of evaluating
hundreds of submissions and providing constructive feedback
to the authors. While working on creating the program, we
have been repeatedly inspired by our reviewers’ competence,
experience, patience, and dedication. Thanks to their efforts,
we are happy to report that the excellent program of ATC ’19
achieves its aforementioned goal.

Briefly, we received 356 submissions and accepted 71
(19.9% acceptance rate) through a double-blind, two-rounds
review process. The statistics that describe the submitted and
accepted papers, along with the details of the review process,
are summarized in Table 1 and are further discussed below.

This document is somewhat longer than is typical for a
“message from the ATC program co-chairs”. What motivated
us to write this detailed report is the many changes that have
been introduced to ATC this year, the reasoning underlying
them, and the new things we have learned while working on
creating the program. The potential target audience for this
document is future chairs, or readers who wish to learn more
about the process.

2 Changes

We have introduced some notable changes to ATC this year,
primarily to meet higher reviewing standards used by other
major systems conferences. We discuss these changes next.

2.1 Increased Number of Reviews
Top-tier system conferences typically employ a two-rounds
reviewing process in which each submission receives at least
three reviews in the first review round (R1), and then, if the

count description

i. all submissions (short & full):

356 submitted (458 registered)
29 violated format, given 24 hour to fix

2 rejected+withdrawn due to said format violations
2 withdrawn before review process ended

352 underwent the full review process
184 promoted to review round #2 (R2)

80 R2 submissions pre-rejected during online discussions
37 R2 submissions pre-accepted during online discussions
67 R2 submissions discussed at PC meeting (accepted 34)
71 accepted (19.9% acceptance ratio)

ii. short submissions:

32 submitted
1 rejected+withdrawn due to format violations
8 promoted to R2
7 R2 submissions pre-rejected during online discussions
1 discussed at the meeting and accepted
1 full submission accepted as short

iii. committee & reviewing load:

66 heavy weight PC members; 18–19 reviews per member
28 light weight PC members; 13 reviews per member
22 external review committee (ERC) members; 5 reviews

116 committee members
51 external reviewers; 1 review

iv. reviews:

3–4 per submission in R1 (at least 2 by heavy members)
5–6 per submission in R2 (at least 4 by heavy members)

1,347 reviews in R1
405 reviews in R2

1,752 total, consisting of 1,097,815 words (6.7MB)

v. authors:

1,695 all submissions (1,442 unique, with 409 affiliations)
384 accepted (361 unique, with 118 affiliations)

Table 1: ATC ’19 submissions and reviewing statistics.

submission is promoted to the second round (R2) based on its
R1 reviews, it gets at least two additional reviews, amounting
to at least five reviews per R2 submission.

In contrast, until this year, ATC R1 and R2 submissions
received only two and four reviews, respectively. Upon inves-
tigation, we have learned that the decision to employ fewer
reviews than other systems conferences has been made more

xii  2019 USENIX Annual Technical Conference	 USENIX Association

than a decade ago, by the program co-chairs of ATC 2008.
We and many others believe that making review-round

promotion decisions based on only two R1 reviews is less
informed, and hence leads to higher variability in the result.
We further feel that the minimal number of R2 reviews should
be similar to that of the other main system conferences, to
allow for a better, more rigorous paper selection process. Con-
sequently, this year, all submissions have indeed received at
least three R1 reviews and at least five R2 reviews.

2.2 Double Blindness
Ever since ATC has been established, and until this year, the
conference has employed a single-blind reviewing process,
whereby reviewers see the names of the authors of the submis-
sions that they review. While simplifying the review process,
studies show that single-blindness might lead to bias against
minorities and in favor of well-known authors and organiza-
tions. For example, Tomkins et al. show that

“Reviewers in the single-blind condition typically
bid for 22% fewer papers and preferentially bid
for papers from top universities and companies.
Once papers are allocated to reviewers, single-
blind reviewers are significantly more likely than
their double-blind counterparts to recommend for
acceptance papers from famous authors, top uni-
versities, and top companies. The estimated odds
multipliers are tangible, at 1.63, 1.58, and 2.10, re-
spectively.” [14]

Similarly, Goues et al. show that

“Reviewers with author information were 1.76x
more likely to recommend acceptance of papers
from famous authors, and 1.67x more likely to rec-
ommend acceptance of papers from top institutions.
[...] When reviewers knew author identities, review
scores for papers with male-first authors were 19%
higher, and for papers with female-first authors 4%
lower.” [4]

The latter study also shows that reviewers are usually unable
to deanonymize authors of submissions by guessing, even if
they believe themselves to be experts on a submission’s topic.

Accordingly, major systems conferences (including SOSP,
OSDI, ASPLOS, Eurosys, FAST, NSDI, and USENIX Secu-
rity) employ a double-blind reviewing process by keeping
author identities concealed from reviewers.

For ATC ’19, we employed this policy as well, and we hope
future chairs will continue to do so. The ATC ’19 call for pa-
pers (CFP) requires authors to make a good faith attempt to
anonymize their submissions by avoiding identifying them-
selves or their institution, either explicitly or by implication,
e.g., through references, acknowledgments, online reposito-
ries that are part of the submission, or direct interaction with

committee members. When authors cite their own studies, the
CFP specifies two possibilities: either cite them as written
by a third party (preferable), or as anonymized supplemental
material uploaded to the HotCRP submission management
system (most useful when the cited work is currently under
review or awaiting publication). Prior publication as a tech-
nical report or in an online repository does not constitute a
violation of anonymity.

2.3 Author Responses
Most premier systems conferences – e.g., OSDI, SOSP,
ASPLOS, USENIX Security – give authors a few days to
write a response to the reviews. The authors’ response is
known as “rebuttal”, and it is optional. It allows authors to
provide answers to specific questions raised by reviewers and,
importantly, to correct factual errors or misunderstanding in
the reviews. (It may not provide new results or reformulate the
presentation.) Some researchers perceive rebuttals as essential
for the reviewing process, to keep it fair and transparent [6],
and some ACM SIGs encourage program chairs and steer-
ing committees of SIG-sponsored events to employ rebuttals,
based on feedback from their members [13].

Therefore, for ATC ’19, we chose to allow authors to rebut.
Similarly to our past experiences in forming programs while
serving in committees of conferences that employ rebuttals,
our sense is that the author responses have contributed to
the ATC ’19 process. Primarily because they allowed the
reviewers to make better informed decisions in certain cases.
But also because they implicitly encouraged reviewers to
write more accountable reviews and, importantly, to submit
them on time so as to be visible during the authors response
period; the latter allowed the online discussion period to start
on time with all the required material available.

We used a 500-words soft limit on the size of the rebuttal;
reviewers were not required to read more. The reviews were
made visible to authors in the rebuttal period, during which
reviewers were asked to avoid modifying them. After the re-
buttal period ended, reviews became invisible to authors again,
allowing reviewers to update them based on the rebuttal, the
online discussions, and the program committee (PC) meeting.

2.4 Submission Chairs
The ever-increasing number of submissions to systems con-
ferences (approaching 400 in the last two ATCs) makes it
increasingly challenging for everyone involved to create a
program. For example, it is challenging for reviewers to bid
on hundreds of submissions so as to express review prefer-
ences. It is likewise challenging to arrange things such that
the submission system accurately reflects conflicts associated
with more than a hundred reviewers and an order of magni-
tude more authors (experience repeatedly shows that many
conflicts are missing because reviewers and authors neglect

USENIX Association	 2019 USENIX Annual Technical Conference  xiii

to declare all their conflicts). It is also challenging to manage
a “dual track” PC meeting (where the PC is split between
two rooms part of the time) in a manner that ensures that all
committee members are found in the right room at the right
time in order to discuss the submissions they have reviewed.
Many other examples exist.

For this reason, we decided to formalize the role of a “sub-
mission chair” as part of the official organizers of ATC. The
job of the submission chair is to help the program chair in
accomplishing tasks such as those listed above by, for exam-
ple: adding missing conflicts to HotCRP based on DBLP;
helping reviewers’ bidding by identifying the submissions
that cite their papers and communicating this information to
the reviewers; checking format violation in uploaded PDFs
and communicating with authors to quickly fix those through
reformatting and content deletion; helping to ensure that the
quality of the reviews assignment is high (HotCRP assign-
ments might be far from optimal); helping to make sure that
per-submission administrative tasks are being carried out and
progress is achieved, e.g., by following up on submissions
that were not yet tagged as passing the “review sufficiency
check”; helping in scheduling of the dual track meeting; and
serving as scribes during the meeting while making sure the
scheduling of PC members in rooms works as expected.

Submission chairs get admin privileges in the HotCRP sys-
tem in order to carry out their duties. Their role, however,
never requires them to make decisions that affect the outcome
of the review process. For example, they do not steer online
discussions. It is productive for the program chair and sub-
mission chair to be geographically located near each other,
allowing them to physically meet when the need arises.

2.5 Extended Review Committee (ERC)

Most of the premier systems conferences, which must review
a few hundreds of submissions, typically employ a light-heavy
program committee model, where “light” PC members review
fewer submissions but do not attend the PC meeting, whereas
“heavy” members review more submissions and attend the
meeting. This model is needed in order to decrease the high
reviewing load of PC members, while keeping in mind that
the number of people who can sit in one room and conduct a
productive discussion is bounded.

Last year, unpredictably, ATC ’18 received nearly a hun-
dred additional submissions as compared to ATC ’17 (377
submissions as compared to 283 submissions, respectively).
To our knowledge, the PC of 2018 was the the first ATC PC
to employ the light-heavy model. In previous years, all ATC
PC members were “heavy”, which was viable because the
number of submissions was much lower, albeit, even so, past
ATC-s reviewing load was sometimes in the range of 25–30
submissions per member. (Some of us were members of those
PCs and still remember the pain.)

Our goal for this year was to ensure that the reviewing load

of heavy members will not exceed 20 submissions. In parallel,
USENIX instructed us to be prepared for an additional sizable
increase in the number of submissions. Therefore, to be safe
and have some flexibility, we decided to supplement the light-
heavy model with an Extended Review Committee (ERC),
consisting of members whose review load will be light: about
5 submissions per member.

Notably, due to the light reviewing load, ERC members
were easy to draft regardless of their seniority: they typically
accepted our invitation (which specified that the expected
reviewing load will be 3–7). Additionally, more than a quarter
of the ERC members were initially invited to serve as heavy
or light members and opted for the lighter alternative instead
of declining altogether.

Ultimately, having an ERC was a contributing factor that
allowed us to assign four reviewers in R1 to most submissions
(without increasing the load on light and heavy members be-
yond our planned upper bound). Having an initial assignment
of four reviews proved to be invaluable when making R2 pro-
motion decisions in the face of multiple late reviews, as three
reviews were typically enough to confidently make the call.
The ERC members additionally contributed by augmenting
the expertise of our pool of reviewers.

2.6 No Abstract Submission Deadline
Last year, in their welcome message, the program co-chairs
of ATC ’18 stated that

“We required authors to submit abstracts a week
before the paper submission in the hope of ensur-
ing proper subject area coverage by the program
committee and to get an idea of the reviewing load.
This did not work. We had over 550 submitted ab-
stracts, meaning almost 40% of the submissions
were abandoned. In the end, requiring abstracts to
be submitted early did not help with planning due
to such a large number of abstracts that did not
result in a submission” [5].

To that we add that requiring committee members to indi-
cate reviewing preferences before the submission deadline
would be a waste of their valuable time, as they will inevitably
bid on submissions that will not materialize. Stating review
preferences given hundreds of finalized submissions is already
time-consuming and challenging enough, and needlessly mak-
ing this task even harder is counterproductive.

Bidding on registered abstracts that will not materialize into
submissions would additionally negatively affect the quality
of the review assignment, because committee members fre-
quently stop bidding when they feel they have already placed
“enough” bids on submissions.

Consequently, this year, we have to cancel the requirement
to register abstracts in advance, and we eliminated the corre-
sponding deadline.

xiv  2019 USENIX Annual Technical Conference	 USENIX Association

2.7 Submission Deadline Closer to New Year

The date at which accept/reject notifications for ATC submis-
sions are sent to authors is typically set by USENIX to around
mid April.1 Accordingly, since 2013, the submission deadline
of ATC has been scheduled at the end of January or in early
February, which thus far allowed the committee to complete
the reviewing process in time to comply with a mid-April
author notification date. This year, however, we set an earlier
submission deadline: January 10, 2019.

Three issues necessitated this change. First, we needed
additional time for the authors response period (Section 2.3)
and for the “review sufficiency check” period that preceded
it (described in Section 8). Second, as noted in Section 2.6,
we had to allocate a few days following the deadline to allow
reviewers to place bids on submissions indicating their review
preferences; traditionally, such bidding took place before the
submission deadline, as authors were required to register an
abstract a week in advance.

The third issue that motivated an earlier deadline is the in-
creased number of submissions. To cope with this increase, we
allocated two weeks for online committee discussions sched-
uled before the PC meeting, in order to allow the committee
to converge to a decision regarding as many submissions as
possible—failing to do so would mean ending up with too
many submissions to discuss at the meeting. The increased
submission number also required allocating the week follow-
ing the bidding period in order to assign reviews to members
in a manner that would later allow us to reasonably conduct a
dual track PC meeting (see details in Section 6).

Scheduling the submission deadline to occur soon after
New Year may partially explain this year’s somewhat smaller
number of submissions as compared to last year: 377 vs. 356
in ATC ’18 and ATC ’19, respectively.

2.8 Uniform Shepherding

In the past, shepherding in ATC was not used by default. This
approach reduces the load from both committee members and
authors. A main drawback, however, is the increased likeli-
hood that some of the issues that the reviewers expect authors
to address in the camera-ready version remain unresolved.

The alternative approach, used by most of the premier sys-
tems conferences, is to assign shepherds to all accepted papers
and thereby generally improve quality assurance. As part of
our efforts to update the ATC reviewing process in order
to make it aligned with that of its sibling conferences, this
year, we decided that all accept decisions are conditional and
depend on the approval of shepherds.

1In odd years, if the appropriate coordination takes place (as is the case
this year), ATC notifications occur shortly before the SOSP submission
deadline, to allow rejected authors of the former conference to submit an
improved version of their study to the latter conference, assuming they have
kept working on it while it was under submission at ATC.

After the (conditional) accept notification, authors were
given a few days to consider how to address the reviewers’
comments and email a revision plan to their shepherd. Au-
thors and shepherds then agreed on a timeline that allows the
authors to complete the revision, providing enough time for
the shepherd to read, consider, and discuss the revision with
the authors, while permitting a final round of text polishing
if necessary before the camera-ready deadline. At the end of
this process, shepherds explicitly “signed off” the inclusion
of papers in the program using HotCRP tags, allowing the
program chairs to track the progress of turning all conditional
accepts to accepts.

2.9 Accept as Short

As members of former ATC PCs, we are aware of full sub-
missions that were accepted to past ATC-s on the condition
that their authors will reduce their size to meet the short pa-
per page-limit requirement. ATC program committees made
such decisions rarely, limiting them to situations where the
alternative is to otherwise reject the paper.

Surprisingly, past ATC call-for-papers were not clear about
the possibility to accept as short; the practice was only anec-
dotally documented in the messages from chairs [2]. Seeing
that this practice has been used in the past and may be used
in the future, in the interest of transparency, we decided to
explicitly declare it in the CFP, which now states that “the
program committee may rarely decide to accept a full sub-
mission on the condition that it is cut down to fit in the short
paper page limit” [19].

This CFP update initiated a discussion with USENIX board
members who were concerned that the effort required to trans-
form a full submission to a short paper might be too significant
to accomplish between the authors notification date and the
camera-ready date. They cited the FAST policy—which states
that “the program committee will not accept a full paper on
the condition that it is cut down to fit in the short paper page
limit” [20]—as potentially preferable.

After consideration, we decided to keep the ATC accept-
as-short policy because we believe it produces a significantly
better outcome for both the authors and for the community,
provided the alternative is to reject. In such rare cases, disal-
lowing the PC to accept as short would result in a lose-lose
situation: the authors lose because they are rejected instead of
being given a chance to shorten and thereby get accepted; the
ATC program loses a short paper; and the systems community
loses because the paper would be subsequently resubmitted
and hence re-reviewed, requiring the community to spend ad-
ditional reviewing cycles, whereas reviewing load is already
too high.

USENIX Association	 2019 USENIX Annual Technical Conference  xv

2.10 Shorter Presentations

Last year’s aforementioned 33% increase in the number of
ATC submissions (377 in ATC ’18 vs. 283 in ATC ’17)
and the consequent 27% increase in accepted papers (76 in
ATC ’18 vs. 60 in ATC ’17) motivated the program co-chairs
of ATC ’18 to avoid hosting “best of the rest” sessions in their
program, as well as to generate a longer-than-usual program
that ends in the evening of the third day of the conference
rather than around lunch time.

Despite having a similarly-sized program this year (71 pa-
pers), we wanted to have our cake and eat it too, namely: bring
back the “best of the rest” sessions; further add lightning ses-
sions to the program (see Section 2.12); while still end the
program around lunch time at the third day, as was done in
previous years prior to ATC ’18.

To this end, this year, we decided to shorten the presentation
time from 25 minutes per paper to 20 minutes. We believe that
this change constitutes a reasonable compromise, allowing
the conference to accommodate the additional sessions within
the traditional time frame, while still providing enough time
for presenters to convey the gist of their ideas.

2.11 Poster Requirement

To partially compensate for the shorter presentation time slots,
this year, we dedicated the two poster sessions exclusively
to accepted papers, and we required all paper-presenting au-
thors to additionally present a poster in one of these sessions.
Hopefully, this format will promote and facilitate interaction
between authors and attendees who are interested in their
work.

2.12 Lightning Sessions

In recent years “lightning sessions” have become standard in
top-tier computer architecture conferences (ISCA, ASPLOS,
etc.), and this year we decided to adopt them in ATC. Light-
ning sessions are typically interesting and fun, and, impor-
tantly, they are particularly suitable for conferences that have
parallel sessions, which inevitably means attendees miss some
of the presentations they are interested in. Lightning sessions
give attendees a chance to make more informed decisions
regarding what interests them the most and which talks are
more worthy of their time. Speakers indeed often treat their
lightning session presentations as previews aimed at soliciting
listeners to attend the associated talks.

A lightning session is a joint session at the beginning of the
day, which includes all the talks that will be given on that par-
ticular day. After the daily lightning session, the conference
splits into its parallel tracks. Shortly before the daily lightning
session, the speakers of that day queue in order—they do not
sit until they present. Then, each lightning talk is allocated
120 seconds.

Each daily lightning session has a session chair. The chair is
responsible for: interacting with speakers to get their slides be-
forehand; ordering slides on her laptop based on their order in
the program, and making sure they display nicely; informing
the speakers regarding the order; and regulating time during
the session if necessary (we have never witnessed a lightning
session chair having to actually exercise this authority).

Lightning speakers are additionally requested to submit
lightning videos beforehand, which are made available in
the conference web page before the conference. Both light-
ning presentations and videos are currently available in the
ATC ’19 technical sessions webpage.

In the past, USENIX conference talks were videoed, a very
useful service that largely stopped due to financial reasons.
Our hope is that lighting videos, which do not incur video
recording costs, can partially provide some of this service:
optimally, lightning videos would allow people who wish to
only understand the gist of the idea to do so in 120 seconds.

3 Changes to Consider

3.1 Steering Committee
The one remaining notable difference between ATC and its
sibling academic systems conferences (USENIX-sponsored:
FAST, NSDI, OSDI, USENIX Security; SIGOPS-sponsored:
ASPLOS, Eurosys, SOSP) is that ATC does not have a formal,
broad, long-term steering committee. To make ATC more
valuable to the community, we—nearly all ATC program
chairs since 2015—believe that ATC should have such a com-
mittee, and we propose to form it, thus completing the tran-
sition of ATC into a conference that is governed by policies
generally acceptable in the academic systems community.

We propose that the newly formed ATC steering commit-
tee will assume all responsibilities typically assigned to such
committees, including providing advice and guidance to the
current program co-chairs, selecting future program co-chairs,
sustaining organizational memory, suggesting and consider-
ing new ideas when the need arises; and ultimately shaping
the role of ATC. The identity of the steering committee mem-
bers should be publicized along with call-for-papers to allow
interested parties to address the committee with respect to
matters that concern the conference long-term.

The members of the committee could, for example, be the
USENIX executive director, relevant members of the USENIX
board, and the program chairs from the last n ATC instances,
such that members who chaired ATC in year Y − n will be
replaced by the ATC chairs of year Y shortly after the latter
conference takes place. Joining the steering committee will
of course be voluntary.

In October 9, 2018, a letter consisting of the content of this
subsection has been submitted to the USENIX board. The
letter was signed by all the ATC program chairs since 2015
except two (one responded too late and the other serves on

xvi  2019 USENIX Annual Technical Conference	 USENIX Association

 0

 100

 200

 300

 400

 2010
 2011

 2012
 2013

 2014
 2015

 2016
 2017

 2018
 2019

p
a

p
e

rs

ATC year

(a)

submitted

356
377

283

248
221

245
233230

180

147

submitted (full only)

324
347

254

213
189196195185

accepted

7176
60

474736334136
24

accept ratio [%]

20%20%21%19%21%15%14%18%20%16%

 0

 10

 20

 30

 40

 50

 2010
 2011

 2012
 2013

 2014
 2015

 2016
 2017

 2018
 2019

s
h

o
rt

 p
a

p
e

rs

ATC year

(b)

submitted

32
3029

35
32

49

38

45

accept ratio [%]

6%

13%
10%

3%
6%

10%

16%
20%

accepted

2
43

12
56

99

2

Figure 1: (a) Submission and acceptance statistics of ATC papers (including both full and short) in the last decade, based on the corresponding
proceedings’ message from the ATC program chairs. (b) The same, but only for short papers. In 2010–2011, short submission numbers were
not reported. In 2019 and 2013, one and three of the accepted short papers were submitted as full, respectively; we do not have this information
for the other years.

the Usenix board and is one of the decision makers regarding
the steering committee issue). All who signed volunteered
to serve on the steering committee when it is formed. The
response of the relevant people in USENIX seems positive,
but a steering committee has not yet been established.

3.2 Test of Time Award

All the premier systems conferences—except ATC—annually
recognize historical, influential papers that have stood the
test of time. This includes: USENIX Test of Time Award
for FAST, NSDI, and USENIX Security [18]; SIGOPS Hall
of Fame Award, which is typically handed to SOSP and
OSDI papers [17]; Eurosys Test of Time Award [16]; and
SIGARCH/SIGPLAN/SIGOPS ASPLOS Influential Paper
Award [15].

The procedure to select the awarded papers varies. A com-
mon way employed is for the program committee of the con-
ference to nominate influential papers published in that confer-
ence around ten years ago, with the final selection being made
by the conference’s steering committee (which, as noted, ATC
still does not have). ATC is much older than ten years and,
arguably, has changed its nature and goals over the years. So
when/if an ATC test of time award is established, the steering
committee will need to decide how to address older papers
and handle the backlog. Jeff Mogul documented some of
SIGOPS’s considerations when establishing its Hall of Fame

Award in 2005 and addressing similar questions [12].

3.3 Short Submissions

Figure 1a shows the submission and acceptance numbers of
ATC papers in the last decade. Figure 1b shows the same
statistics for short papers only. Getting a short submission ac-
cepted to ATC is clearly harder. We do not know why and can
only speculate about the reason. Perhaps there is a mismatch
between PC members’ expectations and what can actually be
accomplished in the scope of a short paper. Perhaps authors
wrongfully believe that the bar for short submissions is lower.
And perhaps there is a loose negative correlation between
the increasing number of full submissions and the decreasing
number of accepted short papers because PC members feel
they have stronger papers to accept, relatively speaking.

Regardless of the reason, the fact that ATC PCs have re-
viewed 29–35 short submissions per year in the last five years
only to accept 1–4 of them raises the question of whether the
effort is worth it, since the reviewing effort to accept short
papers is significantly greater than the effort to accept full
papers (3%–13% vs. about 20% acceptance rate for short and
short+full submissions in the last five years, respectively).

This year provides an extreme demonstration of how much
harder the PC has to work in order to accept short papers.
Table 2 specifies the number of reviews that the ATC ’19 PC
wrote for full and short submissions, as well as the resulting

USENIX Association	 2019 USENIX Annual Technical Conference  xvii

scenario submission written accepted work
type reviews papers ratio

real (worst case) full 1620 70 23:1
short 132 1 132:1

extrapolated (best case) short 132 4 33:1

Table 2: The number of reviews that the ATC ’19 PC wrote for full
and short submissions demonstrates that the PC had to work much
harder in order to accept a single short paper (“real”). Even if we
hypothetically assume that the PC had accepted four short paper
instead of one as in last year (best case scenario in the last five years),
the reviews-to-accepts work ratio would still be nearly 1.5x higher
(“extrapolated”).

number of accepts. It turns out that the PC wrote 132 reviews
in order to accept a single short paper, as opposed to writing
“only” 23 reviews in order to accept a full submission. Namely,
the PC had to work nearly 6x times as hard.

That said, as can be seen in Figure 1b, this year has been
especially bad for short submissions. But even if we hypothet-
ically assume the best case scenario across the last five years
of accepting four short papers, the corresponding reviews-to-
accepts ratio would have been 35:1, which is still nearly 1.5x
harder than accepting a full paper.

ATC enjoys a steadily increasing number of full submis-
sions. As a consequence, the reviewing load becomes heavier,
requiring bigger PCs that already hardly fit into one room.
Considering the relatively low return on investment (a signifi-
cantly higher reviews-to-accepts ratio), it may make sense for
future ATCs to consider to stop soliciting short papers.

We note in passing that, this year, we revised the CFP defi-
nition of short submissions to exclude workshop-style papers
(“a short paper is not like a workshop paper—it presents a
complete idea, which does not require full length to be appre-
ciated” [19]). We introduced this change hoping to increase
the short submission success rate by discouraging authors
from submitting work that (our experience suggests) ATC re-
viewers tend to reject. The data shown in Figure 1b suggests
this change was ineffective .

3.4 Early Rejects or R1 Rebuttals

The program co-chairs of this year debated about the issue
of whether or not to send early reject notifications to authors
of submissions who did not make it to R2. The reasoning to
oppose sending early rejects was that such notifications might
provide an unfair advantage to R1 rejects over R2 submissions
that will be rejected later on, because the authors of the former
will be free to resubmit their work elsewhere much sooner.
Additionally, early rejects might translate to even higher re-
viewing loads that the community must handle due to said
earlier resubmissions. Lastly, and importantly, postponing the
R1 reject notification would allow PC members to re-calibrate
during the second round and the deliberations and potentially

change their opinion.
The reasoning to supported early rejects was that delaying

reject notifications would be counterproductive for authors
who do not abuse the system but rather leverage the review-
ers’ feedback to improve their work before they resubmit.
Arguably, the ATC reviewing process should not replace one
evil (“helping” authors who might abuse the system by ignor-
ing the reviewers’ feedback and resubmitting prematurely)
with another (allowing authors to believe that they have a
chance to get accepted for a good few weeks whereas in fact
they do not).

Eventually, since we already introduced many changes to
ATC this year (Section 2), we decided to leave things as they
are in this particular case and avoid sending early reject notifi-
cations. But we encourage future ATC program chairs (and/or
the ATC steering committee if it is established) to reconsider.

Because decisions were collectively sent to authors shortly
after the PC meeting, R1 rejects were given a chance to write a
rebuttal (Section 2.3), which the committee members read and
considered. Two R1 rejected submissions were resurrected as
a result. These submissions were promoted to R2 and urgently
assigned two additional reviewers. In the end, however, both
were rejected. We speculate that allowing authors to rebut
(also) after R1 (as is done by some conferences) would have
had a bigger effect. But doing so would require more labor and
an even earlier deadline, which would be closer to New Year,
which might result in fewer submissions (see Section 2.7).

3.5 Physical PC Meeting

The number of submissions the PC can discuss in one day
(let us denote it as c) is bounded. For example, it takes more
than eight hours to discuss c = 70 submissions if allocating
7 minutes per submission, as is typical. PCs also usually
dedicate 2–3 minutes to present each submission that was
pre-accepted in the online discussion phase (ATC ’19 had 37
such submissions), and they take about 30 minutes for lunch.
It is challenging to squeeze all these activities into one day.

Let m denote a member of the PC, and let r denote the num-
ber of submissions reviewed by m. Similarly to c, the value of
r is bounded. At the risk of overgeneralizing, we roughly ap-
proximate that r = 15, r = 20, and r = 25 reviews per member
are nowadays considered light, average, and heavy review-
ing loads in academic systems conferences, respectively. The
value of r cannot be raised arbitrarily.

In contrast to c and r, the total number of submissions that
the PC must review (let us denote it as n) is unbounded and
keeps increasing. The practical meaning of this increase is
that, on average, fewer and fewer of the r submissions that
m reviewed are getting discussed at the meeting. Figure 2
demonstrates this trend, assuming c = 70 submissions are
discussed at the meeting, and that 2/3 and 1/3 of the r submis-
sions assigned to m are reviewed in R1 and R2, respectively.
The x axis shows n, and the y axis shows the corresponding

xviii  2019 USENIX Annual Technical Conference	 USENIX Association

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 200 250 300 350 400 450 500

e
x
p
e
c
te

d
 n

u
m

b
e
r

o
f
s
u
b
m

is
s
io

n
s

th
a
t
a
 P

C
 m

e
m

b
e
r

re
v
ie

w
s
 w

h
ic

h
 e

n
d

u
p
 g

e
tt
in

g
 d

is
c
u
s
s
e
d
 a

t
th

e
 m

e
e
ti
n
g
 (

d
)

total number of submissions (n)

r=25 reviews per member
r=20 reviews per member
r=15 reviews per member

Figure 2: Increased number of submissions translates to fewer
submissions that each PC member gets to discuss at the PC meeting;
see Appendix A for details.

expected number of submissions that have been reviewed by
m and ended up being discussed at the meeting (let us denote
it as d), which is monotonically decreasing.

In Appendix A, we show that under our assumptions,
d ≈ 4rc/3n is a reasonable approximation of the expected
number of submissions that m reviewed and discussed at the
meeting. As noted, because r and c (numerator) are bounded,
d asymptotically behaves like 1/n (denominator).

Our PCs received n = 356 submissions and used an upper
bound of 18–19 reviews per heavy member, which more or
less corresponds to the line associated with r = 20 in Figure 2.
In the relevant range of n, we see that d = 5.5 submissions
discussed at the meeting per member. Because d is just an av-
erage, some members discussed more submissions, but others
discussed less: as little as 2–3 submissions in certain cases.
Flying to California to discuss such a small number of sub-
missions is, arguably, counterproductive.

In 2018, the PC meeting spanned across two days, allowing
the committee to make fewer decisions during the online
discussions period and instead discuss c= 124 submissions in
person at the meeting (with n= 377 and r = 18). Therefore, by
our calculation, each member discussed about 8 submissions
on average, alleviating the problem somewhat. On the other
hand, 8 submissions during two days means 4 submissions
per day (as compared to 5.5 per day in 2019), which is not
necessarily preferable.

When discussing this issue with some of the members dur-
ing the PC dinner, it seemed like most agreed that there is a
problem: the time overhead and carbon emission associated
with physical PC meetings are possibly becoming excessive
considering the smaller number of submissions that each mem-

ber gets to discuss. Still, there was a sense that the program
turned out better due to the physical meeting, which allowed
the members to calibrate. Additionally, several members—
both junior and senior—pointed out that a notable value they
get from PC meetings is the chance to network and interact
with their peers.

In light of the above, it may be advisable for future program
chairs to consider if in-person, physical PC meetings are worth
it, at least in their current format. If they decide in favor of
physical meetings, one conceivable way to increase their value
is, for example, to couple them with workshop-style events,
where committee members briefly present their ideas and get
feedback from their peers.

4 Assembling the Committee

After we accepted the position of the ATC ’19 program co-
chairs, we were asked by USENIX to take into account that
the number of submissions in 2019 might exhibit the same
growth rate as it did in 2018, which would bring us to about
500 submissions (a.k.a. “the nightmare scenario” :-)), re-
quiring 3 × 500 + 2 × 250 = 2000 reviews assuming 50%
of the submissions move to R2 (see Section 2.1). A smaller,
more conservative estimate of 400 submissions would require
3×400+2×200 = 1600 reviews. In comparison, a sizable
heavy PC of 60 members each contributing 20 reviews—
a threshold we were hoping and planning not to exceed—
provides 60×20 = 1200 reviews. Taking into account these
numbers, we decided to draft a heavy PC, a light PC, and
an ERC (see Section 2.5) with target sizes of 65, 25, and 25,
respectively.

Drafting about 115 committee members is a challenging
task. In preparation for it, we compiled a list of all those
who served on PCs in the last three instances of the main
systems conferences, such that we had a pool of candidates
to helps us (we used: ASPLOS 2017–2019, ATC 2016–2018,
Eurosys 2017–2019, FAST 2017–2019, NSDI 2017–2019,
OSDI/SOSP 2016–2018, and USENIX Security 2016–2018).

Analyzing this database brought up an interesting insight,
which might indicate that our community has scalability is-
sues in terms carrying out the reviewing load. Table 3 shows
the relevant statistics. The aggregated sum of the size of the
21 PCs we have included in our analysis is 1118. These mem-
bership positions were manned by 655 unique individuals, a
finding that could be interpreted to mean that members serve
in 1118/655 ≈ 1.7 PCs in three years, on average. A deeper
look at the data, however, reveals that 284 individuals partic-
ipated in two or more of the PCs in our database, and these
individuals are responsible for manning 783 (70%) of the
1118 positions. This finding implies that a relatively small
group of people shoulders most of the reviewing load.

Figure 3 depicts the histogram of how many of the mem-
bers in our database (y) served in how many of the PCs that
we included (x), which demonstrates the reviewing effort dis-

USENIX Association	 2019 USENIX Annual Technical Conference  xix

memberships (aggregated sum of PC sizes) 1,118
number of unique members 655
number of unique recurring members 284

Table 3: Membership statistics of the PCs of the main systems
conferences in the last three years.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6 7 8

m
e
m

b
e
rs

 w
h
o
 s

e
rv

e
d
 i
n
 t
h
is

 m
a
n
y
 P

C
s

number of PCs

335

155

81

27
10 6 4 1

Figure 3: Histogram showing how many of the members of the
PCs of the main systems conferences in the last three years (y axis)
served in how many of these PCs (x axis).

parity. We can see, for example, that one member served in 8
PCs, and four members served in 7.

The list we compiled was helpful in drafting the commit-
tee. When sending heavy member invitations, we allowed the
candidates to accept as light or ERC, and when sending light
member invitations, we allowed the candidates to accept as
ERC. The number, type, and outcome of the invitations are
specified in Table 4, and the demographic information of the
resulting PC is specified in Table 5. Nearly 2/3 of the invita-
tions sent were accepted, and as can be seen, this relatively
high success rate is partially because we allowed candidates
to opt for roles that involve a smaller reviewing load.

5 Conflicts and Bidding

5.1 Missing Conflicts
Before assigning submissions to reviewers, it is important for
the submission management system, HotCRP, to have accu-
rate conflict of interest information as defined by the ATC ’19
call for papers [19]. In addition to the conflict information
that authors and reviewers explicitly specify, HotCRP helps
by highlighting potential conflicts based on the information
available to it, which is productive. This year, we also used
the PC Chair Kit [3] that was written for ISCA ’18 to find

invite invite accepted accepted accepted declined
type sent as heavy as light as ERC
heavy 131 66 16 3 46
light 22 - 12 3 7
ERC 27 - - 16 11
sum 180 66 28 22 64

Table 4: Number of invitations to serve on the ATC ’19 committee
sent to candidates, and the corresponding responses.

seniority junior 31
senior 63

gender female 14
male 80

sector university 64
industry 25
both 5

continent N. America 69
Europe 15
Asia 5
Middle East 4
Australia 1

country USA 62
Canada 7
Switzerland 6
Israel 4
UK 4
Germany 2
Netherlands 2
Korea 2
Australia 1
China 1
France 1
Hong Kong 1
Sweden 1

Table 5: Demographic information of the PC (heavy and light,
excluding program co-chairs).

missing conflicts based on authorship information available
via DBLP.2 The script downloads the relevant DBLP infor-
mation and checks if there are any co-authors of submission
authors from the last n years that are not already listed as
HotCRP conflicts.

Our submission co-chairs found 150 such undeclared con-
flicts and verified them manually. They identified a few false
positives (e.g., two researchers with identical name, a summer
school report authored by many authors that should not be
considered as a real conflict), but the rest of the conflicts were
valid.

5.2 Helping Committee Members to Bid
Authors associate topics from a predetermined list with their
submissions, and committee members declare their per-topic
level of (dis)interest for each such topic. This information is
important, because it is utilized by HotCRP to compute a per-
member score for each submission, and members use these
scores to sort through hundreds of submissions and thereby
ease the process of bidding—the act of associating integers
with submissions to indicate reviewing preference. HotCRP
then uses bids (as well as topic scores when, e.g., bids are
absent) to assign reviews to reviewers.

Instructions for Committee Members We requested com-
mittee members to favor bidding on submissions for which

2More accurately, we used a fork of that kit [7].

xx  2019 USENIX Annual Technical Conference	 USENIX Association

they can provide expert or knowledgeable reviews, rather than
on submissions that they find interesting but do not fall in their
area of expertise.

We additionally requested committee members to limit the
range of the numeric values they use to express preference to
-20 to 20. The HotCRP system does not compare preference
values of different users in the automatic review assignment
algorithm and so members need not use the same scale. Some
review assignments, however, are inevitably done manually by
program chairs, and then having a common scale is helpful.

Defining Topics Last year, in ATC 2018, the aforemen-
tioned predetermined list consisted of 62 topics, as opposed to
years 2017 and 2016, at which ATC used a list consisting of
17 topics. Some speculate that having this many topics is cum-
bersome, overly verbose, and unhelpful [9], and we seriously
considered minimizing the list and consolidating topics when
defining it for 2019. But a closer look at the historical data
(from ATC ’18, as well as from ASPLOS ’19, which used a
similarly sized list) indicated that authors and reviewers do
use most topics in the longer lists.

Considering that (1) the task of bidding is really hard when
there are hundreds of submissions, and that (2) PC members
do primarily rely on topics when bidding as a way to cope
with this submission volume, we eventually decided that it
might be counterproductive to shrink the topic list and risk
making bidding harder. A concise (or at least coarser grained)
list could be preferable, and mining past data more seriously
may provide evidence that support this hypothesis. But as
we currently do not know, we decided to stick with the more
sizable, finer grained list (although we made changes).

Figure 4 shows the 59 topics used in ATC ’19, ranked by
the number of submissions that used them. It could be ar-
gued that even our least popular topic (“cryptography”, which
was associated with only three submissions) is worthwhile,
because it is preferable for the associated submissions to be
reviewed by the appropriate committee members who are
actually capable of doing it, and it seems reasonable to specu-
late that the odds of that happening would have been smaller
without the topic.

Grouping Topics Given that there are dozens of topics, it
makes sense to group related topics when they are presented
to authors and committee members within HotCRP, which
makes using them easier. In ATC ’18, the program co-chairs
did so in an ad hoc manner by adding grouping prefixes to
topic strings that are separated from the topic names by a
colon (for example: “storage:deduplication”, “storage:disk
(CMR, SMR, etc.)”, “storage:erasure coding”, and so on). In
ATC ’19, we used the same notation but also kindly requested
the HotCRP maintainer to directly support the concept, which
he did [9], making the HotCRP presentation of grouped topics
more elegant, usable, and effective. The topic groups we used
are: general, devices, networking, OS, PL/SE (abbreviation of

total number of citations of committee papers 1266
average number of citations per member 11.6
median number of citations per member 7
standard deviation 11.5
citations of top-most cited member 67
citations of 2nd-most cited member 61
citations of 3rd-most cited member 43

Table 6: Statistics of citations of committee member papers found
in the ATC ’19 submissions and communicated to members to help
with their bidding.

programming languages and software engineering), security,
storage, systems, and techniques/aspects.

Pinpointing Submissions that Cite Members As noted,
having to place bids to decide which submissions to review
is becoming more challenging due to the increasing number
of submissions. Merely reading the titles of 300–400 sub-
missions is time-consuming, and many reviewers need more
information than just the title to decide to bid. Attempting to
ease the process of bidding, we generated for, and shared with
each committee member a list that specifies all the ATC ’19
submissions that cite that member’s papers. The list was gen-
erated by our submission co-chairs using the aforementioned
PC Chair Kit [7].

Table 6 provides some statistics about the citations we have
found. Since there are more than a thousand of them, hope-
fully, they provided a usable signal to some of the committee
members.

Dealing with Unpopular Submissions Despite the fact
that nearly 90% of the committee members placed positive
bids on 20 submissions or more (and 2/3 of the members
placed positive bids on 40 submissions or more), some sub-
missions were associated with relatively few positive bidders.
Perhaps unsurprisingly, some submissions are much more
popular than others. The line associated with “before” in Fig-
ure 5 depicts the disparity of popularity. The x axis shows the
rank of each submission based on the the number of members
that bade positively on it, and y axis shows the corresponding
number of bids.

Focusing on the bottom right, we can see that 60 submis-
sions received only 6 positive bids or less, which would have
likely hampered the review assignment process. We therefore
labeled these 60 as “lowbids” in HotCRP and asked our com-
mittee members to consider positively bidding on some of
them if they are within their domain of expertise, stating that
if everyone does this truthfully, no one will be tasked with
arbitrary submission assignments. The line associated with
“after” in Figure 5 demonstrates that this request was effective.
(Albeit the data is distorted somewhat by the fact that the
“after” line additionally accounts for bids we solicited before
the beginning of R2.)

USENIX Association	 2019 USENIX Annual Technical Conference  xxi

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

perform
ance, efficiency

cloud com
puting

storage
distributed com

puting

operating system
s

big data system
s &

 fram
ew

orks

scheduling, resource m
anagem

ent

m
achine learning application

datacenter

netw
orking

kernel
flash, ssds

security &
 privacy

virtualization, containers

high availability &
 reliability

scalability

parallelism
, synchronization

distributed storage system
s

filesystem
s

m
em

ory system
s &

 techniques

benchm
arking, sim

ulation, em
ulation

non-volatile m
em

ory

attacks &
 defenses

attestation &
 isolation

quality of service

em
erging platform

s &
 technologies

key-value stores

heterogeneous arch’s &
 accelerators

m
ulticores

high-perform
ance com

puting

databases

caching
case studies of real-w

orld

netw
ork protocols

applications

gpus
architecture, m

icroarchitecture

edge com
puting

internet of things

program
m

ing m
odels &

 languages

m
obile &

 hand-held system
s

fpga &
 reconfigurable hardw

are

algorithm
s

pow
er, energy, tem

perature

rem
ote m

em
ory

experim
ental m

ethodology

em
bedded &

 sensor system
s

runtim
e system

s

com
pilation, translation, instrum

entation

bug finding, program
 analysis, testing

sdn, nfv
debugging, logging, troubleshooting

com
pression

code generation &
 synthesis

deduplication

erasure coding

data science

approxim
ate com

puting

cryptography

s
u
b
m

is
s
io

n
 n

u
m

b
e
r

85

71
67

59 56
52

48 47

39 37 37 37 36 35 34 33
29 28 27 27 25 24 23 21 21 21 21 21 20 17 16 15 15 15 15 14 13 13 12 12 12 11 11 11 11 11 10 10 9 9 9 8 7 7 5 5 4 4 3

Figure 4: The ATC ’19 topics (without their grouping prefix) ranked by the number of submissions that used them.

 6
 10

 20

 30

 40

 50

 0 50 100 150 200 250 300 350 400

n
u
m

b
e
r

o
f
p
o
s
it
iv

e
 b

id
s

submission rank (by num of >0 bids)

after
before

Figure 5: Disparity of popularity among ATC ’19 submissions.

Interestingly, out of those 60 “unpopular” submissions, only
three (5%) were accepted to the ATC ’19 program, which
is 4x lower than the overall acceptance rate. Perhaps this
poor success rate suggests that bidding information could
be leveraged somehow to make the reviewing process more
efficient? A positive answer to this question would be helpful,
because the ATC ’19 committee wrote 281 reviews for these
particular 60 submissions, which is a lot of effort in order to
accept only three.

On the other hand, one of these three has been awarded
best paper, which is another demonstration of what all of us
already know: popularity isn’t everything... :)

6 Planning for a Dual-Track PC Meeting

Due to the increasing number of submissions to system con-
ferences, in order to be able to finish the PC meeting on time,
several recent program chairs resorted to splitting the meeting
into two parallel tracks for part of the time, such that each

track is simultaneously headed by a different co-chair. As-
suming that the number of submissions is not going down any
time soon, it seems like dual-track meetings are here to stay.

However, properly organizing a dual-track meeting is chal-
lenging. Notably because it may affect how submissions are
assigned to reviewers, as it is nontrivial to arranges things
such that all PC members are always found in the right room
at the right time while the meeting takes place.

Currently, there is no standard, generally accepted best-
practice for how to arrange a successful dual-tack PC meeting.
Program chairs typically need to apply creativity and to spend
much effort to come up with an appropriate model they feel
would work and would be suitable for their committee. For
this reason, before we describe the model we used, we survey
the models of dual-track meetings used by program chairs
before us, and we briefly discuss their pros and cons. Hope-
fully, this discussion would be useful for future chairs when
deciding upon the model that works best for them, as the state
of the art of dual-track PC meetings evolves.

ASPLOS ’17 Model The first PC that we are aware of that
split into tracks occurred spontaneously at the PC meeting of
ASPLOS ’17, when attending members and chairs realized
it was not realistic for them to finish on time. They there-
fore split in an ad hoc manner to flexible, parallel discussion
groups. The approach was reported to have worked: the pro-
gram was ready at the end of the day, and the members lived
to tell the tale.

ASPLOS ’18 Model In the subsequent year, having experi-
enced the difficulties from the previous year, the program
co-chairs of ASPLOS ’18 carefully planned for the dual-
track meeting. They split their PC members into two disjoint
equally-sized sets M0 and M1, with the stated goal of having
equal expertise in both, in all the relevant conference topics.
They likewise split the submissions into two equally sized

xxii  2019 USENIX Annual Technical Conference	 USENIX Association

sets S0 and S1, and they exclusively assigned submissions
from Si to Mi, such that no PC member reviewed outside of
her sub-committee’s pool of submissions. Consequently, by
design, running the dual track meeting was easy.

A main concern with this model is that it splits the exper-
tise and thus runs the risk of arbitrarily preventing the most
appropriate experts who happen to belong to Mi from review-
ing submissions that happen to belong to the “wrong” pool
S(i+1) mod 2.

ASPLOS ’19 Model In an effort to alleviate this drawback,
the program co-chairs of ASPLOS ’19 employed the follow-
ing approach in deciding how to define Mi and Si. ASPLOS is
an interdisciplinary venue of three communities: SIGARCH
(50% sponsorship), SIGOPS (25% sponsorship), and SIG-
PLAN (25% sponsorship). Accordingly, the chairs initially
divided their PC into MOS and MPL containing members from
the operating systems community and the programming lan-
guages community, respectively. They then searched for an
“optimal” division of the PC members from the architecture
community into two parts, each added to the initial MOS and
MPL to form two equally-sized March

OS and March
PL sets that,

together, comprise the entire PC.
The said optimality was achieved as follows. The chairs and

their helpers used a script that exhaustively enumerated all the
possible equally-sized March

OS and March
PL group partitions. For

each partition, they assigned every submission to the group
that maximizes the submission’s “affinity” (a combination of
reviewer citations, topic score, and normalized bids). Then,
they scored that partition by aggregating the affinity across all
submissions within their assigned group. The final partition
was the one that scored the highest by this metric.

They then calculated the “partitioning penalty” for each
submission, which is the total affinity of the submission for
the whole PC minus its affinity to the group it was assigned to.
They assigned high partitioning penalty papers to the whole
PC, thus adding a requirement for a joint session at the meet-
ing, in addition to the dual track. To make workload for the
two groups even, they took the most highly penalized papers
from the larger group and assigned them to the whole PC.

The ASPLOS ’19 model is more careful in how it splits
Si and Mi as compared to the ASPLOS ’18 model, trying to
minimize the penalty associated with splitting. It additionally
supports submissions that are discussed jointly. Still, while
minimized, the penalties do exist.

We note in passing that the ASPLOS ’19 program co-chairs
received extensive help in planning for their dual-track meet-
ing from individual whose role was similar to what we for-
malized as “submission chairs” (Section 2.4).

ATC ’18 Model The program co-chairs of ATC ’18 decided
not to split the PC beforehand and globally assign reviews
across all members without any constraints. This approach is
simple and entirely eliminates the penalties of splitting. The

cost, however, is shifting all the administrative complexity
to the PC meeting itself: it raises the question of how to run
the dual-track meeting without resorting to the ASPLOS ’17
model, which seems to have heavily relied on luck.

The ATC ’18 program co-chairs did not rely on luck. They
were successful in planning the dual-track PC meeting after
(1) all the reviews have been uploaded, (2) the online dis-
cussions have been concluded, (3) the list of submissions to
be discussed at the meeting have been finalized, and (4) it
became known which PC members will call-in rather than
attend physically.

The PC meeting timeline was divided into several consecu-
tive sessions Ti (i = 1,2, ...), such that in each session Ti the
PC was split into two groups T i

i and T ii
i that met in parallel.

The group membership changed across sessions, so group T i
1

was different than group T i
2, for example.

In some sessions, groups T i
i and T ii

i were disjoint. But in
other sessions, some PC members were instructed to physi-
cally move to the other group at some point, but such transi-
tions were limited to one move per one member per session.
In such non-disjoint sessions, PC members were asked to be
aware of the discussion schedule so as to know when to make
the transition. But inevitably this did not always work, and so
occasionally members were called from the other room. Still,
the program co-chairs reported that, overall, the movement
between rooms was minimal and not distracting.

One ATC ’18 co-chair concluded that “if I would repeat, I
would not change what [we] did because it worked fine, and
the PC didn’t seem to be bothered to move around.” But the
other co-chair reported that “I would avoid doing what we
did in the future even though it worked amazingly well. We
lucked out [...], and we barely pulled it off.”

Similarly to ASPLOS ’19, the ATC ’19 program co-chairs
received extensive help in scheduling the PC meeting from
individuals whose role was similar to what we formalized as
submission chairs.

ATC ’19 Model Like the program co-chairs of ATC ’18,
we wanted to refrain from the penalties and complexities in-
volved in splitting the PC beforehand in a manner that affects
how reviews are assigned. But we also wanted to completely
avoid the aforementioned transitions between rooms, the occa-
sional missing members that must be fetched from elsewhere,
and—perhaps most importantly—the sense of uncertainty
associated with the “barely pulled it off” sentiment quoted
above. We achieved all these goals as described next.

Immediately after the submission deadline passed, the com-
mittee members placed their bids, and missing conflicts were
identified and uploaded, we repeatedly applied the following
simulation procedure.

1. Using standard HotCRP functionality, simulate assign-
ing three R1 reviewers to all submissions as if for real.

USENIX Association	 2019 USENIX Annual Technical Conference  xxiii

2. Randomly select 50% of these submissions (177 in our
case) to be the simulated R2 submissions; let us denote
this random set as S2.

3. Using HotCRP functionality yet again, simulate assign-
ing two additional R2 reviews by heavy members to all
the submissions in S2.

4. Randomly select 50% of the S2 submissions (88 in our
case) to be the simulated set of submissions to be dis-
cussed at the meeting; denote this random set as S3.

5. Using a constraint solver, find a split of the heavy PC
into two groups that allow for the longest simulated dual-
track parallel session of submissions from S3 (without
any transitions of members between the two groups);
submissions that cannot be discussed in parallel in this
split, will be discussed in a simulated joint session.

6. Compute the time it takes to run these simulated parallel
and joint sessions, assuming a 6–7 minutes discussion
per submission. If the simulated meeting takes less than
eight hours, declare success; otherwise declare failure.

Our submission co-chairs repeated the above procedure
multiple times using multiple random selections, and they
verified that it always declared success. We therefore gained
confidence that scheduling our dual-track meeting using a
constraint solver is doable, despite using a global review as-
signment. This was indeed the case in the actual PC meeting.

Before running the above experiment, we did not know
whether or not it would be successful, and we were prepared
to get a negative result. In this case, we planned to use the
framework we developed to attempt to understand the root
cause of the failure, and to try to devise constraints for the
baseline HotCRP review assignment algorithm that would
resolve the underlying issue. Thankfully, we did not have to
do that.

HotCRP Multi Live-Meeting Trackers HotCRP has a
useful live meeting tracker feature, which helps program
chairs run the meeting by keeping attendees in sync, pre-
senting the current and next submissions discussed and the
relevant conflicts. The problem was that HotCRP assumed
a single track meeting, making the tracker unusable in the
case of dual tracks. Thankfully, again, the HotCRP maintainer
was willing to accommodate our request to add support for
multiple live-meeting trackers [10], which we indeed used in
our meeting.

7 Review Assignment Improvements

The review assignment is done by HotCRP using a min-cost
max-flow algorithm [8, 11]. This assignment utilizes member
bids and topic scores in order to distribute the reviews among

reviewers in a manner that attempts to be balanced and fair,
both in terms of number of reviews assigned to each member,
and in terms of the bidding preferences, such that everyone
would hopefully get as many of their top bids as possible.

The review assignment process of the individual confer-
ences frequently involves some constraints that must be taken
into account when the assignment takes place. In the case of
the first review round of ATC ’19, these were: (1) each PC
member gets an assignment of 13 reviews; (2) each ERC mem-
ber gets an assignment of 5 reviews; and (3) each submission
gets at least 2, and at most 3, reviews by heavy members.

There is no way we are aware of to express multiple con-
straints such as these all at once in HotCRP (nor in the under-
lying min-cost max-flow algorithm, we believe). Instead, a
sequence of assignments is conducted that is applied to the
various types of members: first heavy, then light, then ERC,
and some creativity is involved to get the desired outcome,
which is an assignment that adheres to all the constraints.

With the goal of checking the quality of the resulting assign-
ment, we have defined the per-reviewer “goodness” metric
as follows. Let n be the number of reviews assigned to the
reviewer, namely, in our case, n is 13 and 5 for PC and ERC
members, respectively. The goodness metric measures how
many of the reviewer’s most-preferred n submissions, asso-
ciated with her highest bid values, were actually assigned to
that reviewer. For example, if an ERC member was assigned
her five most preferred submissions, then her goodness is
5/5 = 100%, but if she was assigned only one of them, then
her goodness is 1/5 = 20%.

The line that approaches 0% in the bottom right of Figure 6
shows the goodness produced by the default HotCRP assign-
ment algorithm for all PC/ERC members. The committee
members are ranked based on their review goodness value,
from highest to lowest, and this rank is displayed along the
x axis; the y axis shows the goodness value of the correspond-
ing members. The drop towards zero at the right indicates
that the default algorithm might produce an unfair assignment
when used as described above. Some members get all their
top picks and some get none, with 31 members (more than 1/4
of the committee) members getting less than 60% of their top
picks. Moreover, the default algorithm made 38 and 6 assign-
ments where the bid placed by the corresponding members
was zero or negative, respectively.

For these reasons, we implemented a script that helps im-
prove the assignment as follows. Let ri be a reviewer, si be
some submission that ri was assigned to review, and b(ri,si)
be the numeric bid value that ri placed on si. Our script ini-
tially attempts to exploit the fact that the default algorithm
does not produce a stable marriage [21]. Namely, it is pos-
sible to find a subset of n reviewers ri (i = 0,1, ...,n), each
assigned with a certain submission si, such that if ri hands
si to r(i+1) mod n and reviews s(i−1) mod n instead, then: (i) no
conflict of interest is violated; (ii) b(ri,si)≤ b(ri,s(i−1) mod n),
namely, the new assignment is at least as good as the previ-

xxiv  2019 USENIX Annual Technical Conference	 USENIX Association

0%

20%

40%

60%

80%

100%

 0 20 40 60 80 100 120

g
o
o
d
n
e
s
s
 o

f
re

v
ie

w
 a

s
s
ig

n
m

e
n
t

ranked PC+ERC members
(by goodness of review assignment)

default HotCRP assignment
after adjustments

Figure 6: Per-member goodness of the default HotCRP review
assignment, which we improved, obtaining a lower bound of 60%
through (i) review swaps that improved the assignments for all re-
viewers involved, or (ii) at the expense of reviewers who enjoy a
much higher goodness value.

ous for all reviewers involved; (iii) there exist at least one k
(0≤ k < n) for which b(ri,si)< b(ri,s(i−1) mod n), namely, the
new assignment is better than the old for at least one reviewer;
and (iv) each submission still gets at least two and at most
three heavy reviewers.

The script is repeatedly applied to the member currently
associated with the lowest goodness value, who assumes the
role of rk defined in constraint (iii). The script attempts to find
a submission switch as defined above, using n = 2 and n = 3.
If no such swap exist, the script relaxes constraint (ii) so as
to tolerate goodness reductions due to the swap, provided
that the reviewers that suffer the reduction still enjoy a high
goodness value after the switch.

Our script initiated 748 HotCRP events to adjust the origi-
nal default assignment, as specified in Table 7. In the end, as
shown in Figure 6, we were able to ensure a minimal good-
ness value of 60% to all members (namely, PC members got
at least 8 of their top-13 preferences assigned to them, and
ERC members got at least 3 of their top-5). Additionally, we
were able to arrange things such that all committee members
were exclusively assigned submissions associated with their
positive bids, with two types of rare exceptions: (1) reviewers
whose number of positive bids was smaller than 13 for PC or
smaller than 5 for ERC; and (2) submissions with only one
positive bid by a heavy PC member. In the latter case, the
heavy member with the highest topic score was assigned as
the second heavy reviewer.

Processing of the review assignment for R2 was similar
albeit somewhat more challenging to improve, due to having

HotCRP purpose
events

215 eliminate assignments with zero or negative bids
12 at most 3 heavy reviewers per submission

494 increase low goodness to promote fairness
748 sum

Table 7: Number of individual HotCRP events affecting review
assignment that were generated by our script to improve upon the
default assignment of R1.

fewer usable bids, because only heavy members were assigned
reviews, and also because of the additional constraint that we
could only assign submissions to members who did not yet
review them in R1.

Out of the 5–6 additional R2 reviews assigned to heavy
members, the initial HotCRP review assignment assigned
about 1/4 of the members with 1–5 submissions with which
they associated a zero or negative bid. Anecdotally, one such
member started off with all of his assignments having nega-
tive bids. Subsequently, we were able to adjust things such
that all committee members were assigned submissions that
are exclusively associated with their positive bids, with a few
exceptions similar to those found in R1. Overall, half of the
heavy PC members were assigned at least three of their (re-
maining) top picks, and all the them were assigned at least
two of their top picks.

8 Reviewing Process

We employed a double-blind reviewing process consisting
of two rounds, and we followed standard procedures for han-
dling conflicts of interest. The PC consisted of 66 heavy and
28 light members, assisted by 22 ERC members. Additionally,
51 external reviewers contributed when specific expertise was
required. The committee members were allowed to submit pa-
pers to the conference; the program co-chairs and submission
co-chairs avoided it.

Table 1 summarizes the reviewing process. Out of 458
HotCRP registrations, we received a total of 356 submissions,
divided into 324 full submissions (11 pages plus references)
and 32 short submissions (5 pages plus references).

Format Violations We visually inspected all the submitted
PDFs as well as used the HotCRP style checker to identify
29 submissions that violated the formatting rules. These were
given a day to rectify the problem without making any content
modifications; if fixing increased the size beyond the page
limit, authors were required to remove (never change) content
to meet the limit. All violating submissions complied except
two, which were then rejected and withdrawn by the co-chairs.

Round 1 In Review Round 1 (R1), the PC members mostly
contributed 13 reviews, and the ERC members mostly con-

USENIX Association	 2019 USENIX Annual Technical Conference  xxv

tributed 5 reviews. Out of all R1 submissions, 277 were as-
signed four reviewers, and 75 were assigned three reviewers.
Regardless, all of the submissions were assigned at least two
reviews by heavy members (typical), and at most three. The
committee wrote a total of 1,347 R1 reviews.

Round 2 We promoted 184 submissions to Review Round 2
(R2). We assigned each R2 submission with two additional
reviewers from the heavy PC. A submission was promoted
to R2: (i) if two or more reviewers gave it a positive score
(“weak accept” or above); (ii) if a single positive reviewer
decided that she supports promotion after considering the
other reviews and despite of them, and, if she has so chosen,
discussing the matter with the other, negative reviewers; or
(iii) if the submission had fewer than three reviews due to late
members.

To qualify to be the aforementioned “single positive re-
viewer”, a member must have assigned a score of “accept” or
“strong accept”. For submissions with three (rather than four)
reviews, a “weak accept” also qualified, provided the associ-
ated expertise was at least “knowledgeable” or the confidence
was “high”. Out of the 40 single-supporter submissions (24
with one “accept” or higher), we promoted 17 to R2 (13 with
“accept” or higher). The committee wrote 405 R2 reviews and
a total of 1,752 reviews in the two review rounds.

Review Sufficiency Check A few days before the rebut-
tal period, we applied a Review Sufficiency Check (RSC)
procedure to all R2 submissions, to ensure that the reviews
provide sufficient feedback to authors, as well as sufficient
information to the committee to make an informed decision
regarding the submission. To this end, for each R2 submission,
we appointed one of the reviewers who is a heavy PC member
as the “lead” of the submission. Leads were responsible for
conducting the RSC by: (1) reading all the associated reviews;
(2) asking the relevant reviewers to revise their reviews when
the need arises (e.g., by calling out subjective claims that a
submission is incremental without adequate citations of prior
work, by identifying unclear statements, etc.); and (3) decid-
ing together with the other reviewers if additional reviews are
needed when expertise is low.

Online Discussions After the authors uploaded their rebut-
tals, we discussed the submissions online. Our goal until the
meeting was to: (1) revise reviews if needed due to rebut-
tals; (2) revive R1 submissions if their rebuttals justify it
(this happened in only two cases); (3) discuss submissions
and attempt to reach consensus, color-tagging them as red
to indicate preliminary reject, green to indicate preliminary
accept, and yellow to indicate that reviewers are unable to
reach consensus, so the submission should be discussed at
the meeting; and (4) for red submissions that have a rebut-
tal, as well as for green submissions, write a post-discussion

summary comment, which will be made visible to authors
after the PC meeting, briefly explaining the primary reasons
for rejections and possibly ways to improve (red), or what is
required for the camera-ready (green). Such a summary was
eventually written for all submissions that uploaded a rebuttal.

Reviewers who changed their mind about a submission due
to the rebuttal or to the other reviews were asked to consider
adding a “post-rebuttal feedback” section to their review and
explain why. (We requested not to make substantive changes
to reviews outside this section, as the reviews have already
been seen by the authors and so any changes need to be clearly
identified and justified.)

All the submissions, including R1, were assigned discus-
sions leads, whose job was to drive discussion, write the
summaries, and ensure progress. We asked leads to make an
honest effort to ensure that the opinions of non-heavy review-
ers were adequately voiced and represented at the meeting.
Non-heavy members were warmly encouraged to champion
submissions that they believe should be accepted, and all re-
viewers were encouraged not to feel pressured to adopt a
common denominator point of view, and not to hesitate to go
against the majority. Reviewers were encouraged to reflect on
each others’ opinions, e.g., by considering previous work or
confirming an opinion from an expert.

We asked the reviewers to stay positive when possible
(particularly when it comes to out-of-the-box ideas) and to
keep in mind that we should be looking for reasons to accept
a paper rather than reject.

When reviewers were unable to reach consensus (yellow),
the online discussion was expected to reconcile as many dif-
ferences among the reviewers as possible, leaving only a few
substantive differences for a focused PC meeting discussion.
Namely, tagging yellow was not used as a way to procrastinate
or reduce work, because it is impossible to discuss all R2 sub-
missions in one day. The meeting was planned to be dedicated
primarily to those submissions that actually require it, focus-
ing on differences that the reviewers had already identified as
important.

When making decisions, we requested reviewers to assume
shepherding but not for adding new results. (All accepted pa-
pers were indeed assigned shepherds, responsible for making
sure that revision expectations are met.) Of the R2 submis-
sions, we pre-rejected 80, pre-accepted 37, and tagged 67 as
yellow to discuss at the meeting.

During the online discussions, we recognized that about a
dozen R2 submissions might not have reviews with enough
expertise, so we urgently solicited additional reviews from
relevant experts after the rebuttal period. In these cases, we
emailed the authors and allowed them to rebut the additional
review(s), copy-pasting their response as a comment in the
HotCRP relevant page.

Program Committee Meeting The PC meeting took place
between 8am–6pm, 12 April 2019, in the VMware campus in

xxvi  2019 USENIX Annual Technical Conference	 USENIX Association

Palo Alto, CA. The program co-chairs, submission co-chairs,
and 60 heavy PC members attended the meeting in person,
five called in, and one could not participate. The meeting
consisted of a morning joint session (8am–12pm), a split
session in two rooms (12:30pm–3pm), and an afternoon joint
session (3:15pm–6pm), followed by a lively PC dinner.

The split session composition was determined with the
help of a constraint solver as described in Section 6. The par-
tition was completely disjoint, and no members transitioned
between rooms while it took place. We discussed 12 green
(preliminary accept) and 25 yellow (discuss) submissions in
the morning joint session, and 7 green and 12 yellow submis-
sions in the afternoon joint session. In the split session, one
group discussed 8 green and 16 yellow submissions, and the
other group discussed 10 green and 14 yellow submissions.
We allocated 3 and 7 minutes discussion time for each green
and yellow submissions, respectively.

Out of the 67 yellow submissions discussed, the PC ac-
cepted 34, which, together with the 37 preliminary accepts,
resulted in a program of 71 papers, of which 2 are short. Ac-
cept decisions were reached by consensus, except in two cases
that required a PC vote.

9 Best Paper Selection

The best paper award selection process proceeded in two
phases. In the first phase, we combined several signals. One
was an explicit ranking by reviewers marking papers worthy
of consideration for best-paper; any paper marked for such
consideration by two or more PC members was passed to
the second phase. Additionally, we considered general re-
view ranks and deliberations (both online and during the PC
meeting), moving several additional top-ranking papers to the
second phase. Last, we collected explicit nominations by PC
members for the best paper award.

At the end of the first phase, we generated a short-list of
eight papers. At this stage, we appointed a swat team of six
PC members consisting of senior and experienced members
of the systems research community. During a period of four
weeks, the team read papers, and we deliberated each one sep-
arately for best-paper worthiness. Conflicted members were
excluded from discussions of the relevant papers. We did not
place a quota on the number of best-paper awards. Generally,
the committee favored papers with original or surprising con-
tribution, and/or ones that would spark interest and establish
a new direction for follow on works.

At the end of the second stage, we elected three papers to
receive best-paper awards for USENIX ATC ’19.

Acknowledgments

The ATC ’19 program is the result of the efforts of many. We
thank the authors for submitting their work, and the committee

members and external reviewers for working so hard to re-
view the submissions. We are deeply indebted to our awesome
submission co-chairs, Lalith Suresh and Gerd Zellweger, and
also to Igor Smolyar, who helped whenever needed. We also
thank the Lightning Talks co-chairs, Deniz Altinbuken and
Aasheesh Kolli, and the Best of the Rest co-chairs, Amy Tai
and Chia-Che Tsai. We thank Erez Zadok for managing sub-
missions for which both program co-chairs were conflicted.

We thank Eddie Kohler for authoring and maintaining
HotCRP, and for supporting us and promptly adding the fea-
tures we needed. We thank the program co-chairs of ATC ’18,
Haryadi Gunawi and Benjamin Reed, for being responsive
and providing lots of useful information. We are grateful to
Emmett Witchel, who co-chaired ASPLOS ’19, went through
everything a few months before us, and served as a source of
much needed knowledge and emotional support. We thank
Sarita Adve for accurately documenting her excellent review
process in ASPLOS ’14 [1], which was quite helpful. We
thank Emery Berger for suggesting the idea of test of time
award for ATC, and Vijay Chidambaram for so nicely articu-
lating the case for double blindness—much of the text in Sec-
tion 2.2 originated from him. We also thank Or Hershkovitz
for reviewing the math in Appendix A and for finding and
elegantly fixing a bug.

We thank the USENIX staff for their outstanding confer-
ence management, and notably Casey Henderson, Hakim
Weatherspoon, and Angela Demke Brown for their thought-
ful advice and guidance; Angela and Hakim additionally re-
viewed this document (in very short notice), and they provided
valuable and much appreciated feedback that helped us im-
prove it.

Lastly, we thank VMware for sponsoring and hosting the
PC meeting (and for paying for drinks at the PC dinner), and
Sandra Barreto, Lori Blonn, and Sean Crotty for helping to
organize the meeting.

References

[1] Sarita Adve. ASPLOS ’14: Program chair’s message.
In International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), pages iv–ix, 2014.
https://dl.acm.org/citation.cfm?id=2541940.

[2] Andrew Birrell, , and Emin Gün Sirer. Message from
the 2013 USENIX Annual Technical Conference
program co-chairs. In ATC ’13: USENIX Annual
Technical Conference, page vi, 2013.
https://www.usenix.org/sites/default/files
/atc13_message.pdf.

[3] Mario Drumond, Mark Sutherland, and Babak Falsafi.
PC chair kit.
https://github.com/mdrumond/pc-chair-kit.

USENIX Association	 2019 USENIX Annual Technical Conference  xxvii

[4] C. Le Goues, Y. Brun, S. Apel, E. Berger, S. Khurshid,
and Y. Smaragdakis. Effectiveness of anonymization in
double-blind review. Communications of the ACM
(CACM), 61(6):30–33, May 2018.
http://doi.org/10.1145/3208157.

[5] Haryadi Gunawi and Benjamin Reed. Message from
the 2018 USENIX Annual Technical Conference
program co-chairs. https://www.usenix.org/sit
es/default/files/atc18_message.pdf, 2018.

[6] Gernot Heiser. Peer review: Anonymity should not be
at the expense of transparency.
https://microkerneldude.wordpress.com/2015/
02/13/peer-review-anonymity-should-not-b
e-at-the-expense-of-transparency/, Feb 2015.
Accessed: Jul 2019.

[7] Tyler Hunt. Fork of PC chair kit.
https://github.com/tylershunt.

[8] Samir Khuller and Richard Matthew McCutchen.
Assigning papers to reviewers.
https://mattmccutchen.net/match/index.html,
2013.

[9] Feature request: ability to group topics. GitHub
HotCRP issue https:
//github.com/kohler/hotcrp/issues/153, Dec
2018.

[10] Feature request: live-meeting-tracker for dual-track
meetings. GitHub HotCRP issue https:
//github.com/kohler/hotcrp/issues/154, Dec
2018.

[11] Eddie Kohler. HotCRP source file mincostmaxflow.php.
https://github.com/kohler/hotcrp/blob/mast
er/lib/mincostmaxflow.php.

[12] Jeffrey C. Mogul. Policies for the SIGOPS hall of fame
award. SIGOPS Operating Systems Review,
42(3):132–135, Apr 2008.
https://doi.org/10.1145/1368506.1368525.

[13] Guidelines for the program chair of a SIGPLAN event.
https://www.sigplan.org/Resources/Guidelin
es/ProChair/.

[14] Andrew Tomkins, Min Zhang, and William D. Heavlin.
Reviewer bias in single- versus double-blind peer
review. Proceedings of the National Academy of
Sciences (PNAS), 114(48):12708–12713, 2017.
https://doi.org/10.1073/pnas.1707323114.

[15] SIGARCH/SIGPLAN/SIGOPS ASPLOS influential
paper award. https://www.acm.org/sig-awards.

n number of submissions submitted to the conference
n2 number of submissions promoted to R2
m an individual PC member
r number of reviews written by m
r1 number of reviews written by m in R1
r2 number of reviews written by m in R2
c number of submissions discussed at the PC meeting
d reviewed by m and discussed at the PC meeting

Table 8: Notation.

[16] Eurosys test-of-time award.
http://www.eurosys.org/awards/tot-10-award.

[17] SIGOPS – the hall of fame award.
https://www.sigops.org/awards/hof.

[18] USENIX test of time awards. https://www.usenix
.org/conferences/test-of-time-awards.

[19] USENIX ATC ’19 call for papers. https://www.usen
ix.org/conference/atc19/call-for-papers.

[20] FAST ’19 call for papers. https://www.usenix.org
/conference/fast19/call-for-papers.

[21] Wikipedia. Stable marriage problem. https://en.w
ikipedia.org/wiki/Stable_marriage_problem.

Appendix A Submissions Discussed by Each
Member at the Meeting

Let n denote the number of papers that have been submitted
to the conference. Let n2 denoted the total number of R2
submissions that have been promoted from R1. Let m denote
one PC member, and assume that m has reviewed exactly r
submissions out of the n. Further assume that the number of
m’s R1 and R2 reviews are r1 and r2, respectively
(r = r1 + r2). Let c be the total number of submissions that
have been discussed at the PC meeting, and let d denote how
many of these c submissions have been reviewed by m
(d ≤ r). These notations are summarized in Table 8.
Recall that Figure 2 shows that as n grows, d decreases, to
the point that m has little to do at the PC meeting because d
is small. The computation underlying Figure 2 assumes a
typical setup for systems conferences where n2 = n/2 (half
of the submissions have been promoted to R2), r1 =

2
3 · r and

r2 =
1
3 · r (two thirds of m’s reviews are written during R1),

and the number of discussed submissions is c = 70. With our
assumptions, an intuitive approximation of d on average is

d ≈ r1 ·
c
n
+ r2 ·

c
n2

= (r1 +2r2) ·
c
n
=

4rc
3n

(1)

because (1) the probability that a single R1 submission that
has been reviewed by m will be discussed at the meeting is

xxviii  2019 USENIX Annual Technical Conference	 USENIX Association

c/n, and, similarly, (2) the probability that a single R2
submission that has been reviewed by m will be discussed is
approximately c/n2, if disregarding the fact that the latter
probability is in fact affected by the specific number of R1
submissions reviewed by m that have made it into R2. (For
example, if all the submissions that m reviewed in R1 were
promoted to R2, then the latter probability should actually be

c
n2−r1

, seeing that m cannot be assigned R2-submissions that
she has already reviewed in R1.)
Figure 2, however, does not depict the approximation of d
but rather computes it accurately, as follows. Let p(n,c,r1,k)
denote the probability that exactly k of the r1 submissions
that m reviewed in R1 have been discussed at the meeting,
then

p(n,c,r1,k) =
(

r1

k

)
·
(

n− r1

c− k

)
÷
(

n
c

)
. (2)

Thus, e(n,c,r1), which is the expected number of
submissions that m reviewed in R1 and were discussed at the
meeting, can (also) be computed with the following
summation

e(n,c,r1) =
r1

∑
k=0

p(n,c,r1,k) · k. (3)

Now, by using Equations 2–3 and the law of total probability,
we can compute e2(n,c,r1,r2), which is the expected number
of submissions that m reviewed in R2 and were discussed at
the meeting, as follows

e2(n,c,r1,r2) =
r1

∑
k=0

p(n,n2,r1,k) · e(n2 − k,c,r2). (4)

Notice that Equation 4 uses p(n,n2,r1,k) instead of the
earlier p(n,c,r1,k), because here the probability corresponds
to the event that k of the r1 submissions reviewed by m in R1
were promoted to R2. Using Equations 3–4, we conclude that

d = e(n,c,r1)+ e2(n,c,r1,r2), (5)

which allows us to compute d accurately instead of
approximating it. That said, in the range plotted in Figure 2,
the difference between the real value of d (Equation 5) and
its approximation (Equation 1) is always smaller than 0.52,
which is reasonably close.

The Design and Operation of CloudLab

Dmitry Duplyakin Robert Ricci Aleksander Maricq Gary Wong Jonathon Duerig
Eric Eide Leigh Stoller Mike Hibler David Johnson Kirk Webb

Aditya Akella∗ Kuangching Wang† Glenn Ricart‡ Larry Landweber∗ Chip Elliott§

Michael Zink¶ Emmanuel Cecchet¶ Snigdhaswin Kar† Prabodh Mishra†

University of Utah ∗University of Wisconsin †Clemson University
‡US Ignite §Raytheon ¶UMass Amherst

Given the highly empirical nature of research in cloud
computing, networked systems, and related fields, testbeds
play an important role in the research ecosystem. In this
paper, we cover one such facility, CloudLab, which supports
systems research by providing raw access to programmable
hardware, enabling research at large scales, and creating a
shared platform for repeatable research.

We present our experiences designing CloudLab and oper-
ating it for four years, serving nearly 4,000 users who have
run over 79,000 experiments on 2,250 servers, switches, and
other pieces of datacenter equipment. From this experience,
we draw lessons organized around two themes. The first set
comes from analysis of data regarding the use of CloudLab:
how users interact with it, what they use it for, and the impli-
cations for facility design and operation. Our second set of
lessons comes from looking at the ways that algorithms used
“under the hood,” such as resource allocation, have important—
and sometimes unexpected—effects on user experience and
behavior. These lessons can be of value to the designers and
operators of IaaS facilities in general, systems testbeds in
particular, and users who have a stake in understanding how
these systems are built.

1 Introduction

CloudLab [31] is a testbed for research and education in cloud
computing. It provides more control, visibility, and perfor-
mance isolation than a typical cloud environment, enabling it
to support work on cloud architectures, distributed systems,
and applications. Initially deployed in 2014, CloudLab is now
heavily used by the research community, supporting nearly
4,000 users who have worked on 750 projects and run over
79,000 experiments.

On the surface, CloudLab acts like a provider of cloud com-
puting resources: users request on-demand resources, config-
ure them with software stacks of their choice, and perform
experiments. Much like a cloud, the testbed simplifies many
of the procedures surrounding access to resources, including
selection of hardware configuration, creation of custom im-
ages, automation for software installation and configuration,

and more. CloudLab staff take care of the construction, main-
tenance, operation, etc. of the facility, letting users focus on
their research. CloudLab gives the benefits of economies of
scale and provides a common environment for repeatability.

CloudLab differs significantly from a cloud, however, in
that its goal is not only to allow users to build applications,
but entire clouds, from the “bare metal” up. To do so, it
must give users unmediated “raw” access to hardware. It
places great importance on the ability to run fully observable
and repeatable experiments. As a result, users are provided
with the means not only to use but also to see, instrument,
monitor, and modify all levels of investigated cloud stacks and
applications, including virtualization, networking, storage,
and management abstractions. Because of this focus on low-
level access, CloudLab has been able to support a range of
research that cannot be conducted on traditional clouds.

As we have operated CloudLab, we have found that, to
a greater extent than expected, “behind the scenes” algo-
rithms have had a profound impact on how the facility is
used and what it can be used for. CloudLab runs a number
of unique, custom-built services that support this vision and
keep the testbed operational. This includes a resource mapper,
constraint system, scheduler, and provisioner, among others.
CloudLab has had to make several trade-offs between general-
purpose algorithms that continue to work well as the system
evolves, and more tailored ones that provide a smoother user
experience. The right choices for many of these trade-offs
were not apparent during the design of the facility, and re-
quired experience from the operation of the facility to resolve.

The primary goal of this paper is to provide the architects
of large, complex facilities (not only testbeds, but other IaaS-
type facilities as well) with lessons from CloudLab’s design
choices and operational experiences. CloudLab is one of
many facilities that serve the research community in various
capacities [8, 6, 16, 33, 21, 34, 31, 35], and we aim to general-
ize the lessons from this specific facility. As a secondary goal,
we hope that users of these facilities benefit from a closer
look into the way they are designed and operated. With these
goals in mind, this paper makes two contributions:

• In Section 2, we describe the CloudLab facility as it

USENIX Association 2019 USENIX Annual Technical Conference 1

has been built and analyze its basic usage patterns and
the research conducted on it. This analysis, and the
dataset that goes with it, represent a contribution to the
community understanding of the practical operation
of IaaS-type facilities.

• In Section 3, we analyze specific design choices using
data from the operational system, looking at some of the
trade-offs inherent in the facility’s design. This analysis
yields important insights about how these choices af-
fect user behavior and point to design principles for
other facilities.

Sections 4 and 5 cover related work and conclude.

2 Development and Use of CloudLab

We begin with background on CloudLab; our goal is not a
complete summary of its goals, design, and deployment, but
to provide sufficient context for the analyses that follow. We
then examine usage patterns: how the use of the facility has
evolved over time, the availability of resources, and the types
of research that are conducted on it. From these analyses, we
draw lessons about user behavior and look at the implications
for the design of testbeds and IaaS facilities in general.

2.1 The Deployed CloudLab Facility
The primary CloudLab hardware is hosted at three sites: the
University of Utah, Clemson University, and the University
of Wisconsin–Madison. Though every site supports a wide
variety of hardware-agnostic experimentation, each site spe-
cializes in a different area of research. Wisconsin’s hardware
is designed for networking and storage work, Clemson’s for
analytics and high-performance workloads, and Utah’s for
scale-out workloads. This equipment has come online in
batches as CloudLab has been built out and evolved in re-
sponse to user demand. Identical nodes in the same batch
are all labeled with the same hardware type to help users
request nodes with specific properties and to enable experi-
ments to be repeated on the same types of resources. Since
its initial public availability in December 2014, CloudLab
has added devices such as programmable Ethernet switches,
GPUs, Infiniband, and high-disk-count servers in response
to user feedback. A full description of CloudLab’s hardware
can be found in its manual [36].

In addition to the hardware that it owns, CloudLab is fed-
erated [30, 7] with several other facilities, including Emu-
lab [39] and Apt [32]. This brings the total number of servers
available to CloudLab users up to about 2,250, and for the
rest of the paper we include these resources in our analysis
and discussion of CloudLab’s hardware.

CloudLab is operated using software developed in-house
specifically for running research testbeds: its control soft-
ware is directly descended from software developed for the

Emulab [39], GENI [25, 32], and Apt [32] testbeds. We
have extended this software to better support experimentation
on clouds and have made a number of improvements (such
as those documented in Section 3) based on our experience
running the facility.

CloudLab provides access to its devices at the lowest layer
possible with a minimum of virtualization and abstraction
between users and hardware. The reason for this is twofold.
First, CloudLab’s goal is to support research that is not pos-
sible on public (or typical private) clouds: it allows users
to modify aspects of the software stack that would be fixed
on those platforms, such as the storage, virtualization, and
networking layers. Second, this supports more repeatable
experimentation than facilities that virtualize and share their
resources, as it provides strong performance isolation be-
tween tenants, factoring out the unpredictable “background
noise” that makes it harder to draw sound, scientific con-
clusions. CloudLab takes pains to ensure that all servers of
the same hardware type have comparable performance: in
prior work [22], we have developed techniques for identifying
servers whose performance is not statistically representative
of the whole, and we exclude such servers from the popula-
tion seen by experimenters. The facility takes the principle of
low-level access beyond just servers and also provides “raw”
access to other types of hardware such as programmable Eth-
ernet switches [37] and servers with many drives from which
users can build their own SANs.

Experiments in CloudLab are instances of profiles. A pro-
file contains a description of the hardware resources (servers,
switches, etc.) that the experiment will run on, and the soft-
ware needed to run the experiment (in the form of disk images,
git repositories, and scripts to run). When a profile is in-
stantiated, CloudLab selects available hardware that matches
the profile’s specification and provisions that hardware with
the software and configuration options described in the pro-
file. Every instance of the profile runs on a separate set of
hardware resources, and many instances of the same profile
can run simultaneously. The CloudLab operators provide
standard profiles for popular cloud software stacks, such as
OpenStack [28], as well as bare-metal profiles that load stan-
dard Linux distributions. Users can also create their own pro-
files, which they can share with others. A typical workflow
for creating a new profile involves starting with CloudLab-
provided disk images, installing custom software, and creat-
ing a hardware description meeting the experiment’s needs.
All experiments have an expiration: when they are first cre-
ated, they are set to expire after a few hours. Users can
then request that their experiments be extended to last longer;
short extensions (hours to days) are granted automatically
(assuming resources do not need to be reclaimed to satisfy
reservations), and administrators evaluate requests for longer
periods (weeks to months). When deciding whether to grant
these requests, administrators look at coarse-gained idleness
statistics, such as CPU load and network packet counts, to de-

2 2019 USENIX Annual Technical Conference USENIX Association

termine whether the user is using resources efficiently; other
than this, CloudLab does not collect information about use
inside of experiments. It is typical for there to be 200–300
experiments active on CloudLab at any point in time.

It is possible to fully script the workloads that run inside of
an experiment, but in practice, most research done on Cloud-
Lab involves a great deal of development time and exploratory
experiments, so most use is interactive. A key difference
between CloudLab and typical cloud (as well as research
and academic cyberinfrastructures such as Jetstream [33],
Chameleon Cloud [21], and the Mass Open Cloud [35]) is
that clouds place emphasis on elasticity, and therefore tends to
treat ensembles of VMs working together as an orchestration
problem. CloudLab’s profiles place the emphasis instead on
describing a complete, repeatable environment. This makes it
less elastic, but makes it easier to describe entire networks and
to repeat experiments in a consistent environment. We have
found that some users do have initial confusion regarding this
different focus, but that they tend to find it an easier way to
run repeated experiments in the long run.

2.2 Hardware Overview
CloudLab Utah has a large number of servers, each with
relatively modest specifications. 585 of the servers use HPE’s
high-density Moonshot platform, which places 45 low-power
servers (Intel Xeon-D or ARM64 SoC) in each chassis. Each
chassis contains two 10 Gbps switches, which effectively
function as “top of rack” switches and are interconnected
at 160 Gbps through a core switch. Another 200 servers
connect to both a traditional Ethernet network (at 25 Gbps)
and to a “layer-1” network. The latter allows control of
the physical-layer topology, configurably “wiring” nodes to
user-controllable Ethernet switches or directly to each other.
These user-controllable Ethernet switches are allocated to one
user at a time, allowing users to have full control over their
configuration and even, in some cases, to program them.

CloudLab Wisconsin’s goal is to reflect the type of tech-
nology and architecture found in a typical modern enterprise
datacenter. All servers (which come from Cisco) are dual-
socket and have a mix of spinning hard drives (HDDs) and
solid state drives (SSDs). Several servers have large numbers
of disks (up to 14), allowing users to build their own SAN
configurations. Many are equipped with GPUs, enabling work
on machine learning and applications of GPU computing to
other areas, including network packet processing and other
systems tasks. The network is arranged in a Clos topology.

CloudLab Clemson focuses on putting more CPU cores
in each server (from Dell) and on a greater amount of RAM
per core. This makes it suitable for hosting big data analytics
(such as Hadoop and Spark), for running high-performance
computing workloads, and for hosting large numbers of vir-
tual machines. The Ethernet experiment network topology
uses three interconnected core switches, each connected to a
companion top-of-rack switch handling direct server connec-

20
15

-0
5

20
15

-0
8

20
15

-1
1

20
16

-0
2

20
16

-0
5

20
16

-0
8

20
16

-1
1

20
17

-0
2

20
17

-0
5

20
17

-0
8

20
17

-1
1

20
18

-0
2

20
18

-0
5

20
18

-0
8

20
18

-1
1

0.0

0.2

0.4

0.6

0.8

1.0

M
o
n
th

ly
 V

a
lu

e
 /

 O
b
se

rv
e
d
 M

a
x

Active projects

Active users

Used node-hours

Total nodes available

(i
n
d
e
p
e
n
d
e
n

t
fo

r
e
a
ch

 m
e
tr

ic
)

Figure 1: Growing testbed capacity and utilization. To pro-
duce a consistent scale, we divide monthly values by the
all-time maximum value for each metric.

tions. In addition to its Ethernet network, CloudLab Clemson
has a 40 Gbps QDR Infiniband network used for HPC and
RDMA experiments.

The hardware at each site has grown over time: the number
of servers has increased approximately fourfold over the pe-
riod covered in this paper. No hardware has yet been retired.

2.3 Usage Patterns
Figure 1 shows how CloudLab’s userbase has grown along
with its capacity. Starting in early 2015, when CloudLab
exited its “preview” phase and became open for general use,
it has grown steadily. As its capacity has increased, so too
have its users: the more capacity, the more active users there
are at a time, and the more projects (roughly corresponding
to research groups and classes) are supported. Within the
general upward trend, specific yearly cycles can be seen.
CloudLab has lower usage during the summer, when there are
few classes and research activity is slow. CloudLab’s peak
usage typically comes in the late spring: this is due to the
confluence of major paper deadlines (OSDI, SOSP, SOCC,
NSDI spring deadline, etc.) and end-of-year coursework.

CloudLab needs to gracefully handle periods of both high
and low utilization. While we expected variation in usage
over time, the extent to which it drives user behavior was
somewhat surprising. Because most of CloudLab’s usage is
interactive, periods of low utilization are simply times when
users are able to start experiments at will, without having
to wait for resources to become available. We have there-
fore focused on improving user experience during periods of
heavy utilization: as detailed in Section 3.3, we have built an
optional reservation system which allows users to schedule
resources ahead of time. Another strategy would be to incen-
tivize users to shift their work from periods of high demand to
periods of lower demand. In commercial clouds, one way of
doing this is through spot pricing [1], which offers economic
incentives. Because CloudLab’s users do not pay to use it,
economic incentives are not available; while various “virtual
currency” approaches have been proposed for use in related
facilities such as PlanetLab [18], none have seen widespread

USENIX Association 2019 USENIX Annual Technical Conference 3

0.5

1.0

M
on

th
ly

 /
M

ax

Active profiles Used node-hours

20
15

-05

20
15

-08

20
15

-11

20
16

-02

20
16

-05

20
16

-08

20
16

-11

20
17

-02

20
17

-05

20
17

-08

20
17

-11

20
18

-02

20
18

-05

20
18

-08

20
18

-11
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 n

od
e-

ho
ur

s

33 most used user-defined profiles

7 most used system (admin-defined) profiles

40 most used profiles

OpenStack
moonshot-chassis
hadoop

OnePC-Ubuntu14.04.5
OnePC-Ubuntu14
small-lan

OnePC-Ubuntu16

Over 5820 other system and user-defined profiles

Figure 2: Evolving distribution of profile usage.

success. Demand in CloudLab’s core communities appears
hard to shift: Figure 1 suggests that CloudLab’s users are
heavily deadline-driven; it is not feasible to do coursework
outside of the school-year, and not many research projects can
run their experiments months before conference deadlines. If
CloudLab is to “fill in” lightly-loaded periods, it will need to
adopt backfill strategies [11, 23] that enable use by work that
is easier to shift in time, such as the queueing systems used
by high performance and high throughput computing.

Like the number of active users, the number of profiles
in use at any time has grown as shown in Figure 2. The
bottom half of the figure shows the forty most used profiles,
as measured by the cumulative node-hours. We can see that
usage patterns vary significantly by month. In some months,
such as in early summer 2016, the top forty profiles constitute
nearly 70% of the testbed’s utilization, while in other months,
such as recently, this fraction is less than 40%. The remaining
node-hours are allocated by experiments representing over
5,820 other profiles. Users run experiments using up to 572
unique profiles monthly; the median is 233.

The long-tailed distribution we observe indicates that there
is a large number of profiles with relatively low and infre-
quent use, but their combined utilization constitutes most of
the user activity. This holds important implications for analy-
sis of usage patterns and for design choices. In Section 2.5,
we reflect on the fact that the testbed’s major practical value
is attributed to facilitating not merely a handful of common
use cases, but rather a large variety of experiments in this
“long tail.” In quantitative analysis, it means we should use
medians rather than means as the preferred measure of central
tendency due to the highly skewed distributions. The analysis
of other percentiles (e.g., 75th or 95th percentiles) provides
complementary insights, as we discuss in Section 3.3. Fur-
thermore, this diverse and evolving utilization distribution
suggests that we cannot draw reliable conclusions about the

impact of testbed’s capabilities on usage patterns based solely
on comparison of usage statistics from different periods of
time. For example, if we compare statistics for 2017 and
2018, it would be difficult to determine the extent to which
evolving usage patterns were due to changes in the system or
due to the natural evolution of user interests. For the same
reason, month-to-month comparisons are also unlikely to pro-
vide sufficient evidence for “before and after” analyses for
system capabilities.

Fundamentally, periods of time that seem similar by one
statistical measure (such as the number of active users) can
look very different for other measures (such as the distribu-
tion of profile use). We posit that this is likely to be true for
many IaaS-type facilities: while multi-tenancy smooths out
some measures into predictable shapes (e.g., the top half of
Figure 2), others are quite chaotic (e.g., the bottom half of the
same figure). Taking these patterns into account when design-
ing facilities can improve their utility and user experience.

2.4 Resource Availability
Availability and diversity of resources play critical roles in
the adoption and continued use of a testbed or other IaaS
facility. If users’ needs frequently cannot be satisfied due to
insufficient availability, those users will likely move to other
facilities. Users also tend to seek out hardware with cutting-
edge features and the highest performance characteristics.
New hardware types have been introduced to CloudLab over
time in order to satisfy both capacity and the capability re-
quirements. Not only did the new hardware attract new users,
but it also reduced contention for older, already deployed
resources.

In Figure 3, we show both short- and long-term availability
trends for the major CloudLab hardware types. The X-axis
represents a fraction of all nodes of a particular type, and
the Y-value at each point shows what fraction of the time at
least that many nodes were available. Lines on these graphs
that fall steeply signify the types that are in use most of the
time, while higher curves represent more available types. For
example, we can compare d430 and m400: the former type is
more heavily used across all three graphs.

As we saw in the previous analysis, metrics that look
smooth when viewed from a high level show much more
variability when we look at the details. This is important
because it is often the details that influence users’ experience:
e.g., for an individual user, availability of the specific node
type(s) needed for their experiment is important, rather than
the availability of the testbed as whole. To illustrate this,
we include the two monthly plots showing the variation that
occurs between “slow” and “busy” months. For example, the
curves for pc3000 indicate that in January 2018 users found
80% of these nodes available for use 80% of the time. In
contrast, in April of that year, there were no times at which
80% of these nodes were available. For several other hard-
ware types (such as c220g1 and d710), resources were even

4 2019 USENIX Annual Technical Conference USENIX Association

0 20 40 60 80 100
% of Nodes

0

20

40

60

80

100

%
 o

f
T
im

e
 A

v
a
ila

b
le

Entire History

0 20 40 60 80 100
% of Nodes

January 2018

0 20 40 60 80 100
% of Nodes

April 2018
c6420 (Total #: 72)
* Avail. since April 2018

c6320 (Total #: 84)

c220g1 (Total #: 90)

c8220 (Total #: 100)

r320 (Total #: 128)

d430 (Total #: 160)

d710 (Total #: 160)

pc3000 (Total #: 160)

c220g2 (Total #: 163)

xl170 (Total #: 200)
* Avail. since Feb 2018

m510 (Total #: 270)

m400 (Total #: 315)

d430

m400
pc3000

c220g1

d710

Figure 3: The availability of CloudLab resources. The left plot shows availability over the entire period of time each hardware
type was available; the other two plots show availability during low-utilization (center) and high-utilization (right) months.

scarcer, and at no time are more than 30–40% of these nodes
free. We also note that d430’s low availability is reflected
in two ways: it can be seen in these graphs, and we will
discuss it in Section 3.3, where we find that users commonly
make reservations to schedule access to this in-demand hard-
ware. The curves in these figures highlight that the extent
to which system changes and evolving utilization patterns
impact individual hardware types varies significantly across
the types.

2.5 Research Use of CloudLab
To understand the research conducted on CloudLab, we sur-
veyed 93 papers published in 2017–2018 that used CloudLab
for part or all of their experimental evaluations. Table 1
presents a categorization of the papers by the primary area
of contribution, using a list of systems and related research
areas. These areas are quite broad, and no one area dominates.
Given that the most prevalent area, Networking, is an area
where typical clouds provide very little transparency [14] and
control only as an overlay [2], it is intuitive that research
in this area benefits from CloudLab’s greater visibility and
control. Research in the second area, Security, benefits from
the “closed world” of CloudLab, allowing experiments that
involve attacks that would be considered hostile in a typical
cloud and defenses that need to be implemented within the
cloud framework itself.

In this analysis, we found two primary motivations that
drove experimenters to CloudLab. The first is low-level ac-
cess to hardware because of features that could not be de-
veloped in virtualized environments. Almost every paper in
this set used some different aspect of CloudLab, such as the
ability to re-configure Ethernet switches, the ability to build
an HPC-like environment with root access, the SDN available
on most of the CloudLab networks, the ability to monitor
power use, the ability to build a complete OpenStack cloud
inside the infrastructure, etc. The second motivation is the
performance predictability and isolation that are difficult to
come by in environments that use multi-tenancy on hosts and
storage. When the primary metric of interest in a system is
its performance, anything that adds variability requires, at
a minimum, a far greater number of experiment repetitions
to achieve statistical confidence [22, 17]. There is also the

Networking 30%
Security 16%
Storage 11%
Applications 10%
Computing 9%
Virtualization 8%
Databases 7%
Middleware 4%
Energy & Power 2%
Other 15%

Table 1: Research areas in 93 papers that used CloudLab.

question of the extent to which an evaluation is measuring ar-
tifacts of the platform vs. the actual system under test: while
a more transparent environment does not guarantee that no
system artifacts are present, it does give the experimenter
more opportunities to observe, understand, and correct for
these effects.

The main lesson we take from this analysis is that, as
facility operators, we are constantly surprised by the uses to
which users put the facility. Had we started from a position
of virtualizing everything, then providing lower-level access
to specific systems as needed, we think it is unlikely that we
would have been able to anticipate all of the use cases found
in this survey. Starting from a position of maximizing user
control helps to maximize use of the facility.

3 High-Level Effects of Low-Level Decisions

We now move from examining how people use CloudLab to
looking at the interactions between design decisions, oper-
ational experience, and user behavior. We have found that
the choice of algorithms deep within the implementation of a
system like CloudLab has a profound effect on the ways that
users interact with the system, and even what they are able
to accomplish. As a result, we have made many changes to
the CloudLab facility during its lifetime; in this section, we
present individual subsystems that we had to evolve based on
facility’s usage patterns. The high-level theme of this section
is that the choices made at these low levels are not, contrary
to what one might expect, simply implementation details, nor
are they neutral with respect to the utility of the facility. When
building an IaaS facility, designers cannot consider aspects
such as resource mapping separately from user goals, require-

USENIX Association 2019 USENIX Annual Technical Conference 5

ments, and workflows. These aspects of the system must be
co-designed, so that users can work with these subsystems
rather than having to fight against them to get work done.

3.1 Resource Mapping
There exist several approaches to the problem of mapping
user requests to physical resources. For instance, commer-
cial clouds do not provide control over this mapping within
selected instance classes; they manage the placement and con-
solidation for effective utilization and hide the details from
the users. In contrast, Chameleon [21], which is designed
as a testbed for repeatable experiments (similar to CloudLab
but serving a different research community), has its users do
the mapping by asking them to specify IDs of the particular
servers they want to use in their requests.

CloudLab takes a unique approach where it recognizes two
aspects in this mapping. It is a constraint-satisfaction problem
in the sense that the user’s request is a specification that must
be satisfied; specifically, it resembles the subgraph isomor-
phism problem [10] in that both the requested and physical
topologies are graphs consisting of servers, switches, etc. It
is also an optimization problem, because the mapping must
be done in a way that maximizes the possibilities for future
mappings: it should avoid using scarce resources unless they
are specifically requested or there is no available alternative.
CloudLab exposes the outcomes of the mapping to the users
and allows them to reuse hardware IDs if necessary.

CloudLab’s mapping algorithm is derived from the one
developed for Emulab [29], and uses simulated annealing
to address this NP-hard problem. The advantage of using a
powerful, general-purpose algorithm is that it enables the
expression of complex constraints and preferences. The
disadvantage, however, is that when a mapping cannot be
found for a request, it can be difficult for users—and even
administrators—to understand why. In CloudLab, we have
had to evolve this system to improve the intelligibility of the
responses that it provides.

The fundamental trade-off exposed here is between a gen-
eral algorithm that makes few assumptions about the facility
(and therefore is easily adaptable to new resources) and a
more specialized algorithm that understands facility seman-
tics and can provide actionable suggestions when a mapping
fails. The general algorithm fundamentally lacks semantic
information about what the user may be trying to accom-
plish and the classes of requests that “make sense” on this
particular testbed. A mapping algorithm more tailored to a
specific use case could embed such information and make
assumptions about user goals.

Our response to this trade-off has been to retain the general
algorithm, but to develop a set of heuristics that turn some
of the more common failure modes into messages that are
easier for users to understand. A major challenge in design-
ing these heuristics is that they must be conservative: that
is, every mapping that would have succeeded without the

heuristic must still succeed. Our experience has been that
it is preferable to build such heuristics around the mapping
algorithm rather than into it. Building conservative checks
into the randomized setting of the mapper itself is extremely
difficult and can easily cause unexpected changes in behav-
ior. It is easier—and more informative for the user—to build
conservative checks as a deterministic wrapper around the
mapper. We now describe some of these checks, which we
have added over time in response to common error patterns
and common questions from users.

In an ideal situation, all mapping errors would be explained
to the user by concise, actionable error messages. In theory,
the universe of possible mapping errors is so vast that not all
have simple explanations. We have found that in practice,
however, it is possible to catch most mapping errors with
heuristics. We now describe the set of heuristics we have
developed over time in response to use patterns and frequent
user questions.

Looking in Table 2 at the last year (L.Y.) of mapping errors,
approximately 84% of all errors are explained by the top 10
error messages, and of that top 10, only 13.5% are ones that
we classify as “unhelpful.” If we look at this as a percentage of
all experiments, only 1.2% of all attempts to start experiments
in the last year have received these four unhelpful mapper
messages.

The top two messages (lines 1 and 2 in the table) together
account for about half of all mapper errors, and they sim-
ply indicate a lack of free nodes (servers or user-controlled
switches) at the current time. The first message indicates that
there are insufficient nodes free right now while the second
says that this would occur in the near future due to the reser-
vation system described later in this section. There is a third
variation on this message (line 7); this is an older version of
line 1, which we updated partway through the year to clarify
its meaning and provide more specific information. Note that
this class of messages are per-type, so experiments that re-
quest, for example, both servers and user-controlled switches
get specific feedback on which is the limitation. The number
of available nodes is reported in order to allow the user to
decide whether they would prefer to request fewer nodes or
to wait until enough nodes become available. When users
request specific nodes, in contrast with asking for any nodes
of a selected type, they receive explicit messages indicating
that those nodes are unavailable (line 10).

Other frequent errors (lines 3, 6, and 8) indicate that there
is some node in the request that cannot map to anything
available. Our heuristics try to report the specific reason,
such as requesting too many physical interfaces, an OS image
that is incompatible with the hardware type, or a specific
feature (such as a GPU add-on). The distinction between
lines 6 and 8 presents an interesting illustration of our use of
heuristics: underneath, the mapper uses the same mechanism
to handle both of these constraints (support for a particular
image is considered a “‘feature”). We found that the raw

6 2019 USENIX Annual Technical Conference USENIX Association

Error Message Helpful
(actionable)

% of
Mapping Errors % of

All Errors
L.Y.

% of
All Experiments

L.Y.L.Y. ALL

1. Resource reservation violation: X nodes of type HW requested, but only Y available X 27.79 14.33 16.07 2.41
2. X nodes of type HW requested, but only Y available nodes of type HW found X 21.86 33.01 12.64 1.89
3. No Possible Mapping for X: Too many links of type Y X 6.64 6.96 3.84 0.58
4. No Connection 7 5.22 2.62 3.02 0.45
5. Insufficient Bandwidth 7 4.88 7.53 2.82 0.42
6. No Possible Mapping for X: OS ’Y’ does not run on this hardware type X 4.74 3.50 2.74 0.41
7. Not enough nodes because of policy restrictions or existing resource reservations X 4.37 2.18 2.53 0.38
8. No Possible Mapping for X: No physical nodes have feature Y X 3.54 2.40 2.05 0.31
9. Insufficient Nodes: Unexplained 7 3.39 2.15 1.96 0.29
10. Fixed physical node X not available. X 2.56 3.15 1.48 0.22

Table 2: Distribution of recorded mapping errors. “ALL” denotes the distribution of all errors recorded since October 20, 2015.
“L.Y.” columns refer to the percentages reported for the last year (starting on August 1, 2017).

message, however, was unhelpful and confusing to users,
so we recognize the specific case of image-related mapping
failures and transform the message into something that the
user can act on: she needs to either pick a different image or
a different hardware type.

Lines 4 and 5 are the error messages that are the least
helpful to users, and they have a similar cause: the mapper
is unable to find a solution that satisfies all links and LANs
with the bandwidths specified in the requests. These error
messages are produced directly by the simulated annealing
portion of the mapper, and it is no coincidence that they are the
hardest to explain. They are highly dependent on the details of
the topology requested by the user and the switch topology at
each CloudLab site. There are many potential actions to take
in response to such failures: change the topology, reduce the
bandwidth requested, try a different CloudLab site, wait for a
different set of physical resources to be free, etc. In essence,
the more degrees of freedom the user has with respect to
reacting to a failure, the harder it is for the facility to guess
which one best addresses the user’s actual goals, and the more
difficult it is to provide a useful message.

3.2 Interactive Topology Design Feedback
Giving users actionable messages when their profiles don’t
map is helpful, but it comes fairly late in the process of experi-
ment design. Our experience has been that users can find even
the “helpful” mapper errors frustrating, as they come after the
user has already invested significant time. A useful analogy
is to compile-time errors and syntax checking in IDEs: com-
piling is complex and slow, and feedback from the editor as
the user writes code, while not perfect, leads to a workflow
with fewer surprise errors. What we discovered was that we
needed the equivalent of realtime syntax checking for net-
work topology design, and our answer to this is CloudLab’s
topology constraint system. The biggest challenge in building
it has been to design a system with a simplified model of the
mapping process that does not produce a specific mapping,

but instead checks whether such a solution should exist; it
must do so quickly enough to run interactively in the browser.

The constraint system is used in two contexts, and has
slightly different goals in each. In the first context, it is in-
voked as part of Jacks: CloudLab’s GUI that gives users a
“drag and drop” interface for constructing profiles. In this
setting, its goal is to assist novice users by disabling UI op-
tions that conflict with their existing choices and to warn
them when the topology they have drawn is unlikely to be
instantiatable. It does not need to admit every possible re-
quest that can be instantiated on CloudLab (there are more
sophisticated interfaces for that), but to provide an assurance
that, if a topology passes at this stage, it is virtually guar-
anteed to succeed in mapping (assuming there are enough
resources free). In the second setting, it is used at the final
stage of profile instantiation, when the user selects which
CloudLab cluster to run their experiment on. Here, it checks
the request against each cluster and disables selection of any
cluster where the request cannot be instantiated. The goal in
this case is the inverse, and we must be more conservative:
We want the constraint system to block instantiation if the
request will definitely fail, but do not want to over-zealously
block instantiation that might succeed.

The described two-phase experiment design is unique to
CloudLab. On the surface, the first phase can be compared
to how responsive web interfaces for clouds—e.g., Ama-
zon EC2’s dashboard and the OpenStack’s Horizon dash-
board [27], hide or disable infeasible configurations. At the
same time, EC2 goes as far as “attaching” storage character-
istics to instance classes (even though networking is actually
what is being customized) when listing the storage optimized
solutions among the feasible configurations. CloudLab’s con-
straint system makes the design process more explicit by offer-
ing interactive control over all components of interconnected
experiment environments. In the second phase, requests act
analogously to HTCondor’s classads [9]. In practice, sys-
tems like HTCondor without interactive design capabilities

USENIX Association 2019 USENIX Annual Technical Conference 7

make working with complex configurations laborious and
error-prone.
Generating and checking candidates To check con-
straints, we generate a set of candidates which are tested
against a number of groups. A candidate is a set of node
or link resource properties which we check for mutual com-
patibility. A group is a whitelist of acceptable combinations
relating two or more resource properties. For example, a
group might include all allowed combinations of hardware
type and disk image. Our constraint system also supports
wildcards in both candidates (for unspecified resource prop-
erties) and groups (for cases where one resource property is
universally allowed). A candidate passes if it matches all
groups. Our approach uses a Boolean expression in the prod-
uct of sums form: a set of terms containing conditions that
are OR-ed together, with all terms being AND-ed together.

This process is defined in terms of sets and Boolean opera-
tions as follows: for a set of candidates X = {x1,x2, . . . ,xk},
we define an evaluation procedure f (X) that checks all indi-
vidual candidates. We define g(x) for a given configuration
candidate x such that the candidate must match against all
groups (A, B, etc.): g(x) = A(x)∧B(x)∧ . . . For each group,
the candidate must match at least one condition. As an ex-
ample, suppose the following table described the conditions
allowed for each group:

Group relating site, hardware, and type: Group relating hardware and image:

a1(x) ={utah, m510, xen}⊆ x b1(x) ={m400, ubuntu16-64-ARM}⊆ x
a2(x) ={utah, m400, pc}⊆ x b2(x) ={m510, ubuntu16-64-STD}⊆ x
... ...
an(x) ={wisconsin, c220g2, pc}⊆ x bm(x) ={c220g2, fbsd110-64-STD}⊆ x

A(x) = a1(x)∨a2(x)∨ ...∨an(x) B(x) = b1(x)∨b2(x)∨ ...∨bm(x)

In this case, a candidate x={utah, m400, pc,
ubuntu16-64-ARM} evaluates to true, as a2(x)∧b1(x) = 1.

In the Jacks GUI, the candidates that we generate represent
the UI element (node, link, etc.) that the user has selected
and the actions they may take on it: OS images they may
select, other nodes they may connect it to, etc. Each candi-
date represents a different possible action, and we disable
(“gray out”) UI elements for candidates that do not pass (g(x)
evaluates to false). In the profile instantiation process, the
candidates represent all nodes as they appear in the request,
and the request may only be submitted to clusters for which
all candidates pass (f (X) evaluates to true).
Checking Constraints Quickly The set of candidates can,
in practice, be quite large: in Jacks, it grows with the number
of options the user can set on the node (including other nodes
to connect to), and in the instantiation process, it grows with
the size of the request. We have run containerized experiments
with as many as 5,000 nodes. At least one candidate must be
evaluated per node in a topology, and if there are LANs, the
number of candidates is quadratic in the number of nodes in
each LAN. The number of conditions in each group can grow
even larger, as it depends in part on the product of the number

of hardware types, images, sites, and other node properties.
On our current system, every candidate is evaluated against
at least 10,000 conditions across all groups. However, the
number of groups remains small in all cases (the current
number of groups in our testbed is just 7), and in practice,
there are several optimizations that allow us to take advantage
of the facility environment to make checks fast.

Large requests have many nodes and thus require many
candidates to be tested, but many of these candidates will
likely be identical. Similarly, when Jacks evaluates which
items in a drop-down box are valid, there is no need to re-
evaluate combinations that have already been tested on a
previous drop-down box instance. Memoizing test results and
culling identical candidates yields large speed improvements
for our use cases. Even with memoization, every unique
candidate has to be checked once, so we have optimized
the evaluation of the Boolean expression as well. Naı̈vely
testing each condition in turn using set arithmetic yields a
speed that is linear on the number of conditions. Instead,
we can uniquely encode conditions as entries in hash tables,
and each group can be tested with an (amortized) constant-
time lookup. This lookup means that testing a candidate
for the first time is linear in the number of groups rather
than the much larger number of conditions across all groups.
Together, these optimizations reduce the complexity of the
checks from O(c ·g · s) (where c is the number of candidates,
g is the number of groups, and s is the size of each group) to
O(unique(c) ·g).
Impact on User Workflow CloudLab’s topology con-
straint system is built around the idea of using a quantitative
advantage (fast constraint checking) to provide a qualitative
improvement in user experience. It has done so by dramati-
cally reducing the number of submitted requests that could
not possibly map—even if all resources on the testbed were
available. In many situations, builders of IaaS-type facilities
face a choice: to ensure that any request that a user makes for
any set of resources configured in any way can be instanti-
ated on the facility, or to constrain user requests in some way.
While the former is attractive, it can be expensive to guarantee
and can result in situations where users can request certain
combinations but would be better off not doing so because
these combinations do not perform well together. Cloud-
Lab’s topology constraint system shows one possible path
forward on the latter alternative: constrain users’ requests,
and give them early, interactive feedback while they design
their configurations.

3.3 Reserving Resources
Until recently, resource allocation in CloudLab was done
in a First-Come-First-Served (FCFS) manner. While FCFS
works well for the interactive “code, compile, debug, gather
results” workflow used in the systems research community,
it has a number of shortcomings: it favors small experiments

8 2019 USENIX Annual Technical Conference USENIX Association

(whatever fits into the available resources at the time the user
is active), it can be difficult to plan for deadlines (such as
the paper and class deadlines seen in Section 2.3), and it can
be problematic for events that must occur at a specific time
(such as tutorials and demonstrations). In response to these
competing needs, we have developed a reservation system
to support these use cases while continuing to support the
dominant FCFS model.

A reservation is not an experiment scheduled to run at a
specific time, but a guarantee of available resources at that
time. This allows users to run many experiments either in
series (e.g., to test different scenarios) or in parallel (e.g., one
experiment per student in a class). This loose experiment-
reservation coupling is one of the key design attributes of our
reservation system and the subject of much of the analysis
presented in this section.

What we found in designing our reservation system was
that it needed to have a fundamentally different design than
the resource mapping described in Section 3.1. Resource map-
ping answers the question, “Given a specific request and a set
of available resources, which ones should we use?” The reser-
vation system needs to answer “Given the current schedule
of experiments and reservations, would a given action (creat-
ing a new experiment, extending an existing one, or creating
a new reservation) violate that schedule?” Answering this
question must be fast: like the constraint system, we need the
reservation system to run at interactive speeds so that we can
give users immediate feedback about their ability to create
or extend experiments. Our other challenge is to support late
binding of resources: the reservation system should promise
some set of resources in the future, but should wait until the
time comes to select specific ones.

Our approach diverges from the scheduling schemes of-
fered by other facilities. On Chameleon [21], users request
specific servers (using server IDs) as mentioned previously;
therefore, their requests require only the early binding, and
the system trades flexibility for simplicity (presumably at the
expense of utilization). In contrast, clouds do not offer control
over future scheduling decisions. They provide an illusion of
infinite resources, and handle all user requests interactively,
at the time of submission. In High Performance Computing,
solutions are built upon job queues where job and user priori-
ties impact scheduling, yet making sure that exact deadlines
are met in the future is a constant challenge.

We describe our design using the following terms and op-
erations: A request for reservation r asks for Nr nodes of the
specified hardware type hr to be available within the time
window [sr,er]. Once submit-ed, a request typically requires
approval from CloudLab staff, though small requests are auto-
approved. In addition to the approve operation, staff can
delete reservations, both pending and active. At any time,
users can change their experimentation plans and delete

their reservations or submit modified requests.

Late Binding Considering that CloudLab’s hardware is ho-
mogeneous within each hardware type h, the reservation sys-
tem does not need to decide which specific nodes will be
counted as Nr nodes of type hr ∈ {h}: any Nr such nodes will
satisfy the needs of reservation r with these parameters. This
increases efficiency of resource use and helps accommodate
FCFS users: it does not require us to force experiments out
just because the specific nodes they have allocated happen to
be reserved. As long as there are enough free nodes for ev-
eryone who has requested them, all experiments can continue.
Therefore, we spare the reservation system the task of finding
exact mappings between reservations and specific nodes and
implement reservation operations as node counting tasks. The
“binding” occurs later, when the user instantiates their exper-
iment(s) near or within the [sr,er] window. The reservation
system simply ensures that the capacity is sufficient.

Checking Reservations Quickly Given the data about ac-
tive experiments—node counts and their current expiration
times—and parameters of approved upcoming reservations,
our reservation system constructs a tentative schedule describ-
ing how the number of available nodes is expected to change
over time. This schedule can be constructed in O(n logn)
time (it must sort upcoming events by time), and takes O(n)
time to check. Here, n is the number of events, which is
a sum of the number of current experiments (typically hun-
dreds) and the number of future reservations (typically tens).
Effectively, this creates a two-phase process, in which the
reservation phase involves tasks that are lightweight and fast,
while the laborious resource mapping phase runs as part of
lengthy resource provisioning process.

This fast checking is enabled by a key design decision:
reservations are per hardware type—we do not allow reserva-
tions for broader categories such as “any server type.” While
the latter would be attractive, it would also raise the time to
check the schedule far above O(n). In our design, we can
check the schedule for each type independently because the
sets of nodes of each type do not overlap. There is only one,
binary solution at each point in the schedule: either the sum
of nodes in experiments plus the reservations exceeds the
total number of nodes of that type, or it does not. If we were
to have overlapping sets (e.g., specific and generic types),
this would create dependencies both between sets and across
time. Each point in the schedule would have multiple poten-
tial solutions, using different numbers of nodes from each
node set. Checking the solution would not only be a matter
of checking the solution at each point in time, but ensuring
each solution is consistent with the solutions at other time
points. The combinatorial complexity that this would entail
would prevent us from quickly re-calculating and checking
schedules, so we accepted the tradeoff of being more rigid
with respect to node types.

Enforcing Reservations The CloudLab reservation system
essentially works by “accumulating” free nodes up to the

USENIX Association 2019 USENIX Annual Technical Conference 9

2018-03-01 2018-03-08 2018-03-15 2018-03-22 2018-03-29 2018-04-05
0

20

40

60

80

Nu
m

be
r o

f N
od

es

Utilization:
97.5%

Available
Used by project

Figure 4: 38 d430 nodes reserved and used for over 9 days.
The highlighted box depicts the reserved resources: the num-
ber of nodes (up to the horizontal dotted line) reserved for the
reservation’s time window (between the vertical dotted lines).

point at which the reservation starts. As the beginning of the
reservation approaches, it scrutinizes two types of operations:
creation of new experiments, and extending the duration of
existing experiments. If either of these operations would
overlap with the reservation and would result in there being
insufficient free nodes to satisfy it, they are denied. For an
illustration, refer to Figure 4, which shows a large reserva-
tion r requesting over 8200 node-hours worth of d430 nodes.
Prior to r, d430’s availability was insufficient for most of
the preceding week (below the horizontal line). As r’s start
approached, the admission control system began denying
overlapping use, and the free nodes rose until the reservation
could be satisfied. Almost immediately, the project created
a large experiment (the exact size of r), and ran two other
subsequent experiments. We can see that the final experiment
outlasted the reservation: because there were no other reser-
vations directly afterwards, the user was allowed to extend
the duration of the experiment. Another interesting behavior
visible in this graph is that the project was running smaller
experiments before their reservation started; once it did start,
they were able to double the size of their experiments.

Parameter Exploration In addition to submit, approve,
and delete, CloudLab’s reservation system supports a
validate operation. validate allows users to explore po-
tential reservations without submitting them, giving them the
ability to try different times, hardware types, and reservation
sizes to find configurations that fit their needs. If a validation
succeeds, the user may submit the reservation. Taking a
cue from our mapping and constraint systems, the validation
procedure provides users with actionable feedback when the
validation fails: messages take the form “Insufficient free
nodes at Fri Sep 21 18:00:00 2018 (12 more needed).” This
feedback suggests that reducing the number of nodes, short-
ening the reservation’s duration, or moving the reservation
further into the future can help the user proceed with submit-
ting a valid reservation.

To understand how users explore different possibilities,
we analyzed operations performed on our reservation sys-
tem between December 6, 2017 and November 30, 2018.

0 50 100 150
Number of nodes

0

50

100

150

200

250

Du
ra

tio
n,

 d
ay

s median=2
75th%=4

95th%=14

median=0.668
75th%=0.674

95th%=13.6

Experiments

0 50 100 150
Number of nodes

median=6
75th%=21

95th%=53

median=3.0
75th%=6.8

95th%=29.6

Approved Reservations

Figure 5: Comparing experiments and reservations. Empirical
percentiles are labeled using ‘%’.

Among the 3,500 events in this dataset, there are approxi-
mately 1,800 validate and 900 submit operations. These
events represent the activity of 200 users working on over
130 unique projects. Nearly 51% of reservation events are
validate operations. On average, 2.1 validations preceded
each submitted reservation (at least one is required, because
users must validate a reservation before they submit it).
Further analysis of the operations uncovers infrequent but
revealing scenarios. For each submit-ed reservation, we
consider validate operations preceding it to be indicative
of a user exploring possible candidate reservations. These
form a long-tailed distribution: 71% of submit operations
were preceded by a single validate, and 14% by two. The
remaining 15% of this distribution stretches to a maximum
of 32 validate trials. We interpret such cases as empirical
evidence for the validation procedure being sufficiently fast
to allow users repeatedly check and update reservation param-
eters when searching for combinations that satisfy both their
needs and the testbed’s schedule.

Size and Duration We next compare reservations with ex-
periments, to see whether reservations succeed in enabling
larger experiments than are possible with FCFS alone. Using
the same time period and reservation data as the previous anal-
ysis, we also look at records for 33,300 experiments. Figure 5
illustrates the long-tailed distributions we observe in both.
Because these distributions are highly skewed, we character-
ize and compare them using medians (i.e., 50th percentiles),
75th, and 95th percentiles. The ratios between the pairs of
the corresponding percentiles indicate that the reservations
are 2.2–10.2 times larger and 3.0–5.3 times longer than ex-
periments. We conclude that reservations do indeed enable
larger experiments, though interestingly, the largest experi-
ments were larger than the largest reservations by about 50%.
Our analysis of monthly distributions also reveals that the
95th percentile for experiment durations shows significantly
less volatility after we introduced the reservation system and
stabilizes at its high values, around 300 hours. The same is
not true of the node count statistics; the timing of the largest

10 2019 USENIX Annual Technical Conference USENIX Association

0 5000 10000 15000 20000 25000 30000 35000 40000
Reserved node-hours

0
100%

2x
3x
4x
5x
6x
7x
8x
9x

10x

Ut
iliz

at
io

n
by

 p
ro

je
ct

median=449

median=96.1%

Nodes: 30
Duration: 42d
Util.: 65.4%
HW: c6420

Nodes: 20
Duration: 24d
Util.: 86.1%
HW: c220g1

Nodes: 36
Duration: 23d
Util.: 102.0%
HW: r320

Hardware (Number of approved reservations):
d430 (153)
d710 (83)
c4130 (42)
d820 (30)

c220g2 (25)
c6220 (18)
c220g5 (18)
c240g5 (15)

xl170 (12)
c220g1 (12)
c8220 (10)
pc3000 (8)

c6420 (6)
c6320 (5)
r320 (5)

c240g1 (3)
m510 (2)
nuc6260 (1)

Figure 6: Utilization of reservations.

spikes suggests that they are caused by testbed expansions.

Utilization CloudLab does not automatically instantiate ex-
periments for users at the beginning of a reservation, nor does
it require the end of a reservation to coincide with the end
of an experiment. The current system has no direct penalties
for under-using reserved nodes. This leads to an obvious
utilization question: How fully do experimenters use their
reservations? Put another way, this can be framed as a ques-
tion of trust: Can we trust users to reserve only what they
need and then use what they have reserved?

Before answering this question, we note several operational
nuances that stem from the loose coupling between experi-
ments and reservations in our design. First, we do not stop
users from allocating more resources than they have reserved:
the reservation indicates a minimum guaranteed availability,
and if more are available, experimenters are free to use them.
Second, if multiple experiments run on hr hardware within
[sr,er], we cannot distinguish experiments that are meant to
use the studied reservation r from the ones that are run op-
portunistically, in addition to the planned experiments. Third,
reservations are associated with projects (groups of users),
so the user that creates the reservation may or may not be
the one who actually uses it. If users in the same project
coordinate their activities, one user submits a reservations
on behalf of the group; otherwise, when working indepen-
dently, one or multiple users submit their reservations and
run planned experiments, while others run their unrelated
FCFS experiments. Since the studied usage record does not
allow us to distill exact user intentions, we estimate aggregate
project-specific usage of hardware hr within [sr,er] and view
it as the upper bound of the intended r’s utilization.

Figure 6 visualizes whole-project resource utilization for
nearly 450 approved reservations. The highest point, de-
picting a utilization of almost 11x the quantity of resources
reserved, represents a reservation where a single node was
reserved for 33 hours. (The figure omits fifteen small reserva-
tions that would stretch the Y axis even further, up to 25x.)
That reservation was deleted 3 hours into its time window,

20
17

-12

20
18

-01

20
18

-02

20
18

-03

20
18

-04

20
18

-05

20
18

-06

20
18

-07

20
18

-08

20
18

-09

20
18

-10

20
18

-11
0.0

0.2

0.4

0.6

0.8

1.0

M
on

th
ly

 V
al

ue
 /

Ob
se

rv
ed

 M
ax

Reservations:
validate count

Reservations:
submit count

Experiments:
Used node-hours

Figure 7: Use of reservations and experiments. For each
metric, we divide monthly values by the all-time maximum.

and, at the same time, the same or other users from the same
project ran multi-node experiments up to 32 node-hours in
aggregate. The result is that the project as a whole used far
more resources during this time than it had reserved. La-
bels for several large reservations highlight instances where
the utilization is near 100%. We find these and many other
large experiments that conform well with the the correspond-
ing reservations. With the median utilization for the shown
instances at 96.1%, we conclude that the majority of reser-
vations see high utilization, and we can indeed trust users to
reserve what they need and use what they reserve.

In contrast, we found a fairly large number of reservations,
123 (not shown on the graph) with no identified usage. These
seem to come from the cases in which the users changed their
minds but did not delete their reservations, forgot about the
reservations (CloudLab does send reminder emails), or, most
interestingly, did run experiments but used wrong types of
nodes. This final case seems to stem from misunderstandings
about either how the reservation system works (the specific
hardware type reserved) or the profile being used (the specific
hardware type requested). CloudLab does have measures in
place to encourage use of the appropriate node type: when
the user has a reservation, the cluster selection box defaults to
the relevant cluster, and the mapper applies a preference for
nodes of the reserved type. Still, it is clear that this is an area
for additional work. With the median size at 96 node-hours,
however, these unused reservations add up to less than 12%
of all node-hours reserved.

Reservations in Action We conclude our discussion of the
reservation system by looking at how its use relates to the use
of the testbed as a whole. As shown in Figure 7, rises and
falls in use of the testbed (as measured by the number of node-
hours used per month) are correlated perfectly with rises and
falls in submission of reservations. April 2018, CloudLab’s
busiest month to date (previously seen in Figures 1 and 3)
also saw a large spike in reservations: an astonishing 193
requests were submitted that month, or more than six per day.
During that month, there were 140k node-hours of approved
reservations, as compared with 724k node-hours used in gen-
eral, telling us that approximately 19% of all node-hours used

USENIX Association 2019 USENIX Annual Technical Conference 11

that month were used through reservations. During the pre-
ceding January, a lighter month, these numbers were 67k,
552k, and 12%, respectively. Another place where the effects
of the reservation system appear is Table 2: if we look at
the entire time period, simple resource unavailability is the
top reason for mapping failures. If we look at just the last
year, however, when the reservation system was more stable,
better advertised, and more heavily used, node shortages due
to upcoming reservations have become more common than
“simple” shortages. The April spike was followed by a similar
increase in usage in September 2018.

We postulate that, as the use of the testbed approaches its
total capacity, (or, as the free resources approach zero), the
notional value of a reservation to a user grows super-linearly.
By analogy to queuing theory, as the demand rate approaches
the service rate, the expected wait time approaches infin-
ity [20]. Facing the possibility that they may have to wait
an unbounded amount of time for the resources they need to
become available through the FCFS system, users have far
greater incentive to submit reservation requests. This results
in the pattern that holds true for the aggregate and also spe-
cific hardware types. The demand for specific types of nodes
fluctuates over time, and users naturally adjust, using reserva-
tions only for the types that are in high demand. Overall, our
analysis confirms that the reservation system constitutes a suc-
cessful “social engineering” project on the part of CloudLab
in that the system did change user behavior in the desired way:
they use reservations heavily during periods of high demand,
but then reservations “fade into the background” when they
are not needed, letting the traditional FCFS model dominate.

4 Related Work

There is a body of literature focused on design and analysis
of computing testbeds. The work that has shaped the research
in this area includes the studies of large-scale experimen-
tation environments such as PlanetLab [8], Grid’5000 [6],
Emulab [16], Open Cirrus [5], and PRObE [12]. There are
also recent studies that examine the Jetstream [33] “pro-
duction” cloud for science and engineering research, the
Chameleon [21] cloud computing testbed, and the Comet [34]
supercomputer, among other facilities. These facility studies
describe specific needs of research communities, document
major design and implementation efforts, and share the unique
lessons learned in the process of deploying and operating each
system. Our work complements them by describing different
aspects of facility operations and yielding insights into differ-
ent kinds of design decisions. Studies of relevant commercial
installations with similar amounts of detail are scarce.

Another relevant theme relates to using academic and com-
mercial cyberinfrastructures to investigate systems topics and
solutions with broad applicability, including the topological
issues in testbeds [15], performance and repeatability [26, 22],
failure analysis [24], individual subsystems such as disk imag-

ing [19, 4] monitoring infrastructure [38], virtualization [16],
and cloud federation [13], among others. Our study comple-
ments these by focusing on the way that the control framework
(the software that manages, assigns, and provisions resources),
and the abstractions it offers affect user experience and be-
havior. The key difference from the related work lies in the
unique facility- and user-centered scope of our analysis; none
of aforementioned facilities has been studied from this angle.
Additionally, this paper describes CloudLab’s functionality
that extends the control framework used in GENI [25, 32],
Emulab [39], and Apt [32].

5 Conclusion

Testbeds for computer science research occupy a unique place
in the overall landscape of computing infrastructure. They
are often used in an attempt to overcome a basic impasse [3]:
as computing technologies become popular, research into
their fundamentals becomes simultaneously more valuable
and more difficult to do. The existence of production systems
such as the Internet and commercial clouds motivates work
aimed at improving them, but production deployments offer
service at a specific layer of abstraction, making it difficult or
impossible to use them for research that seeks to work under
that layer or to change the abstraction significantly.

The design and operation of testbeds—and other IaaS
infrastructures—benefits greatly from analyzing data about
how these facilities are used. In this paper, we have pre-
sented new analysis of the way that one particular facility,
CloudLab, is used in practice. This analysis, and the under-
lying dataset (which we have made public) have shown that
user behavior is highly variable, bursty, and long-tailed. In
addition, algorithms that may be thought of as being “deep
within” the system have large, visible effects on user expe-
rience and on user behavior. Together, these findings point
towards design decisions that more carefully take user expec-
tations and behavior into account “end-to-end” throughout
the entire facility.

Data and Code

Data and code used for our analyses are available at https://
gitlab.flux.utah.edu/emulab/cloudlab-usage with
the tag atc19. This data covers CloudLab’s resource avail-
ability and events such as experiment instantiations.

Acknowledgments

We thank the anonymous USENIX ATC reviewers and our
shepherd, Dilma da Silva, whose comments helped us to
greatly improve this work. This material is based upon work
supported by the National Science Foundation under Grant
Numbers 1419199 and 1743363.

12 2019 USENIX Annual Technical Conference USENIX Association

https://gitlab.flux.utah.edu/emulab/cloudlab-usage
https://gitlab.flux.utah.edu/emulab/cloudlab-usage

References

[1] Amazon Web Services, Inc. Amazon EC2 Spot Instances
Pricing. https://aws.amazon.com/ec2/spot/pricing/.

[2] Amazon Web Services, Inc. Amazon virtual private cloud doc-
umentation. https://docs.aws.amazon.com/vpc/index.
html.

[3] T. Anderson, L. Peterson, S. Shenker, and J. Turner. Over-
coming the Internet impasse through virtualization. IEEE
Computer, 38(4):34–41, April 2005.

[4] K. Atkinson, G. Wong, and R. Ricci. Operational experiences
with disk imaging in a multi-tenant datacenter. In Proceedings
of the Eleventh USENIX Symposium on Networked Systems
Design and Implementation (NSDI), Apr. 2014.

[5] A. I. Avetisyan, R. Campbell, I. Gupta, M. T. Heath, S. Y. Ko,
G. R. Ganger, M. A. Kozuch, D. O’Hallaron, M. Kunze, T. T.
Kwan, et al. Open cirrus: A global cloud computing testbed.
Computer, 43(4):35–43, 2010.

[6] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jean-
not, Y. Jégou, S. Lanteri, J. Leduc, N. Melab, et al. Grid’5000:
A large scale and highly reconfigurable experimental grid
testbed. The International Journal of High Performance Com-
puting Applications, 20(4):481–494, 2006.

[7] M. Brinn, N. Bastin, A. Bavier, M. Berman, J. Chase, and
R. Ricci. Trust as the foundation of resource exchange in
GENI. In Proceedings of the 10th International Conference
on Testbeds and Research Infrastructures for the Development
of Networks and Communities (Tridentcom), June 2015.

[8] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: an overlay
testbed for broad-coverage services. ACM SIGCOMM Com-
puter Communication Review, 33(3):3–12, 2003.

[9] Computing with HTCondor. HTCondor: Classified Adver-
tisements. https://research.cs.wisc.edu/htcondor/

classad/classad.html.

[10] S. A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the Third Annual ACM Symposium on Theory
of Computing, STOC ’71, pages 151–158, New York, NY,
USA, 1971. ACM.

[11] D. Duplyakin, D. Johnson, and R. Ricci. The part-time cloud:
Enabling balanced elasticity between diverse computing envi-
ronments. In Proceedings of the Eighth Workshop on Scientific
Cloud Computing (ScienceCloud), June 2017.

[12] G. Gibson, G. Grider, A. Jacobson, and W. Lloyd. Probe:
A thousand-node experimental cluster for computer systems
research. USENIX; login, 38(3), 2013.

[13] N. Grozev and R. Buyya. Inter-cloud architectures and appli-
cation brokering: taxonomy and survey. Software: Practice
and Experience, 44(3):369–390, 2014.

[14] Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn. Case
study for running HPC applications in public clouds. In Pro-
ceedings of the 19th ACM International Symposium on High
Performance Distributed Computing, HPDC ’10, pages 395–
401, New York, NY, USA, 2010. ACM.

[15] F. Hermenier and R. Ricci. How to build a better testbed:
Lessons from a decade of network experiments on Emulab.
In Proceedings of the 8th International ICST Conference on
Testbeds and Research Infrastructures for the Development of
Networks and Communities (Tridentcom), June 2012.

[16] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad,
T. Stack, K. Webb, and J. Lepreau. Large-scale virtualiza-
tion in the Emulab network testbed. In Proceedings of the
USENIX Annual Technical Conference, June 2008.

[17] T. Hoefler and R. Belli. Scientific benchmarking of paral-
lel computing systems: twelve ways to tell the masses when
reporting performance results. In Proceedings of the interna-
tional conference for high performance computing, networking,
storage and analysis, page 73. ACM, 2015.

[18] D. Irwin, J. Chase, L. Grit, and A. Yumerefendi. Self-
recharging virtual currency. In Proceedings of the 2005 ACM
SIGCOMM Workshop on Economics of Peer-to-peer Systems,
Aug. 2005.

[19] E. Jeanvoine, L. Sarzyniec, and L. Nussbaum. Kadeploy3: Effi-
cient and Scalable Operating System Provisioning for Clusters.
USENIX ;login:, 38(1):38–44, Feb. 2013.

[20] L. Kleinrock. Queueing systems: Theory. Wiley, New York,
1975.

[21] J. Mambretti, J. Chen, and F. Yeh. Next generation clouds, the
Chameleon cloud testbed, and software defined networking
(SDN). In 2015 International Conference on Cloud Computing
Research and Innovation (ICCCRI), pages 73–79. IEEE, 2015.

[22] A. Maricq, D. Duplyakin, I. Jimenez, C. Maltzahn,
R. Stutsman, and R. Ricci. Taming performance variability.
In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), Carlsbad, CA, 2018. USENIX
Association.

[23] P. Marshall, K. Keahey, and T. Freeman. Improving utilization
of infrastructure clouds. In Proceedings of the 2011 11th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, pages 205–214. IEEE Computer Society,
2011.

[24] C. D. Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Ful-
lop, and W. Kramer. Lessons learned from the analysis of
system failures at petascale: The case of Blue Waters. In 2014
44th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks, pages 610–621, June 2014.

[25] R. McGeer, M. Berman, C. Elliott, and R. Ricci, editors. The
GENI Book. Springer International Publishing, 2016.

[26] L. Nussbaum. Testbeds support for reproducible research. In
Proceedings of the Reproducibility Workshop, Reproducibility
’17, pages 24–26, New York, NY, USA, 2017. ACM.

[27] Rackspace Cloud Computing. Horizon: The OpenStack Dash-
board Project. https://docs.openstack.org/horizon/

latest/.

[28] Rackspace Cloud Computing. OpenStack: Open source soft-
ware for creating private and public clouds. https://www.

openstack.org/.

USENIX Association 2019 USENIX Annual Technical Conference 13

https://aws.amazon.com/ec2/spot/pricing/
https://docs.aws.amazon.com/vpc/index.html
https://docs.aws.amazon.com/vpc/index.html
https://research.cs.wisc.edu/htcondor/classad/classad.html
https://research.cs.wisc.edu/htcondor/classad/classad.html
https://docs.openstack.org/horizon/latest/
https://docs.openstack.org/horizon/latest/
https://www.openstack.org/
https://www.openstack.org/

[29] R. Ricci, C. Alfeld, and J. Lepreau. A solver for the network
testbed mapping problem. ACM SIGCOMM Computer Com-
munications Review (CCR), 33(2):65–81, Apr. 2003.

[30] R. Ricci, J. Duerig, L. Stoller, G. Wong, S. Chikkulapelly, and
W. Seok. Designing a federated testbed as a distributed system.
In Proceedings of the 8th International ICST Conference on
Testbeds and Research Infrastructures for the Development of
Networks and Communities (Tridentcom), June 2012.

[31] R. Ricci, E. Eide, and The CloudLab Team. Introducing Cloud-
Lab: Scientific infrastructure for advancing cloud architectures
and applications. USENIX ;login:, 39(6), Dec. 2014.

[32] R. Ricci, G. Wong, L. Stoller, K. Webb, J. Duerig, K. Downie,
and M. Hibler. Apt: A platform for repeatable research in
computer science. ACM SIGOPS Operating Systems Review,
49(1), Jan. 2015.

[33] C. A. Stewart, D. Y. Hancock, M. Vaughn, J. Fischer, T. Cock-
erill, L. Liming, N. Merchant, T. Miller, J. M. Lowe, D. C.
Stanzione, et al. Jetstream: performance, early experiences,
and early results. In Proceedings of the XSEDE16 Conference
on Diversity, Big Data, and Science at Scale, page 22. ACM,
2016.

[34] S. M. Strande, H. Cai, T. Cooper, K. Flammer, C. Irving,
G. von Laszewski, A. Majumdar, D. Mishin, P. Papadopoulos,
W. Pfeiffer, et al. Comet: Tales from the long tail: Two years
in and 10,000 users later. In Proceedings of the Practice
and Experience in Advanced Research Computing 2017 on
Sustainability, Success and Impact, page 38. ACM, 2017.

[35] The Mass Open Cloud Team. Mass Open Cloud Web Site.
https://massopen.cloud/.

[36] The CloudLab Team. CloudLab hardware. https://www.

cloudlab.us/hardware.php, 2018.

[37] The CloudLab Team. User-controlled switches
and layer-1 topologies. http://docs.

cloudlab.us/advanced-topics.html#(part.

_user-controlled-switches), August 2018.

[38] A. Turk, H. Chen, O. Tuncer, H. Li, Q. Li, O. Krieger, and
A. K. Coskun. Seeing Into a Public Cloud: Monitoring the
Massachusetts Open Cloud. In USENIX Workshop on Cool
Topics on Sustainable Data Centers (CoolDC 16), Santa Clara,
CA, 2016.

[39] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An in-
tegrated experimental environment for distributed systems and
networks. In Proceedings of the USENIX Symposium on Op-
erating System Design and Implementation (OSDI). USENIX,
Dec. 2002.

14 2019 USENIX Annual Technical Conference USENIX Association

https://massopen.cloud/
https://www.cloudlab.us/hardware.php
https://www.cloudlab.us/hardware.php
http://docs.cloudlab.us/advanced-topics.html#(part._user-controlled-switches)
http://docs.cloudlab.us/advanced-topics.html#(part._user-controlled-switches)
http://docs.cloudlab.us/advanced-topics.html#(part._user-controlled-switches)

Everyone Loves File: File Storage Service (FSS) in Oracle Cloud
Infrastructure

Bradley C. Kuszmaul Matteo Frigo Justin Mazzola Paluska Alexander (Sasha) Sandler
Oracle Corporation

Abstract

File Storage Service (FSS) is an elastic filesystem pro-
vided as a managed NFS service in Oracle Cloud In-
frastructure. Using a pipelined Paxos implementation,
we implemented a scalable block store that provides lin-
earizable multipage limited-size transactions. On top of
the block store, we built a scalable B-tree that provides
linearizable multikey limited-size transactions. By us-
ing self-validating B-tree nodes and performing all B-
tree housekeeping operations as separate transactions,
each key in a B-tree transaction requires only one page
in the underlying block transaction. The B-tree holds
the filesystem metadata. The filesystem provides snap-
shots by using versioned key-value pairs. The entire sys-
tem is programmed using a nonblocking lock-free pro-
gramming style. The presentation servers maintain no
persistent local state, with any state kept in the B-tree,
making it easy to scale up and failover the presentation
servers. We use a non-scalable Paxos-replicated hash ta-
ble to store configuration information required to boot-
strap the system. The system throughput can be pre-
dicted by comparing an estimate of the network band-
width needed for replication to the network bandwidth
provided by the hardware. Latency on an unloaded sys-
tem is about 4 times higher than a Linux NFS server
backed by NVMe, reflecting the cost of replication.

1 Introduction

This paper describes Oracle Cloud Infrastructure File
Storage Service (FSS), a managed, multi-tenanted NFS
service. FSS, which has been in production for over a
year, provides customers with an elastic NFSv3 file ser-
vice [15]. Customers create filesystems which are ini-
tially empty, without specifying how much space they
need in advance, and write files on demand. The per-
formance of a filesystem grows with the amount of data
stored. We promise customers a convex combination of

100 MB/s of bandwidth and 3000 operations per sec-
ond for every terabyte stored. Customers can mount a
filesystem on an arbitrary number of NFS clients. The
size of a file or filesystem is essentially unbounded, lim-
ited only by the practical concerns that the NFS pro-
tocol cannot cope with files bigger than 16 EiB and
that we would need to deploy close to a million hosts
to store multiple exabytes. FSS provides the ability
to take a snapshot of a filesystem using copy-on-write
techniques. Creating a filesystem or snapshot is cheap,
so that customers can create thousands of filesystems,
each with thousands of snapshots. The system is robust
against failures since it synchronously replicates data
and metadata 5-ways using Paxos [44].

We built FSS from scratch. We implemented a Paxos-
replicated block store, called DASD, with a sophisti-
cated multipage transaction scheme. On top of DASD,
we built a scalable B-tree with multikey transactions
programmed in a lockless nonblocking fashion. Like
virtually every B-tree in the world, ours is a B+-tree. We
store the contents of files directly in DASD and store file
metadata (such as inodes and directories) in the B-tree.

Why not do something simpler? One could imag-
ine setting up a fleet of ZFS appliances. Each appli-
ance would be responsible for some filesystems, and we
could use a replicated block device to achieve reliability
in the face of hardware failure. Examples of replicated
block devices include [2, 4, 25, 54, 61]. We have such
a service in our cloud, so why not use it? It’s actually
more complicated to operate such a system than a sys-
tem that’s designed from the beginning to operate as a
cloud service. Here are some of the problems you would
need to solve:
• How do you grow such a filesystem if it gets too

big to fit on one appliance?
• How do you partition the filesystems onto the ap-

pliance? What happens if you put several small
filesystems onto one appliance and then one of the
filesystems grows so that something must move?

USENIX Association 2019 USENIX Annual Technical Conference 15

• How do you provide scalable bandwidth? If a
customer has a petabyte of data they should get
100 GB/s of bandwidth into the filesystem, but a
single appliance may have only a 10 Gbit/s net-
work interface (or perhaps two 25 Gbit/s network
interfaces).
• How do you handle failures? If an appliance

crashes, then some other appliance must mount the
replicated block device, and you must ensure that
the original appliance doesn’t restart and continue
to perform writes on the block device, which would
corrupt the filesystem.

This paper describes our implementation. Section 2
provides an architectural overview of FSS. The paper
then proceeds to explain the system from the top down.
Section 3 describes the lock-free nonblocking program-
ming style we used based on limited-size multipage
transactions. Section 4 shows how we organize meta-
data in the B-tree. Section 5 explains how we imple-
mented a B-tree key-value store that supports multikey
transactions. Section 6 explains DASD, our scalable
replicated block storage system. Section 7 describes our
pipelined Paxos implementation. Section 8 discusses
congestion management and transaction-conflict avoid-
ance. Section 9 describes the performance of our sys-
tem. Sections 10 and 11 conclude with a discussion of
related work and a brief history of our system.

2 FSS Architecture

This section explains the overall organization of FSS.
We provision many hosts, some of which act as stor-
age hosts, and some as presentation hosts. The storage
hosts, which include local NVMe solid-state-drive stor-
age, store all filesystem data and metadata replicated 5-
ways,1 and provide an RPC service using our internal
FSS protocol. The presentation hosts speak the standard
NFS protocol and translate NFS into the FSS protocol.

A customer’s filesystems appear as exported filesys-
tems on one or more IP addresses, called mount targets.
A single mount target may export several filesystems,
and a filesystem may be exported by several mount tar-
gets. A mount target appears as a private IP address
in the customer’s virtual cloud network (VCN), which
is a customizable private network within the cloud.
Most clouds provide VCNs in which hosts attached to
one VCN cannot even name hosts in another VCN.
Each mount target terminates on one of our presentation
hosts. A single mount target’s performance can be lim-
ited by the network interface of the presentation host,
and so to get more performance, customers can create
many mount targets that export the same filesystem.

1Data is erasure coded, reducing the cost to 2.5, see Section 3.

Orca
10.0.2.97

Orca

Orca
10.0.2.54

10.0.2.53

presentation
host

NFS Client

NFS Client

NFS Client

NFS Client Dendron

DASD

host
storage

Dendron

DASD

host
storage

Figure 1: FSS architecture. The NFS clients are on the
left, and belong to various customers. Hosts are shown
as boxes with solid edges and processes are shown with
dashed lines. The presentation hosts are in the mid-
dle, each running several Orca processes. The Orca
processes are connected to the various customer virtual
cloud networks (VCNs) on the left. The IP addresses
of each Orca’s mount target is shown. The Orca pro-
cess are also connected to our internal VCN, where they
can communicate with the storage hosts. The storage
hosts contain NVMe drives and run both the Dendron
and DASD processes.

Figure 1 shows how the FSS hosts and processes
are organized. The customer sets up NFS clients in
their VCN. Our presentation hosts terminate NFS con-
nections from the clients in per-mount-target Orca pro-
cesses. The Orca processes translate NFS requests into
the FSS protocol, and send the FSS to our storage hosts.
In the future, the presentation hosts might speak other
client protocols, such as SMB [55] or NFSv4 [68].

To ensure isolation between filesystems we depend on
a combination of process isolation on our servers, VCN
isolation, and encryption. All data stored in the storage
hosts or in flight in the FSS protocol is encrypted with
a file-specific encryption key that derives from a filesys-
tem master key. The NFSv3 protocol is not encrypted,
however, so data arriving at an Orca is potentially vul-
nerable. To mitigate that vulnerabilty, we rely on VCN
isolation while the data is in flight from the NFS client
to the presentation host, and use the presentation host’s
process isolation to protect the data on the presentation
host. All data and file names are encrypted as soon as
they arrive at an Orca, and each Orca process serves only
one mount target.

Each storage host contains NVMe drives and runs two
processes, DASD and Dendron. DASD, described in
Section 6, provides a scalable block store. Dendron im-
plements a B-tree (Section 5) in which it maintains the
metadata (Section 4) for the filesystem.

We chose to replicate filesystems within a data cen-

16 2019 USENIX Annual Technical Conference USENIX Association

ter rather than across data centers within a metropoli-
tan area or across a long distance. There is a tradeoff
between latency and failure tolerance. Longer-distance
replication means the ability to tolerate bigger disas-
ters, but incurs longer network latencies. We chose lo-
cal replication so that all of our operations can be syn-
chronously replicated by Paxos without incurring the la-
tency of long-distance replication. It turns out that most
of our customers rely on having a functional disaster-
recovery plan, and so they’re more interested in single-
data center file system performance than synchronous
replication. In the future, however, we may configure
some filesystems to be replicated more widely.

Within a data center, hosts are partitioned into groups
called fault domains. We typically employ 9 fault do-
mains. In a small data center, a fault domain might be
a single rack. In a large data center, it might be a group
of racks. Hosts within a fault domain are likely to fail
at the same time (because they share a power supply or
network switch). Hosts in different fault domains are
more likely to fail independently. We employ 5-way
Paxos replicated storage that requires at least 3 out of
each group of 5 Paxos instances in order to access the
filesystems. We place the Paxos instances into different
fault domains. When we need to upgrade our hosts, we
can bring down one fault domain at a time without com-
promising availability. Why 5-way replication? During
an upgrade, one replica at a time is down. During that
time, we want to be resilient to another host crashing.

We also use the same 5-way-replicated Paxos machin-
ery to run a non-scalable hash table that keeps track of
configuration information, such a list of all the presen-
tation hosts, needed for bootstrapping the system.

All state (including NLM locks, leases, and idem-
potency tokens) needed by the presentation servers is
maintained in replicated storage rather than in the mem-
ory of the presentation hosts. That means that any Orca
can handle any NFS request for the filesystems that it
exports. The view of the filesystem presented by differ-
ent Orcas is consistent.

All memory and disk space is allocated when the host
starts. We never run malloc() after startup. By con-
struction, the system cannot run out of memory at run-
time. It would likely be difficult to retrofit this memory-
allocation discipline into old code, but maintaining the
discipline was relatively straightforward since the entire
codebase is new.

3 Multi-Page Store Conditional

FSS is implemented on top of a distributed B-tree, which
is written on top of a a distributed block store with multi-
page transactions (see Figure 2). This section describes
the programming interface to the distributed block store

Customer program
Operating system

NFS
FSS filesystem

B-tree
MPSC
Paxos

Figure 2: Each module is built on the modules below.

and how the block store is organized into pages, blocks,
and extents.

The filesystem is a concurrent data structure that must
not be corrupted by conflicting operations. There can
be many concurrent NFS calls modifying a filesystem:
one might be appending to a file, while another might
be deleting the file. The filesystem maintains many in-
variants. One important invariant is that every allocated
data block is listed in the metadata for exactly one file.
We need to avoid memory leaks (in which an allocated
block appears in no file), dangling pointers (in which
a file contains a deallocated block), and double alloca-
tions (in which a block appears in two different files).
There are many other invariants for the filesystem. We
also employ a B-tree which has its own invariants. We
live under the further constraint that when programming
these data structures, we cannot acquire a lock to protect
these data structures, since if a process acquired a lock
and then crashed it would be tricky to release the lock.

To solve these problems we implemented FSS us-
ing a nonblocking programming style similar to that of
transactional memory [32]. We use a primitive that we
call multi-page store-conditional (MPSC) for access-
ing pages in a distributed block store. An MPSC op-
eration is a “mini-transaction” that performs an atomic
read-and-update of up to 15 pages. All page reads and
writes follow this protocol:

1. Read up to 15 pages, receiving the page data and a
slot number (which is a form of a version tag [38]).
A page’s slot number changes whenever the page
changes. You can read some pages before deciding
which page to read next, or you can read pages in
parallel. Each read is linearizable [34].

2. Compute a set of new values for those pages.
3. Present the new page values, along with the pre-

viously obtained slot numbers, to the MPSC func-
tion. To write a page requires needs a slot number
from a previous read.

4. The update will either succeed or fail. Success
means that all of the pages were modified to the
new values and that none of the pages had been oth-
erwise modified since they were read. A successful

USENIX Association 2019 USENIX Annual Technical Conference 17

S19 page 0 data

S1 page 1 data

S2 page 2 data

S3 page 3 data

S4 page 4 data

G249
RW
C80

S5 page 5 data

S6 page 6 data

S7 page 7 data

G9
RW
C42

G9
RW
C42

G9
RW
C42

Extent 2

S19 page 0 data

S1 page 1 data

S2 page 2 data

S3 page 3 data

S4 page 4 data

G9
RW
C80

S5 page 5 data

S6 page 6 data

S7 page 7 data

G9
RW
C42

G9
RW
C19

G9
RW
C42

b
lo

ck
 0

b
lo

ck
 1

b
lo

ck
 2

b
lo

ck
 3

Extent 1

S22 page 0 data

S208 page 1 data

S2 page 2 data

S3 page 3 data

S4 page 4 data

G998

RO

C42

S18 page 5 data

S9 page 6 data

S23 page 7 data

G998

RW

C100

Extent 20

b
lo

ck
 0

t
b

lo
ck

 1

Figure 3: Pages, blocks, and extents. Three extents are
shown, each with an array of pages. Each page has a
slot. E.g., page 0 of extent 1 has slot 19. Each block
has ownership. The first block of extent 1 is owned by
customer 80 (“C80”), is read-write (“RW”), and is on its
9th allocation generation (“G9”). Extents 1 and 2 each
have 2 pages per block and 4 blocks, whereas extent 20
has 4 pages per block and only 2 blocks.

update linearizes with other reads and MPSC up-
dates. A failure results in no changes.

In addition to reading and writing pages, an MPSC can
allocate or free space in the distributed block store.

An MPSC could fail for many reasons. For example,
if, between reading a page and attempting an MPSC,
some other transaction wrote the page, the MPSC will
fail. Even if there is no conflict, an MPSC may fail due
to, e.g., packet loss or Paxos leadership changes. Even
if a transaction succeeds, the caller may receive an error
indication, e.g., if network fails between the update’s
commit and the caller notification. Our implementa-
tion deliberately introduces failures (sometimes called
fuzzing [56]) with a small probability rate, so that all of
the error-handling code paths are exercised frequently,
even in production.

Pages and Blocks. We subdivide the distributed block
store into a hierarchy of pages, blocks, and extents, as
shown in Figure 3. An MPSC performs an atomic up-
date on a set of pages. A block includes one or more
pages, and is the unit on which we do bookkeeping for
allocation. To reduce bookkeeping overheads on small
pages, we allocate relatively large blocks. To keep trans-
actions small, we update relatively small pages. An ex-

Geometry Page Block Extent RF EC
size size size

B-tree 8 KiB 1 MiB 16 GiB 5 1
8 KiB 8 KiB 8 KiB 32 GiB 5 5:2
32 KiB 32 KiB 32 KiB 128 GiB 5 5:2
256 KiB 32 KiB 256 KiB 256 GiB 5 5:2
2 MiB 32 KiB 2 MiB 256 GiB 5 5:2

Figure 4: Extent geometries. The B-tree extents con-
tain metadata organized as a B-tree. The other extents
contain file contents, and are identified by their block
size. For each extent the page size, block size, extent
size, replication factor (RF), and erasure-coding (EC)
are shown.

tent is an array of pages, up to 256 GiB total, and is
implemented by a replicated Paxos state machine.

For example, one kind of extent contains 256 GiB
of disk-resident data, organized in 2 MiB blocks with
32 KiB pages, and is replicated 5 ways using 5:2 era-
sure coding (an erasure-coding rate of 2/5) [62]. Thus
the 256 GiB of disk-resident data consumes a total of
640 GiB of disk distributed across 5 hosts.

An extent’s geometry is defined by its page size, block
size, extent size, replication factor, and erasure-coding
rate. Once an extent is created, its geometry cannot
change. Figure 4 shows the extent geometries that we
use for file data and metadata. All of our extents are 5-
way replicated within a single data center. The pages in
extents used for file contents are erasure coded using a
5:2 erasure coding rate, so that the overhead of storing
a page is 2.5 (each replica stores half a page, and there
are 5 replicas). The B-tree data is mirrored, which can
be thought of as 5:1 erasure coding.

We size our extents so there are hundreds of extents
per storage host to ease load balancing. We use paral-
lelism to recover the missing shards when a host crashes
permanently—each extent can recover onto a different
host.
Block ownership. When operating a storage system
as a service, it is a great sin to lose a customer’s data. It
is an even greater sin to give a customer’s data to some-
one else, however. To avoid the greater sin, blocks have
ownership information that is checked on every access.

A block’s ownership information includes a version
tag, called its generation, as well as 64-bit customer
identifier, and a read-only bit. When accessing a block,
the generation, customer id, and read-only bit must
match exactly. This check is performed atomically with
every page access. When a block is allocated or deallo-
cated its generation changes. A tagged pointer to a page
includes the block ownership information, as well as the
extent number and page number. A block’s pointer is
simply the tagged pointer to the block’s first page.

18 2019 USENIX Annual Technical Conference USENIX Association

The problem that block ownership solves can be il-
lustrated as follows. When data is being written into
a new file, we allocate a block and store the block’s
pointer in the B-tree as a single transaction. To read data
from a file, Orca first obtains the block pointer by ask-
ing Dendron to read the B-tree. Orca caches that block
pointer, so that it can read the data without the over-
head of checking the B-tree again on every page access.
Meanwhile, another thread could truncate the file, caus-
ing the block to be deallocated. The block might then
be allocated to a file belonging to a different customer.
We want to invalidate Orca’s cached pointers in this sit-
uation, so we change the block ownership. When Orca
tries to use a cached pointer to read a deallocated page,
the ownership information has become invalid, and the
access fails, which is what we want.

Each of our read operations is linearizable, meaning
that they are totally ordered with respect to all MPSC
operations and the total ordering is consistent with real
time. Although our read operations linearize, if you
perform several reads they take place at different times,
meaning that the reads may not be mutually consistent.
It’s easy to trick a transactional-memory-style program
into crashing, e.g., due to a failed assertion. For ex-
ample, if you have two pages in a doubly linked list,
you might read one page, and then follow a pointer to
the second page, but by the time you read the second
page it no longer points back to the first page. Getting
this right everywhere is an implementation challenge,
leading some [10, 16] to argue that humans should not
program transactional memory without a compiler. We
have found this problem to be manageable, however,
since an inconsistent read cannot lead to a successful
MPSC operation, so the data structure isn’t corrupted.

4 A Filesystem Schema

This section explains how we represent the filesystem
metadata in our B-tree. FSS implements an inode-based
write-in-place filesystem using a single B-tree to hold its
metadata. What does that mean? “Inode-based” means
that each file object has an identifier, called its handle.
The handle is used as an index to find the metadata for
a file. “Write-in-place” means that updates to data and
metadata usually modify an existing block of data. (As
we shall see, snapshots introduce copy-on-write behav-
ior.) “Single B-tree to hold the metadata” means there
is only one B-tree per data center. Our service provides
many filesystems to many customers, and they are all
stored together in one B-tree.

The B-tree must support various metadata operations.
For example, given an object’s handle, we need to find
and update the fixed-size part of the object’s metadata,
which includes the type of the object (e.g., regular, di-

Key-value pairs:
leaderblock: 0→ next F .
superblock: F,0→ next D, next C, keys.
inode: F,1,D,C,2,S→ stat-data.
name map: F,1,D,C = 0,3,N,S→ F,D′,C′,S.
cookie map: F,1,D,C = 0,4,c,S→ F,D′,C′,S,N.
block map: F,1,D,C,5,o,S→ block ID and size.

Glossary:
F filesystem number.
D Directory unique id.
C File unique id.
S Snapshot number.
o Offset in file.
N Filename in directory.
c Directory iteration cookie.
F,D′,C′,S The handle of a file in a directory.

Figure 5: Filesystem schema showing key→ value pair
mappings. The small numbers (e.g., “1”) are literal num-
bers inserted between components of a key to disam-
biguate key types and force proper B-tree sort ordering.
For directories, C = 0.

rectory, symlink), permissions bits (rwxrwxrwx), owner,
group, file size, link count, and timestamps. Given a file
handle and an offset, we need to find the tagged pointer
of the block holding data at that offset, so that reads or
write can execute. Given a directory handle and a file-
name we need to be able perform a directory lookup,
yielding a file handle. For a directory, we need to iterate
through the directory entries. In NFS this is performed
using a 64-bit number called a cookie. Given a directory
handle and a cookie we need to find the directory entry
with the next largest cookie.

Our strategy is to create B-tree key-value pairs that
make those operations efficient. We also want to min-
imize the number of pages and extents that we access
in each transaction. Every B-tree key is prefixed with
a filesystem number F , so that all the keys for a given
filesystem will be adjacent in the B-tree. Our handles are
ordered tuples of integers 〈F,D,C,S〉, where D a unique
number for every directory, C is a unique number for ev-
ery file (C = 0 for directories), and S is a snapshot num-
ber. A file’s handle depends on the directory in which
it was created. The file can be moved to another direc-
tory after it is created, but the file’s handle will always
mention the directory in which the file was originally
created.

Figure 5 shows the schema for representing our
filesystems. We encode the B-tree keys in a way that
disambiguates the different kinds of key value pairs and
sorts the key-value pairs in a convenient order. For ex-
ample, all the pairs for a given filesystem F appear to-
gether, with the superblock appearing first because of

USENIX Association 2019 USENIX Annual Technical Conference 19

the “0” in its key. Within the filesystem, all the non-
superblock pairs are sorted by D, the directory number.
For a directory, the directory inode sorts first, then come
the name map entries for the directory, and then the
cookie map, then come all the inodes for the files that
were created in that directory. In that set for each file,
the file inode sorts first, followed by the block maps for
that file. Finally two entries that are the same except for
the snapshot number are sorted by snapshot number.

We implement snapshots using copy-on-write at the
key-value pair level, rather than doing copy-on-write in
the B-tree data structure or at the block level [13, 28,
35, 43, 49, 63, 65, 66, 72]. In the interest of space, we
don’t show all the details for snapshots, but the basic
idea is that each key-value pair is valid for a range of
snapshots. When looking up a pair for snapshot S, we
find the pair whose key has the largest snapshot number
that’s no bigger than S.

Our key-value scheme achieves locality in the B-tree.
When a file is created it is lexicographically near its par-
ent directory, and the file’s block maps and fixed-sized
metadata are near each other. (If the file is later moved,
it still appears near the original parent directory.) This
means that if you create a file in a directory that has
only a few files in it, it’s likely that the whole transac-
tion to update the directory inode, add directory entries,
and create the file inode will all be on the same page,
or at least in the same extent, since the B-tree maintains
maintains block as well as page locality (see Section 5).

We use multiple block sizes (which are shown in Fig-
ure 4) to address the tension between fragmentation and
metadata overhead. Small blocks keep fragmentation
low for small files. Big blocks reduce the number of
block map entries and other bookkeeping overhead for
big files. In our scheme the first few blocks of a file are
small, and as the file grows the blocks get bigger. For
files larger than 16 KiB, the largest block is no bigger
than 1/3 the file size, so that even if the block is nearly
empty, we have wasted no more than 1/3 of our stor-
age. We sometimes skip small-block allocation entirely.
For example if the NFS client writes 1 MiB into a newly
created file, we can use 256 KiB blocks right away.

5 The B-tree

To hold metadata we built a B-tree [7] on top of MPSC.
MPSC provides transactions that can update up to 15
pages, but we want to think about key-value pairs, not
pages, and we want B-tree transactions to be able in-
clude non-B-tree pages and blocks, e.g., to allocate a
data block and store its tagged pointer in a B-tree key-
value pair. The B-tree can perform transactions on a
total of 15 values, where a value can be a key-value pair,
or a non-B-tree page write or block allocation.

Consider the simple problem of executing a B-tree
transaction to update a single key-value pair. How many
pages must be included in that transaction? The standard
B-tree algorithm starts at the root of the tree and follows
pointers down to a leaf page where it can access the pair.
To update the leaf we need to know that it is the proper
page, and the way we know that is by having followed a
pointer from the leaf’s parent. Between reading the par-
ent and reading the leaf, however, the tree might have
been rebalanced, and so we might be reading the wrong
leaf. So we we need to include the parent in the transac-
tion. Similarly, we need to include the grandparent and
all the ancestors up to the root. A typical B-tree might be
5 or 6 levels deep, and so a single key-value pair update
transaction involves 5 or 6 pages, which would limit us
to 2 or 3 key-value pairs per transaction. Furthermore,
every transaction ends up including the root of the B-
tree, creating a scalability bottleneck.

Our solution to this problem is to use self-validating
pages, which contain enough information that we can
determine if we read the right page by looking at that
page in isolation. We arrange every page to “own” a
range of keys, for the page to contain only keys in that
range, and that every possible key is owned by exactly
one page. To implement this self validation, we store in
every page a lower bound and upper bound for the set
of keys that can appear in the page (sometimes called
“fence keys” [26, 47]), and we store the height of the
page (leaf pages are height 0). When we read a page to
look up a key, we verify that the page we read owns the
key and is the right height, in which case we know that
if that page is updated in a successful transaction, that
we were updating the right page. Thus, we do not need
to include the intermediate pages in the MPSC operation
and we can perform B-tree transactions on up to 15 keys.

We usually skip accessing the intermediate B-tree
nodes altogether by maintaining a cache that maps keys
to pages. If the cache steers us to a wrong page, either
the page won’t self validate or the transaction will fail, in
which case we simply invalidate the cache and try again.
If a key is missing from the cache, we can perform a
separate transaction that walks the tree to populate the
cache. It turns out that this cache is very effective, and
for virtually all updates we can simply go directly to the
proper page to access a key-value pair.

Another problem that could conceivably increase the
transaction size is tree rebalancing. In a B-tree, tree
nodes must generally be split when they get too full or
merged when they get too empty. The usual rule is that
whenever one inserts a pair into a node and it doesn’t fit,
one first splits the node and updates the parent (possi-
bly triggering a parent split that updates the grandpar-
ent, and so on). Whenever one deletes a pair, if the
node becomes too empty (say less than 1/4 full), one

20 2019 USENIX Annual Technical Conference USENIX Association

Block 99 Block 12 Block 5

Block 15

Block 42

Block 16

Block 7

[A,B) [C,F) [F,G) [G,J) [J,M) [M,N)[N,P) [V,Z) [P,S) [S,V)[B,C)

Figure 6: The B-tree comprises block (in blue) and
pages (in pink). The pages form a tree. The leaf
pages, where the key-value pairs are stored, form a dou-
bly linked list (shown with dashed green lines). Each
leaf page is responsible for a range of keys, e.g., [C,F)
means the keys from C inclusive to F exclusive. Each
block holds a key range of pages for one level. For ex-
ample, Block 5 has all the leaf pages in the range [G,P).

merges nodes, updating the parent (which can possibly
trigger a parent merge that updates the grandparent, and
so on). This means that any insertion or deletion can
add as many pages to a transaction as the height of the
tree. Those rebalancings are infrequent so they don’t in-
troduce a scalability bottleneck, but they do make our
MPSC operations too big.

Our solution to the rebalancing problem is to rebal-
ance in a separate transaction. When inserting if we en-
counter a page overflow, we abort the transaction, split
the page in a separate transaction, and restart the origi-
nal transaction. We split the page even if it is apparently
nearly empty: as long as there are two keys we can split
the page. For merges, we delete keys from the page, and
then do a separate transaction afterward to rebalance the
tree. It’s possible that a page could end up empty, or
nearly empty, and that due to some crash or packet loss,
we forget to rebalance the tree. That’s OK because we
fix it up the next time we access the page.

To improve locality we exploit both the page and
block structure of MPSC. Figure 6 shows how the B-tree
is organized to exploit block locality as well as page lo-
cality. Each page is responsible for a key range, and the
union of the key ranges in a block is a single key range.
When splitting a page, we place the new page into the
same block as the old page, and if the block is full,
we insert a new block. If the B-tree schema strives to
keep keys that will appear in the same transaction lexi-
cographically near each other, locality causes those keys
to likely be in the same page, or at least the same block.
Our MPSC implementation optimizes for the case where
some pages of a transaction are in the same extent. With
the schema described in Section 4, this optimization is
worth about a 20% performance improvement for an op-
eration such as untarring a large tarball.

The choice of 15 pages per transaction is driven by
the B-tree implementation. There is one infrequent op-
eration requiring 15 pages. It involves splitting a page

in a full block: a new block is allocated, block headers
are updated, and the pages are moved between blocks.
Most transactions touch only one or two pages.

6 DASD: Not Your Parent’s Disk Drive

This section explains how we implemented MPSC using
Paxos state machines (which we discuss further in Sec-
tion 7). MPSC is implemented by a distributed block
store, called DASD2. A single extent is implemented by
a Paxos state machine, so multipage transactions within
an extent is straightforward. To implement transactions
that cross extents, we use 2-phase commit.

Given that Paxos has provided us with a collection
of replicated state machines, each with an attached disk,
each implementing one extent, we implement two-phase
commit [29,46,50] on top of Paxos. The standard prob-
lem with two-phase commit is that the transaction coor-
dinator can fail and the system gets stuck. Our extents
are replicated, so we view the participants in a transac-
tion as being unstoppable.

It would be easy to implement two-phase commit
with 3n messages. One could send n ‘prepare’ mes-
sages that set up the pages, then n ‘decide’ messages
that switch the state to commited, and then n ‘release’
messages that release the resources of the transaction.
(Each message drives a state transition, which is repli-
cated by Paxos.) The challenge is to implement two-
phase commit on n extents with only 2n messages and
state changes. Every filesystem operation would benefit
from the latency being reduced by 1/3.

To perform an atomic operation with only 2n mes-
sages, for example on 3 pages, the system progresses
through the states shown in Figure 7. The system will
end up constructing and tearing down, in the Paxos state
machine, a doubly-linked (not circular) list of all the
extents in the transaction. Each of these steps is initi-
ated by a message from a client, which triggers a state
change in one Paxos state machine (which in turn re-
quires several messages to form a consensus among the
Paxos replicas). The client waits for an acknowledgment
before sending the next message.

1. Extent A receives a prepare message. A enters the
prepared state, indicated by “P(data)”, and records
its part of the transaction data and its part of the
linked list (a null back pointer, and a pointer to B).

2. Extent B receives a prepare message, enters the pre-
pared state, and records its data and pointers to A
and C.

3. Extent C receives a prepare-and-decide message,
enters the decided state (committing the transac-

2Direct-Access Storage Device (DASD) was once IBM’s terminol-
ogy for disk drives [37].

USENIX Association 2019 USENIX Annual Technical Conference 21

A B C
ti

m
e

P(data)

P(data) P(data)

P(data) P(data) D(wrote)

R(wrote) D(wrote)R(wrote)

R(wrote) R(wrote)R(wrote)

R(wrote) P(data) D(wrote)

Figure 7: Three extents performing a DASD transaction.
Each column is an extent, and each row is a point in
time, with time moving downward. A double-arrowed
line shows two extents pointing at each other. A single-
arrowed line shows one extent pointing at the other, with
no pointer back. Ground represents a null pointer.

tion), and records its data and the back pointer to
B, indicated by “D(wrote)”.

4. Extent A receives a decide-and-release message,
notes that the transaction is committed, and re-
leases its resources (such as memory) associated
with the transaction, indicated by “R(wrote)”. The
head of the linked list is now gone.

5. Extent B receives a decide-and-release message,
notes the commit, and releases its resources.

6. Extent C receives a release message (it had already
decided) and releases its resources.

Thus we implement two-phase commit in exactly 2n
messages with 2n state transitions. Note that the final
transition of state C doesn’t actually need to be done
before replying to the client, and could be piggybacked
into the prepare step of the next transaction, potentially
reducing the latency to 2n−1 messages.

The system maintains the invariant that either a pre-
fix or a suffix of the linked list exists, which is useful
if the transaction is interrupted. There are two ways
that the system can be interrupted, before the commit (in
which case the transaction will abort), or after (in which
case the cleanup is incomplete). The prefix-suffix prop-
erty helps in both of these cases. If the transaction gets
aborted (at or before step 3) then a prefix exists. If we
encounter a prepared state, we can follow the linked list
forward until we either find a dangling pointer or a de-
cided state. If we find a dangling pointer, we can delete
the prepare record that contained the dangling pointer,
preserving a prefix. (At the final point, C, of the linked
list, we must extract a promise that C will never decide
that the transaction commits. This can be accomplished

by introducing a conflict on the read slot for the page.) If
we find a decided state then the cleanup was interrupted,
so it can proceed back along the linked list until we find
the beginning or a dangling pointer, and move the state
forward to released.

Our scheme relies on the fact that each state transition
occurs one after the other, and hence the critical path of
the transition is also 2n messages. There are schemes in
which one can move the states forward in parallel. For
example, one could broadcast “prepare” messages to all
the extents, then have one extent decide, and then broad-
cast decide messages to them all, then release messages,
so that the critical path would be only 4 long. This re-
sults in 3n state transitions (minus one or two, depend-
ing on how clever you are.) If you think that big trans-
actions are common, that’s valuable, but we have found
that most transactions are short so it’s better to do the
transaction serially.

We optimize the case when there are several pages in
a single extent to use fewer messages.

7 Pipelined Paxos

In this section we explain our Paxos implementation,
and in particular how we pipeline Paxos operations.

Lamport-Paxos [44, 45] is an algorithm to achieve
consensus on a single value. Lamport-Paxos requires
two phases, called phase 1 and phase 2 by Lamport.

To achieve consensus on a log (as opposed to one
value), one common algorithm is Multi-Paxos [17],
which treats the log as an array indexed by slot, run-
ning Lamport-Paxos independently on each array ele-
ment. It turns out that you can run a “vector” phase 1
for infinitely many elements of the array with a single
pair of messages, and that you can reuse the outcome
of phase 1 for as many phase 2 rounds as you want. In
this setup, people tend to call phase-1 “master election”
and infer all sorts of wrong conclusions, e.g. that there
is only one master at any time and that phase 1 is some
kind of “failover”.

In Multi-Paxos, if the operation on slot S+1 depends
on the state after slot S, you must wait for slot S (and
all previous slots) to finish phase 2. (We don’t say
“commit” to avoid confusion with two-phase commit,
which is a different protocol.) This Multi-Paxos is not
pipelined.

You can pipeline Multi-Paxos with a small modifica-
tion. You tag each log entry with a unique log sequence
number (LSN) and you modify Paxos so that an accep-
tor accepts slot S + 1 only if it agrees on the LSN of
slot S. Thus, the Paxos phase 2 message is the Lamport
phase 2 plus the LSN of the previous slot. By induction,
two acceptors that agree on a LSN agree on the entire
past history.

22 2019 USENIX Annual Technical Conference USENIX Association

Now you can issue phase 2 for S+ 1 depending on
S without waiting for S to complete, because the accep-
tance of S+1 retroactively confirms all speculations that
you made.

The pipelined Multi-Paxos state, per slot, is the
Lamport-Paxos state (a ballot B and the slot’s contents)
plus the LSN. You can use whatever you want as LSNs,
as long as they are unique, but a convenient way to gen-
erate LSNs is to use the pair 〈E,S〉 where the epoch E
must be unique. As it happens, Lamport phase 1 desig-
nates a single winner of ballot B, so you can identify E
with the winner of ballot B in phase 1, and be guaran-
teed that nobody else wins that ballot. In the E = B case,
you can reduce the per-slot state to the single-value E,
with the dual-role of LSN for pipelining and of ballot
for Lamport-Paxos.

Our Paxos algorithm is almost isomorphic to
Raft [60]. Essentially Raft is Multi-Paxos plus condi-
tional LSNs plus E = B. However, Raft always requires
an extra log entry in order to make progress, and cannot
be done in bounded space. If you recognize that you are
just doing good-old Paxos, then you can make progress
by storing a separate ballot B in constant space.

The idea of the acceptance conditional on the pre-
vious LSN appeared in viewstamped replication [58]
(which didn’t discuss pipelining). It is used specifically
for pipelining in Zookeeper, except that Zookeeper tries
to reinvent Paxos, but incorrectly assumes TCP is an
ideal pipe [6]. Conditional acceptance is also used in
Raft in the same way as in viewstamped replication, ex-
cept that Raft lost the distinction between proposer and
acceptor, which prevents it from having a speculative
proposer state that runs ahead of acceptors.

Recovery. Here we explain how our Paxos system re-
covers from failures.

The on-disk state of a Paxos acceptor has two main
components: the log (of bounded size, a few MB), and a
large set of page shards (tens of GB). A shard comprises
an erasure-coded fragment of a page and some header
information such as a checksum. To write a shard, the
Paxos proposer appends the write command to the log
of multiple acceptors. When a quorum of acceptors has
accepted the command, the write is considered done (or
“learned” in Paxos terminology). The proposer then in-
forms acceptors that a command has been learned, and
acceptors write the erasure-coded shard to disk.

As long as all acceptors receive all log entries, this
process guarantees that all acceptors have an up-to-date
and consistent set of shards. However, acceptors may
temporarily disappear for long enough that the only way
for the acceptor to make progress is to incur a log dis-
continuity. We now must somehow rewrite all shards
modified by the log entries that the acceptor has missed,
a process called recovery.

The worst-case for recovery is when we must rewrite
the entire set of shards, for example because we are
adding a new acceptor that is completely empty. In this
long-term recovery, as part of their on-disk state, accep-
tors maintain a range of pages that need to be recovered,
and they send this recovery state back to the proposer.
The proposer iterates over such pages and overwrites
them by issuing a Paxos read followed by a conditional
Paxos write, where the condition is on the page still be-
ing the same since the read. When receiving a write, the
acceptor subtracts the written page range from the to-be-
recovered page range, and sends the updated range back
to the proposer.

Long-term recovery overwrites the entire extent. For
discontinuities of short duration, we use a less expensive
mechanism called short-term recovery. In addition to
the long-term page range, acceptors maintain a range of
log slots that they have lost, they update this range when
incurring a discontinuity, and communicate back this
slot range to the proposer. The proposer, in the Paxos
state machine, maintains a small pseudo-LRU cache of
identifiers of pages that were written recently, indexed
by slot. If the to-be-recovered slot range is a subset of
the slot range covered by the cache, then the proposer
issues all the writes in the slot range, in slot order, along
with a range R whose meaning is that the present write
is the only write that occurred in slot range R. When
receiving the write, the acceptor subtracts R from its to-
be-recovered slot range and the process continues un-
til the range is empty. If the to-be-recovered slot range
overflows the range of the cache, the acceptor falls into
long-term recovery.

In practice, almost all normal operations (e.g., soft-
ware deployments) and unscheduled events (e.g., power
loss, network disruption) are resolved by short-term re-
covery. We need long-term recovery when loading a
fresh replica, and (infrequently) when a host goes down
for a long time.

Checkpointing and logging. Multi-Paxos is all about
attaining consensus on a log, and then we apply that log
to a state machine. All memory and disk space in FSS
is statically allocated, and so the logs are of a fixed size.
The challenge is to checkpoint the state machine so that
we can trim old log entries. The simplest strategy is
to treat the log as a circular buffer and to periodically
write the entire state machine into the log. Although
for DASD extents, the state machine is only a few MB,
some of our other replicated state machines are much
larger. For example we use a 5-way replicated hash ta-
ble, called Minsk, to store configuration information for
bootstrapping the system: given the identity of the five
Minsk instances, a Dendron instance can determine the
identity of all the other Dendron instances. If the Paxos
state machine is large, then checkpointing the state ma-

USENIX Association 2019 USENIX Annual Technical Conference 23

chine all at once causes a performance glitch.
Here’s a simple scheme to deamortize checkpointing.

Think of the state machine as an array of bytes, and ev-
ery operation modifies a byte. Now, every time we log
an update to a byte, we also pick another byte from the
hash table and log its current value. We cycle through
all the bytes of the table. Thus, if the table is K bytes
in size, after K update operations we will have logged
every byte in the hash table, and so the most recent 2K
log entries have enough information to reconstruct the
current state of the hash table. We don’t need to store
the state machine anywhere, since the log contains ev-
erything we need.

This game can be played at a higher level of abstrac-
tion. For example, suppose we think of the hash table
as an abstract data structure with a hash_put opera-
tion that is logged as a logical operation rather than as
operations on bytes. In that case every time we log a
hash_put we also log the current value of one of the
hash table entries, and take care to cycle through all the
entries. If the hash table contains K key-value pairs, then
the entire hash table will be reconstructable using only
the most recent 2K log entries. This trick works for a
binary tree too.

8 Avoiding Conflicts

This section outlines three issues related to transaction
conflicts: avoiding too much retry work, avoiding con-
gestion collapse, and reducing conflicts by serializing
transactions that are likely to conflict.

In a distributed system one must handle errors in a
disciplined fashion. The most common error is when a
transaction is aborted because it conflicts with another
transaction. Retrying transactions at several different
places in the call stack can cause an exponential amount
of retrying. Our strategy is that the storage host does not
retry transactions that fail. Instead it attempts to com-
plete one transaction, and if it fails the error is returned
all the way back to Orca which can decide whether to
retry. Orca typically sets a 55 s deadline for each NFS
operation, and sets a 1 s deadline for each MPSC. Since
the NFS client will retry its operation after 60 s, it’s OK
for Orca to give up after 55 s.

In order to avoid performance collapse, Orca employs
a congestion control system similar to TCP’s window-
size management algorithm [71]. Some errors, such as
transaction conflicts, impute congestion. In some situ-
ations the request transaction did not complete because
some “housekeeping” operation needed to be run first
(such as to rebalance two nodes of the B-tree). Doing
the housekeeping uses up the budget for a single trans-
action, so an error must returned to Orca, but in this case
the error does not impute congestion.

When two transactions conflict, one aborts, which is
inefficient. We use in-memory locking to serialize trans-
actions that are likely to conflict. For example, when
Orca makes an FSS call to access an inode, it sends
the request to the storage host that is likely to be the
Paxos leader for the extent where that inode is stored.
That storage host then acquires an in-memory lock so
that two concurrent calls accessing the same inode will
run one after another. Orca maintains caches that map
key ranges to extent numbers and extent numbers to the
leader’s IP address. Sometimes one of the caches is
wrong, in which case, as a side effect of running the
transaction, the storage host will learn the correct cache
entries, and inform Orca, which will update its cache.
The in-memory lock is used for performance and is not
needed for correctness. The technique of serializing
transactions that are likely to conflict is well known in
the transactional-memory literature [48, 73].

9 Performance

In the introduction we promised customers a convex
combination of 100MB/s of bandwidth and 3000 IOPS
for every terabyte stored. Those numbers are through-
put numbers, and to achieve those numbers the NFS
clients may need to perform operations in parallel. This
section first explains where those throughput numbers
come from, and then discusses FSS latency.

In order to make concrete throughput statements, we
posit a simplified model in which the network band-
width determines performance. The network bottle-
neck turns out to be on the storage hosts. If VNICs on
the NFS clients are the bottleneck, then the customer
can add NFS clients. If the presentation host is the
bottleneck, then additional mount targets can be provi-
sioned. The performance of the NVMe is fast compared
to the several round trips required by Paxos (in contrast
to, e.g., Gaios, which needed to optimize for disk la-
tency instead of network latency because disks were so
slow [11]).

We define performance in terms of the ratio of band-
width to storage capacity. There are four components to
the performance calculation: raw performance, replica-
tion, scheduling, and oversubscription. The raw perfor-
mance is the network bandwidth divided by the disk ca-
pacity, without accounting for replication, erasure cod-
ing, scheduling, or oversubscription.

Replication consumes both bandwidth and storage ca-
pacity. Using 5:2 erasure coding, for each page of data,
half a page is stored in each of five hosts. This means
we can sell only 40% of the raw storage capacity. The
network bandwidth calculation is slightly different for
writes and reads. For writes, each page must be received
by 5 different storage hosts running Paxos. That data is

24 2019 USENIX Annual Technical Conference USENIX Association

erasure-coded by each host then written to disk. Thus,
for writes, replication reduces the raw network band-
width by a factor of 5.

For reads we do a little better. To read a page we col-
lect all five erasure-coded copies, each of which is half
a page and reconstruct the data using two of the copies.
We could probably improve this further by collecting
only two of the copies, but for now our algorithm col-
lects all five copies. So for reads, replication reduces the
bandwidth by a factor of 5/2.

Scheduling further reduces the bandwidth, but has a
negligible effect on storage capacity. Queueing theory
tells us that trying to run a system over about 70% uti-
lization will result in unbounded latencies. We don’t do
quite that well. We find that we can run our system at
about 1/3 of peak theoretical performance without af-
fecting latency. This factor of 3 is our scheduling over-
head.

Since not all the customers are presenting their peak
load at the same time, we can sell the same performance
several times, a practice known as oversubscription. In
our experience, we can oversubscribe performance by
about a factor of 5.

The units of performance simplify from MB/s/TB to
s−1, so 100 MB/s/TB is one overwrite per 10000 s.

For input-outputs per second (IO/s) we convert band-
width to IOPS by assuming that most IOs are operations
on 32 KiB pages, so we provide 3000 IO/s/TB. The
cost of other IOs can be expressed in terms of reads: A
write costs 2.5 reads, a file creation costs 6 reads, an
empty-file deletion costs 8 reads, and a file renaming
costs about 10 reads.

This performance model appears to work well on ev-
ery parallel workload we have seen. To test this model,
we measured how much bandwidth a relatively small
test fleet can provide. (We aren’t allowed to do these
sorts of experiments on the big production fleets.) We
measured on multiple clients, where each client has its
own mount target on its own Orca. This fleet has 41
storage instances each with a 10 Gbit/s VNIC for a to-
tal raw performance of 51.25 GB/s. After replication
that’s 10.25 GB/s of salable bandwidth. Dividing by 3
to account for scheduling overhead is 3.4 GB/s. Those
machines provide a total of 200 TB of salable storage,
for a ratio of 17 MB/s/TB. According to our model,
with 5-fold oversubscription, this fleet should promise
customers 85 MB/s/TB.

Figure 8 shows measured bandwidth. The variance
was small so we measured only 6 runs at each size. The
measured performance is as follows. When writing into
an empty file, block allocation consumes some time,
and a single client can get about 434 MB/s, whereas
12 clients can get about 2.0 GB/s. When writing into
an existing file, avoiding block allocation overhead, the

1

2

3

0 2 4.7 5.8 8 10 12

C
·0
.70

GB/
s

C ·
0.5

2GB/
s

3.31 GB/s
2.98 GB/s

S0.52, 2.98(C)

S0.70, 3.31(C)

B
an

dw
id

th
(G

B
/s

)

Number of clients, C

Figure 8: Measured bandwidth. The X-axis is the num-
ber of NFS clients. The Y-axis is the cumulative band-
width achieved. The crosses (in black) show measured
performance writing into a preallocated file. The x’s
(in blue) show measured performance including block
allocation. The functions S are the curves fit to a
simple-speedup model, with the corresponding linear-
speedup shown as lines passing through the origin and
the asymptotic speedups shown as horizontal lines. The
number of clients at the intercepts are also shown.

performance is about 536 MB/s and 2.4 GB/s for 1 and
12 clients respectively.

We hypothesized that we could model this data as a
simple-speedup curve [9] (a variant of Amdahl’s law or
of Brent and Graham’s Theorem [5,12,27]). In a simple-
speedup scenario, as we increase the number of clients,
we see a linear speedup which eventually flattens out to
give an asymptotic speedup. The curve is parameterized
by two numbers l and a. The first value, l, is the linear-
speedup slope which applies when the number of clients
C is small where the performance will be l ·C. The sec-
ond value, a, is the asymptotic speed, and indicates the
performance for large numbers of clients. The simple
speedup curve,

Sl,a(C) = 1/(1/lC+1/a),

is simply half the harmonic mean of the linear-speedup
curve lC and the asymptotic speed a.

We fitted of our data to the simple-speedup model and
plotted the resulting curves in Figure 8. The asymptotic
standard error for the curve fit is less than 1.7%. Visu-
ally, the curves fit the data surprisingly well.

We can interpret these curves as follows: When writ-
ing to an empty file (which includes block allocation), a
few clients can each achieve about 0.52 GB/s, and many
clients can achieve a total of 2.98 GB/s. The cutover be-
tween “few” and “many” is about 6 clients for this fleet.
When writing to a preallocated file, a few clients can
each achieve 0.70 GB/s, and many clients can achieve

USENIX Association 2019 USENIX Annual Technical Conference 25

a total of 3.31 GB/s, which is close to our estimate
of 3.4 GB/s. The intercept of the speedup curve lines
tells us the half-power points, where half the peak ca-
pacity is consumed: 4.7 clients consume half of the
fleet’s allocate-and-write capacity, and 5.8 clients con-
sume half of the write-without-allocation capacity.

Low latency is hard to achieve in a replicated dis-
tributed system. Latency is the elapsed time from an
NFS client’s request to response in an otherwise un-
loaded system. For serial workloads, latency can dom-
inate performance. For example, when running over
NFS, the tar program creates files one at a time, wait-
ing for an acknowledgment that each file exists on sta-
ble storage before creating the next file. After looking at
various benchmarks, we concluded that we should sim-
ply measure tar’s runtime on a well-known tarball such
as the Linux 4.19.2 source code distribution, which is
839 MB and contains 65825 objects. Untarring Linux
onto local NVMe device takes about 10 s. The same
NVMe served over NFS finishes in about 2.5 minutes.
FSS finishes in about 10 minutes. Amazon’s EFS, which
replicates across a metropolitan region, finishes in about
an hour. According to this limited experiment, NFS
costs a factor of 15, replication within a datacenter costs
another factor of 4, and synchronous replication over
metropolitan-scale distances costs another factor of 6.
Achieving local-filesystem performance in a replicated
distributed fault-tolerant filesystem appears ... difficult.

10 Related Work

MPSC is a variation of load-link/store-conditional [41],
and seems less susceptible to the ABA problem (in
which the same location is read twice and has the same
value for both reads, tricking the user into thinking that
no transaction has modified the location in the mean-
while) than compare-and-swap [20,21,33]. Version tag-
ging and the ABA problem appeared in [38, p. A-44].

Sinfonia has many similarities to our system. Sin-
fonia minitransactions [1] are similar to MPSC. Sin-
fonia uses uses primary-copy replication [14] and can
suffer from the split-brain problem, where both primary
and replica become active and lose consistency [19]. To
avoid split-brain, Sinfonia remotely turns off power to
failed machines, but that’s just another protocol which
can, e.g., suffer from delayed packets, and doesn’t solve
the problem. We employ Paxos [44], which is a correct
distributed consensus algorithm.

Many filesystems have stored at least some their
metadata in B-trees [8, 22, 39, 53, 63, 66, 67] and some
have gone further, storing both metadata and data in a
B-tree or other key-value store [18, 40, 64, 74, 75]. Our
B-tree usage is fairly conventional in this regard, except
that we store many filesystems in a single B-tree.

ZFS and HDFS [30,69,70,72] support multiple block
sizes in one file. Block suballocation and tail merging
filesystems [3,63,66] are special cases of this approach.

Some filesystems avoid using Paxos on every opera-
tion. For example, Ceph [42] uses Paxos to run its mon-
itors, but replicates data asynchronously. Ceph’s crash
consistency can result in replicas that are not consis-
tent with each other. Some systems (e.g., [23, 24, 52])
use other failover schemes that have not been proved
correct. Some filesystems store all metadata in mem-
ory [24, 31, 36, 42, 57], resulting in fast metadata access
until the metadata gets too big to fit in RAM. We go to
disk on every operation, resulting in no scaling limits.

11 Conclusion

History: The team started with Frigo and Kuszmaul,
and the first code commit was on 2016-07-04. Paxos
and DASD were implemented by the end of July 2016,
and the B-tree was working by November 2016. San-
dler joined and started Orca implementation on 2016-
08-03. Mazzola Paluska joined on 2016-09-15 and im-
plemented the filesystem schema in the B-tree. The
team grew to about a dozen people in January 2017,
and is about two dozen people in spring 2019. Control-
plane work started in Spring 2017. Limited availability
was launched on 2017-07-01, less than one year after
first commit (but without a control plane — all configu-
ration was done manually). General availability started
2018-01-29. As of Spring 2019, FSS hosts over 10,000
filesystems containing several petabytes of paid cus-
tomer data and is growing at an annualized rate of 8-
to 60-fold per year (there’s some seasonal variation).

Acknowledgments: In addition to the authors, the
team that built and operates FSS has included: the
data-plane team of Yonatan (Yoni) Fogel, Michael
Frasca, Stephen Fridella, Jan-Willem Maessen, and
Chris Provenzano; the control-plane team of Vikram
Bisht, Bob Naugle, Michael Chen, Ligia Connolly,
Yi Fang, Cheyenne T. Greatorex, Alex Goncharov,
David Hwang, Lokesh Jain, Uday Joshi, John Mc-
Clain, Dan Nussbaum, Ilya Usvyatsky, Mahalakshmi
Venkataraman, Viktor Voloboi, Will Walker, Tim Wat-
son, Hualiang Xu, and Zongcheng Yang; the product-
and program-management team of Ed Beauvais, Mona
Khabazan, and Sandeep Nandkeolyar; solutions ar-
chitect Vinoth Krishnamurthy; and the engineering-
management team of Thomas (Vinod) Johnson, Alan
Mullendore, Stephen Lewin-Berlin, and Rajagopal Sub-
ramaniyan. Heidi Peabody provided administrative as-
sistance. We further rely on the many hundreds of peo-
ple who run the rest of Oracle Cloud Infrastructure.

26 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Marcos K. Aguilera, Arif Merchant, Mehul Shah,
Alistair Veitch, and Christos Karamoanolis.
Sinfonia: A new paradigm for building scalable
distributed systems. ACM Transactions on
Computer Systems (TOCS), 27(3), November
2009. doi:10.1145/1629087.1629088.

[2] Alibaba elastic block storage. Viewed
2018-09-26.
https://www.alibabacloud.com/help/doc-
detail/25383.htm.

[3] Hervey Allen. Introduction to FreeBSD additional
topics. In PacNOG I Workshop, Nadi, Fiji,
20 June 2005.

[4] Amazon elastic block store. Viewed 2018-09-26.
https://aws.amazon.com/ebs/.

[5] G. M. Amdahl. The validity of the single
processor approach to achieving large scale
computing capabilities. In AFIPS Conference
Proceedings, volume 30, 1967.

[6] Apache Software Foundation. Zookeeper
internals, December 2009.
https://zookeeper.apache.org/doc/r3.1.
2/zookeeperInternals.html.

[7] Rudolf Bayer and Edward M. McCreight.
Organization and maintenance of large ordered
indexes. Acta Informatica, 1(3):173–189,
February 1972.
doi:10.1145/1734663.1734671.

[8] Steve Best and Dave Kleikamp. JFS layout. IBM
Developerworks, May 2000.
http://jfs.sourceforge.net/project/pub/
jfslayout.pdf.

[9] Robert D. Blumofe, Christopher F. Joerg,
Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An
efficient multithreaded runtime system. Journal of
Parallel and Distributed Computing, 37(1):55–69,
August 25 1996. (An early version appeared in
the Proceedings of the Fifth ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPoPP ’95), pages 207–216, Santa
Barbara, California, July 1995.).

[10] Hans-J. Boehm. Transactional memory should be
an implementation technique, not a programming
interface. In Proceedings of the First USENIX
Conference on Hot Topics in Parallelism

(HotPar’09), pages 15:1–15:6, Berkeley, CA,
30–31 March 2009. https://www.usenix.org/
legacy/events/hotpar09/tech/full_
papers/boehm/boehm_html/index.html.

[11] William J. Bolosky, Dexter Bradshaw,
Randolph B. Haagens, Norbert P. Kusters, and
Peng Li. Paxos replicated state machines at the
basis of a high-performance data store. In
Proceedings of the Eighth USENIX Conference on
Networked Systems Design and Implementation,
pages 141–154, Boston, MA, USA,
30 March–1 April 2011.
http://static.usenix.org/event/nsdi11/
tech/full_papers/Bolosky.pdf.

[12] Richard P. Brent. The parallel evaluation of
general arithmetic expressions. Journal of the
ACM, 21(2):201–206, April 1974.

[13] Gerth Stølting Brodal, Konstantinos Tsakalidis,
Spyros Sioutas, and Kostas Tsichlas. Fully
persistent b-trees. In Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’12), pages 602–614,
Kyoto, Japan, 17–19 January 2012.
doi:10.1137/1.9781611973099.51.

[14] Navin Budhiraja, Keith Marzullo, Fred B.
Schneider, and Sam Toueg. The primary-backup
approach. In Distributed Systems, chapter 8,
pages 199–216. ACM Press/Addison-Wesley,
New York, NY, USA, second edition, 1993.

[15] Brent Callaghan, Brian Pawlowski, and Peter
Staubach. NFS version 3 protocol specification.
IETF RFC 1813, June 1995.
https://www.ietf.org/rfc/rfc1813.

[16] Călin Casçaval, Colin Blundell, Maged Michael,
Harold W. Cain, Peng Wu, Stefanie Chiras, and
Siddhartha Chatterjee. Software transactional
memory: Why is it only a research toy. ACM
Queue, 6(5), September 2008.
doi:10.1145/1454456.1454466.

[17] Tushar D. Chandra, Robert Griesemer, and Joshua
Redstone. Paxos made live: an engineering
perspective. In Proceedings of the Twenty-Sixth
Annual ACM Symposium on Principles of
Distributed Computing (PODC’07), pages
398–407, Portland, OR, USA, 12–15 August
2007. doi:10.1145/1281100.1281103.

[18] Alexander Conway, Ainesh Bakshi, Yizheng Jiao,
Yang Zhan, Michael A. Bender, William Jannen,
Rob Johnson, Bradley C. Kuszmaul, Donald E.

USENIX Association 2019 USENIX Annual Technical Conference 27

http://dx.doi.org/10.1145/1629087.1629088
https://www.alibabacloud.com/help/doc-detail/25383.htm
https://www.alibabacloud.com/help/doc-detail/25383.htm
https://aws.amazon.com/ebs/
https://zookeeper.apache.org/doc/r3.1.2/zookeeperInternals.html
https://zookeeper.apache.org/doc/r3.1.2/zookeeperInternals.html
http://dx.doi.org/10.1145/1734663.1734671
http://jfs.sourceforge.net/project/pub/jfslayout.pdf
http://jfs.sourceforge.net/project/pub/jfslayout.pdf
https://www.usenix.org/legacy/events/hotpar09/tech/full_papers/boehm/boehm_html/index.html
https://www.usenix.org/legacy/events/hotpar09/tech/full_papers/boehm/boehm_html/index.html
https://www.usenix.org/legacy/events/hotpar09/tech/full_papers/boehm/boehm_html/index.html
http://static.usenix.org/event/nsdi11/tech/full_papers/Bolosky.pdf
http://static.usenix.org/event/nsdi11/tech/full_papers/Bolosky.pdf
http://dx.doi.org/10.1137/1.9781611973099.51
https://www.ietf.org/rfc/rfc1813
http://dx.doi.org/10.1145/1454456.1454466
http://dx.doi.org/10.1145/1281100.1281103

Porter, Jun Yuan, and Martin Farach-Colton. File
systems fated for senescence? Nonsense, says
science! In Proceedings of the 15th USENIX
Conference on File and Storage Technologies
(FAST’17), pages 45–58, 27 February–2 March
2017. https://www.usenix.org/conference/
fast17/technical-
sessions/presentation/conway.

[19] Susan B. Davidson, Hector Garcia-Molina, and
Dale Skeen. Consistency in partitioned network.
Computing Surveys, 17(3):341–370, September
1985. doi:10.1145/5505.5508.

[20] David L. Detlefs, Christine H. Flood,
Alexander T. Garthwaite, Paul A. Martin, Nir N.
Shavit, and Guy L. Steele Jr. Even better
DCAS-based concurrented deques. In
Proceedings of the 14th International Conference
on Distributed Computing (DISC’00), pages
59–73, 4–6 October 2000.

[21] David L. Detlefs, Paul A. Martin, Mark Moir, and
Guy L. Steele Jr. Lock-free reference counting.
Distributed Computing, 15(4):255–271,
December 2002. Special Issue: Selected papers
from PODC’01.
doi:10.1017/s00446-002-0079-z.

[22] Matthew Dillon. The hammer filesystem, 21 June
2008. https://www.dragonflybsd.org/
hammer/hammer.pdf.

[23] Mark Fasheh. OCFS2: The oracle clustered file
system version 2. In Proceedings of the 2006
Linux Symposium, pages 289–302, 2006.
https://oss.oracle.com/projects/ocfs2/
dist/documentation/fasheh.pdf.

[24] GlusterFS. http://www.gluster.org.

[25] Google persistent disk. Viewed 2018-09-26.
https://cloud.google.com/persistent-
disk/.

[26] Goetz Graefe. A survey of B-tree locking
techniques. ACM Transactions on Database
Systems, 35(3), July 2010. Article No. 16.
doi:10.1145/1806907.1806908.

[27] R. L. Graham. Bounds on multiprocessing timing
anomalies. SIAM Journal on Applied
Mathematics, 17(2):416–429, March 1969.

[28] Jim Gray and Andreas Reuter. Transaction
Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

[29] Jim N. Gray. Notes on data base operating
systems. In Operating Systems—An Advanced
Course, volume 60 of Lecture Notes in Computer
Science, chapter 3. Springer-Verlag, 1978.

[30] Add support for variable length block. HDFS
Ticket, July 2012. https://issues.apache.
org/jira/browse/HDFS-3689.

[31] Hdfs architecture, 2013.
http://hadoop.apache.org/docs/current/
hadoop-project-dist/hadoop-
hdfs/HdfsDesign.html#Large_Data_Sets.

[32] M. Herlihy and J. E. Moss. Transactional
memory: Architectural support for lock-free data
structures. In Proceedings of the Twentieth
Annual International Symposium on Computer
Architecture (ISCA’93), pages 289–300, San
Diego, CA, USA, 16–19 May 1993.
doi:10.1145/173682.165164.

[33] Maurice Herlihy. Wait-free synchronizatoin.
ACM Transactions on Programming Languages
and Systems (TOPLAS)), 11(1):124–149, January
1991. doi:10.1145/114005.102808.

[34] Maurice P. Herlihy and Jeannette M. Wing.
Linearizability: A correctness condition for
concurrent objects. ACM Transactions on
Programming Languages and Systems
(TOPLAS)), 12(3):463–492, July 1990.
doi:10.1145/78969.78972.

[35] Dave Hitz, James Lau, and Michael Malcolm.
File system design for an NFS file server
appliance. In Proceedings of the USENIX Winter
1994 Technical Conference, pages 19–19,
17–21 January 1994.
http://usenix.org/publications/library/
proceedings/sf94/full_papers/hitz.a.

[36] Valentin Höbel. LizardFS: Software-defined
storage as it should be, 27 April 2016. In German.
https://www.golem.de/news/lizardfs-
software-defined-storage-wie-es-sein-
soll-1604-119518.html.

[37] IBM. Data File Handbook, March 1966.
C20-1638-1. http://www.bitsavers.org/
pdf/ibm/generalInfo/C20-1638-
1_Data_File_Handbook_Mar66.pdf.

[38] IBM. IBM System/370 Extended
Architecture—Principles of Operation, March
1983. Publication number SA22-7085-0.
https://archive.org/details/bitsavers_

28 2019 USENIX Annual Technical Conference USENIX Association

https://www.usenix.org/conference/fast17/technical-sessions/presentation/conway
https://www.usenix.org/conference/fast17/technical-sessions/presentation/conway
https://www.usenix.org/conference/fast17/technical-sessions/presentation/conway
http://dx.doi.org/10.1145/5505.5508
http://dx.doi.org/10.1017/s00446-002-0079-z
https://www.dragonflybsd.org/hammer/hammer.pdf
https://www.dragonflybsd.org/hammer/hammer.pdf
https://oss.oracle.com/projects/ocfs2/dist/documentation/fasheh.pdf
https://oss.oracle.com/projects/ocfs2/dist/documentation/fasheh.pdf
http://www.gluster.org
https://cloud.google.com/persistent-disk/
https://cloud.google.com/persistent-disk/
http://dx.doi.org/10.1145/1806907.1806908
https://issues.apache.org/jira/browse/HDFS-3689
https://issues.apache.org/jira/browse/HDFS-3689
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#Large_Data_Sets
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#Large_Data_Sets
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#Large_Data_Sets
http://dx.doi.org/10.1145/173682.165164
http://dx.doi.org/10.1145/114005.102808
http://dx.doi.org/10.1145/78969.78972
http://usenix.org/publications/library/proceedings/sf94/full_papers/hitz.a
http://usenix.org/publications/library/proceedings/sf94/full_papers/hitz.a
https://www.golem.de/news/lizardfs-software-defined-storage-wie-es-sein-soll-1604-119518.html
https://www.golem.de/news/lizardfs-software-defined-storage-wie-es-sein-soll-1604-119518.html
https://www.golem.de/news/lizardfs-software-defined-storage-wie-es-sein-soll-1604-119518.html
http://www.bitsavers.org/pdf/ibm/generalInfo/C20-1638-1_Data_File_Handbook_Mar66.pdf
http://www.bitsavers.org/pdf/ibm/generalInfo/C20-1638-1_Data_File_Handbook_Mar66.pdf
http://www.bitsavers.org/pdf/ibm/generalInfo/C20-1638-1_Data_File_Handbook_Mar66.pdf
https://archive.org/details/bitsavers_ibm370prinrinciplesofOperationMar83_40542805

ibm370prinrinciplesofOperationMar83_
40542805.

[39] Apple Inc. Hfs plus volume format. Technical
Note TN1150, Apple Developer Connection,
5 March 2004.
https://developer.apple.com/library/
archive/technotes/tn/tn1150.html.

[40] William Jannen, Jun Yuan, Yang Zhan, Amogh
Akshintala, John Esmet, Yizheng Jiao, Ankur
Mittal, Prashant Pandey, Phaneendra Reddy, Leif
Walsh, Michael Bender, Martin Farach-Colton,
Rob Johnson, Bradley C. Kuszmaul, and
Donald E. Porter. BetrFS: A write-optimization in
a kernel file system. ACM Transactions on
Storage (TOS), 11(4), November 2015.
doi:10.1145/2798729.

[41] Eric H. Jensen, Gary W. Hagensen, and Jeffrey M.
Broughton. A new approach to exclusive data
access in shared memory multiprocessors.
Technical Report UCRL-97663, Lawrence
Livermore National Laboratory, Livermore,
California, November 1987. https://e-
reports-ext.llnl.gov/pdf/212157.pdf.

[42] M. Tim Jones. Ceph: A Linux petabyte-scale
distributed file system, 4 June 2004.
https://www.ibm.com/developerworks/
linux/library/l-ceph/index.html.

[43] Sakis Kasampalis. Copy on write based file
systems performance analysis and
implementation. Master’s thesis, Department of
Informatics, The Technical University of
Denmark, October 2010.
http://sakisk.me/files/copy-on-write-
based-file-systems.pdf.

[44] Leslie Lamport. The part-time parliament. ACM
Transactions on Computer Systems (TOCS),
16(2):133–169, May 1998.
doi:10.1145/279227.279229.

[45] Leslie Lamport. Paxos made simple. ACM
SIGACT News (Distributed Computing Column),
32(4 (Whole Number 121)):51–58, December
2001. https://www.microsoft.com/en-
us/research/publication/paxos-made-
simple/.

[46] Butler Lampson. Atomic transactions. In
Distributed Systems—Architecture and
Implementation, volume 100. Springer Verlag,
1980.

[47] Philip L. Lehman and S. Bing Yao. Efficient
locking for concurrent operations on B-trees.
ACM Transactions on Database Systems,
6(4):650–670, December 1981.
doi:10.1145/319628.319663.

[48] Yossi Lev, Mark Moir, and Dan Nussbaum.
PhTM: Phased transactional memory. In The
Second ACM SIGPLAN Workshop on
Transactional Computing, Portland, OR, USA,
16 August 2007.

[49] A. J. Lewis. LVM howto, 2002.
http://tldp.org/HOWTO/LVM-HOWTO/.

[50] Bruce G. Lindsay. Single and multi-site recovery
facilities. In I. W. Draffan and F. Poole, editors,
Distributed Data Bases, chapter 10. Cambridge
University Press, 1980. Also available as [51].

[51] Bruce G. Lindsay, Patricia G. Selinger, Cesare A.
Galtieri, James N. Gray, Raymond A. Lorie,
Thomas G. Price, Franco Putzolu, Irving L.
Traiger, and Bradford W. Wade. Notes on
distributed databases. Research Report RJ2571,
IBM Research Laboratory, San Jose, California,
USA, July 1979. http://domino.research.
ibm.com/library/cyberdig.nsf/papers/
A776EC17FC2FCE73852579F100578964/$File/
RJ2571.pdf.

[52] The Lustre file system. lustre.org.

[53] Avantika Mathur, MingMing Cao, Suparna
Bhattacharya, Andreas Dilger, Alex Tomas, and
Laurent Vivier. The new ext4 filesystem: Current
status and future plans. In Proceedings of the
Linux Symposium, Ottawa, Ontario, Canada,
27–30 June 2007.

[54] Microsoft azure blob storage. Viewed
2018-09-26.
https://azure.microsoft.com/en-
us/services/storage/blobs/.

[55] Microsoft SMB Protocol and CIFS Protocol
overview, May 2018.
https://docs.microsoft.com/en-us/
windows/desktop/FileIO/microsoft-smb-
protocol-and-cifs-protocol-overview.

[56] Barton P. Miller, Louis Fredersen, and Bryan So.
An empirical study of the reliability of UNIX
utilities. Communications of the ACM (CACM),
33(12):32–44, December 1990.
doi:10.1145/96267.96279.

USENIX Association 2019 USENIX Annual Technical Conference 29

https://archive.org/details/bitsavers_ibm370prinrinciplesofOperationMar83_40542805
https://archive.org/details/bitsavers_ibm370prinrinciplesofOperationMar83_40542805
https://developer.apple.com/library/archive/technotes/tn/tn1150.html
https://developer.apple.com/library/archive/technotes/tn/tn1150.html
http://dx.doi.org/10.1145/2798729
https://e-reports-ext.llnl.gov/pdf/212157.pdf
https://e-reports-ext.llnl.gov/pdf/212157.pdf
https://www.ibm.com/developerworks/linux/library/l-ceph/index.html
https://www.ibm.com/developerworks/linux/library/l-ceph/index.html
http://sakisk.me/files/copy-on-write-based-file-systems.pdf
http://sakisk.me/files/copy-on-write-based-file-systems.pdf
http://dx.doi.org/10.1145/279227.279229
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
http://dx.doi.org/10.1145/319628.319663
http://tldp.org/HOWTO/LVM-HOWTO/
http://domino.research.ibm.com/library/cyberdig.nsf/papers/A776EC17FC2FCE73852579F100578964/$File/RJ2571.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/A776EC17FC2FCE73852579F100578964/$File/RJ2571.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/A776EC17FC2FCE73852579F100578964/$File/RJ2571.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/A776EC17FC2FCE73852579F100578964/$File/RJ2571.pdf
lustre.org
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://docs.microsoft.com/en-us/windows/desktop/FileIO/microsoft-smb-protocol-and-cifs-protocol-overview
https://docs.microsoft.com/en-us/windows/desktop/FileIO/microsoft-smb-protocol-and-cifs-protocol-overview
https://docs.microsoft.com/en-us/windows/desktop/FileIO/microsoft-smb-protocol-and-cifs-protocol-overview
http://dx.doi.org/10.1145/96267.96279

[57] MooseFS fact sheet, 2018.
https://moosefs.com/factsheet/.

[58] Brian Oki and Barbara Liskov. Viewstamped
replication: A new primary copy method to
support highly-available distributed systems. In
Proceedings of the Seventh Annual ACM
Symposium on Principles of Distributed
Computing (PODC’88), pages 8–17, Toronto,
Ontario, Canada, 15–17 August 1988.
doi:10.1145/62546.62549.

[59] Diego Ongaro and John Ousterhout. In search of
an understandable consensus algorithm. In
Proceedings of USENIX ATC’14: 2014 USENIX
Annual Technical Conference, Philadelphia, PA,
USA, 19–20 June 2014.
https://www.usenix.org/node/184041.

[60] Diego Ongaro and John Ousterhout. In search of
an understandable consensus algorithm (extended
version), 20 May 2014. Extended version of [59].
https://raft.github.io/raft.pdf.

[61] Oracle cloud infrastructure block volumes.
Viewed 2018-09-26.
https://cloud.oracle.com/en_US/storage/
block-volume/features.

[62] I. S. Reed and G. Solomon. Polynomial codes
over certain finite fields. Journal of the Society for
Industrial and Applied Mathemetics,
8(2):300–304, June 1960.
doi:10.1137/0108018.

[63] Hans T. Reiser. Reiser4, 2006. Archived from the
original on 6 July 2006. https://web.archive.
org/web/20060706032252/http:
//www.namesys.com:80/.

[64] Kai Ren and Garth Gibson. TABLEFS:
Enhancing metadata efficiency in the local file
system. In USENIX Annual Technical
Conference, pages 145–156, 2013.
https://www.usenix.org/system/files/
conference/atc13/atc13-ren.pdf.

[65] Ohad Rodeh. B-trees, shadowing, and clones.
ACM Transactions on Computational Logic,
3(4):15:1–15:27, February 2008.
doi:10.1145/1326542.1326544.

[66] Ohad Rodeh, Josef Bacik, and Chris Mason.
BTRFS: The Linux B-tree filesystem. ACM
Transactions on Storage (TOS), 9(3), August
2013. Article No. 9.
doi:10.1145/2501620.2501623.

[67] Mark Russinovich. Inside Win2K NTFS, part 1.
ITProToday, 22 October 2000.
https://www.itprotoday.com/management-
mobility/inside-win2k-ntfs-part-1.

[68] Spencer Shepler, Brent Callaghan, David
Robinson, Robert Thurlow, Carl Beame, Mike
Eisler, and David Noveck. Network File System
(NFS) version 4 protocol. IETF RFC 3530, April
2003. https://www.ietf.org/html/rfc3530.

[69] Chris Siebenmann. ZFS’s recordsize, holes in
files, and partial blocks, 27 September 2017.
Viewed 2018-08-30. https:
//utcc.utoronto.ca/˜cks/space/blog/
solaris/ZFSFilePartialAndHoleStorage.

[70] Chris Siebenmann. What ZFS gang blocks are
and why they exist, 6 January 2018. Viewed
2018-08-30. https://utcc.utoronto.ca/
˜cks/space/blog/solaris/ZFSGangBlocks.

[71] W. Ricxhard Stevens. TCP slow start, congestion
avoidance, fast retransmit and fast recovery
algorithms. IETF RFC 2001, January 1997.
https://www.ietf.org/html/rfc2001.

[72] Sun Microsystems. ZFS on-disk
specification—draft, August 2006. http:
//www.giis.co.in/Zfs_ondiskformat.pdf.

[73] Lingxiang Xiang and Michael L. Scott. Conflict
reduction in hardware transactions using advisory
locks. In Proceedings of the 27th ACM
Symposium on Parallelism in Algorithms and
Architectures (SPAA’15), pages 234–243,
Portland, OR, USA, 13–15 June 2015.
doi:10.1145/2755573.2755577.

[74] Jun Yuan, Yang Zhan, William Jannen, Prashant
Pandey, Amogh Akshintala, Kanchan Chandnani,
Pooja Deo, Zardosht Kasheff, Leif Walsh,
Michael A. Bender, Martin Farach-Colton, Rob
Johnson, Bradley C. Kuszmaul, and Donald E.
Porter. Writes wrought right, and other
adventures in file system optimization.
Transactions on Storage—Special Issue on
USENIX FAST 2016, 13(1):3:1–3:21, March
2017. doi:10.1145/3032969.

[75] Yang Zhan, Alexander Conway, Yizheng Jiao,
Eric Knorr, Michael A. Bender, Martin
Farach-Colton, William Jannen, Rob Johnson,
Donald E. Porter, and Jun Yuan. The full path to
full-path indexing. In Proceedings of the 16th
USENIX Conference on File and Storage
Technologies (FAST’18), pages 123–138,

30 2019 USENIX Annual Technical Conference USENIX Association

https://moosefs.com/factsheet/
http://dx.doi.org/10.1145/62546.62549
https://www.usenix.org/node/184041
https://raft.github.io/raft.pdf
https://cloud.oracle.com/en_US/storage/block-volume/features
https://cloud.oracle.com/en_US/storage/block-volume/features
http://dx.doi.org/10.1137/0108018
https://web.archive.org/web/20060706032252/http://www.namesys.com:80/
https://web.archive.org/web/20060706032252/http://www.namesys.com:80/
https://web.archive.org/web/20060706032252/http://www.namesys.com:80/
https://www.usenix.org/system/files/conference/atc13/atc13-ren.pdf
https://www.usenix.org/system/files/conference/atc13/atc13-ren.pdf
http://dx.doi.org/10.1145/1326542.1326544
http://dx.doi.org/10.1145/2501620.2501623
https://www.itprotoday.com/management-mobility/inside-win2k-ntfs-part-1
https://www.itprotoday.com/management-mobility/inside-win2k-ntfs-part-1
https://www.ietf.org/html/rfc3530
https://utcc.utoronto.ca/~cks/space/blog/solaris/ZFSFilePartialAndHoleStorage
https://utcc.utoronto.ca/~cks/space/blog/solaris/ZFSFilePartialAndHoleStorage
https://utcc.utoronto.ca/~cks/space/blog/solaris/ZFSFilePartialAndHoleStorage
https://utcc.utoronto.ca/~cks/space/blog/solaris/ZFSGangBlocks
https://utcc.utoronto.ca/~cks/space/blog/solaris/ZFSGangBlocks
https://www.ietf.org/html/rfc2001
http://www.giis.co.in/Zfs_ondiskformat.pdf
http://www.giis.co.in/Zfs_ondiskformat.pdf
http://dx.doi.org/10.1145/2755573.2755577
http://dx.doi.org/10.1145/3032969

Oakland, CA, USA, 12–15 February 2018.
https://www.usenix.org/conference/
fast18/presentation/zhan.

USENIX Association 2019 USENIX Annual Technical Conference 31

https://www.usenix.org/conference/fast18/presentation/zhan
https://www.usenix.org/conference/fast18/presentation/zhan

Zanzibar: Google’s Consistent, Global Authorization System

Ruoming Pang,1 Ramón Cáceres,1 Mike Burrows,1 Zhifeng Chen,1 Pratik Dave,1

Nathan Germer,1 Alexander Golynski,1 Kevin Graney,1 Nina Kang,1 Lea Kissner,2∗

Jeffrey L. Korn,1 Abhishek Parmar,3∗ Christina D. Richards,1 Mengzhi Wang1

Google, LLC;1 Humu, Inc.;2 Carbon, Inc.3

{rpang,caceres}@google.com

Abstract
Determining whether online users are authorized to access
digital objects is central to preserving privacy. This pa-
per presents the design, implementation, and deployment
of Zanzibar, a global system for storing and evaluating ac-
cess control lists. Zanzibar provides a uniform data model
and configuration language for expressing a wide range of
access control policies from hundreds of client services at
Google, including Calendar, Cloud, Drive, Maps, Photos,
and YouTube. Its authorization decisions respect causal or-
dering of user actions and thus provide external consistency
amid changes to access control lists and object contents.
Zanzibar scales to trillions of access control lists and millions
of authorization requests per second to support services used
by billions of people. It has maintained 95th-percentile la-
tency of less than 10 milliseconds and availability of greater
than 99.999% over 3 years of production use.

1 Introduction

Many online interactions require authorization checks to
confirm that a user has permission to carry out an operation
on a digital object. For example, web-based photo storage
services typically allow photo owners to share some photos
with friends while keeping other photos private. Such a ser-
vice must check whether a photo has been shared with a user
before allowing that user to view the photo. Robust autho-
rization checks are central to preserving online privacy.

This paper presents Zanzibar, a system for storing per-
missions and performing authorization checks based on the
stored permissions. It is used by a wide array of services
offered by Google, including Calendar, Cloud, Drive, Maps,
Photos, and YouTube. Several of these services manage bil-
lions of objects on behalf of more than a billion users.

A unified authorization system offers important advan-
tages over maintaining separate access control mechanisms
for individual applications. First, it helps establish consistent

∗Work done while at Google.

semantics and user experience across applications. Second,
it makes it easier for applications to interoperate, for exam-
ple, to coordinate access control when an object from one ap-
plication embeds an object from another application. Third,
useful common infrastructure can be built on top of a unified
access control system, in particular, a search index that re-
spects access control and works across applications. Finally,
as we show below, authorization poses unique challenges in-
volving data consistency and scalability. It saves engineering
resources to tackle them once across applications.

We have the following goals for the Zanzibar system:

• Correctness: It must ensure consistency of access con-
trol decisions to respect user intentions.

• Flexibility: It must support a rich set of access control
policies as required by both consumer and enterprise
applications.

• Low latency: It must respond quickly because autho-
rization checks are often in the critical path of user in-
teractions. Low latency at the tail is particularly impor-
tant for serving search results, which often require tens
to hundreds of checks.

• High availability: It must reliably respond to requests
because, in the absence of explicit authorizations, client
services would be forced to deny their users access.

• Large scale: It needs to protect billions of objects
shared by billions of users. It must be deployed around
the globe to be near its clients and their end users.

Zanzibar achieves these goals through a combination of
notable features. To provide flexibility, Zanzibar pairs a sim-
ple data model with a powerful configuration language. The
language allows clients to define arbitrary relations between
users and objects, such as owner, editor, commenter, and
viewer. It includes set-algebraic operators such as inter-
section and union for specifying potentially complex access
control policies in terms of those user-object relations. For
example, an application can specify that users granted edit-
ing rights on a document are also allowed to comment on the

USENIX Association 2019 USENIX Annual Technical Conference 33

document, but not all commenters are given editing rights.
At runtime, Zanzibar allows clients to create, modify, and

evaluate access control lists (ACLs) through a remote proce-
dure call (RPC) interface. A simple ACL takes the form of
“user U has relation R to object O”. More complex ACLs
take the form of “set of users S has relation R to object O”,
where S is itself specified in terms of another object-relation
pair. ACLs can thus refer to other ACLs, for example to
specify that the set of users who can comment on a video
consists of the users who have been granted viewing rights
on that specific video along with those with viewing permis-
sions on the video channel.

Group memberships are an important class of ACL where
the object is a group and the relation is semantically equiv-
alent to member. Groups can contain other groups, which
illustrates one of the challenges facing Zanzibar, namely that
evaluating whether a user belongs to a group can entail fol-
lowing a long chain of nested group memberships.

Authorization checks take the form of “does user U have
relation R to object O?” and are evaluated by a collection of
distributed servers. When a check request arrives to Zanz-
ibar, the work to evaluate the check may fan out to multiple
servers, for example when a group contains both individual
members and other groups. Each of those servers may in turn
contact other servers, for example to recursively traverse a
hierarchy of group memberships.

Zanzibar operates at a global scale along multiple dimen-
sions. It stores more than two trillion ACLs and performs
millions of authorization checks per second. The ACL data
does not lend itself to geographic partitioning because au-
thorization checks for any object can come from anywhere
in the world. Therefore, Zanzibar replicates all ACL data in
tens of geographically distributed data centers and distributes
load across thousands of servers around the world.

Zanzibar supports global consistency of access control de-
cisions through two interrelated features. One, it respects the
order in which ACL changes are committed to the underlying
data store. Two, it can ensure that authorization checks are
based on ACL data no older than a client-specified change.
Thus, for example, a client can remove a user from a group
and be assured that subsequent membership checks reflect
that removal. Zanzibar provides these ordering properties by
storing ACLs in a globally distributed database system with
external consistency guarantees [15, 18].

Zanzibar employs an array of techniques to achieve low
latency and high availability in this globally distributed en-
vironment. Its consistency protocol allows the vast majority
of requests to be served with locally replicated data, with-
out requiring cross-region round trips. Zanzibar stores its
data in normalized forms for consistency. It handles hot
spots on normalized data by caching final and intermediate
results, and by deduplicating simultaneous requests. It also
applies techniques such as hedging requests and optimizing
computations on deeply nested sets with limited denormal-

ization. Zanzibar responds to more than 95% of authoriza-
tion checks within 10 milliseconds and has maintained more
than 99.999% availability for the last 3 years.

The main contributions of this paper lie in conveying the
engineering challenges in building and deploying a consis-
tent, world-scale authorization system. While most elements
of Zanzibar’s design have their roots in previous research,
this paper provides a record of the features and techniques
Zanzibar brings together to satisfy its stringent requirements
for correctness, flexibility, latency, availability, and scalabil-
ity. The paper also highlights lessons learned from operating
Zanzibar in service of a diverse set of demanding clients.

2 Model, Language, and API

This section describes Zanzibar’s data model, configuration
language, and application programming interface (API).

2.1 Relation Tuples
In Zanzibar, ACLs are collections of object-user or object-
object relations represented as relation tuples. Groups are
simply ACLs with membership semantics. Relation tuples
have efficient binary encodings, but in this paper we repre-
sent them using a convenient text notation:

〈tuple〉 ::= 〈object〉‘#’〈relation〉‘@’〈user〉

〈object〉 ::= 〈namespace〉‘:’〈object id〉

〈user〉 ::= 〈user id〉 | 〈userset〉

〈userset〉 ::= 〈object〉‘#’〈relation〉

where 〈namespace〉 and 〈relation〉 are predefined in client
configurations (§2.3), 〈object id〉 is a string, and 〈user id〉
is an integer. The primary keys required to identify a relation
tuple are 〈namespace〉, 〈object id〉, 〈relation〉, and 〈user〉.
One feature worth noting is that a 〈userset〉 allows ACLs to
refer to groups and thus supports representing nested group
membership.

Table 1 shows some example tuples and corresponding se-
mantics. While some relations (e.g. viewer) define access
control directly, others (e.g. parent, pointing to a folder)
only define abstract relations between objects. These ab-
stract relations may indirectly affect access control given
userset rewrite rules specified in namespace configs (§2.3.1).

Defining our data model around tuples, instead of per-
object ACLs, allows us to unify the concepts of ACLs and
groups and to support efficient reads and incremental up-
dates, as we will see in §2.4.

2.2 Consistency Model
ACL checks must respect the order in which users modify
ACLs and object contents to avoid unexpected sharing be-
haviors. Specifically, our clients care about preventing the

34 2019 USENIX Annual Technical Conference USENIX Association

Example Tuple in Text Notation Semantics

doc:readme#owner@10 User 10 is an owner of doc:readme

group:eng#member@11 User 11 is a member of group:eng

doc:readme#viewer@group:eng#member Members of group:eng are viewers of doc:readme

doc:readme#parent@folder:A#... doc:readme is in folder:A

Table 1: Example relation tuples. “#...” represents a relation that does not affect the semantics of the tuple.

“new enemy” problem, which can arise when we fail to re-
spect the ordering between ACL updates or when we apply
old ACLs to new content. Consider these two examples:

Example A: Neglecting ACL update order

1. Alice removes Bob from the ACL of a folder;
2. Alice then asks Charlie to move new documents to

the folder, where document ACLs inherit from folder
ACLs;

3. Bob should not be able to see the new documents,
but may do so if the ACL check neglects the ordering
between the two ACL changes.

Example B: Misapplying old ACL to new content

1. Alice removes Bob from the ACL of a document;
2. Alice then asks Charlie to add new contents to the

document;
3. Bob should not be able to see the new contents, but

may do so if the ACL check is evaluated with a stale
ACL from before Bob’s removal.

Preventing the “new enemy” problem requires Zanzibar to
understand and respect the causal ordering between ACL or
content updates, including updates on different ACLs or ob-
jects and those coordinated via channels invisible to Zanz-
ibar. Hence Zanzibar must provide two key consistency
properties: external consistency [18] and snapshot reads
with bounded staleness.

External consistency allows Zanzibar to assign a times-
tamp to each ACL or content update, such that two causally
related updates x≺ y will be assigned timestamps that reflect
the causal order: Tx < Ty. With causally meaningful times-
tamps, a snapshot read of the ACL database at timestamp
T , which observes all updates with timestamps ≤ T , will re-
spect ordering between ACL updates. That is, if the read
observes an update x, it will observe all updates that happen
causally before x.

Furthermore, to avoid applying old ACLs to new contents,
the ACL check evaluation snapshot must not be staler than
the causal timestamp assigned to the content update. Given a
content update at timestamp Tc, a snapshot read at timestamp

≥ Tc ensures that all ACL updates that happen causally be-
fore the content update will be observed by the ACL check.

To provide external consistency and snapshot reads with
bounded staleness, we store ACLs in the Spanner global
database system [15]. Spanner’s TrueTime mechanism as-
signs each ACL write a microsecond-resolution timestamp,
such that the timestamps of writes reflect the causal ordering
between writes, and thereby provide external consistency.
We evaluate each ACL check at a single snapshot timestamp
across multiple database reads, so that all writes with times-
tamps up to the check snapshot, and only those writes, are
visible to the ACL check.

To avoid evaluating checks for new contents using stale
ACLs, one could try to always evaluate at the latest snapshot
such that the check result reflects all ACL writes up to the
check call. However, such evaluation would require global
data synchronization with high-latency round trips and lim-
ited availability. Instead, we design the following protocol to
allow most checks to be evaluated on already replicated data
with cooperation from Zanzibar clients:

1. A Zanzibar client requests an opaque consistency token
called a zookie for each content version, via a content-
change ACL check (§2.4.4) when the content modifi-
cation is about to be saved. Zanzibar encodes a current
global timestamp in the zookie and ensures that all prior
ACL writes have lower timestamps. The client stores
the zookie with the content change in an atomic write to
the client storage. Note that the content-change check
does not need to be evaluated in the same transaction as
the application content modification, but only has to be
triggered when the user modifies the contents.

2. The client sends this zookie in subsequent ACL check
requests to ensure that the check snapshot is at least as
fresh as the timestamp for the content version.

External consistency and snapshot reads with staleness
bounded by zookie prevent the “new enemy” problem. In
Example A, ACL updates A1 and A2 will be assigned times-
tamps TA1 < TA2, respectively. Bob will not be able to see
the new documents added by Charlie: if a check is evalu-
ated at T < TA2, the document ACLs will not include the
folder ACL; if a check is evaluated at T ≥ TA2 > TA1, the
check will observe update A1, which removed Bob from the

USENIX Association 2019 USENIX Annual Technical Conference 35

folder ACL. In Example B, Bob will not see the new contents
added to the document. For Bob to see the new contents, the
check must be evaluated with a zookie ≥ TB2, the timestamp
assigned to the content update. Because TB2 > TB1, such a
check will also observe the ACL update B1, which removed
Bob from the ACL.

The zookie protocol is a key feature of Zanzibar’s consis-
tency model. It ensures that Zanzibar respects causal order-
ing between ACL and content updates, but otherwise grants
Zanzibar freedom to choose evaluation timestamps so as to
meet its latency and availability goals. The freedom arises
from the protocol’s at-least-as-fresh semantics, which allow
Zanzibar to choose any timestamp fresher than the one en-
coded in a zookie. Such freedom in turn allows Zanzibar to
serve most checks at a default staleness with already repli-
cated data (§3.2.1) and to quantize evaluation timestamps to
avoid hot spots (§3.2.5).

2.3 Namespace Configuration
Before clients can store relation tuples in Zanzibar, they
must configure their namespaces. A namespace configura-
tion specifies its relations as well as its storage parameters.
Each relation has a name, which is a client-defined string
such as viewer or editor, and a relation config. Storage pa-
rameters include sharding settings and an encoding for object
IDs that helps Zanzibar optimize storage of integer, string,
and other object ID formats.

2.3.1 Relation Configs and Userset Rewrites

While relation tuples reflect relationships between objects
and users, they do not completely define the effective ACLs.
For example, some clients specify that users with editor

permissions on each object should have viewer permission
on the same object. While such relationships between rela-
tions can be represented by a relation tuple per object, storing
a tuple for each object in a namespace would be wasteful and
make it hard to make modifications across all objects. In-
stead, we let clients define object-agnostic relationships via
userset rewrite rules in relation configs. Figure 1 demon-
strates a simple namespace configuration with concentric re-
lations, where viewer contains editor, and editor con-
tains owner.

Userset rewrite rules are defined per relation in a names-
pace. Each rule specifies a function that takes an object ID as
input and outputs a userset expression tree. Each leaf node
of the tree can be any of the following:

• this: Returns all users from stored relation tuples for
the 〈object#relation〉 pair, including indirect ACLs ref-
erenced by usersets from the tuples. This is the default
behavior when no rewrite rule is specified.

• computed userset: Computes, for the input object,
a new userset. For example, this allows the userset ex-
pression for a viewer relation to refer to the editor

userset on the same object, thus offering an ACL inher-

name: "doc"

relation { name: "owner" }

relation {

name: "editor"

userset_rewrite {

union {

child { _this {} }

child { computed_userset { relation: "owner" } }

} } }

relation {

name: "viewer"

userset_rewrite {

union {

child { _this {} }

child { computed_userset { relation: "editor" } }

child { tuple_to_userset {

tupleset { relation: "parent" }

computed_userset {

object: $TUPLE_USERSET_OBJECT # parent folder

relation: "viewer"

} } }

} } }

Figure 1: Simple namespace configuration with concentric
relations on documents. All owners are editors, and all ed-
itors are viewers. Further, viewers of the parent folder are
also viewers of the document.

itance capability between relations.
• tuple to userset: Computes a tupleset (§2.4.1)

from the input object, fetches relation tuples matching
the tupleset, and computes a userset from every fetched
relation tuple. This flexible primitive allows our clients
to express complex policies such as “look up the parent
folder of the document and inherit its viewers”.

A userset expression can also be composed of multiple
sub-expressions, combined by operations such as union, in-
tersection, and exclusion.

2.4 API

In addition to supporting ACL checks, Zanzibar also pro-
vides APIs for clients to read and write relation tuples, watch
tuple updates, and inspect the effective ACLs.

A concept used throughout these API methods is that of
a zookie. A zookie is an opaque byte sequence encoding a
globally meaningful timestamp that reflects an ACL write, a
client content version, or a read snapshot. Zookies in ACL
read and check requests specify staleness bounds for snap-
shot reads, thus providing one of Zanzibar’s core consistency
properties. We choose to use an opaque cookie instead of the
actual timestamp to discourage our clients from choosing ar-
bitrary timestamps and to allow future extensions.

36 2019 USENIX Annual Technical Conference USENIX Association

2.4.1 Read

Our clients read relation tuples to display ACLs or group
membership to users, or to prepare for a subsequent write.
A read request specifies one or multiple tuplesets and an op-
tional zookie.

Each tupleset specifies keys of a set of relation tuples. The
set can include a single tuple key, or all tuples with a given
object ID or userset in a namespace, optionally constrained
by a relation name. With the tuplesets, clients can look up
a specific membership entry, read all entries in an ACL or
group, or look up all groups with a given user as a direct
member. All tuplesets in a read request are processed at a
single snapshot.

With the zookie, clients can request a read snapshot no
earlier than a previous write if the zookie from the write re-
sponse is given in the read request, or at the same snapshot as
a previous read if the zookie from the earlier read response
is given in the subsequent request. If the request doesn’t
contain a zookie, Zanzibar will choose a reasonably recent
snapshot, possibly offering a lower-latency response than if
a zookie were provided.

Read results only depend on contents of relation tuples and
do not reflect userset rewrite rules. For example, even if the
viewer userset always includes the owner userset, reading
tuples with the viewer relation will not return tuples with
the owner relation. Clients that need to understand the ef-
fective userset can use the Expand API (§2.4.5).

2.4.2 Write

Clients may modify a single relation tuple to add or remove
an ACL. They may also modify all tuples related to an object
via a read-modify-write process with optimistic concurrency
control [21] that uses a read RPC followed by a write RPC:

1. Read all relation tuples of an object, including a per-
object “lock” tuple.

2. Generate the tuples to write or delete. Send the writes,
along with a touch on the lock tuple, to Zanzibar, with
the condition that the writes will be committed only if
the lock tuple has not been modified since the read.

3. If the write condition is not met, go back to step 1.

The lock tuple is just a regular relation tuple used by
clients to detect write races.

2.4.3 Watch

Some clients maintain secondary indices of relation tuples
in Zanzibar. They can do so with our Watch API. A watch
request specifies one or more namespaces and a zookie rep-
resenting the time to start watching. A watch response con-
tains all tuple modification events in ascending timestamp
order, from the requested start timestamp to a timestamp en-
coded in a heartbeat zookie included in the watch response.
The client can use the heartbeat zookie to resume watching
where the previous watch response left off.

2.4.4 Check

A check request specifies a userset, represented by
〈object#relation〉, a putative user, often represented by an au-
thentication token, and a zookie corresponding to the desired
object version. Like reads, a check is always evaluated at a
consistent snapshot no earlier than the given zookie.

To authorize application content modifications, our clients
send a special type of check request, a content-change check.
A content-change check request does not carry a zookie and
is evaluated at the latest snapshot. If a content change is
authorized, the check response includes a zookie for clients
to store along with object contents and use for subsequent
checks of the content version. The zookie encodes the evalu-
ation snapshot and captures any possible causality from ACL
changes to content changes, because the zookie’s timestamp
will be greater than that of the ACL updates that protect the
new content (§2.2).

2.4.5 Expand

The Expand API returns the effective userset given an
〈object#relation〉 pair and an optional zookie. Unlike the
Read API, Expand follows indirect references expressed
through userset rewrite rules. The result is represented by
a userset tree whose leaf nodes are user IDs or usersets
pointing to other 〈object#relation〉 pairs, and intermediate
nodes represent union, intersection, or exclusion operators.
Expand is crucial for our clients to reason about the com-
plete set of users and groups that have access to their ob-
jects, which allows them to build efficient search indices for
access-controlled content.

3 Architecture and Implementation

Figure 2 shows the architecture of the Zanzibar system.
aclservers are the main server type. They are organized
in clusters and respond to Check, Read, Expand, and Write
requests. Requests arrive at any server in a cluster and that
server fans out the work to other servers in the cluster as
necessary. Those servers may in turn contact other servers to
compute intermediate results. The initial server gathers the
final result and returns it to the client.

Zanzibar stores ACLs and their metadata in Spanner
databases. There is one database to store relation tuples for
each client namespace, one database to hold all namespace
configurations, and one changelog database shared across all
namespaces. aclservers read and write those databases in
the course of responding to client requests.
watchservers are a specialized server type that respond

to Watch requests. They tail the changelog and serve a
stream of namespace changes to clients in near real time.

Zanzibar periodically runs a data processing pipeline to
perform a variety of offline functions across all Zanzibar data
in Spanner. One such function is to produce dumps of the re-
lation tuples in each namespace at a known snapshot times-

USENIX Association 2019 USENIX Annual Technical Conference 37

read

write

Zanzibar serving cluster

Check, Read,
Expand, Write

aclserver aclserver

aclserver aclserver

client

watchserver

...

Spanner global database system

client

Watch

read/write append tail

changelognamespace
configs

read/write

namespace 1
relation tuples

namespace N
relation tuples

periodic offline
pipeline

dump

namespace
snapshots

Leopard
indexing system

readWatch

optimized set
computation

Figure 2: Zanzibar architecture. Arrows indicate the direction of data flow.

tamp. Another is to garbage-collect tuple versions older than
a threshold configured per namespace.

Leopard is an indexing system used to optimize operations
on large and deeply nested sets. It reads periodic snapshots
of ACL data and watches for changes between snapshots. It
performs transformations on that data, such as denormaliza-
tion, and responds to requests from aclservers.

The rest of this section presents the implementation of
these architectural elements in more detail.

3.1 Storage
3.1.1 Relation Tuple Storage

We store relation tuples of each namespace in a separate
database, where each row is identified by primary key (shard
ID, object ID, relation, user, commit timestamp). Multi-
ple tuple versions are stored on different rows, so that we
can evaluate checks and reads at any timestamp within the
garbage collection window. The ordering of primary keys
allows us to look up all relation tuples for a given object ID
or (object ID, relation) pair.

Our clients configure sharding of a namespace according
to its data pattern. Usually the shard ID is determined solely
by the object ID. In some cases, for example, when a names-
pace stores groups with very large numbers of members, the
shard ID is computed from both object ID and user.

3.1.2 Changelog

Zanzibar also maintains a changelog database that stores a
history of tuple updates for the Watch API. The primary
keys are (changelog shard ID, timestamp, unique update ID),
where a changelog shard is randomly selected for each write.

Every Zanzibar write is committed to both the tuple stor-

age and the changelog shard in a single transaction. We des-
ignate the Spanner server hosting the changelog shard as the
transaction coordinator to minimize blocking of changelog
reads on pending transactions.

3.1.3 Namespace Config Storage

Namespace configs are stored in a database with two ta-
bles. One table contains the configs and is keyed by names-
pace IDs. The other is a changelog of config updates and is
keyed by commit timestamps. This structure allows a Zanz-
ibar server to load all configs upon startup and monitor the
changelog to refresh configs continuously.

3.1.4 Replication

To reduce latency, Zanzibar data is replicated to be close to
our clients. Replicas exist in dozens of locations around the
world, with multiple replicas per region. The 5 voting repli-
cas are in eastern and central United States, in 3 different
metropolitan areas to isolate failures but within 25 millisec-
onds of each other so that Paxos transactions commit quickly.

3.2 Serving
3.2.1 Evaluation Timestamp

As noted in §2.4, clients can provide zookies to ensure a
minimum snapshot timestamp for request evaluation. When
a zookie is not provided, the server uses a default staleness
chosen to ensure that all transactions are evaluated at a times-
tamp that is as recent as possible without impacting latency.

On each read request it makes to Spanner, Zanzibar re-
ceives a hint about whether or not the data at that timestamp
required an out-of-zone read and thus incurred additional la-
tency. Each server tracks the frequency of such out-of-zone
reads for data at a default staleness as well as for fresher

38 2019 USENIX Annual Technical Conference USENIX Association

and staler data, and uses these frequencies to compute a bi-
nomial proportion confidence interval of the probability that
any given piece of data is available locally at each staleness.

Upon collecting enough data, the server checks to see if
each staleness value has a sufficiently low probability of in-
curring an out-of-zone read, and thus will be low-latency. If
so, it updates the default staleness bound to the lowest “safe”
value. If no known staleness values are safe, we use a two-
proportion z-test to see if increasing the default will be a sta-
tistically significant amount safer. In that case, we increase
the default value in the hopes of improving latency. This
default staleness mechanism is purely a performance opti-
mization. It does not violate consistency semantics because
Zanzibar always respects zookies when provided.

3.2.2 Config Consistency

Because changes to namespace configs can change the re-
sults of ACL evaluations, and therefore their correctness,
Zanzibar chooses a single snapshot timestamp for con-
fig metadata when evaluating each client request. All
aclservers in a cluster use that same timestamp for the
same request, including for any subrequests that fan out from
the original client request.

Each server independently loads namespace configs from
storage continuously as they change (§3.1.3). Therefore,
each server in a cluster may have access to a different range
of config timestamps due to restarts or network latency.
Zanzibar must pick a timestamp that is available across all
of them. To facilitate this, a monitoring job tracks the times-
tamp range available to every server and aggregates them,
reporting a globally available range to every other server.
On each incoming request the server picks a time from this
range, ensuring that all servers can continue serving even if
they are no longer able to read from the config storage.

3.2.3 Check Evaluation

Zanzibar evaluates ACL checks by converting check requests
to boolean expressions. In a simple case, when there are
no userset rewrite rules, checking a user U against a userset
〈object#relation〉 can be expressed as

CHECK(U,〈object#relation〉) =
∃ tuple 〈object#relation@U〉
∨∃ tuple 〈object#relation@U ′〉, where

U ′ = 〈object′#relation′〉 s.t. CHECK(U,U ′).

Finding a valid U ′ = 〈object′#relation′〉 involves evaluat-
ing membership on all indirect ACLs or groups, recursively.
This kind of “pointer chasing” works well for most types of
ACLs and groups, but can be expensive when indirect ACLs
or groups are deep or wide. §3.2.4 explains how we han-
dle this problem. Userset rewrite rules are also translated to
boolean expressions as part of check evaluation.

To minimize check latency, we evaluate all leaf nodes of
the boolean expression tree concurrently. When the outcome

of one node determines the result of a subtree, evaluation of
other nodes in the subtree is cancelled.

Evaluation of leaf nodes usually involves reading relation
tuples from databases. We apply a pooling mechanism to
group reads for the same ACL check to minimize the number
of read RPCs to Spanner.

3.2.4 Leopard Indexing System

Recursive pointer chasing during check evaluation has diffi-
culty maintaining low latency with groups that are deeply
nested or have a large number of child groups. For se-
lected namespaces that exhibit such structure, Zanzibar han-
dles checks using Leopard, a specialized index that supports
efficient set computation.

A Leopard index represents a collection of named sets us-
ing (T,s,e) tuples, where T is an enum representing the set
type and s and e are 64-bit integers representing the set ID
and the element ID, respectively. A query evaluates an ex-
pression of union, intersection, or exclusion of named sets
and returns the result set ordered by the element ID up to a
specified number of results.

To index and evaluate group membership, Zanzibar repre-
sents group membership with two set types, GROUP2GROUP
and MEMBER2GROUP, which we show here as functions
mapping from a set ID to element IDs:

• GROUP2GROUP(s)→{e}, where s represents an ances-
tor group and e represents a descendent group that is
directly or indirectly a sub-group of the ancestor group.

• MEMBER2GROUP(s)→ {e}, where s represents an in-
dividual user and e represents a parent group in which
the user is a direct member.

To evaluate whether user U is a member of group G, we
check whether

(MEMBER2GROUP(U) ∩ GROUP2GROUP(G)) 6= /0

Group membership can be considered as a reachability
problem in a graph, where nodes represent groups and users
and edges represent direct membership. Flattening group-to-
group paths allows reachability to be efficently evaluated by
Leopard, though other types of denormalization can also be
applied as data patterns demand.

The Leopard system consists of three discrete parts: a
serving system capable of consistent and low-latency oper-
ations across sets; an offline, periodic index building system;
and an online real-time layer capable of continuously updat-
ing the serving system as tuple changes occur.

Index tuples are stored as ordered lists of integers in
a structure such as a skip list, thus allowing for efficient
union and intersections among sets. For example, evaluat-
ing the intersection between two sets, A and B, requires only
O(min(|A|, |B|)) skip-list seeks. The index is sharded by el-
ement IDs and can be distributed across multiple servers.
Shards are usually served entirely from memory, but they

USENIX Association 2019 USENIX Annual Technical Conference 39

can also be served from a mix of hot and cold data spread
between memory and remote solid-state devices.

The offline index builder generates index shards from a
snapshot of Zanzibar relation tuples and configs, and repli-
cates the shards globally. It respects userset rewrite rules and
recursively expands edges in an ACL graph to form Leop-
ard index tuples. The Leopard servers continously watch for
new shards and swap old shards with new ones when they
become available.

The Leopard system described thus far is able to effi-
ciently evaluate deeply and widely nested group member-
ship, but cannot do so at a fresh and consistent snapshot
due to offline index generation and shard swapping. To sup-
port consistent ACL evaluation, Leopard servers maintain an
incremental layer that indexes all updates since the offline
snapshot, where each update is represented by a (T,s,e, t,d)
tuple, where t is the timestamp of the update and d is a dele-
tion marker. Updates with timestamps less than or equal to
the query timestamp are merged on top of the offline index
during query processing.

To maintain the incremental layer, the Leopard incremen-
tal indexer calls Zanzibar’s Watch API to receive a tem-
porally ordered stream of Zanzibar tuple modifications and
transforms the updates into a temporally ordered stream of
Leopard tuple additions, updates, and deletions. Generat-
ing updates for the GROUP2GROUP tuples requires the incre-
mental indexer to maintain group-to-group membership for
denormalizing the effects of a relation tuple update to poten-
tially multiple index updates.

In practice, a single Zanzibar tuple addition or deletion
may yield potentially tens of thousands of discrete Leop-
ard tuple events. Each Leopard serving instance receives the
complete stream of these Zanzibar tuple changes through the
Watch API. The Leopard serving system is designed to con-
tinuously ingest this stream and update its various posting
lists with minimal impact to query serving.

3.2.5 Handling Hot Spots

The workload of ACL reads and checks is often bursty and
subject to hot spots. For example, answering a search query
requires conducting ACL checks for all candidate results,
whose ACLs often share common groups or indirect ACLs.
To facilitate consistency, Zanzibar avoids storage denormal-
ization and relies only on normalized data (except for the
cases described in §3.2.4). With normalized data, hot spots
on common ACLs (e.g., popular groups) may overload the
underlying database servers. We found the handling of hot
spots to be the most critical frontier in our pursuit of low
latency and high availability.

Zanzibar servers in each cluster form a distributed cache
for both reads and check evaluations, including intermediate
check results evaluated during pointer chasing. Cache en-
tries are distributed across Zanzibar servers with consistent
hashing [20]. To process checks or reads, we fan out re-

quests to the corresponding Zanzibar servers via an internal
RPC interface. To minimize the number of internal RPCs,
for most namespaces we compute the forwarding key from
the object ID, since processing a check on 〈object#relation〉
often involves indirect ACL checks on other relations of the
same object and reading relation tuples of the object. These
checks and reads can be processed by the same server since
they share the same forwarding key with the parent check
request. To handle hot forwarding keys, we cache results at
both the caller and the callee of internal RPCs, effectively
forming cache trees. We also use Slicer [12] to help dis-
tribute hot keys to multiple servers.

We avoid reusing results evaluated from a different snap-
shot by encoding snapshot timestamps in cache keys. We
choose evaluation timestamps rounded up to a coarse granu-
larity, such as one or ten seconds, while respecting staleness
constraints from request zookies. This timestamp quantiza-
tion allows the vast majority of recent checks and reads to be
evaluated at the same timestamps and to share cache results,
despite having microsecond-resolution timestamps in cache
keys. It is worth noting that rounding up timestamps does
not affect Zanzibar’s consistency properties, since Spanner
ensures that a snapshot read at timestamp T will observe all
writes up to T —this holds even if T is in the future, in which
case the read will wait until TrueTime has moved past T .

To handle the “cache stampede” problem [3], where con-
current requests create flash hot spots before the cache is
populated with results, we maintain a lock table on each
server to track outstanding reads and checks. Among re-
quests sharing the same cache key only one request will be-
gin processing; the rest block until the cache is populated.

We can effectively handle the vast majority of hot spots
with distributed caches and lock tables. Over time we made
the following two improvements.

First, direct membership checks of a user for an object and
relation (i.e. 〈object#relation@user〉) are usually handled by
a single relation tuple lookup. However, occasionally a very
popular object invites many concurrent checks for different
users, causing a hot spot on the storage server hosting rela-
tion tuples for the object. To avoid these hot spots, we read
and cache all relation tuples of 〈object#relation〉 for the hot
object, trading read bandwidth for cacheability. We dynam-
ically detect hot objects to apply this method to by tracking
the number of outstanding reads on each object.

Second, indirect ACL checks are frequently cancelled
when the result of the parent ACL check is already deter-
mined. This leaves the cache key unpopulated. While ea-
ger cancellation reduces resource usage significantly, it neg-
atively affects latency of concurrent requests that are blocked
by the lock table entry. To prevent this latency impact, we
delay eager cancellation when there are waiters on the corre-
sponding lock table entry.

40 2019 USENIX Annual Technical Conference USENIX Association

3.2.6 Performance Isolation

Performance isolation is indispensable for shared services
targeting low latency and high availability. If Zanzibar or
one of its clients occasionally fails to provision enough re-
sources to handle an unexpected usage pattern, the following
isolation mechanisms ensure that performance problems are
isolated to the problematic use case and do not adversely af-
fect other clients.

First, to ensure proper allocation of CPU capacity, Zanz-
ibar measures the cost of each RPC in terms of generic
cpu-seconds, a hardware-agnostic metric. Each client has
a global limit on maximum CPU usage per second; its RPCs
will be throttled if it exceeds the limit and there is no spare
capacity in the overall system.

Each Zanzibar server also limits the total number of out-
standing RPCs to control its memory usage. Likewise it lim-
its the number of oustanding RPCs per client.

Zanzibar further limits the maximum number of concur-
rent reads per (object, client) and per client on each Spanner
server. This ensures that no single object or client can mo-
nopolize a Spanner server.

Finally, we use different lock table keys for requests from
different clients to prevent any throttling that Spanner applies
to one client from affecting other clients.

3.2.7 Tail Latency Mitigation

Zanzibar’s distributed processing requires measures to ac-
commodate slow tasks. For calls to Spanner and to the Leop-
ard index we rely on request hedging [16] (i.e. we send
the same request to multiple servers, use whichever response
comes back first, and cancel the other requests). To reduce
round-trip times, we try to place at least two replicas of
these backend services in every geographical region where
we have Zanzibar servers. To avoid unnecessarily multiply-
ing load, we first send one request and defer sending hedged
requests until the initial request is known to be slow.

To determine the appropriate hedging delay threshold,
each server maintains a delay estimator that dynamically
computes an Nth percentile latency based on recent mea-
surements. This mechanism allows us to limit the additional
traffic incurred by hedging to a small fraction of total traffic.

Effective hedging requires the requests to have similar
costs. In the case of Zanzibar’s authorization checks, some
checks are inherently more time-consuming than others be-
cause they require more work. Hedging check requests
would result in duplicating the most expensive workloads
and, ironically, worsening latency. Therefore we do not
hedge requests between Zanzibar servers, but rely on the pre-
viously discussed sharding among multiple replicas and on
monitoring mechanisms to detect and avoid slow servers.

10.0 k

100.0 k

1.0 M

10.0 M

Sun Mon Tue Wed Thu Fri Sat

Safe QPS Recent QPS

Figure 3: Rate of Check Safe and Check Recent requests
over a 7-day period in December 2018.

4 Experience

Zanzibar has been in production use for more than 5 years.
Throughout that time, the number of clients using Zanzibar
and the load they place on Zanzibar have grown steadily.
This section discusses our experience operating Zanzibar as
a globally distributed authorization system.

Zanzibar manages more than 1,500 namespaces defined
by hundreds of client applications. The size of a namespace
configuration file serves as a rough measure of the complex-
ity of the access control policy implemented by that names-
pace. These configuration files range from tens of lines to
thousands of lines, with the median near 500 lines.

These namespaces contain more than 2 trillion relation tu-
ples that occupy close to 100 terabytes. The number of tuples
per namespace ranges over many orders of magnitude, from
tens to a trillion, with the median near 15,000. This data is
fully replicated in more than 30 locations around the world
to maintain both proximity to users and high availability.

Zanzibar serves more than 10 million client queries per
second (QPS). Over a sample 7-day period in December
2018, Check requests peak at roughly 4.2M QPS, Read at
8.2M, Expand at 760K, and Write at 25K. Queries that read
data are thus two orders of magnitude more frequent than
those that write data.

Zanzibar distributes this load across more than 10,000
servers organized in several dozen clusters around the world.
The number of servers per cluster ranges from fewer than
100 to more than 1,000, with the median near 500. Clusters
are sized in proportion to load in their geographic regions.

4.1 Requests
We divide requests into two categories according to the re-
quired data freshness, which can have a large impact on la-
tency and availability of the requests. Specifically, Check,
Read, and Expand requests carry zookies to specify lower
bounds on evaluation timestamps. When a zookie timestamp
is higher than that of the most recent data replicated to the
region, the storage reads require cross-region round trips to
the leader replica to retrieve fresher data. As our storage

USENIX Association 2019 USENIX Annual Technical Conference 41

1 ms

10 ms

100 ms

Sun Mon Tue Wed Thu Fri Sat

50%
99%

95%
99.9%

Figure 4: Latency of Check Safe responses at different per-
centiles over a 7-day period in December 2018.

is configured with replication heartbeats with 8-second in-
tervals, we divide our requests into two categories: Safe re-
quests have zookies more than 10 seconds old and can be
served within the region most of time, while Recent requests
have zookies less than 10 seconds old and often require inter-
region round trips. We report separate statistics for each.

Figure 3 shows the rate of Check Safe and Check Recent
requests over 7 days. Both exhibit a diurnal cycle. The rate
of Safe requests is about two orders of magnitude larger than
that of Recent requests, which allows Zanzibar to serve the
vast majority of ACL checks locally.

4.2 Latency

Zanzibar’s latency budget is generally a small fraction of the
few hundreds of milliseconds of total response time that its
clients must provide to be viable interactive services. Con-
sider for example a client that performs authorization checks
on multiple documents before it can show the results of a
search on those documents.

We measure latency on the server side using live traffic
because (1) latency is heavily influenced by our caching and
de-duplication mechanisms so that it is only realistically re-
flected by live traffic, and (2) accurately measuring latency
from clients requires well-behaving clients. Provisioning of
client jobs is outside of Zanzibar’s control and sometimes
client jobs are overloaded.

Figure 4 shows the latency of Check Safe responses over
7 days. At the 50th, 95th, 99th, and 99.9th percentiles it
peaks at roughly 3, 11, 20, and 93 msec, respectively. This
performance meets our latency goals for an operation that is
frequently in the critical path of user interactions.

Table 2 summarizes the latency distributions of Check,
Read, Expand, and Write responses over the same 7 days. As
intended, the more frequently used Safe versions of Check,
Read, and Expand are significantly faster than the less fre-
quently used Recent versions. Writes are the least frequently
used of all the APIs, and the slowest because they always
require distributed coordination among Spanner servers.

Latency in milliseconds, µ (σ)

API 50%ile 95%ile 99%ile

Sa
fe

Check 3.0 (0.091) 9.46 (0.3) 15.0 (1.19)

Read 2.18 (0.031) 3.71 (0.094) 8.03 (3.28)

Expand 4.27 (0.313) 8.84 (0.586) 34.1 (4.35)

R
ec

en
t

Check 2.86 (0.087) 60.0 (2.1) 76.3 (2.59)

Read 2.21 (0.054) 40.1 (2.03) 86.2 (3.84)

Expand 5.79 (0.224) 45.6 (3.44) 121.0 (2.38)

Write 127.0 (3.65) 233.0 (23.0) 401.0 (133.0)

Table 2: Mean and standard deviation of RPC response la-
tency over a 7-day period in December 2018.

4.3 Availability
We define availability as the fraction of “qualified” RPCs
the service answers successfully within latency thresholds:
5 seconds for a Safe request, and 15 seconds for a Recent re-
quest as leader re-election in Spanner may take up to 10 sec-
onds. For an RPC to be qualified, the request must be well-
formed and have a deadline longer than the latency threshold.
In addition, the client must stay within its resource quota.

For these reasons, we cannot measure availability directly
with live traffic, as our clients sometimes send RPCs with
short deadlines or cancel their in-progress RPCs. Instead,
we sample a small fraction of valid requests from live traffic
and replay them later with our own probers. When replaying
the requests, we set the timeout to be longer than the avail-
ability threshold. We also adjust the request zookie, if one
is specified, so that the relative age of the zookie remains
the same as when the request was received in the live traffic.
Finally, we run 3 probers per cluster and exclude outliers to
eliminate false alarms caused by rare prober failures.

To compute availability, we aggregate success ratios over
90-day windows averaged across clusters. Figure 5 shows
Zanzibar’s availability as measured by these probers. Avail-
ability has remained above 99.999% over the past 3 years of
operation at Google. In other words, for every quarter, Zanz-
ibar has less than 2 minutes of global downtime and fewer
than 13 minutes when the global error ratio exceeds 10%.

4.4 Internals
Zanzibar servers delegate checks and reads to each other
based on consistent hashing, and both the caller and the
callee sides of the delegated operations cache the results to
prevent hot spots (§3.2.5). At peak, Zanzibar handles 22 mil-
lion internal “delegated” RPCs per second, split about evenly
between reads and checks. In-memory caching handles ap-
proximately 200 million lookups per second at peak, 150
million from checks and 50 million from reads. Caching for

42 2019 USENIX Annual Technical Conference USENIX Association

100.0000%

99.9990%

99.9995%

Dec '15 Dec '16 Dec '17 Dec '18

Safe Recent

Figure 5: Zanzibar’s availability over the past three years has
remained above 99.999%.

checks has a 10% hit rate on the delegate’s side, with an ad-
ditional 12% saved by the lock table. Meanwhile, caching
on the delegator’s side has a 2% hit rate with an additional
3% from the lock table. While these hit rates appear low,
they prevent 500K internal RPCs per second from creating
hot spots.

Delegated reads see higher hit rates on the delegate’s
side—24% on the cache and 9% on the lock table—but
the delegator’s cache is hit less than 1% of the time. For
super-hot groups, Zanzibar further optimizes by reading and
caching the full set of members in advance—this happens for
0.1% of groups but further prevents hot spots.

This caching, along with aggressive pooling of read re-
quests, allows Zanzibar to issue only 20 million read RPCs
per second to Spanner. The median of these requests reads
1.5 rows per RPC, but at the 99th percentile they each read
close to 1 thousand rows.

Zanzibar’s Spanner reads take 0.5 msec at the median, and
2 msec at the 95th percentile. We find that 1% of Spanner
reads, or 200K reads per second, benefit from hedging. We
note that Zanzibar uses an instance of Spanner that runs in-
ternally to Google, not an instance of Cloud Spanner [6].

The Leopard index is performing 1.56M QPS at the me-
dian, or 2.22M QPS at the 99th percentile, based on data ag-
gregated over 7 days. Over the same 7 days, Leopard servers
respond in fewer than 150 µsec at the median, or under 1
msec at the 99th percentile. Leopard’s incremental layer dur-
ing those 7 days writes roughly 500 index updates per second
at the median, and approximately 1.5K updates per second at
the 99th percentile.

4.5 Lessons Learned
Zanzibar has evolved to meet the varied and heavy demands
of a growing set of clients, including Google Calendar,
Google Cloud, Google Drive, Google Maps, Google Photos,
and YouTube. This section highlights lessons learned from
this experience.

One common theme has been the importance of flexibility
to accommodate differences between clients. For example:

• Access control patterns vary widely: Over time we have
added features to support specific clients. For instance,

we added computed userset to allow inferring an
object’s owner ID from the object ID prefix, which re-
duces space requirements for clients such as Drive and
Photos that manage many private objects. Similarly, we
added tuple to userset to represent object hierar-
chy with only one relation tuple per hop. The bene-
fits are both space reduction and flexibility—it allows
clients such as Cloud both to express ACL inheritance
compactly and to change ACL inheritance rules without
having to update large numbers of tuples. See §2.3.1.

• Freshness requirements are often but not always loose:
Clients often allow unspecified, moderate staleness dur-
ing ACL evaluation, but sometimes require more pre-
cisely specified freshness. We designed our zookie pro-
tocol around this property so that we can serve most
requests from a default, already replicated snapshot,
while allowing clients to bound the staleness when
needed. We also tuned the granularity of our snap-
shot timestamps to match clients’ freshness require-
ments. The resulting coarse timestamp quanta allow
us to perform the majority of authorization checks on
a small number of snapshots, thus greatly reducing the
frequency of database reads. See §3.2.1.

Another theme has been the need to add performance opti-
mizations to support client behaviors observed in production.
For example:

• Request hedging is key to reducing tail latency: Clients
that offer search capabilities to their users, such as
Drive, often issue tens to hundreds of authorization
checks to serve a single set of search results. We in-
troduced hedging of Spanner and Leopard requests to
prevent an occasional slow operation from slowing the
overall user interaction. See §3.2.7.

• Hot-spot mitigation is critical for high availability:
Some workloads create hot spots in ACL data that can
overwhelm the underlying database servers. A com-
mon pattern is a burst of ACL checks for an object that
is indirectly referenced by the ACLs for many differ-
ent objects. Specific instances arise from the search
use case mentioned above, where the documents in the
search indirectly share ACLs for a large social or work
group, and Cloud use cases where many objects indi-
rectly share ACLs for the same object high in a hier-
archy. Zanzibar handles most hot spots with general
mechanisms such as its distributed cache and lock ta-
ble, but we have found the need to optimize specific
uses cases. For example, we added cache prefetching
of all relation tuples for a hot object. We also delayed
cancellation of secondary ACL checks when there are
concurrent requests for the same ACL data. See §3.2.5.

• Performance isolation is indispensable to protect
against misbehaving clients: Even with hot-spot mit-
igation measures, unexpected and sometimes unin-

USENIX Association 2019 USENIX Annual Technical Conference 43

tended client behaviors could still overload our sys-
tem or its underlying infrastructure. Examples include
when clients launch new features that prove unexpect-
edly popular or exercise Zanzibar in unintended ways.
Over time we have added isolation safeguards to ensure
that there are no cascading failures between clients or
between objects of the same client. These safeguards
include fine-grained cost accounting, quotas, and throt-
tling. See §3.2.6.

5 Related Work

Zanzibar is a planet-scale distributed ACL storage and eval-
uation system. Many of its authorization concepts have been
explored previously within the domains of access control and
social graphs, and its scaling challenges have been investi-
gated within the field of distributed systems.

Access control is a core part of multi-user operating sys-
tems. Multics [23] supports ACLs on segments and direc-
tories. ACL entries consist of a principal identifier and a
set of permissions bits. In the first edition of UNIX [9],
file flags indicate whether owner and non-owner can read or
write the file. By the 4th edition, the permissions bits had
been expanded to read/write/execute bits for owner, group,
and others. POSIX ACLs [4] add an arbitrary list of users
and groups, each with up to 32 permissions bits. VMS [7, 8]
supports ACL inheritance for files created within a direc-
tory tree. Zanzibar’s data model supports permissions, users,
groups, and inheritance as found in the above systems.

Taos [24, 10] supports compound principals that incor-
porate how an identity has been transformed as it passes
through a distributed system. For example, if user U logged
into workstation W to access file server S, S would see re-
quests authenticated as “W for U” rather than just U . This
would allow one to write an ACL on a user’s e-mail that
would be accessible only to the user, and only if being ac-
cessed via the mail server. Abadi et al. discuss in [11]
a model of group-based ACLs with support for compound
identities. Their notion of “blessings” are similar to Zanz-
ibar tuples. However, Zanzibar adopts a unified represen-
tation for ACLs and groups using usersets, while they are
separate concepts in [11].

Role-based access control (RBAC), first proposed in [17],
introduced the notion of roles, which are similar to Zanzibar
relations. Roles can inherit from each other and imply per-
missions. A number of Zanzibar clients have implemented
RBAC policies on top of Zanzibar’s namespace configura-
tion language.

A discussion of ACL stores in 2019 would be remiss with-
out mentioning the Identity and Access Management (IAM)
systems offered commercially by Amazon [1], Google [5],
Microsoft [2], and others. These systems allow customers of
those companies’ cloud products to configure flexible access
controls based on various features such as: assigning users to

roles or groups; domain-specific policy languages; and APIs
that allow the creation and modification of ACLs. What all
of these systems have in common is unified ACL storage and
an RPC-based API, a philosophy also core to Zanzibar’s de-
sign. Google’s Cloud IAM system [5] is built as a layer on
top of Zanzibar’s ACL storage and evaluation system.

TAO [13] is a distributed datastore for Facebook’s social
graph. Several Zanzibar clients also use Zanzibar to store
their social graphs. Both Zanzibar and TAO provide au-
thorization checks to clients. Both are deployed as single-
instance services, both operate at a large scale, and both
are optimized for read-only operations. TAO offers eventual
global consistency with asynchronous replication and best-
effort read-after-write consistency with synchronous cache
updates. In contrast, Zanzibar provides external consistency
and snapshot reads with bounded staleness, so that it respects
causal ordering between ACL and content updates and thus
protects against the “new enemy” problem.

Lamport clocks [22] provide partially ordered vector
timestamps that can be used to determine the order of events.
However, Lamport clocks require explicit participation of
all “processes”, where in Zanzibar’s use cases some of the
“processes” can be external clients or even human users. In
contrast, Zanzibar relies on its underlying database system,
Spanner [15], to offer both external consistency and snapshot
reads with bounded staleness. In particular, Zanzibar builds
on Spanner’s TrueTime abstraction [15] to provide lineariz-
able commit timestamps encoded as zookies.

At the same time, Zanzibar adds a number of features on
top of those provided by Spanner. For one, the zookie proto-
col does not let clients read or evaluate ACLs at an arbitrary
snapshot. This restriction allows Zanzibar to choose a snap-
shot that facilitates fast ACL evaluation. In addition, Zanz-
ibar provides resilience to database hotspots (e.g. authoriza-
tion checks on a suddenly popular video) and safe pointer
chasing despite potentially deep recursion (e.g. membership
checks on hierarchical groups).

The Chubby distributed lock service [14] offers reliable
storage, linearizes writes, and provides access control, but it
lacks features needed to support Zanzibar’s use cases. In
particular, it does not support high volumes of data, effi-
cient range reads, or reads at a client-specified snapshot with
bounded staleness. Its cache invalidation mechanism also
limits its write throughput.

Finally, ZooKeeper offers a high-performance coordina-
tion service [19] but also lacks features required by Zanz-
ibar. Relative to Chubby, it can handle higher read and write
rates with more relaxed cache consistency. However, it does
not provide external consistency for updates across different
nodes since its linearizability is on a per-node basis. It also
does not provide snapshot reads with bounded staleness.

44 2019 USENIX Annual Technical Conference USENIX Association

6 Conclusion

The Zanzibar authorization system unifies access control
data and logic for Google. Its simple yet flexible data model
and configuration language support a variety of access con-
trol policies from both consumer and enterprise applications.

Zanzibar’s external consistency model is one of its most
salient features. It respects the ordering of user actions, yet
at the same time allows authorization checks to be evaluated
at distributed locations without global synchronization.

Zanzibar employs other key techniques to provide scal-
ability, low latency, and high availability. For example, it
evaluates deeply or widely nested group membership with
Leopard, a specialized index for efficient computation of set
operations with snapshot consistency. As another example, it
combines a distributed cache with a mechanism to dedupli-
cate in-flight requests. It thus mitigates hot spots, a critical
production issue when serving data on top of normalized,
consistent storage. These measures together result in a sys-
tem that scales to trillions of access control rules and millions
of authorization requests per second.

7 Acknowledgments

Many people have made technical contributions to Zanzibar.
We thank previous and recent members of the development
team, including Dan Barella, Miles Chaston, Daria Jung,
Alex Mendes da Costa, Xin Pan, Scott Smith, Matthew Stef-
fen, Riva Tropp, and Yuliya Zabiyaka. We also thank previ-
ous and current members of the Site Reliability Engineering
team, including Randall Bosetti, Hannes Eder, Robert Geis-
berger, Tom Li, Massimo Maggi, Igor Oks, Aaron Peterson,
and Andrea Yu.

In addition, a number of people have helped to improve
this paper. We received insightful comments from David Ba-
con, Carolin Gäthke, Brad Krueger, Ari Shamash, Kai Shen,
and Lawrence You. We are also grateful to Nadav Eiron and
Royal Hansen for their support. Finally, we thank the anony-
mous reviewers and our shepherd, Eric Eide, for their con-
structive feedback.

References

[1] Amazon Web Services Identity and Access Manage-
ment. https://aws.amazon.com/iam/. Accessed:
2019-04-16.

[2] Azure Identity and Access Management. https:

//www.microsoft.com/en-us/cloud-platform/

identity-management. Accessed: 2019-04-16.

[3] Cache stampede. https://en.wikipedia.org/

wiki/Cache_stampede. Accessed: 2019-04-16.

[4] DCE 1.1: Authentication and Security Services. http:
//pubs.opengroup.org/onlinepubs/9668899.
Accessed: 2019-04-16.

[5] Google Cloud Identity and Access Management.
https://cloud.google.com/iam/. Accessed:
2019-04-16.

[6] Google Cloud Spanner. https://cloud.google.

com/spanner/. Accessed: 2019-04-16.

[7] HP OpenVMS System Management Utilities Refer-
ence Manual. https://support.hpe.com/hpsc/

doc/public/display?docId=emr_na-c04622366.
Accessed: 2019-04-16.

[8] OpenVMS Guide to System Security. http:

//www.itec.suny.edu/scsys/vms/ovmsdoc073/

V73/6346/6346pro_006.html#acl_details.
Accessed: 2019-04-16.

[9] Unix Manual. https://www.bell-labs.com/usr/

dmr/www/pdfs/man22.pdf. Accessed: 2019-04-16.

[10] ABADI, M., BURROWS, M., LAMPSON, B., AND
PLOTKIN, G. A calculus for access control in dis-
tributed systems. ACM Trans. Program. Lang. Syst. 15,
4 (Sept. 1993), 706–734.

[11] ABADI, M., BURROWS, M., PUCHA, H., SADOVSKY,
A., SHANKAR, A., AND TALY, A. Distributed au-
thorization with distributed grammars. In Essays Ded-
icated to Pierpaolo Degano on Programming Lan-
guages with Applications to Biology and Security -
Volume 9465 (New York, NY, USA, 2015), Springer-
Verlag New York, Inc., pp. 10–26.

[12] ADYA, A., MYERS, D., HOWELL, J., ELSON, J.,
MEEK, C., KHEMANI, V., FULGER, S., GU, P., BHU-
VANAGIRI, L., HUNTER, J., PEON, R., KAI, L.,
SHRAER, A., MERCHANT, A., AND LEV-ARI, K.
Slicer: Auto-sharding for datacenter applications. In
12th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 16) (Savannah, GA,
2016), USENIX Association, pp. 739–753.

[13] BRONSON, N., AMSDEN, Z., CABRERA, G.,
CHAKKA, P., DIMOV, P., DING, H., FERRIS, J., GIA-
RDULLO, A., KULKARNI, S., LI, H., MARCHUKOV,
M., PETROV, D., PUZAR, L., SONG, Y. J., AND
VENKATARAMANI, V. TAO: Facebook’s distributed
data store for the social graph. In Proceedings of the
2013 USENIX Annual Technical Conference (2013),
USENIX ATC ’13, pp. 49–60.

[14] BURROWS, M. The Chubby lock service for loosely-
coupled distributed systems. In Proceedings of the

USENIX Association 2019 USENIX Annual Technical Conference 45

https://aws.amazon.com/iam/
https://www.microsoft.com/en-us/cloud-platform/identity-management
https://www.microsoft.com/en-us/cloud-platform/identity-management
https://www.microsoft.com/en-us/cloud-platform/identity-management
https://en.wikipedia.org/wiki/Cache_stampede
https://en.wikipedia.org/wiki/Cache_stampede
http://pubs.opengroup.org/onlinepubs/9668899
http://pubs.opengroup.org/onlinepubs/9668899
https://cloud.google.com/iam/
https://cloud.google.com/spanner/
https://cloud.google.com/spanner/
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c04622366
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c04622366
http://www.itec.suny.edu/scsys/vms/ovmsdoc073/V73/6346/6346pro_006.html#acl_details
http://www.itec.suny.edu/scsys/vms/ovmsdoc073/V73/6346/6346pro_006.html#acl_details
http://www.itec.suny.edu/scsys/vms/ovmsdoc073/V73/6346/6346pro_006.html#acl_details
https://www.bell-labs.com/usr/dmr/www/pdfs/man22.pdf
https://www.bell-labs.com/usr/dmr/www/pdfs/man22.pdf

7th Symposium on Operating Systems Design and Im-
plementation (Berkeley, CA, USA, 2006), OSDI ’06,
USENIX Association, pp. 335–350.

[15] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES,
A., FROST, C., FURMAN, J. J., GHEMAWAT, S.,
GUBAREV, A., HEISER, C., HOCHSCHILD, P.,
HSIEH, W., KANTHAK, S., KOGAN, E., LI, H.,
LLOYD, A., MELNIK, S., MWAURA, D., NAGLE, D.,
QUINLAN, S., RAO, R., ROLIG, L., SAITO, Y., SZY-
MANIAK, M., TAYLOR, C., WANG, R., AND WOOD-
FORD, D. Spanner: Google’s globally-distributed
database. In Proceedings of the 10th USENIX Confer-
ence on Operating Systems Design and Implementation
(2012), OSDI ’12, pp. 251–264.

[16] DEAN, J., AND BARROSO, L. A. The tail at scale.
Communications of the ACM 56, 2 (Feb. 2013), 74–80.

[17] FERRAIOLO, D., AND KUHN, R. Role-based access
control. In In 15th NIST-NCSC National Computer Se-
curity Conference (1992), pp. 554–563.

[18] GIFFORD, D. K. Information Storage in a Decentral-
ized Computer System. PhD thesis, Stanford, CA, USA,
1981. AAI8124072.

[19] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND
REED, B. Zookeeper: Wait-free coordination for
internet-scale systems. In Proceedings of the 2010
USENIX Annual Technical Conference (Berkeley, CA,
USA, 2010), USENIX ATC ’10, USENIX Association.

[20] KARGER, D., LEHMAN, E., LEIGHTON, T., PANI-
GRAHY, R., LEVINE, M., AND LEWIN, D. Consistent
hashing and random trees: Distributed caching proto-
cols for relieving hot spots on the world wide web. In
Proceedings of the Twenty-ninth Annual ACM Sympo-
sium on Theory of Computing (New York, NY, USA,
1997), STOC ’97, ACM, pp. 654–663.

[21] KUNG, H. T., AND ROBINSON, J. T. On opti-
mistic methods for concurrency control. ACM Trans.
Database Syst. 6, 2 (June 1981), 213–226.

[22] LAMPORT, L. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM 21, 7 (July
1978), 558–565.

[23] SALTZER, J. H. Protection and control of infor-
mation sharing in Multics. In Proceedings of the
Fourth ACM Symposium on Operating System Princi-
ples (New York, NY, USA, 1973), SOSP ’73, ACM.

[24] WOBBER, E., ABADI, M., BURROWS, M., AND
LAMPSON, B. Authentication in the Taos operating
system. In Proceedings of the Fourteenth ACM Sympo-
sium on Operating Systems Principles (New York, NY,
USA, 1993), SOSP ’93, ACM, pp. 256–269.

46 2019 USENIX Annual Technical Conference USENIX Association

IASO: A Fail-Slow Detection and Mitigation Framework

for Distributed Storage Services

Biswaranjan Panda, Deepthi Srinivasan, Huan Ke∗,

Karan Gupta, Vinayak Khot, and Haryadi S. Gunawi∗

Nutanix Inc. University of Chicago∗

Abstract

We address the problem of “fail-slow” fault, a fault where

a hardware or software component can still function (does

not fail-stop) but in much lower performance than expected.

To address this, we built IASO, a peer-based, non-intrusive

fail-slow detection framework that has been deployed for

more than 1.5 years across 39,000 nodes in our customer

sites and helped our customers reduce major outages due to

fail-slow incidents. IASO primarily works based on timeout

signals (a negligible overhead of monitoring) and converts

them into a stable and accurate fail-slow metric. IASO can

quickly and accurately isolate a slow node within minutes.

Within a 7-month period, IASO managed to catch 232 fail-

slow incidents in our large deployment field. In this paper,

we have also assembled a large dataset of 232 fail-slow in-

cidents along with our analysis. We found that the fail-slow

annual failure rate in our field is 1.02%.

1 Introduction

Maintaining high availability of distributed storage services

in real deployment fields is challenging due to the various

types of faults that can occur. In the last few years, there

has been an emphasis on “fail-slow” fault mode [28, 32].

This means that a hardware or software component can still

function (does not fail-stop) but in much lower performance

than expected. Such faults have been studied under differ-

ent names such “gray failure” [32], “limping” [24, 37], and

“partial failures” [29]. We chose the term “fail-slow” for

simplicity and reflecting a recent term [28].

The urgency here is that many distributed systems are still

designed based on a binary model of no failure and fail-stop

failures. Recent works shows that many distributed systems

cannot gracefully tolerate fail-slow mode, i.e. the system

cannot isolate and hide a fail-slow component, causing la-

tency spikes or throughput degradation to users [24, 28, 31,

32, 56]. Worse, it has been reported that a fail-slow com-

ponent can cause cascade of performance failures across the

cluster, bringing down services for hours [24, 28]. This calls

for the importance of designing systems that tolerate not just

absolute failure of sub-components but can also gracefully

handle the occurrence of performance faults.

In this context, our work in this paper makes the two fol-

lowing contributions:

(1) Design and implementation of a fail-slow mitigation

framework. The first contribution of the paper is IASO, our

peer-based, non-intrusive fail-slow detection framework that

has been deployed for more than 1.5 years across 39,000

nodes in our customer sites. Before the integration with

IASO we had more than 25 full outages (IOPS went to zero)

due to cascading impacts of fail-slow incidents, not to men-

tion many other occurrences of partial slowdowns. Since the

integration with IASO, we had only 2 major outages (false

negative cases) caused by fail slow.

Motivation: IASO is motivated by the following reasons.

First, we found that fail-slow faults can be caused by many

root causes. Sole dependence on low-level detection tools

[38, 40, 15, 4] at various levels of the software and hardware

stack might not be sufficient. Thus, we need a fail-slow de-

tection system that works at the service (distributed system)

level. Most existing work focuses on hardware level outlier

detection or software performance bugs but they might not

cover all of the detailed root causes occurring in the field

(§4.2.3).

Second, most existing efforts focus only on detection but

not mitigation. We are only aware of a handful of works that

perform mitigation in real deployments (more in §5). Yet,

our findings suggest that if fail-slow incidents are not quickly

and automatically isolated, it can cascade and directly affect

users for hours or days. For this reason, it is paramount that

deployed systems are equipped with fail-slow mitigation.

Third, although some computing frameworks such as

MapReduce [1, 23] are equipped with fail-slow mitigation

(e.g., via speculative execution [58] or cloning [10]), the tail

tolerance is built in their abstractions (e.g., “jobs”, “tasks”)

and not directly generalizable to many other distributed sys-

tems. Recent works revealed that many other distributed sys-

tems are still not fail-slow tolerant [24, Figure 1][56, Figure

12]. Hence, we need a more general way of addressing fail-

slow faults in many distributed storage services.

USENIX Association 2019 USENIX Annual Technical Conference 47

Challenges and solutions: A fail-slow detection frame-

work must be non-intrusive (negligible overhead), stable and

accurate, and not accidentally make wrong decisions (e.g.,

quarantine healthy nodes). To achieve this, we make IASO

peer-based, i.e., a slow service instance should be compared

against its peers of the same service (e.g., the performance of

Cassandra instance should not be compared to ZooKeeper’s).

We also make IASO load aware, i.e., the relative performance

of a service instance must not be improved or worsen just be-

cause the load on the node on which the instance is running

on is different.

To achieve all of these, we created an algorithm (§2.2)

that can work solely based on timeout signals. Our algo-

rithm can convert timeout and successful-response statistics

into a stable and accurate fail-slow detector. Our framework

does not need to monitor every request latency, hence achiev-

ing a neglibible overhead. IASO can quickly and accurately

isolate a slow node within minutes. Within a 7-month pe-

riod, IASO managed to catch 232 fail-slow incidents in our

large deployment field. IASO also automatically quarantined

the slow nodes and restored the clusters back to a healthier

performance. We only encountered 9 confirmed false posi-

tives. Other false positives are because the fail-slowness dis-

appeared when our engineers started diagnosing them (e.g.,

perhaps caused by unknown external conditions).

(2) A dataset and analysis of fail-slow incidents With IASO

integration, we were able to capture many fail-slow incidents

in the field. We have assembled a large dataset of fail-slow

incidents along with our analysis [7]. To the best of our

knowledge, this is the largest dataset of fail-slow cases pub-

licly reported from within a company. Furthermore, existing

accounts of fail-slow accidents are anecdotal [12, 28, 32],

while our contribution includes some quantitative analysis

(e.g., AFR, age correlation).

The dataset: The dataset contains 232 validated cases col-

lected from the deployment of 39,000 nodes throughout a

period of 7 months.1 This data pertains to a type of fully

hyperconverged system [9] that we deploy in customer sites.

Findings: Our rich dataset allows us to make some sta-

tistical findings. First, given 232 independent cases across

39,000 nodes over 7 months, we can derive that the annual

failure rate is 1.02% (232 × 12 / 7 / 39,000), which is rel-

atively significant compared to rates of other types of faults

(§4.2.1). Second, we uncovered a wide range of root causes

(and the low-level sub-causes), which again accentuates the

need for detection at the service level, not just at the individ-

ual hardware level. Third, we also observed the “infant mor-

tality” pattern where younger machines exhibit more fail-

slow incidents. Fourth, we show that if not mitigated prop-

erly, fail-slow cases can take hours or days to fully resolve,

which again highlights the importance of automatically quar-

1For this publication we only have analyzed the dataset for a 7 month

period in 2017. Data from 2018 is still being perused and cleaned.

antining slow nodes.

The following sections present the design and implemen-

tation of IASO (§2), experimental results (§3), our dataset and

findings (§4), related work and conclusion.

2 IASO

This section presents IASO, our framework for detecting the

presence of an unhealthy node and enabling self healing of

the cluster. We name our system after “Iaso”, the Greek god-

dess of recuperation from illness [8]. IASO is comprised of

three stages:

1. Detection (§2.1-2.2): This step reduces the time to de-

tect fail-slow incidents from hours to minutes while

keeping false positives low.

2. Mitigation (§2.3): This step quarantines the faulty node

and brings the cluster back to operation.

3. Resolution (§2.4): IASO automatically pages site relia-

bility engineers (SREs) to identify the failed component

and help support to do breakfix and assimilate the fixed

component back into operation.

When building IASO, we adhere to the following design

principles.

• Non intrusive: We attempt to reach a near 0% overhead,

hence we use raw metrics that the deployed services al-

ready collect (e.g., number of timeouts and successful

responses).

• Peer based: A slow service instance should be com-

pared against its peers of the same service, e.g., the

performance of Cassandra instance should be compared

to other Cassandra instances, not ZooKeeper instances,

as different types of services observe different types of

workload. For this reason, we monitor at service-level

requests, not at OS or hardware level.

• Load aware: The slowdown detection system must be

aware of the service load. The relative performance of

a peer must not be improved or worsen just because the

load on the node the peer is running on is different. This

means that the performance of a node must be normal-

ized based on the capacity of the node; in our deploy-

ment, a cluster can have different machine capacities

with different loads.

• Stable and accurate: As a degraded node will be quar-

antined, it is important to have a stable and accurate

algorithm that does not accidentally make wrong deci-

sions (false positives).

48 2019 USENIX Annual Technical Conference USENIX Association

VM1

CS1 ZK1

Scr

..
Scr

VM2

CS2 ZK2

Scr

..
Scr

ScoreDB
1…

n3 1
n1 98

ScorePeer

Service 2 (ZK) scores

Service 1 (CS) scores

score

reporter

table of

peer scores

Figure 1: IASO components. The figure is described in the

last paragraph of page 2 and also in Section 2.1. “Scr” denotes the

hook that sends score table to ScoreDB.

The following are the terms we use in this paper. As

shown in Figure 1, our system S is a cluster of high-end

machines (gray shades) running VMs wherein services are

running (boxes). For example, S comprises a ZooKeeper

(ZK) service for cluster configuration manager, a Cassandra

service (CS) for storing metadata, and our own blob-store

service for storing data. Each VM runs an instance of each

of the services (e.g., a VM runs three service instances, Cas-

sandra, ZooKeeper and blob-store instances). These VMs

are also known as controller VMs.

2.1 Detection

Our first goal is to detect which service instance is experienc-

ing a slowdown. Currently we only address persistent fault,

i.e., the instance is not being slowed down due to an intermit-

tent condition such as a one-off high GC time. This section

describes the main components of IASO as shown in Figure

1. The next section (§2.2) presents the detailed algorithm.

RAW METRICS (LATENCY VS. TIMEOUTS): One naive

method to measure degradation is to measure the latency of

every request. However, with today’s high-throughput ser-

vices it is not amenable (e.g., per-node Cassandra throughput

can reach 20,000 IOPS [5]). Sampling can be a solution, but

we explored a different method.

In this work, we try a much cheaper method to detect

degradation: counting timeouts. Many services such as Cas-

sandra already have a built-in metric that collects how many

responses were successful as well as the failed ones due to

timeouts. Another advantage of using timeouts is that our

monitoring system is not intrusive to the performance of the

service itself (a nearly 0% overhead as counting timeouts and

successful responses is a simple increment operation).

SCORES: We found that using raw timeout counts as a

direct metric to measure outlier is not a stable and accurate

way. Thus, we need to introduce the concept of “score”.

Given a cluster of N nodes with N instances of a service,

every instance can observe the performance of its N−1 peers

and maintain a “score table” (as shown in Figure 1).

STABLE SCORES: The primary challenge we address in

this work is how to convert timeout and success statistics into

a stable and accurate degradation detector. Noisy scores

can lead to more false positives where healthy nodes might

be accidentally removed and vice versa. Later, the exper-

iment section shows other unsuccessful algorithms that we

tried (§3) which then led us to the current algorithm (§2.2).

One key to prevent scores from fluctuating along with the

number of timeouts is by incorporating additive increase and

multiplicative decrease (AIMD) [18] such as used in TCP

congestion avoidance. Thus, our custom algorithm employs

a technique similar to AIMD.

SCOREDB SERVER: The scores collected from the ser-

vice instances are stored in a database server called ScoreDB

(Figure 1). For every peer, every instance keeps a score,

hence in total ScoreDB maintains N×(N−1) score vari-

ables (per every service monitored) including their histor-

ical values. Given these scores, ScoreDB runs an outlier

detection part of our algorithm and quarantines the outlier.

ScoreDB is also a replicated system (to anticipate degrada-

tion within itself).

2.2 Detection Algorithm

We now describe how IASO calculates the score metric and

detects an outlier. The challenge is to convert timeout and

success statistics into a stable and accurate degradation de-

tector. For every equation listed below, the explanation is in

the paragraph preceding the equation. Symbols † and ‡ are

used for backward references.

2.2.1 Peer Scores

Given a cluster of N instances within a service (e.g., Cas-

sandra), every instance observes the performance of its peers

and puts the corresponding scores in a score table contain-

ing N−1 peer scores. In our scoring system below, a score

ranges from 1 to 100 where a higher value implies more se-

vere degradation. For example, in the score table in Figure 1,

Cassandra instance on Node2 believes that Cassandra instane

on Node1 is slow (a score of 98).

As score continues to change, below we use prev and

score to represent the scores in the last and current epoch

respectively. An epoch is the interval at which every ser-

vice instance runs the equations below (i.e., calculates a new

score). The epoch is set to be 5 seconds and prev to 1 in the

beginning.

Next, we introduce ToRespRatio, the ratio of the number

of timeouts and total responses between two peers within an

epoch. This is essential to the load-awareness part of our

algorithm, that timeout counts should be relative to the num-

USENIX Association 2019 USENIX Annual Technical Conference 49

ber of total responses as the number of responses will vary

across peers.

ToRespRatio = #timeouts / #responses

We then set ratioThresh, a timeout-response ratio thresh-

old, with a constant value of 0.1 (e.g., 10 timeouts for every

100 responses). In our experience, 10% timeouts from a peer

can cause a whole-cluster degradation. A higher value may

make IASO react too late, while a lower may lead to more

false positives (i.e., too sensitive). If ToRespRatio is larger

than the ratioThresh, it is likely a heavy degradation. Other-

wise, it is likely caused by a temporary high load or a benign

cause.

ratioThresh = 0.1

Next, we introduce minTTR as the minimum time to ob-

serve zero timeout from a peer before the score assigned to

it decreases from 100 to 1 (slow to healthy). We set the time

to be 2 minutes. The idea is that when a peer exhibits a zero

timeout, it might mean that this peer is temporarily healthy

but might suffer degradation again soon. The 2-minute mark

is the time window in which a peer must “prove” itself that

it is really healthy. A smaller window increases the risk that

we may start assigning good scores to a temporarily good

peer and thereby creating an unstable score pattern. A larger

window has the disadvantage that we may mark a peer as

fail-slow even if it has just completely recovered but the 2-

minute window hasn’t passed. However, the latter scenario

should be infrequent.

minTTR = 2 mins

With all of the values above, now we can stitch them into

the score calculation. In every epoch, if ToRespRatio is 0 (no

timeout), then the score will be calculated as shown below.

This is the “additive decrease” part of our algorithm – the

score will be slowly decreasing back to zero to show that the

peer is really healthy.

[if ToRespRatio is 0]

score = prev − (100 × epoch / minTTR)

Now, we discuss the case where some timeouts are ob-

served (ToRespRatio is not zero). First, we introduce

minRatio as a higher bound of the timeout-response ratio

and threshold values. The idea here is that ToRespRatio can

be very high (e.g., 90%, when a peer is highly unrespon-

sive). This high value will make our algorithm below unsta-

ble. Thus, we cap it to the ratioThresh value (0.1), i.e., 10%

already represents enough degradation.

minRatio = min (ToRespRatio , ratioThresh)†

Finally, the last variable we introduce is nearThresh to

measure how far the timeout-response ratio to the threshold

(how far from the 10% timeouts). This threshold nearness

ranges from 0 to 1.0.

nearThresh = minRatio / ratioThresh ‡

With all the new variables above, we now can calculate the

score when timeout-response ratio is higher than zero. The

equation below represents the “multiplicative increase” part

of our algorithm where the score is increased by the thresh-

old nearness. We put more examples below.

[if ToRespRatio is not 0]

score = prev + (prev × nearThresh)

Let’s use an example where an instance gave a score of

32 for a peer instance in the last epoch. Now, the current

epoch sees too many timeouts beyond the threshold such that

nearThresh is 1.0. Thus, the current score will jump from 32
to 32+32 (i.e., the score increases multiplicatively).2

score = 32 + (32 × 1.0) = 64

Let’s imagine another scenario where the ToRespRatio is

as small as 0.01 (1% timeouts) . Here, the minRatio will

be 0.01 (see equation †) and the nearThresh be 0.1 (see ‡).

Thus, the next score will only increment fractionally:

score = 32 + (32 × 0.1) = 35.2

To sum up, our algorithm prevents scores from fluctuat-

ing along with the number of timeouts. That is, we linearly

decrement the score when we do not observe any timeouts

from a peer, but multiplicatively increase the score when we

observe timeouts from the peer.

2.2.2 Scores Set

Every instance X then sends the scores of its peers (A, B, ...)

to the ScoreDB server, which will then maintain a history of

the scores. For example for a given peer A, there are N−1
scores for A collected in every 5-second epoch.

For every peer, all the scores given for that peer are col-

lected within a 10-minute sliding window, where ScoreDB

then picks the 30th-percentile value to be the representa-

tive score for that peer, such as for instance A. The 30th-

percentile value implies that the peer instance must have

70% high score values within a 10-minute interval such that

we do not inadvertently quarantine instances with mere tran-

sient faults. In our deployments, we have observed that a

10-minute window is wide enough to detect persistent faults.

It may not be the absolute minimum but it does put an upper

bound on the time to isolate a fail-slow peer.

At this point, ScoreDB has N representative scores for

all the instances in the cluster and it submits these scores

to the DBSCAN algorithm [6]. ScoreDB performs this every

minute, but using the data from the past 10 minutes (a sliding

window). DBSCAN [6] is an algorithm that takes a set of

2To make the score multiplication increases faster/slower (i.e., more con-

figurable), we can introduce a score multiplier with a usage such as: e.g., 32

+ scoreMultiplier × 32. We use scoreMultiplier =1.

50 2019 USENIX Annual Technical Conference USENIX Association

points and groups them such that points that are spatially

close are grouped together while points which do not have

enough close neighbors are classified as outliers. Thus, we

configure DBSCAN to output a binary decision (whether an

instance is “fast” or “slow”). We also only mark at most one

outlier at a time to make sure we do not remove too many

service instances (explained later in §2.3).

Finally, we emphasize that we only compare instances

(scores) of the same service. We do not compare instance

scores of Cassandra with those of ZooKeeper, thus the algo-

rithm above runs for every service deployed. For example in

Figure 1, the ScoreDB server maintains history of Cassandra

and ZooKeeper peer scores separately.

2.3 Mitigation

After a service instance is marked as an outlier, IASO starts

the mitigation process. Below are the three options that our

customers can set in IASO configuration. The first one (ser-

vice instance reboot) is the default configuration. The phi-

losophy of our mitigation is that it is better to remove a

highly degraded instance than allowing it to induce a cas-

cading problem to the entire cluster. Other works [24, 56]

already show how running with one less instance (N−1) can

give a better performance than running a full cluster (N) with

a degraded instance. IASO only quarantines at most one in-

stance to prevent the cluster drops below its fault-tolerant

level.

(1) SERVICE INSTANCE REBOOT AND LEADERSHIP

REMOVAL: Here, IASO will restart the slow instance and

remove leadership leases (if any) from the service instance

running on that node. We emphasize here that we only re-

move the service instance (e.g., Cassandra/ZooKeeper slow

instance), but not the underlying VM or the machine. As

a reason, imagine a machine where an instance of service X
uses the underlying slow disk, but another instance of service

Y only utilizes the memory (still fast). Here, we want X to

be rebooted and its leadership removed, but let Y continue

to run normally as it is not affected by the slow disk.

Regarding the removal of leadership, in ZooKeeper, if the

instance is a leader, rebooting the instance will automatically

make ZooKeeper choose a new leader. This way the old slow

leader is no longer the single point of performance failure.

The only cost associated with this action is the rebuilding of

leader state on some other healthy peer.

In Cassandra, every instance is responsible for a key range

(our deployment does not use Cassandra’s virtual node fea-

ture). Here, we have two opposing options for mitigation.

The expensive option is to remove the instance from the ring

and trigger a whole-cluster key-range rebalancing, which

might be a premature action as the instance perhaps can be

fixed soon. The cheaper option is to let the slow instance be

in the ring but not allow it to be part of the data transfer.

We chose the latter option and modified Cassandra slightly

to achieve this. In this mode, the slow instance is no longer

the primary owner of its key range, but rather one of the other

replicas becomes the primary owner. The upside is that we

postpone the need for whole-cluster key-range rebalancing.

The downside is that the fault tolerance of newly added data

will be down by one (e.g., we can only write to two replica

nodes as the instance on the slow node is being isolated) and

read throughput may be degraded due to the loss of one in-

stance. We note that the fault tolerance of old data does not

go down as the data is still there in the slow instance.

Regardless of the limitations of this default option, cus-

tomers who have smaller clusters tend to choose this option

as they do not have options to migrate the instance or VMs

to another healthy machine. Below we discuss other options

for customers with larger clusters.

(2) VM SHUTDOWN: This is a more severe action than the

default option above. In this mode, the controller VM of the

slow service instance is shut down and no services are started

on the VM. The difference between this action and the de-

fault one above is that when VM is shut down, the services

above will automatically run their recovery protocols (e.g.,

whole ring rebalancing). Thus, the fault tolerance of the data

stays the same (e.g., 3-way replication is still maintained).

The similarity is that there may also be a performance drop

to the loss of a VM. When the problem is fixed, the VM is

added backed and full performance can be restored.

(3) HOST MACHINE SHUTDOWN: This option is similar

to VM shutdown. The difference is that our system will au-

tomatically migrate the entire VM from this host to another,

which is a process transparent to the services running on the

VM. There may be a potential VM rebalancing issue (e.g.,

a machine has too many VMs). For VM balancing, we em-

ploy our own proprietary VM rebalancing that is outside the

scope of the paper. We also emphasize that in our deploy-

ment, these machines are running the services that we de-

ploy. The machines are not shared with other tenants, hence

we have a full control of when to shut down the machine.

2.4 Resolution

The last stage, resolution, is the manual part of the whole

IASO operational procedure, which we describe here for

completeness.

When detecting a fail-slow node, IASO generates a user

alert on the customer monitoring UI. IASO also pages our

site-reliability engineers (SREs) such that they can work

with the affected customer to fix the problem. If there had

been a cluster outage (i.e., cluster IOPS went to almost zero)

before the mitigation, IASO helps the customer and our SREs

in identifying the faulty node and service.

It is also possible that before the SREs perform the full

USENIX Association 2019 USENIX Annual Technical Conference 51

Components LOC

Cassandra modification 585

ZooKeeper modification 199

IASO node-level library 547

ScoreDB server 3377

Table 1: Implementation complexity (§2.5). The table

shows our IASO integration effort.

diagnosis, the problem already went away by itself from re-

booting the slow node. We see this happens in cases such

as CPU locks-ups or high heap usage levels. In such cases,

IASO will no longer mark the node as a degraded node. In

overall, when the problem is fixed, IASO immediately rolls

back the fail-slow node actions executed before, and service

instances on the newly recovered node regain their leader-

ship responsibilities.

Temporary fail-slow faults can be recurrent (e.g., high

heap usage level). To prevent such recurrent faults, the root

cause must be fixed. For example, we could apply some cus-

tom optimizations to our services to prevent it from entering

such a state again.

2.5 Other Implementation Details

INTEGRATION: So far we have integrated IASO with Cas-

sandra and ZooKeeper. The implementation complexity is

shown in Table 1. The changes to the target services are

non-intrusive (less than 600 LOC). The service instances use

IASO library to measure local scores and send them to the

ScoreDB server where the rest of the complexity lies. The

total score data size of ScoreDB server is only 0.27 MB per

day per cluster on average as it only needs to keep the score

history of the last 10 minutes. The CPU overhead is near 0%.

We envision that IASO can be easily integrated to other

master-worker systems where data flows across workers. For

example, in HDFS, write replication forms a pipeline of

datanodes where each datanode can sense the performance

of its peers. For systems like ZooKeeper, the integration in-

volves a different type of modification due to ZooKeeper’s

“pure” leader-follower architecture (i.e., followers do not in-

teract with each other). We describe these changes later be-

low. As mentioned before, we also run our own blob-store

service which can be integrated with IASO as well. This pro-

cess is still in progress, not because of integration difficulty,

but because so far our IASO integration in Cassandra and

Zookeper seems to be sufficient. One limitation of our de-

ployment is that a single blob-store instance can be miscon-

figured causing a fail-slow fault, but goes undetected (which

again so far never happened).

ZOOKEEPER MODIFICATION: In our deployment, the

Cassandra-side IASO so far has been very effective. But as

we deal with deployments of tens of thousands of nodes, we

can potentially cover a wider set of failure types if we can

integrate IASO with another service as well. Hence, we at-

tempted to integrate IASO to ZooKeeper, but ZooKeeper em-

ploys a pure leader-follower architecture where followers do

not transfer data with each other (i.e., 3-way writes flow from

the leader to three followers, unlike in HDFS or Cassandra).

The leader is a single point of performance failure [24]; if

the leader’s NIC is slow, the writes to all the followers will

slow down, hence no outlier.

For this, we add a simple, lightweight background ping-

pong thread between ZooKeeper peers (only <200 LOC).

Every 10 seconds, every instance picks a maximum of 7 ran-

dom peers and makes an RPC that includes a synchronous

disk write. Checking the disk latency this way is also bene-

ficial since most data operations in Cassandra hit the cache,

hence disk monitoring is a bit lacking. Besides these small

changes, we emphasize that the rest of the algorithm is the

same – the instances send the median latencies of their peers

(median of 1 minute window) to ScoreDB and the DBSCAN

algorithm will compute the outlier.

THRESHOLDS: We would like to emphasize that the

threshold values we use in our algorithms (§2.2) are based

on our specific deployment experiences. It is possible that

the values might not work in other cases.

3 Results

This section presents our experimental results, starting with

unsuccessful experiences (§3.1) and then the successful ones

(§3.2) and the false positive rates (§3.3).

3.1 Unsucessful Attempts

The first strawman approach we tried was to use the raw

timeout count as a metric to sense service instance level per-

formance degradation. Figure 2 shows the number of time-

outs observed in three samples of real degraded instances (in

different time periods and clusters). As shown, the timeouts

observed occur in bursts although the fault is severe through-

out the time interval. Thus, without saving the ratio of time-

outs and responses for every peer over a given period, there

is no way to detect whether these high scores were merely

transient or if they were truly persistent and possibly catas-

trophic faults.

For this reason, we next attempted to create a more stable

algorithm by defining a score to be the percentage of time-

outs over the total responses in every epoch. The first line

below is the same as the first equation in §2.2, and in the

second line, a peer score is essentially the ToRespRatio.

ToRespRatio = #timeouts / #responses

score = ToRespRatio

52 2019 USENIX Annual Technical Conference USENIX Association

0
20
40
60
80

100

3:40 3:42 3:44 3:46

#T
im

eo
ut

s

Time (H:M)

Node1 timeouts

0
20
40
60
80

100

3:40 3:42 3:44 3:46

#T
im

eo
ut

s

Time (H:M)

Node2 timeouts

0
20
40
60
80

100

3:40 3:42 3:44 3:46

#T
im

eo
ut

s

Time (H:M)

Node3 timeouts

Figure 2: Timeout fluctuations (§3.1). The figures show the

number of timeouts observed over time in three samples of degraded

nodes (different time period).

Figure 3a shows the result. Ideally the score should stay

high throughout the degraded period, but instead we see one

big spike and one small spike. We then modified the scoring

algorithm slightly by using the median of the last 3-minute

window:

score = median (ToRespRatio in last 3 mins)

The result, as shown in Figure 3b, still shows the same be-

havior (a dip between the two spikes). We tried replacing the

median using average and weighted average and the result is

similar (Figures 3c-d).

3.2 Successful Results

The previous section provides the reason we invented our

custom outlier detection. Figure 4a shows the resulting

scores from our custom algorithm, as detailed in Section

2.2. We can see that the metadata service (Cassandra/MS)

instance on the degraded node has high scores assigned to it

from 11:30 to 13:15 hours. Note that this is the case where

we have not enabled the mitigation procedure, i.e., the cus-

tomer was experiencing degradation for almost 2 hours!

Correspondingly, to check that the scores are accurate, we

checked the standard network performance graphs and we

found that there had been a network issue at the exact time

interval. Figure 4b shows the TCP SEND Q size on the net-

work connection between another node with this unhealthy

node. Furthermore, Figure 4c shows the ping latencies to the

degraded machine.

From these graphs, we can see that bad network perfor-

mance on the slow machine correlated perfectly with the bad

scores assigned to the nodes running on it. As a side note, we

can see that the two metrics in Figures 4b-c cannot be used

as raw scores as they also fluctuate.

0
20
40
60
80

100

8:45 8:55 9:05 9:15 9:25

S
co

re

Time (H:M)

(a) TO count

20
40
60
80

100

8:45 8:55 9:05 9:15 9:25

S
co

re

Time (H:M)

(c) Average

0

20
40
60
80

100

8:45 8:55 9:05 9:15 9:25

S
co

re

Time (H:M)

(b) Median

0
20
40
60
80

100

8:45 8:55 9:05 9:15 9:25

S
co

re

Time (H:M)

(d) Weighted Average

Figure 3: Unstable scores (§3.1). Other attempts to create

stable scores using timeout-response ratio as explained in §3.1.

Next, Figure 5 shows what is happening in the ScoreDB

server side for a different fail-slow incident. The picture

shows the representative scores by instance X measured for

its N−1 peers on other nodes. For simplicity, the data here

is from a cluster of 4 nodes. Figure 5a shows that Node3

has a high score compared to other peers. But at this point

Node3 has not been marked as a definite outlier because its

30thpercentile score is not high yet. However, two minutes

later, as shown in Figure 5b, we have sufficient scores for

the 30thpercentile score to be high. When we plug this score

into the DBSCAN algorithm, Node3 was marked as a definite

outlier.

IASO automatically quarantines an outlier to prevent it

slowing down the entire cluster. Figure 6 shows another

case after we deploy IASO. Here, the figure shows that the

cluster-level IOPS drops to almost zero with the presence of

one degraded machine, essentially showing how a degraded

node can impact the entire cluster, as also shown by other

works [24, 56]. Packet losses and the cluster-level degra-

dation started occurring at around 09:15am but just after 10

minutes, IASO’s mitigatory actions kicked in and the perfor-

mance of the cluster was completely restored. Thus, with

IASO, the time taken to quarantine a degraded node has now

been brought down to the order of minutes. Note that the

IOPS returns to “normal” although we lost a node, which is

because in this scenario the 100K IOPS were far from the

maximum throughput of the cluster.

3.3 True and False Positives

Figures 7a and 7b show the number of true and false posi-

tives we encountered every month across the 7 months, re-

USENIX Association 2019 USENIX Annual Technical Conference 53

1
20
40
60
80

100

11:00 11:30 12:00 12:30 13:00 13:30

(a)

M
S

 S
co

re

Time (M:S)

0

20K

40K

11:00 11:30 12:00 12:30 13:00 13:30

(b)

S
en

d
S

iz
e

Time (M:S)

0
200
400
600
800

1000

11:00 11:30 12:00 12:30 13:00 13:30

(c)

La
te

nc
y

(m
s)

Time (M:S)

Figure 4: Stable scores (§3.2). The figures show (a) the

score of a degraded peer over time, (b) the SEND Q size of the

network connection to the degraded node, and (c) ping latencies to

the degraded node monitored by our systat collector.

spectively. For Figure 7b, the figure combines the number

of “confirmed” and “probable” false positives as explained

below.

Over a 7-month period, we encountered 9 confirmed false

positives over the 232 true positives (confirmed fail-slow in-

cidents), which brings our false positive rate to 3.7%. One

major reason for our false positive is in our earlier versions

of IASO where the cluster still sends data to a dead service

instance and a healthy instance already becomes affected

and “looks” slow as well. Here IASO incorrectly marks the

healthy instance as an outlier. Due to space constraints, we

put more false positive stories in our anonymized supple-

mental material [7].

We also encountered 41 probable false positives. We la-

bel these cases as “probable” because they do not necessarily

suggest that IASO is imprecise. In these cases, by the time

our SREs started debugging, the issue was no longer present

and the service instances, VMs, and machines were healthy.

Existing works gave some hints on the reasons behind this,

for example, fail-slow incidents can be triggered by tempo-

rary environmental causes such as high temperature [28].

 0

 20

 40

 60

 80

 100

35:57 36:27 37:57 39:17 39:37 40:37 42:07 42:57 43:57 44:47

S
co

re

Time (M:S)

(a) Observed by Node0

Node1 Node2 Node3

 0

 20

 40

 60

 80

 100

37:57 38:47 39:37 40:37 41:37 42:57 43:57 44:47 45:57 46:47

S
co

re

Time (M:S)

(b) Observed by
Node0

Node1 Node2 Node3

Figure 5: Mitigation (§3.2). The top figure shows that Node3’s

score is high as observed by Node0 however it is not being marked

as an outlier yet as its 30thpercentile score is still low. In the bottom

figure, Node3 is marked as a definite outlier.

0
20
40
60
80

100
120

9:14 9:18 9:22 9:26 9:30 9:34 9:38 9:42

Slow node occurred

Slow node mitigated

K
 IO

P
S

Time (H:M)

Figure 6: Restored performance (§3.2). Within 10 min-

utes, IASO made the cluster-level IOPS return back to normal after

isolating the slow node.

While we managed to record the false positives, we were

not able to collect many false-negative reports (i.e., unde-

tected fail-slow incidents). This is because the reality of a

large company and our SREs have their own priorities and

might not contact us when they found cases that were not but

should have been detected by IASO. The false negatives we

were aware of came from two 2 outages that happened after

the deployment of IASO, which can be found in our supple-

mental material [7]. Other false negatives we noticed include

low workloads as fail-slow faults with low workloads might

not necessarily result in timeouts. We did not fix this prob-

lem as almost all our customers heavily utilize their clusters.

From our perspective, we prefer false positives over false

negatives as in our system IASO pages site-reliability en-

gineers whenever it detects a fail-slow failure. This gives

54 2019 USENIX Annual Technical Conference USENIX Association

 0

 10

 20

 30

 40

 50

Jan Feb Mar Apr May Jun Jul

(a)

#T
ru

e
P

os
iti

ve
s

Date (Month)

 0

 2

 4

 6

 8

 10

Jan Feb Mar Apr May Jun Jul

(b)

#F
al

se
 P

os
iti

ve
s

Date (Month)

Confirmed
Probable

Figure 7: True and false (confirmed+probable) positives

(§3.3). The figure shows the number of (a) true and (b) false

positives every month. The false positives include the “confirmed”

and “probable” false positives as described in §3.3.

us a way to easily track and investigate such issues and im-

prove our system over time. As for the worst case impact,

a false positive can cause a cluster to temporarily operate in

a reduced fault tolerance state as IASO’s extreme mitigation

strategy can bring down a node. However, in case of a false

negative, there can be an entire cluster outage which can stay

undetected for hours.

4 Fail-Slow Dataset and Analysis

The deployment of IASO allows us to analyze fail-slow inci-

dents in our vast field of clusters, which then enables us to

perform new statistical studies. This section first describes

our dataset (§4.1) followed with our findings (§4.2).

4.1 Dataset

We first describe our deployment settings. Our field consists

of 39,000 nodes spread across many clusters. A cluster size

ranges from 3 to 56 nodes. Our various cluster models and

configurations (RAM size, storage, etc.) can be found in our

supplemental material [7]. A cluster can contain heteroge-

neous nodes as we support heterogeneous applications and

a broken hardware can be replaced with a higher-end one.

Each node in a cluster runs a special VM called a controller

VM where our data and control path services run. Among

these services, Cassandra and Zookeeper run with IASO in-

tegration.

Failure AFR Notes

SSD error 5-15.7% ≥ one uncorrectable error [53]

SSD failure 1-2% Dead SSDs [16]

Disk error 1.7-8.6% ≥ one failure event [46, 52]

DRAM error 2.2-9.0% ≥ one memory error [33, 54]

fail-slow 1.02% Node-level fail-slow faults

Table 2: Fail-slow AFR (§4.2.1). Comparisons of annual

failure rates of different types of failures

 0
 1
 2
 3
 4
 5
 6

Jan Feb Mar Apr May Jun Jul

#F
au

lts

Date (Month)

Figure 8: Fail-slow per day (§4.2.1). The figure shows the

number of fail-slow incidents per day in our field over 7 months.

As mentioned before, every time IASO detects a fail-slow

fault, it raises an alert that triggers the opening of a support

ticket to investigate the issue. The support case is investi-

gated by a team of trained site reliability engineers (SREs),

who in turn coordinate with the customer and debug the is-

sue. Once the problem is identified, the SREs update the

support ticket with a category of the root cause found and

the steps to resolve the issue. Other information that is up-

dated as part of the case includes the time of the incident,

a cluster identification number, the software version on the

customer’s cluster, the model family of the node that was af-

fected and the number of months the node has been with the

customer at the time of the incident.

With 232 fail-slow related tickets, our dataset can be seen

as the largest fail-slow data from within a company. The pre-

vious largest dataset was 101 cases from 12 different institu-

tions (more in §5). The next section presents our findings

from studying the support tickets. The dataset that we will

make public and discuss here comes from a period of seven

months in 2017. The dataset for 2018 is still being perused

and cleaned, hence not part of this submission.

4.2 Findings

4.2.1 Frequency

With a large dataset, we are able to measure the annual fail-

ure rate (AFR) of fail-slow incidents. Given 232 independent

cases across 39,000 nodes over 7 months, we can derive that

fail-slow AFR is 1.02% (232 × 12 / 7 / 39,000).

Table 2 compares fail-slow AFR with the rates of other

types of failures. As shown, fail-slow fault frequency is rel-

USENIX Association 2019 USENIX Annual Technical Conference 55

Fail-Slow Fail-Stop

%
 o

f T
ot

al

Unknown
Network

Hardware
Software

Human
Environment

Figure 9: Fail-slow root causes (§4.2.2). The figure shows

the breakdown of fail-slow root causes (and the comparison to fail-

stop causes).

atively significant and cannot be ignored. Figure 8 breaks

down the number of fail-slow incidents observed per day

in our field over the 7 months. We see that barring a cou-

ple of days in between, there is at least one failure per day.

These statistics accentuate the importance of fail-slow detec-

tion and mitigation frameworks such as IASO.

4.2.2 Root Causes

Next, we analyze the root causes of fail-slow incidents. To

compare the frequencies of various different root causes of

fail-slow incidents with those of fail-stop failures [51], we

group the causes into six categories: Hardware, Software,

Network, Environment, Human and Unknown. For example, all

issues that had a tag of “memory” or “disk” in our support

tickets are grouped under Hardware.

Figure 9 shows the breakdown of fail-slow root causes

(and the comparison to fail-stop causes from a related work

[51, Figure 4a]). Hardware and Network failures turn out to

be the highest contributors of fail-slow incidents in our field.

Their total is roughly the same as in the fail-stop cases. In

the next section, we break down the sub-causes to understand

more about the root causes.

The Unknown count is quite significant because of a cou-

ple of reasons. One common reason is when a customer be-

comes unresponsive during the support case or does not want

the issue to be investigated further without providing a clear

reason. We believe this can be either because the customer

did not notice any issue around the time the fail-slow alert

was generated (thereby a false positive) or fixed the issue

themselves without our help. The other reason is when the

SREs could not find a specific root cause for the issue or did

not tag the support case with a clear cause.

4.2.3 Root Sub-Causes

Table 3 shows further the breakdown of the sub-causes

within each of the five root categories in the previous sec-

tion. The numbers in the parentheses are the count of tickets.

Root Sub-causes

Hardware Faulty dimm (15), ECC error (10), low mem-

ory (9), SATADOM (5), CRC error (1), RAID

controller (1), LSI controller (1), unknown (5)

Software Software upgrade (8), VM issue (6), GC (3),

BIOS (1), scheduler (1), unknown (6)

Network Faulty device (13), network outage (9), device

replace(7), unreachability (6), packet drop (5),

network contention (2), device reboot (1), un-

known (18)

Environment Incorrect setting (11), high load (1), energy is-

sue (1)

Human error Misconf (10), network migration (4), install

/deploy (3), unplugged cable (2), unknown (4)

Table 3: Root sub-causes (§4.2.3). The table shows the sub-

causes within each of the five categories of known root causes. The

dataset will be released publicly.

 0

 5

 10

 15

 20

 25

1 5 10 15 20 25 2931 34 48

N
um

be
r o

f F
au

lts

Age of Nodes in Month(s)

Unknown
Network

Hardware
Software

Human
Environment

Figure 10: Fail-slow vs. age (§4.2.4). The figure correlates

fail-slow incidents with machine ages.

For example, for hardware-induced slowdown, it can be be-

cause of faulty dimm, ECC/CRC errors, low memory, etc.,

while network-induced slowdown can be because of faulty

NICs/switches, bad cables, packet drops, and network con-

tention.

Our goal here is to show that fail-slow root causes vary

widely. We believe this is a strong motivation why fail-slow

detection and mitigation should be also deployed at the ser-

vice level (not just low-level hardware level). Our findings

are also consistent with those reported in a recent paper [28];

we observed in our field how fault conversions take place and

how different failure types such as fail-stop (e.g., disk/SSD

failure), fail-transient (e.g., GC), and fail-partial (ECC er-

rors) can transform into fail-slow failures at the service level

[28, §3.2].

4.2.4 Age and Model

As our ticketing system automatically collects machine age

data, we are able to correlate fail-slow failures with machine

ages, as shown in Figure 10, bucketed into months ranging

56 2019 USENIX Annual Technical Conference USENIX Association

0%

20%

40%

60%

80%

100%

 4 16 64 256 1024
Time to Resolve (Hours)

CDF Faults by TTR

Unknown
Network

Hardware
Software

Human
Environment

Figure 11: Tickets TTR (§4.2.5). The figure shows the CDF

of time to resolve tickets across different root-cause categories.

Net Unk HW SW Human Env

Median 79 145 126 234 108 65

Mean 149 220 244 323 165 149

Max 721 1033 1705 1238 625 964

Table 4: TTR tickets (§4.2.5). The table shows the median,

mean, and maximum values of the data in Figure 11.

from 1 to 48. We can see the “infant mortality” trend where

younger machines exhibit more issues, but older (perhaps

more stable) machines exhibit fewer issues. This follows the

same failure trend in fail-stop failures [51, Figure 4]. This

also supports a continuous paradigm where when the rate of

fail-stop errors drops so does the fail-slow ones.

We also attempted to correlate fail-slow failures with the

node model family and found no significant correlation, that

every node model family suffers from faults across a major-

ity of component types (see [7] for more).

4.2.5 Tickets TTR

Finally, Figure 11 shows the distribution of time to resolve

the tickets (in hours) across different root causes. Table 4

shows the median, mean, and max values of the data in Fig-

ure 11. We emphasize that this metric does not represent the

time for IASO to mitigate the issues (which is in the order

of 10 minutes), but rather how long it takes to close a ticket.

When a ticket is closed, the customer’s cluster is guaranteed

to be back fully healthy.

The reason we show this data is to point out that a fail-

slow root cause can take days to be fully resolved. This is

consistent with anecdotal experiences shared by large-scale

operators from various institutions [28, §3.5]). Hence, it is

important to quickly quarantine the fail-slow component be-

fore the performance problem cascades to the entire cluster.

HW SW Service

Bug

finding

SymDrive[47],

DDT[39]

MacePC[38],

PCatch[40],

SPV[55]

Orca[15]

Detection IPMI[2],

SNMP[3],

SMART[4],

Ganglia[42]

UBL[20],

Toddler[43]

PeerReview[30],

AFD[45]

Diagnosis Roy[49],

PerfBlower[25]

Xray[13],

Hytrace[19],

PerfScope[21],

PerfCompass[22],

Deepview[59],

Stitch[60],

FaultLocalize[50]

Canopy[36],

PivotTracing[41],

Pip[48],

Panorama[31]

Mitigation Carburizer[35],

DisturbMLC[14],

VibrateSSD[17]

Mantri[11],

DeepDive[44],

PBSE[56]

PREPARE[57],

IASO

Table 5: Related work (IASO). The table categorizes works

that relate to fail-slow detection, diagnosis, and mitigation across

hardware-, software-, and service levels.

5 Related Work

We now discuss related work beyond the papers that we al-

ready cited earlier. In particular, we break the discussion

here to two categories: (1) works related to fail-slow detec-

tion and mitigation systems and (2) publications that release

information about fail-slow incidents.

Table 5 shows that there are many tools, frameworks, and

approaches that have been introduced or deployed for dif-

ferent levels of the hardware, software, and service stack.

First, there are many bug-finding tools such as MacePC [38],

PCatch [40], and Orca [15], but they are offline approaches.

Second, there are online fail-slow detection tools across the

hardware/software stack. For example, SMART [4] is a

monitoring tool that can be used to detect hardware degra-

dation but does not include diagnosis capability. Third, Pip

[48], PivotTracing [41] and many others provide diagnosis

approaches that work at the service level (not just one par-

ticular software) but they do not make quarantine decisions.

Finally, IASO is in a category that performs detection and au-

tomated mitigation. In this space, we are not aware of many

published works. The limitation of IASO is that it does not

come with diagnosis tools. Thus, the diagnosis approaches

in the 3rd row of Table 5 are orthogonal to our work.

Table 6 shows publications that release datasets on perfor-

mance problems. The table shows the year span (Y r), num-

ber of fail-slow failures/bugs reported (#F), deployment

size/number of nodes (#N), the number of systems/services

the data is collected from (#S) and the scope of the root-

cause analysis (A). The top part of the table represents inci-

dents that appear in live deployments while the bottom of the

USENIX Association 2019 USENIX Annual Technical Conference 57

Related Work Yr #F #N #S A

IASO ’16-17 232 39k 1 ehmnsu

Fail-slow[28] ’00-17 101 ≥10k 12 hn

GrayFailure[32] - 4 - 1 -

Panorama[31] ’17-18 15 20 4 -

COS[27] ’09-15 126 - 32 ehmnsu

CBS[26] ’11-14 860 - 6 s

PerfBugs[34] ’00-11 109 - 5 s

Limplock[24] ’13 28 ≥30 5 s

Table 6: Related work (fail-slow dataset). For each

related work, the columns show the year span (Y r), number of

fail-slow failures/bugs reported (#F), deployment size/number of

nodes (#N), the number of systems/services the data is collected

from (#S) and the scope of the root-cause analysis (A). In the

last column (analysis), “h” represents hardware, “s” software, “n”

network, “e” environment, and “m” human. Papers with “s”-only

label implies bug-study papers.

paper represents works that study/test software bugs. In the

former category, our dataset can be considered as the largest

dataset of fail-slow cases publicly reported from within a

company. Our work strongly supplements existing anecdotes

that fail-slow faults at all levels, hardware and software, have

to be addressed.

6 Conclusion

We have described our successful 1.5-year deployment of

IASO. We found fail-slow detection and automated miti-

gation schemes are crucial in preventing fail-slow induced

outages in our large deployment field. We would like to em-

phasize again that automatic fail-slow mitigation/quarantine

schemes (beyond detection only) are relatively a new area

of research. We hope our paper can provide insights to the

development of better frameworks in the future.

As future work, we look forward to building a more ag-

gressive algorithm that can quarantine a slow node shorter

than our current 10-minute interval (and do so with low false

positives) as well as automatically marking fail-slow faults

that are resolved by themselves without depending on our

customers or SREs (more in [7]). Furthermore, as we con-

tinue to collect peer scores reported in the field, we hope to

learn more detailed characteristics.

7 Acknowledgments

We thank Ric Wheeler, our shepherd, and the anonymous re-

viewers for their tremendous feedback and comments. We

also would like to thank Roger Liao and Anshul Purohit

for their significant contributions during the development of

IASO. We learnt a lot from the actual customer cases where

IASO was effective and also from a few scenarios where we

hit false positives. Thanks to Rob Savino and Mark Czar-

necki for their effort to make this information available to

us and help us with quite some root cause analysis. Uni-

versity of Chicago authors were supported by funding from

NSF grant No. CNS-1350499.

58 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Apache Hadoop. http://hadoop.apache.org.

[2] Intelligent Platform Management Interface (IPMI).

https://www.intel.com/content/www/us/en/

servers/ipmi/ipmi-home.html.

[3] Simple Network Management Protocol (SNMP). http://

www.net-snmp.org/.

[4] S.M.A.R.T. (Self-Monitoring, Analysis and Reporting

Technology). http://en.wikipedia.org/wiki/S.M.A.

R.T.

[5] Apache Cassandra NoSQL Performance Benchmarks.

https://academy.datastax.com/planet-cassandra/

nosql-performance-benchmarks , 2018.

[6] Density-based spatial clustering of applications with noise.

https://en.wikipedia.org/wiki/DBSCAN, 2018.

[7] Iaso Supplementary Materials (Anonymized). https://

tinyurl.com/iaso-supplementalmaterial , 2018.

[8] Iaso Wiki. https://en.wikipedia.org/wiki/Iaso,

2018.

[9] Hyper-converged infrastructure. https://en.wikipedia.

org/wiki/Hyper-converged_infrastructure, 2019.

[10] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and

Ion Stoica. Effective Straggler Mitigation: Attack of the

Clones. In Proceedings of the 10th Symposium on Networked

Systems Design and Implementation (NSDI), 2013.

[11] Ganesh Ananthanarayanan, Srikanth Kandula, Albert

Greenberg, Ion Stoica, Yi Lu, Bikas Saha, and Edward

Harris. Reining in the Outliers in Map-Reduce Clusters using

Mantri. In Proceedings of the 9th Symposium on Operating

Systems Design and Implementation (OSDI), 2010.

[12] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau.

Fail-Stutter Fault Tolerance. In Hot Topics in Operating

Systems, 2001.

[13] Mona Attariyan, Michael Chow, and Jason Flinn. X-ray:

Automating Root-Cause Diagnosis of Performance

Anomalies in Production Software. In Proceedings of the

10th Symposium on Operating Systems Design and

Implementation (OSDI), 2012.

[14] Yu Cai, Yixin Luo, Saugata Ghose, and Onur Mutlu. Read

Disturb Errors in MLC NAND Flash Memory:

Characterization and Mitigation. In Proceedings of the

International Conference on Dependable Systems and

Networks (DSN), 2015.

[15] R. H. Campbell and S. M. Tan. µChoices: An

Object-Oriented Multimedia Operating System. In In Fifth

Workshop on Hot Topics in Operating Systems (HotOS-V),

Orcas Island, WA, May 1995.

[16] Ignacio Cano, Srinivas Aiyar, and Arvind Krishnamurthy.

Charaterizing private clouds: A large-scale empirical

analysis of enterprise clusters. In Proceedings of the 7th

ACM Symposium on Cloud Computing (SoCC), 2016.

[17] Christine S. Chan, Boxiang Pan, Kenny Gross, Kenny Gross,

and Tajana Simunic Rosing. Correcting vibration-induced

performance degradation in enterprise servers. In The

Greenmetrics workshop (Greenmetrics), 2013.

[18] Chiu, Dah-Ming, and Raj Jain. Analysis of the increase and

decrease algorithms for congestion avoidance in computer

networks. Computer Networks and ISDN Systems, 1989.

[19] Ting Dai, Daniel Dean, Peipei Wang, Xiaohui Gu, and Shan

Lu. Hytrace: A Hybrid Approach to Performance Bug

Diagnosis in Production Cloud Infrastructures. In

Proceedings of the 8th ACM Symposium on Cloud

Computing (SoCC), 2017.

[20] Daniel J. Dean, Hiep Nguyen, and Xiaohui Gu. UBL:

Unsupervised Behavior Learning for Predicting Performance

Anomalies in Virtualized Cloud Systems. In Proceedings of

the 9th ACM International Conference on Autonomic

Computing (ICAC), 2012.

[21] Daniel J. Dean, Hiep Nguyen, Xiaohui Gu, Hui Zhang,

Junghwan Rhee, Nipun Arora, and Geoff Jiang. PerfScope:

Practical Online Server Performance Bug Inference in

Production Cloud Computing Infrastructures. In Proceedings

of the 5th ACM Symposium on Cloud Computing (SoCC),

2014.

[22] Daniel J. Dean, Hiep Nguyen, Peipei Wang, Xiaohui Gu,

Anca Sailer, and Andrzej Kochut. PerfCompass: Online

Performance Anomaly Fault Localization and Inference in

Infrastructure-as-a-Service Clouds. IEEE Transactions on

Parallel and Distributed Systems (TPDS), 27(6), June 2016.

[23] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified

Data Processing on Large Clusters. In Proceedings of the 6th

Symposium on Operating Systems Design and

Implementation (OSDI), 2004.

[24] Thanh Do, Mingzhe Hao, Tanakorn Leesatapornwongsa,

Tiratat Patana-anake, and Haryadi S. Gunawi. Limplock:

Understanding the Impact of Limpware on Scale-Out Cloud

Systems. In Proceedings of the 4th ACM Symposium on

Cloud Computing (SoCC), 2013.

[25] Lu Fang, Liang Dou, and Guoqing Xu. PERFBLOWER :

Quickly Detecting Memory-Related Performance Problems

via Amplification. In 29th European Conference on

Object-Oriented Programming (ECOOP), 2015.

[26] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn

Leesatapornwongsa, Tiratat Patana-anake, Thanh Do, Jeffry

Adityatama, Kurnia J. Eliazar, Agung Laksono, Jeffrey F.

Lukman, Vincentius Martin, and Anang D. Satria. What

Bugs Live in the Cloud? A Study of 3000+ Issues in Cloud

Systems. In Proceedings of the 5th ACM Symposium on

Cloud Computing (SoCC), 2014.

[27] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto, Agung

Laksono, Anang D. Satria, Jeffry Adityatama, and Kurnia J.

Eliazar. Why Does the Cloud Stop Computing? Lessons

from Hundreds of Service Outages. In Proceedings of the 7th

ACM Symposium on Cloud Computing (SoCC), 2016.

[28] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears, Casey

Golliher, Swaminathan Sundararaman, Xing Lin, Tim

USENIX Association 2019 USENIX Annual Technical Conference 59

http://hadoop.apache.org
https://www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.html
https://www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.html
http://www.net-snmp.org/
http://www.net-snmp.org/
http://en.wikipedia.org/wiki/S.M.A.R.T.
http://en.wikipedia.org/wiki/S.M.A.R.T.
https://academy.datastax.com/planet-cassandra/nosql-performance-benchmarks
https://academy.datastax.com/planet-cassandra/nosql-performance-benchmarks
https://en.wikipedia.org/wiki/DBSCAN
https://tinyurl.com/iaso-supplementalmaterial
https://tinyurl.com/iaso-supplementalmaterial
https://en.wikipedia.org/wiki/Iaso
https://en.wikipedia.org/wiki/Hyper-converged_infrastructure
https://en.wikipedia.org/wiki/Hyper-converged_infrastructure

Emami, Weiguang Sheng, Nematollah Bidokhti, Caitie

McCaffrey, Gary Grider, Parks M. Fields, Kevin Harms,

Robert B. Ross, Andree Jacobson, Robert Ricci, Kirk Webb,

Peter Alvaro, H. Birali Runesha, Mingzhe Hao, and

Huaicheng Li. Fail-Slow at Scale: Evidence of Hardware

Performance Faults in Large Production Systems. In

Proceedings of the 16th USENIX Symposium on File and

Storage Technologies (FAST), 2018.

[29] Ashish Gupta and Jeff Shute. High-availability at massive

scale: Building google’s data infrastructure for ads. Proc. of

BIRTE, 2015.

[30] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel.

PeerReview: Practical Accountability for Distributed

Systems. In Proceedings of 21st ACM SIGOPS Symposium

on Operating Systems Principles (SOSP), 2007.

[31] Peng Huang, Chuanxiong Guo, Jacob R. Lorch, Lidong

Zhou, and Yingnong Dang. Capturing and Enhancing In Situ

System Observability for Failure Detection. In Proceedings

of the 13th Symposium on Operating Systems Design and

Implementation (OSDI), 2018.

[32] Peng Huang, Chuanxiong Guo, Lindong Znhou, Jacob R.

Lorch, Yingnong Dang, Murali Chintalapati, and Randonph

Yao. Gray Failure: The Achilles’ Heel of Cloud Scale

Systems. In The 16th Workshop on Hot Topics in Operating

Systems (HotOS XVII), 2017.

[33] Andy A. Hwang, Ioan A. Stefanovici, and Bianca Schroeder.

Cosmic rays don’t strike twice: understanding the nature of

DRAM errors and the implications for system design. In

Proceedings of the 17th International Conference on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2012.

[34] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz,

and Shan Lu. Understanding and Detecting Real-World

Performance Bugs. In Proceedings of the ACM SIGPLAN

2012 Conference on Programming Language Design and

Implementation (PLDI), 2012.

[35] Asim Kadav, Matthew J. Renzelmann, and Michael M. Swift.

Tolerating Hardware Device Failures in Software. In

Proceedings of the 22nd ACM Symposium on Operating

Systems Principles (SOSP), 2009.

[36] Jonathan Kaldor, Jonathan Mace, Michal Bejda, Edison Gao,

Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan,

Brendan Viscomi, Vinod Venkataraman, Kaushik

Veeraraghavan, and Yee Jiun Song. Canopy: An End-to-End

Performance Tracing And Analysis System. In Proceedings

of the 26th ACM Symposium on Operating Systems

Principles (SOSP), 2017.

[37] Michael P. Kasick, Jiaqi Tan, Rajeev Gandhi, and Priya

Narasimhan. Black-Box Problem Diagnosis in Parallel File

Systems. In Proceedings of the 8th USENIX Symposium on

File and Storage Technologies (FAST), 2010.

[38] Charles Killian, Karthik Nagaraj, Salman Pervez, Ryan

Braud, James W. Anderson, and Ranjit Jhala. Finding latent

performance bugs in systems implementations. In

Proceedings of the Eighteenth ACM SIGSOFT International

Symposium on Foundations of Software Engineering, 2010.

[39] Volodymyr Kuznetsov, Vitaly Chipounov, George Candea,

École Polytechnique Fédérale de Lausanne, and Switzerland.

Testing Closed-Source Binary Device Drivers with DDT. In

Proceedings of the 2010 USENIX Annual Technical

Conference (ATC), 2010.

[40] Jiaxin Li, Yuxi Chen, Haopeng Liu, Shan Lu, Yiming Zhang,

Haryadi S. Gunawi, Xiaohui Gu, Dongsheng Li, and

Xicheng Lu. PCatch: Automatically Detecting Performance

Cascading Bugs in Cloud Systems. In Proceedings of the

2018 EuroSys Conference (EuroSys), 2018.

[41] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. Pivot

Tracing: Dynamic Causal Monitoring for Distributed

Systems. In Proceedings of the 25th ACM Symposium on

Operating Systems Principles (SOSP), 2015.

[42] Matthew L. Massie, Brent N. Chun, and David E. Culler.

The Ganglia Distributed Monitoring System: Design,

Implementation, and Experience. Parallel Computing, 30(7),

July 2004.

[43] Adrian Nistor, Linhai Song, Darko Marinov, and Shan L.

Toddler: Detecting Performance Problems via Similar

Memory-Access Patterns. In Proceedings of the 35th

International Conference on Software Engineering (ICSE),

2013.

[44] Dejan Novakovic, Nedeljko Vasic, Stanko Novakovic, Dejan

Kostic, and Ricardo Bianchini. DeepDive:Transparently

Identifyingand Managing Performance Interference in

Virtualized Environments. In Proceedings of the 2013

USENIX Annual Technical Conference (ATC), 2013.

[45] Husanbir S. Pannu, Jianguo Liu, Qiang Guan, and Song Fu.

AFD: Adaptive failure detection system for cloud computing

infrastructures. In 31th IEEE – International Performance

Computing and Communications Conference (IPCCC), 2012.

[46] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz Andre

Barroso. Failure Trends in a Large Disk Drive Population. In

Proceedings of the 5th USENIX Symposium on File and

Storage Technologies (FAST), 2007.

[47] Matthew J. Renzelmann, Asim Kadav, and Michael M. Swift.

SymDrive: Testing Drivers without Devices. In Proceedings

of the 10th Symposium on Operating Systems Design and

Implementation (OSDI), 2012.

[48] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey C.

Mogul, Mehul A. Shah, and Amin Vahdat. Pip: Detecting the

Unexpected in Distributed Systems. In Proceedings of the

3rd Symposium on Networked Systems Design and

Implementation (NSDI), 2006.

[49] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C.

Snoeren. Passive Realtime Datacenter Fault Detection and

Localization. In Proceedings of the 13th Symposium on

Networked Systems Design and Implementation (NSDI),

2017.

[50] Swarup Sahoo, John Criswell, Chase Geigle, and Vikram

Adve. Using Likely Invariants for Automated Software Fault

Localization. In Proceedings of the 18th International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2013.

60 2019 USENIX Annual Technical Conference USENIX Association

[51] Bianca Schroeder and Garth A. Gibson. A large-scale study

of failures in high-performance computing systems. In

Proceedings of the International Conference on Dependable

Systems and Networks (DSN), 2006.

[52] Bianca Schroeder and Garth A. Gibson. Disk failures in the

real world: What does an MTTF of 1,000,000 hours mean to

you? In Proceedings of the 5th USENIX Symposium on File

and Storage Technologies (FAST), 2007.

[53] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant.

Flash Reliability in Production: The Expected and the

Unexpected. In Proceedings of the 14th USENIX Symposium

on File and Storage Technologies (FAST), 2016.

[54] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich

Weber. DRAM errors in the wild: A Large-Scale Field

Study. In Proceedings of the 2009 ACM International

Conference on Measurement and Modeling of Computer

Systems (SIGMETRICS), 2009.

[55] Riza O. Suminto, Agung Laksono, Anang D. Satria, Thanh

Do, and Haryadi S. Gunawi. Towards Pre-Deployment

Detection of Performance Failures in Cloud Distributed

Systems. In The 7th USENIX Workshop on Hot Topics in

Cloud Computing (HotCloud), 2015.

[56] Riza O. Suminto, Cesar A. Stuardo, Alexandra Clark, Huan

Ke, Tanakorn Leesatapornwongsa, Bo Fu, Daniar H.

Kurniawan, Vincentius Martin, Uma Maheswara Rao G., and

Haryadi S. Gunawi. PBSE: A Robust Path-Based

Speculative Execution for Degraded-Network Tail Tolerance

in Data-Parallel Frameworks. In Proceedings of the 8th ACM

Symposium on Cloud Computing (SoCC), 2017.

[57] Yongmin Tan, Hiep Nguyen, Zhiming Shen, Xiaohui Gu,

Chitra Venkatramani, and Deepak Rajan. PREPARE:

Predictive Performance Anomaly Prevention for Virtualized

Cloud Systems. In Proceedings of the 32nd International

Conference on Distributed Computing Systems (ICDCS),

2012.

[58] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy

Katz, and Ion Stoica. Improving MapReduce Performance in

Heterogeneous Environments. In Proceedings of the 8th

Symposium on Operating Systems Design and

Implementation (OSDI), 2008.

[59] Qiao Zhang, Guo Yu, Chuanxiong Guo, Yingnong Dang,

Nick Swanson, Xinsheng Yang, Randolph Yao, Murali

Chintalapati, Arvind Krishnamurthy, and Thomas Anderson.

Deepview: Virtual Disk Failure Diagnosis and Pattern

Detection for Azure. In Proceedings of the 14th Symposium

on Networked Systems Design and Implementation (NSDI),

2018.

[60] Xu Zhao, Kirk Rodrigues, Yu Luo, Ding Yuan, and Michael

Stumm. Non-Intrusive Performance Profiling for Entire

Software Stacks Based on the Flow Reconstruction Principle.

In Proceedings of the 12th Symposium on Operating Systems

Design and Implementation (OSDI), 2016.

USENIX Association 2019 USENIX Annual Technical Conference 61

PARTISAN: Scaling the Distributed Actor Runtime

Christopher S. Meiklejohn, Heather Miller
Carnegie Mellon University

Peter Alvaro
UC Santa Cruz

Abstract
We present the design of an alternative runtime system for
improved scalability and reduced latency in actor applications
called PARTISAN. PARTISAN provides higher scalability by al-
lowing the application developer to specify the network over-
lay used at runtime without changing application semantics,
thereby specializing the network communication patterns to
the application. PARTISAN reduces message latency through a
combination of three predominately automatic optimizations:
parallelism, named channels, and affinitized scheduling. We
implement a prototype of PARTISAN in Erlang and demon-
strate that PARTISAN achieves up to an order of magnitude in-
crease in the number of nodes the system can scale to through
runtime overlay selection, up to a 38.07x increase in through-
put, and up to a 13.5x reduction in latency over Distributed
Erlang.

1 Introduction
Building distributed applications remains a difficult task for
application developers today due to the challenges of con-
currency, state management, and parallelism. One promising
approach to building these types of applications is by using
distributed actors; the actor-based programming paradigm is
one where actors can live on different nodes and communicate
transparently to actors running on other nodes. Actor-based
programming is well suited to the challenges of distributed
systems; actors encapsulate state, allowing controlled, serial
access for state manipulation. A single machine can typically
run hundreds of thousands of actors, allowing efficient use of
resources per machine and thereby enabling high-scalability
and high-concurrency by elastically scaling the number of
machines in a cluster. Taken together with the fact that actors
communicate through unidirectional asynchronous message
passing with no shared memory between them, the actor-
based programming paradigm is well suited to the nature of
distributed systems. In addition to providing developers of
distributed systems with a convenient programming model,
distributed actor systems can also be efficiently implemented,

which has resulted in significant adoption and large-scale
success in many areas of industry.

There exist three primary industrial-grade distributed actor
systems; Distributed Erlang [31], Akka [21] (for Scala) and
Microsoft’s Orleans [8, 10] (for C#). Distributed Erlang has
been used as the underlying infrastructure for message bro-
kers [2, 25], distributed databases [4, 6, 18], and has provided
infrastructure for the chat functionality for applications like
WhatsApp, Call of Duty, and League of Legends. [14, 15, 27]
Similarly, Akka has been used by Netflix for the manage-
ment of time series data [23], and Microsoft’s Orleans has
been used as the underlying infrastructure for Microsoft’s
popular online multiplayer games, Halo and Gears of War
for the Xbox [24]. In all of these cases, these applications
have benefited from both the state encapsulation and perva-
sive concurrency that actors provide and the fault isolation
of actors by reducing the use of shared memory. However,
these distributed actor systems are still limited in terms of
both scalability and latency.

Scalability. Compared to other distributed frameworks
which can support hundreds to thousands of nodes, these
production-grade distributed actor systems are still limited in
the number of nodes that they can support. Distributed Erlang,
for instance, has not been operated on clusters larger than 200
nodes [1], whereas one of the more popular applications built
on Distributed Erlang, the distributed database Riak, has been
demonstrated to not scale beyond 60 nodes [15]. As we will
later show, this limited scalability is related to the rigidity of
the overlay network—the communication pattern between the
nodes in the application—used in the runtime system. This
rigidity has been the subject of previous research on alterna-
tive designs to improve the scalability of the system [11], and
efforts to find a “one-size-fits-all” overlay, which can equally
serve all types of distributed applications, have not been suc-
cessful [28]. Thus, especially in the context of Distributed
Erlang, scalability is still a major challenge.

Latency. Due to their underlying model of computation—
unidirectional asynchronous message passing between ac-

USENIX Association 2019 USENIX Annual Technical Conference 63

tors with independent queues that are multiplexed onto a
single queue between nodes—distributed actor systems fre-
quently suffer from the problem of head-of-line blocking.
For example, the distributed database Riak avoids using Dis-
tributed Erlang for background data synchronization (e.g.,
hinted and ownership handoff) to avoid head-of-line blocking
in the read/write request path. While alleviating head-of-line
blocking has been the subject of much research [12, 30] and
remains a relevant problem in today’s large-scale systems [9],
the general solution of introducing more queues and partition-
ing communication across those queues does not necessarily
yield better performance without a priori knowledge of the
application’s workload.

Application-specific information exists that can be used
to reduce the effects of head-of-line blocking. Given (i) the
knowledge of the identities of the actors that are sending
messages, (ii) the identities of the recipients, and (iii) the
knowledge that actors will process their messages sequen-
tially, this application-specific information can be provided in
the form of a small number of lightweight annotations to the
runtime. These annotations can help the runtime to separate
network traffic over specialized channels (e.g., cluster mainte-
nance, high-priority application behavior, failure detection),
in turn leading to the reduction of head-of-line blocking in an
application-specific manner.

In this paper, we present the design of an alternative run-
time system for improving the scalability and performance
of distributed actor systems, along with an implementation
of this runtime called PARTISAN. PARTISAN enables greater
scalability by allowing the application developer to specialize
the overlay network to the communication pattern required
by the application at runtime without altering application se-
mantics. PARTISAN facilities lower latency by providing the
application developer with three ways to customize messaging
behavior, without altering application semantics or requiring
changes to application code. PARTISAN enables the applica-
tion developer to (i) customize parallelism (for increasing
the number of communication channels between nodes), (ii)
utilize named channels (for separating different types of mes-
sages sent between actors), and (iii) affinitize scheduling (for
partitioning traffic across communication channels depending
on message source, destination and type).

We implement PARTISAN using Erlang without requiring
changes to the Erlang VM, in an effort to make these scalabil-
ity and latency benefits immediately available to production
Erlang applications with minimal changes to application code.
We provide a detailed experimental evaluation which, be-
yond microbenchmarks, includes a port of an existing widely-
deployed Erlang distributed computing framework to take
advantage of PARTISAN’s optimizations. In our evaluation,
we demonstrate that the use of each of these optimizations in-
dependently results in latency reduction, but the combination
of these techniques yields significant reductions in latency.

The contributions of this paper are the following:

• We present the design of the PARTISAN runtime system
that enables the runtime selection of overlay, enabling
greater scalability by specializing the overlay to the ap-
plication’s communication patterns (Sections 3 & 5);

• We present a collection of predominantly automatic op-
timizations for latency reduction, realized in PARTISAN,
that enable more efficient scheduling of messages on
the network, specifically by exploiting (i) parallelism,
(ii) named channels, and (iii) affinitized scheduling (Sec-
tions 4 & 5);

• We provide an open source implementation of PARTI-
SAN that supports the runtime selection of overlay with
implementations of four different overlay networks (Sec-
tion 5);

• We port an existing widely-deployed open source dis-
tributed computing framework, Riak Core, from Dis-
tributed Erlang to PARTISAN, and provide an analysis of
the process (Section 6);

• We present a detailed empirical evaluation of PARTISAN
on (i) microbenchmarks, (ii) an industrial-grade actor-
based distributed programming framework (Riak Core),
and (iii) a research framework for distributed program-
ming over replicated shared state (Lasp). We go on to
show that PARTISAN demonstrates greater scalability (in
some experiments, an order of magnitude increase in
the number of nodes the system can scale to) through
runtime overlay selection and lower latency (in some
experiments, up to a 38.07x increase in throughput, and
a 13.5x reduction in latency) through latency reduction
optimizations (Section 6).

2 Background: Distributed Actors
Actors provide a simple programming model for building
highly concurrent applications. Programming with actors in-
volves two primary concepts: actors: lightweight processes
that act sequentially, respond to messages from other actors,
and sent messages to other actors; and asynchronous mes-
sage passing: unidirectional, asynchronous messages that are
sent between actors. Applications built using the actor model
typically achieve their task through the cooperation of many
actors sending messages to one another. No state is shared
between actors: the only way for data to be shared between
actors is through message passing1. Actors are designed to be
extremely lightweight and typically implementations allow
for ten to hundreds of thousands of actors per machine. As
no data is shared, and actors are relatively independent with
loose coupling to other actors – strictly through message pass-
ing – if a particular actor happens to fail, the fault remains
isolated to that actor. Actors are not static: actors are allowed
to “spawn” other actors as the system is running.

1Pony is a unique exception here, which uses a capability system to know
when it is safe to share memory. However, this is an implementation detail as
the programming model remains that of message passing.

64 2019 USENIX Annual Technical Conference USENIX Association

Actors are a popular mechanism for building highly con-
current applications as they allow both users and user actions
to be modeled as actors themselves. For instance, in the afore-
mentioned Halo and Call of Duty examples, actors are use
for modeling the presence service for the online functionality
of the game. Therefore, a single actor, dynamically created,
is used to model a connection to the service for a single user.
In the Riak distributed database, an actor is spawned for ev-
ery single read or write request made to the database. As
the number of actors can range several orders of magnitude
higher than the parallel computing capacity of a single ma-
chine, preemptive (e.g., Erlang) or cooperative scheduling
(e.g., Orleans) is used for actor scheduling within the runtime.

Distributed actor systems extend the actor functionality
from a single machine to a cluster of machines. Distribution
adds a number of complexities to the model: (i) failure de-
tection: actors may be unavailable under network partitions
or crash failures of remote machines; (ii) message omission:
messages are no longer guaranteed to arrive at a destination
due to failure; (iii) membership: or what nodes are currently
members of the cluster and how the membership overlay is
organized; (iv) binding: the location of actors may not be
known at runtime when actors are dynamically created; (v)
contention: contention for access to network resources may
slow down actors; (vi) congestion: and the varying location
of actors results in non-uniform latency with inter-actor mes-
saging when actors are located on different machines.

2.1 Framework Commonalities
These concerns are addressed by the contemporary industrial
distributed actor systems through various mechanisms. Each
of these mechanisms introduces additional network overhead
that the application developer may not be aware of, contribut-
ing to reduced scalability and higher latencies.

Failure detection. Actors may become unreachable due to
crash failures or network partitions. To detect failures, nodes
typically send heartbeat messages to the other nodes in the
cluster. When a node is suspected as failed, it’s assumed that
the actors that were running on that node failed.

Message omission. Distributed actor systems try to address
the problem of message omission by using TCP. With a single
connection, TCP ensures FIFO ordering of messages between
pairs of actors and best-effort delivery using retransmission
based on sequence numbers and acknowledgements.

However, as failure detection is imperfect and nodes may
be disconnected and reconnected under network partitions
or crash failures, message delivery is not guaranteed by the
runtime system. Therefore, distributed actor systems typically
require the user to program as if message omission is always a
possibility. Put more generally, TCP connections are session-
oriented and in these frameworks delivery guarantees do not
hold across sessions.

Membership. Membership determines which nodes are
part of the cluster and are available for hosting actors. Failure
detection is combined with membership to determine who the
active members of the cluster are at any given moment.

Binding. When sending a message from one actor to an-
other, the location of that actor may or may not be known at
a given time. Most of these systems encode a node identifier
into the process identifier, or leverage a replicated, global pro-
cess registry, for determining the location of an actor by a
registered name instead of a process identifier.

2.2 Challenges

The problems of both network contention and network con-
gestion remain challenges for distributed actor systems.

Network contention. All of the aforementioned actor sys-
tems support inter-machine communication through the use of
a single TCP connection, therefore multiplexing actor-to-actor
communication on a single channel. Not only does actor-to-
actor communication (data) use this channel, but background
communication from the membership and failure detection
systems (control) also contribute to congestion on this link.
Taken together with CPU-intensive activities that may block
access to the socket (message serialization/deserialization,
for example) and non-uniform distribution of message load
(slow-senders vs. fast-senders), the possibility for contention
increases, which in turn increases latency and reduces through-
put of the system. This is further exacerbated by certain over-
lays; for example, the full-mesh overlay must perform failure
detection from all nodes to all other nodes.

Network congestion. Network congestion, in the form of
latency or congestion control, may further impact perfor-
mance. Under situations where the frequency of message
sends exceeds what can be transmitted over the network, caus-
ing queueing delays on these multiplexed connections be-
tween nodes, other senders on the same node may be penal-
ized and forced to wait for other senders to transmit.

3 Overlay Networks
To address the problems that arise from a fixed overlay, PARTI-
SAN supports the selection of overlay at runtime. PARTISAN’s
API exposes an overlay agnostic programming model – only
asynchronous messaging and cluster membership operations
– that easily allows programmers to build applications that
can operate over any of the supported overlays. Selection of
the overlay at runtime only affects the performance of the
application, and does not change the application semantics.
Selection of the overlay is done with a configuration parame-
ter specified at runtime; therefore, changing the overlay does
not require recompilation and the selection is fixed for the
lifetime of the application.

USENIX Association 2019 USENIX Annual Technical Conference 65

PARTISAN supports four overlays and exposes an API for
developers to extend the system with their own overlays:
static, full-mesh, client-server, and peer-to-peer.

3.1 Static, Full-mesh, Client-server Overlays
The static, full-mesh, and client-server overlays are similar.
Each overlay uses a single connection for communication
between each node in the cluster. Failure detection is per-
formed by monitoring this connection; when this connections
is dropped, the node is reported as down.

With the static overlay, membership is fixed at runtime
whereas with the full-mesh overlay, membership is dynamic
and can be altered while the system is running. With the
client-server overlay, connections are only maintained be-
tween servers and from servers to clients, similar to a tradi-
tional hub-and-spoke topology.

3.2 Peer-to-peer Overlay
The peer-to-peer overlay builds upon the HyParView [20]
membership protocol and the Plumtree [19] broadcast proto-
col, both of which use a two-phase approach to pair an effi-
cient dissemination protocol with a resilient repair protocol
used to ensure operation during network partitions.

HyParView. HyParView is an algorithm that provides a re-
silient membership protocol by using partial views to provide
global system connectivity in a scalable way. Using partial
views ensures scalability; however, since each node only sees
part of the system, it is possible that node failures break con-
nectivity. To overcome this, HyParView uses two different
partial views that are maintained with different strategies.

Plumtree. Plumtree is an algorithm that provides reliable
broadcast by combining a deterministic tree-based broadcast
protocol with a gossip protocol. The tree-based protocol con-
structs and uses a spanning tree to achieve efficient broadcast.
However, it is not resilient to node failures. The gossip proto-
col is able to repair the tree when node failures occur.

Semantics. However, with partial views, nodes may want to
message other nodes that are not directly connected. To main-
tain the existing semantics of existing actor systems, PAR-
TISAN needs to support messaging between any two nodes
in a cluster. To achieve this, PARTISAN’s peer-to-peer mem-
bership backend uses an instance of the Plumtree protocol to
compute a spanning tree rooted at each node. When sending
to a node that is not directly connected, the spanning tree is
used to forward the message down the leaves of the tree in a
best-effort method for delivering the message to the desired
node. This is similar to the approach taken by Cimbiosys [26]
to prevent livelocks in their anti-entropy system.

4 Latency Reduction
In Section 2, we discussed a number of features of distributed
actor systems that operate in the background to maintain
cluster operation. These included binding, membership, and

failure detection. Each of these features of actor systems can
be expensive in terms of network traffic and contributes to in-
creasing the overall message latency by delaying application-
specific messaging behind cluster maintenance messaging. In
addition to background traffic, it’s also possible that one type
of application-specific messaging may also delay different
types of application-specific messaging, as in the case where a
slow sender is arbitrarily delayed behind a fast sender. These
are all specific cases of head-of-line blocking.

To alleviate these issues, we provide the application devel-
oper with three ways to customize messaging behavior in a
distributed actor system; by (i) customizing parallelism, (ii)
utilizing named channels, and (iii) affinitized scheduling.

4.1 Parallelism
To reduce the effects of head-of-line blocking with a single
message queue, additional message queues can be introduced
in an attempt to parallelize as much work as possible. We refer
to this mechanism as parallelism. With little input from the
application developer—only a specification of the number of
queues to operate at each node for each destination node—the
system can either use random or round-robin scheduling to
assign work to queues. In most cases, the system can optimally
choose this parameter based on available system resources.

4.2 Named Channels
While parallelism serves to increase the amount of work per-
formed in parallel, background messages may be queued in
front of application-specific messages, resulting in diminish-
ing returns if this is the only technique used to reduce latency.

If we further classify these message queues as either queues
for background messaging or application-specific messaging,
we can be more intelligent in our scheduling. This can be
achieved using named channels, and it is similar to Quality-of-
Service (QoS) present in many modern networking systems.
This mechanism only requires the application developer to
annotate what type of message is being sent, and dedicated
queues based on type are used for scheduling these messages.
This mechanism allows the system to automatically place
background messaging on a queue where it will not interfere
with application-specific messaging.

4.3 Affinity
While named channels prevent background messaging from
directly interfering with application-specific messaging,
application-specific messaging may still suffer from inter-
ference between actors that send at different rates.

Under the assumption that multiple outgoing queues are
available (parallelism), random or round-robin scheduling
may still produce schedules that lead of head-of-line blocking
issues. With the knowledge that actors have (i) a distinct iden-
tity (unique references which point to each actor and which
can itself be exchanged), (ii) and act sequentially, we can fur-
ther refine our message scheduling algorithm by selecting an
outgoing message queue based on the sending actor’s identity.

66 2019 USENIX Annual Technical Conference USENIX Association

Feature API Analogous Call (Erlang)

Join node to cluster join(Node) net_kernel:connect_node(Node)
Remove self from the cluster leave() net_kernel:stop()
Return locally known peers members() nodes()
Forward message to registered name forward(Node, Name, Msg, Opts) erlang:send({Name, Node}, Msg)
Forward message to process id forward(Pid, Msg, Opts) erlang:send(Pid, Msg)

Table 1: PARTISAN’s API

call(Dst, Msg, Timeout) ->

Dst ! Msg,

receive
Response ->

Response
after
Timeout ->

{error, timeout}
end

end.

(a) Distributed Erlang

call(Dst, Msg, Timeout) ->

partisan_pluggable_peer_service_manager:forward(Dst, Msg, []),

receive
Response ->

Response
after

Timeout ->
{error, timeout}

end
end.

(b) PARTISAN

Listing 1: Sending messages using Distributed Erlang and PARTISAN. PARTISAN’s API is designed to be a drop-in replacement
for Distributed Erlang.

%% Use `N' to partition with affinitized scheduling.
partisan_pluggable_peer_service_manager:forward(

Dst, Msg, [{partition_key, N}])

%% Use `Channel' to partition by channel.
partisan_pluggable_peer_service_manager:forward(

Dst, Msg, [{channel, Channel}])

Listing 2: Sending messages using PARTISAN. PARTISAN’s
API allows both affinitized scheduling and channels to be
specified for a single message send.

This scheduling technique is known as affinitized scheduling
and results in a further reduction in latency for network in-
tensive processes by avoiding interference between different
actors that send messages at different rates—for example, two
actors on the same node sending at different rates to the same
remote actor can be scheduled on different queues.

The application developer can take advantage of affinitized
scheduling either by enabling affinitized scheduling for all
messages, where a partition key is automatically derived by
the system, or by annotating individual message sends with
a partition key. This partition key is then concatenated with
the identity of the recipient and, using a hash function, is
used to select the appropriate queue. By hashing both the
sender and the recipient together, the system will attempt
to collocate pairwise communication between the same two
actors together, providing best-effort FIFO when the system
is not operating under failure.

5 PARTISAN
PARTISAN is a runtime system that enables greater scala-
bility and reduced latency for distributed actor applications.
PARTISAN improves scalability by allowing the application
developer to specialize the overlay network to the applica-
tion’s communication patterns. PARTISAN achieves lower
latency by leveraging several predominately automatic opti-
mizations that result in the efficient scheduling of messages.
PARTISAN is the first distributed actor system to expose this
level of control to the application developer, improving the
performance of existing actor application and enabling new
types of actor applications.

5.1 Design
All three industrial-grade actor systems follow the same un-
derlying assumptions that define the actor model. The de-
sign of PARTISAN is therefore based upon a lowest-common-
denominator view of distributed actor systems. In all cases:

• actors will act sequentially, sending and receiving unidi-
rectional, asynchronous messages;

• actors can be located on any node on the network, known
only at runtime, and the system will be able to locate,
though a system specific mechanism, on which machine
an actor is located;

• message delivery is not guaranteed and node failures
will be detected eventually.

PARTISAN follows this lowest-common-denominator view
of distributed actor systems for the sake of portability of these

USENIX Association 2019 USENIX Annual Technical Conference 67

ideas; the same principles behind our work can be applied to
realizations of PARTISAN for the other industrial-grade actor
systems, such as Akka and Orleans. Applying these ideas
to Akka would be straightforward, given the programming
model is directly inspired by Erlang. Orleans has a slightly
different programming model involving remote method in-
vocations, but the underlying execution model is composed
of unidirectional, asynchronous message sends and receives,
the same as the Erlang programming model (and, extremely
similar to Erlang’s included RPC abstraction.)

Based on this view of actor systems, PARTISAN adds (i)
the runtime selection of overlay network, and (ii) a collection
of predominantly automatic latency reduction optimizations.

Latency Reduction Optimizations. PARTISAN applies the
above three optimizations, parallelism, named channels, and
affinitized scheduling (Section 4) to this lowest-common-
denominator view of actor systems to achieve sometimes
significant latency reduction (demonstrated in Section 6).

While some of these ideas for latency reduction have been
explored in the context of networking, these optimizations are
not exposed to the developer in distributed actor systems–this
work is the first to do so, to the best of our knowledge.

In order to enable the application developer to directly take
advantage of these optimizations when it makes sense for
their application, application developers only need to specify
the number of outgoing message queues (parallelism) and the
types of messages that are being sent (named channels); affini-
tized scheduling is automatically performed by the runtime.

5.2 API
PARTISAN is designed to be a drop in replacement for Dis-
tributed Erlang, with each API command in PARTISAN pro-
viding a 1-to-1 correspondence with Distributed Erlang. The
API of PARTISAN, and its corresponding calls in Distributed
Erlang, is provided in Table 1 and an example of the trans-
formation of a program from using Distributed Erlang to
PARTISAN is provided in Listing 1. Performing this 1-to-1
transformation converts a Distributed Erlang application to
use PARTISAN with optimizations disabled.

Like all distributed actor systems, PARTISAN’s API pro-
vides both membership operations, that are used for join-
ing/removing nodes from the cluster, and messaging oper-
ations, that are used for asynchronously sending messages.
PARTISAN’s programming model is both overlay-agnostic and
asynchronous. Therefore, all operations return immediately
and have overlay-specific behavior.

5.3 Implementation
PARTISAN is implemented as a library for Erlang and requires
no modifications to the Erlang VM. This was in an effort to
make PARTISAN’s scalability and latency benefits immedi-
ately available to production Erlang applications with mini-
mal changes to application code. PARTISAN is implemented
in 6.7 KLOC and is available as an open source project on

{partisan, [%% Enable affinity scheduling for all messages.
{affinity, enabled},

%% Enable parallel connections.
{parallel, enabled},

%% Optional: override default.
{parallel_connections, 16},

%% Specify available channels.
{channels, [vnode, gossip, broadcast]},

%% Selection of overlay.
{membership_strategy,
partisan_full_mesh_membership_strategy}]}.

Listing 3: Riak Core configuration for PARTISAN using op-
tions in Table 2 for experiments run in Section 6.2.

GitHub. This implementation of PARTISAN has several indus-
try adopters and a growing community.

5.4 Configuration
Configuration options to select overlay, enable parallelism,
and specify named channels are outlined in Table 2. List-
ing 3 demonstrates a configuration used in our Riak Core
evaluation which enables parallelism, named channels, and
affinitized scheduling for all messages. Users can choose to
annotate message sends with a channel for targeted use of
named channels and affinitized scheduling can be enabled for
all messages or for an individual message; these options are
demonstrated in Listing 2.

If the number of parallel connections is not specified by
the user, the system will default to a reasonable value for this
parameter based on the number of Erlang schedulers avail-
able. Under a default configuration of the Erlang VM, a single
scheduler maps to a single vCPU. This default configura-
tion and heuristic is discussed in detail in our experimental
evaluation. (Section 6.1).

5.5 Bring Your Own Overlay
PARTISAN exposes an API for users to implement their
own overlays; application developers must simply implement
the membership_strategy interface for handling messages.
PARTISAN automatically uses this membership strategy for
processing incoming and outgoing messages to the system –
the application developer only needs to handle internal state
transitions and supplying the system with an updated list of
members. PARTISAN automatically sets up required connec-
tions, serializes and deserializes messages, performs failure
detection, and message forwarding. This makes it possible to
implement protocols with very little code; our implementation
of the full-mesh membership protocol is 152 LOC.

6 Experimental Evaluation
To evaluate PARTISAN, we designed a set of experiments to
answer the following questions:

68 2019 USENIX Annual Technical Conference USENIX Association

Feature Configuration Option

Enable parallelism with default number of connections {parallel, enabled}
Specify number of N connections to each peer {parallel_connections, N}
Open N parallel connections for each of the named channels {channels, [Channel1, Channel2]}
Enable affinitized scheduling for all messages {affinity, enabled}
Specification of overlay {membership_strategy, MembershipStrategy}

Table 2: PARTISAN’s configuration options

• RQ1: What are the benefits of affinitizing actor messag-
ing across a number of parallel TCP connections?

• RQ2: Can these optimizations be used on real-world
applications to achieve reduction in message latencies?

• RQ3: Does the selection of the overlay at runtime pro-
vide better scaling properties for the application?

We begin with a set of microbenchmarks (Section 6.1),
where we seek to examine the benefits of affinitizing actor
communication across a number of parallel connections. We
demonstrate that PARTISAN’s optimizations can provide re-
ductions in latency for workloads containing large objects, or
when deployed in high latency scenarios.

Next, we examine the applicability of these optimizations
on real-world applications (Section 6.2). Using a real-world
distributed programming framework with an example key-
value store, we show a significant reduction in latency under
both high latency scenarios (datacenter-to-datacenter com-
munication) and large object workloads through the use of a
combination of optimizations: parallelism, named channels,
and affinitized scheduling.

Finally, we explore the selection of the overlay on scaling
to larger clusters (Section 6.3). We demonstrate that we can
scale to order-of-magnitude larger clusters while maintaining
the same application semantics by specializing the overlay at
runtime to the application.

6.1 Microbenchmarks
To evaluate the optimizations in PARTISAN around latency
reduction (RQ1), we set out to answer the following questions:
(i) what is the effect of affinitizing actors; (ii) how does one
know how many parallel connections to use when affinitizing
actors; (iii) does affinitized parallelism benefit workloads in
high latency scenarios; and (iv) does affinitized parallelism
benefit workloads with large object sizes? We present a set of
microbenchmarks that address each of these questions.

Experimental Setup. For the microbenchmarks, we used
a single Linux virtual machine with 16 vCPUs with 64 GB of
memory. On this machine, we ran two instances of the Erlang
VM that communicate with one another using TCP with either
a simulated RTT latency of 1ms (RTT within a single AWS
availability zone) or 20ms (RTT between two availability
zones in the same AWS region.) A single Linux VM is used
for hosting both instances of the Erlang VM to ensure no

interference from the external network and to guarantee a
fixed latency during the duration of the experiment. This
virtual machine is purposely kept underloaded, as to not see
the effects of resource contention inside the Linux VM on
latency. Each Erlang VM is configured to run 16 schedulers
with kernel polling enabled.

Each of the microbenchmarks runs multiple configurations
of PARTISAN under both increasing latency and payload size,
with a fixed number of 10,000 messages per actor, per ex-
periment. We consider PARTISAN with parallelism disabled,
PARTISAN with parallelism, and PARTISAN with affinitized
parallelism. We do not consider named channels in the mi-
crobenchmarks, as named channels and affinitized parallelism
serve the same function: partitioning communication across a
number of TCP connections either automatically or by using
a user-specified partitioning key.

At the start of each experiment, N actors are spawned on
each of two instances of the Erlang VM (unless otherwise
specified, as in Figure 2), based on the desired concurrency
level. Each actor will send a single message to an actor on the
other node and wait for acknowledgement before proceeding.
Experiments were run using the full-mesh overlay, but the
optimizations are implemented for all overlays. Latency is
reported as the time to send a single message from the source
to the destination.

Results. We start by showing a baseline configuration of
Distributed Erlang compared with PARTISAN in Figure 1. Our
results show that leveraging additional connections and affini-
tizing communication increases performance regardless of
concurrency. With 128 actors, 512KB payload, and 1ms RTT,
PARTISAN with affinitized parallelism performs 1.69x better
than Distributed Erlang. Considering parallelism, but with-
out affinity, yields a 1.90x performance improvement. With a
uniform workload and without the network as a bottleneck,
affinitized scheduling yields a performance benefit over Dis-
tributed Erlang, but introduces a slight performance penalty
when compared to purely random scheduling.

In Figure 1, the number of parallel connections is specified
as 16; however, picking this number is not necessarily trivial!
Figure 2 shows the effects on outliers based on the number of
connections the system needs to maintain to its peers. Here,
we demonstrate that 16 connections is a good choice for
connections (and, the number selected as our best case in all
experiments.) But why 16? 16 is selected using the heuristic
that each Erlang VM is running 16 schedulers, one mapped

USENIX Association 2019 USENIX Annual Technical Conference 69

Figure 1: Performance of Distributed Erlang and PARTI-
SAN broken out by optimization.

Figure 2: Effects of scaling connections with the number
of actors on outliers.

Figure 3: Performance of Distributed Erlang and PAR-
TISAN broken out by optimization under a high latency
workload: round trip time between actors is set at 20ms,
object size is set at 512KB.

Figure 4: Performance of Distributed Erlang and PARTI-
SAN broken out by optimization under a large payload
workload: round trip time between actors is set at 1ms,
object size is set at 8MB.

to a particular vCPU, and when the system needs to maintain
more connections than available schedulers, context switching
penalties manifest themselves as outliers (shown in Figure 2).

Focusing on these outliers, we might ask how bad does it
get? With 128 actors, 512KB payload, and 1ms RTT, moving
from 16 connections to 128 connections increases outliers
from a max value of 176ms to 1791ms, a 10.17x increase!

In Figure 3, we turn our attention to the question of net-
work conditions. In our first experiment (Figure 1), we chose
a 1ms RTT to explore performance in a scenario where we
can assume our application is running within a single AWS

availability zone. But what happens if we don’t have such fa-
vorable network conditions? What if our application is spread
out between two AWS availability zones and suffers from
RTTs closer to 20ms instead? Figure 3 shows the effects of
running our earlier experiment this time with a 20ms RTT
latency between actors located on different nodes. As we can
see, as the latency increases, the system can take advantage of
more communications channels to parallelize inter-actor com-
munication on the network. With 128 actors, 512KB payload,
and 20ms RTT, PARTISAN with parallelism performs 10.92x
better than Distributed Erlang. By affinitizing parallelism, per-

70 2019 USENIX Annual Technical Conference USENIX Association

formance increases to 13.50x better than Distributed Erlang.
In the Erlang community, large message sizes are not un-

common. Consider again Riak, the distributed key-value store
which could contain user-stored and arbitrary-sized data. An
Erlang message then could contain a user-provided piece
of data megabytes in size. However, it’s well-known in the
Erlang community that Distributed Erlang doesn’t handle
large message sizes well. In fact, the Riak documentation
suggests to avoid storing objects larger than 1-2MB due to
the performance degradation that occurs due to Distributed
Erlang [5,15]. Cognizant of this, we turn our attention to ques-
tion of how large payload size affects performance in PAR-
TISAN. Can PARTISAN overcome some of the performance
issues faced by Distributed Erlang with large payloads?

Figure 4 explores the effects of increasing payload size
on PARTISAN as compared to Distributed Erlang. Keeping
in line with the community-observed limits of Distributed
Erlang, we vary the message size from 512kb (below the 1MB
performance degradation threshold) to 8MB (far above the
1MB performance degradation threshold). With 128 actors,
8MB payload, and 1ms RTT, PARTISAN with parallelism
performs 1.20x better than Distributed Erlang! By affinitizing
parallelism, performance increases to 2.63x.

Discussion. So far, we’ve seen that PARTISAN outperforms
Distributed Erlang in all of our microbenchmarks. We’ve
shown that the collection of optimizations made available to
Erlang applications by PARTISAN (that is, leveraging addi-
tional connections, and affinitizing work to those connections
based on the type of message and the node that the message
is being sent to), can drastically improve performance by
reducing latency, in some cases by over 30x.

But what does this mean practically? From these experi-
ments, it’s clear that Distributed Erlang was designed when
the sort of applications being written was limited as compared
to what we would like to write today; i.e., applications that
send small payloads within a single data center.

As we have shown in these experiments, PARTISAN goes
beyond this, and seems to be well-suited for enabling new
types of applications, such as: (i) applications that operate
with large data-centric workloads; (ii) applications that oper-
ate at a geo-distributed scale; (iii) the combination of both.

6.2 Evaluation: Latency Reduction in Riak
To determine the applicability of these optimizations to real-
world programs (RQ2), we asked the following questions:
(i) is it possible to modify existing application code to take
advantage of the PARTISAN optimizations through the use of
PARTISAN’s API, and (ii) do these optimizations result in the
reduction of latency for these programs?

To answer these, we ported the distributed systems frame-
work, Riak Core, to PARTISAN and built two example applica-
tions: (i) a simple echo service – an application that’s designed
to only be bound by the speed of the actor receiving messages
and the network itself; and (ii) a memory-based key-value

store that operates using read/write quorums – more represen-
tative of a workload where more data is being transmitted and
more CPU work has to occur.

6.2.1 Background: Riak Core
Riak Core is a distributed programming framework written
in Erlang and based on the Amazon Dynamo [13] system
that influenced the design of the distributed database Riak,
Apache Cassandra, and the distributed actor framework Akka.

In Riak Core, a distributed hash table is used to partition a
hash space across a cluster of nodes. These virtual nodes—the
division of the hash space into N partitions—are claimed by a
node in the cluster, and the resulting ownership is stored in a
data structure known as the ring that is periodically gossiped
to all nodes in the cluster. Requests for a given key are routed
to a node in the cluster based on the current partitioning of
virtual nodes to cluster nodes in the ring structure using con-
sistent hashing, which minimizes the impact of reshuffling
when nodes join and leave the cluster. Background processes
are used for cluster maintenance; ownership handoff, (trans-
ferring virtual node ownership) metadata anti-entropy (an
internal KVS for configuration metadata) and ring gossip (in-
formation about the cluster’s virtual node to node mapping.)

In our experimental configuration we use 1,024 virtual
nodes, the largest possible ring configuration for Riak Core.
This ring size requires the largest amount of system resources
– we account for this in our experiment – however, provides
the most fine-grained partitioning for individual requests.

6.2.2 Modifications to Riak Core to Support PARTISAN

To perform our evaluation of PARTISAN using Riak Core, it
was necessary to modify the existing application to take ad-
vantage of PARTISAN’s APIs. Our changeset to Riak Core in
order to use PARTISAN instead of Distributed Erlang is fairly
minimal: 290 additions and 42 removals including additional
logging for debugging, additional tests, and configuration.

The authors of Riak Core already realized that request
traffic and background traffic could be problematic, so one
mechanism inside of Riak Core—ownership handoff, respon-
sible for moving data between virtual nodes when partitioning
changes—already manages it’s own set of connections. This
mechanism alone contains roughly 900 LOC for connection
maintenance – code that could be eliminated and replaced
with calls to the PARTISAN API.

6.2.3 Echo Service
Experimental Setup. Our first application is a simple echo
service, implemented on a three node Riak Core cluster. For
each request, we generate a binary object, uniformly select a
partition to send the request to, and wait for a reply containing
the original message before issuing the next request. For each
request, we draw a key from a uniform distribution over 1,024
keys – matching the ring size of the cluster – and run the
key through Riak Core’s consistent hashing algorithm for
placement of the request. Requests originate at all of the nodes

USENIX Association 2019 USENIX Annual Technical Conference 71

Figure 5: Performance of Distributed Erlang and PARTI-
SAN with affinitized parallelism using the echo service /
low latency workload: round trip time between actors is
set at 1ms, object size varies 1, 512, and 8192KB.

Figure 6: Performance of Distributed Erlang and PARTI-
SAN with affinitized parallelism using the echo service /
high latency workload: round trip time between actors is
set at 20ms, object size varies 1, 512, and 8192KB.

Figure 7: Performance of Distributed Erlang and PAR-
TISAN with affinitized parallelism using the KVS / low
latency workload: round trip time between actors is set at
1ms, object size varies 1, 512, and 8192KB.

Figure 8: Performance of Distributed Erlang and PAR-
TISAN with affinitized parallelism using the KVS / high
latency workload: round trip time between actors is set at
20ms, object size varies 1, 512, and 8192KB.

in the cluster, and based on the key placement, are routed to
the node responsible for handling the request. To ensure we
can compare the results between runs, we wait for the cluster
to stabilize before beginning the experiment.

Binary objects are generated for three payload sizes, 1KB,
512KB and 8192KB. Concurrency is increased during the
test execution and parallelism is configured at 16. We test two
latency configurations: 1ms, shown in Figure 5, and 20ms,
shown in Figure 6. We run a fixed duration of 120 seconds.

Results. Figure 5 demonstrates that with 128 actors, 1ms
RTT, and large payloads (8MB), PARTISAN is 2.84x faster
than Distributed Erlang. With medium (512KB) and small
payloads (1KB), PARTISAN is on par with Distributed Erlang
(0.95x - 1.00x).

Figure 6 demonstrates that with 128 actors, 20ms RTT,
and larger payloads (8MB), PARTISAN is 38.07x faster than

Distributed Erlang (which achieves only 5 ops/second before
reaching peak throughput). With medium payloads (512KB),
PARTISAN is 7.25x faster than Distributed Erlang. With small
payloads (1KB), PARTISAN is on par with Distributed Erlang
(0.99x).

6.2.4 Key-Value Store
Experimental Setup. Our second application is a memory-
based key-value store, similar to the Riak database, imple-
mented on a three node Riak Core cluster.

Each key is hashed and mapped to a virtual node using the
ring structure that is gossiped in the cluster. The virtual node
that the key is hashed to, along with that virtual nodes’ two
clockwise neighbors on the ring, represent the three virtual
nodes that contain the three replicas for the data item. Each
request (either a get operation or put operation) to the key-
value store uses a quorum request pattern, where requests are

72 2019 USENIX Annual Technical Conference USENIX Association

made to these three replicas, and the response is returned to
the user when a majority (2 out of 3) replicas reply.

This pattern involves multiple nodes in the request path,
and each partition simulates a 1ms storage delay in the request
path. We reuse the aforementioned benchmarking strategy:
test execution is fixed at 120 seconds.

For each request, we draw a key from a normal distribu-
tion across 10,000 keys and run the key through Riak Core’s
consistent hashing algorithm for placement. The consistent
hashing placement algorithm aims for uniform partitioning of
keys across the cluster. Requests originate at all of the nodes
in the cluster, and based on the key placement, are routed to
the node(s) responsible for handling the request. To ensure we
can compare the results between runs, we wait for the cluster
to stabilize before beginning the experiment. We use a 10:1
read/write ratio for the experimental workload. Concurrency
is varied in our experiments (x-axis) and parallelism is con-
figured at 16. We test two latency configurations: 1ms, shown
in Figure 7, and 20ms, shown in Figure 8.

Results. Figure 7 demonstrates that with 128 actors, 1ms
RTT, and both medium (512KB) and small (1KB) payloads,
PARTISAN performs on par with Distributed Erlang (0.99x-
1.00x). With larger payloads (8MB), PARTISAN is 1.42x faster
than Distributed Erlang.

Figure 8 demonstrates that with 128 actors, 20ms RTT,
and small (1KB) payloads, PARTISAN performs on par with
Distributed Erlang (0.98x). With medium payloads (512KB),
PARTISAN is 1.50x faster than Distributed Erlang. With large
payloads (8MB), PARTISAN far exceeds the performance of
Distributed Erlang, achieving 102 ops/second; Distributed
Erlang only completes 1 operation during the entire 120s
execution.

6.2.5 Discussion
As we have shown in these experiments, PARTISAN is not only
well-suited as a replacement for Distributed Erlang, given its
similar performance under workloads that Distributed Erlang
was designed for, but PARTISAN also enables new classes of
applications in distributed actor frameworks. Our experiments
have shown increased throughput in applications with large
data-centric workloads: an example of this would be the Riak
distributed database without 1MB storage limitations.

6.3 Evaluation: Improving Scalability in Lasp
In our previous experiment on latency reduction in Riak Core,
we demonstrated optimizations for latency reduction in a dis-
tributed database that communicates with all of the nodes in
the cluster. This is one example of an application that benefits
from the full-mesh overlay. However, not all applications ben-
efit from, nor require, the full-mesh model that is default case
in Distributed Erlang. In this section, we address the question
of whether or not an application can benefit from selection of
the overlay at runtime (RQ3): specifically, the client-server
and peer-to-peer overlays.

Figure 9: Comparison of data transmission for Lasp deployed
on the client-server and peer-to-peer overlays for different
cluster sizes (32 to 1024 nodes).

In order to understand the effect of overlay on scalability,
we focus on how many nodes we can scale our application to
under each overlay for an advertisement counter application
implemented with Lasp.

6.3.1 Lasp
Lasp [22] is a programming framework designed for large
scale coordination-free programming. Applications in Lasp
are written using shared state; this shared state is stored in
an underlying key-value store and is replicated between all
nodes. Applications modify their own replica and propagate
the effects of their changes to their peers. Lasp ensures that ap-
plications converge to the same result on every node through
the use of data structures known as Conflict-Free Replicated
Data Types [29], combined with monotone programming [3].

For our Lasp evaluation, the application is a simulated ad-
vertisement counter, modeled after the Rovio counter scenario
for Angry Birds [22]. In this application, each client keeps a
replica of a distributed counter that is incremented every time
an advertisement is displayed to the user and whose state is
periodically propagated to other peers in the system. When a
certain number of impressions is reached, the advertisement
is disabled and no longer displayed to the user.

The distributed counter used was a particular type of CRDT:
a Grow-Only Counter (G-Counter). The G-Counter maps
node identifiers at each of the clients to a monotonically in-
creasing counter. Clients increment their position in the map
and when merging state propagated from other nodes in the
system, the pair-wise maximum is taken for each component
in the map. To determine when an advertisement can be dis-
abled, a lower bound is checked according to the sum of the
components in the map: this represents a lower bound on the
total number of times an advertisement has been displayed.

Experimental Setup. For this evaluation, a total of 70
m3.2xlarge Amazon EC2 instances in the same region and
availability zone. Mesos [16], is used to subdivide each of
these machines into smaller, fully-isolated machines. Each

USENIX Association 2019 USENIX Annual Technical Conference 73

container in Mesos represents a single Lasp node that com-
municates with other nodes in the cluster using PARTISAN.

The increment interval for each counter was fixed at 10s,
and the propagation interval for the counter was fixed at 5s.
The total number of impressions was configured to ensure that
the experiment would run for 30 minutes under all configura-
tions. The evaluation is performed on both the client-server
and peer-to-peer overlays for different cluster sizes, ranging
from 32 all the way up to 1,024 node clusters. For both over-
lays, the system propagates the full state of the counter to the
node’s peers at each propagation interval.

Note that since the Rovio advertisement counter scenario
was designed for mobile applications, we do not run the full-
mesh topology because it would be unrealistic. That is, in
the context of mobile apps, clients would not connect to all
other nodes, nor will they have knowledge of who all of the
clients in the system are. Rather, either mobile apps will com-
municate with some number of nearby peers (peer-to-peer) or
they will communicate through a server (client-server). Client-
server also serves as the standard model of deploying mobile
applications today. Thus, we designed our experiments to re-
flect this—we examine client-server and peer-to-peer overlays
for this application in our experiments.

Results. Figure 9 presents the total data transmission re-
quired for the experiment to finish as we scale the size of
the cluster from 32 to 1024 nodes. For smaller clusters of
nodes, client-server is the more efficient overlay in terms of
the amount of data that must be transmitted to finish the ex-
periment. However, this improved efficiency comes at a cost:
the client-server configuration is unable to scale beyond 256
nodes. More specifically, the experiment fails to complete
because of a crash failure of the server. This crash failure oc-
curs because of unbounded message queues: when the server
is unable to process the incoming messages from the clients
quickly enough, the Erlang VM allocates all available memory
for storage of the message queue. This unbounded allocation
results in termination of the Erlang by the Linux OOM killer
once the instance runs out of available memory.

Peer-to-peer is more resilient in the face of a node failure
allowing it to support larger clusters of nodes—up to 1024!
However, peer-to-peer is less efficient due to this—the redun-
dancy of communication links used by the overlay causes it
to transmit more data in order to complete the experiments.

Discussion. Perhaps the most interesting takeaway from
the results of this real-world large-scale experiment is that
the experiment was even possible at all with Erlang. As Dis-
tributed Erlang permits one to only use a full-mesh overlay,
it’s possible that the previous results observed by Ericsson [1]
on the maximum size of Erlang clusters–only 200 nodes–are
due to this full-mesh-only restriction.

This experiment suggests that PARTISAN may enable the
development of new applications with actors systems that
have not been previously possible by enabling the application

developer to, at runtime, change the pattern of communication
between nodes, without altering application semantics. Per-
haps the lack of mobile applications or even IoT applications
written using distributed actor systems is a symptom of the
full-mesh-only restriction.

7 Related Work
Head-of-line blocking is a well-known issue in the systems
and networking community, especially in systems that use
multiplexed connections. Facebook’s TAO [9] relies on multi-
plexed connections but allows out-of-order responses to pre-
vent head-of-line blocking issues. Riak CS [7], an S3-API
compatible object storage system build on Riak, arbitrarily
chunks data into 1MB segments to prevent head-of-line block-
ing. Geo-replicated Riak [6] contains an ad hoc implementa-
tion of node-to-node messaging to avoid Distributed Erlang at
cross-region latencies. Distributed Erlang now includes a fea-
ture for arbitrarily segmenting messages into smaller chunks
to reduce the impact of head-of-line blocking [17].

Ghaffari et al. [15] identified several factors limiting Er-
lang’s scalability: (i) increasing payload size and (ii) head-
of-line blocking with Erlang’s RPC mechanism – two of the
limiting factors in Riak 1.1.1’s ≈ 60 node limit on scalabil-
ity. Chechina et al. [11] proposed partitioning the graph of
nodes into subgraphs and using supernodes for connecting
the groups, avoiding the problems of full-mesh connectivity.

8 Conclusion
We presented PARTISAN, an alternative runtime system for
improved scalability and reduced latency in actor applications.
PARTISAN provides higher scalability by allowing the applica-
tion developer to specify the network overlay used at runtime
without changing application semantics, thereby specializ-
ing the network communication patterns to the application.
PARTISAN reduces message latency through a combination
of three predominately automatic optimizations: parallelism,
named channels, and affinitized scheduling. We implemented
PARTISAN in Erlang and showed that PARTISAN achieves up
to an order of magnitude increase in the number of nodes the
system can scale to through runtime overlay selection, up to
a 38.07x increase in throughput, and up to a 13.5x reduction
in latency over Distributed Erlang.

Acknowledgments
We would like to thank Scott Fritchie, Zeeshan Lakhani, Frank
McSherry, Jon Meredith, Andrew Stone, Andrew Thompson,
the anonymous reviewers, and our shepherd Ryan Stutsman,
for their valuable feedback on this paper.

Availability
PARTISAN is available at https://github.com/
lasp-lang/partisan. Instructions for reproducing our re-
sults are available at https://github.com/cmeiklejohn/
partisan-usenix-atc-2019.

74 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/lasp-lang/partisan
https://github.com/lasp-lang/partisan
https://github.com/cmeiklejohn/partisan-usenix-atc-2019
https://github.com/cmeiklejohn/partisan-usenix-atc-2019

References

[1] Ericsson AB. Personal communication.

[2] Octavo Labs AG. Vernemq. https://vernemq.com.
Accessed: 2018-02-03.

[3] Peter Alvaro, Neil Conway, Joseph M Hellerstein, and
William R Marczak. Consistency analysis in bloom: a
calm and collected approach. In CIDR, pages 249–260,
2011.

[4] Apache. Couchdb. http://couchdb.apache.org. Ac-
cessed: 2018-02-03.

[5] Basho Technologies, Inc. Developing with Riak
KV. https://docs.basho.com/riak/kv/2.1.1/
developing/faq/. Accessed: 2019-01-19.

[6] Basho Technologies, Inc. Riak. https://github.com/
basho/riak. Accessed: 2018-02-03.

[7] Basho Technologies, Inc. Riak cs. https://github.
com/basho/riak_cs. Accessed: 2018-02-03.

[8] Philip A Bernstein, Sebastian Burckhardt, Sergey Bykov,
Natacha Crooks, Jose M Faleiro, Gabriel Kliot, Alok
Kumbhare, Muntasir Raihan Rahman, Vivek Shah, Adri-
ana Szekeres, et al. Geo-distribution of actor-based
services. Proceedings of the ACM on Programming
Languages, 1(OOPSLA):107, 2017.

[9] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry C Li, et al. Tao: Face-
book’s distributed data store for the social graph. In
USENIX Annual Technical Conference, pages 49–60,
2013.

[10] Sergey Bykov, Alan Geller, Gabriel Kliot, James R
Larus, Ravi Pandya, and Jorgen Thelin. Orleans: cloud
computing for everyone. In Proceedings of the 2nd ACM
Symposium on Cloud Computing, page 16. ACM, 2011.

[11] Natalia Chechina, Phil Trinder, Amir Ghaffari, Rickard
Green, Kenneth Lundin, and Robert Virding. The de-
sign of scalable distributed erlang. In Proceedings of
the Symposium on Implementation and Application of
Functional Languages, Oxford, UK, page 85, 2012.

[12] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Communications of the ACM, 56(2):74–80, 2013.

[13] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: amazon’s highly available
key-value store. In ACM SIGOPS operating systems
review, volume 41, pages 205–220. ACM, 2007.

[14] Malcolm Dowse. Erlang and First-Person
Shooters. http://www.erlang-factory.
com/upload/presentations/395/
ErlangandFirst-PersonShooters.pdf. Accessed:
2018-09-26.

[15] Amir Ghaffari. Investigating the scalability limits of dis-
tributed erlang. In Proceedings of the Thirteenth ACM
SIGPLAN workshop on Erlang, pages 43–49. ACM,
2014.

[16] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D Joseph, Randy H Katz, Scott
Shenker, and Ion Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In NSDI,
volume 11, pages 22–22, 2011.

[17] Kenneth Lundin. Erlang latest news. http://erlang.
org/workshop/2018/. Erlang Workshop 2018.

[18] Rusty Klophaus. Riak core: Building distributed applica-
tions without shared state. In ACM SIGPLAN Commer-
cial Users of Functional Programming, page 14. ACM,
2010.

[19] Joao Leitao, Jose Pereira, and Luis Rodrigues. Epidemic
broadcast trees. In Reliable Distributed Systems, 2007.
SRDS 2007. 26th IEEE International Symposium on,
pages 301–310. IEEE, 2007.

[20] Joao Leitao, Jose Pereira, and Luis Rodrigues. Hy-
parview: A membership protocol for reliable gossip-
based broadcast. In Dependable Systems and Networks,
2007. DSN’07. 37th Annual IEEE/IFIP International
Conference on, pages 419–429. IEEE, 2007.

[21] Lightbend. Akka cluster documentation. https://doc.
akka.io/docs/akka/2.5/index-cluster.html. Ac-
cessed: 2018-02-03.

[22] Christopher Meiklejohn and Peter Van Roy. Lasp: A lan-
guage for distributed, coordination-free programming.
In Proceedings of the 17th International Symposium on
Principles and Practice of Declarative Programming,
pages 184–195. ACM, 2015.

[23] Netflix. Atlas. https://github.com/Netflix/atlas.
Accessed: 2018-10-01.

[24] Andrew Newell, Gabriel Kliot, Ishai Menache, Aditya
Gopalan, Soramichi Akiyama, and Mark Silberstein. Op-
timizing distributed actor systems for dynamic interac-
tive services. In Proceedings of the Eleventh European
Conference on Computer Systems, page 38. ACM, 2016.

[25] Pivotal. Rabbitmq. https://www.rabbitmq.com. Ac-
cessed: 2018-02-03.

USENIX Association 2019 USENIX Annual Technical Conference 75

https://vernemq.com
http://couchdb.apache.org
https://docs.basho.com/riak/kv/2.1.1/developing/faq/
https://docs.basho.com/riak/kv/2.1.1/developing/faq/
https://github.com/basho/riak
https://github.com/basho/riak
https://github.com/basho/riak_cs
https://github.com/basho/riak_cs
http://www.erlang-factory.com/upload/presentations/395/ErlangandFirst-PersonShooters.pdf
http://www.erlang-factory.com/upload/presentations/395/ErlangandFirst-PersonShooters.pdf
http://www.erlang-factory.com/upload/presentations/395/ErlangandFirst-PersonShooters.pdf
http://erlang.org/workshop/2018/
http://erlang.org/workshop/2018/
https://doc.akka.io/docs/akka/2.5/index-cluster.html
https://doc.akka.io/docs/akka/2.5/index-cluster.html
https://github.com/Netflix/atlas
https://www.rabbitmq.com

[26] Venugopalan Ramasubramanian, Thomas L Rodeheffer,
Douglas B Terry, Meg Walraed-Sullivan, Ted Wobber,
Catherine C Marshall, and Amin Vahdat. Cimbiosys: A
platform for content-based partial replication. In Pro-
ceedings of the 6th USENIX symposium on Networked
systems design and implementation, pages 261–276,
2009.

[27] Riot Games. Chat Service Architecture: Persis-
tence. https://engineering.riotgames.com/
news/chat-service-architecture-persistence.
Accessed: 2018-09-26.

[28] Rodrigo Rodrigues and Peter Druschel. Peer-to-peer
systems. Communications of the ACM, 53(10):72–82,
2010.

[29] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and
Marek Zawirski. Conflict-free replicated data types. In
Symposium on Self-Stabilizing Systems, pages 386–400.
Springer, 2011.

[30] Randall Stewart and Chris Metz. Sctp: new transport
protocol for tcp/ip. IEEE Internet Computing, (6):64–69,
2001.

[31] Claes Wikström. Distributed programming in erlang. In
In PASCO’94-First International Symposium on Parallel
Symbolic Computation. Citeseer, 1994.

76 2019 USENIX Annual Technical Conference USENIX Association

https://engineering.riotgames.com/news/chat-service-architecture-persistence
https://engineering.riotgames.com/news/chat-service-architecture-persistence

Unleashing the Power of Learning: An Enhanced Learning-Based Approach for
Dynamic Binary Translation

Changheng Song†, Wenwen Wang‡, Pen-Chung Yew‡, Antonia Zhai‡, and Weihua Zhang†

†Software School, Fudan University
†Shanghai Key Laboratory of Data Science, Fudan University

‡Department of Computer Science and Engineering, University of Minnesota, Twin Cities
†{17212010032, zhangweihua}@fudan.edu.cn, ‡{wang6495, yew, zhai}@umn.edu

Abstract
Dynamic binary translation (DBT) is a key system tech-

nology that enables many important system applications such
as system virtualization and emulation. To achieve good per-
formance, it is important for a DBT system to be equipped
with high-quality translation rules. However, most translation
rules in existing DBT systems are created manually with high
engineering efforts and poor quality. To solve this problem, a
learning-based approach was recently proposed to automati-
cally learn semantically-equivalent translation rules, and sym-
bolic verification is used to prove the semantic equivalence
of such rules. But, they still suffer from some shortcomings.

In this paper, we first give an in-depth analysis on the con-
straints of prior learning-based methods and observe that the
equivalence requirements are often unduly restrictive. It ex-
cludes many potentially high-quality rule candidates from
being included and applied. Based on this observation, we
propose an enhanced learning-based approach that relaxes
such equivalence requirements but supplements them with
constraining conditions to make them semantically equivalent
when such rules are applied. Experimental results on SPEC
CINT2006 show that the proposed approach can improve the
dynamic coverage of the translation from 55.7% to 69.1%
and the static coverage from 52.2% to 61.8%, compared to
the original approach. Moreover, up to 1.65X performance
speedup with an average of 1.19X are observed.

1 Introduction

Dynamic binary translation (DBT) is a key enabling tech-
nology for many critical system applications such as system
virtualization and emulation [20, 28], whole program/system
analysis [6,13], software development and debugging [14], se-
curity vulnerability detection and defense [15, 17], computer
architecture simulation [22, 27, 29], and mobile computation
offloading [26]. There have been many widely-used DBT
systems, such as Pin [18], Valgrind [21] and QEMU [2].

In general, a DBT system takes an executable binary code
in one instruction set architecture (called guest ISA) and

dynamically translates it into the binary code in another in-
struction set architecture (called host ISA). The translation
process is mostly driven by translation rules that translate
guest instructions into a sequence of semantically-equivalent
host instructions [23].

For a DBT system, its performance is dominated by the
quality of the translated host binary code [25]. Therefore,
it is very important for a DBT system to be equipped with
high-quality translation rules. However, due to the complex-
ity and opacity of modern ISAs, it is difficult to manually
construct such high-quality translation rules as it poses a
significant engineering challenge. Even worse, to support re-
targetable DBTs (from multiple guest ISAs into multiple host
ISAs) in the same framework, a set of pseudo-instructions
are commonly used as their internal representations [2]. As
the execution time is directly proportionate to the number
of host instructions executed, such a multiplying effect has a
significant impact on the overall DBT performance.

To improve the quality of translation rules and reduce en-
gineering efforts, a learning-based approach [23] is recently
proposed to learn automatically binary translation rules. Since
the translation rules are learned from the optimized binary
codes generated by the compiler, this approach is capable of
yielding higher quality translation rules than existing manual
schemes. Moreover, the whole learning process can be fully
automated without manual intervention. Although the above
approach is attractive, it still suffers from some fundamental
limitations. That is, a translation rule can be harvested (i.e.,
learned) only if the guest and the host binary code that cor-
respond to the same program source statement(s) are strictly
semantically equivalent. This is enforced through a symbolic
verification process.

On the surface, this equivalence verification process is nec-
essary and appropriate because it guarantees the correctness
of the learned rules. However, further investigation reveals
that this equivalence requirement is often unduly restrictive. It
excludes many potentially high-quality rule candidates from
being harvested and applied. In particular, such restrictions
usually keep architecture-specific instructions in guest and/or

USENIX Association 2019 USENIX Annual Technical Conference 77

host ISAs from being included for more efficient translation
as they are mostly architecturally specific, and thus inherently
different and more challenging to prove semantic equivalence.

To overcome this limitation, this paper presents an en-
hanced learning-based approach that relaxes such restrictions
and allows more translation rules to be harvested and ap-
plied. More specifically, it purposely relaxes the requirements
of semantic equivalence and allows semantic discrepancies
between the guest and host instructions to exist in the trans-
lation rules, e.g., different condition codes or the different
number of operands in matching guest and host instructions.
Symbolic verification process is no longer just to check the
strict semantic equivalence between the matching guest and
host instructions, but also to identify the specific semantic
discrepancies between them that can be used during the rule
application phase to verify whether such discrepancies either
will not cause ill effect, or are satisfied in the context of the
rules being applied (for more details see Section 4). We call
such semantic equivalence in the translation rules constrained
semantic equivalence as the specific semantic discrepancies
of the translation rules become the constraining conditions
for such rules to be safely applied. This requires some run-
time program analysis (mostly in a very limited scope) during
the rule application phase, which usually incurs very small
overhead. Those with very complicated constraining condi-
tions that require extensive runtime program analysis will be
discarded.

To demonstrate the feasibility and the benefit of such
constrained-equivalent translation rules, we have imple-
mented a prototype based on the proposed approach. The
prototype includes an enhanced learning framework and a
DBT system that applies the constrained-equivalent trans-
lation rules to generate host binary code. We evaluate the
implemented prototype using SPEC CINT2006. Experimen-
tal result shows that the proposed approach can significantly
improve the harvest rate of the learning process from 20.3%
to 25.1% and dynamic coverage from 55.7% to 69.1% while
static coverage from 52.2% to 61.8%, compared to the orig-
inal learning approach in [23]. Moreover, no degradation is
observed for the learning efficiency, i.e., around 2 seconds to
yield a translation rule, which is the same as the original learn-
ing process. After applying the enhanced translation rules, we
achieve up to 1.65X performance speedup with an average of
1.19X compared to the original approach.

In summary, this paper makes the following contributions:

• We propose an enhanced learning-based approach that
can harvest and apply constrained-equivalent translation
rules discarded by the original approach, and allows DBT
systems to generate more efficient host binary code.

• We implement the proposed learning-based approach in
a prototype, which includes a learning framework based
on LLVM and a DBT system extended from QEMU to
accept the constrained-equivalent translation rules.

• We conduct some experiments to evaluate the proposed
learning-based approach. Experimental results on SPEC
CINT2006 shows that our approach can achieve up to
1.65X speedup with an average of 1.19X compared to
the original learning approach.

The rest of this paper is organized as follows. Section 2
presents some background of the original non-constrained
semantically-equivalent learning-based approach. In Sec-
tion 3, we identify some technical challenges in learning and
applying constrained-equivalent translation rules. Section 4
presents the design issues of our enhanced learning-based
approach. In Section 5, we describe some implementation
details of the prototype and evaluate the proposed approach
and show some experimental results. Section 6 presents some
related work and Section 7 concludes the paper.

2 Background

In this section, we introduce some background information
on how a DBT and a learning-based approach such as the one
proposed in [23] work.

2.1 Dynamic Binary Translation (DBT)
Typically, a DBT system adopts a guest basic block (or block
for short) as the translation unit to translate guest binary code
into host binary code. A basic block comprises a sequence of
instructions with only one entry and one exit, and thus when-
ever the first instruction of a basic block is executed, the rest
of the instructions in this block will be executed exactly once
in order. It is worth noting that, due to the semantic differ-
ences between the guest and host ISAs, one guest block may
be translated into multiple host blocks by the DBT system.

To translate a guest basic block, the DBT system firstly
disassembles the guest binaries to obtain guest assembly in-
structions. Then, it tries to match the guest instructions with
available translation rules. After a matched translation rule
is found, the corresponding guest instructions are translated
into host instructions as specified in the translation rule. This
process could be iterated multiple times until all instructions
in the guest block are translated. Finally, the generated host
instructions are assembled into host binaries and executed
directly on host machines. Figure 1 shows an example of such
a translation process, where ARM is the guest ISA, and x86 is
the host ISA. In this example, two translation rules are applied
to translate two ARM instructions into two x86 instructions,
respectively.

To mitigate the performance overhead incurred during the
translation process, especially for short-running guest applica-
tions, the translated host binary code is stored into a memory
region called code cache, and reused in the later execution.
After all instructions in a guest block are translated, the execu-
tion flow of the DBT system is transferred to the code cache.

78 2019 USENIX Annual Technical Conference USENIX Association

Translation Rule

1

Guest (ARM)

add reg0, reg0, reg1

Host (x86)

addl reg1, reg0

2

Guest (ARM)

sub reg0, reg0, #imm0

Host (x86)

subl $imm0, reg0

... ...

e0811000

e2411001

...

add r1, r1, r0

sub r1, r1, #1

...

addl %eax, %edx

subl $1, %edx

...

ARM

instructions

ARM

binaries

x86

instructions

Disasm

Translation

01 c2

83 ea 01

...

x86

binaries

Asm

Figure 1: Dynamic binary translation from ARM to x86
driven by manually-constructed translation rules. Here, for
simplicity, we assume the guest registers r0 and r1 are emu-
lated using the host registers eax and edx, respectively.

A hash table is employed to establish the mapping between
the guest binary code and the corresponding translated host
binary code in the code cache. Each time a guest block is
encountered, the hash table is looked up to find out whether
there exists a host code in the code cache that corresponds to
this guest block. If yes, the translation process will be skipped,
and the stored host binary code will be executed. Otherwise,
the guest block is translated, and the hash table is updated
with the added translated host binary.

2.2 Learning Translation Rules

As mentioned earlier, the translation process in a DBT system
is mainly directed by translation rules, which also determine
the quality (i.e., performance) of the translated host binary
code. Therefore, it is vital for a DBT system to have high-
quality translation rules for better performance. However, in
practice, it is a significant engineering challenge to develop
high-quality translation rules as most translation rules in ex-
isting DBT systems are constructed manually by developers.
Moreover, modern ISAs are often documented in obscure
and tediously long manuals. For example, Intel’s manual has
around 1500 pages for the x86 ISA. It requires substantial
engineering efforts to understand both the guest and the host
ISAs to construct high-quality translation rules.

To solve this problem, a recent approach proposes to auto-
matically learn binary translation rules [23]. More specifically,
this approach uses the same compiler for different ISAs, i.e.,
LLVM-ARM and LLVM-x86, to compile the same source
program. During the compilation process, it extracts binary
translation rules from ARM and x86 binary code that cor-
respond to the same program source statement(s). This is
inspired by the observation that the binary code compiled

Source code

char *e = s + (n - 1);

ARM instruction

add r1, r1, r0

sub r1, r1, #1

x86 instruction

leal -0x1(%edx, %eax), %edx

Guest (ARM)

add reg0, reg0, reg1

sub reg0, reg0, #imm0

Host (x86)

leal -imm0(reg0, reg1), reg0

LLVM-ARM LLVM-x86

A learned

translation

rule

Learning

Figure 2: Automatically learning binary translation rules
during the compilation process of program source code. Com-
pared to the translation rules used in Figure 1, the learned
translation rule can generate more efficient host binary code.

by the same compiler for different ISAs from the same pro-
gram source code should be equivalent in program semantics.
To further enforce such equivalence requirement, a symbolic
verification engine is developed to filter out rule candidates
in which guest and host binary code are not semantically
equivalent.

Figure 2 illustrates an example of the above learning pro-
cess, In this example, the program source statement is com-
piled into two ARM instructions and one x86 instruction by
LLVM-ARM and LLVM-x86, respectively. Using symbolic
execution, we can verify that the guest ARM register r1 and
the host x86 register edx should have the same value assum-
ing the same initial condition. We can thus prove that the
sequence of the two ARM instructions is semantically equiva-
lent to the single x86 instruction in the example. A translation
rule that maps the sequence of the two ARM instructions into
one x86 instruction can then be harvested. Recall the example
in Figure 1. If we use this learned rule to translate the guest
binaries, we only need one host instruction instead of two as
shown in the example, i.e. more efficient host binary code can
be generated.

3 Issues and Challenges

The significance of the above learning approach is two folds.
Firstly, it can automatically learn binary translation rules for
DBT systems with less burden on developers. Secondly, given
that the translation rules are learned directly from binary
code generated by the native compilers, it is more likely that
the harvested translation rules are more optimized than the
translation rules naïvely constructed by hand, as shown in
Figure 2 and Figure 1.

Theoretically, if we keep training such a learning-based

USENIX Association 2019 USENIX Annual Technical Conference 79

Source code

x++;

ARM instruction

ldr r0, [r1, #120]

add r0, r0, #1

str r0, [r1, #120]

x86 instruction

incl 0x78(%eax)

LLVM-ARM LLVM-x86

Discarded

Source code

if (node->pos)

ARM instruction

ldr r1, [r1, #216]

cmp r1, #0

beq #L1

x86 instruction

cmpl $0x0, 0xd8(%eax)

je $L1

LLVM-ARM LLVM-x86

Discarded

(a) (b)

Figure 3: Two examples to demonstrate the limitation of
the learning approach in [23]. These two rule candidates are
discarded because the guest registers r0 in (a) and r1 in (b)
have no equivalent host register.

system with a large number of source programs, we should be
able to harvest a large number of translation rules and apply
them to guest binaries with good coverage. Unfortunately,
after a more thorough study of this approach, we found it
suffers from a fundamental limitation that prohibits it from
harvesting many high-quality translation rules. In this section,
we explain in more details such limitations and identify some
technical challenges if we want to overcome them.

A Fundamental Limitation. To guarantee the correctness
of the learned translation rules, it employs a symbolic veri-
fication engine to check the exact semantic equivalence be-
tween the guest and host binary code sequences. More specif-
ically, the semantic equivalence is verified in three aspects
that include matching register operands, memory operands
and branch conditions. More details can be found in [23].

If the verification results show that the guest and host binary
code sequences are not strictly equivalent, the rule candidate
is discarded and no translation rule is harvested. Undoubtedly,
such a verification process is necessary and appropriate. How-
ever, by a more detailed study on the discarded rule candidates,
we found that the requirement of exact semantic equivalence
is too restrictive. Many high-quality rule candidates are forced
to be discarded, especially those guest and host binary code
sequences that are more architecturally specific and their ISAs
are significantly different, such as ARM (a reduced instruction
set computer (RISC)) and Intel x86 (a complex instruction
set computer (CISC)) in our example.

Figure 3 shows two examples of this limitation. Here, simi-
lar to the previous examples, the guest ISA is ARM and the
host ISA is Intel x86. In Figure 3(a), the value of the vari-
able x is increased by one through the increment operator as
shown in the source code. With its RISC ISA, the ARM com-
piler generates three instructions for this source statement:
loading the original value of x, performing the addition, and
then storing the result back to x. In contrast, the Intel x86
compiler needs only one instruction, incl, with its CISC ISA.

Source code

if (--x == 0)

ARM instruction

ldr r0, [r1, #56]

subs r0, r0, #1

str r0, [r1, #56]

x86 instruction

decl 0x38(%eax)

LLVM-ARM LLVM-x86

Discarded

Source code

while (iters-- > 0)

ARM instruction

subs r2, r2, #1

x86 instruction

leal -0x1(%ecx), %ecx

LLVM-ARM LLVM-x86

Discarded

(a) (b)

Figure 4: Another two rule candidates discarded by the learn-
ing approach in [23] because of the different condition codes
in guest and host ISAs.

Similarly, in Figure 3(b), the x86 instruction cmpl can have
a memory operand, but an ARM ldr instruction is required
before the cmp instruction. In these two cases, the verifica-
tion will fail because there is a mismatch of register operands
between the guest and the host code sequences, i.e. there is
no host register that matches and holds the same value as the
guest register r0.

However, if we examine these two examples more care-
fully, we will find that the root cause of the failed verification
stems from the inherent differences between the guest and
the host ISAs. In practice, such architectural differences are
quite common and pervasive in different ISAs, even if they are
both RISCs or CISCs. For instance, a post-indexed memory
load instruction in ARM will modify the address register after
the loading operation, while there is no similar instruction in
MIPS, which is another representative RISC ISA.

In fact, these differences represent the essence of the ar-
chitectural design unique to each ISAs. It is indeed a huge
loss for a learning-based approach to discard such rule can-
didates simply because of their ISA differences. As they are
architecturally specific, they are often the most efficient code
sequences selected by the native compilers for specific pro-
gram contexts and thus have a high potential to turn into
high-quality translation rules.

Another shortcoming resulted from the aforementioned
limitation is that it also excludes many rule candidates that
contain instructions associated with architecture-specific hard-
ware support. For instance, many architectures have condi-
tion codes (also known as eflags in x86 machines). They are
single-bit registers used to store the execution summary of
an instruction and can influence the control flow of the later
instructions. In particular, ARM has four condition codes: neg-
ative (NF), zero (ZF), carry (CF), and overflow (VF), while
x86 has seven condition codes: carry (CF), parity (PF), adjust
(AF), zero (ZF), sign (SF), direction (DF), and overflow (OF).

Figure 4 shows two examples with instructions related to
condition codes. In Figure 4(a), the source code decreases the

80 2019 USENIX Annual Technical Conference USENIX Association

value of x by one and then checks the result to see whether
it is zero or not. An ARM instruction subs is generated to
perform the subtraction and update the condition codes. Here,
subs updates all four ARM condition codes, including CF.
Similarly, an x86 instruction decl is used to decrease the
value stored in the memory operand by one and update the
condition codes. However, decl updates all x86 condition
codes, except CF. As a result, the verification process in the
original learning-based approach will consider the ARM and
x86 code are not semantically equivalent and discard this rule
candidate. Similarly, the rule candidate in Figure 4(b) is also
discarded because the x86 instruction leal does not update
any condition code. In fact, the source code in Figure 4(a)
only needs to check whether the result is zero or not, which
only requires the condition code ZF. Thus, it is unnecessary to
update the condition code CF, as it is never used in this context.
That means, it is still possible to harvest this translation rule
and apply it, if the ARM condition code CF is not used (i.e.
dead) in the later code before it is updated. Similarly, the rule
candidate in Figure 4(b) can also be harvested.

Technical Challenges. Although such limitations could
exclude many high-quality translation rules during the learn-
ing process, it faces several technical challenges if we want
to harvest them and apply them in a DBT system for a better
performance and higher coverage.

First, we have to relax the original verification objectives
as they are designed to verify the exact equivalence between
the guest and host code sequences.

Second, given that most of those translation rules are not
strictly equivalent, it is imperative that we have a mechanism
to enforce their correctness when we apply them. Equally
important is that the performance overhead incurred by such
enforcement should be less than the performance gain they
can provide.

Last but not least, in the original learning approach, a
learned translation rule only needs to include two parts, i.e.,
the guest and host instructions, and this is typically sufficient
for a DBT system. However, for the constrained-equivalent
translation rules, whether we can apply these rules at runtime
or not depends on the context they are being applied. As a
result, we need to extend the structure of translation rules to
include such constraining requirements.

4 An Enhanced Learning-Based Approach

In this section, we present the design of the proposed en-
hanced learning-based scheme, starting with an overview of
the system framework.

4.1 Overview
The major goal of our enhanced learning-based approach is to
learn and apply high-quality translation rules excluded by the
original learning approach. These translation rules contain

constrained-equivalent guest and host instructions, and thus
cannot be harvested using the original learning approach. To
this end, we redesign the learning process, reorganize the
structure of the learned translation rules, and make necessary
extensions to the DBT system to allow the application of the
constrained-equivalent translation rules.

Figure 5 illustrates the workflow of our enhanced learning-
based approach. To learn translation rules, we also compile the
same program source code using the same compiler for guest
and host ISAs to generate two versions of the binary code. We
then extract guest and host code sequences that correspond to
the same learning scope and consider them as the candidates
for the translation rules. The learning scope is defined at the
program source code level. In the original learning system,
the default learning scope is set to be one source statement.
The extracted guest and host code sequences then form a rule
candidate. For each rule candidate, the next step is to verify
whether the corresponding guest and host code sequences are
constrained equivalents or not. If yes, a translation rule can
be harvested. Otherwise, the rule candidate is discarded.

As an example to demonstrate our approach and by study-
ing the rule candidates discarded by the original learning
scheme, we consider the guest and host code sequences in
a rule candidate as constrained equivalent if every modified
guest storage operand contains the same value as a modified
host storage location at the end of the code sequences and
vice versa. Here the storage operand is broadly defined, as
it can be either a register, a memory location, or a condition
code (i.e., eflag). Furthermore, it is allowed that there is no
corresponding modified storage location in the host code se-
quences, e.g., a corresponding condition code as mentioned
earlier.

Using this relaxed and constrained equivalence definition,
the guest and host code sequences can be semantically equiv-
alent only if all modified guest storage operands without the
corresponding host storage operands (e.g., condition codes)
are not used in the following guest binaries before they are
modified again. These modified guest storage operands with-
out the corresponding host storage operands can be considered
as the constraining condition of this constrained-equivalent
translation rule.

In our framework, the semantic equivalence can be relaxed
in other ways as long as the discrepancies can be identified
and shown either having no ill effect in the context they are
applied or can be compensated to make them semantically
equivalent when they are applied. In other words, their con-
straining conditions can be identified and satisfied when these
rules are applied. To simplify our prototype design, we only
consider relaxing the requirement of exact mapping of the
storage operands as defined earlier. The identified constrain-
ing conditions are integrated into the learned translation rules
to determine whether it is safe to apply them or not. It is
worth noting that for strictly equivalent translation rules the
constraining condition is null.

USENIX Association 2019 USENIX Annual Technical Conference 81

Guest:

...

Host:

...

Constraining

condition:

...

Guest:

...

Host:

...

Constraining

condition:

...

Source

Code
Rule

Candidates

Guest

Binary

Host

Binary

CC-Guest

CC-Host

Flexible

Preprocessing

Relaxed

Verification

Guest:

...

Host:

...

Constraining

condition:

...

Translation

Rules

DBT

System

Guest Binary

Host

Binary

Online

Analysis

Learning translation rules Applying translation rules

Figure 5: The work flow of the proposed enhanced learning-based approach.

To determine whether the constraining condition is met or
not, a lightweight runtime analysis is employed to determine
the program context in which the guest instructions is to
be translated. In our case, the program context includes the
information about which guest storage operand is modified
by the guest instructions and used in the later code before it
is modified again. The program context is then used to verify
whether the constraining condition is satisfied or not. If yes,
the translation rule can be applied, otherwise, it is discarded.

4.2 Varying Learning Scopes
In the original learning scheme, the learning scope is limited
to one source statement. Although it appears to be reasonable,
it may miss potential rule candidates as it is very common
for compilers to perform optimization across multiple source
statements. Therefore, our enhanced learning approach varies
the learning scope from one to n source statements, and apply
each learning scope over the source program.

More specifically, a sliding window is employed. The slid-
ing window of size n covers n contiguous source statements,
i.e. the sliding window covers the learning scope of n state-
ments. Guest and host instructions that correspond to the n
statements in this window are extracted as a rule candidate.
The sliding window moves from the first line of the source
code toward the end of the code. The window size is initially
set to 1, and incremented by one after each pass through the
sources code. When the window of size i is moved through
all the source code, the number of rules learned from current
window size will be compared to the number of rules learned
from window sizes 1 to i−1. If new rules learned from win-
dow size i are less than 10% of all learned rules from window
sizes 1 to i−1, the learning process will be stopped.

4.3 Learning Constrained-Equivalent Rules
To verify the constrained equivalence of the guest and host
instructions in a rule candidate, we use the same symbolic
verification engine, but relax the requirements for semantic
equivalence.

First, we establish an initial mapping between guest and
host live-in operands the same way as the original learning
approach, i.e., guest registers 7→ host registers, guest memo-

ries 7→ host memories, and guest immediate values 7→ host
immediate values (i.e. constants). Then, we initialize the
mapped guest and host operands with the same symbol values
and symbolically execute the guest and host code sequences,
respectively. After the symbolic execution, we extract the
symbol results of the modified guest and host registers, mem-
ories, and condition codes. These results are then fed into
a SMT solver to figure out, for each modified guest regis-
ter/memory/condition code, whether there exists a modified
host register/memory/condition code corresponding to it or
not. If each modified guest operand is mapped to a modified
host operand, an original rule is generated.

If the SMT solver indicates that there exists a modified
guest memory operand that does not have a matching host
memory operand, we discard this rule candidate. If a modified
guest register/condition code has no matching modified host
register/condition code, we can harvest this rule candidate as
the guest and host instructions can still be constrained equiv-
alent. Moreover, such unmatched guest registers/condition
codes are recorded as constraining conditions of the learned
rules and will be checked when the rules are applied. The rea-
son for discarding candidate rules with unmatched memory
operands is that the resulting constraining conditions will re-
quire time-consuming data dependence analysis to determine
whether the constrained equivalence is satisfied or not when
such rules are applied.

Otherwise, all other rules are considered as a non-
equivalent rule and be discarded.

4.4 Lightweight Online Analysis

For each constrained-equivalent rule to be applied, an online
analysis is invoked to analyze the program context of the
guest code sequence. The context information includes the
data flow of the guest registers and condition codes, which
can be obtained by statically analyzing the guest instructions.
The context information is then used to determine whether the
constraining condition of the matched constrained-equivalent
rule is satisfied. For instance, if the analysis shows that a mod-
ified guest register is not mapped to any modified host register
in the rule, and this modified guest register is not used in the
following guest code, we can determine that the constraining
condition has been satisfied in the program context, and the

82 2019 USENIX Annual Technical Conference USENIX Association

translation rule can be applied.
In general, to collect the context information, the online

analysis examines guest instructions that are executed after
the matched guest instruction sequence. Each instruction is
examined to see whether it defines or uses the register(s) or
condition code(s) specified in the constraining condition of
the matched translation rule. If a definition can be found
before usage on all paths following the matched guest code
sequence, the matched rule can be applied safely. Otherwise,
if usage is found, the matched rule should not be applied
as the modified guest register/condition code is used but the
matched rule does not update it.

For indirect branch instructions, it is quite difficult to iden-
tify all possible branch targets statically. For simplicity, we
stop the online analysis when an indirect branch is encoun-
tered and the translation rule will not be applied for safety
consideration.

4.5 Handling Predicated Instructions

Predicated instructions are very common in many ISAs, e.g.,
ARM and MIPS. A predicated instruction executes only if its
predicate bit is "True". Otherwise, the instruction is a "nop".
For example, "add ne r0, r0, r1" in ARM will be executed
only when the condition code is not equal ("ne"). Some ISAs
like x86 do not support predication, and conditional branches
are used instead. It is worth noting that the original learning
approach cannot handle predicated instructions. So how to ef-
ficiently support predicated instructions is another important
design issue for a learning-based approach because the predi-
cate tag in predicated instructions and conditional branch are
not equivalent although the execution results are the same.

In translation, we use a lightweight analysis to divide pred-
icated instructions into multiple blocks and generate condi-
tional branches around those blocks according to their pred-
icate information to support the translation of predicate in-
structions. Before translating a basic block, we first check the
predicated condition of all instructions and divide the basic
block into multiple condition blocks. Each condition block
includes instructions with the same predicated condition. In
one condition block, the translation rules can be directly ap-
plied without considering the predicated condition. After a
condition block is translated, a branch instruction with the
opposite condition is added to the host basic block before
the translated condition block is added to the host block. The
branch target is the instruction following the end of the host
block. This analysis is very lightweight and each basic block
only needs to be checked once.

Note that an instruction with a predicated condition may
change the condition codes itself. For example, cmp ne r0,
0 will update the condition code if the last condition code is
not equal. So, instructions after these instructions that may
change condition codes should be divided into a new condi-
tion block even the predicated condition is the same.

4.6 Discussion
Our enhanced learning approach currently only supports user-
level applications. The translation for full-system level ap-
plications is not supported because full-system translation is
more complex with mechanisms such as system calls, inter-
rupts and device I/O. These mechanisms make the learning
and matching of rules more difficult. It is left in our future
work.

ABIs and many instructions such as indirect branches are
not supported either. For ABIs, the calling conventions, such
as how parameters are passed and how many parameters are
used, are difficult to be identified and translated by rules. For
example, ARM use registers to pass parameters but no specific
instructions are used. But in X86, the push instructions will
be used for passing parameters. For indirect branches, DBT
systems usually search the branch target address according to
a branch table maintained at runtime, which is not available
at compile time. It makes it impossible to translate by our
learned rules.

5 Experimental Results

In this section, we evaluate our prototype and address the
following research questions:

1. How much performance improvement can be obtained
by our enhance learning scheme in which we relax the
requirement of matching storage operands as described
in Section 4?

2. Where does the performance improvement come from
when we include the added constrained-equivalent trans-
lation rules?

3. What is the effect of relaxing the strict semantic equiva-
lence requirement?

4. How much overhead will the dynamic analysis incur?

5.1 Experimental Setup
Our enhanced learning-based DBT prototype is implemented
based on QEMU (version 2.6.0) which is the same as the
original learning scheme. The guest ISA is ARM, and the
host ISA is x86. The LLVM compiler (version 3.8.0) is used
to generate binary code for guest/host ISAs. All binary codes
are generated using the same optimization level -O2. The
same version of source code and guest/host binary code are
used for comparison. One machine with 3.33GHz Intel Core
i7-980x with six cores (12 threads) and 16GB memory is
set up exclusively for performance evaluation. The operating
system is the 32-bit Ubuntu 14.04 with Linux 3.13 for both
machines. We used an older version of the system because we
need to compare our new approach with the original approach,
which used the same older version of the system. Besides, our

USENIX Association 2019 USENIX Annual Technical Conference 83

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar
xalan

G
EO

M
EA

N

P
er

fo
rm

an
ce

 S
p
ee

d
u
p origin

enhanced

Figure 6: Performance comparison of the original and en-
hanced learning-based approaches.

experimental results are valid regardless of the system version
used.

We use the 12 benchmarks in SPEC CPU INT 2006 with
the reference inputs in our studies. To be as close to the
real-world usage scenarios as possible, the performance of
each benchmark is evaluated by the rules learned from other
11 benchmarks excluding evaluated benchmark itself. Each
benchmark is run three times to reduce the random influence.
The enhanced learning scheme described earlier is imple-
mented in Python. The enhanced verification is implemented
based on FuzzBALL [19], a symbolic execution engine. The
tiny code generator (TCG) in QEMU is also enhanced to sup-
port the translation of predicated instructions as described
in the last subsection, As mentioned earlier, to apply the
constrained-equivalent translation rules, the dynamic anal-
ysis should be performed before such rules are applied.

5.2 Performance Results
Figure 6 shows the performance comparison of our enhanced
learning-based scheme (marked as enhanced) and the original
learning-based approach (marked as origin). The performance
of QEMU without using any of the learning schemes is used
as the baseline. Table 1 shows the MIPS of performance of
original and enhanced approaches.

Using the ref input for all SPEC benchmarks, the quality
of the translated host code is the major factor that impacts
the overall performance. As shown in Figure 6, our enhanced
learning scheme can achieve a performance improvement of
up to 2.55X with an average of 1.74X compared to QEMU,
which is a 1.19X improvement over the original learning
approach on average.

By studying the learned translation rules and how they are
applied using our enhanced learning approach, we have the
following observations on how they impact the overall per-
formance. First, constrained-equivalent translation rules can
usually be applied quite successful. The modified guest reg-
isters/condition codes that have no matching modified host
registers/condition codes will usually be modified quickly
again. This means they are only used to hold temporary value
as we expected. Hence, relaxing strict matching requirements

Table 1: MIPS of the original and enhanced learning-based
approaches

Benchmarks Original enhanced
perlbench 221.63 250.15

bzip2 1211.32 1388.92
gcc 521.78 575.09
mcf 603.99 739.93

gobmk 372.18 616.31
hmmer 1448.56 1632.93
sjeng 474.71 485.23

libquantum 1469.59 1532.97
h264ref 189.99 215.69
omnetpp 195.28 284.74

astar 396.10 562.51
xalan 283.19 290.52

GEOMEAN 475.15 567.29

for storage operands can yield more translation rules, albeit
constrained-equivalent rules, and can be applied quite effec-
tively.

Second, by relaxing the equivalence constraints to allow
constrained-equivalent translation rules that can include pred-
icated and condition instructions greatly improve the overall
performance. This is because typical DBTs such as QEMU
usually use memory locations to emulate the condition codes.
Such an approach will incur many additional memory opera-
tions to access and update those condition codes in memory
and incur very high overhead. But the constrained-equivalent
translation rules can take advantage of the host condition
codes to emulate guest condition codes, which can signifi-
cantly reduce such overheads.

Figure 7(a) and Figure 7(b) show the static and dynamic
coverage of the guest binaries using the origin and our en-
hanced learning-based schemes, respectively. The "Coverage"
here is defined as the percentage of guest instructions that can
be translated by the learned rules. So the "static" coverage is
the percentage of static code translated by learned rules and
"dynamic" coverage here is the percentage of "executed" guest
instructions translated by learned rules. Compare to the origi-
nal learning-based scheme, our enhanced learning scheme can
improve the static coverage from 52.2% to 61.8%, and the dy-
namic coverage from 55.7% to 69.1% on average. It is worth
noting that gcc and libquantum have a much higher dynamic
coverage improvement than others, but do not get an expected
higher performance improvement. Conversely, gobmk attains
a high performance improvement but not as much coverage
improvement. The reason is that many high-quality rules are
applied when translating gobmk, but in gcc and libquantum,
the applied rules can only attain moderate improvement. This
seems to indicate that the coverage improvement does not
translate directly to the overall performance improvement,
but could be an important secondary effect.

84 2019 USENIX Annual Technical Conference USENIX Association

0 %

20 %

40 %

60 %

80 %

100 %

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar
xalan

geam
ean

P
er

ce
n
ta

g
es

 o
f

 S
ta

ti
c

G
u
es

t
In

st
ru

ct
io

n
s

 T
ra

n
sl

at
ed

 b
y
 R

u
le

s origin
enhanced

(a) Static coverage

0 %

20 %

40 %

60 %

80 %

100 %

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar
xalan

geam
ean

P
er

ce
n
ta

g
es

 o
f

 D
y
n
am

ic
 G

u
es

t
In

st
ru

ct
io

n
s

 T
ra

n
sl

at
ed

 b
y
 R

u
le

s origin
enhanced

(b) Dynamic coverage

Figure 7: Static and dynamic coverage of translation rules.

To address the question of "where does the performance im-
provement come from when we include the added constrained-
equivalent translation rules?", we analyze the coverage of the
added translation rules when they are applied in each pro-
gram. The results are shown in Figure 8. As described in
Section 4, there are three major components in our relaxed
equivalence constraints, i.e. we remove the strict requirement
of exact matching. They are (1) register operands (marked as
register), (2) condition-code operands (marked as condition),
and (3) predicated-related instructions (marked as predicate).
We did not include memory operands because they require
more complicated data dependence analysis when they are
applied.

A very interesting observation is that, among the added
constrained-equivalent translation rules (their increased cov-
erage is shown in Figure 7), the register-related constrained-
equivalent translation rules constitute 58.83% of the static in-
structions on average. However, they only constitute 13.58%
of added dynamic coverage. But the dynamic coverage of
condition-code related rules is increased to 54.02% on av-
erage, while their static coverage is only 18.52%. This is
because the condition codes are usually associated with the
bound check, such as at the end of a loop. So, these instruc-
tions will be executed more frequently than others in their
dynamic coverage.

To study the quality/efficiency of translated rules, Figure 9
shows the percentages of the reduced host instructions. On
average, our enhanced learning scheme can reduce 11.28% of
the total dynamic host instructions compared to the original
learning scheme. We observe that the reduction in the host

0 %

20 %

40 %

60 %

80 %

100 %

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar
xalan

geom
ean

D
is

tr
ib

u
ti

o
n

 o
f

 I
n

cr
ea

se
d

 S
ta

ti
c

C
o

v
er

ag
e register condition predicate

(a) Distribution of increased static coverage

0 %

20 %

40 %

60 %

80 %

100 %

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar
xalan

geom
ean

D
is

tr
ib

u
ti

o
n

 o
f

In
cr

ea
se

d

 D
y

n
am

ic
 C

o
v

er
ag

e

register condition predicate

(b) Distribution of increased dynamic coverage

Figure 8: Distribution of the improved rule coverage.

0 %

10 %

20 %

30 %

40 %

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar
xalan

geom
ean

P
er

ce
n

ta
g

e
o

f
 R

ed
u

ce
d

 D
y

n
am

ic

 H
o

st
 I

n
st

ru
ct

io
n

s

Figure 9: Reduction in dynamic host instruction counts by
enhanced learning and translation.

instructions of gobmk is higher than 30%, and in omnetpp, it
is higher than 20%. However, in gcc and libquantum, the re-
duction is only about 10%. This also confirm our observation
that rules applied in gobmk and omentpp translation have a
higher quality, i.e. fewer host instructions in those translation
rules, than rules in gcc and libquantum. But, we also notice
that bzip2 and astar attain a high performance improvement
but only a moderate number of host instructions are reduced.
One probable explanation is that even though they may have
similar dynamic host instruction counts, more efficient and
architecture-specific host instructions may have been used.

5.3 Learning Results

We further study the effect of our proposed relaxed learn-
ing scheme in other related aspects. The first is about the
"yield" obtained during the learning phase, which shows how

USENIX Association 2019 USENIX Annual Technical Conference 85

0 %

10 %

20 %

30 %

40 %

50 %

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar
xalan

geom
ean

P
er

ce
n
ta

g
es

 o
f

 I
n

st
rc

u
ti

o
n
s

G
en

er
at

in
g

 R
u
le

s

origin
enhanced

Figure 10: The yields of rule learning.

many translation rules can be harvested among the candidate
rules during the learning phase. The other aspects include
the effect of using the sliding window, and the distribution of
the constrained-equivalent rules learned based on our relaxed
equivalence constraints, i.e. relaxing the strict matching re-
quirement on three storage operand types described in Section
4.

Figure 10 shows the yield obtained during the learning
phase using the original learning scheme (marked as origin)
and our enhanced learning scheme (marked as enhanced).
The learning yield is increased from 20.3%to 25.1%. Even
though the improvement in learning yield is moderate as we
only made moderate relaxation on the semantic equivalence
requirements, but as the obtained performance results show
the quality of these rules is quite high. The moderate yield
improvement also shows that there is a high potential for
more high-quality rules to be learned and harvested. Another
interesting question is that if a significant number of more
source programs is used in the training phase, even with a low
yield, how much more rules can be learned, and how much
more performance improvement can be achieved by applying
those added rules. These questions are beyond the scope of
this paper.

Figure 11 shows the distribution of the translation rules
learned using a flexible sliding window. We only show the
data for a window size of up to three source statements be-
cause significantly fewer rules can be learned beyond 3 source
statements. As the result shows, 13.16% of new rules can be
learned from a window size of 2 and 3 source statements. The
rules learned from window size 3 and beyond are less than
3.31%. So, a larger learning window is not necessary.

Figure 12 shows the distribution of the rules we learned
using our enhanced learning scheme. On average, 16.84%
of the learned rules are register-related (marked as register),
while 8.16% are condition-code related (marked as condi-
tion) rules. We find that many constrained-equivalent rules
related to local registers are used to load values from the
memory before some computation, and are stored back to the
memory after the computation. This is because RISCs are
primarily "load/store" architectures, i.e. values in memory
must be loaded into registers before computation and stored
back to memory when the computation is completed. So many

0 %

20 %

40 %

60 %

80 %

100 %

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar
xalan

geom
ean

D
is

tr
ib

u
ti

o
n

 o
f

 R
u

le
s

L
ea

rn
ed

 f
ro

m

S
li

d
in

g
 W

in
d

o
w

window size 1 window size 2 window size 3

Figure 11: Rules distribution of sliding windows.

0 %

20 %

40 %

60 %

80 %

100 %

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar
xalan

geom
ean

D
is

tr
ib

u
ti

o
n

 o
f

L
ea

rn
ed

 R
u

le
s

origin register condition

Figure 12: Distribution of rules learned by enhanced learning.

temporary/local registers are used. Another observation is that
the amount of register reuse is minimal on RISCs, only 3.57%
in total. So, only in rare situations, the compiler will use mul-
tiple registers instead of only one register. Such behavior is
reflected in the use of the learned rules in the application
phase.

5.4 Performance Overhead of Online Analysis

As the lightweight dynamic analysis is needed in the applica-
tion of the constrained-equivalent translation rules, its runtime
overhead needs to be evaluated. Figure 13 shows such runtime
overhead with and without dynamic analysis. To measure such
overheads, we collected the performance data with original
approach and compare them with those with only the online
analysis but without applying the constrained-equivalent rules.
As Figure 13 shows, the dynamic analysis will introduce very
little overhead, which is less than 1% on average. The low
overhead is due to two main reasons. First, the dynamic analy-
sis typically only needs to check a few registers and condition
codes. And the percentage of the rules that requires dynamic
analysis is not very high. Second, the relaxed register and
condition-code operands are usually updated very quickly, so
only a very small number of instructions need to be analyzed
in practice. Both factors greatly reduce the analysis overhead.

86 2019 USENIX Annual Technical Conference USENIX Association

 1

 1.02

 1.04

 1.06

 1.08

 1.1

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar
xalan

geom
ean

D
y

n
am

ic
 A

n
al

y
si

s
O

v
er

h
ea

d

Figure 13: The performance overhead of dynamic analysis.

6 Related Work

To improve the efficiency of the translated host binaries,
many manual optimization techniques have been proposed.
For example, some try to efficiently translate guest single-
instruction-multiple-data (SIMD) instructions [7, 10, 16]. An-
other work proposes to leverage host hardware features to
apply post-optimization to host binary code after the trans-
lation [30]. Some recent work also proposes to optimize
dynamically-generated guest binary code [8]. Different from
those approaches, most of which rely on manually constructed
translation rules, our enhanced learning-based approach pro-
posed in this paper can automatically learn binary translation
rules.

Previous work in [1] also proposes to use peephole super-
optimizer to generate binary translation rules for static binary
translators. For each potential guest code sequence, an ex-
haustive search is employed to explore all possible sequences
of host instructions to examine their equivalence. However, it
takes a very long time to collect sufficient translation rules,
i.e., could be up to one week as mentioned in the paper. More-
over, due to the exponential increase in the number of possible
instruction sequences, this approach can only generate trans-
lation rules with a guest code sequence of up to 3 instructions.
This can significantly limit the quality of the generated trans-
lation rules because many high-quality translation rules have
more than 3 guest instructions.

Although the learning-based approach was originally pro-
posed in [23], our enhanced learning-based approach differs
from the original approach in a significant way. Our proposed
enhanced approach allows relaxation of semantic equivalence,
thus can learn constrained-equivalent translation rules while
the original approach simply discards them. These relaxed
translation rules can improve the total coverage of the guest
binaries and improve the yield of rule generation. More im-
portantly, these constrained-equivalent translation rules can
further improve the performance of the translated host binary
code.

Another DBT system, HQEMU [9], which is also based
on QEMU, translates guest binary code into LLVM interme-
diate representation (IR) and then leverages LLVM JIT to

generate more optimized binary code. However, the overhead
introduced by the LLVM optimization can offset the benefit
gained from the optimized host binary code, especially for
short-running guest binaries. Moreover, due to the lack of
source-level information in the LLVM IR translated from
the guest binary code, e.g., type information, it is quite chal-
lenging to take full advantage of the LLVM optimization. In
contrast, the translation overhead for applying the learned
translation rules are much smaller, and no additional informa-
tion is required to apply the learned rules.

There has been a lot of research to improve the performance
of the DBT system itself [3–5, 11, 12, 24, 25]. These methods
can typically be used in conjunction with our approach to
further improve their performance.

7 Conclusion

As one of the core enabling technologies, DBT has been ex-
tensively used in many important applications. To improve
the efficiency of DBT systems, this paper proposes an en-
hanced learning-based approach, which can automatically
learn optimized binary translation rules. The learned transla-
tion rules can then be applied to a DBT system to generate
more efficient host binary code. Compared to the original
learning approach, our enhanced learning-based approach re-
laxes the semantic equivalence requirements to allow more
efficient constrained-equivalent translation rules. We redesign
the original learning process and the verification engine to
accommodate such constrained equivalence. Moreover, to
preserve the correct semantics of the translated code when
such constrained-equivalent translation rules are applied, a
lightweight online analysis is employed in the enhanced DBT
system to check the constraining conditions. The constrained-
equivalent translation rules are applied only when the con-
straining conditions are satisfied. We have implemented the
proposed approach in a prototype and extended a widely-used
DBT system, i.e., QEMU, to accept such enhanced translation
rules through learning.

Experimental results on SPEC CINT2006 show that the
proposed approach can improve the dynamic coverage of
the translation from 55.7% to 69.1% and the static coverage
from 52.2% to 61.8%, compared to the original approach.
Moreover, up to 1.65X performance speedup with an average
of 1.19X are observed.

Acknowledgments

We are very grateful to our shepherd, Edouard Bugnion,
and the anonymous reviewers for their valuable feed-
back and comments. This work is supported in part by
the National Natural Science Foundation of China (No.
61672160), Shanghai Municipal Science and Technology Ma-
jor Project (No.2018SHZDZX01) and ZJLab, Shanghai Sci-

USENIX Association 2019 USENIX Annual Technical Conference 87

ence and Technology Development Funds (17511102200)
and the National Science Foundation under the grant number
CNS-1514444.

References

[1] Sorav Bansal and Alex Aiken. Binary translation us-
ing peephole superoptimizers. In Proceedings of the
8th USENIX Conference on Operating Systems Design
and Implementation, OSDI’08, pages 177–192, Berke-
ley, CA, USA, 2008. USENIX Association.

[2] Fabrice Bellard. QEMU, a Fast and Portable Dynamic
Translator. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference, ATC ’05, pages
41–46, Berkeley, CA, USA, 2005. USENIX Association.

[3] Chao-Jui Chang, Jan-Jan Wu, Wei-Chung Hsu,
Pangfeng Liu, and Pen-Chung Yew. Efficient memory
virtualization for cross-isa system mode emulation.
In Proceedings of the 10th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environ-
ments, VEE ’14, pages 117–128, New York, NY, USA,
2014. ACM.

[4] Emilio G. Cota, Paolo Bonzini, Alex Bennée, and Luca P.
Carloni. Cross-isa machine emulation for multicores.
In Proceedings of the 2017 International Symposium
on Code Generation and Optimization, CGO ’17, pages
210–220, Piscataway, NJ, USA, 2017. IEEE Press.

[5] Amanieu D’Antras, Cosmin Gorgovan, Jim Garside, and
Mikel Luján. Low overhead dynamic binary translation
on arm. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI 2017, pages 333–346, New York,
NY, USA, 2017. ACM.

[6] Peter Feiner, Angela Demke Brown, and Ashvin Goel.
Comprehensive Kernel Instrumentation via Dynamic
Binary Translation. In Proceedings of the Seventeenth
International Conference on Architectural Support for
Programming Languages and Operating Systems, ASP-
LOS XVII, pages 135–146, New York, NY, USA, 2012.
ACM.

[7] Sheng-Yu Fu, Ding-Yong Hong, Yu-Ping Liu, Jan-Jan
Wu, and Wei-Chung Hsu. Dynamic translation of struc-
tured loads/stores and register mapping for architectures
with simd extensions. In Proceedings of the 18th ACM
SIGPLAN/SIGBED Conference on Languages, Compil-
ers, and Tools for Embedded Systems, LCTES 2017,
pages 31–40, New York, NY, USA, 2017. ACM.

[8] Byron Hawkins, Brian Demsky, Derek Bruening, and
Qin Zhao. Optimizing binary translation of dynami-
cally generated code. In Proceedings of the 13th Annual

IEEE/ACM International Symposium on Code Genera-
tion and Optimization, CGO ’15, pages 68–78, Wash-
ington, DC, USA, 2015. IEEE Computer Society.

[9] Ding-Yong Hong, Chun-Chen Hsu, Pen-Chung Yew,
Jan-Jan Wu, Wei-Chung Hsu, Pangfeng Liu, Chien-Min
Wang, and Yeh-Ching Chung. Hqemu: a multi-threaded
and retargetable dynamic binary translator on multicores.
In Proceedings of the Tenth International Symposium
on Code Generation and Optimization, pages 104–113.
ACM, 2012.

[10] Ding-Yong Hong, Yu-Ping Liu, Sheng-Yu Fu, Jan-Jan
Wu, and Wei-Chung Hsu. Improving simd parallelism
via dynamic binary translation. ACM Trans. Embed.
Comput. Syst., 17(3):61:1–61:27, February 2018.

[11] Chun-Chen Hsu, Pangfeng Liu, Jan-Jan Wu, Pen-Chung
Yew, Ding-Yong Hong, Wei-Chung Hsu, and Chien-Min
Wang. Improving dynamic binary optimization through
early-exit guided code region formation. In Proceedings
of the 9th ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments, VEE ’13,
pages 23–32, New York, NY, USA, 2013. ACM.

[12] Ning Jia, Chun Yang, Jing Wang, Dong Tong, and Keyi
Wang. Spire: Improving dynamic binary translation
through spc-indexed indirect branch redirecting. In Pro-
ceedings of the 9th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments,
VEE ’13, pages 1–12, New York, NY, USA, 2013. ACM.

[13] Piyus Kedia and Sorav Bansal. Fast Dynamic Binary
Translation for the Kernel. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Princi-
ples, SOSP ’13, pages 101–115, New York, NY, USA,
2013. ACM.

[14] Dohyeong Kim, William N. Sumner, Xiangyu Zhang,
Dongyan Xu, and Hira Agrawal. Reuse-oriented Re-
verse Engineering of Functional Components from x86
Binaries. In Proceedings of the 36th International Con-
ference on Software Engineering, ICSE 2014, pages
1128–1139, New York, NY, USA, 2014. ACM.

[15] Vladimir Kiriansky, Derek Bruening, and Saman P. Ama-
rasinghe. Secure Execution via Program Shepherding.
In Proceedings of the 11th USENIX Security Symposium,
pages 191–206, Berkeley, CA, USA, 2002. USENIX As-
sociation.

[16] Jianhui Li, Qi Zhang, Shu Xu, and Bo Huang. Optimiz-
ing dynamic binary translation for simd instructions. In
Proceedings of the International Symposium on Code
Generation and Optimization, CGO ’06, pages 269–280,
Washington, DC, USA, 2006. IEEE Computer Society.

88 2019 USENIX Annual Technical Conference USENIX Association

[17] Juanru Li, Zhiqiang Lin, Juan Caballero, Yuanyuan
Zhang, and Dawu Gu. K-Hunt: Pinpointing Insecure
Cryptographic Keys from Execution Traces. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’18, pages 412–425,
New York, NY, USA, 2018. ACM.

[18] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vi-
jay Janapa Reddi, and Kim Hazelwood. Pin: Building
Customized Program Analysis Tools with Dynamic In-
strumentation. In Proceedings of the 2005 ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, PLDI ’05, pages 190–200, New
York, NY, USA, 2005. ACM.

[19] Lorenzo Martignoni, Stephen McCamant, Pongsin
Poosankam, Dawn Song, and Petros Maniatis. Path-
exploration lifting: Hi-fi tests for lo-fi emulators. In Pro-
ceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVII, pages 337–348,
New York, NY, USA, 2012. ACM.

[20] Aashish Mittal, Dushyant Bansal, Sorav Bansal, and
Varun Sethi. Efficient Virtualization on Embedded
Power Architecture R©Platforms. In Proceedings of the
Eighteenth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’13, pages 445–458, New York, NY,
USA, 2013. ACM.

[21] Nicholas Nethercote and Julian Seward. Valgrind: A
Framework for Heavyweight Dynamic Binary Instru-
mentation. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI ’07, pages 89–100, New York, NY,
USA, 2007. ACM.

[22] Daniel Sanchez and Christos Kozyrakis. ZSim: Fast and
Accurate Microarchitectural Simulation of Thousand-
core Systems. In Proceedings of the 40th Annual Inter-
national Symposium on Computer Architecture, ISCA
’13, pages 475–486, New York, NY, USA, 2013. ACM.

[23] Wenwen Wang, Stephen McCamant, Antonia Zhai, and
Pen-Chung Yew. Enhancing Cross-ISA DBT Through
Automatically Learned Translation Rules. In Proceed-
ings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’18, pages 84–97, New
York, NY, USA, 2018. ACM.

[24] Wenwen Wang, Jiacheng Wu, Xiaoli Gong, Tao Li, and
Pen-Chung Yew. Improving dynamically-generated
code performance on dynamic binary translators. In
Proceedings of the 14th ACM SIGPLAN/SIGOPS In-
ternational Conference on Virtual Execution Environ-
ments, VEE ’18, pages 17–30, New York, NY, USA,
2018. ACM.

[25] Wenwen Wang, Pen-Chung Yew, Antonia Zhai, and
Stephen McCamant. A General Persistent Code Caching
Framework for Dynamic Binary Translation (DBT). In
Proceedings of the 2016 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC ’16, pages
591–603, Berkeley, CA, USA, 2016. USENIX Associa-
tion.

[26] Wenwen Wang, Pen-Chung Yew, Antonia Zhai, Stephen
McCamant, Youfeng Wu, and Jayaram Bobba. Enabling
Cross-ISA Offloading for COTS Binaries. In Proceed-
ings of the 15th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys
’17, pages 319–331, New York, NY, USA, 2017. ACM.

[27] Zhaoguo Wang, Ran Liu, Yufei Chen, Xi Wu, Haibo
Chen, Weihua Zhang, and Binyu Zang. Coremu: A
scalable and portable parallel full-system emulator. In
Proceedings of the 16th ACM Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP ’11,
pages 213–222, New York, NY, USA, 2011. ACM.

[28] Qifan Yang, Zhenhua Li, Yunhao Liu, Hai Long, Yuan-
chao Huang, Jiaming He, Tianyin Xu, and Ennan Zhai.
Mobile Gaming on Personal Computers with Direct An-
droid Emulation. In Proceedings of the 25th Annual
International Conference on Mobile Computing and
Networking, MobiCom ’19, New York, NY, USA, 2019.
ACM.

[29] W. Zhang, X. Ji, Y. Lu, H. Wang, H. Chen, and P. Yew.
Prophet: A parallel instruction-oriented many-core sim-
ulator. IEEE Transactions on Parallel and Distributed
Systems, 28(10):2939–2952, Oct 2017.

[30] Xiaochun Zhang, Qi Guo, Yunji Chen, Tianshi Chen,
and Weiwu Hu. Hermes: A fast cross-isa binary transla-
tor with post-optimization. In Proceedings of the 13th
Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’15, pages 246–256,

Washington, DC, USA, 2015. IEEE Computer Society.

USENIX Association 2019 USENIX Annual Technical Conference 89

Transactuations: Where Transactions Meet the Physical World

Aritra Sengupta
Samsung Research

Tanakorn Leesatapornwongsa ∗

Samsung Research
Masoud Saeida Ardekani †

Samsung Research

Cesar A. Stuardo ‡

University of Chicago

Abstract
A large class of IoT applications read sensors, execute appli-
cation logic, and actuate actuators. However, the lack of high-
level programming abstractions compromises correctness es-
pecially in presence of failures and unwanted interleaving
between applications. A key problem arises when operations
on IoT devices or the application itself fails, which leads to
inconsistencies between the physical state and application
state, breaking application semantics and causing undesired
consequences. Transactions are a well-established abstraction
for correctness, but assume properties that are absent in an
IoT context. In this paper, we study one such environment,
smart home, and establish inconsistencies manifesting out
of failures. We propose an abstraction called transactuation
that empowers developers to build reliable applications. Our
runtime, Relacs, implements the abstraction atop a real smart-
home platform. We evaluate programmability, performance,
and effectiveness of transactuations to demonstrate its poten-
tial as a powerful abstraction and execution model.

1 Introduction

Building reliable IoT applications that interact with the phys-
ical world on top of existing solutions is difficult. Current
IoT solutions (e.g., Smartthings [14] and OpenHAB[12]) pro-
vide simple abstractions that allow developers to easily read
sensors and actuate actuators. However, they lack high-level
abstractions for writing reliable and fault-tolerant applications
that can tolerate different types of failures that might happen.
Therefore, application programmers need to implement te-
dious and error-prone code for not only handling all kinds of
failures happening in the physical world, but also to guarantee
consistency between operations on application states (called
soft states hereafter) and states of IoT devices (called hard
states). For instance, an actuation to turn on an alarm might

∗Work done at Samsung Research America. Now at Microsoft Research.
†Work done at Samsung Research America. Now at Uber Technologies.
‡Work done at Samsung Research America.

fail while the alarm state in an application might have been
set to true.

The use of serverless functions as a de facto platform for
running IoT applications has exacerbated the reliability issues
of these applications even further. This is because serverless
computing infrastructure can terminate running applications
at any point [2]. This again leaves incomplete operations on
some hard states (e.g., lock all doors) inconsistent with an
operation on soft state inside the application (e.g., set the
home state to safe after all doors are locked).

Transactions seem like the right mechanism for addressing
the above issues. Interestingly though, a transactional abstrac-
tion cannot fix these issues because of intrinsic properties of
IoT devices (and their associated hard states). A transactional
abstraction is ideal for ensuring isolation and all-or-nothing
guarantees among soft states. Moreover, a transactional sys-
tem can easily rollback soft states without other transactions
or users noticing effects of a rolled back transaction. However,
rolling back a hard state has consequences. The state might
have already been observed by a user and rolling it back may
be undesirable. Or even worse, some states cannot be rolled
back (e.g., undoing actuation of a water dispenser).

This paper proposes an abstraction called transactuation.
Transactuations hide the complexity of handling various fail-
ures and allow developers to easily maintain soft states to
be consistent with respect to reads and writes to hard states
– states of sensors and actuators. Objectively, transactuations
allow a developer to specify dependencies among operations
on soft and hard states along with a sensing/actuating policy
which specifies the conditions under which soft states can
commit despite failures.

We provide a runtime system called Relacs that imple-
ments the abstraction for the smart home environment. Relacs
transforms an application into a serverless function, and re-
liably executes the application in the cloud while enforcing
transactuation specific semantics. We note that while the fo-
cus of this paper is on smart homes, the transactuation ab-
straction is not particularly specific to smart homes, and can
be applied to other IoT environments as well.

USENIX Association 2019 USENIX Annual Technical Conference 91

Concretely, this paper has the following contributions:
1. Study of smart-home applications. Using static analysis,

we conduct a comprehensive study of smart-home applica-
tions written for two popular platforms [12, 14] and identify
drawbacks of existing platforms in writing reliable and fault-
tolerant applications (Section 3).

2. Transactuations. We present our abstraction that al-
lows developers to simply write reliable IoT applications.
Transactuations preserve the dependencies between opera-
tions on hard states and soft states, which when broken, break
application semantics (Section 4).

3. Relacs. Our runtime, Relacs, enforces a serializable exe-
cution of transactuations without rolling back hard states (i.e.,
states of actuators) while enforcing the specified sensing and
actuating policies (Section 4 and Section 5).

4. Evaluation. We evaluate representative smart-home ap-
plications to reveal the correctness issues due to lack of appro-
priate abstractions. Our evaluation further demonstrates that
(a) Transactuations are an effective high-level abstraction for
building reliable IoT applications and reduce lines of code sig-
nificantly compared to manually handling failures. (b) Relacs
guarantees reliable execution of transactuations while impos-
ing reasonable overheads over a baseline that does not provide
consistency between operations on hard states and soft states
(Section 6).

2 Background & Model

In this section, we first review existing smart-home platforms
and their programming models. We focus on smart homes
as a case study of class of IoT environments that deal with
real world state since many smart home applications and
platforms are publicly available. We then discuss different
types of failures that occur in IoT environments.

2.1 Smart-home Platforms
To setup a smart home, a user installs centralized gateways,
called smart-home hubs or simply hubs, to connect in-home
devices (e.g., light bulbs, outlet strip, and motion sensor) that
typically communicate through low-energy wireless proto-
cols (e.g., Zigbee [17], ZWave [16], and Bluetooth Low En-
ergy [4]). The user then installs smart-home applications to
create her desired home automation. For instance, to turn on
a balcony light when motion is detected outside.

Currently, cloud-centric smart-home solutions (e.g., Smart-
things [14]) are the most widely used architecture [28]. In this
model, a hub is only responsible for collecting device events,
and forwarding them to the cloud, where applications run.
The applications running in the cloud then process events and
send actuation commands back to the hub, which forwards
the commands to corresponding devices. An alternative ar-
chitecture is to run applications inside hubs. OpenHAB [12]
follows this hub-centric approach.

1 preferences {
2 input(sensor , "capa.co2", req:true)
3 input(switches , "capa.switch", multi:true)
4 input(level , "number", req:true)
5 }
6 def initialize() {
7 state.active = false;
8 subscribe(sensor , "co2", handleLevel)
9 }

10 def handleLevel(evt) {
11 def co2 = sensor.currentValue("co2");
12 if(co2 >= level && !state.active) {
13 switches.each { it.on(); }
14 state.active = true;
15 } else if(co2 < level && state.active) {
16 switches.each { it.off(); }
17 state.active = false;
18 }
19 }

Listing 1: CO2 vent application that turns exhaust fans on
when CO2 level is high and turns off otherwise.

2.2 Programming Model
In most smart-home platforms, an application is written in a
trigger-action programming model [45] where an application
comprises event handlers. Handlers can subscribe to changes
in sensor/actuator states, updates to shared states, or timer-
based events. Handlers can issue the following operations:
• Hard read: reading sensor/actuator values.
• Hard write: sending actuation commands to actuators.
• Soft read: reading application states from shared storage.
• Soft write: writing application states to shared storage.
In the remainder of this section, and for simplicity, we

solely detail SmartThings [14] programming model. Yet, we
note that other platforms have very similar constructs.

SmartThings uses capabilities, attributes, and commands
to manage devices. Each device has one or more capabili-
ties, and each capability has one or more associated attributes
and commands. For example, a smart light bulb has two ca-
pabilities, switch and color. The switch capability allows an
application to control the bulb status via on/off commands.
The color capability has three attributes, color, hue and sat-
uration that can be controlled via setColor, setHue, and
setSaturation commands.

Listing 1 shows a SmartThings application, named CO2
vent, written in the Groovy language [5]. It reads CO2 level
from sensors, and turns on an exhaust fan if the level is high.
Similarly, it turns off an exhaust fan if the level is low. A devel-
oper first declares mapping of variable names to capabilities
in the preference section (lines 1-5). Consequently, a variable
is mapped to an array of devices with the same capability. For
example, variable switches (line 3) gets mapped to an array
of exhaust fans having the switch capability.

A developer then subscribes event handlers to value
changes of some capabilities or timer schedules. In line 8,
she subscribes an event handler called handleLevel to co2
capability. Observe that inside the handler, she can perform

92 2019 USENIX Annual Technical Conference USENIX Association

hard read on sensor data (sensor.currentValue() in line
11) and soft read on shared states (reading state.active in
line 12 and 15). Also, the developer can issue hard writes to
list of actuators (line 13 and 16). She can also perform soft
writes to application states (assignments to state.active in
line 14 and 17).

2.3 Failures in IoT Environments
Previous work [20, 33] have shown a variety of failures in IoT
environments. For instance, hubs can fail due to plug discon-
nection, hardware failure, and driver crash. IoT devices can
fail due to battery drainage, plug disconnection, and failure
in a sensor subsystem. Additionally, network loss occurs due
to RF interference, concrete slab flooring and copper siding.
These failures lead to permanent or intermittent unavailability
of devices in an IoT environment.

Although, these failures are common, existing platforms do
not provide a simple way to detect and handle them. A failed
hard read can produce a null or stale value that a developer
needs to handle or explicitly validate its timestamp (fresh-
ness). Detecting a failed hard write is even more difficult due
to the asynchronous nature of IoT programming model. For
instance, a developer needs to subscribe to an event triggered
by a hard write, and periodically check if the event is fired.
As shown in other systems [30, 35, 37], inserting failure de-
tection and handling code for asynchronous environments is
challenging and error prone. Moreover, due to inherent event-
driven concurrency in applications, it is notoriously difficult
to prevent interleaving and concurrency-related bugs in IoT
platforms [40].

3 Problem Study

Existing smart-home solutions do not guarantee any consis-
tency between soft reads/writes (i.e., reads/writes from/to
shared storage) and reads/writes to hard states (i.e., sensor
reads and actuation commands sent to actuators) in case of
failures. Application developers need to carry the burden and
ensure the correctness of an application when a failure occurs.

In this section, we present a systematic study of open source
smart-home applications, using static analysis, in order to
unearth various inconsistencies, that surface under failure,
between operations on soft and hard states.

3.1 Inconsistency
Listing 2 shows a simplified code excerpt from a smart secu-
rity application. This application associates a soft state named
alarmActive with the status of an alarm. If the application
detects an intruder when the alarm is not active, it activates
the alarm and sets alarmActive to true. However, an in-
consistency arises if the alarm is not activated properly. For
example, RF interference may cause an actuation command

1 def intruderMotion(evt) {
2 ...
3 if (isIntruder(evt) && !state.

alarmActive) {
4 alarm.strobe();
5 state.alarmActive = true;
6 }
7 ...
8 }

Listing 2: A simplified code excerpt from Smart Security
application that detects an intruder using sensors, and
activates an alarm if it has not been activated previously.

to be lost. This problem is so common that some brands (e.g.,
Fortrezz [15]) give warnings regarding RF interference, and
explicitly ask consumers to not use the alarm in life support-
ing situations. Observe that even though alarmActive is set,
the states of the physical world and application have diverged.
Further, if the sensors detect the intruder again, the applica-
tion will not retry to activate the alarm because as per the
application’s state the alarm is ringing. Clearly, the devel-
oper does not anticipate such a failure, and this divergence is
irreversible without manual intervention. Such inconsisten-
cies cause changes in application semantics and compromise
correctness, and may severely affect smart-home users.

Moreover, stale hard reads may also break correctness of
an application. For example, recent CO2 level events might
never get delivered to the CO2 vent application in Listing 1.
By reading a stale CO2 level, the application may incorrectly
turn off the exhaust fans.

Besides device failures, similar issues arise if an application
crashes. For instance, an inconsistency arises if the smart
security application fails between sending a command to set
the alarm (line 4) and setting the active state to true (line 5).

Finally, applications may modify shared soft and hard states
concurrently [40] which can cause canonical interleaving
based inconsistencies [39].

As an example, the following quote from a disgruntled
SmartThings customer [9] who got robbed during his vaca-
tion shows the impact of the inconsistency problem: “More
importantly, we were robbed when we were out on vacation. ...
The logs show the motion of the robbers, but it never sounded
the alarm ... I no longer trust it to do what it is supposed to
do when it is supposed to do.”

3.2 Dependency
In the previous section, we showed connections between hard
states and soft states that are potential sources of inconsisten-
cies due to hard read/write failure. We call these connections
between two operations on hard states or two operations be-
tween soft and hard states that are semantically associated, a
dependency. By identifying dependencies in an application,
we can study the effects of failures on its correctness.

In order to systematically analyze smart-home applications,
and understand how failures can affect them, we categorize

USENIX Association 2019 USENIX Annual Technical Conference 93

dependencies into four classes, using the following notations:
we represent a hard read to device D as HRD, and denote a
hard write to device D with value V as HWD(V). A soft read
from application state X is denoted as SRX , and a soft write
to state X with value V is represented as SWX(V).

1. HRD → HWD′(V): a dependency in this category cap-
tures the effect of a failure in a HRD. The read might fail to
return any value if device D is unavailable, or it might return
a stale value. In either case, it implies that the application
may exercise the dependency incorrectly, thus breaking its
semantic. Such a dependency in an application can be because
of a control dependence [27] or a data dependence.

If the dependency is a control-dependence [27], the value
of HRD controls the execution of HWD′(V). For example, in
Listing 1, the dependency between lines 12 and 13, and also
between lines 15 and 16 are control dependences. The hard
read in line 11 flows into the control statements in lines 12
and 15. Therefore, a stale read at line 12 might incorrectly
switch off the exhaust fans, and update the soft state even
though the CO2 levels are unsafe. A read value can also flow
into a hard write via data dependencies. For example:
a = HRD1; c = foo(a, b); HWD2(c).

2. HRD → SWX(V): this dependency affects the execution
of a soft write. Analogous to HRD → HWD′(V), this results
in a missing soft write or an incorrect soft write, because of
control and data dependences. In turn, the incorrect soft write
leads to unexpected program behavior when the state is read
elsewhere. In our running example, this dependency exists
between lines 12 and 14, and also lines 15 and 17.

3. HWD(V)→ SWX(V ′): a hard write to soft write depen-
dency is more subtle since SWX(V ′) is not a control or a data
dependence on a HWD(V). Nevertheless, we observe that se-
mantically tying a soft state with a hard state — meaning the
soft state is an indicator of the hard state — is a common prac-
tice in many smart-home applications. Developers use this
technique mainly to save battery: by associating a soft state
with an actuation, developers can use the soft state elsewhere
in the code instead of reading hard states.

For example, in the CO2 Vent application, the developer
implicitly creates a HWswitches(ON)→ SWactive(true) depen-
dency between lines 13 and 14, and also between lines 16 and
17. Thus, a failure in turning on switches, even if temporary,
leaves a permanent inconsistency. Any subsequent change in
the CO2 level, even above the level, precludes turning on
the exhaust fans.

To find a HW → SW dependency in the code, we compute
the postdominance relation [23]: a code point b postdominates
a code point a, if b is executed on every path from a to the end
of the analyzed entity, which in our case, is an event handler.
After computing postdominance instances, we manually look
at all instances to confirm if the pair is semantically tied.
Accordingly, we infer a case for semantic error if the soft
state is read elsewhere in the application.

4. SWX(V) → HWD(V ′): this dependency has the same

semantic effect as HWD(V)→ SWX(V ′).
Note that all dependencies with soft reads (i.e., SRX→∗),

are not directly related to device failures. However, we still
statically compute all such control and data dependences as
an incorrect soft read can produce unintended behavior. Con-
cretely, a soft read can be on a state determined by an incor-
rect, inconsistent, or missing soft write originating from the
dependencies described above.

3.3 Analysis and Findings

We statically analyzed 147 SmartThings applications [19]
and 35 OpenHAB applications chosen from IoTBench [10]
by adding phases to the Groovy compiler. The AST visitors,
GroovyClassVisitor [8], allow us to build a call graph per
entry point and an intermediate representation (IR) amenable
to data and control-flow analysis.

We analyzed the applications using inter-procedural data
and control-flow analysis to understand the dependencies
and their implications. Our analysis yields two key benefits:
(i) understand the implications and the extent of failures on
a large set of smart-home applications, and (ii) mitigate or
eliminate the problems with our programming abstraction,
called transactuation.

On average, the studied applications have three triggers,
and manage a diverse set of devices (4–5 capabilities). In
order to get a holistic view of the home state, on average,
the applications perform three hard reads. They also perform
between seven to nine hard writes on average. This shows that
many of these applications try to provide automation among
a set of devices (e.g., turning on restroom light, preparing
coffee, and playing music, when a user wakes up), instead of
managing a single device. Additionally, our analysis revealed
that developers regularly use soft states to share states not
only among handlers, but also among different applications.
These results indicate that smart-home applications are fairly
complex, and their behavior could be complicated through
the use of handlers triggered by events that read/write both
hard and soft states.

More specifically, we observed that, on average, applica-
tions have 3–10 instances of HR→HW, 1–2 instances of
HR→SW and 1–2 instances of HW→SW dependencies. We
inspected these dependencies to find their potential implica-
tions on systems lacking appropriate abstractions to capture
failures. We categorized the implications as follows: (i) miss-
ing actuation, (ii) wrong actuation, (iii) inconsistent soft state,
(iv) missing notification, and (v) wrong notification . These
implications can lead to unwanted outcomes, some of which
have serious consequences such as security threats, health
hazards, and missing critical alerts, e.g., a fire alarm not rung.
They may also cause inconveniences, e.g., erroneous automa-
tion, incorrect notifications, sirens not turned off. Out of all
182 applications, our analysis unearthed 67 SmartThings and
32 OpenHAB applications, that have unintended effects. Due

94 2019 USENIX Annual Technical Conference USENIX Association

Application Type Consequence Dependency Correction/Mitigation
Smart Humidifer (ST) Automation Wrong status flag causes humidifier HW→ SW Correct status flag to retry

to never be turned on/off. SR→ * turning humidifier on/off later.
Incorrect notification. Notify glitch to user.

Thermostat Auto Off (ST) Energy Wrong status flag causes thermostat HW→ SW Correct status flag to retry
to never be turned on/off. turning thermostat on/off later.

CO2 Vent (ST) Safety Wrong status flag causes exhaust HW→ SW Correct status flag to retry
fans to never be turned on/off. SR→ * turning exhaust fans on/off later.

Elder Care (ST) Safety Missing elder inactivity notification HR→ HW Notify glitch to user.
Smart Care (ST) Safety Alarm not armed. Bad interleaving Notify glitch to user.

Missing notification. HW→ SW
Alarm (OH) Security Wrong status flag causes sirens to HR→ SW Correct status flag to retry

never be turned off. SR→ HW turning sirens off.
Fire Detection (OH) Security Wrong status flag causes fire alarm HW→ SW Correct status flag to retry

to never ring SR→ * ringing alarm later.
Forgiving Security (ST) Security Alarm does not ring. HW→ SW Notify glitch to user.

Incorrect notification. SR→ *
Lock It When I Leave (ST) Security Door not locked but home vacant. HR→ HW Notify user to lock manually.

Table 1: Critical undesirable consequences in smart-home applications if failures are not handled and how developers can correct
or mitigate the problems. ST and OH are abbreviations for SmartThings and OpenHAB, respectively.

to space constraint, we only show a subset of them with unin-
tended semantics and potential fixes in Table 1.

To address these implications, a developer needs to pre-
serve the semantic invariants of the dependencies to avoid
discrepancy between the physical and application realms. One
key trait of these applications is that their semantics tolerate
different numbers of failed hard reads and writes. For exam-
ple, for HR→HW in the application that computes average
humidity level and reacts accordingly, even if some hard reads
are stale based on their timestamp (i.e., some humidity sen-
sors fail), the application can proceed with correct semantics
as long as some sensors function properly. On the other hand,
for HW→SW in the application that locks all doors and set
the home state to safe, the developer needs to ensure that the
home state is not set, even if only one door fails to be locked.
To summarize, the following two key aspects are missing in
existing IoT abstractions: 1. identifying the inherent con-
nection between application semantics and number of failed
operations, and 2. recomputing application states to preserve
invariants under failed hard reads/writes.

4 Transactuations

To address the issues discussed in the previous section, we
introduce a new abstraction called transactuation that al-
lows a developer to build a reliable smart-home application.
Transactuations provide the following two guarantees: (1)
preserve dependencies between reads/writes to hard states
and soft writes (i.e., HR→SW and HW→SW) even in cases
of hardware and communication failures. (2) ensure isolation
among transactuations that execute concurrently.

The concept of transactuations is very similar to database
transactions. Yet, due to the intrinsic nature of physical world,

it is impossible to ensure similar transactional guarantees.
We note that transactuations are not meant to replace trans-
actions completely. Instead, they are designed to address a
similar problem in a cyber-physical environment which inher-
ently prevents us from making strong assumptions. Precisely,
transactuations and transactions differ as follows:

1. Atomic durability: atomic durability [36] guarantees
that either all updates inside a transaction eventually become
durable, or none of them becomes durable. Since IoT de-
vices can neither be locked nor rolled back (e.g., in case of
some failures), transactuation cannot guarantee atomic dura-
bility of hard writes. More specifically, unlike a transaction, a
transactuation only guarantees atomic durability of soft writes
but not hard writes inside it. Thus, if a hard write fails, a
transactuation still commits by forcing its soft states to be
consistent with its hard states, as per developer specified poli-
cies (see Section 4.1).

2. Isolation & Atomic visibility: strong isolation models
(e.g., serializability or snapshot isolation) requires a trans-
action to read a consistent snapshot of a system (e.g., the
last committed state) and precludes a use of partially com-
mitted states. A transactuation executes on the latest known
consistent snapshot of the physical world, in isolation from
other concurrent transactuations. However, two concurrent
transactuations can execute on different snapshots of the phys-
ical world in absence of any committing transactuation. Addi-
tionally, (internal) atomic visibility ensures that effects of all
updates in a transaction become visible to another transaction
atomically [36]. Transactuations are also capable of guaran-
teeing internal atomic visibility: effects of a transactuation
become atomically visible to other transactuation. However,
in a smart home domain, consumers will unavoidably ob-
serve the effect of a hard write operation the moment it gets

USENIX Association 2019 USENIX Annual Technical Conference 95

executed in an actuator. Thus, it is impossible to provide ex-
ternal atomic visibility. For instance, one cannot expect that
a smart-home user to observe all door locks become locked
instantaneously.
Transactuations, further add to the definition of consistency
based on consistency between hard reads/writes and soft
writes. Transactuations preserve two invariants as follows:
(D1) A transactuation guarantees that if it executes, the stal-
eness of its hard reads is bounded, as per the developer speci-
fied tolerance. A developer leverages this invariant to ensure
inconsistencies arising out of breaking HR→ * dependencies
are detected, and appropriate actions are taken.
(D2) If writes to soft states are committed, it implies that
sufficient number of hard writes as per developer specifica-
tion have successfully executed. A developer leverages this
invariant to enforce consistency of HW→ SW dependencies.

4.1 Abstraction & API
Transactuations contain three pieces of logic which a devel-
oper writes as lambda expressions. A lambda expression is a
function that can be passed as an argument to another func-
tion [1, 7, 11]. In the rest of this paper, we refer to these
lambda expressions as lambdas. A transactuation can have the
following three lambdas: perform lambda, onSuccess lambda,
and onFailure lambda.

perform lambda. A perform lambda contains the core
logic of a transactuation. Inside a perform lambda, a devel-
oper can perform hard writes (actuate(Device, Value)),
soft reads (read(State)), and soft writes (write(State,
Value)) as shown in Listing 3.

To assign a perform lambda to a certain transactuation, a de-
veloper calls the perform() method and passes the lambda as
an argument as shown in lines 5–15 of Listing 3. The method
signature is perform(performLambda, [sensorList,
timeWindow, sensingPolicy], [actuatingPolicy]).

A developer cannot explicitly issue a hard read inside a
perform lambda. Instead, she has to specify a list of required
hard states as an argument (i.e., sensorList) to perform()
method. The required hard states are read before perform
lambda is executed, and a list of available hard states are ac-
cessible as key-value pairs to perform lambda, using sensors
parameter of a perform lambda (line 5). Disallowing explicit
hard reads inside a transactuation prevents reading stale or
null sensor values, which can break application semantics.

To preserve consistency between hard reads and soft writes
in case of a sensor unavailability, a developer can use a time
window along with a sensing policy. The time window speci-
fies that the sensor list must be validated such that, after vali-
dation, the list of available sensors includes those that have
received events close in time. Specifically, a time window
defines the duration when the transactuation triggering event
and read hard states remain valid. For instance, a window of

1 function handler(evt) {
2 let tx = Transactuation(evt);
3 // executes if all CO2 sensors received
4 // events in past 5s w.r.t. triggering event
5 tx.perform(func(sensors){
6 let co2 = sensors[’co2’];
7 let active = read(’active’);
8 if (co2 >= threshold && !active) {
9 //if all fans can be on, set active to true

10 actuateAll(’fans’, ’on’);
11 write(’active’, true);
12 } else if (co2 < threshold && active) {
13 ...
14 }
15 }, [’co2’], 5, ’all’, ’all’);
16 // executes if both policies are met
17 tx.onSuccess(func(evt) {
18 let txs = Transactuation(evt);
19 txs.perform({
20 actuate(’msg’, ’CO2 is high’);
21 }, ’none’, ’none’);
22 txs.execute();
23 });
24 // executes if either one policy is not met
25 tx.onFailure(func(evt) {
26 let txf = Transactuation(evt);
27 ...
28 });
29 tx.execute(); }

Listing 3: CO2 Vent written with transactuation. The
code presented here is in synchronous style but our
implementation uses asynchronous Node JS.

10 seconds has the following intent: a hard state passes valida-
tion if its most recent event and the transactuation triggering
event are not more than 10 seconds apart.

A sensing policy is an acceptable level of hard-read failures
that a transactuation can tolerate. It specifies that under what
condition a perform lambda can be executed over a returned
list of window-validated sensors. The perform lambda in turn
may or may not execute depending on the sensing policy.
Transactuations support three sensing policies:
• All: ensures that the perform lambda executes only if

all hard states in the sensor list pass validation. Consider an
application that reads presence sensors of every user and turns
on cameras if no one is present. For privacy, all sensors need
to pass validation. If even one presence sensor fails, it should
not risk turning on the cameras since it violates privacy.
• Any: guarantees the execution of the perform lambda

as long as at least one hard state in the sensor list passes
validation. For example, an application that computes average
humidity level from multiple sensors to control fans, executes
accordingly with correct semantics, even if some sensors fail,
but not all.
• None: states that the perform lambda executes over the

returned validated list of hard states regardless of how many
hard states are unavailable.

Observe that a time window along with a sensing policy
helps preserve HR→* dependency as per the developer’s in-
tention to preserve invariant (D1). To preserve invariant (D2),

96 2019 USENIX Annual Technical Conference USENIX Association

a developer needs to specify an actuating policy. The actuat-
ing policy is an acceptable level of hard-write failures that is
tolerable. To meet an actuating policy in case of a failure, soft
writes inside a transactuation roll back to their initial values,
and onFailure lambda executes. Similar to a sensing policy,
an actuating policy supports the following semantics:
• All: states that modifications to soft states commit if all

hard writes successfully finish. An example of this policy is
an application that locks all doors and sets home state to safe.
If even one door fails, the home state should not be set.
• Any: guarantees that soft state modifications inside a

lambda commits if at least one hard write succeeds. For ex-
ample, an application that actuates all sirens and sets the flag
ringing. Even if only one siren rings, the flag should be set.
• None: states that soft writes commit despite of failures.

onSuccess lambda. An onSuccess lambda executes if the
perform lambda of a transactuation succeeds (i.e., sensing
and actuating policies are met). A developer can assign an
onSuccess lambda to a transactuation via onSuccess() as
shown in line 17 of Listing 3.

onFailure lambda. An onFailure lambda executes if a
transactuation cannot meet its sensing or actuating policies. It
is assigned to a transactuation via onFailure() as depicted
in line 25 of Listing 3.

When a developer has set up all the lambdas for a transactu-
ation, she executes the transactuation by invoking execute()
(line 29), which is an asynchronous call that executes the
perform lambda in the background.

Listing 3 illustrates the CO2 Vent rewritten with the
transactuation abstraction. The perform lambda is parame-
terized with 5s time window. The transactuation only reads
one hard state, co2. The lambda executes if the latest sensor
update from co2, and the triggering event, which is also co2
fall in the 5 second time interval. switches, which binds
to an array of fans, requires the “all” policy if we want the
soft writes to be consistent with the actuations. The soft state
active will be set to true only if all fans can be turned on,
otherwise, active remains unchanged.

4.2 Chaining transactuations
A transactuation can be chained to other transactuations by
invoking it in their onSuccess and onFailure lambdas. As we
shall see in the next section, the runtime guarantees to execute
chained transactuations sequentially: if a transactuation τ j
is invoked in onSuccess lambda of τi, τ j is guaranteed to
see the updates τi makes. We call this ordered execution of
transactuations as T-Chain. This is particularly relevant in
an asynchronous runtime where high latency operations can
finish in arbitrary order, executing outside the critical path
such as in worker threads [25, 44]. Thus, if τ j wants to use a
soft state written by τi, τ j needs to be invoked in onSuccess

lambda of τi. In addition, if τ j requires actuations of τi to
complete before it, these two transactuations must form a
T-Chain.

5 Relacs

In this section, we detail the design of our runtime, called
Relacs, that execute smart-home applications, along with a
supporting key-value store called Relacs Store.

5.1 Relacs Store
All soft and hard states inside a transactuation are stored in a
key-value store called Relacs Store. It hides all complexities
of working with sensors and actuators by allowing developers
to not only perform read/write operations on soft states inside
a transactuation, but also to issue hard reads/writes.

Conceptually, every state inside the Relacs Store maintains
two values, speculative and final. A speculative value means
that the state has been updated logically in the Relacs Store,
but is not confirmed to be final (i.e., issued to an IoT device).
For example, a transactuation that wants to unlock a door will
have the speculative value of the door set to unlocked, before
the actuation command succeeds. When Relacs receives an
ack event confirming the success of an actuation command,
it updates the final value and discards the speculative value.
Along with setting the final value, the Relacs Store also logs
the timestamp of the ack event for validating a time window
of a transactuation reading that hard state. In Section 5.2, we
explain how speculative states help Relacs to speculatively
execute transactuations.

Since multiple hard writes on the same state can execute
before the system receives an ack from the corresponding de-
vice, Relacs Store needs to record all versions of speculative
values that have not been finalized yet. When reading a state,
Relacs Store returns the latest speculative value, or the final
value if no speculative value exists. For instance, consider
the following transactuations: a transactuation τi sets a lamp
color to red. While the lamp is changing its color, τ j changes
the lamp color to green. In this example, Relacs Store logs
both speculative values. Thus, if τk tries to read the state of
the lamp, Relacs Store returns green, even if the lamp has not
completed executing the first actuation command to change
its color to red.

5.2 Execution Model
A transactuation execution model comprises of the following
three phases:

1. Hard read phase: to start executing a transactuation, the
system first needs to determine if it can read the required hard
states in the sensor list which satisfy the specified window
and the sensing policy. If so, the system proceeds to the next
phase. For a poll-based sensor, if Relacs fails to validate the

USENIX Association 2019 USENIX Annual Technical Conference 97

window, it polls the sensor to check if it can get a fresh value.
For a push-based sensor, Relacs simply waits, as long as the
window is valid, to receive an event from the sensor. Observe
that the window is valid as long as the specified time window
has not passed since the transactuation triggering event. If the
window becomes invalid, and the list of received events fails
staleness validation, it cannot execute the perform lambda,
and proceeds to execute the onFailure lambda.

2. Speculative Commit Phase: since IoT devices cannot
roll back, Relacs needs to make sure that a transactuation will
definitely commit before performing real actuations. There-
fore, it employs a speculative execution model where a per-
form lambda first executes speculatively, without perform-
ing any real actuation. Once the perform lambda finishes, it
tries to speculatively commit like a normal transaction inside
Relacs Store. Therefore, new speculative values are commit-
ted for modified soft and hard states. Additionally, committing
new speculative values may trigger other handler functions
subscribed to these states. Finally, Relacs starts executing
the onSuccess lambda of the transactuation when it commits.
Note that these lambdas triggered by speculative commit exe-
cute their transactuations speculatively.

3. Final Commit Phase: in the last phase, Relacs sends
actuation commands that correspond to hard writes. A
transactuation τi can start its final phase, when the following
three conditions hold: first, all transactuations that precede
τi in the T-Chain finally commit. Second, all transactuations
updating states that τi read, finally commit. Third, no other
finally committing τ j conflicts with τi. More specifically, the
readset of τi does not have any intersection with the writeset
of some finally committing transactuation, and the writeset
of τi does not intersect with both readset and writeset of some
finally committing transactuation.

Relacs finally commits the transactuation when sufficient
acks are received from actuators to satisfy its actuating pol-
icy. If the transactuation times out without satisfying its ac-
tuating policy, all soft writes inside the transactuation roll
back to their initial state, and the transactuation finally com-
mits. Next, onFailure lambda executes if it has been de-
fined. Moreover, all speculative transactuations invoked by
the failed transactuation abort (e.g., chained transactuations),
and transactuations that bear data dependencies with the
failed transactuation need to re-execute.

5.3 Relacs Runtime
Relacs is built atop serverless computing [32, 42]. The run-
time comprises two classes of functions namely application
functions and system functions. We explain these functions
in detail here.

Application Functions. An application can comprise sev-
eral handlers which are triggered when particular states in
the Relacs Store change (publish-subscribe model), and each

handler can comprise several transactuations. An application
submitted to run by Relacs system is transformed into a set of
application functions to run on serverless instances as follows:

1. For each handler, Relacs transforms the logic of an em-
bedded transactuation (i.e., perform lambda) into a transaction
that can execute transactionally inside the Relacs Store.

2. The logic inside onSuccess lambda and onFailure
lambda are transformed into stand-alone serverless functions
called success and failure functions, respectively, hereafter. If
onSuccess lambda or onFailure lambda is comprised of trans-
actuations with their own onSuccess lambda and onFailure
lambda (T-Chain), the transformations are applied recursively.

3. Finally, every handler is transformed into a runnable
stand-alone serverless function, called handler function.

System Functions. Relacs comprises a serverless function
called updater function that is invoked whenever the state of
a sensor or an actuator changes. Upon receiving a notifica-
tion, the updater updates the hard state corresponding to the
event in Relacs Store, and launches an instance of subscribed
handler function(s).

Final-committer is a designated function to perform the
final commits. It selects speculative transactuations that can
finally commit without breaking the final commit rules, issues
all of their actuation commands, and marks the actuations as
issued. When a successful actuation receives a notification
(ack) from an IoT device, the updater function updates its
corresponding state in Relacs Store, and marks the actuation
command as done transactionally.

In order to detect an actuation failure, Relacs has a failure-
detector function that runs periodically, and checks whether
an ack is received for an actuation command. If after certain
threshold no ack is received, the failure detector marks the
actuation as failed. If actuating policy is not met, the enclosing
transactuation commits with rollback of soft writes, which
triggers a re-executor function to re-execute transactuations
that have data dependencies with the failed transactuation.

5.4 Fault Tolerance
A function in serverless computing is not guaranteed to com-
plete, and can terminate at any arbitrary point of execution.
Yet, Relacs guarantees applications to execute reliably despite
failures as follows.

Relacs ensures that all transactuations are executed exactly-
once even if an application function (handler, success, or fail-
ure) fails during its execution. To this end, Relacs maintains
two logs: function log and transactuation log. Function log
is a write-ahead log for application functions. The function
name along with ID of the triggering event is recorded in the
function log before the function executes. Transactuation log
atomically records a transactuation name and the event ID
during the speculative commit of a transactuation along with
updates to soft/hard states.

98 2019 USENIX Annual Technical Conference USENIX Association

A system function called serverless checker runs periodi-
cally, and inspects the function log to execute functions which
have failed. In either case, the serverless checker invokes the
failed functions again. This might lead to duplicated execu-
tions of transactuations that have executed. To prevent this,
Relacs checks if a particular transactuation is in the transactu-
ation log, and skips its execution if present. 1

Currently, the updater failure is treated as an equivalent of
sensor or actuator failure and it is handled by transactuation
semantics. To address final committer failure, Relacs runs
the final committer periodically to complete pending final
commits by actuating unissued actuations. To preclude con-
tention between the periodic and the regular final committer
that can run concurrently, Relacs uses leases and ETAGS à la
Tuba [21] in the final committer to ensure correctness.

5.5 Implementation

We implemented Relacs runtime and Relacs Store on top of
Microsoft Azure. We used Azure Function (serverless com-
puting) to implement the runtime, and used Azure Cosmos
DB to build Relacs Store. All serverless functions were im-
plemented with Azure Function. Application functions are
triggered by HTTP calls and system functions are triggered
on Cosmos DB updates or periodic timers. The parts of the
protocol that need to update Relacs Store transactionally (in-
cluding perform lambda) are transformed into Cosmos DB
stored procedures [3].

Currently, Relacs has only been integrated with Samsung
SmartThings. SmartThings allows a developer to build a web
service that connects with devices in a home [18]. We built
a gateway that forwards actuation commands from Relacs to
actuators and also polls sensor data.

5.6 Discussion

As described, Relacs validates sensor failures through event
timestamps and actuator failures through timeouts. For sen-
sor validation, as explained, if validation fails and a device
is pollable, Relacs polls the device within the window con-
straints. If a device is push-based but pollable, Relacs polls
the device and if the validation fails again, it waits for its push-
interval within the time window. However, if the device is
purely push-based, Relacs cannot differentiate between inac-
tivity and failure. We inspected 188 SmartThings-compatible
devices and found that 113 of them are pollable. Likewise, ac-
tuation failures are detected with timeouts, first on initial ack
from smart-home connector, followed by notification on final
actuator state change. Again, if the ack message is lost, Relacs
can incorrectly rollback soft states. However, transactuations

1Note that any failure during the speculative commit results in a reg-
ular transactional abort and transactuation log is not updated. Hence the
transactuation is retried when the function reexecutes.

can still help developers to prioritize home safety over con-
venience such as always setting a soft state to a conservative
value; e.g., in Smart Security (Listing 2) to ensure that the
alarm eventually rings.

6 Evaluation

In this section, we report our evaluation results on pro-
grammability, effectiveness of transactuations in enforcing
correctness, and the overhead incurred by Relacs to provide
transactuation semantics.

We selected 10 SmartThings applications from the appli-
cations that we statically analyzed. These applications are
publicly available on SmartThings repository [19]. The ap-
plications cover the four most common categories—Security
(Sc), Safety (Sf), Convenience (Cn), and Energy Efficiency
(Ee). Instead of using the original version that runs on Smart-
Things cloud, we implemented the following three versions of
the applications, that run on Azure Functions, using Javascript
Node JS [44]. This allows us to compare an application with
transactuations against an application without transactuations
in an apple-to-apple fashion.
• BE: we wrote a best-effort version (BE) of the appli-

cations without the transactuation abstraction. The BE ver-
sion follows the default semantics that ignores device failure,
exactly-once execution, and isolation.
• BE+Con: since the BE version ignores potential failures

in devices or applications, we implemented a best-effort with
consistency (BE+Con) version of an application which adds
code that keeps device states consistent with application states.
More specifically, BE+Con introduces both sensor window
validation and soft state rollback code. However, it ignores
the isolation guarantee that transactuations provide.
• TN: we also implemented these applications with the

transactuation abstraction (TN). 5 applications out of the eval-
uated 10 applications used T-Chain to establish order among
hard and soft states.

Experimental setup. We set up SmartThings compatible
devices and measured the round trip latency of four devices in
a typical smart home: a door lock, a bulb, a power strip, and a
smart power plug. The door lock has a significant latency of
nearly 3.6s on average and maximum of nearly 9.8s, over 100
trials. The other devices incur an average latency of nearly
0.7s with the maximum at nearly 3.7s. Since we had a limited
set of devices, we parallelized our experiments by simulating
the devices using latency data on a Raspberry Pi Model 3 [13].
It comes with a 1.2 GHz 32-bit quadcore ARM Cortex-A53
processor and 1 GB RAM. In addition, the simulator also
allowed us to easily inject failures for our experiments.

USENIX Association 2019 USENIX Annual Technical Conference 99

Application #HR #HW Transactuation Policy LOC
BE BE+Con TN

Rise And Shine (Cn1) 1 (*) 1 2 (none, none) 72 195 68
Whole House Fan (Cn2) 1 (*), 3 2 (*) 1 (none, none) 29 176 26
Thermostat Auto Off (Cn3) 1 (*) 2 1 (all, none), 1 (all, all), 1 (none, all) 70 198 68
Auto Humidity Vent (Ee1) 1 (*), 1 3(*), 1 1 (any, none), 1 (none, any), 49 170 100

1 (none, none), 1 (all, any)
Lights Off With No Motion (Ee2) 1 (*), 1 1 (*) 2 (all, all) 56 161 67
Cameras On When Away (Sc1) 2 (*) 2 (*) 1 (all, none), 1 (any, none) 31 149 88
Nobody Home (Sc2) 1 (*) 1 1 (all, none), 1 (any, none), 1 (none, none) 65 175 62
Smart Security (Sc3) 2 (*) 2 (*) 1 (all, all) 144 323 144
CO2 Vent (Sf1) 1 2 (*) 1 (all, all) 29 152 26
Lock It When I Leave (Sf2) 3 (*) 2 (*), 2 2 (none, none), 1 (all, none) 51 180 54

Table 2: Properties of each benchmark application including the number of hard reads and hard writes (* denotes an operation
to an array of devices with a single command, for example, 2 (*) means 2 operations, each accessing a device group); the
fault-tolerance policies for the TN configuration in a format of (sensing, actuating) (Col 4); and programability shown by LOC
comparison among transactuation (TN), best effort (BE), and best effort with consistency (BE+Con) (Col 5).

6.1 Programmability
In order to evaluate the programmability and convenience of
using transactuation in contrast to manually writing failure
handling code, we compare lines of code (LOC) of applica-
tions, using CLOC [6].

Table 2 shows the programmability evaluation (LOC) along
with the number of hard reads and writes, and transactuation
policies we employ for each application. Observe that TN and
BE versions are comparable in LOC despite no guarantees
in the BE version, except in Ee1 where we introduce new
soft states and four transactuations, each part of T-Chains, in
order to ensure consistency. BE+Con version requires sub-
stantial code to explicitly handle failures. As mentioned ear-
lier, BE+Con version validates sensor freshness similar to
transactuation and may roll back soft states after determining
the outcome of actuations for hard write to soft write depen-
dencies. Finally, although transactuations require more code
in order to create T-Chains, it automatically handles failure,
and simplifies writing reliable applications considerably.

6.2 Correctness
Table 3 shows the applications that we evaluated with their
inherent undesirable behaviors on transient or longer dura-
tion failures. The second column shows the undesirable be-
haviors, and the third column shows the outcome of using
transactuations. The last column explains the mechanism
transactuations use to resolve or mitigate the issue. We con-
sidered different types of failures that transactuations can ad-
dress (i.e., unavailable sensors and failed actuations), and in-
jected these failures by dropping event or actuation messages.
Transactuation addresses these issues with three techniques.
First, sensor staleness validation prevents the execution of per-
form lambda and executes onFailure lambda that can notify

a user. Second, actuation losses are detected automatically
and associated soft writes are rolled back to ensure consis-
tency. Third, when one actuation depends on another, we used
an intermediate soft state to chain two transactuations each
having actuations. For example, in Sc3 (Smart Security) ap-
plication, inconsistency between the alarm actuation and the
soft write is resolved using roll back to eliminate the issue.
However, some applications need to use multiple chained
transactuations to correctly address actuation dependencies.

6.3 Overhead

To evaluate the overhead of transactuations, we measured
execution time of the applications as follows. We started
timing when an application began executing, and stopped
when every soft write committed and all actuations completed.
Our performance results are summarized in Figure 1. Each
value is the mean of 30 runs, with 95% confidence intervals.

Failure-free. We first compare the execution times of TN
and BE versions without any injected failures. The overhead
of transactuations is attributed to (1) safeguarding against
inconsistencies due to inherently concurrent execution, (2)
providing fault tolerance, and (3) enforcing actuation orders of
T-Chains. We note that the final committer function imposes
significant overhead on Relacs since it is invoked2 automati-
cally by CosmosDB updates. For instance, we observed that
its start may be delayed between zero to five seconds. The
periodic final committer which we set to run every second
helps to mitigate this overhead.

Figure 1a shows that, on average (geomean), the TN version
incurs 1.5 times slowdown compared to BE. Observe that the

2Other functions except the re-executor are invoked by HTTP calls.

100 2019 USENIX Annual Technical Conference USENIX Association

App Undesirable consequence Transactuation effect Mechanism used
Cn1 Mode not set permanently Soft state rollback
Cn2 Incorrect behavior Issue detected and user notified Sensor staleness validation

Fans not ON irreversibly Soft state rollback
Cn3 Thermostat not OFF Soft state rollback

Incorrect mode Soft state rollback
Ee1 Incorrect energy and operation time reported Soft state rollback and chaining

Incorrect behavior Issue detected and user notified Sensor staleness validation
Ee2 Incorrectly turning lights ON/OFF Issue detected and user notified Sensor staleness validation
Sc1 Incorrect behavior Issue detected and user notified Sensor staleness validation

Actuation failure Chaining
Sc2 Incorrect mode set Issue detected and user notified Sensor staleness validation

Home mode change w/o notification soft state rollback
Sc3 Intruder motion not detected Issue detected and user notified Sensor staleness validation

Alarm not active irreversibly soft state rollback
Sf1 Incorrect behavior Issue detected and user notified Sensor staleness validation

Exhauts not ON irreversibly soft state rollback
Sf2 Door unlocked but home vacant Issue detected and user notified Sensor staleness validation

Door locked at arrival Chaining

Table 3: Applications with undesirable consequences on induced failures. Column 3 shows failure avoidance or mitigation when
written with transactuations. Column 4 shows the internal mechanism used by the transactuations. A checkmark implies that
transactuation automatically resolves the issue.

speculative commit duration (TN.SC) is significantly smaller
than the final commit duration (TN.FC). Figure 1a also breaks
down the final commit time into actuation time (TN.FC.ACT)
and the final-committer triggering overhead (TN.FC.TRIG).
As mentioned earlier, the triggering overhead is significantly
large, especially, in the case of a long T-Chain like Ee1 (4
transactuations).

With failure. In this scenario, we conducted two experi-
ments. In each experiment, we used a dummy application
that issued a dummy actuation, and updated a dummy soft
state. In the first experiment, the dummy actuation turned on
a smart switch (low-latency actuation). In the second one, it
actuated a door lock (high-latency actuation). We introduced
an artificial data dependency (RAW) by forcing all benchmark
applications to read the dummy soft state before executing
their core logic. Lastly, we injected a failure to the dummy ac-
tuation to trigger failure detection and handling in the dummy
application and re-execution of the benchmark applications
to repair the broken data dependency. Because devices have
different actuation latencies, the timeout thresholds to declare
failed actuations are specific to each device. More specifically,
we used the maximum observed latency for each device (i.e.,
4s for the smart switch and 10s for the door lock).

Figure 1b compares the execution time of the failure-free
case against the two failure experiments. The additional over-
head we observe here is the failure detection overhead which
includes the timeout (TN.FD.TO) and the overhead of trigger-
ing the re-executor function (TN.FD.TRIG). Similar to the
final committer, the re-executor is invoked automatically by
Cosmos DB when actuations are marked as failed, thus it

incurs similar overhead. Observe that the failure experiments
have two stacked bars of speculative commits. The second
bar shows the re-execution of transactuations with broken
dependencies.

As expected, introducing a failure results in longer exe-
cution times for the applications. This slowdown is caused
by the timeout threshold plus the re-executor triggering over-
head (~2s). Moreover, the difference between the middle and
right bars for each application is the difference in timeout
thresholds for low and high latency actuations (~6s).

7 Related Work

Checking Correctness. Soteria [22] employs model check-
ing to identify contradicting interactions between IoT appli-
cations. For example, water leak detection turns off a water
valve while smoke detection attempts to turn on a fire sprin-
kler. Prior work like DeLorean [24] models absolute and
relative time to find timing bugs in event driven programs,
e.g., door open at unsafe times. In contrast, our work tackles a
different problem, the lack of reliability and isolation, using a
dynamic technique. IoT analyses also use dynamic taint anal-
yses like techniques to detect source of security breaches [46]
and dynamic program slicing to explain behaviors [40]. We
use static dependence analysis to report potential problems.

Programming abstractions. Using speculative execution
for improving latency and performance is a common tech-
nique in many transactional and replicated systems. These
can be classified into two categories: systems [34, 41, 47]

USENIX Association 2019 USENIX Annual Technical Conference 101

Cn1 Cn2 Cn3 Ee1 Ee2 Sc1 Sc2 Sc3 Sf1 Sf2 gm

Applications

0

5

10

15

20

25

30

Ex
ec

ut
io

n
Ti

m
e

(s
)

BE
TN.SC
TN.FC
TN.FC.ACT
TN.FC.TRIG

(a) Execution times for BE and TN versions in failure-free
case. We break down the execution time of TN into speculative
commit (TN.SC) and final commit (TN.FC). TN.FC is shown
as actuation time (TN.FC.ACT) and as overhead to trigger the
final-committer function (TN.FC.TRIG).

Cn1 Cn2 Cn3 Ee1 Ee2 Sc1 Sc2 Sc3 Sf1 Sf2 gm

Applications

0

5

10

15

20

25

30
TN.SC
TN.FC
TN.FD
TN.FD.TO
TN.FD.TRIG

(b) Execution time comparison for failure-free and failure cases. For each
application, we show 3 bars, failure-free case (the left bar), low-latency
actuation failure case (the middle bar), and high-latency actuation failure
case (the right bar). For the failure cases, the breakdown includes fail-
ure detection time (TN.FD) which is subdivided into timeout detection
(TN.FD.TO) and re-execution triggering overhead (TN.FD.TRIG).

Figure 1: The execution time of 10 applications chosen from SmartThings repository and their geomean (gm) for BE and TN
versions of applications in failure-free and failure scenarios.

that hide the effects of speculation from applications, and
work [29, 31, 43] that expose speculation results to applica-
tions. While certain applications in the latter case can benefit
by reading speculative values, they need to handle possible
side effects of acting on misspeculated values. With Relacs, ef-
fects of speculatively committed transactuations are exposed
to other transactuations. Yet, no transactuation can finally
commit, and actuate devices until all transactuations that it
speculatively read from finally commit.

Planet [43] provides a mechanism to speculate on partial
state of a transaction in distributed environments. The ab-
straction allows a developer to continue based on a predictive
outcome, and later receive a confirmation or an apology. In
contrast, we target a different environment and problem, and
provide a simplified way to address device failure handling.

Execution semantics and conflict detection. IOTA [40]
defines a calculus for programs in IoT domain. They also
define an execution semantics to eliminate races on actions
against the same physical event. Similar races can be resolved
in our system by reordering transactuations according to pro-
grammer annotations similar to Zave et al. [48]. IOTA also
shows offline analyses to detect device conflicts. Conflict de-
tection in a home can include static model checking [38] or
dynamic analyses [48] to detect feature interactions [38] and
accesses to the same device [26]. They detect commands due
to single event or concurrent independent events to the same
device, e.g., simultaneous turning on and off on a device. The
execution semantics of our system provides isolation naturally

and can easily be enhanced to report device interactions by
intersecting read-write sets of transactuations dynamically.

8 Conclusion

In this paper, we identified a fundamental problem that arises
due to failures in IoT systems that interact with the physical
world. We analyzed smart-home applications, and showed
how application semantics is broken due to different failures
that occur in an IoT environment. We introduced an abstrac-
tion, called transactuation, that allows a developer to build re-
liable IoT applications. Our runtime, called Relacs, enforces
the semantic guarantees of transactuations. Our evaluation
demonstrated programmability, performance, and effective-
ness of the transactuation abstraction on top of our runtime.

9 Acknowledgment

We would like to thank our shepherd, Gernot Heiser and
anonymous reviewers for their insightful and valuable feed-
back. We would also like to thank Nitin Agrawal, Arani Bhat-
tacharya, Juan Colmenares, Iqbal Mohomed, Marc Shapiro,
Pierre Sutra, Ahmad Bisher Tarakji, and Ashish Vulimiri for
their suggestions and helpful discussions.

102 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Arrow functions. https://developer.mozilla.
org/en-US/docs/Web/JavaScript/Reference/
Functions/Arrow_functions.

[2] AWS Lambda Retry Behavior. https:
//docs.aws.amazon.com/lambda/latest/dg/
retries-on-errors.html.

[3] Azure Cosmos DB server-side programming:
Stored procedures, database triggers, and UDFs.
https://docs.microsoft.com/en-us/azure/
cosmos-db/programming.

[4] Bluetooth Low Energy. https://www.bluetooth.
com.

[5] CO2 Vent. https://github.com/
SmartThingsCommunity/SmartThingsPublic/
tree/master/smartapps/dianoga/co2-vent.src.

[6] Count Lines of Code. http://cloc.sourceforge.
net.

[7] Expressions. https://docs.python.org/2/
reference/expressions.html.

[8] Groovy ast interface. http://docs.groovy-
lang.org/docs/groovy-2.4.0/html/api/org/
codehaus/groovy/ast/package-summary.html.

[9] Inconsistent Behavior. https://community.
smartthings.com/t/inconsistent-behavior/
35284.

[10] IoTBench-test-suite. https://github.com/IoTBench/IoTBench-
test-suite/tree/master/openHAB.

[11] Lambda Expressions. https://docs.
oracle.com/javase/tutorial/java/javaOO/
lambdaexpressions.html.

[12] OpenHAB: Empowering the Smart Home. https://
www.openhab.org.

[13] Raspberry Pi 3 Model B. https://www.raspberrypi.
org/products/raspberry-pi-3-model-b/.

[14] SmartThings. http://www.smartthings.com/.

[15] SSA1 / SSA2 Instruction Manual. https:
//support.smartthings.com/hc/en-us/article_
attachments/200715310/ssa_manual_14may2011_
-_new_address0.pdf.

[16] Z-Wave Alliance. http://www.z-wavealliance.
org.

[17] ZigBee Alliance. http://www.zigbee.org/.

[18] Web Services SmartThings. https://docs.
smartthings.com/en/latest/smartapp-web-
services-developers-guide/index.html, 2018.

[19] SmartThings Smart Apps. https://github.com/
SmartThingsCommunity/SmartThingsPublic/
tree/master/smartapps, 2019.

[20] Masoud Saeida Ardekani, Rayman Preet Singh, Nitin
Agrawal, Douglas B. Terry, and Riza O. Suminto.
Rivulet: A Fault-tolerant Platform for Smart-home Ap-
plications. In Proceedings of the 18th Doctoral Sympo-
sium of the 18th International Middleware Conference
(MIDDLEWARE ’17), Las Vegas, NV, December 2017.

[21] Masoud Saeida Ardekani and Douglas B. Terry. A Self-
Configurable Geo-Replicated Cloud Storage System. In
Proceedings of the 11th Symposium on Operating Sys-
tems Design and Implementation (OSDI ’14), Broom-
field, CO, October 2014.

[22] Z. Berkay Celik, Patrick McDaniel, and Gang Tan. So-
teria: Automated IoT Safety and Security Analysis. In
Proceedings of the 2018 USENIX Annual Technical Con-
ference (ATC ’18), Boston, MA, July 2018.

[23] Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy.
A Simple, Fast Dominance Algorithm. Rice University,
CS Technical Report 06-33870, January 2001.

[24] Jason Croft, Ratul Mahajan, Matthew Caesar, and
Madan Musuvathi. Systematically Exploring the Behav-
ior of Control Programs. In Proceedings of the 2015
USENIX Annual Technical Conference (ATC ’15), Santa
Clara, CA, July 2015.

[25] James Davis, Arun Thekumparampil, and Dongyoon
Lee. Node.Fz: Fuzzing the Server-Side Event-Driven
Architecture. In Proceedings of the 2017 European Con-
ference on Computer Systems (EuroSys ’17), Belgrade,
Serbia, April 2017.

[26] Colin Dixon, Ratul Mahajan, Sharad Agarwal, A. J.
Brush, Bongshin Lee, Stefan Saroiu, and Paramvir Bahl.
An Operating System for the Home. In Proceedings of
the 9th Symposium on Networked Systems Design and
Implementation (NSDI ’12), San Jose, CA, April 2012.

[27] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. War-
ren. The Program Dependence Graph and Its Use in
Optimization. ACM Transactions on Programming Lan-
guages and Systems, 9(3):319–349, July 1987.

[28] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic,
and Marimuthu Palaniswami. Internet of Things (IoT):
A vision, architectural elements, and future directions.
Future Generation Computer Systems, 29(7):1645–1660,
September 2013.

USENIX Association 2019 USENIX Annual Technical Conference 103

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://docs.aws.amazon.com/lambda/latest/dg/retries-on-errors.html
https://docs.aws.amazon.com/lambda/latest/dg/retries-on-errors.html
https://docs.aws.amazon.com/lambda/latest/dg/retries-on-errors.html
https://docs.microsoft.com/en-us/azure/cosmos-db/programming
https://docs.microsoft.com/en-us/azure/cosmos-db/programming
https://www.bluetooth.com
https://www.bluetooth.com
https://github.com/SmartThingsCommunity/SmartThingsPublic/tree/master/smartapps/dianoga/co2-vent.src
https://github.com/SmartThingsCommunity/SmartThingsPublic/tree/master/smartapps/dianoga/co2-vent.src
https://github.com/SmartThingsCommunity/SmartThingsPublic/tree/master/smartapps/dianoga/co2-vent.src
http://cloc.sourceforge.net
http://cloc.sourceforge.net
https://docs.python.org/2/reference/expressions.html
https://docs.python.org/2/reference/expressions.html
http://docs.groovy-lang.org/docs/groovy-2.4.0/html/api/org/codehaus/groovy/ast/package-summary.html
http://docs.groovy-lang.org/docs/groovy-2.4.0/html/api/org/codehaus/groovy/ast/package-summary.html
http://docs.groovy-lang.org/docs/groovy-2.4.0/html/api/org/codehaus/groovy/ast/package-summary.html
https://community.smartthings.com/t/inconsistent-behavior/35284
https://community.smartthings.com/t/inconsistent-behavior/35284
https://community.smartthings.com/t/inconsistent-behavior/35284
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://www.openhab.org
https://www.openhab.org
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
http://www.smartthings.com/
https://support.smartthings.com/hc/en-us/article_attachments/200715310/ssa_manual_14may2011_-_new_address0.pdf
https://support.smartthings.com/hc/en-us/article_attachments/200715310/ssa_manual_14may2011_-_new_address0.pdf
https://support.smartthings.com/hc/en-us/article_attachments/200715310/ssa_manual_14may2011_-_new_address0.pdf
https://support.smartthings.com/hc/en-us/article_attachments/200715310/ssa_manual_14may2011_-_new_address0.pdf
http://www.z-wavealliance.org
http://www.z-wavealliance.org
http://www.zigbee.org/
https://docs.smartthings.com/en/latest/smartapp-web-services-developers-guide/index.html
https://docs.smartthings.com/en/latest/smartapp-web-services-developers-guide/index.html
https://docs.smartthings.com/en/latest/smartapp-web-services-developers-guide/index.html
https://github.com/SmartThingsCommunity/SmartThingsPublic/tree/master/smartapps
https://github.com/SmartThingsCommunity/SmartThingsPublic/tree/master/smartapps
https://github.com/SmartThingsCommunity/SmartThingsPublic/tree/master/smartapps

[29] Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian
Seredinschi. Incremental Consistency Guarantees for
Replicated Objects. In Proceedings of the 12th Sympo-
sium on Operating Systems Design and Implementation
(OSDI ’16), Savannah, GA, November 2016.

[30] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesat-
apornwongsa, Tiratat Patana-anake, Thanh Do, Jeffry
Adityatama, Kurnia J. Eliazar, Agung Laksono, Jeffrey F.
Lukman, Vincentius Martin, and Anang D. Satria. What
Bugs Live in the Cloud? A Study of 3000+ Issues in
Cloud Systems. In Proceedings of the 5th ACM Sym-
posium on Cloud Computing (SoCC ’14), Seattle, WA,
November 2014.

[31] Pat Helland and Dave Cambell. Building on Quicksand.
In Proceedings of the 4th Conference on Innovative
Data Systems Research (CIDR ’09), Pacific Grove, CA,
January 2009.

[32] Scott Hendrickson, Stephen Sturdevant, Tyler Harter,
Venkateshwaran Venkataramani, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Serverless
Computation with OpenLambda. In Proceedings of the
8th USENIX Workshop on Hot Topics in Cloud Comput-
ing (HotCloud ’16), Denver, CO, June 2016.

[33] Timothy W. Hnat, Vijay Srinivasan, Jiakang Lu, Tamim I
Sookoor, Raymond Dawson, John Stankovic, and Kamin
Whitehouse. The hitchhiker’s guide to successful res-
idential sensing deployments. In Proceedings of the
9th ACM Conference on Embedded Networked Sensor
Systems (SenSys ’11), Seattle, WA, November 2011.

[34] Manos Kapritsos, Yang Wang, Vivien Quéma, Allen
Clement, Lorenzo Alvisi, and Mike Dahlin. All about
Eve: Execute-Verify Replication for Multi-Core Servers.
In Proceedings of the 10th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI ’12),
October 2012.

[35] Mary Beth Kery, Claire Le Goues, and Brad A. Myers.
Examining Programmer Practices for Locally Handling
Exceptions. In Proceedings of the 13th International
Conference on Mining Software Repositories (MSR ’16),
Austin, TX, May 2016.

[36] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel
Madden, and Alan Fekete. MDCC: Multi-Data Center
Consistency. In Proceedings of the 2013 European
Conference on Computer Systems (EuroSys ’13), Prague,
Czech Republic, April 2013.

[37] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi
Joshi, Jeffrey F. Lukman, and Haryadi S. Gunawi.
SAMC: Semantic-Aware Model Checking for Fast Dis-
covery of Deep Bugs in Cloud Systems. In Proceedings

of the 11th Symposium on Operating Systems Design
and Implementation (OSDI ’14), Broomfield, CO, Octo-
ber 2014.

[38] Chieh-Jan Mike Liang, Börje F. Karlsson, Nicholas D.
Lane, Feng Zhao, Junbei Zhang, Zheyi Pan, Zhao Li,
and Yong Yu. SIFT: Building an Internet of Safe Things.
In Proceedings of the 14th International Conference on
Information Processing in Sensor Networks (IPSN ’15),
Seattle, WA, April 2015.

[39] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou.
Learning from Mistakes — A Comprehensive Study
on Real World Concurrency Bug Characteristics. In
Proceedings of the 13th international conference on
Architectural support for programming languages and
operating systems (ASPLOS ’08), Seattle, WA, March
2008.

[40] Julie L. Newcomb, Satish Chandra, Jean-Baptiste Jean-
nin, Cole Schlesinger, and Manu Sridharan. IOTA: A
Calculus for Internet of Things Automation. In Proceed-
ings of the 2017 ACM SIGPLAN International Sympo-
sium on New Ideas, New Paradigms, and Reflections on
Programming and Software (ONWARD ’17), Vancouver,
Canada, October 2017.

[41] Edmund B. Nightingale, Peter M. Chen, and Jason Flinn.
Speculative execution in a distributed file system. In
Proceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP ’05), pages 191–205, 2005.

[42] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck,
Tyler Harter, Andrea Arpaci-Dusseau, and Remzi
Arpaci-Dusseau. SOCK: Rapid task provisioning with
serverless-optimized containers. In Proceedings of the
2018 USENIX Annual Technical Conference (USENIX
ATC ’18), Boston, MA, July 2018.

[43] Gene Pang, Tim Kraska, Michael J. Franklin, and Alan
Fekete. PLANET: Making Progress with Commit Pro-
cessing in Unpredictable Environments. In Proceedings
of the 2014 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’14), Snowbird, UT,
June 2014.

[44] Stefan Tilkov and Steve Vinoski. Node.js: Using
JavaScript to Build High-Performance Network Pro-
grams. IEEE Internet Computing, 14(6):80–83, Novem-
ber 2010.

[45] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and
Michael L. Littman. Practical Trigger-Action Program-
ming in the Smart Home. In Proceedings of the 2014
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’14), Toronto, Canada, April 2014.

104 2019 USENIX Annual Technical Conference USENIX Association

[46] Qi Wang, Wajih Ul Hassan, Adam M. Bates, and Carl A.
Gunter. Fear and Logging in the Internet of Things. In
Proceedings of the 25th Annual Network and Distributed
System Security Symposium, (NDSS ’18), San Diego,
CA, Februay 2018.

[47] Benjamin Wester, James A. Cowling, Edmund B.
Nightingale, Peter M. Chen, Jason Flinn, and Barbara
Liskov. Tolerating Latency in Replicated State Machines

Through Client Speculation. In Proceedings of the 6th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’09), April 2009.

[48] Pamela Zave, Eric Cheung, and Svetlana Yarosh. To-
ward user-centric feature composition for the Internet
of Things. arXiv preprint arXiv:1510.06714, October
2015.

USENIX Association 2019 USENIX Annual Technical Conference 105

Not So Fast:
Analyzing the Performance of WebAssembly vs. Native Code

Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun Guha
University of Massachusetts Amherst

Abstract
All major web browsers now support WebAssembly, a low-
level bytecode intended to serve as a compilation target for
code written in languages like C and C++. A key goal of Web-
Assembly is performance parity with native code; previous
work reports near parity, with many applications compiled
to WebAssembly running on average 10% slower than na-
tive code. However, this evaluation was limited to a suite
of scientific kernels, each consisting of roughly 100 lines of
code. Running more substantial applications was not possi-
ble because compiling code to WebAssembly is only part of
the puzzle: standard Unix APIs are not available in the web
browser environment. To address this challenge, we build
BROWSIX-WASM, a significant extension to BROWSIX [29]
that, for the first time, makes it possible to run unmodified
WebAssembly-compiled Unix applications directly inside the
browser. We then use BROWSIX-WASM to conduct the first
large-scale evaluation of the performance of WebAssembly
vs. native. Across the SPEC CPU suite of benchmarks, we
find a substantial performance gap: applications compiled to
WebAssembly run slower by an average of 45% (Firefox) to
55% (Chrome), with peak slowdowns of 2.08× (Firefox) and
2.5× (Chrome). We identify the causes of this performance
degradation, some of which are due to missing optimizations
and code generation issues, while others are inherent to the
WebAssembly platform.

1 Introduction

Web browsers have become the most popular platform for run-
ning user-facing applications, and until recently, JavaScript
was the only programming language supported by all major
web browsers. Beyond its many quirks and pitfalls from the
perspective of programming language design, JavaScript is
also notoriously difficult to compile efficiently [12, 17, 30,
31]. Applications written in or compiled to JavaScript typ-
ically run much slower than their native counterparts. To
address this situation, a group of browser vendors jointly
developed WebAssembly.

WebAssembly is a low-level, statically typed language
that does not require garbage collection, and supports in-
teroperability with JavaScript. The goal of WebAssembly
is to serve as a universal compiler target that can run in a
browser [15, 16, 18].1 Towards this end, WebAssembly is
designed to be fast to compile and run, to be portable across
browsers and architectures, and to provide formal guarantees
of type and memory safety. Prior attempts at running code at
native speed in the browser [4, 13, 14, 38], which we discuss
in related work, do not satisfy all of these criteria.

WebAssembly is now supported by all major browsers [8,
34] and has been swiftly adopted by several programming
languages. There are now backends for C, C++, C#, Go,
and Rust [1, 2, 24, 39] that target WebAssembly. A curated
list currently includes more than a dozen others [10]. Today,
code written in these languages can be safely executed in
browser sandboxes across any modern device once compiled
to WebAssembly.

A major goal of WebAssembly is to be faster than
JavaScript. For example, the paper that introduced Web-
Assembly [18] showed that when a C program is compiled
to WebAssembly instead of JavaScript (asm.js), it runs 34%
faster in Google Chrome. That paper also showed that the per-
formance of WebAssembly is competitive with native code:
of the 24 benchmarks evaluated, the running time of seven
benchmarks using WebAssembly is within 10% of native
code, and almost all of them are less than 2× slower than
native code. Figure 1 shows that WebAssembly implementa-
tions have continuously improved with respect to these bench-
marks. In 2017, only seven benchmarks performed within
1.1× of native, but by 2019, this number increased to 13.

These results appear promising, but they beg the question:
are these 24 benchmarks representative of WebAssembly’s
intended use cases?

1The WebAssembly standard is undergoing active development, with
ongoing efforts to extend WebAssembly with features ranging from SIMD
primitives and threading to tail calls and garbage collection. This paper
focuses on the initial and stable version of WebAssembly [18], which is
supported by all major browsers.

USENIX Association 2019 USENIX Annual Technical Conference 107

The Challenge of Benchmarking WebAssembly The
aforementioned suite of 24 benchmarks is the PolybenchC
benchmark suite [5], which is designed to measure the ef-
fect of polyhedral loop optimizations in compilers. All the
benchmarks in the suite are small scientific computing ker-
nels rather than full applications (e.g., matrix multiplication
and LU Decomposition); each is roughly 100 LOC. While
WebAssembly is designed to accelerate scientific kernels on
the Web, it is also explicitly designed for a much richer set of
full applications.

The WebAssembly documentation highlights several in-
tended use cases [7], including scientific kernels, image edit-
ing, video editing, image recognition, scientific visualization,
simulations, programming language interpreters, virtual ma-
chines, and POSIX applications. Therefore, WebAssembly’s
strong performance on the scientific kernels in PolybenchC
do not imply that it will perform well given a different kind
of application.

We argue that a more comprehensive evaluation of Web-
Assembly should rely on an established benchmark suite of
large programs, such as the SPEC CPU benchmark suites.
In fact, the SPEC CPU 2006 and 2017 suite of bench-
marks include several applications that fall under the intended
use cases of WebAssembly: eight benchmarks are scien-
tific applications (e.g., 433.milc, 444.namd, 447.dealII,
450.soplex, and 470.lbm), two benchmarks involve image
and video processing (464.h264ref and 453.povray), and
all of the benchmarks are POSIX applications.

Unfortunately, it is not possible to simply compile a sophis-
ticated native program to WebAssembly. Native programs,
including the programs in the SPEC CPU suites, require oper-
ating system services, such as a filesystem, synchronous I/O,
and processes, which WebAssembly and the browser do not
provide. The SPEC benchmarking harness itself requires a file
system, a shell, the ability to spawn processes, and other Unix
facilities. To overcome these limitations when porting native
applications to the web, many programmers painstakingly
modify their programs to avoid or mimic missing operating
system services. Modifying well-known benchmarks, such
as SPEC CPU, would not only be time consuming but would
also pose a serious threat to validity.

The standard approach to running these applications today
is to use Emscripten, a toolchain for compiling C and C++ to
WebAssembly [39]. Unfortunately, Emscripten only supports
the most trivial system calls and does not scale up to large-
scale applications. For example, to enable applications to use
synchronous I/O, the default Emscripten MEMFS filesystem
loads the entire filesystem image into memory before the
program begins executing. For SPEC, these files are too large
to fit into memory.

A promising alternative is to use BROWSIX, a framework
that enables running unmodified, full-featured Unix appli-
cations in the browser [28, 29]. BROWSIX implements a
Unix-compatible kernel in JavaScript, with full support for

0

5

10

15

20

25

< 1.
1x

 of
 nat

ive

< 1.
5x

 of
 nat

ive

< 2x
 of

 nat
ive

< 2.
5x

 of
 nat

ive

Performance relative to native

#
 o

f P
ol

yB
en

ch
C

 b
en

ch
m

ar
ks

PLDI 2017 April 2018 This paper

Figure 1: Number of PolyBenchC benchmarks performing
within x× of native. In 2017 [18], seven benchmarks per-
formed within 1.1× of native. In April 2018, we found that
11 performed within 1.1× of native. In May 2019, 13 per-
formed with 1.1× of native.

processes, files, pipes, blocking I/O, and other Unix fea-
tures. Moreover, it includes a C/C++ compiler (based on
Emscripten) that allows programs to run in the browser un-
modified. The BROWSIX case studies include complex ap-
plications, such as LATEX, which runs entirely in the browser
without any source code modifications.

Unfortunately, BROWSIX is a JavaScript-only solution,
since it was built before the release of WebAssembly. More-
over, BROWSIX suffers from high performance overhead,
which would be a significant confounder while benchmarking.
Using BROWSIX, it would be difficult to tease apart the poorly
performing benchmarks from performance degradation intro-
duced by BROWSIX.

Contributions

• BROWSIX-WASM: We develop BROWSIX-WASM, a
significant extension to and enhancement of BROWSIX
that allows us to compile Unix programs to Web-
Assembly and run them in the browser with no modifi-
cations. In addition to integrating functional extensions,
BROWSIX-WASM incorporates performance optimiza-
tions that drastically improve its performance, ensuring
that CPU-intensive applications operate with virtually
no overhead imposed by BROWSIX-WASM (§2).

• BROWSIX-SPEC: We develop BROWSIX-SPEC, a har-
ness that extends BROWSIX-WASM to allow automated
collection of detailed timing and hardware on-chip per-
formance counter information in order to perform de-
tailed measurements of application performance (§3).

108 2019 USENIX Annual Technical Conference USENIX Association

• Performance Analysis of WebAssembly: Using
BROWSIX-WASM and BROWSIX-SPEC, we conduct
the first comprehensive performance analysis of Web-
Assembly using the SPEC CPU benchmark suite (both
2006 and 2017). This evaluation confirms that Web-
Assembly does run faster than JavaScript (on average
1.3× faster across SPEC CPU). However, contrary to
prior work, we find a substantial gap between Web-
Assembly and native performance: code compiled to
WebAssembly runs on average 1.55× slower in Chrome
and 1.45× slower in Firefox than native code (§4).

• Root Cause Analysis and Advice for Implementers:
We conduct a forensic analysis with the aid of perfor-
mance counter results to identify the root causes of this
performance gap. We find the following results:

1. The instructions produced by WebAssembly have
more loads and stores than native code (2.02×
more loads and 2.30× more stores in Chrome;
1.92× more loads and 2.16× more stores in Fire-
fox). We attribute this to reduced availability of
registers, a sub-optimal register allocator, and a
failure to effectively exploit a wider range of x86
addressing modes.

2. The instructions produced by WebAssembly have
more branches, because WebAssembly requires
several dynamic safety checks.

3. Since WebAssembly generates more instructions,
it leads to more L1 instruction cache misses.

We provide guidance to help WebAssembly imple-
menters focus their optimization efforts in order to close
the performance gap between WebAssembly and native
code (§5,6).

BROWSIX-WASM and BROWSIX-SPEC are available at
https://browsix.org.

2 From BROWSIX to BROWSIX-WASM

BROWSIX [29] mimics a Unix kernel within the browser and
includes a compiler (based on Emscripten [33, 39]) that com-
piles native programs to JavaScript. Together, they allow
native programs (in C, C++, and Go) to run in the browser
and freely use operating system services, such as pipes, pro-
cesses, and a filesystem. However, BROWSIX has two major
limitations that we must overcome. First, BROWSIX compiles
native code to JavaScript and not WebAssembly. Second, the
BROWSIX kernel has significant performance issues. In partic-
ular, several common system calls have very high overhead in
BROWSIX, which makes it hard to compare the performance
of a program running in BROWSIX to that of a program run-
ning natively. We address these limitations by building a new

in-browser kernel called BROWSIX-WASM, which supports
WebAssembly programs and eliminates the performance bot-
tlenecks of BROWSIX.

Emscripten Runtime Modifications BROWSIX modifies
the Emscripten compiler to allow processes (which run in
WebWorkers) to communicate with the BROWSIX kernel
(which runs on the main thread of a page). Since BROWSIX
compiles native programs to JavaScript, this is relatively
straightforward: each process’ memory is a buffer that is
shared with the kernel (a SharedArrayBuffer), thus system
calls can directly read and write process memory. However,
this approach has two significant drawbacks. First, it pre-
cludes growing the heap on-demand; the shared memory
must be sized large enough to meet the high-water-mark heap
size of the application for the entire life of the process. Sec-
ond, JavaScript contexts (like the main context and each web
worker context) have a fixed limit on their heap sizes, which
is currently approximately 2.2 GB in Google Chrome [6].
This cap imposes a serious limitation on running multiple pro-
cesses: if each process reserves a 500 MB heap, BROWSIX
would only be able to run at most four concurrent processes.
A deeper problem is that WebAssembly memory cannot be
shared across WebWorkers and does not support the Atomic
API, which BROWSIX processes use to wait for system calls.

BROWSIX-WASM uses a different approach to process-
kernel communication that is also faster than the BROWSIX
approach. BROWSIX-WASM modifies the Emscripten runtime
system to create an auxiliary buffer (of 64MB) for each pro-
cess that is shared with the kernel, but is distinct from process
memory. Since this auxiliary buffer is a SharedArrayBuffer
the BROWSIX-WASM process and kernel can use Atomic API
for communication. When a system call references strings
or buffers in the process’s heap (e.g., writev or stat), its
runtime system copies data from the process memory to the
shared buffer and sends a message to the kernel with locations
of the copied data in auxiliary memory. Similarly, when a
system call writes data to the auxiliary buffer (e.g., read),
its runtime system copies the data from the shared buffer to
the process memory at the memory specified. Moreover, if
a system call specifies a buffer in process memory for the
kernel to write to (e.g., read), the runtime allocates a cor-
responding buffer in auxiliary memory and passes it to the
kernel. In case the system call is either reading or writing
data of size more than 64MB, BROWSIX-WASM divides this
call into several calls such that each call only reads or writes
at maximum 64MB of data. The cost of these memory copy
operations is dwarfed by the overall cost of the system call
invocation, which involves sending a message between pro-
cess and kernel JavaScript contexts. We show in §4.2.1 that
BROWSIX-WASM has negligible overhead.

Performance Optimization While building BROWSIX-
WASM and doing our preliminary performance evaluation,

USENIX Association 2019 USENIX Annual Technical Conference 109

https://browsix.org

Google Chrome Browser tab

Main JS Context

Harness.js

Browsix-
Wasm kernel

WebWorker

Browsix-Wasm userspace

401.bzip2
WebAssembly module

shared memory segment

perf record
(subprocess)

results

(1)

(2)

(3)

(4, 6)

(5)

(7)

Browsix-SPEC Benchmark Harness

Figure 2: The framework for running SPEC benchmarks in browsers. Bold components are new or heavily modified (§3).

we discovered several performance issues in parts of the
BROWSIX kernel. Left unresolved, these performance issues
would be a threat to the validity of a performance comparison
between WebAssembly and native code. The most serious
case was in the shared filesystem component included with
BROWSIX/BROWSIX-WASM, BROWSERFS. Originally, on
each append operation on a file, BROWSERFS would allocate
a new, larger buffer, copying the previous and new contents
into the new buffer. Small appends could impose substantial
performance degradation. Now, whenever a buffer backing a
file requires additional space, BROWSERFS grows the buffer
by at least 4 KB. This change alone decreased the time the
464.h264ref benchmark spent in BROWSIX from 25 seconds
to under 1.5 seconds. We made a series of improvements that
reduce overhead throughout BROWSIX-WASM. Similar, if
less dramatic, improvements were made to reduce the num-
ber of allocations and the amount of copying in the kernel
implementation of pipes.

3 BROWSIX-SPEC

To reliably execute WebAssembly benchmarks while cap-
turing performance counter data, we developed BROWSIX-
SPEC. BROWSIX-SPEC works with BROWSIX-WASM to
manage spawning browser instances, serving benchmark as-
sets (e.g., the compiled WebAssembly programs and test
inputs), spawning perf processes to record performance
counter data, and validating benchmark outputs.

We use BROWSIX-SPEC to run three benchmark suites
to evaluate WebAssembly’s performance: SPEC CPU2006,
SPEC CPU2017, and PolyBenchC. These benchmarks are
compiled to native code using Clang 4.0, and WebAssembly
using BROWSIX-WASM. We made no modifications to
Chrome or Firefox, and the browsers are run with their stan-
dard sandboxing and isolation features enabled. BROWSIX-
WASM is built on top of standard web platform features and
requires no direct access to host resources – instead, bench-
marks make standard HTTP requests to BROWSIX-SPEC.

3.1 BROWSIX-SPEC Benchmark Execution

Figure 2 illustrates the key pieces of BROWSIX-SPEC in play
when running a benchmark, such as 401.bzip2 in Chrome.
First (1), the BROWSIX-SPEC benchmark harness launches
a new browser instance using a WebBrowser automation tool,
Selenium.2 (2) The browser loads the page’s HTML, har-
ness JS, and BROWSIX-WASM kernel JS over HTTP from
the benchmark harness. (3) The harness JS initializes the
BROWSIX-WASM kernel and starts a new BROWSIX-WASM
process executing the runspec shell script (not shown in Fig-
ure 2). runspec in turn spawns the standard specinvoke
(not shown), compiled from the C sources provided in SPEC
2006. specinvoke reads the speccmds.cmd file from the
BROWSIX-WASM filesystem and starts 401.bzip2 with the
appropriate arguments. (4) After the WebAssembly mod-
ule has been instantiated but before the benchmark’s main
function is invoked, the BROWSIX-WASM userspace runtime
does an XHR request to BROWSIX-SPEC to begin record-
ing performance counter stats. (5) The benchmark harness
finds the Chrome thread corresponding to the Web Worker
401.bzip2 process and attaches perf to the process. (6) At
the end of the benchmark, the BROWSIX-WASM userspace
runtime does a final XHR to the benchmark harness to end
the perf record process. When the runspec program exits
(after potentially invoking the test binary several times), the
harness JS POSTs (7) a tar archive of the SPEC results di-
rectory to BROWSIX-SPEC. After BROWSIX-SPEC receives
the full results archive, it unpacks the results to a temporary
directory and validates the output using the cmp tool provided
with SPEC 2006. Finally, BROWSIX-SPEC kills the browser
process and records the benchmark results.

4 Evaluation

We use BROWSIX-WASM and BROWSIX-SPEC to evaluate
the performance of WebAssembly using three benchmark

2https://www.seleniumhq.org/

110 2019 USENIX Annual Technical Conference USENIX Association

https://www.seleniumhq.org/

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2m
m
3m

m ad
i
bicg

ch
ole

sk
y

co
rre

lat
ion

co
va

ria
nce

doit
ge

n

durb
in

fdtd
−2d

ge
mm

ge
mve

r

ge
su

mmv

gr
am

sch
midt lu

ludcm
p

mvt

sei
del−

2d
sy

mm
sy

r2
k
sy

rk

tri
so

lv
trm

m

ge
om

ea
n

PolyBenchC Benchmarks

R
el

at
iv

e
ex

ec
ut

io
n

ti
m

e
 (

na
ti

ve
 =

 1
.0

)
Google Chrome Mozilla Firefox

(a)

1.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

40
1.b

zip
2

42
9.m

cf

43
3.m

ilc

44
4.n

am
d

44
5.g

ob
mk

45
0.s

op
lex

45
3.p

ov
ray

45
8.s

jen
g

46
2.l

ibquan
tu

m

46
4.h

26
4r

ef

47
0.l

bm

47
3.a

sta
r

48
2.s

phinx3

64
1.l

ee
la_

s

64
4.n

ab
_s

ge
om

ea
n

SPEC CPU Benchmarks

R
el

at
iv

e
ex

ec
ut

io
n

ti
m

e
 (

na
ti

ve
 =

 1
.0

)

Google Chrome Mozilla Firefox

(b)

Figure 3: The performance of the PolyBenchC and the SPEC CPU benchmarks compiled to WebAssembly (executed in Chrome
and Firefox) relative to native, using BROWSIX-WASM and BROWSIX-SPEC. The SPEC CPU benchmarks exhibit higher
overhead overall than the PolyBenchC suite, indicating a significant performance gap exists between WebAssembly and native.

suites: SPEC CPU2006, SPEC CPU2017, and PolyBenchC.
We include PolybenchC benchmarks for comparison with
the original WebAssembly paper [18], but argue that these
benchmarks do not represent typical workloads. The SPEC
benchmarks are representative and require BROWSIX-WASM
to run successfully. We run all benchmarks on a 6-Core Intel
Xeon E5-1650 v3 CPU with hyperthreading and 64 GB of
RAM running Ubuntu 16.04 with Linux kernel v4.4.0. We run
all benchmarks using two state-of-the-art browsers: Google
Chrome 74.0 and Mozilla Firefox 66.0. We compile bench-
marks to native code using Clang 4.03 and to WebAssembly
using BROWSIX-WASM (which is based on Emscripten with
Clang 4.0).4 Each benchmark was executed five times. We
report the average of all running times and the standard error.
The execution time measured is the difference between wall
clock time when the program starts, i.e. after WebAssembly
JIT compilation concludes, and when the program ends.

4.1 PolyBenchC Benchmarks

Haas et al. [18] used PolybenchC to benchmark Web-
Assembly implementations because the PolybenchC bench-
marks do not make system calls. As we have already argued,
the PolybenchC benchmarks are small scientific kernels that
are typically used to benchmark polyhedral optimization tech-
niques, and do not represent larger applications. Nevertheless,
it is still valuable for us to run PolybenchC with BROWSIX-
WASM, because it demonstrates that our infrastructure for

3The flags to Clang are -O2 -fno-strict-aliasing.
4BROWSIX-WASM runs Emscripten with the flags -O2

-s TOTAL_MEMORY=1073741824 -s ALLOW_MEMORY_GROWTH=1
-fno-strict-aliasing.

system calls does not have any overhead. Figure 3a shows the
execution time of the PolyBenchC benchmarks in BROWSIX-
WASM and when run natively. We are able to reproduce the
majority of the results from the original WebAssembly pa-
per [18]. We find that BROWSIX-WASM imposes a very low
overhead: an average of 0.2% and a maximum of 1.2%.

4.2 SPEC Benchmarks

We now evaluate BROWSIX-WASM using the C/C++ bench-
marks from SPEC CPU2006 and SPEC CPU2017 (the new
C/C++ benchmarks and the speed benchmarks), which use
system calls extensively. We exclude four data points that
either do not compile to WebAssembly5 or allocate more
memory than WebAssembly allows.6 Table 1 shows the abso-
lute execution times of the SPEC benchmarks when running
with BROWSIX-WASM in both Chrome and Firefox, and when
running natively.

WebAssembly performs worse than native for all bench-
marks except for 429.mcf and 433.milc. In Chrome, Web-
Assembly’s maximum overhead is 2.5× over native and 7
out of 15 benchmarks have a running time within 1.5× of na-
tive. In Firefox, WebAssembly is within 2.08× of native and
performs within 1.5× of native for 7 out of 15 benchmarks.
On average, WebAssembly is 1.55× slower than native in
Chrome, and 1.45× slower than native in Firefox. Table 2
shows the time required to compile the SPEC benchmarks

5400.perlbench, 403.gcc, 471.omnetpp, and 456.hmmer from SPEC
CPU2006 do not compile with Emscripten.

6From SPEC CPU2017, the ref dataset of 638.imagick_s and
657.xz_s require more than 4 GB RAM. However, these benchmarks
do work with their test dataset.

USENIX Association 2019 USENIX Annual Technical Conference 111

Benchmark Native Google
Chrome

Mozilla
Firefox

401.bzip2 370 ± 0.6 864 ± 6.4 730 ± 1.3
429.mcf 221 ± 0.1 180 ± 0.9 184 ± 0.6
433.milc 375 ± 2.6 369 ± 0.5 378 ± 0.6
444.namd 271 ± 0.8 369 ± 9.1 373 ± 1.8
445.gobmk 352 ± 2.1 537 ± 0.8 549 ± 3.3
450.soplex 179 ± 3.7 265 ± 1.2 238 ± 0.5
453.povray 110 ± 1.9 275 ± 1.3 229 ± 1.5
458.sjeng 358 ± 1.4 602 ± 2.5 580 ± 2.0
462.libquantum 330 ± 0.8 444 ± 0.2 385 ± 0.8
464.h264ref 389 ± 0.7 807 ± 11.0 733 ± 2.4
470.lbm 209 ± 1.1 248 ± 0.3 249 ± 0.5
473.astar 299 ± 0.5 474 ± 3.5 408 ± 1.0
482.sphinx3 381 ± 7.1 834 ± 1.8 713 ± 3.6
641.leela_s 466 ± 2.7 825 ± 4.6 717 ± 1.2
644.nab_s 2476 ± 11 3639 ± 5.6 3829 ± 6.7
Slowdown: geomean – 1.55× 1.45×
Slowdown: median – 1.53× 1.54×

Table 1: Detailed breakdown of SPEC CPU benchmarks exe-
cution times (of 5 runs) for native (Clang) and WebAssembly
(Chrome and Firefox); all times are in seconds. The median
slowdown of WebAssembly is 1.53× for Chrome and 1.54×
for Firefox.

using Clang and Chrome. (To the best of our knowledge, Fire-
fox cannot report WebAssembly compile times.) In all cases,
the compilation time is negligible compared to the execution
time. However, the Clang compiler is orders of magnitude
slower than the WebAssembly compiler. Finally, note that
Clang compiles benchmarks from C++ source code, whereas
Chrome compiles WebAssembly, which is a simpler format
than C++.

4.2.1 BROWSIX-WASM Overhead

It is important to rule out the possibility that the slowdown that
we report is due to poor performance in our implementation
of BROWSIX-WASM. In particular, BROWSIX-WASM imple-
ments system calls without modifying the browser, and sys-
tem calls involve copying data (§2), which may be costly. To
quantify the overhead of BROWSIX-WASM, we instrumented
its system calls to measure all time spent in BROWSIX-WASM.
Figure 4 shows the percentage of time spent in BROWSIX-
WASM in Firefox using the SPEC benchmarks. For 14 of
the 15 benchmarks, the overhead is less than 0.5%. The
maximum overhead is 1.2%. On average, the overhead of
BROWSIX-WASM is only 0.2%. Therefore, we conclude that
BROWSIX-WASM has negligible overhead and does not sub-
stantially affect the performance counter results of programs
executed in WebAssembly.

Benchmark Clang 4.0 Google Chrome

401.bzip2 1.9 ± 0.018 0.53 ± 0.005
429.mcf 0.3 ± 0.003 0.15 ± 0.005
433.milc 2.2 ± 0.02 0.3 ± 0.003
444.namd 4.6 ± 0.02 0.78 ± 0.004
445.gobmk 12.1 ± 0.2 1.4 ± 0.014
450.soplex 6.9 ± 0.01 1.2 ± 0.009
453.povray 15.3 ± 0.03 1.2 ± 0.012
458.sjeng 1.9 ± 0.01 0.35 ± 0.001
462.libquantum 6.9 ± 0.03 0.15 ± 0.002
464.h264ref 10.3 ± 0.06 1.0 ± 0.03
470.lbm 0.3 ± 0.001 0.14 ± 0.004
473.astar 0.73 ± 0.005 0.24 ± 0.004
482.sphinx3 3.0 ± 0.04 0.48 ± 0.007
641.leela_s 4.3 ± 0.05 0.74 ±0.003
644.nab_s 4.1 ± 0.03 0.41 ±0.001

Table 2: Compilation times of SPEC CPU benchmarks (aver-
age of 5 runs) for Clang 4.0 and WebAssembly (Chrome); all
times are in seconds.

1.0

0.0

0.5

1.0

1.5

2.0

40
1.b

zip
2

42
9.m

cf

43
3.m

ilc

44
4.n

am
d

44
5.g

ob
mk

45
0.s

op
lex

45
3.p

ov
ray

45
8.s

jen
g

46
2.l

ibquan
tu

m

46
4.h

26
4r

ef

47
0.l

bm

47
1.o

mnetp
p

47
3.a

sta
r

48
2.s

phinx3

64
1.l

ee
la_

s

64
4.n

ab
_s

av
era

ge

SPEC CPU Benchmarks

%
 o

f t
im

e
sp

en
t

in
 B

ro
w

si
x

Figure 4: Time spent (in %) in BROWSIX-WASM calls in
Firefox for SPEC benchmarks compiled to WebAssembly.
BROWSIX-WASM imposes a mean overhead of only 0.2%.

4.2.2 Comparison of WebAssembly and asm.js

A key claim in the original work on WebAssembly was that
it is significantly faster than asm.js. We now test that claim
using the SPEC benchmarks. For this comparison, we modi-
fied BROWSIX-WASM to also support processes compiled to
asm.js. The alternative would have been to benchmark the
asm.js processes using the original BROWSIX. However, as
we discussed earlier, BROWSIX has performance problems
that would have been a threat to the validity of our results.
Figure 5 shows the speedup of the SPEC benchmarks using
WebAssembly, relative to their running time using asm.js
using both Chrome and Firefox. WebAssembly outperforms
asm.js in both browsers: the mean speedup is 1.54× in

112 2019 USENIX Annual Technical Conference USENIX Association

1.01.0

1.5

2.0

2.5

3.0

40
1.b

zip
2

42
9.m

cf

43
3.m

ilc

44
4.n

am
d

44
5.g

ob
mk

45
0.s

op
lex

45
3.p

ov
ray

45
8.s

jen
g

46
2.l

ibquan
tu

m

46
4.h

26
4r

ef

47
0.l

bm

47
3.a

sta
r

48
2.s

phinx3

64
1.l

ee
la_

s

64
4.n

ab
_s

ge
om

ea
n

SPEC CPU Benchmarks

R
el

at
iv

e
ex

ec
ut

io
n

ti
m

e
 (

W
eb

A
ss

em
bl

y
=

 1
.0

)
Google Chrome Mozilla Firefox

Figure 5: Relative time of asm.js to WebAssembly for
Chrome and Firefox. WebAssembly is 1.54× faster than
asm.js in Chrome and 1.39× faster than asm.js in Firefox.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

40
1.b

zip
2

42
9.m

cf

43
3.m

ilc

44
4.n

am
d

44
5.g

ob
mk

45
0.s

op
lex

45
3.p

ov
ray

45
8.s

jen
g

46
2.l

ibquan
tu

m

46
4.h

26
4r

ef

47
0.l

bm

47
3.a

sta
r

48
2.s

phinx3

64
1.l

ee
la_

s

64
4.n

ab
_s

ge
om

ea
n

SPEC CPU Benchmarks

R
el

at
iv

e
ex

ec
ut

io
n

ti
m

e
 (

W
eb

A
ss

em
bl

y
=

 1
.0

)

Figure 6: Relative best time of asm.js to the best time of
WebAssembly. WebAssembly is 1.3× faster than asm.js.

Chrome and 1.39× in Firefox.
Since the performance difference between Chrome and

Firefox is substantial, in Figure 6 we show the speedup of
each benchmark by selecting the best-performing browser for
WebAssembly and the best-performing browser of asm.js
(i.e., they may be different browsers). These results show
that WebAssembly consistently performs better than asm.js,
with a mean speedup of 1.3×. Haas et al. [18] also found that
WebAssembly gives a mean speedup of 1.3× over asm.js
using PolyBenchC.

5 Case Study: Matrix Multiplication

In this section, we illustrate the performance differences be-
tween WebAssembly and native code using a C function that
performs matrix multiplication, as shown in Figure 7a. Three

matrices are provided as arguments to the function, and the re-
sults of A (NI ×NK) and B (NK ×NJ) are stored in C (NI ×NJ),
where NI ,NK ,NJ are constants defined in the program.

In WebAssembly, this function is 2×–3.4× slower than
native in both Chrome and Firefox with a variety of matrix
sizes (Figure 8). We compiled the function with -O2 and
disabled automatic vectorization, since WebAssembly does
not support vectorized instructions.

Figure 7b shows native code generated for the matmul
function by clang-4.0. Arguments are passed to the function
in the rdi, rsi, and rdx registers, as specified in the System
V AMD64 ABI calling convention [9]. Lines 2 - 26 are the
body of the first loop with iterator i stored in r8d. Lines 5
- 21 contain the body of the second loop with iterator k stored
in r9d. Lines 10 - 16 comprise the body of the third loop
with iterator j stored in rcx. Clang is able to eliminate a cmp
instruction in the inner loop by initializing rcx with −NJ ,
incrementing rcx on each iteration at line 15, and using jne
to test the zero flag of the status register, which is set to 1
when rcx becomes 0.

Figure 7c shows x86-64 code JITed by Chrome for the
WebAssembly compiled version of matmul. This code has
been modified slightly – nops in the generated code have been
removed for presentation. Function arguments are passed in
the rax, rcx, and rdx registers, following Chrome’s calling
convention. At lines 1– 3, the contents of registers rax, rdx,
and rcx are stored on the stack, due to registers spills at lines 7
- 9. Lines 7–45 are the body of the first loop with iterator i
stored in edi. Lines 18–42 contain the body of second loop
with iterator k stored in r11. Lines 27–39 are the body of
the third loop with iterator j stored in eax. To avoid memory
loads due to register spilling at lines 7– 9 in the first iteration
of the first loop, an extra jump is generated at line 5. Similarly,
extra jumps are generated for the second and third loops at
line 16 and line 25 respectively.

5.1 Differences

The native code JITed by Chrome has more instructions, suf-
fers from increased register pressure, and has extra branches
compared to Clang-generated native code.

5.1.1 Increased Code Size

The number of instructions in the code generated by Chrome
(Figure 7c) is 53, including nops, while clang generated code
(Figure 7b) consists of only 28 instructions. The poor instruc-
tion selection algorithm of Chrome is one of the reasons for
increased code size.

Additionally, Chrome does not take advantage of all avail-
able memory addressing modes for x86 instructions. In Fig-
ure 7b Clang uses the add instruction at line 14 with register
addressing mode, loading from and writing to a memory ad-
dress in the same operation. Chrome on the other hand loads

USENIX Association 2019 USENIX Annual Technical Conference 113

1 void matmul (int C[NI][NJ],
2 int A[NI][NK],
3 int B[NK][NJ]) {
4 for (int i = 0; i < NI; i++) {
5 for (int k = 0; k < NK; k++) {
6 for (int j = 0; k < NJ; j++) {
7 C[i][j] += A[i][k] * B[k][j];
8 }
9 }

10 }
11 }

(a) matmul source code in C.

1 xor r8d, r8d #i <- 0
2 L1: #start first loop
3 mov r10, rdx
4 xor r9d, r9d #k <- 0
5 L2: #start second loop
6 imul rax, 4*NK, r8
7 add rax, rsi
8 lea r11, [rax + r9*4]
9 mov rcx, -NJ #j <- -NJ

10 L3: #start third loop
11 mov eax, [r11]
12 mov ebx, [r10 + rcx*4 + 4400]
13 imul ebx, eax
14 add [rdi + rcx*4 + 4*NJ], ebx
15 add rcx, 1 #j <- j + 1
16 jne L3 #end third loop
17

18 add r9, 1 #k <- k + 1
19 add r10, 4*NK
20 cmp r9, NK
21 jne L2 #end second loop
22

23 add r8, 1 #i <- i + 1
24 add rdi, 4*NJ
25 cmp r8, NI
26 jne L1 #end first loop
27 pop rbx
28 ret

(b) Native x86-64 code for matmul generated by Clang.

1 mov [rbp-0x28],rax
2 mov [rbp-0x20],rdx
3 mov [rbp-0x18],rcx
4 xor edi,edi #i <- 0
5 jmp L1’
6 L1: #start first loop
7 mov ecx,[rbp-0x18]
8 mov edx,[rbp-0x20]
9 mov eax,[rbp-0x28]

10 L1’:
11 imul r8d,edi,0x1130
12 add r8d,eax
13 imul r9d,edi,0x12c0
14 add r9d,edx
15 xor r11d,r11d #k <- 0
16 jmp L2’
17 L2: #start second loop
18 mov ecx,[rbp-0x18]
19 L2’:
20 imul r12d,r11d,0x1130
21 lea r14d,[r9+r11*4]
22 add r12d,ecx
23 xor esi,esi #j <- 0
24 mov r15d,esi
25 jmp L3’
26 L3: #start third loop
27 mov r15d,eax
28 L3’:
29 lea eax,[r15+0x1] #j <- j + 1
30 lea edx,[r8+r15*4]
31 lea r15d,[r12+r15*4]
32 mov esi,[rbx+r14*1]
33 mov r15d,[rbx+r15*1]
34 imul r15d,esi
35 mov ecx,[rbx+rdx*1]
36 add ecx,r15d
37 mov [rbx+rdx*1],ecx
38 cmp eax,NJ #j < NJ
39 jnz L3 #end third loop
40 add r11,0x1 #k++
41 cmp r11d,NK #k < NK
42 jnz L2 #end second loop
43 add edi,0x1 #i++
44 cmp edi,NI #i < NI
45 jnz L1 #end first loop
46 retl

(c) x86-64 code JITed by Chrome from WebAssembly matmul.

Figure 7: Native code for matmul is shorter, has less register pressure, and fewer branches than the code JITed by Chrome. §6
shows that these inefficiencies are pervasive, reducing performance across the SPEC CPU benchmark suites.

the address in ecx, adds the operand to ecx, finally storing
ecx at the address, requiring 3 instructions rather than one on

lines 35−37.

114 2019 USENIX Annual Technical Conference USENIX Association

1.0

1.5

2.0

2.5

3.0

3.5

20
0x

22
0x

24
0

40
0x

44
0x

48
0

60
0x

66
0x

72
0

80
0x

88
0x

96
0

10
00

x1
10

0x
12

00

12
00

x1
32

0x
14

40

14
00

x1
54

0x
16

80

16
00

x1
76

0x
19

20

18
00

x1
98

0x
21

60

20
00

x2
20

0x
24

00

Size(NIxNKxNJ)

R
el

at
iv

e
ex

ec
ut

io
n

ti
m

e
 (

na
ti

ve
 =

 1
.0

)

Google Chrome Mozilla Firefox

Figure 8: Performance of WebAssembly in Chrome and Fire-
fox for different matrix sizes relative to native code. Web-
Assembly is always between 2× to 3.4× slower than native.

perf Event Wasm Summary
all-loads-retired (r81d0) (Figure 9a) Increased register
all-stores-retired (r82d0) (Figure 9b) pressure
branches-retired (r00c4) (Figure 9c) More branch
conditional-branches (r01c4) (Figure 9d) statements
instructions-retired (r1c0) (Figure 9e) Increased code size
cpu-cycles (Figure 9f)
L1-icache-load-misses (Figure 10)

Table 3: Performance counters highlight specific issues with
WebAssembly code generation. When a raw PMU event
descriptor is used, it is indicated by rn.

5.1.2 Increased Register Pressure

Code generated by Clang in Figure 7b does not generate any
spills and uses only 10 registers. On the other hand, the code
generated by Chrome (Figure 7c) uses 13 general purpose
registers – all available registers (r13 and r10 are reserved by
V8). As described in Section 5.1.1, eschewing the use of the
register addressing mode of the add instruction requires the
use of a temporary register. All of this register inefficiency
compounds, introducing three register spills to the stack at
lines 1–3. Values stored on the stack are loaded again into
registers at lines 7–9 and line 18.

5.1.3 Extra Branches

Clang (Figure 7b) generates code with a single branch per
loop by inverting the loop counter (line 15). In contrast,
Chrome (Figure 7c) generates more straightforward code,
which requires a conditional jump at the start of the loop. In
addition, Chrome generates extra jumps to avoid memory
loads due to register spills in the first iteration of a loop. For
example, the jump at line 5 avoids the spills at lines 7– 9.

6 Performance Analysis

We use BROWSIX-SPEC to record measurements from all
supported performance counters on our system for the SPEC
CPU benchmarks compiled to WebAssembly and executed in
Chrome and Firefox, and the SPEC CPU benchmarks com-
piled to native code (Section 3).

Table 3 lists the performance counters we use here, along
with a summary of the impact of BROWSIX-WASM perfor-
mance on these counters compared to native. We use these
results to explain the performance overhead of WebAssembly
over native code. Our analysis shows that the inefficiences
described in Section 5 are pervasive and translate to reduced
performance across the SPEC CPU benchmark suite.

6.1 Increased Register Pressure
This section focuses on two performance counters that show
the effect of increased register pressure. Figure 9a presents
the number of load instructions retired by WebAssembly-
compiled SPEC benchmarks in Chrome and Firefox, relative
to the number of load instructions retired in native code. Simi-
larly, Figure 9b shows the number of store instructions retired.
Note that a “retired” instruction is an instruction which leaves
the instruction pipeline and its results are correct and visible
in the architectural state (that is, not speculative).

Code generated by Chrome has 2.02× more load instruc-
tions retired and 2.30× more store instructions retired than
native code. Code generated by Firefox has 1.92× more load
instructions retired and 2.16× more store instructions retired
than native code. These results show that the WebAssembly-
compiled SPEC CPU benchmarks suffer from increased reg-
ister pressure and thus increased memory references. Below,
we outline the reasons for this increased register pressure.

6.1.1 Reserved Registers

In Chrome, matmul generates three register spills but does not
use two x86-64 registers: r13 and r10 (Figure 7c, lines 7– 9).
This occurs because Chrome reserves these two registers.7

For the JavaScript garbage collector, Chrome reserves r13
to point to an array of GC roots at all times. In addition,
Chrome uses r10 and xmm13 as dedicated scratch registers.
Similarly, Firefox reserves r15 as a pointer to the start of the
heap, and r11 and xmm15 are JavaScript scratch registers.8

None of these registers are available to WebAssembly code.

6.1.2 Poor Register Allocation

Beyond a reduced set of registers available to allocate, both
Chrome and Firefox do a poor job of allocating the registers

7https://github.com/v8/v8/blob/7.4.1/src/x64/
register-x64.h

8https://hg.mozilla.org/mozilla-central/file/tip/js/src/
jit/x64/Assembler-x64.h

USENIX Association 2019 USENIX Annual Technical Conference 115

https://github.com/v8/v8/blob/7.4.1/src/x64/register-x64.h
https://github.com/v8/v8/blob/7.4.1/src/x64/register-x64.h
https://hg.mozilla.org/mozilla-central/file/tip/js/src/jit/x64/Assembler-x64.h
https://hg.mozilla.org/mozilla-central/file/tip/js/src/jit/x64/Assembler-x64.h

1.01.0

1.5

2.0

2.5

3.0

3.5

40
1.b

zip
2

42
9.m

cf

43
3.m

ilc

44
4.n

am
d

44
5.g

ob
mk

45
0.s

op
lex

45
3.p

ov
ray

45
8.s

jen
g

46
2.l

ibquan
tu

m

46
4.h

26
4r

ef

47
0.l

bm

47
3.a

sta
r

48
2.s

phinx3

64
1.l

ee
la_

s

64
4.n

ab
_s

ge
om

ea
n

SPEC CPU Benchmarks

Sa
m

pl
es

 re
la

ti
ve

 t
o

na
ti

ve
 (

na
ti

ve
 =

 1
.0

)

Google Chrome Mozilla Firefox

(a) all-loads-retired

11

2

3

4

5

6

7

8

40
1.b

zip
2

42
9.m

cf

43
3.m

ilc

44
4.n

am
d

44
5.g

ob
mk

45
0.s

op
lex

45
3.p

ov
ray

45
8.s

jen
g

46
2.l

ibquan
tu

m

46
4.h

26
4r

ef

47
0.l

bm

47
3.a

sta
r

48
2.s

phinx3

64
1.l

ee
la_

s

64
4.n

ab
_s

ge
om

ea
n

SPEC CPU Benchmarks

Sa
m

pl
es

 re
la

ti
ve

 t
o

na
ti

ve
 (

na
ti

ve
 =

 1
.0

)

Google Chrome Mozilla Firefox

(b) all-stores-retired

1.01.0

1.5

2.0

2.5

3.0

3.5

40
1.b

zip
2

42
9.m

cf

43
3.m

ilc

44
4.n

am
d

44
5.g

ob
mk

45
0.s

op
lex

45
3.p

ov
ray

45
8.s

jen
g

46
2.l

ibquan
tu

m

46
4.h

26
4r

ef

47
0.l

bm

47
3.a

sta
r

48
2.s

phinx3

64
1.l

ee
la_

s

64
4.n

ab
_s

ge
om

ea
n

SPEC CPU Benchmarks

Sa
m

pl
es

 re
la

ti
ve

 t
o

na
ti

ve
 (

na
ti

ve
 =

 1
.0

)

Google Chrome Mozilla Firefox

(c) branch-instructions-retired

1.01.0

1.5

2.0

2.5

3.0

3.5

40
1.b

zip
2

42
9.m

cf

43
3.m

ilc

44
4.n

am
d

44
5.g

ob
mk

45
0.s

op
lex

45
3.p

ov
ray

45
8.s

jen
g

46
2.l

ibquan
tu

m

46
4.h

26
4r

ef

47
0.l

bm

47
3.a

sta
r

48
2.s

phinx3

64
1.l

ee
la_

s

64
4.n

ab
_s

ge
om

ea
n

SPEC CPU Benchmarks

Sa
m

pl
es

 re
la

ti
ve

 t
o

na
ti

ve
 (

na
ti

ve
 =

 1
.0

)

Google Chrome Mozilla Firefox

(d) conditional-branches

1.0

1.5

2.0

2.5

3.0

40
1.b

zip
2

42
9.m

cf

43
3.m

ilc

44
4.n

am
d

44
5.g

ob
mk

45
0.s

op
lex

45
3.p

ov
ray

45
8.s

jen
g

46
2.l

ibquan
tu

m

46
4.h

26
4r

ef

47
0.l

bm

47
3.a

sta
r

48
2.s

phinx3

64
1.l

ee
la_

s

64
4.n

ab
_s

ge
om

ea
n

SPEC CPU Benchmarks

Sa
m

pl
es

 re
la

ti
ve

 t
o

na
ti

ve
 (

na
ti

ve
 =

 1
.0

)
Google Chrome Mozilla Firefox

(e) instructions-retired

1.0

0.5

1.0

1.5

2.0

2.5

3.0

40
1.b

zip
2

42
9.m

cf

43
3.m

ilc

44
4.n

am
d

44
5.g

ob
mk

45
0.s

op
lex

45
3.p

ov
ray

45
8.s

jen
g

46
2.l

ibquan
tu

m

46
4.h

26
4r

ef

47
0.l

bm

47
3.a

sta
r

48
2.s

phinx3

64
1.l

ee
la_

s

64
4.n

ab
_s

ge
om

ea
n

SPEC CPU Benchmarks

Sa
m

pl
es

 re
la

ti
ve

 t
o

na
ti

ve
 (

na
ti

ve
 =

 1
.0

)

Google Chrome Mozilla Firefox

(f) cpu-cycles

Figure 9: Processor performance counter samples for WebAssembly relative to native code.

they have. For example, the code generated by Chrome for
matmul uses 12 registers while the native code generated by
Clang only uses 10 registers (Section 5.1.2). This increased
register usage—in both Firefox and Chrome—is because of
their use of fast but not particularly effective register allo-
cators. Chrome and Firefox both use a linear scan register
allocator [36], while Clang uses a greedy graph-coloring reg-
ister allocator [3], which consistently generates better code.

6.1.3 x86 Addressing Modes

The x86-64 instruction set offers several addressing modes
for each operand, including a register mode, where the in-
struction reads data from register or writes data to a register,
and memory address modes like register indirect or direct
offset addressing, where the operand resides in a memory
address and the instruction can read from or write to that
address. A code generator could avoid unnecessary register
pressure by using the latter modes. However, Chrome does
not take advantage of these modes. For example, the code
generated by Chrome for matmul does not use the register in-
direct addressing mode for the add instruction (Section 5.1.2),
creating unnecessary register pressure.

6.2 Extra Branch Instructions

This section focuses on two performance counters that mea-
sure the number of branch instructions executed. Figure 9c
shows the number of branch instructions retired by Web-
Assembly, relative to the number of branch instructions retired
in native code. Similarly, Figure 9d shows the number of con-
ditional branch instructions retired. In Chrome, there are
1.75× and 1.65× more unconditional and conditional branch
instructions retired respectively, whereas in Firefox, there are
1.65× and 1.62× more retired. These results show that all the
SPEC CPU benchmarks incur extra branches, and we explain
why below.

6.2.1 Extra Jump Statements for Loops

As with matmul (Section 5.1.3), Chrome generates unneces-
sary jump statements for loops, leading to significantly more
branch instructions than Firefox.

6.2.2 Stack Overflow Checks Per Function Call

A WebAssembly program tracks the current stack size with a
global variable that it increases on every function call. The
programmer can define the maximum stack size for the pro-
gram. To ensure that a program does not overflow the stack,

116 2019 USENIX Annual Technical Conference USENIX Association

both Chrome and Firefox add stack checks at the start of each
function to detect if the current stack size is less than the max-
imum stack size. These checks includes extra comparison
and conditional jump instructions, which must be executed
on every function call.

6.2.3 Function Table Indexing Checks

WebAssembly dynamically checks all indirect calls to ensure
that the target is a valid function and that the function’s type
at runtime is the same as the type specified at the call site.
In a WebAssembly module, the function table stores the list
of functions and their types, and the code generated by Web-
Assembly uses the function table to implement these checks.
These checks are required when calling function pointers and
virtual functions in C/C++. The checks lead to extra compar-
ison and conditional jump instructions, which are executed
before every indirect function call.

6.3 Increased Code Size

The code generated by Chrome and Firefox is considerably
larger than the code generated by Clang. We use three perfor-
mance counters to measure this effect. (i) Figure 9e shows the
number of instructions retired by benchmarks compiled to
WebAssembly and executed in Chrome and Firefox relative
to the number of instructions retired in native code. Similarly,
Figure 9f shows the relative number of CPU cycles spent by
benchmarks compiled to WebAssembly, and Figure 10 shows
the relative number of L1 instruction cache load misses.

Figure 9e shows that Chrome executes an average of 1.80×
more instructions than native code and Firefox executes an
average of 1.75× more instructions than native code. Due to
poor instruction selection, a poor register allocator generating
more register spills (Section 6.1), and extra branch statements
(Section 6.2), the size of generated code for WebAssembly
is greater than native code, leading to more instructions be-
ing executed. This increase in the number of instructions
executed leads to increased L1 instruction cache misses in
Figure 10. On average, Chrome suffers 2.83× more I-cache
misses than native code, and Firefox suffers from 2.04× more
L1 instruction cache misses than native code. More cache
misses means that more CPU cycles are spent waiting for the
instruction to be fetched.

We note one anomaly: although 429.mcf has 1.6× more
instructions retired in Chrome than native code and 1.5×
more instructions retired in Firefox than native code, it runs
faster than native code. Figure 3b shows that its slowdown
relative to native is 0.81× in Chrome and 0.83× in Firefox.
The reason for this anomaly is attributable directly to its lower
number of L1 instruction cache misses. 429.mcf contains a
main loop and most of the instructions in the loop fit in the L1
instruction cache. Similarly, 433.milc performance is better
due to fewer L1 instruction cache misses. In 450.soplex

1

0

2

4

6

8

10

40
1.b

zip
2

42
9.m

cf

43
3.m

ilc

44
4.n

am
d

44
5.g

ob
mk

45
0.s

op
lex

45
3.p

ov
ray

46
2.l

ibquan
tu

m

46
4.h

26
4r

ef

47
0.l

bm

47
3.a

sta
r

48
2.s

phinx3

64
1.l

ee
la_

s

64
4.n

ab
_s

ge
om

ea
n

SPEC CPU Benchmarks

Sa
m

pl
es

 re
la

ti
ve

 t
o

na
ti

ve
 (

na
ti

ve
 =

 1
.0

)

Google Chrome Mozilla Firefox

Figure 10: L1-icache-load-misses samples counted for
SPEC CPU compiled to WebAssembly executed in Chrome
and Firefox, relative to native. 458.sjeng not shown in the
graph exhibits 26.5× more L1 instruction cache misses in
Chrome and 18.6× more in Firefox. The increased code size
generated for WebAssembly leads to more instruction cache
misses.

Performance Counter Chrome Firefox
all-loads-retired 2.02× 1.92×
all-stores-retired 2.30× 2.16×
branch-instructions-retired 1.75× 1.65×
conditional-branches 1.65× 1.62×
instructions-retired 1.80× 1.75×
cpu-cycles 1.54× 1.38×
L1-icache-load-misses 2.83× 2.04×

Table 4: The geomean of performance counter increases for
the SPEC benchmarks using WebAssembly.

there are 4.6× more L1 instruction cache misses in Chrome
and Firefox than native because of several virtual functions
being executed, leading to more indirect function calls.

6.4 Discussion
It is worth asking if the performance issues identified here
are fundamental. We believe that two of the identified is-
sues are not: that is, they could be ameliorated by improved
implementations. WebAssembly implementations today use
register allocators (§6.1.2) and code generators (§6.2.1) that
perform worse than Clang’s counterparts. However, an offline
compiler like Clang can spend considerably more time to
generate better code, whereas WebAssembly compilers must
be fast enough to run online. Therefore, solutions adopted
by other JITs, such as further optimizing hot code, are likely
applicable here [19, 32].

The four other issues that we have identified appear to

USENIX Association 2019 USENIX Annual Technical Conference 117

arise from the design constraints of WebAssembly: the stack
overflow checks (§6.2.2), indirect call checks (§6.2.3), and
reserved registers (§6.1.1) have a runtime cost and lead to in-
creased code size (§6.3). Unfortunately, these checks are nec-
essary for WebAssembly’s safety guarantees. A redesigned
WebAssembly, with richer types for memory and function
pointers [23], might be able to perform some of these checks
at compile time, but that could complicate the implementa-
tion of compilers that produce WebAssembly. Finally, a Web-
Assembly implementation in a browser must interoperate with
a high-performance JavaScript implementation, which may
impose its own constraints. For example, current JavaScript
implementations reserve a few registers for their own use,
which increases register pressure on WebAssembly.

7 Related Work

Precursors to WebAssembly There have been several at-
tempts to execute native code in browsers, but none of them
met all the design criteria of WebAssembly.

ActiveX [13] allows web pages to embed signed x86 li-
braries, however these binaries have unrestricted access to
the Windows API. In contrast, WebAssembly modules are
sandboxed. ActiveX is now a deprecated technology.

Native Client [11, 37] (NaCl) adds a module to a web ap-
plication that contains platform specific machine code. NaCl
introduced sandboxing techniques to execute platform spe-
cific machine code at near native speed. Since NaCl relies on
static validation of machine code, it requires code generators
to follow certain patterns, hence, supporting only a subset
of the x86, ARM, and MIPS instructions sets in the browser.
To address the inherent portability issue of NaCl, Portable
NaCl (PNaCl) [14] uses LLVM Bitcode as a binary format.
However, PNaCl does not provide significant improvement
in compactness over NaCl and still exposes compiler and/or
platform-specific details such as the call stack layout. Both
have been deprecated in favor of WebAssembly.
asm.js is a subset of JavaScript designed to be compiled

efficiently to native code. asm.js uses type coercions to
avoid the dynamic type system of JavaScript. Since asm.js
is a subset of JavaScript, adding all native features to asm.js
such as 64-bit integers will first require extending JavaScript.
Compared to asm.js, WebAssembly provides several im-
provements: (i) WebAssembly binaries are compact due to
its lightweight representation compared to JavaScript source,
(ii) WebAssembly is more straightforward to validate, (iii)
WebAssembly provides formal guarantees of type safety and
isolation, and (iv) WebAssembly has been shown to provide
better performance than asm.js.

WebAssembly is a stack machine, which is similar to the
Java Virtual Machine [21] and the Common Language Run-
time [25]. However, WebAssembly is very different from
these platforms. For example WebAssembly does not support
objects and does not support unstructured control flow.

The WebAssembly specification defines its operational se-
mantics and type system. This proof was mechanized using
the Isabelle theorem prover, and that mechanization effort
found and addressed a number of issues in the specifica-
tion [35]. RockSalt [22] is a similar verification effort for
NaCl. It implements the NaCl verification toolchain in Coq,
along with a proof of correctness with respect to a model of
the subset of x86 instructions that NaCl supports.

Analysis of SPEC Benchmarks using performance coun-
ters Several papers use performance counters to analyze
the SPEC benchmarks. Panda et al. [26] analyze the SPEC
CPU2017 benchmarks, applying statistical techniques to iden-
tify similarities among benchmarks. Phansalkar et al. perform
a similar study on SPEC CPU2006 [27]. Limaye and Adegija
identify workload differences between SPEC CPU2006 and
SPEC CPU2017 [20].

8 Conclusions

This paper performs the first comprehensive performance
analysis of WebAssembly. We develop BROWSIX-WASM,
a significant extension of BROWSIX, and BROWSIX-SPEC,
a harness that enables detailed performance analysis, to let
us run the SPEC CPU2006 and CPU2017 benchmarks as
WebAssembly in Chrome and Firefox. We find that the mean
slowdown of WebAssembly vs. native across SPEC bench-
marks is 1.55× for Chrome and 1.45× for Firefox, with peak
slowdowns of 2.5× in Chrome and 2.08× in Firefox. We
identify the causes of these performance gaps, providing ac-
tionable guidance for future optimization efforts.

Acknowledgements We thank the reviewers and our shep-
herd, Eric Eide, for their constructive feedback. This work
was partially supported by NSF grants 1439008 and 1413985.

118 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Blazor. https://blazor.net/. [Online; accessed
5-January-2019].

[2] Compiling from Rust to WebAssembly.
https://developer.mozilla.org/en-US/docs/
WebAssembly/Rust_to_wasm. [Online; accessed
5-January-2019].

[3] LLVM Reference Manual. https://llvm.org/docs/
CodeGenerator.html.

[4] NaCl and PNaCl. https://developer.chrome.com/
native-client/nacl-and-pnacl. [Online; accessed
5-January-2019].

[5] PolyBenchC: the polyhedral benchmark suite.
http://web.cs.ucla.edu/~pouchet/software/
polybench/. [Online; accessed 14-March-2017].

[6] Raise Chrome JS heap limit? - Stack Over-
flow. https://stackoverflow.com/questions/
43643406/raise-chrome-js-heap-limit. [Online;
accessed 5-January-2019].

[7] Use cases. https://webassembly.org/docs/
use-cases/.

[8] WebAssembly. https://webassembly.org/. [On-
line; accessed 5-January-2019].

[9] System V Application Binary Interface
AMD64 Architecture Processor Supplement.
https://software.intel.com/sites/default/
files/article/402129/mpx-linux64-abi.pdf,
2013.

[10] Steve Akinyemi. A curated list of languages
that compile directly to or have their VMs in Web-
Assembly. https://github.com/appcypher/
awesome-wasm-langs. [Online; accessed 5-January-
2019].

[11] Jason Ansel, Petr Marchenko, Úlfar Erlingsson, Elijah
Taylor, Brad Chen, Derek L. Schuff, David Sehr, Cliff L.
Biffle, and Bennet Yee. Language-independent Sand-
boxing of Just-in-time Compilation and Self-modifying
Code. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI ’11, pages 355–366. ACM, 2011.

[12] Michael Bebenita, Florian Brandner, Manuel Fahndrich,
Francesco Logozzo, Wolfram Schulte, Nikolai Tillmann,
and Herman Venter. SPUR: A Trace-based JIT Com-
piler for CIL. In Proceedings of the ACM International
Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’10, pages 708–
725. ACM, 2010.

[13] David A Chappell. Understanding ActiveX and OLE.
Microsoft Press, 1996.

[14] Alan Donovan, Robert Muth, Brad Chen, and David
Sehr. PNaCl: Portable Native Client Executa-
bles. https://css.csail.mit.edu/6.858/2012/
readings/pnacl.pdf, 2010.

[15] Brendan Eich. From ASM.JS to Web-
Assembly. https://brendaneich.com/2015/
06/from-asm-js-to-webassembly/, 2015. [Online;
accessed 5-January-2019].

[16] Eric Elliott. What is WebAssembly? https://
tinyurl.com/o5h6daj, 2015. [Online; accessed 5-
January-2019].

[17] Andreas Gal, Brendan Eich, Mike Shaver, David An-
derson, David Mandelin, Mohammad R. Haghighat,
Blake Kaplan, Graydon Hoare, Boris Zbarsky, Jason
Orendorff, Jesse Ruderman, Edwin W. Smith, Rick Re-
itmaier, Michael Bebenita, Mason Chang, and Michael
Franz. Trace-based Just-in-time Type Specialization
for Dynamic Languages. In Proceedings of the 30th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’09, pages 465–478.
ACM, 2009.

[18] Andreas Haas, Andreas Rossberg, Derek L. Schuff,
Ben L. Titzer, Michael Holman, Dan Gohman, Luke
Wagner, Alon Zakai, and JF Bastien. Bringing the Web
Up to Speed with WebAssembly. In Proceedings of the
38th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2017, pages
185–200. ACM, 2017.

[19] Thomas Kotzmann, Christian Wimmer, Hanspeter
Mössenböck, Thomas Rodriguez, Kenneth Russell, and
David Cox. Design of the Java HotSpot Client Com-
piler for Java 6. ACM Trans. Archit. Code Optim.,
5(1):7:1–7:32, 2008.

[20] Ankur Limaye and Tosiron Adegbija. A Workload Char-
acterization of the SPEC CPU2017 Benchmark Suite.
In 2018 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 149–
158, 2018.

[21] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex
Buckley. The Java Virtual Machine Specification, Java
SE 8 Edition. Addison-Wesley Professional, 1st edition,
2014.

USENIX Association 2019 USENIX Annual Technical Conference 119

https://blazor.net/
https://developer.mozilla.org/en-US/docs/WebAssembly/Rust_to_wasm
https://developer.mozilla.org/en-US/docs/WebAssembly/Rust_to_wasm
https://llvm.org/docs/CodeGenerator.html
https://llvm.org/docs/CodeGenerator.html
https://developer.chrome.com/native-client/nacl-and-pnacl
https://developer.chrome.com/native-client/nacl-and-pnacl
http://web.cs.ucla.edu/~pouchet/software/polybench/
http://web.cs.ucla.edu/~pouchet/software/polybench/
https://stackoverflow.com/questions/43643406/raise-chrome-js-heap-limit
https://stackoverflow.com/questions/43643406/raise-chrome-js-heap-limit
https://webassembly.org/docs/use-cases/
https://webassembly.org/docs/use-cases/
https://webassembly.org/
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://github.com/appcypher/awesome-wasm-langs
https://github.com/appcypher/awesome-wasm-langs
https://css.csail.mit.edu/6.858/2012/readings/pnacl.pdf
https://css.csail.mit.edu/6.858/2012/readings/pnacl.pdf
https://brendaneich.com/2015/06/from-asm-js-to-webassembly/
https://brendaneich.com/2015/06/from-asm-js-to-webassembly/
https://tinyurl.com/o5h6daj
https://tinyurl.com/o5h6daj

[22] Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-
Baptiste Tristan, and Edward Gan. RockSalt: Better,
Faster, Stronger SFI for the x86. In Proceedings of
the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’12, pages
395–404. ACM, 2012.

[23] Greg Morrisett, David Walker, Karl Crary, and Neal
Glew. From System F to Typed Assembly Language.
ACM Trans. Program. Lang. Syst., 21(3):527–568,
1999.

[24] Richard Musiol. A compiler from Go to JavaScript
for running Go code in a browser. https://github.
com/gopherjs/gopherjs, 2016. [Online; accessed
5-January-2019].

[25] George C. Necula, Scott McPeak, Shree P. Rahul, and
Westley Weimer. CIL: Intermediate Language and
Tools for Analysis and Transformation of C Programs.
In R. Nigel Horspool, editor, Compiler Construction,
pages 213–228. Springer, 2002.

[26] Reena Panda, Shuang Song, Joseph Dean, and Lizy K.
John. Wait of a Decade: Did SPEC CPU 2017 Broaden
the Performance Horizon? In 2018 IEEE International
Symposium on High Performance Computer Architec-
ture (HPCA), pages 271–282, 2018.

[27] Aashish Phansalkar, Ajay Joshi, and Lizy K. John.
Analysis of Redundancy and Application Balance in
the SPEC CPU2006 Benchmark Suite. In Proceedings
of the 34th Annual International Symposium on Com-
puter Architecture, ISCA ’07, pages 412–423. ACM,
2007.

[28] Bobby Powers, John Vilk, and Emery D. Berger.
Browsix: Unix in your browser tab. https://browsix.
org.

[29] Bobby Powers, John Vilk, and Emery D. Berger.
Browsix: Bridging the Gap Between Unix and the
Browser. In Proceedings of the Twenty-Second Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS
’17, pages 253–266. ACM, 2017.

[30] Gregor Richards, Sylvain Lebresne, Brian Burg, and
Jan Vitek. An Analysis of the Dynamic Behavior of
JavaScript Programs. In Proceedings of the 31st ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’10, pages 1–12. ACM,
2010.

[31] Marija Selakovic and Michael Pradel. Performance
Issues and Optimizations in JavaScript: An Empirical
Study. In Proceedings of the 38th International Confer-
ence on Software Engineering, ICSE ’16, pages 61–72.
ACM, 2016.

[32] Toshio Suganuma, Toshiaki Yasue, Motohiro Kawahito,
Hideaki Komatsu, and Toshio Nakatani. A Dynamic Op-
timization Framework for a Java Just-in-time Compiler.
In Proceedings of the 16th ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages,
and Applications, OOPSLA ’01, pages 180–195. ACM,
2001.

[33] Luke Wagner. asm.js in Firefox Nightly | Luke Wagner’s
Blog. https://blog.mozilla.org/luke/2013/03/
21/asm-js-in-firefox-nightly/. [Online; ac-
cessed 21-May-2019].

[34] Luke Wagner. A WebAssembly Milestone:
Experimental Support in Multiple Browsers.
https://hacks.mozilla.org/2016/03/
a-webassembly-milestone/, 2016. [Online;
accessed 5-January-2019].

[35] Conrad Watt. Mechanising and Verifying the Web-
Assembly Specification. In Proceedings of the 7th
ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2018, pages 53–65. ACM,
2018.

[36] Christian Wimmer and Michael Franz. Linear Scan
Register Allocation on SSA Form. In Proceedings of
the 8th Annual IEEE/ACM International Symposium on
Code Generation and Optimization, CGO ’10, pages
170–179. ACM, 2010.

[37] Bennet Yee, David Sehr, Greg Dardyk, Brad Chen,
Robert Muth, Tavis Ormandy, Shiki Okasaka, Neha
Narula, and Nicholas Fullagar. Native Client: A Sand-
box for Portable, Untrusted x86 Native Code. In
IEEE Symposium on Security and Privacy (Oakland’09),
IEEE, 2009.

[38] Alon Zakai. asm.js. http://asmjs.org/. [Online;
accessed 5-January-2019].

[39] Alon Zakai. Emscripten: An LLVM-to-JavaScript Com-
piler. In Proceedings of the ACM International Con-
ference Companion on Object Oriented Programming
Systems Languages and Applications Companion, OOP-
SLA ’11, pages 301–312. ACM, 2011.

120 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/gopherjs/gopherjs
https://github.com/gopherjs/gopherjs
https://browsix.org
https://browsix.org
https://blog.mozilla.org/luke/2013/03/21/asm-js-in-firefox-nightly/
https://blog.mozilla.org/luke/2013/03/21/asm-js-in-firefox-nightly/
https://hacks.mozilla.org/2016/03/a-webassembly-milestone/
https://hacks.mozilla.org/2016/03/a-webassembly-milestone/
http://asmjs.org/

Extension Framework for File Systems in User space

Ashish Bijlani
Georgia Institute of Technology

Umakishore Ramachandran
Georgia Institute of Technology

Abstract
User file systems offer numerous advantages over their in-
kernel implementations, such as ease of development and bet-
ter system reliability. However, they incur heavy performance
penalty. We observe that existing user file system frameworks
are highly general; they consist of a minimal interposition
layer in the kernel that simply forwards all low-level requests
to user space. While this design offers flexibility, it also
severely degrades performance due to frequent kernel-user
context switching.

This work introduces EXTFUSE, a framework for develop-
ing extensible user file systems that also allows applications
to register “thin” specialized request handlers in the kernel
to meet their specific operative needs, while retaining the
complex functionality in user space. Our evaluation with two
FUSE file systems shows that EXTFUSE can improve the
performance of user file systems with less than a few hundred
lines on average. EXTFUSE is available on GitHub.

1 Introduction
User file systems not only offer better security (i.e., un-
privileged execution) and reliability [46] when compared to
in-kernel implementations, but also ease the development
and maintenance/debugging processes. Therefore, many
approaches to develop user space file systems have also
been proposed for monolithic Operating Systems (OS), such
as Linux and FreeBSD. While some approaches target
specific systems [25, 45, 53], a number of general-purpose
frameworks for implementing user file systems also ex-
ist [3, 14, 29, 33, 47]. FUSE [47], in particular, is the
state-of-the-art framework for developing user file systems.
Over a hundred FUSE file system have been created in aca-
demic/research [11,32,37,41,44,49], as well as in production
settings [9, 24, 40, 52].

Being general-purpose, the primary goal of the aforemen-
tioned frameworks is to enable easy, yet fully-functional im-
plementation of file systems in user space supporting multiple
different functionalities. To do so, they implement a mini-
mal kernel driver that interfaces with the Virtual File System
(VFS) operations and simply forwards all low-level requests
to user space. For example, when an application (app) makes
an open() system call, the VFS issues a lookup request for
each path component. Similarly, getxattr requests are is-
sued to read security labels while serving write() system
calls. Such low-level requests are simply forwarded to user

space. This design offers flexibility to developers to easily
implement their functionality and apply custom optimizations,
but also incurs a high overhead due to frequent user-kernel
switching and data copying. For example, despite several
recent optimizations, even a simple passthrough FUSE file
system can introduce up to 83% overhead on an SSD [50].
As a result, some FUSE file systems have been replaced by
alternative implementations in production [8, 22, 24].

There have been attempts to address performance issues
of user file system frameworks, for example, by eliminating
user-kernel switching in FUSE under certain scenarios [28,
34]. Nevertheless, the optimizations proposed pertain to their
specific use cases and do not address the inherent design
limitations of existing frameworks.

We observe that the interfaces exported by existing user
file system frameworks are too low-level and general-purpose.
As such, they fail to match the specific operative needs of
file systems. For example, getxattr requests during write()
can be completely eliminated for files containing no secu-
rity labels. lookup replies from the daemon could be cached
and validated in the kernel to reduce context switches to user
space. Similarly, when stacking sandboxing functionality
for enforcing custom permissions checks in open() system
call, I/O requests (e.g., read/write) could be passed directly
through the host file system. Nevertheless, modifying exist-
ing frameworks to efficiently address specific functional and
performance requirements of each use case is impractical.

We borrow the idea of safely extending system services
at runtime from past works [6, 13, 43, 56] and propose to
address the performance issues in existing user file systems
frameworks by allowing developers to safely extend the func-
tionality of the kernel driver at runtime for specialized han-
dling of their use case. This work introduces EXTFUSE, an
extension framework for file systems in user space that al-
lows developers to define specialized “thin” extensions along
with auxiliary data structures for handling low-level requests
in the kernel. The extensions are safely executed under a
sandboxed runtime environment in the kernel immediately as
the requests are issued from the upper file system layer (e.g.,
VFS), thereby offering a fine-grained ability to either serve
each request entirely in the kernel (fast path) or fall back to
the existing complex logic in user space (slow path) to achieve
the desired operative goals of functionality and performance.
The fast and slow paths can access (and modify) the auxiliary
data structures to define custom logic for handling requests.

USENIX Association 2019 USENIX Annual Technical Conference 121

https://extfuse.github.io

EXTFUSE consists of three components. First, a helper
user library that provides a familiar set of file system APIs
to register extensions and implement custom fast-path func-
tionality in a subset of the C language. Second, a wrapper
(no-ops) interposition driver that bridges with the low-level
VFS interfaces and provides the necessary support to for-
ward requests to the registered kernel extensions as well as to
the lower file system, as needed. Third, an in-kernel Virtual
Machine (VM) runtime that safely executes the extensions.

We have built EXTFUSE to work in concert with existing
user file system frameworks to allow both the fast and the
existing slow path to coexist with no overhauling changes to
the design of the target user file system. Although there are
several user file system frameworks, this work focuses only
on FUSE because of its wide-spread use. Nonetheless, we
have implemented EXTFUSE as in a modular fashion so it
can be easily adopted for others.

We added support for EXTFUSE in four popular FUSE
file systems, namely LoggedFS [16], Android sdcard daemon,
MergerFS, and BindFS [35]. Our evaluation of the first two
shows that EXTFUSE can offer substantial performance im-
provements of user file systems by adding less than a few
hundred lines, on average.

This paper makes the following contributions:
• We identify optimization opportunities in user file sys-

tem frameworks for monolithic OSes (§2) and propose
extensible user file systems.

• We present the design (§3) and architecture (§3.4) of
EXTFUSE, an extension framework for user file systems
that offers the performance of kernel file systems, while
retaining the safety properties of user file systems.

• We demonstrate the applicability of EXTFUSE by adopt-
ing it for FUSE, the state-of-the-art user file system
framework, and evaluating it on Linux (§6).

• We show the practical benefits and limitations of the
EXTFUSE with two popular FUSE file systems, one
deployed in production (§6.2).

2 Background and Extended Motivation
This section provides a brief technical background on FUSE
and its limitations that motivate our work.

2.1 FUSE
FUSE is the state-of-the-art framework for developing user
file systems. It consists of a loadable kernel driver and a
helper user-space library that provides a set of portable APIs
to allow users to implement their own fully-functional file
system as an unprivileged daemon process on Unix-based
systems with no additional kernel support. The driver is a
simple interposition layer that only serves as a communica-
tion channel between the user-space daemon and the VFS.
It registers a new file system to interface with the VFS op-
erations and directly forwards all low-level requests to the
daemon, as received.

The library provides two different sets of APIs. First,
a fuse_lowlevel_ops interface that exports all VFS oper-
ations such as lookup for path to inode mapping. It is used
by file systems that need to access low-level abstractions
(e.g., inodes) for custom optimizations. Second, a high-level
fuse_operations interface that builds on the low-level APIs.
It hides complex abstractions and offers a simple (e.g., path-
based) API for the ease of development. Depending on their
particular use case, developers can adopt either of the two
APIs. Furthermore, many operations in both APIs are op-
tional. For example, developers can choose to not handle
extended attributes (xattrs) operations (e.g., getxattr).

As apps make system calls, the VFS layer forwards all low-
level requests to the kernel driver. For example, to serve the
open() system call on Linux, the VFS issues multiple lookup
requests to the driver, one for each input path component.
Similarly, every write() request is preceded by a getxattr
request from the VFS to fetch the security labels. The driver
queues up all requests, along with the relevant parameters,
for the daemon through /dev/fuse device file and blocks the
calling app thread until the requests are served. The daemon,
through the libfuse interface, retrieves the requests from the
queue, processes them as needed, and enqueues the results for
the driver to read. The driver copies the results, populating
VFS caches, as appropriate (e.g., page cache for read/write,
dcache for dir entries from lookup), and wakes the app thread
and returns the results to it. Once cached, the subsequent
accesses to the same data are served with no user-kernel
round-trip communication.

In addition to the common benefits of user file systems such
as ease of development and maintenance, FUSE also provides
app-transparency and fine-grained control to developers over
the low-level API to easily support their custom functionality.
Furthermore on Linux, the FUSE driver is GPL-licensed,
which detaches the implementation in user space from legal
obligations [57]. It also supports multiple language bindings
(e.g., Python, Go, etc.), thereby enabling access to ecosystem
of third-party libraries for reuse.

Given its general-purpose design and numerous advantages,
over a hundred FUSE file systems with different functionali-
ties have been created. A large majority of them are stackable;
that is, they introduce incremental functionality on the host
file system [38]. FUSE has long served as a popular tool for
quick experimentation and prototyping new file systems in
academic and research settings [11, 32, 37, 41, 44, 49]. How-
ever, more recently a host of FUSE file systems have also been
deployed in production. Both Gluster [40] and Ceph [52] clus-
ter file systems use a FUSE network client implementation.
Android v4.4 introduced FUSE sdcard daemon (stackable) to
add multi-user support and emulate FAT functionality on the
EXT4 file system [24].

While exporting low-level abstractions and VFS interfaces
offers more control and flexibility to developers, this design
comes with a cost. It induces frequent user-kernel round-

122 2019 USENIX Annual Technical Conference USENIX Association

Media W/ xattr (%Diff) W/O xattr (%Diff)

SW RW SW RW

HDD -0.29 -3.80 -0.17 -2.83
SSD -11.5 -23.38 +0.31 -12.24

Table 1: Percentage difference between I/O throughput (ops/sec) for
EXT4 vs FUSE StackfsOpt (see §6) under single thread 4K Seq
Write (SW), and Rand Write (RW) settings on a 60GB file across
different storage media as reported by Filebench [48]. Received 15
million getxattr requests.

trip communication and data copying, and thus inevitably
yields poor runtime performance. Nonetheless, FUSE has
evolved significantly over the years; several optimizations
have been added to minimize the user-kernel communication:
zero-copy data transfer (splicing), and utilizing system-wide
shared VFS caches (page cache for data I/O and dentry cache
for metadata). However, despite these optimizations, FUSE
severely degrades runtime performance in a host of scenar-
ios. For instance, data caching improves I/O throughput by
batching requests (e.g., read-aheads, small writes), but it does
not help apps that perform random reads or demand low write
latency (e.g., databases). Splicing is only used for over 4K re-
quests. Therefore, apps with small writes/reads (e.g., Android
apps, etc.) will incur data copying overheads. Worse yet, the
overhead is higher with faster storage media. Even a simple
passthrough (no-ops) FUSE file system can introduce up to
83% overhead for metadata-heavy workloads on SSD [50].

The performance penalty incurred by user file systems over-
shadows their benefits. Consequently, some user file systems
have been replaced with alternative implementations in pro-
duction. For instance, Android v7.0 replaced the sdcard dae-
mon with its in-kernel implementation after several years [24].
Ceph [52] adopted an in-kernel client for Linux kernel [8].

2.2 Generality vs Specialization
We observe that being highly general-purpose, the FUSE
framework induces unnecessary user-kernel communication
in many cases, yielding low throughput and high latency. For
instance, getxattr requests generated by the VFS during
write() system calls (one per write) can double the number
of user-kernel transitions, which decreases the I/O through-
put of sequential writes by over 27% and random writes by
over 44% compared to native (EXT4) performance (Table 1).
Moreover, the penalty incurred is higher with the faster media.

Nevertheless, simple filtering or caching metadata replies
in the kernel can substantially reduce user-kernel communi-
cation. For instance, by caching the last getxattr reply in
the FUSE driver and simply validating the cached state for
every subsequent getxattr request from the VFS on the same
file, unnecessary user-kernel transitions can be eliminated to
achieve significant improvement in write performance. Simi-
larly, replies from other metadata operations, such as lookup

and getattr can be cached, validated, and served entirely
within the kernel. Note that custom validation of cached meta-
data is imperative, and lack of support to do so may result in
incorrect behavior as happens in the case of optimized FUSE
that leverages VFS caches to serve requests (§5.1).

Many stackable user file systems add a thin layer of func-
tionality; they perform simple checks in a few operations and
pass remaining requests directly through the host (lower) file
system. LoggedFS [16] filters requests that must be logged
and do so by accessing host file system services. Union file
systems such as MergerFS [20] determine the backend host
file in open() and redirects I/O requests to it. Android sdcard
daemon performs access permission checks only in metadata
operations (e.g., open, lookup), but data I/O requests (e.g.,
read, write, etc.) are simply forwarded to the lower file sys-
tem. Thin functionality that realizes such use cases does not
need any complex processing in user space, and therefore
can easily be stacked in the kernel, thereby avoiding expen-
sive user-kernel switching to yield lower latency and higher
throughput for the same functionality. Furthermore, data I/O
requests could be directly forwarded to the host file system.

The FUSE framework offers a few configuration (config)
options to the developers to tune the behavior of its kernel
driver for their use case. However, those options are coarse-
grained and implemented as fixed checks embedded in the
driver code; thus, it offers limited static control. For example,
for file systems that do not support certain operations (e.g.,
getxattr), the FUSE driver caches this knowledge upon first
ENOSUPPORT reply and does not issue such requests subse-
quently. While this benefits the file systems that completely
omit certain functionality (e.g., security xattr labels), it does
not allow custom and fine-grained filtering of requests that
may be desired by some file systems supporting only partial
functionality. For example, file systems providing encryp-
tion (or compression) functionality may desire a fine-grained
custom control over the kernel driver to skip the decryption
(or decompression) operation in user space during read()
requests on non-sensitive (or unzipped) files.

As such, the FUSE framework proves to be too low-level
and general-purpose in many cases. While it enables a number
of different use cases, modifying the framework to efficiently
handle special needs of each use case is impractical. This is
a typical unbalanced generality vs. specialization problem,
which can be addressed by extending the functionality of the
FUSE driver in the kernel [6, 13, 43].

3 Design
In this section, we 1) present an overview of EXTFUSE, 2)
discuss the design goals and challenges we faced, and 3)
mechanisms we adopted to address those challenges.

3.1 Overview
EXTFUSE is a framework for developing extensible FUSE
file systems for UNIX-like monolithic OSes. It allows the

USENIX Association 2019 USENIX Annual Technical Conference 123

unprivileged FUSE daemon processes to register “thin” exten-
sions in the kernel for specialized handling of low-level file
system requests, while retaining their existing complex logic
in user space to achieve the desired level of performance.

The registered extensions are safely executed under a sand-
boxed eBPF runtime environment in the kernel (§3.3), im-
mediately as requests are issued from the upper file system
(e.g., VFS). Sandboxing enables the FUSE daemon to safely
extend the functionality of the driver at runtime and offers a
fine-grained ability to either serve each request entirely in the
kernel or fall back to user space, thereby offering safety of
user space and performance of kernel file systems.

EXTFUSE also provides a set of APIs to create shared
key-value data structures (called maps) that can host abstract
data blobs. The user-space daemon and its kernel extensions
can leverage maps to store/manipulate their custom data types
as needed to work in concert and serve file system requests in
the kernel without incurring expensive user-kernel round-trip
communication if deemed unnecessary.

3.2 Goals and Challenges
The over-arching goal of EXTFUSE is to carefully balance
the safety and runtime extensibility of user file systems to
achieve the desired level of performance and specialized
functionality. Nevertheless, in order for developers to use
EXTFUSE, it must also be easy to adopt. We identify the
following concrete design goals.
Design Compatibility. The abstractions and interfaces of-
fered by EXTFUSE framework must be compatible with
FUSE without hindering existing functionality or proper-
ties. It must be general-purpose so as to support multiple
different use cases. Developers must further be able to adopt
EXTFUSE for their use case without overhauling changes
to their existing design. It must be easy for them to imple-
ment specialized extensions with little to no knowledge of the
underlying implementation details.
Modular Extensibility. EXTFUSE must be highly modular
and limit any unnecessary new changes to FUSE. Particularly,
developers must be able to retain their existing user-space
logic and introduce specialized extensions only if needed.
Balancing Safety and Performance. Finally with
EXTFUSE, even unprivileged (and untrusted) FUSE
daemon processes must be able to safely extend the
functionality of the driver as needed to offer performance
that is as close as possible to the in-kernel implementation.
However, unlike Microkernels [2, 23, 30] that host system
services in separate protection domains as user processes
or the OSes that have been developed with safe runtime
extensibility as a design goal [6, 13], extending system
services of general-purpose UNIX-like monolithic OSes
poses a design trade-off question between the safety and
performance requirements.

Untrusted extensions must be as lightweight as possible,
with their access restricted to only a few well-defined APIs

to guarantee safety. For example, kernel file systems offer
near-native performance, but executing complex logic in the
kernel results in questionable reliability. Additionally, most
OS kernels employ Address Space Randomization [36], Data
Execution Prevention [5], etc. for code protection and hid-
ing memory pointers. Providing unrestricted kernel access
to extensions can render such protections useless. There-
fore, extensions must not be able to access arbitrary memory
addresses or leak pointer values to user space.

However, severely restricting extensibility can prevent user
file systems from fully meeting their operative performance
and functionality goals, thus defeating the purpose of exten-
sions in the first place. Therefore, EXTFUSE must carefully
balance safety and performance goals.
Correctness. Furthermore, specialized extensions can alter
the existing design of user file systems, which can lead to
correctness issues. For example, there will be two separate
paths (fast and slow) both operating on the requests and data
structs at the same time. The framework must provide a way
for them to synchronize and offer safe concurrent accesses.

3.3 eBPF
EXTFUSE leverages extended BPF (eBPF) [26], an in-kernel
Virtual Machine (VM) runtime framework to load and safely
execute user file system extensions.
Richer functionality. eBPF is an extension of classic Berke-
ley Packet Filters (BPF), an in-kernel interpreter for a pseudo
machine architecture designed to only accept simple network
filtering rules from user space. It enhances BPF to include
more versatility, such as 64-bit support, a richer instruction set
(e.g., call, cond jump), more registers, and native performance
through JIT compilation.
High-level language support. The eBPF bytecode backend
is also supported by Clang/LLVM compiler toolchain, which
allows functionality logic to be written in a familiar high-level
language, such as C and Go.
Safety. The eBPF framework provides a safe execution en-
vironment in the kernel. It prohibits execution of arbitrary
code and access to arbitrary kernel memory regions; instead,
the framework restricts access to a set of kernel helper APIs
depending on the target kernel subsystem (e.g., network) and
required functionality (e.g., packet handling). The frame-
work includes a static analyzer (called verifier) that checks
the correctness of the bytecode by performing an exhaus-
tive depth-first search through its control flow graph to detect
problems, such as infinite loops, out-of-bound, and illegal
memory errors. The framework can also be configured to
allow or deny eBPF bytecode execution request from unprivi-
leged processes.
Key-Value Maps. eBPF allows user space to create map data
structures to store arbitrary key-value blobs using system
calls and access them using file descriptors. Maps are also
accessible to eBPF bytecode in the kernel, thus providing a
communication channel between user space and the bytecode

124 2019 USENIX Annual Technical Conference USENIX Association

to define custom key-value types and share execution state or
data. Concurrent accesses to maps are protected under read-
copy update (RCU) synchronization mechanism. However,
maps consume unswappable kernel memory. Furthermore,
they are either accessible to everyone (e.g., by passing file
descriptors) or only to CAP_SYS_ADMIN processes.

eBPF is a part of the Linux kernel and is already used heav-
ily by networking, tracing, and profiling subsystems. Given
its rich functionality and safety properties, we adopt eBPF
for providing support for extensible user file systems. Specifi-
cally, we define a white-list of kernel APIs (including their
parameters and return types), and abstractions that user file
system extensions can safely use to realize their specialized
functionality. The eBPF verifier utilizes the whitelist to vali-
date the correctness of the extensions. We also build on eBPF
abstractions (e.g., maps) and apply further access restrictions
to enable safe in-kernel execution, as needed.

3.4 Architecture

Figure 1: Architectural view of the EXTFUSE framework. The
components modified or introduced have been highlighted.

Figure 1 shows the architecture of the EXTFUSE frame-
work. It is enabled by three core components, namely a kernel
file system (driver), a user library (libExtFUSE), and an in-
kernel eBPF virtual machine runtime (VM).

The EXTFUSE driver uses interposition technique to in-
terface with FUSE at low-level file system operations. How-
ever, unlike the FUSE driver that simply forwards file system
requests to user space, the EXTFUSE driver is capable of
directly delivering requests to in-kernel handlers (extensions).
It can also forward a few restricted set of requests (e.g., read,
write) to the host (lower) file system, if present. The latter
is needed for stackable user file systems that add thin func-
tionality on top of the host file system. libExtFUSE exports a
set of APIs and abstractions for serving requests in the kernel,
hiding the underlying implementation details.

Use of libExtFUSE is optional and independent of libfuse.
The existing file system handlers registered with libfuse

FS Interface API(s) Abstractions Description

Low-level fuse_lowlevel_ops Inode FS Ops

Kernel Access API(s) Abstractions Description

eBPF Funcs bpf_* UID, PID, etc. Helper Funcs
FUSE extfuse_reply_* fuse_reply_* Req Output
Kernel bpf_set_pasthru FileDesc Enable Pthru
Kernel bpf_clear_pasthru FileDesc Disable Pthru

DataStructs API(s) Abstractions Description

SHashMap CRUD Key/Val Hosts arbitrary data blobs
InodeMap CRUD FileDesc Hosts upper-lower inode pairs

Table 2: APIs and abstractions provided by EXTFUSE. It provides
FUSE-like file system interface for easy portability. CRUD (create,
read, update, and delete) APIs are offered for map data structures
to operate on Key/Value pairs. Kernel accesses are restricted to
standard eBPF kernel helper functions. We introduced APIs to
access the same FUSE request parameters as available to user space.

continue to reside in user space. Therefore, their invocation
incurs context switches, and thus, we refer to their execution
as the slow path. With EXTFUSE, user space can also register
kernel extensions that are invoked immediately as file system
requests are received from the VFS in order to allow serving
them in the kernel. We refer to the in-kernel execution as the
fast path. Depending upon the return values from the fast
path, the requests can be marked as served or be sent to the
user-space daemon via the slow path to avail any complex
processing as needed. Fast path can also return a special value
that instructs the EXTFUSE driver to interpose and forward
the request to the lower file system. However, this feature is
only available to stackable user file systems and is verified
when the extensions are loaded in the kernel.

The fast path interfaces exported by libExtFUSE are the
same as those exported by libfuse to the slow path. This
is important for easy transfer of design and portability. We
leverage eBPF support in the LLVM/Clang compiler toolchain
to provide developers with a familiar set of APIs and allow
them to implement their custom functionality logic in a subset
of the C language.

The extensions are loaded and executed inside the kernel
under the eBPF VM sandbox, thereby providing user space a
fine-grained ability to safely extend the functionality of FUSE
kernel driver at runtime for specialized handling of each file
system request.

3.5 EXTFUSE APIs and Abstractions
libExtFUSE provides a set of high-level APIs and abstractions
to the developers for easy implementation of their specialized
extensions, hiding the complex implementation details. Ta-
ble 2 summarizes the APIs. For handling file system opera-
tions, libExtFUSE exports the familiar set of FUSE interfaces
and corresponding abstractions (e.g., inode) for design com-
patibility. Both low-level as well as high-level file system
interfaces are available, offering flexibility and development
ease. Furthermore, as with libfuse, the daemon can reg-

USENIX Association 2019 USENIX Annual Technical Conference 125

ister extensions for a few or all of the file system APIs, of-
fering them flexibility to implement their functionality with
no additional development burden. The extensions receive
the same request parameters (struct fuse_[in,out]) as the
user-space daemon. This design choice not only conforms
to the principle of least privilege, but also offers the user-
space daemon and the extensions the same interface for easy
portability.

For hosting/sharing data between the user daemon and
kernel extensions, libExtFUSE provides a secure variant of
eBPF HashMap key/value data structure called SHashMap that
stores arbitrary key/value blobs. Unlike regular eBPF maps
that are either accessible to all user processes or only to
CAP_SYS_ADMIN processes, SHashMap is only accessible by
the unprivileged daemon that creates it. libExtFUSE further
abstracts low-level details of SHashMap and provides high-
level CRUD APIs to create, read, update, and delete entries
(key/value pairs).

EXTFUSE also provides a special InodeMap to enable
passthrough I/O feature for stackable EXTFUSE file sys-
tems (§5.2). Unlike SHashMap that stores arbitrary entries,
InodeMap takes open file handle as key and stores a pointer to
the corresponding lower (host) inode as value. Furthermore,
to prevent leakage of inode object to user space, the InodeMap
values can only be read by the EXTFUSE driver.

3.6 Workflow
To understand how EXTFUSE facilitates implementation of
extensible user file systems, we describe its workflow in de-
tail. Upon mounting the user file system, FUSE driver sends
FUSE_INIT request to the user-space daemon. At this point,
the user daemon checks if the OS kernel supports EXTFUSE
framework by looking for FUSE_CAP_ExtFUSE flag in the re-
quest parameters. If supported, the daemon must invoke
libExtFUSE init API to load the eBPF program that contains
specialized handlers (extensions) into the kernel and regis-
ter them with the EXTFUSE driver. This is achieved using
bpf_load_prog system call, which invokes eBPF verifier to
check the integrity of the extensions. If failed, the program
is discarded and the user-space daemon is notified of the er-
rors. The daemon can then either exit or continue with default
FUSE functionality. If the verification step succeeds and the
JIT engine is enabled, the extensions are processed by the
JIT compiler to generate machine assembly code ready for
execution, as needed.

Extensions are installed in a bpf_prog_type map (called
extension map), which serves effectively as a jump table.
To invoke an extension, the FUSE driver simply executes
a bpf_tail_call (far jump) with the FUSE operation code
(e.g., FUSE_OPEN) as an index into the extension map. Once
the eBPF program is loaded, the daemon must inform
EXTFUSE driver about the kernel extensions by replying
to FUSE_INIT containing identifiers to the extension map.

Once notified, EXTFUSE can safely load and execute the

Component Version Loc Modified Loc New

FUSE kernel driver 4.11.0 312 874
FUSE user-space library 3.2.0 23 84
EXTFUSE user-space library - - 581

Table 3: Changes made to the existing Linux FUSE framework to
support EXTFUSE functionality.

extensions at runtime under the eBPF VM environment. Ev-
ery request is first delivered to the fast path, which may decide
to 1) serve it (e.g., using data shared between the fast and
slow paths), 2) pass the request through to the lower file sys-
tem (e.g., after modifying parameters or performing access
checks), or 3) take the slow path and deliver the request to user
space for complex processing logic (e.g., data encryption),
as needed. Since the execution path is chosen per-request
independently and the fast path is always invoked first, the
kernel extensions and user daemon can work in concert and
synchronize access to requests and shared data structures. It
is important to note that the EXTFUSE driver only acts as a
thin interposition layer between the FUSE driver and kernel
extensions, and in some cases, between the FUSE driver and
the lower file system. As such, it does not perform any I/O
operation or attempts to serve requests on its own.

4 Implementation

To implement EXTFUSE, we provided eBPF support for
FUSE. Specifically, we added additional kernel helper func-
tions and designed two new map types to support secure com-
munication between the user-space daemon and kernel exten-
sions, as well as support for passthrough access in read/write.
We modified FUSE driver to first invoke registered eBPF han-
dlers (extensions). Passthrough implementation is adopted
from WrapFS [54], a wrapper stackable in-kernel file system.
Specifically, we modified FUSE driver to pass I/O requests
directly to the lower file system.

Since with EXTFUSE developers can install extensions to
bypass the user-space daemon and pass I/O requests directly
to the lower file system, a malicious process could stack a
number of EXTFUSE file systems on top of each other and
cause the kernel stack to overflow. To guard against such
attacks, we limit the number of EXTFUSE layers that could
be stacked on a mount point. We rely on s_stack_depth
field in the super-block to track the number of stacked layers
and check it against FILESYSTEM_MAX_STACK_DEPTH, which
we limit to two. Table 3 reports the number of lines of code
for EXTFUSE. We also modified libfuse to allow apps to
register kernel extensions.

5 Optimizations

Here, we describe a set of optimizations that can be enabled
by leveraging custom kernel extensions in EXTFUSE to im-
plement in-kernel handling of file system requests.

126 2019 USENIX Annual Technical Conference USENIX Association

1 void handle_lookup(fuse_req_t req, fuse_ino_t pino,
2 const char *name) {
3 /* lookup or create node @cname parent @pino */
4 struct fuse_entry_param e;
5 if (find_or_create_node(req, pino, name, &e)) return;
6 + lookup_key_t key = {pino, name};
7 + lookup_val_t val = {0/*not stale*/, &e};
8 + extfuse_insert_shmap(&key, &val); /* cache this entry */
9 fuse_reply_entry(req, &e);

10 }

Figure 2: FUSE daemon lookup handler in user space. With
EXTFUSE, lines 6-8 (+) enable caching replies in the kernel.

5.1 Customized in-kernel metadata caching
Metadata operations such as lookup and getattr are fre-
quently issued, and thus form high sources of latency in FUSE
file systems [50]. Unlike VFS caches that are only reactive
and fixed in functionality, EXTFUSE can be leveraged to
proactively cache metadata replies in the kernel. Kernel ex-
tensions can be installed to manage and serve subsequent
operations from caches without switching to user space.
Example. To illustrate, let us consider the lookup operation.
It is the most common operation issued internally by the VFS
for serving open(), stat(), and unlink() system calls. Each
component of the input path string is searched using lookup
to fetch the corresponding inode data structure. Figure 2
lists code fragment for FUSE daemon handler that serves
lookup requests in user space (slow path). The FUSE lookup
API takes two input parameters: the parent node ID and
the next path component name. The node ID is a 64-bit
integer that uniquely identifies the parent inode. The daemon
handler function traverses the parent directory, searching for
the child entry corresponding to the next path component.
Upon successful search, it populates the fuse_entry_param
data structure with the node ID and attributes (e.g., size) of
the child, and sends it to the FUSE driver, which creates a
new inode for the dentry object representing the child entry.

With EXTFUSE, developers could define a SHashMap that
hosts fuse_entry_param replies in the kernel (lines 7-10). A
composite key generated from the parent node identifier and
the next path component string arguments is used as an index
into the map for inserting corresponding replies. Since the
map is also accessible to the extensions in the kernel, sub-
sequent requests could be served from the map by installing
the EXTFUSE lookup extension (fast path). Figure 3 lists
its code fragment. The extension uses the same composite
key as an index into the hash map to search whether the cor-
responding fuse_entry_param entry exists. If a valid entry
is found, the reference count (nlookup) is incremented and a
reply is sent to the FUSE driver.

Similarly, replies from user space daemon for other meta-
data operations, such as getattr, getxattr, and readlink
could be cached using maps and served in the kernel by re-
spective extensions (Table 4). Network FUSE file systems,
such as SshFS [39] and Gluster [40] already perform aggres-
sive metadata caching and batching at client to reduce the
number of remote calls to the server. SshFS [39], for example,

1 int lookup_extension(extfuse_req_t req, fuse_ino_t pino,
2 const char *name) {
3 /* lookup in map, bail out if not cached or stale */
4 lookup_key_t key = {pino, name};
5 lookup_val_t *val = extfuse_lookup_shmap(&key);
6 if (!val || atomic_read(&val->stale)) return UPCALL;
7 /* EXAMPLE: Android sdcard daemon perm check */
8 if (!check_caller_access(pino, name)) return -EACCES;
9 /* populate output, incr count (used in FUSE_FORGET) */

10 extfuse_reply_entry(req, &val->e);
11 atomic_incr(&val->nlookup, 1);
12 return SUCCESS;
13 }

Figure 3: EXTFUSE lookup kernel extension that serves valid
cached replies, without incurring any context switches. Customized
checks could further be included; Android sdcard daemon permis-
sion check is shown as an example (see Figure 10).

implements its own directory, attribute, and symlink caches.
With EXTFUSE, such caches could be implemented in the
kernel for further performance gains.
Invalidation. While caching metadata in the kernel reduces
the number of context switches to user space, developers must
also carefully invalidate replies, as necessary. For example,
when a file (or dir) is deleted or renamed, the corresponding
cached lookup replies must be invalidated. Invalidations can
be performed in user space by the relevant request handlers or
in the kernel by installing their extensions before new changes
are made. However, the former case may introduce race
conditions and produce incorrect results because all requests
to user space daemon are queued up by the FUSE driver,
whereas requests to the extensions are not. Cached lookup
replies can be invalidated in extensions for unlink, rmdir, and
rename operations. Similarly, when attributes or permissions
on a file change, cached getattr replies can be invalidated in
setattr extension. Our design ensures race-free invalidation
by executing the extensions before forwarding requests to
user space daemon where the changes may be made.
Advantages over VFS caching. As previously mentioned,
recent optimizations added to FUSE framework leverage VFS
caches to reduce user-kernel context switching. For instance,
by specifying non-zero entry_valid and attr_valid timeout
values, dentries and inodes cached by the VFS from previ-
ous lookup operations could be utilized to serve subsequent
lookup and getattr requests, respectively. However, the
VFS offers no control to the user file system over the cached
data. For example, if the file system is mounted without
the default_permissions parameter, VFS caching of inodes
introduces a security bug [21]. This is because the cached per-
missions are only checked for first accessing user. In contrast,
with EXTFUSE, developers can define their own metadata
caches and install custom code to manage them. For instance,
extensions can perform uid-based access permission checks
before serving requests from the caches to obviate the afore-
mentioned security issue (Figure 10).

Additionally, unlike VFS caches that are only reactive,
EXTFUSE enables proactive caching. For example, since a
readdir request is expected after an opendir call, the user-
space daemon could proactively cache directory entries in the

USENIX Association 2019 USENIX Annual Technical Conference 127

Metadata Map Key Map Value Caching Operations Serving Extensions Invalidation Operations

Inode <nodeID, name> fuse_entry_param lookup, create, mkdir, mknod lookup unlink, rmdir, rename
Attrs <nodeID> fuse_attr_out getattr, lookup getattr setattr, unlink, rmdir
Symlink <nodeID> link path symlink, readlink readlink unlink
Dentry <nodeID> fuse_dirent opendir, readdir readdir releasedir, unlink, rmdir, rename
XAttrs <nodeID, label> xattr value open, getxattr, listxattr getattr, listxattr close, setxattr, removexattr

Table 4: Metadata can be cached in the kernel using eBPF maps by the user-space daemon and served by kernel extensions.

kernel by inserting them in a BPF map while serving opendir
requests to reduce transitions to user space. Alternatively,
similar to read-ahead optimization, proactive caching of sub-
sequent directory entries could be performed during the first
readdir call to the user-space daemon. Memory occupied by
cached entries could then be freed by the releasedir handler
in user space that deletes them from the map. Similarly, se-
curity labels on a file could be cached during the open call to
user space and served in the kernel by getxattr extensions.
Nonetheless, since eBPF maps consume kernel memory, de-
velopers must carefully manage caches and limit the number
of map entries to keep memory usage under check.

5.2 Passthrough I/O for stacking functionality

Many user file systems are stackable with a thin layer of
functionality that does not require complex processing in
the user-space. For example, LoggedFS [16] filters requests
that must be logged, logs them as needed, and then simply
forwards them to the lower file system. User-space union
file systems, such as MergerFS [20] determine the backend
host file in open and redirects I/O requests to it. BindFS [35]
mirrors another mount point with custom permissions checks.
Android sdcard daemon performs access permission checks
and emulates the case-insensitive behavior of FAT only in
metadata operations (e.g., lookup, open, etc.), but forwards
data I/O requests directly to the lower file system. For such
simple cases, the FUSE API proves to be too low-level and
incurs unnecessarily high overhead due to context switching.

With EXTFUSE, read/write I/O requests can take the fast
path and directly be forwarded to the lower (host) file system
without incurring any context-switching if the complex slow-
path user-space logic is not needed. Figure 4 shows how
the user-space daemon can install the lower file descriptor
in InodeMap while handling open() system call for notifying
the EXTFUSE driver to store a reference to the lower inode
kernel object. With the custom_filtering_logic(path) con-
dition, this can be done selectively; for example, if access
permission checks pass in Android sdcard daemon. Simi-
larly, BindFS and MergerFS can adopt EXTFUSE to avail
passthrough optimization. The read/write kernel extensions
can check in InodeMap to detect whether the target file is setup
for passthrough access. If found, EXTFUSE driver can be in-
structed with a special return code to directly forward the I/O
request to the lower file system with the corresponding lower
inode object as parameter. Figure 5 shows a template read

1 void handle_open(fuse_req_t req, fuse_ino_t ino,
2 const struct fuse_open_in *in) {
3 /* file represented by @ino inode num */
4 struct fuse_open_out out; char path[PATH_MAX];
5 int len, fd = open_file(ino, in->flags, path, &out);
6 if (fd > 0 && custom_filtering_logic(path)) {
7 + /* install fd in inode map for pasthru */
8 + imap_key_t key = out->fh;
9 + imap_val_t val = fd; /* lower fd */

10 + extfuse_insert_imap(&key, &val);
11 } }

Figure 4: FUSE daemon open handler in user space. With
EXTFUSE, lines 7-9 (+) enable passthrough access on the file.
1 int read_extension(extfuse_req_t req, fuse_ino_t ino,
2 const struct fuse_read_in *in) {
3 /* lookup in inode map, passthrough if exists */
4 imap_key_t key = in->fh;
5 if (!extfuse_lookup_imap(&key)) return UPCALL;
6 /* EXAMPLE: LoggedFS log operation */
7 log_op(req, ino, FUSE_READ, in, sizeof(*in));
8 return PASSTHRU; /* forward req to lower FS */
9 }

Figure 5: The EXTFUSE read kernel extension returns PASSTHRU to
forward request directly to the lower file system. Custom thin func-
tionality could further be pushed in the kernel; LoggedFS logging
function is shown as an example (see Figure 11).

extension. Kernel extensions can include additional logic or
checks before returning. For instance, LoggedFS read/write
extensions can filter and log operations, as needed §6.2.

6 Evaluation
To evaluate EXTFUSE, we answer the following questions:
• Baseline Performance. How does an EXTFUSE imple-

mentation of a file system perform when compared to its
in-kernel and FUSE implementations? (§6.1)

• Use cases. What kind of existing FUSE file systems can
benefit from EXTFUSE and what performance improve-
ments can they expect? (§6.2)

6.1 Performance
To measure the baseline performance of EXTFUSE, we
adopted the simple no-ops (null) stackable FUSE file sys-
tem called Stackfs [50]. This user-space daemon serves all
requests by forwarding them to the host (lower) file system. It
includes all recent FUSE optimizations (Table 5). We evaluate
Stackfs under all possible EXTFUSE configs listed in Table 5.
Each config represents a particular level of performance that
could potentially be achieved, for example, by caching meta-
data in the kernel or directly passing read/write requests
through the host file system for stacking functionality. To put
our results in context, we compare our results with EXT4 and

128 2019 USENIX Annual Technical Conference USENIX Association

Figure 6: Throughput(ops/sec) for EXT4 and FUSE/EXTFUSE Stackfs (w/ xattr) file systems under different configs (Table 5) as measured
by Random Read(RR)/Write(RW), Sequential Read(SR)/Write(SW) Filebench [48] data micro-workloads with IO Sizes between 4KB-1MB
and settings Nth: N threads, Nf: N files. We use the same workloads as in [50].

Figure 7: Number of file system request received by the daemon in
FUSE/EXTFUSE Stackfs (w/ xattr) under workloads in Figure 6.
Only a few relevant request types are shown.

Figure 8: Throughput(Ops/sec) for EXT4 and FUSE/EXTFUSE
Stackfs (w/ xattr) under different configs (Table 5) as measured
by Filebench [48] Creation(C), Deletion(D), Reading(R) metadata
micro-workloads on 4KB files and FileServer(F), WebServer(W)
macro-workloads with settings Nth:N threads, Nf:N files.

the optimized FUSE implementation of Stackfs (Opt).
Testbed. We use the same experiments and settings as in [50].
Specifically, we used EXT4 because of its popularity as the
host file system and ran benchmarks to evaluate. However,
since FUSE performance problems were reported to be more
prominent with a faster storage medium, we only carry out
our experiments with SSDs. We used a Samsung 850 EVO
250GB SSD installed on an Asus machine with Intel Quad-
Core i5-3550 3.3 GHz and 16GB RAM, running Ubuntu
16.04.3. Further, to minimize any variability, we formatted the

Config File System Optimizations

Opt [50] FUSE 128K Writes, Splice, WBCache, MltThrd
MDOpt EXTFUSE Opt + Caches lookup, attrs, xattrs
AllOpt EXTFUSE MDOpt + Pass R/W reqs through host FS

Table 5: Different Stackfs configs evaluated.

SSD before each experiment and disabled EXT4 lazy inode
initialization. To evaluate file systems that implement xattr
operations for handling security labels (e.g., in Android), our
implementation of Opt supports xattrs, and thus differs from
the implementation in [50].
Workloads. Our workload consists of Filebench [48] micro
and synthetic macro benchmarks to test each config with
metadata- and data-heavy operations across a wide range of
I/O sizes and parallelism settings. We measure the low-level
throughput (ops/sec). Our macro-benchmarks consist of a
synthetic file server and web server.
Micro Results. Figure 6 shows the results of micro workload
under different configs listed in Table 5.

Reads. Due to the default 128KB read-ahead feature of
FUSE, the sequential read throughput on a single file with a
single thread for all I/O sizes and under all Stackfs configs
remained the same. Multi-threading improved for the sequen-
tial read benchmark with 32 threads and 32 files. Only one
request was generated per thread for lookup and getattr op-
erations. Hence, metadata caching in MDOpt was not effective.
Since FUSE Opt performance is already at par with EXT4,
the passthrough feature in AllOpt was not utilized.

Unlike sequential reads, small random reads could not take
advantage of the read-ahead feature of FUSE. Additionally,
4KB reads are not spliced and incur data copying across user-
kernel boundary. With 32 threads operating on a single file,
the throughput improves due to multi-threading in Opt. How-
ever, degradation is observed with 4KB reads. AllOpt passes
all reads through EXT4, and hence offers near-native through-
put. In some cases, the performance was slightly better than

USENIX Association 2019 USENIX Annual Technical Conference 129

EXT4. We believe that this minor improvement is due to
double caching at the VFS layer. Due to a single request per
thread for metadata operations, no improvement was seen
with EXTFUSE metadata caching.

Writes. During sequential writes, the 128K big writes and
writeback caching in Opt allow the FUSE driver to batch small
writes (up to 128KB) together in the page cache to offer a
higher throughput. However, random writes are not batched.
As a result, more write requests are delivered to user space,
which negatively affects the throughput. Multiple threads on a
single file perform better for requests bigger than 4KB as they
are spliced. With EXTFUSE AllOpt, all writes are passed
through the EXT4 file system to offer improved performance.

Write throughput degrades severely for FUSE file systems
that support extended attributes because the VFS issues a
getxattr request before every write. Small I/O requests
perform worse as they require more write, which generate
more getxattr requests. Opt random writes generated 30x
fewer getxattr requests for 128KB compared to 4KB writes,
resulting in a 23% decrease in the throughput of 4KB writes.

In contrast, MDOpt caches the getxattr reply in the kernel
upon the first call, and serves subsequent getxattr requests
without incurring further transitions to user space. Figure 7
compares the number of requests received by the user-space
daemon in Opt and MDOpt. Caching replies reduced the over-
head for 4KB workload to less than 5%. Similar behavior was
observed with both sequential writes and random writes.
Macro Results. Figure 8 shows the results of macro-
workloads and synthetic server workloads emulated using
Filebench under various configs. Neither of the EXTFUSE
configs offer improvements over FUSE Opt under creation
and deletion workloads as these metadata-heavy workloads
created and deleted a number of files, respectively. This is
because no metadata caching could be utilized by MDOpt. Sim-
ilarly, no passthrough writes were utilized with AllOpt since
4KB files were created and closed in user space. In contrast,
the File and Web server workloads under EXTFUSE utilized
both metadata caching and passthrough access features and
improved performance. We saw a 47%, 89%, and 100% drop
in lookup, getattr, and getattr requests to user space un-
der MDOpt, respectively, when configured to cache up to 64K
for each type of request. AllOpt further enabled passthrough
read/write requests to offer near native throughput for both
macro reads and server workloads.
Real Workload We also evaluated EXTFUSE with two real
workloads, namely kernel decompression and compilation of
4.18.0 Linux kernel. We created three separate caches for
hosting lookup, getattr, and getxattr replies. Each cache
could host up to 64K entries, resulting in allocation of up to a
total of 50MB memory when fully populated.

The kernel compilation make tinyconfig; make -j4 ex-
periment on our test machine (see §6) reported a 5.2% drop in
compilation time, from 39.74 secs under FUSE Opt to 37.68
secs with EXTFUSE MDOpt, compared to 30.91 secs with

EXT4. This was due to over 75%, 99%, and 100% decrease
in lookup, getattr, and getxattr requests to user space,
respectively (Figure 9). getxattr replies were proactively
cached while handling open requests; thus, no transitions to
user space were observed for serving xattr requests. With
EXTFUSE AllOpt, the compilation time further dropped to
33.64 secs because of 100% reduction in read and write
requests to user space.

In contrast, the kernel decompression tar xf experiment
reported a 6.35% drop in the completion time, from 11.02
secs under FUSE Opt to 10.32 secs with EXTFUSE MDOpt,
compared to 5.27 secs with EXT4. With EXTFUSE AllOpt,
the decompression time further dropped to 8.67 secs due to
100% reduction in read and write requests to user space,
as shown in Figure 9. Nevertheless, reducing the number
of cached entries for metadata requests to 4K resulted in a
decompression time of 10.87 secs (25.3% increase) due to
3,555 more getattr requests to user space. This suggests
that developers must efficiently manage caches.

Figure 9: Linux kernel 4.18.0 untar (decompress) and compilation
time taken with StackFS under FUSE and EXTFUSE settings. Num-
ber of metadata and I/O requests are reduced with EXTFUSE.

6.2 Use cases
We ported four real-world stackable FUSE file systems,
namely LoggedFS, Android sdcard daemon, MergerFS,
and BindFS to EXTFUSE and enabled both metadata
caching §5.1 and passthrough I/O §5.2 optimizations.

File System Functionality Ext Loc

StackFS [50] No-ops File System 664
BindFS [35] Mirroring File System 792
Android sdcard [24] Perm checks & FAT Emu 928
MergerFS [20] Union File System 686
LoggedFS [16] Logging File System 748

Table 6: Lines of code (Loc) of kernel extensions required to adopt
EXTFUSE for existing FUSE file systems. We added support for
metadata caching as well as R/W passthrough.

As EXTFUSE allows file systems to retain their exist-
ing FUSE daemon code as the default slow path, adopting
EXTFUSE for real-world file systems is easy. On average,
we made less than 100 lines of changes to the existing FUSE
code to invoke EXTFUSE helper library functions for ma-
nipulating kernel extensions, including maps. We added ker-

130 2019 USENIX Annual Technical Conference USENIX Association

nel extensions to support metadata caching as well as I/O
passthrough. Overall, it required fewer than 1000 lines of new
code in the kernel Table 6. We now present detailed evalua-
tion of Android sdcard daemon and LoggedFS to present an
idea on expected performance improvements.
Android sdcard daemon. Starting version 3.0, Android in-
troduced the support for FUSE to allow a large part of in-
ternal storage (e.g., /data/media) to be mounted as external
FUSE-managed storage (called /sdcard). Being large in size,
/sdcard hosts user data, such as videos and photos as well
as any auxiliary Opaque Binary Blobs (OBB) needed by An-
droid apps. The FUSE daemon enforces permission checks in
metadata operations (e.g.,lookup, etc.) on files under /sdcard
to enable multi-user support and emulates case-insensitive
FAT functionality on the host (e.g., EXT4) file system. OBB
files are compressed archives and typically used by games
to host multiple small binaries (e.g. shade rs, textures) and
multimedia objects (e.g. images, etc.).

However, FUSE incurs high runtime performance over-
head. For instance, accessing OBB archive content through
the FUSE layer leads to high launch latency and CPU uti-
lization for gaming apps. Therefore, Android version 7.0
replaced sdcard daemon with with an in-kernel file system
called SDCardFS [24] to manage external storage. It is a wrap-
per (thin) stackable file system based on WrapFS [54] that
enforces permission checks and performs FAT emulation in
the kernel. As such, it imposes little to no overhead compared
to its user-space implementation. Nevertheless, it introduces
security risks and maintenance costs [12].

We ported Android sdcard FUSE daemon to EXTFUSE
framework. First, we leverage eBPF kernel helper functions
to push metadata checks into the kernel. For example, we
embed access permission check (Figure 10) in lookup kernel
extension to validate access before serving lookup replies
from the cache (Figure 3). Similar permission checks are
performed in the kernel to validate accesses to files under
/sdcard before serving cached getattr requests . We also
enabled passthrough on read/write using InodeMap.

We evaluated its performance on a 1GB RAM HiKey620
board [1] with two popular game apps containing OBB
files of different sizes. Our results show that under AllOpt
passthrough mode the app launch latency and the correspond-
ing peak CPU consumption reduces by over 90% and 80%,
respectively. Furthermore, we found that the larger the OBB
file, the more penalty is incurred by FUSE due to many more
small files in the OBB archive.

LoggedFS is a FUSE-based stackable user-space file system.
It logs every file system operation for monitoring purposes.
By default it writes to syslog buffer and logs all operations
(e.g., open, read, etc.). However, it can be configured to write
to a file or log selectively. Despite being a simple file system,
it has a very important use case. Unlike existing monitor-
ing mechanisms (e.g., Inotify [31]) that suffer from a host of
limitations [10], LoggedFS can reliably post all file system

App Stats CPU (%) Latency (ms)

Name OBB Size D P D P

Disney Palace Pets 5.1 374MB 20 2.9 2235 1766
Dead Effect 4 1.1GB 20.5 3.2 8895 4579

Table 7: App launch latency and peak CPU consumption of sdcard
daemon under default (D), and passthrough (P) settings on Android
for two popular games. In passthrough mode, the FUSE driver never
forwards read/write requests to user space, but always passes them
through the host (EXT4) file system. See Table 5 for config details.
1 bool check_caller_access_to_name(int64_t key, const char *name) {
2 /* define a shmap for hosting permissions */
3 int *val = extfuse_lookup_shmap(&key);
4 /* Always block security-sensitive files at root */
5 if (!val || *val == PERM_ROOT) return false;
6 /* special reserved files */
7 if (!strncasecmp(name, "autorun.inf", 11) ||
8 !strncasecmp(name, ".android_secure", 15) ||
9 !strncasecmp(name, "android_secure", 14))

10 return false;
11 return true;
12 }

Figure 10: Android sdcard permission checks EXTFUSE code.

events. Various apps, such as file system indexers, backup
tools, Cloud storage clients such as Dropbox, integrity check-
ers, and antivirus software subscribe to file system events for
efficiently tracking modifications to files.

We ported LoggedFS to EXTFUSE framework. Figure 11
shows the common logging code that is called from various
extensions, which serve requests in the kernel (e.g., read ex-
tension Figure 5). To evaluate its performance, we ran the
FileServer macro benchmark with synthetic a workload of
200,000 files and 50 threads from Filebench suite. We found
over 9% improvement in throughput under MDOpt compared
to FUSE Opt due to 53%, 99%, and 100% fewer lookup,
getattr, and getxattr requests to user space, respectively.
Figure 12 shows the results. AllOpt reported an additional
20% improvement by directly forwarding all read/write re-
quests to the host file system, offering near-native throughput.

1 void log_op(extfuse_req_t req, fuse_ino_t ino,
2 int op, const void *arg, int arglen) {
3 struct data { /* log record */
4 u32 op; u32 pid; u64 ts; u64 ino; char data[MAXLEN];};
5 /* example filter: only whitelisted UIDs in map */
6 u16 uid = bpf_get_current_uid_gid();
7 if (!extfuse_lookup_shmap(uid_wlist, &uid)) return;
8 /* log opcode, timestamp(ns) and requesting process */
9 data.opcode = op; data.ts = bpf_ktime_get_ns();

10 data.pid = bpf_get_current_pid_tgid(); data.ino = ino;
11 memcpy(data.data, arg, arglen);
12 /* submit to per-cpu mmap’d ring buffer */
13 u32 key = bpf_get_smp_processor_id();
14 bpf_perf_event_output(req, &buf, &key, &data, sizeof(data));
15 }

Figure 11: LoggedFS kernel extension that logs requests.

7 Discussion
Future use cases. Given negligible overhead of EXTFUSE
and direct passthrough access to the host file system for stack-
ing incremental functionality, multiple app-defined “thin” file
system functions (e.g., security checks, logging, etc.) can be

USENIX Association 2019 USENIX Annual Technical Conference 131

Figure 12: LoggedFS performance measured by Filebench File-
Server benchmark under EXT4, FUSE, and EXTFUSE. Fewer meta-
data and I/O requests were delivered to user space with EXTFUSE.

stacked with low overhead, which otherwise would have been
very expensive in user space with FUSE.
Safety. EXTFUSE sandboxes untrusted user extensions to
guarantee safety. For example, the eBPF runtime allows
access to only a few, simple non-blocking kernel helper func-
tions. Map data structures are of fixed size. Extensions are
not allowed to allocate memory or directly perform any I/O
operations. Even so, EXTFUSE offers significant perfor-
mance boost across a number of use cases §6.2 by offloading
simple logic in the kernel. Nevertheless, with EXTFUSE,
user file systems can retain their existing slow-path logic for
performing complex operations, such as encryption in user
space. Future work can extend the EXTFUSE framework to
take advantage of existing generic in-kernel services such as
VFS encryption and compression APIs to even serve requests
that require such complex operations entirely in the kernel.

8 Related Work
Here, we compare our work with related existing research.
User File System Frameworks. There exists a number of
frameworks to develop user file systems. A number of user
file systems have been implemented using NFS loopback
servers [19]. UserFS [14] exports generic VFS-like file
system requests to the user space through a file descriptor.
Arla [53] is an AFS client system that lets apps implement
a file system by sending messages through a device file in-
terface /dev/xfs0. Coda file system [42] exported a simi-
lar interface through /dev/cfs0. NetBSD provides Pass-to-
Userspace Framework FileSystem (PUFFS). Mazières et al.
proposed a C++ toolkit that exposes a NFS-like interface for
allowing file systems to be implemented in user space [33].
UFO [3] is a global file system implemented in user space by
introducing a specialized layer between the apps and the OS
that intercepts file system calls.
Extensible Systems. Past works have explored the idea of let-
ting apps extend system services at runtime to meet their per-
formance and functionality needs. SPIN [6] and VINO [43]
allow apps to safely insert kernel extensions. SPIN uses a
type-safe language runtime, whereas VINO uses software
fault isolation to provide safety. ExoKernel [13] is another
OS design that lets apps define their functionality. Systems
such as ASHs [17, 51] and Plexus [15] introduced the con-
cept of network stack extension handlers inserted into the

kernel. SLIC [18] extends services in monolithic OS using
interposition to enable incremental functionality and compo-
sition. SLIC assumes that extensions are trusted. EXTFUSE
is a framework that allows user file systems to add “thin” ex-
tensions in the kernel that serve as specialized interposition
layers to support both in-kernel and user space processing to
co-exist in monolithic OSes.
eBPF. EXTFUSE is not the first system to use eBPF for safe
extensibility. eXpress DataPath (XDP) [27] allows apps to
insert eBPF hooks in the kernel for faster packet process-
ing and filtering. Amit et al. proposed Hyperupcalls [4] as
eBPF helper functions for guest VMs that are executed by
the hypervisor. More recently, SandFS [7] uses eBPF to pro-
vide an extensible file system sandboxing framework. Like
EXTFUSE, it also allows unprivileged apps to insert custom
security checks into the kernel.

FUSE. File System Translator (FiST) [55] is a tool for
simplifying the development of stackable file system. It pro-
vides boilerplate template code and allows developers to only
implement the core functionality of the file system. FiST
does not offer safety and reliability as offered by user space
file system implementation. Additionally, it requires learning
a slightly simplified file system language that describes the
operation of the stackable file system. Furthermore, it only
applies to stackable file systems.

Narayan et al. [34] combined in-kernel stackable FiST
driver with FUSE to offload data from I/O requests to user
space to apply complex functionality logic and pass processed
results to the lower file system. Their approach is only ap-
plicable to stackable file systems. They further rely on static
per-file policies based on extended attributes labels to en-
able or disable certain functionality. In contrast, EXTFUSE
downloads and safely executes thin extensions from user file
systems in the kernel that encapsulate their rich and special-
ized logic to serve requests in the kernel and skip unnecessary
user-kernel switching.

9 Conclusion
We propose the idea of extensible user file systems and present
the design and architecture of EXTFUSE, an extension frame-
work for FUSE file system. EXTFUSE allows FUSE file
systems to define “thin” extensions along with auxiliary data
structures for specialized handling of low-level requests in
the kernel while retaining their existing complex logic in user
space. EXTFUSE provides familiar FUSE-like APIs and ab-
stractions for easy adoption. We demonstrate its practical
usefulness, suitability for adoption, and performance benefits
by porting and evaluating existing FUSE implementations.

10 Acknowledgments
We thank our shepherd, Dan Williams, and all anonymous
reviewers for their feedback, which improved the content
of this paper. This work was funded in part by NSF CPS
program Award #1446801, and a gift from Microsoft Corp.

132 2019 USENIX Annual Technical Conference USENIX Association

References
[1] 96boards. Hikey (lemaker) development boards, May 2019.

[2] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard
Rashid, Avadis Tevanian, and Michael Young. Mach: A new kernel
foundation for unix development. pages 93–112, 1986.

[3] Albert D Alexandrov, Maximilian Ibel, Klaus E Schauser, and Chris J
Scheiman. Extending the operating system at the user level: the
Ufo global file system. In Proceedings of the 1997 USENIX Annual
Technical Conference (ATC), pages 6–6, Anaheim, California, January
1997.

[4] Nadav Amit and Michael Wei. The design and implementation of
hyperupcalls. In Proceedings of the 2017 USENIX Annual Technical
Conference (ATC), pages 97–112, Boston, MA, July 2018.

[5] Starr Andersen and Vincent Abella. Changes to Functionality in
Windows XP Service Pack 2, Part 3: Memory Protection Technolo-
gies, 2004. https://technet.microsoft.com/en-us/library/
bb457155.aspx.

[6] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,
D. Becker, C. Chambers, and S. Eggers. Extensibility, Safety and
Performance in the SPIN Operating System. In Proceedings of the 15th
ACM Symposium on Operating Systems Principles (SOSP), Copper
Mountain, CO, December 1995.

[7] Ashish Bijlani and Umakishore Ramachandran. A lightweight and
fine-grained file system sandboxing framework. In Proceedings of
the 9th Asia-Pacific Workshop on Systems (APSys), Jeju Island, South
Korea, August 2018.

[8] Ceph. Ceph kernel client, April 2018. https://github.com/ceph/
ceph-client.

[9] Open ZFS Community. ZFS on Linux. https://zfsonlinux.org,
April 2018.

[10] J. Corbet. Superblock watch for fsnotify, April 2017.

[11] Brian Cornell, Peter A. Dinda, and Fabián E. Bustamante. Wayback: A
user-level versioning file system for linux. In Proceedings of the 2004
USENIX Annual Technical Conference (ATC), pages 27–27, Boston,
MA, June–July 2004.

[12] Exploit Database. Android - sdcardfs changes current->fs without
proper locking, 2019.

[13] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole Jr. Exoker-
nel: An Operating System Architecture for Application-Level Resource
Management. In Proceedings of the 15th ACM Symposium on Oper-
ating Systems Principles (SOSP), Copper Mountain, CO, December
1995.

[14] Jeremy Fitzhardinge. Userfs, March 2018. http://www.goop.org/
~jeremy/userfs/.

[15] Marc E. Fiuczynski and Briyan N. Bershad. An Extensible Protocol
Architecture for Application-Specific Networking. In Proceedings of
the 1996 USENIX Annual Technical Conference (ATC), San Diego, CA,
January 1996.

[16] R. Flament. LoggedFS - Filesystem monitoring with Fuse, March
2018. https://rflament.github.io/loggedfs/.

[17] Gregory R. Ganger, Dawson R. Engler, M. Frans Kaashoek, Hec-
tor M. Briceño, Russell Hunt, and Thomas Pinckney. Fast and Flexible
Application-level Networking on Exokernel Systems. ACM Transac-
tions on Computer Systems (TOCS), 20(1):49–83, 2002.

[18] Douglas P. Ghormley, David Petrou, Steven H. Rodrigues, and
Thomas E. Anderson. Slic: An extensibility system for commod-
ity operating systems. In Proceedings of the 1998 USENIX Annual
Technical Conference (ATC), New Orleans, Louisiana, June 1998.

[19] David K Gifford, Pierre Jouvelot, Mark A Sheldon, et al. Semantic file
systems. In Proceedings of the 13th ACM Symposium on Operating
Systems Principles (SOSP), pages 16–25, Pacific Grove, CA, October
1991.

[20] A Featureful Union Filesystem, March 2018. https://github.com/
trapexit/mergerfs.

[21] LibFuse | GitHub. Without ‘default_permissions‘, cached permis-
sions are only checked on first access, 2018. https://github.com/
libfuse/libfuse/issues/15.

[22] Gluster. libgfapi, April 2018. http://staged-gluster-
docs.readthedocs.io/en/release3.7.0beta1/Features/
libgfapi/.

[23] Gnu hurd, April 2018. www.gnu.org/software/hurd/hurd.html.

[24] Storage | Android Open Source Project, September 2018. https:
//source.android.com/devices/storage/.

[25] John H Hartman and John K Ousterhout. Performance measurements
of a multiprocessor sprite kernel. In Proceedings of the Summer
1990 USENIX Annual Technical Conference (ATC), pages 279–288,
Anaheim, CA, 1990.

[26] eBPF: extended Berkley Packet Filter, 2017. https://www.iovisor.
org/technology/ebpf.

[27] IOVisor. Xdp - io visor project, May 2019.

[28] Shun Ishiguro, Jun Murakami, Yoshihiro Oyama, and Osamu Tatebe.
Optimizing local file accesses for fuse-based distributed storage. In
High Performance Computing, Networking, Storage and Analysis
(SCC), 2012 SC Companion:, pages 760–765, 2012.

[29] Antti Kantee. puffs-pass-to-userspace framework file system. In Pro-
ceedings of the Asian BSD Conference (AsiaBSDCon), Tokyo, Japan,
March 2007.

[30] Jochen Liedtke. Improving ipc by kernel design. In Proceedings of
the 14th ACM Symposium on Operating Systems Principles (SOSP),
pages 175–188, Asheville, NC, December 1993.

[31] Robert Love. Kernel korner: Intro to inotify. Linux Journal, 2005:8,
2005.

[32] Ali José Mashtizadeh, Andrea Bittau, Yifeng Frank Huang, and David
Mazières. Replication, history, and grafting in the ori file system.
In Proceedings of the 24th ACM Symposium on Operating Systems
Principles (SOSP), Farmington, PA, November 2013.

[33] David Mazières. A Toolkit for User-Level File Systems. In Proceed-
ings of the 2001 USENIX Annual Technical Conference (ATC), pages
261–274, June 2001.

[34] S. Narayan, R. K. Mehta, and J. A. Chandy. User space storage system
stack modules with file level control. In Proceedings of the Linux
Symposium, pages 189–196, Ottawa, Canada, July 2010.

[35] Martin Pärtel. bindfs, 2018. https://bindfs.org.

[36] PaX Team. PaX address space layout randomization (ASLR), 2003.
https://pax.grsecurity.net/docs/aslr.txt.

[37] Rogério Pontes, Dorian Burihabwa, Francisco Maia, João Paulo, Vale-
rio Schiavoni, Pascal Felber, Hugues Mercier, and Rui Oliveira. Safefs:
A modular architecture for secure user-space file systems: One fuse
to rule them all. In Proceedings of the 10th ACM International on
Systems and Storage Conference, pages 9:1–9:12, Haifa, Israel, May
2017.

[38] Nikolaus Rath. List of fuse file systems, 2011. https://github.
com/libfuse/libfuse/wiki/Filesystems.

[39] Nicholas Rauth. A network filesystem client to connect to SSH servers,
April 2018. https://github.com/libfuse/sshfs.

[40] Gluster, April 2018. http://gluster.org.

[41] Kai Ren and Garth Gibson. Tablefs: Enhancing metadata efficiency
in the local file system. In Proceedings of the 2013 USENIX Annual
Technical Conference (ATC), pages 145–156, San Jose, CA, June 2013.

USENIX Association 2019 USENIX Annual Technical Conference 133

https://technet.microsoft.com/en-us/library/bb457155.aspx
https://technet.microsoft.com/en-us/library/bb457155.aspx
https://github.com/ceph/ceph-client
https://github.com/ceph/ceph-client
https://zfsonlinux.org
http:// www.goop.org/~jeremy/userfs/
http:// www.goop.org/~jeremy/userfs/
https://rflament.github.io/loggedfs/
https://github.com/trapexit/mergerfs
https://github.com/trapexit/mergerfs
https://github.com/libfuse/libfuse/issues/15
https://github.com/libfuse/libfuse/issues/15
http://staged-gluster-docs.readthedocs.io/en/release3.7.0beta1/Features/libgfapi/
http://staged-gluster-docs.readthedocs.io/en/release3.7.0beta1/Features/libgfapi/
http://staged-gluster-docs.readthedocs.io/en/release3.7.0beta1/Features/libgfapi/
www.gnu.org/software/hurd/hurd.html
https://source.android.com/devices/storage/
https://source.android.com/devices/storage/
https://www.iovisor.org/technology/ebpf
https://www.iovisor.org/technology/ebpf
https://bindfs.org
https://pax.grsecurity.net/docs/aslr.txt
https://github.com/libfuse/libfuse/wiki/Filesystems
https://github.com/libfuse/libfuse/wiki/Filesystems
https://github.com/libfuse/sshfs
http://gluster.org

[42] Mahadev Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E.
Okasaki, Ellen H. Siegel, and David C. Steere. Coda: A highly
available file system for a distributed workstation environment. IEEE
Transactions on Computers, 39(4):447–459, April 1990.

[43] Margo Seltzer, Yasuhiro Endo, Christopher Small, and Keith A Smith.
An introduction to the architecture of the vino kernel. Technical report,
Technical Report 34-94, Harvard Computer Center for Research in
Computing Technology, October 1994.

[44] Helgi Sigurbjarnarson, Petur O. Ragnarsson, Juncheng Yang, Ymir
Vigfusson, and Mahesh Balakrishnan. Enabling space elasticity in
storage systems. In Proceedings of the 9th ACM International on
Systems and Storage Conference, pages 6:1–6:11, Haifa, Israel, June
2016.

[45] David C Steere, James J Kistler, and Mahadev Satyanarayanan. Effi-
cient user-level file cache management on the sun vnode interface. In
Proceedings of the Summer 1990 USENIX Annual Technical Confer-
ence (ATC), Anaheim, CA, 1990.

[46] Swaminathan Sundararaman, Laxman Visampalli, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Refuse to Crash with Re-
FUSE. In Proceedings of the 6th European Conference on Computer
Systems (EuroSys), Salzburg, Austria, April 2011.

[47] M. Szeredi and N.Rauth. Fuse - filesystems in userspace, 2018. https:
//github.com/libfuse/libfuse.

[48] Vasily Tarasov, Erez Zadok, and Spencer Shepler. Filebench: A
flexible framework for file system benchmarking. ;login: The USENIX
Magazine, 41(1):6–12, March 2016.

[49] Ungureanu, Cristian and Atkin, Benjamin and Aranya, Akshat and
Gokhale, Salil and Rago, Stephen and Całkowski, Grzegorz and Dub-
nicki, Cezary and Bohra, Aniruddha. HydraFS: A High-throughput
File System for the HYDRAstor Content-addressable Storage System.
In 10th USENIX Conference on File and Storage Technologies (FAST)
(FAST 10), pages 17–17, San Jose, California, February 2010.

[50] Bharath Kumar Reddy Vangoor, Vasily Tarasov, and Erez Zadok. To
FUSE or Not to FUSE: Performance of User-Space File Systems. In
15th USENIX Conference on File and Storage Technologies (FAST)
(FAST 17), Santa Clara, CA, February 2017.

[51] Deborah A. Wallach, Dawson R. Engler, and M. Frans Kaashoek.
ASHs: Application-Specific Handlers for High-Performance Messag-
ing. In Proceedings of the 7th ACM SIGCOMM, Palo Alto, CA, August
1996.

[52] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and
Carlos Maltzahn. Ceph: A scalable, high-performance distributed file
system. In Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 307–320, Seattle,
WA, November 2006.

[53] Assar Westerlund and Johan Danielsson. Arla: a free afs client. In
Proceedings of the 1998 USENIX Annual Technical Conference (ATC),
pages 32–32, New Orleans, Louisiana, June 1998.

[54] E. Zadok, I. Bădulescu, and A. Shender. Extending File Systems Using
Stackable Templates". In Proceedings of the 1999 USENIX Annual
Technical Conference (ATC), pages 57–70, June 1999.

[55] E. Zadok and J. Nieh. FiST: A Language for Stackable File Systems.
In Proceedings of the 2000 USENIX Annual Technical Conference
(ATC), June 2000.

[56] Erez Zadok, Sean Callanan, Abhishek Rai, Gopalan Sivathanu, and
Avishay Traeger. Efficient and safe execution of user-level code in the
kernel. In Parallel and Distributed Processing Symposium 19th IEEE
International, pages 8–8, 2005.

[57] ZFS-FUSE, April 2018. https://github.com/zfs-fuse/zfs-
fuse.

134 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse
https://github.com/zfs-fuse/zfs-fuse
https://github.com/zfs-fuse/zfs-fuse

FlexGroup Volumes: A Distributed WAFL File System

Ram Kesavan*, Jason Hennessey, Richard Jernigan, Peter Macko,

Keith A. Smith, Daniel Tennant, and Bharadwaj V. R., NetApp, Inc.

Abstract

The rapid growth of customer applications and datasets has
led to demand for storage that can scale with the needs of
modern workloads. We have developed FlexGroup volumes
to meet this need. FlexGroups combine local WAFL® file
systems in a distributed storage cluster to provide a single
namespace that seamlessly scales across the aggregate re-
sources of the cluster (CPU, storage, etc.) while preserving
the features and robustness of the WAFL file system.

In this paper we present the FlexGroup design, which in-
cludes a new remote access layer that supports distributed
transactions and the novel heuristics used to balance load
and capacity across a storage cluster. We evaluate Flex-
Group performance and efficacy through lab tests and field
data from over 1,000 customer FlexGroups.

1 Introduction

With each new generation of hardware, computers become
faster and more powerful. CPUs have more cores, memory is
cheaper, networks are faster, and storage devices hold more
data. Despite these advances, however, many modern ap-
plications require far more resources than a single machine
can provide, leading to an explosion in the use of distributed
applications and systems.

Network-attached storage solutions have evolved simi-
larly from single-node to distributed systems. NetApp®

Write Anywhere File Layout (WAFL) [11] was launched
more than 20 years ago as a single-node, single-volume file
system. Over time, we increased WAFL flexibility and scale
by allowing many file systems per node [7], and by scaling
performance with increasing core counts [5]. Today we have
hundreds of thousands of storage controllers at customers’
sites. But like other file systems, our single-node scale and
performance have been limited by the resources (storage,
memory, CPU, network) of a single machine.

This paper describes FlexGroups, a new feature that auto-
matically balances capacity and load across the nodes of our

*Ram Kesavan is currently at Google.

storage cluster. A FlexGroup combines volumes from multi-
ple nodes of a cluster into a single client-visible namespace
and allows any directory entry to point to any inode on any
of the member volumes. The FlexGroup selects a location
for each new file or directory using heuristics that attempt to
balance capacity and load. The result is a single file system
that scales across the resources of an entire storage cluster.

Within a storage cluster, FlexGroups use a new Remote
Access Layer (RAL) to perform transactional updates across
multiple member volumes (for example, a directory entry on
one node and the target inode on a different node). Because
operations that span multiple FlexVols® necessarily intro-
duce overhead, the FlexGroup heuristics dynamically adjust
the levels of remote inode placement to minimize that over-
head while still achieving a balanced system.

FlexGroups impose performance overhead on metadata
operations that create or traverse cross-node links in the
namespace. But the more costly of these operations, such
as MKDIR, are relatively rare, and the overheads are modest
compared to the larger latencies of I/O to SSDs or HDDs.
On large mixed workloads, a FlexGroup performs compara-
bly to a similarly sized group of individual volumes while
providing the benefits of automatic scaling and balancing of
the data and load across nodes.

This paper makes several contributions. We present a scal-
able distributed file system architecture that builds on an un-
derlying single-node file system while preserving all of its
features. We describe low-cost heuristics that dynamically
balance load and capacity with little performance overhead.
Finally, we analyze more than 1,000 customer FlexGroup de-
ployments to evaluate our load balancing heuristics, under-
stand challenging use cases, and identify improvements to
FlexGroup heuristics.

2 The Building Blocks

A FlexGroup is a distributed file system built from a clus-
ter of nodes running our storage operating system, NetApp
Data ONTAP®, which includes WAFL [11], our proprietary
copy-on-write (COW) file system. A FlexGroup is com-

USENIX Association 2019 USENIX Annual Technical Conference 135

Clients

Node 1A

NBlade

DBlade

Node 1B

NBlade

DBlade

Node 2A

NBlade

DBlade

Node 2B

NBlade

DBlade

HA Pair 1 HA Pair 2

Figure 1: Arrows indicate some possible routing paths for opera-
tions. The NBlade in node 2A may route a request to the DBlade on
the same node, on the HA partner node (2B), or to another node in
the cluster (1B).

posed of multiple single-node file systems called FlexVols;
a FlexVol [7] is an exportable WAFL file system. As in other
COW file systems [24, 30], every modified block of data or
metadata in WAFL is written to a new location; only the su-
perblock is ever written in place. The file system supports
many enterprise features, such as snapshots [18, 19], repli-
cation [29], storage efficiency (compression, deduplication,
etc.), and encryption.

A cluster of ONTAP [25] nodes is organized as multiple
high-availability (HA) pairs of nodes. Each pool of stor-
age is accessible by a different HA pair. A node is com-
posed primarily of two software modules [8]: an NBlade
and a DBlade. The NBlade is composed of the networking
and protocol stacks (NFS, SMB, iSCSI, NVMe, etc.) that
communicate with clients. The DBlade is composed of the
WAFL file system, RAID [2, 9] module, and storage drivers
to interact with the storage media. The storage pool dedi-
cated to an HA pair is partitioned into aggregates, each of
which can house hundreds of FlexVols. The storage devices
in an aggregate are collected into RAID groups to protect
against device failures [28]. Each aggregate is managed in
an active-passive manner by the nodes of its HA pair. Thus
the DBlade on each node serves requests for one or more ag-
gregates while also acting as a standby to take over the HA
partner’s aggregates if the partner fails.

ONTAP exports file system namespaces over virtual in-
terfaces (VIFs) that are mapped to nodes in the cluster. A
client accesses the namespace within a FlexVol over NFS or
SMB by connecting to a node via the corresponding VIF [8].
As illustrated in Fig. 1, each request is routed from the re-
ceiving node’s NBlade to the DBlade of the node owning
the FlexVol that contains the requested data. The NBlades
consult a consistent, replicated database of volume informa-
tion, which maps volume IDs to DBlades. Responses are
routed back from a DBlade to the client via the NBlade that
is connected to the client. Any operation that is routed to a
different node pays a small latency penalty compared to one

that is routed to the same node [8].
WAFL accelerates performance by placing a write-ahead

log in NVRAM [11, 33] and provides a fast failover capa-
bility by mirroring this log to its HA partner’s NVRAM. If
a node (1A) fails, the HA partner (1B) takes ownership of its
network interfaces and storage, replays its NVRAM log (aka
NVLog), and starts servicing operations to those FlexVols
almost instantly, thereby minimizing client outage. Even in
the rare event that NVLog is lost—for example, if one node
“panics” and the NVRAM devices on both nodes of the HA-
pair are damaged—the COW nature of updates guarantees
the consistency of the persistent file systems on the failed
node [11, 24, 30]; only state from operations logged in the
last few seconds is lost. In other words, no (fsck-style) repair
of the file system is needed in such cases.

3 FlexGroup Volumes

ONTAP with FlexVols had been commercially successful
with a wide customer deployment for several years before
we tackled the problem of building a distributed names-
pace that seamlessly scales across the storage pools and
compute resources of all nodes in a cluster. ONTAP al-
ready allowed the administrator to manually junction to-
gether multiple FlexVols in a cluster to export a namespace
that spanned multiple nodes, but it was impossible to build an
efficient junctioned namespace because avoiding conditions
of imbalance—storage capacity or load—required a priori
knowledge of future behavior of the applications. Customer
deployments need directory namespaces to autonomously
consume capacity and compute resources from nodes in the
cluster with minimal administrator involvement.

Customers have high requirements of an enterprise-grade
distributed file system: resiliency, availability, ease of ad-
ministration, and other “standard” features, such as snap-
shots, replication, cloning, compression, deduplication, and
encryption. Adding this comprehensive list of features into
an existing open-source file system or creating a new feature-
rich distributed file system would have been prohibitively ex-
pensive in terms of engineering resources and time.

Because these features had been baked into FlexVols over
decades, building FlexGroups out of a collection of FlexVols
was the obvious and prudent approach. It greatly simpli-
fied several aspects of our design. For example, the ability
to nondisruptively move FlexVols between nodes is particu-
larly useful for coarse-grained rebalancing without embed-
ding any forward pointers in the file system; for more on this
topic, see Sec. 3.3. Moreover, the NVLog, together with the
transactional semantics of FlexVols [2, 7, 9, 17, 20, 29] pro-
vides the atomicity and reliability for maintaining metadata
necessary for the distributed namespace.

More importantly, this choice simplified existing cus-
tomers’ workflows—a FlexGroup looks much like a FlexVol
to the administrator and NFS or SMB clients—which was

136 2019 USENIX Annual Technical Conference USENIX Association

key to its rapid adoption. FlexGroups also allow “upgrad-
ing” an existing FlexVol to a FlexGroup, on-the-fly addition
of member FlexVols, presentation of a FlexGroup as a single
volume for all administrative tasks, and other management
features. Such details are outside of the scope of this paper.

3.1 Design Considerations
Data distribution comes at a cost. Typically, spreading data
across nodes requires either a metadata server or internal
pointers to redirect from one location to another. Maintain-
ing this metadata costs additional CPU, network, and stor-
age. Coarse-grained distribution of large directory subtrees
minimizes metadata costs, but makes it harder to achieve bal-
ance between nodes. A distributed system can achieve better
balance with a finer-grained distribution, but that comes with
the additional cost of more pointers.

Because both fine- and coarse-grained distribution have
drawbacks, a promising approach would be to offer a mech-
anism that can adaptively change distribution granularities
based on need—using fine-grained distribution when nec-
essary to ensure the use of all resources, while reverting to
coarse-grained distribution when possible for higher overall
performance.

An alternative approach to achieve fine-grained distribu-
tion without metadata overhead is to use hash-based algo-
rithms to place each file on a pseudo-random node. We ruled
this approach out for two reasons. First, hash-based place-
ment causes a large fraction, (n− 1)/n, of requests to pay
the cost of a network hop (NBlade to DBlade) in an n-node
system. More intelligent placement of files can reduce hops;
for example, files within a directory could be colocated in the
common case. Hash-based placement also prevents dynamic
placement decisions based on current conditions; for exam-
ple, avoiding new file creation on a node that is experiencing
high load.

Ideally, a system should be capable of reacting to imbal-
ance in load and storage space availability. Retroactive data
movement has two serious challenges—picking the content
to be moved and doing it in a nondisruptive fashion to the
clients (i.e., no remounts). The latter requires inserting re-
mote pointers in the file system to avoid invalidating file
handles that were previously issued to clients.1 However,
the proliferation of these pointers over time creates an ever-
increasing drag on overall system performance. Addition-
ally, although centralizing metadata in one server simplifies
some aspects, it leads to obvious performance bottlenecks.

We explored two less-successful designs before Flex-
Groups. In our first design, all data files were striped (based
on file offset and range) across member FlexVols. Subse-
quently, metadata (directories and inode tables) were also
striped and decentralized. A distributed ticketing mechanism
was used to maintain cross-FlexVol consistency. However,

1NFS requires long-lived file handles.

the resultant fine-grained synchronization generated a high
performance tax. In addition, increase in CPU core count
in nodes and scaling improvements to the WAFL parallelism
model [5] enabled concurrent execution of dozens of read
and write operations to a single file, which obviated the need
to stripe “hot” files.

The second design stored an inode indirection layer in a
master FlexVol, which pointed to data files that were placed
in other FlexVols based on simple round-robin policies. The
design traded the extra FlexVol hop paid by each operation
to consult and follow the indirection for the ease of moving
data and metadata across the member FlexVols in response
to imbalance in load or storage capacity. However, the de-
sign was unable to prevent the master FlexVol (hosting the
indirection layer) from becoming a performance bottleneck.

To demonstrate the overhead of this indirection-based
scheme, we benchmarked it against FlexGroups, which, as
explained later in this section, have several important dif-
ferences. FlexGroups use pointers rather than indirection to
locate remote files and try to place each file in the same node
as its parent directory so that most operations avoid an ex-
tra NBlade-to-DBlade hop. Finally, FlexGroup members are
symmetric; no node or FlexVol necessarily handles more (or
less) data, metadata, or traffic than its peers.

We ran SPEC SFS 2014 SWBUILD [35] on both a Flex-
Group and the indirection-based approach using a mid-range
HA pair.2 The operational throughput (ops/s) of FlexGroups
was more than 4 times that of the indirection approach. At
low load points, both were easily able to handle the work-
load, but the average request latency of the indirection ap-
proach was 1.9 times higher than that of FlexGroups, reflect-
ing the extra network hop required by every request.

This pattern continued at higher load points until the mas-
ter FlexVol became a bottleneck in the indirection-based sys-
tem. Queue lengths grew rapidly with increasing load, until
a 20-fold increase in time spent to resolve indirection which
caused the operational throughput to collapse in spite of the
fact that almost half of the available CPU cores remained
idle. In contrast, FlexGroup performance continued to scale
until the cores on both nodes were almost fully utilized. Note
that this test was performed on a 2-node cluster. The indirec-
tion bottleneck is more acute in a larger cluster.

3.2 Fusing FlexVols via Remote Hardlinks
FlexGroups distribute both data and metadata across mul-
tiple FlexVols by allowing directory entries to be remote
hardlinks to inodes on other member FlexVols, as illustrated
in Fig. 2. A client can connect to any node in the cluster, and
the NBlade routes its requests to the appropriate FlexVol and
DBlade.

FlexGroups perform most data distribution during ingest:
an intelligent, immediate, and permanent placement decision

2Each node had 16 cores and 96 GiB of DRAM.

USENIX Association 2019 USENIX Annual Technical Conference 137

Keith Smith

Node 1A

FlexVol A

.

..
dir1

Node 1B

FlexVol B

.

..
dir2

Node 2A

FlexVol C

.

..
dir3

Node 2B

FlexVol D

.

..

file1

000101011…

Inode 1 Inode 2 Inode 3 Inode 4

Inode 12

Inode 25

L2R:

R2L:

L2R:25 à D:4

D:4 à 25

4 à C

Figure 2: An example of a FlexGroup (DBlades only) that consists
of member FlexVols in four nodes, along with hardlinks following
/dir1/dir2/dir3. L2R and R2L are local-to-remote and remote-
to-local databases. FlexVol C contains inode 25, which is a cached
version of inode 4 from FlexVol D.

is taken when creating a new file or directory, thereby as-
signing the new object to one of the FlexVol members of the
FlexGroup. FlexGroups adjust the granularity of distribution
from the directory level down to individual files as necessary.

As explained in Sec. 3.1, striping individual files was
not necessary to achieve our performance goals. Therefore,
FlexGroups do not stripe individual files or directories across
member FlexVols; each object lives entirely in one FlexVol.
This greatly simplifies the design and allows all data opera-
tions (reads and writes) to be executed with the same latency
and throughput. In other words, remote hardlinks are not
traversed when servicing such operations; an additional net-
work hop is incurred only if the NBlade connected to the
client and DBlade in which the data resides are on differ-
ent nodes. Only metadata operations that resolve or modify
remote hardlinks incur additional latency for the extra inter-
node communication.

The FlexVol identifier and the inode identifier are encoded
within the opaque file handle that WAFL returns to oper-
ations such as LOOKUP and OPEN. An NFS client resolves
/dir1/dir2/foo by starting at the root located in FlexVol
A. Suppose that the client connects to Node 1A and sends a
LOOKUP operation for dir1 to that NBlade. This operation is
directed to the same node’s DBlade, which contains the root
directory, and the remote hardlink for dir1 is located. The
NFS handle returned to the client has B:2 encoded within it.
The client then sends a LOOKUP for dir2 using this opaque
handle, which the NBlade forwards to FlexVol B (Node 1B).
The NFS handle returned to the client now embeds C:3. A
LOOKUP for file foo returns a file handle that encodes the
FlexVol (which could even be A) and the inode for that file.
All subsequent reads and writes on that file get routed by the
NBlade of Node 1A directly to the correct DBlade with no
further access of the remote hardlinks. Thus, as mentioned
earlier, every data operation costs the same and is indepen-

dent of the number of remote hardlinks that led to it.
Unlike NFS, the SMB client sends the entire pathname,

starting from the root. For example, an SMB client may
OPEN /dir1/dir2/foo, whereas an NFS client sends a se-
ries of LOOKUP operations that walk down to foo. NBlades
accelerate these SMB operations by maintaining in-memory
pathname-to-FlexVol tables that can be used to resolve an
entire pathname to a FlexVol, similar to Sprite prefix ta-
bles [41]. Depending on the state of the table, the OPEN op-
eration may avoid resolving some or all remote hardlinks in
the pathname when it gets routed to a FlexVol. The resolved
hardlinks are added to this table. Much as with NFS, once
OPENed all subsequent reads and writes to that file are routed
directly to the correct DBlade.

3.3 Load Balancing

Based on experience with prior designs and customer work-
loads we realized that remote hardlinks with ingest-based
placement yield a close-to-optimal trade-off by reducing the
necessary synchronization overhead even while reducing the
likelihood of imbalances in storage capacity and load across
member FlexVols. Sec. 3.5 explains how placement heuris-
tics are based on both the recent IOPS load imbalance and
the capacity imbalance across member FlexVols. Obviously,
these heuristics cannot predictably avoid load imbalances in
the future. For example, it is possible that data written aptly
at ingest time to one (or a few) member FlexVols becomes
“hot” several hours or days later due to some application
workflow. As explained earlier, nondisruptive, retroactive,
and fine-grained data redistribution requires creating perma-
nent remote markers that will regress the overall file sys-
tem performance over time. Instead, such a pathologically
imbalanced FlexGroup is fixed efficiently and expeditiously
by coarse-grained movement of “hot” member FlexVols to
nodes that are sustaining less IOPS load. This is done by
leveraging the Volume Move feature [26], which leaves no
residual remote markers in the file system namespace of the
FlexGroup.3

3.4 The Remote Access Layer

FlexGroup volumes work by having one member FlexVol
take responsibility for executing an entire operation, updat-
ing its own state, and coordinating the state changes with
the other members. Each time an operation needs to cre-
ate, delete, or access a remote hardlink, control passes to
the Remote Access Layer (RAL). The RAL is responsible for
managing and updating remote hardlinks in a transactional

3Movement is accomplished by taking periodic snapshots of the FlexVol
and incrementally transferring all changes to the destination node. The fre-
quency of these transfers increases as the movement catches up with the
most recent version of the FlexVol at which point the volume information
database consulted by the NBlades is atomically updated.

138 2019 USENIX Annual Technical Conference USENIX Association

manner and allowing the existing file system code to operate
on remote metadata as if it were local. The RAL is also re-
sponsible for recovering hardlink state after crashes and for
dealing with network slowness and outages between nodes.

Conceptually, the RAL is a delegation service. When an
operation accesses a remote hardlink, the RAL requests the
corresponding metadata from the remote FlexVol and places
it in a metadata cache where it can be accessed by the lo-
cal operation. This caching represents a delegation from an
origin FlexVol to the caching FlexVol. A delegation may
be released proactively by the caching FlexVol or revoked
by the origin FlexVol. Because the objects being cached are
files or directories, each cache entry is conveniently stored in
an inode at the caching FlexVol; the inode is freed when the
caching relationship (and delegation) cease to exist.

The RAL persists its cached metadata to ensure that it
is not lost in the event of a node failure. As described in
Sec. 2, when a node fails, its HA partner takes over all of
its FlexVols, replays logged operations, and resumes service
of those FlexVols almost immediately. The RAL metadata
caches benefit from this same high availability by persist-
ing their state to metadata files in the FlexVols. This makes
delegations fault tolerant and therefore simplifies the RAL
design.

There are other approaches for tracking and maintain-
ing distributed state, such as remote hardlinks. Porting and
leveraging well-known services, such as ZooKeeper [15] or
etcd [4], to maintain this state was tempting for reasons
such as speed of implementation. However, building the
RAL transactional mechanisms within our file system pro-
vided two major advantages: (1) low transactional over-
head, because RAL bookkeeping occurs in the context of
the client operation; and (2) resilient transaction tracking,
because RAL bookkeeping leverages the enterprise-quality
transactional semantics provided by WAFL.

The next three subsections explain the transactional infras-
tructure for creating and managing remote hardlinks.

3.4.1 RAL Caches

As summarized above, the RAL is a write-back metadata
cache of remote inodes. The caching FlexVol creates (if
necessary) and uses delegations cached in local inodes from
one or more origin FlexVols to execute file system opera-
tions. These inodes may contain read-only (RO) or read-
write (RW) caches. In other words, for any given object, its
origin FlexVol can grant at most one exclusive RW cache to
another FlexVol or multiple RO caches to multiple FlexVols.

The cached inodes are stored persistently in the regular in-
ode table and are used by local file system operations much
like regular inodes. Because they are stored in the local
file system, updates to cached inodes are protected by the
NVLog. This ensures that the delegations represented by
cache entries are not lost in the event of node failures.

The combination of HA pairs with the mirrored NVLog,
as described in Sec. 2, ensures that node failures appear, at
worst, as transient delays to the RAL. When a node fails,
its partner quickly takes over, replaying operations from the
NVLog to recreate the RAL metadata state that had not yet
been persisted to storage.

The caches are managed using local-to-remote (L2R) and
remote-to-local (R2L) maps, which are implemented as B+
trees and stored in each FlexVol as hidden files. The L2R
maps store two kinds of information: (1) the map from lo-
cally cached inodes to the corresponding remote inode num-
ber and origin FlexVol ID; and (2) the map of local inodes
that are cached by other FlexVols. The R2L maps store the
reverse mapping of the first type of L2R map data. For ex-
ample, in Fig. 2, inode 25 on FlexVol C is a cached version
of inode 4 on FlexVol D.

RAL caches are not intended as long-term storage, and
are primarily used as (1) a temporary measure to complete
metadata operations that choose to locate newly created con-
tent in a remote member; and (2) a mechanism for providing
crash-consistent transactional semantics.

Caches can be evicted proactively by the caching FlexVol
or revoked by the origin FlexVol. A background scrub pro-
cess periodically walks and reclaims all caches, because
caches are only needed temporarily. In fact, to improve per-
formance, most read-write caches are aggressively evicted
after their use, so that they don’t have to be evicted when a
later operation needs to create a cache of the inode in a differ-
ent FlexVol. The scrub also reclaims all wasteful or stale out-
standing references. The origin FlexVol can evict read-write
caches of its inodes by examining its L2R map to find the
set of caching FlexVols, sending them REMOTE WRITEBACK
messages to write back the dirty data, and then evicting the
entries.

3.4.2 Example

We use an NFS MKDIR request—a sufficiently complex
operation—to illustrate how RAL is used. Suppose that sub-
directory dir3 is created under dir2, that dir2 is stored on
FlexVol C, and that the placement logic decides to store the
contents of dir3 on FlexVol D. Fig. 2 illustrates this exam-
ple.

1. FlexVol C suspends local processing of the MKDIR oper-
ation when it determines that it needs a remote hardlink.

2. FlexVol C sends a RAL RETRIEVE message to FlexVol
D, asking for the creation of a new inode and a copy of
it for read-write caching.

3. FlexVol D allocates the new inode (4 in the figure), tags
it as being cached elsewhere in the RW manner, and
creates the corresponding L2R entry.

4. FlexVol D responds to FlexVol C by sending a
RAL STORE message to store the cached copy of this in-
ode in FlexVol C.

USENIX Association 2019 USENIX Annual Technical Conference 139

5. FlexVol C processes the RAL STORE message by allo-
cating a local inode (25 in the figure), tags it as a RW
cache, creates the appropriate L2R and R2L entries, and
adds it to the pool of cached inodes for FlexVol D.

6. FlexVol C restarts the local MKDIR operation.

The MKDIR operation finds the cached inode in the pool
and proceeds to completion using it as the proxy for dir34.
The MKDIR operation now creates the remote hardlink direc-
tory entry in dir2 pointing to dir3, converts the inode C:25
into a directory type, populates the . and .. entries in it, and
marks the RW cache entry as “dirty.”

If the client now sends a CREATE command to create a new
file in dir3, that request gets routed to FlexVol D. When the
operation executes, it notices the tag on dir3’s inode that
marks it as being in an RW cache elsewhere. The FlexVol
suspends the operation, consults the L2R map to determine
that it is cached in FlexVol C, and starts the eviction process.
FlexVol C writes back the dirty RW cache to FlexVol D, re-
moves it from the cache, and FlexVol D then marks the inode
as a valid subdirectory with no RW caches. The CREATE op-
eration is then resumed in FlexVol D.

As the MKDIR example illustrates, the DBlade of the
caching FlexVol takes ownership of executing the client op-
eration atomically, but only after it has created local RW
caches from an origin FlexVol. We now briefly describe
an example RENAME operation, which is more complex and
may involve two origin FlexVols. A RENAME mv dirA/foo
dirB/bar operation is routed to the DBlade that hosts dirB.
Suppose that dirA is in FlexVol A, dirB is in FlexVol B,
and foo is a hardlink from dirA to inodeC in FlexVol C.
FlexVol B first acquires two RW caches5—one from FlexVol
A for dirA and one from FlexVol C for inodeC—and then
executes the RENAME as a regular WAFL operation that uses
the two RW caches. The execution of the RENAME deletes bar
if one already exists, creates a new local bar that hardlinks
to inodeC, and deletes foo in the RW cache for dirA. The
persistent RW cache entries are left in a “dirty” state; the
origin FlexVols are modified when these cache entries are
eventually flushed back.

Some operations require read-only (RO) caches; for ex-
ample, an SMB OPEN operation creates RO caches for any
traversed remote inodes while resolving a file pathname.

3.4.3 Consistency and Recovery

The FlexGroup consistency model builds on the transac-
tional semantics of the underlying COW WAFL file system

4In theory, the MKDIR operation could find a RW cache entry in that pool
on its first execution. That RW cache entry might have been created due to a
RAL RETRIEVE operation to member D initiated by a different operation. In
that case, on resumption that operation kicks off yet another RAL RETRIEVE
operation to populate the pool.

5Each cache is acquired using the RAL RETRIEVE and RAL STORE hand-
shake.

with its NVLog. A client operation is acknowledged only
after it has been recorded in the NVLog of both the node and
its HA partner. All RAL operations are similarly recorded
to NVLog before they are acknowledged. After a node fail-
ure, NVLog replay returns the affected member FlexVols to
a state representing a valid phase of any ongoing RAL trans-
action. It must be noted that the ONTAP HA-pair model
(together with our RAID and WAFL software) is specifically
engineered to be highly reliable6, which informs the rest of
this section.

For example, in the case of the MKDIR example, the node
containing FlexVol D processes the RAL RETRIEVE message,
records the message and result in its NVLog, and responds to
FlexVol C. If FlexVol D’s node fails before the correspond-
ing updates are persisted to the local file system, its HA part-
ner replays the RAL RETRIEVE message, recreating the inode.

If the node that hosts FlexVol C fails during the RAL STORE
phase, its HA partner may choose a different location for cre-
ating dir3 when it replays MKDIR. FlexVols D and C may be
left with stale or unused cache entries or temporary inodes.
This is the only allowed form of inconsistency after a node
failure; it is eventually resolved by the background scrub
process, which periodically walks and reclaims all caches,
including all wasteful or stale outstanding references7. The
continued existence of these stale references is safe and does
not compromise the consistency of the file system.

Any dirty state left in the cache inode (25 in the MKDIR ex-
ample) is recreated by replaying MKDIR if C fails after MKDIR
is logged but before the subsequent file system transaction
completes. Although a formal proof is not provided for lack
of space, we conclude that RAL usage for FlexGroup is crash
consistent.

Sec. 2 explains that no fsck-style repair is required if a
node fails or even in the rare case that NVLog in both nodes
of an HA pair is lost. When a member node in a FlexGroup
fails, its HA partner replays its NVLog and recreates the file
system state, including the RAL state. However, the loss of
NVLog of one member FlexVol may result in inconsistencies
between it and other members. Additional mechanisms were
built to accomplish automatic on-the-fly repair when such an
inconsistency is detected by an operation. In brief, the op-
eration is suspended while a high-priority WAFL message
investigates the inconsistency, fixes it, syslogs it, and restarts
the original operation. For example, suppose that a LOOKUP
consults a directory entry foo, which is a remote hardlink to
an inode in FlexVol B that does not exist because FlexVol B
suffered a failure followed by a loss of its NVLog. On-the-
fly repair would be kicked off once the RAL RETRIEVE fails,

6The availability of our customers’ systems is routinely measured at 5 to
6 nines; that is, annual system downtime between 3 and 30 seconds.

7The WAFL file system includes a time-tested background scanner in-
frastructure used to walk and operate on various file system metadata. The
infrastructure paces itself based on current system load, thereby ensuring
negligible (less than 2%) impact to client operations. There are about 20
different scan types, and the FlexGroup scrub is one of them.

140 2019 USENIX Annual Technical Conference USENIX Association

which would eventually delete the entry foo. The restarted
LOOKUP now finds no corresponding entry. A detailed dis-
cussion of on-the-fly repair techniques is beyond the scope
of this paper.

3.5 Ingest Heuristics
As mentioned earlier, all placement decisions are made dur-
ing ingest before the new inode is allocated. The heuristics
balance two competing goals: distributing load (IOPS) and
capacity among member FlexVols versus reducing the oper-
ational overhead associated with remote hardlinks.

Creating a remote hardlink to an idle member almost im-
mediately brings traffic to it, which shifts some traffic to idle
members and increases overall performance. Additionally,
creating a remote hardlink to an underutilized FlexVol al-
most certainly causes it to fill up a little more, which helps
bring its usage in line with that of its peers. This is more
important when the member volumes are closer to full, and
remote hardlinks can help get to every last byte of storage.
Therefore, as the FlexVols become more and more full, the
FlexGroup should employ more remote hardlinks.

On the other hand, every time the FlexGroup creates a
new remote hardlink, there is a small performance penalty,
both at the time of creation and in the future when access-
ing the remote hardlink. The penalties accumulated across
too many remote hardlinks increase average request latency
and reduce overall performance. However, too few remote
hardlinks may mean a failure to use all available resources.
Thus, the primary goal of ingest heuristics is to achieve the
right balance while using as few remote hardlinks as possi-
ble.

3.5.1 Input to Heuristics

To minimize the overhead of heuristics, each node makes
independent allocation decisions based on the following in-
formation about each member FlexVol:

• Block usage: The ratio of consumed to total storage
space of the FlexVol.

• Inode usage: The ratio of the number of locally allo-
cated inodes to the maximum number of inodes allowed
for the FlexVol.

• Recent ingest load: The recent frequency with which it
has created new files and directories (maintained by us-
ing a sliding window average across several seconds)8.

The member FlexVols periodically exchange this informa-
tion by using an asynchronous and lightweight viral refresh
process provided by ONTAP. Each node propagates infor-
mation about its local member FlexVols as well as informa-
tion received from other nodes. Each node sends out a mes-

8Sec. 3.3 explains the handling of unpredictable future imbalance in load
across the member FlexVols.

sage to each peer every second and uses timestamps to decide
the staleness of the received information. An asynchronous
model suffices because the heuristics are reacting to trends
in load and storage consumption rather than making instan-
taneously optimal decisions.

3.5.2 Heuristic Probability Tables

Each node consults a set of probability tables during inode
allocation. The tables are recomputed approximately every
second, using any new information that is received from the
refresh process. The table in each FlexVol consists of two
arrays:

• RP[c]: An array of remote preference—a value between
0 and 1 indicating the probability of remote allocation
for objects of various categories, such as files and sub-
directories at various depths from the root directory.

• AT [m]: An array of remote allocation target probability
values for member FlexVol m; the sum of values across
the array is 1.

When making an inode allocation decision, the FlexVol
generates a random number between 0 and 1 and compares
it to the corresponding value in RP for that category. If the
randomly generated number is larger, it processes the al-
location locally; otherwise it uses a weighted round-robin
scheme to determine the FlexVol for remote allocation: Each
remote member is assigned a target percentage based on its
AT value, and each allocation selects the remote FlexVol that
is furthest behind its target percentage compared to its peers.

3.5.3 Computing Heuristic Probability Tables

The probability tables are recomputed by comparing the
properties of all member FlexVols and looking for trends and
problem conditions. As mentioned earlier, each node com-
putes these tables independently based on the information
from the most recent refresh process. First, two intermediate
values—Urgency and Tolerance—are computed.

Urgency biases the heuristics to react to imbalance in the
FlexGroup. It is computed as a linear interpolation of each
member’s usage and each node’s ingest load within their re-
spective high and low thresholds, which are precomputed
based on the FlexGroup configuration. An Urgency of 1 in-
dicates that at least one member volume is critically low on
one of these resources. Values between 0 and 1 indicate es-
calating degrees of concern.

Tolerance indicates how much disparity in load or usage
among member volumes is acceptable. A low value tells the
heuristics to react more strongly to disparities between mem-
ber FlexVols. A FlexGroup that is empty with no load will
have maximum Tolerance. As a FlexGroup gets closer to full
capacity, Tolerance goes down, and the heuristics allow less
disparity among the members.

USENIX Association 2019 USENIX Annual Technical Conference 141

Computing Remote Allocation Target (AT) Proba-
bilities: First a hypothetical usage goal is computed—
somewhere between the highest current capacity usage
(combining both blocks and inodes) on any member and the
maximum capacity of any member. The heuristics assign
each member an allocation target based on the difference be-
tween that member’s usage goal and its current usage. In
essence, the heuristics select targets such that if all alloca-
tions were remote and all new files were exactly the same
size, the remote members would then fill up at exactly the
rates needed to reach their usage goals at the same time.

A non-zero Urgency affects this calculation significantly.
A member that contributes to the non-zero Urgency is given
a much lower target. For example, a member with the max-
imum Urgency value of 1 is assigned only 1% of its target.
Once target values are assigned to each member, the values
are normalized into AT [m] as probabilities summing to 1.

Computing Remote Preference (RP) Probabilities: The
heuristics iterate over each allocation category for a member
FlexVol. Some categories are easily computed. For example,
allocating a new subdirectory in the root directory is always
a remote allocation to ensure that this new branch of content
lands on the member with the least capacity usage or load.
But for most categories, the calculation is more complex and
uses the recent ingest load data from all members.

First, the heuristics compare the recent request load for
an allocation category to the target load specified by the
volume’s allocation target (AT). If the recent load is below
the target, then RP[c] is set to 0, indicating a desire for the
FlexVol to satisfy new allocations locally. However, if the
recent load is above the target then RP[c] is computed as the
proportion of the load that is in excess of the target. For ex-
ample, if a member with a target of 8% has recently received
10% of the overall allocations in a category, then that cate-
gory is assigned a RP of 0.2 so it can attain its target. As
an optimization, RP is reduced for members that have ex-
ceeded their target by less than the current Tolerance value,
optimistically allowing them to keep a higher percentage of
local traffic for local placement.

Again, a non-zero Urgency value for a member increases
its RP values. As a member FlexVol or node runs low on re-
sources, the allocations are more likely to happen on remote
peers.

4 Topics in Practice

Building a scale-out file system required meeting customer
expectations of the features, performance, and robustness
that they were accustomed to with FlexVols. This section
touches on a few selected topics related to satisfying those
expectations.

Snapshots: Several features of ONTAP depend on the
ability to efficiently create consistent snapshots. A Flex-
Group snapshot is a collection of snapshots, one per member

FlexVol, that are created in a coordinated fashion. First, each
member FlexVol fences all new client operations and evicts
all RW caches. Then each member FlexVol independently
creates a snapshot and drops its fence. Because very few
RW caches are outstanding at any point in time, this fenc-
ing creates no noticeable disruption to client performance
(both latency and throughput of client operations). The de-
sign choice to evict all RW caches was made to avoid extra
implementation work in various internal file system opera-
tions to understand, handle, and traverse RAL information
when accessing snapshots. Eviction is not really necessary
because the L2R and R2L metadata is consistently captured
in each member FlexVol snapshot, and could be used to ser-
vice reads of the FlexGroup snapshot image. The metadata
can also be reactivated in the case of a restore of the entire
FlexGroup to that coordinated image.

Quotas: Tracking and enforcement of user, directory, and
group quotas must treat the entire FlexGroup as a single en-
tity. Any incoming operation must fail when a quota rule is
violated. Caches created by the RAL infrastructure count to-
ward quota consumption. Quota credits are pro-actively dis-
tributed across member FlexVols to allow efficient, indepen-
dent, and per-operation granular enforcement of the rules.
In the worst case, an operation may be suspended while the
FlexVol communicates with other members to borrow cred-
its; the design makes such scenarios extremely rare.

Unreachable Member FlexVols: One or more members
may become temporarily unreachable; for example, due to
network problems. All client and RAL operations directed
to those FlexVols will time out and get retried. Meanwhile,
access to data in other FlexVols continues as usual. ON-
TAP clustering services indicate whether the FlexVols still
exist, whether the outage is temporary, and whether retries
will eventually succeed. If the problem is not transient or
if clustering services indicate that FlexVols have been de-
stroyed, either the FlexGroup can be restored to its most re-
cent coordinated snapshot9 or on-the-fly repair will eventu-
ally fix RAL metadata that point to the lost FlexVols. Both
approaches recover file system consistency but result in data
loss. The former is typically preferred because the loss is
recent and predictable; all mutations after the snapshot are
lost.

Testing: Enterprise-grade quality implies continuous val-
idation; 102 different test suites are executed, totaling 160
hours of runtime daily. These tests use both NFS and SMB
clients to specifically stress cross-member code paths that
use RAL. Many of the suites also inject errors, such as drop-
ping RAL operations, forcing node panics to trigger HA
events, discarding NVLog during HA-events, and artificially
creating memory pressure. There are also suites that explic-
itly create inconsistencies in the persisted RAL metadata to
test on-the-fly repair mechanisms that correct them.

9Snapshots can be replicated to and restored from remote nodes by using
NetApp SnapMirror® [29].

142 2019 USENIX Annual Technical Conference USENIX Association

5 Evaluation

This section shows that the load-balancing automation of
FlexGroups compares well to an ideal FlexVol in three areas:
overhead, scale, and balance. It is not practical to formu-
late an apples-to-apples comparison of FlexGroup to other
well-known distributed file systems, due to the difference in
configurations, sizes, and associated feature sets. Instead,
this section compares FlexGroup performance to ideal and
worst-case scenarios that are manually configured (as ex-
plained below). Experiments to measure FlexGroup over-
head (Sec. 5.1) and scale (Sec. 5.2) were completed using a
cluster of up to 8 nodes, each with two 6-core Intel Broad-
well DE processors, 64 GiB of DRAM, and a shelf of 24
SSDs. Capacity balancing was validated with data collected
from customer deployments (Sec. 5.3).

5.1 Overhead

Automatic redirection of files and directories between
FlexVols in a manner that is consistent in the face of faults
adds two major sources of overhead: RAL (Sec. 3.4) intro-
duces additional overhead for metadata operations, and some
operations incur an additional network communication cost
when the client sends a request to an NBlade that cannot be
satisfied by the local DBlade. We measure these overheads
by comparing the performance of FlexGroups to two man-
ually created configurations with FlexVols, neither of which
incur the overhead of RAL: (1) FlexVol-Local is an ideal
configuration in which operations are routed by each NBlade
to the DBlade on the same node. (2) FlexVol-Remote is a
configuration in which operations are always routed by each
NBlade to a DBlade on a different node.

Even though we used a single HA pair in these exper-
iments, the results in these two cases are independent of
the number of nodes: Either none (FlexVol-Local) or all
(FlexVol-Remote) operations involve inter-node processing,
and this does not change with the number of nodes. In the
case of FlexGroups, the remote-to-local ratio might increase
with the number of nodes, but no other are latencies added.

5.1.1 Overhead of NFS Operations

We measured overhead by generating a metadata load using
mdtest [14] to a single HA pair. We used a single mdtest
client connected by using NFSv3 to one of the nodes, with
no other load on the system. We report the latencies of the
individual metadata operations, measured on the storage sys-
tems. We configured mdtest to create approximately 2 mil-
lion directories and 2 million 256KB files; the maximum
NFS transfer size was set to 64KB.

Fig. 3 shows the normalized results. We observe that in the
FlexGroup case, data is spread approximately evenly across
the two DBlades. Read-only metadata operations that use

NFS file handles, namely ACCESS and GETATTR, exhibit per-
formance that is almost exactly halfway between the local
and remote cases because there is no RAL overhead. Sat-
isfying the request incurs additional communication across
the cluster interconnect approximately 50% of the time. The
LOOKUP operation incurs additional latency when resolving
a name in a directory that happens to be a remote hardlink,
because it creates a RO cache of the looked-up inode on the
same node as its parent directory10. Metadata update oper-
ations, such as CREATE, MKDIR, REMOVE, and RMDIR, show
the overhead of RAL and of communicating over the cluster
interconnect, each occurring roughly 50% of the time.

Even though many of these metadata operations incur an
overhead, they are relatively infrequent compared to data op-
erations. Read operations exhibit performance that is ap-
proximately halfway between the local and remote cases.
Write operations perform comparably worse than read opera-
tions because they require updating file inodes; for example,
to extend the file lengths and to update mtime. As shown
later in this section, the overall impact on performance is
minimal when looking at the operations in aggregate.

5.1.2 Application and Data Benchmarks

Fig. 4 shows the performance of our application benchmarks,
expressed as normalized operations per second. (Higher is
better.) The figure presents two sets of results: random and
sequential read and write benchmarks, and selected SPEC
SFS 2014 benchmarks [35], which evaluate a realistic mix-
ture of file system operations.

We generated the random and sequential results for reads
and writes by using an internal benchmark that increases the
load to find the maximum throughput possible while placing
data in accordance with the configuration (FlexVol-Local,
FlexVol-Remote, or FlexGroup). Unlike in the mdtest ex-
periment, in which only one NBlade and one DBlade were
active at any given time, in the FlexVol-Local case, we used
several clients to saturate both nodes with requests. The re-
sults indicate that throughput for FlexGroups achieves a bal-
ance somewhere between the best (FlexVol-Local) and worst
(FlexVol-Remote) cases.

SFS [35] is a standard file system workload generation
tool that comes with profiles generated from real-world ex-
amples. We use three SFS profiles representing differ-
ent mixes of metadata requests and data throughput [37]:
SWBUILD, heavy metadata similar to Linux kernel builds;
EDA, a balance of metadata and data throughput repre-
sentative of electronic design automation applications; and
VDA, streaming writes and few metadata operations, similar
to a video recording system. Our goal in these benchmarks
is to determine peak operations/second, not to produce com-
pliant SFS numbers as defined by SPEC [36].

10The performance of LOOKUP is independent of the path length because
NFSv3 resolves each pathname component separately.

USENIX Association 2019 USENIX Annual Technical Conference 143

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

2.
13

2.
25

2.
29

4.
25

2.
60

 3.
52

2.
38

1.
45

1.
43

2.
88

1.
71

3.
29

3.
00

1.
64

1.
74

1.
49

1.
85

1.
48

 -

 1.00

 2.00

 3.00

 4.00

 5.00

ACCESS CREATE GETATTR LOOKUP MKDIR REMOVE RMDIR READ-64KB WRITE-64KB

N
or

m
al

iz
ed

 L
at

en
cy

FlexVol-Local FlexGroup FlexVol-Remote

Figure 3: Server-side latency for select NFS operations generated by a single mdtest client, reported relative to FlexVol-Local latencies.
Lower scores indicate better performance.

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
79

0.
88

0.
79

0.
85

0.
90

0.
89

0.
92

0.
65

0.
82

0.
46

 0.
78

0.
78

0.
86

0.
86

 -
 0.20
 0.40
 0.60
 0.80
 1.00
 1.20
 1.40

Random Read Random Write Sequential Read Sequential Write SFS EDA SFS SWBUILD SFS VDA

N
or

m
al

iz
ed

 o
ps

/s
ec

FlexVol-Local FlexGroup FlexVol-Remote

Figure 4: Operations per second for application and data benchmarksrelative to FlexVol-Local. Higher scores indicate better performance.

For the EDA and VDA workloads, FlexGroup per-
formance fell almost exactly between FlexVol-Local and
FlexVol-Remote, showing that the load-balancing heuristics
achieved a balanced distribution of files across the two test
nodes and that there was negligible overhead from RAL. In
the SWBUILD test, FlexGroup performance was again be-
tween the extremes but closer to FlexVol-Remote. In this
test, 87% of requests are metadata operations, increasing
overhead due to more frequent RAL processing.

We also determined via profiling that the recomputation
of the heuristic probability tables every second by each node
adds a negligible amount of CPU cycles (less than 0.001%),
even for large customer deployments.

5.2 Workload Scaling

To examine the FlexGroup scalability under different work-
loads, we ran the three SFS profiles against 1-, 2-, 4-, 6-,
and 8-node clusters (as described at the beginning of Sec. 5).
Fig. 5 shows the scaled results. Workloads with lower meta-
data intensity (VDA) scale better than workloads with more
metadata operations, as expected due to the added transac-
tion overhead associated with RAL, discussed in Sec. 3.4.

5.3 Customer Experience

FlexGroups became available to customers in early 2017.
In this section, we share information about how customers
have used FlexGroups and about improvements made to our
heuristics based on that experience. The storage systems can

1.
00

1.
00

1.
00

1.
66

1.
50

1.
74

 2.
98

2.
57

3.
00

 4.
00

3.
23

 4.
36

5.
28

3.
64

5.
88

 -
 1.00
 2.00
 3.00
 4.00
 5.00
 6.00
 7.00

SFS EDA SFS SWBUILD SFS VDA

N
or

m
al

iz
ed

 o
ps

/s
ec

1 node 2 nodes 4 nodes 6 nodes 8 nodes

Figure 5: Scalability of FlexGroups. The max achieved opera-
tions/second for three SFS profiles, run against 1, 2, 4, 6, and 8
nodes. Each metric is reported relative to a 1-node cluster. Higher
scores indicate better performance.

“phone home” to report customer configuration and event
data [23]. This functionality is optional, but a large frac-
tion of our customers enable it. Because our customers typ-
ically configure multiple FlexGroups and other FlexVols on
the same nodes of a cluster, run dozens of applications on
any given node of the cluster at various times, and ONTAP
does not fully gather IOPS statistics on a per-FlexVol basis,
it is not possible to compute or to clearly show whether the
IOPS load stays balanced across member FlexVols over a
long period of time. On the other hand, per-FlexVol capacity
consumption is tracked for imbalance, and it also serves as a
good proxy for imbalance in load.

This data shows a steady rise in FlexGroup adoption in

144 2019 USENIX Annual Technical Conference USENIX Association

56%

13%
5% 2% 2%

22%

69% 74% 76% 78%

100%

0%

20%

40%

60%

80%

100%

0 - 1% 1 - 2% 2 - 3% 3 - 4% 4 - 5% > 5%

Coefficient of Variation Cumulative CV

Figure 6: Do the placement algorithms balance data in the real
world? This histogram shows the dispersion of FlexVol usage in
customer-deployed FlexGroups using the coefficient of variation
(CV). CV is the standard deviation normalized by dividing by the
mean (σ/µ).A smaller CV indicates lower dispersion. Only Flex-
Groups greater than 10TB in size and more than 5% utilized were
included.

the 2 years since its release. As of August 2018, hundreds of
customers have deployed thousands of FlexGroups to man-
age hundreds of petabytes of storage. Roughly half of these
FlexGroups are small (< 10TB), and we surmise that they
are being used for testing and evaluation. 25% of these Flex-
Groups are larger than 100TB, and 5% are larger than 1PB.
A handful of FlexGroups are larger than 5PB. Of the Flex-
Groups that are 10TB or larger, most (70%) have between
8 and 32 member FlexVols. 5% are larger, with the largest
containing over 150 members.

Customer data also provides insight into the effectiveness
of our ingest heuristics at balancing capacity across the mem-
bers of a FlexGroup. Standard deviation (stdev or σ) mea-
sures dispersion. However, because different FlexGroups
contain different amounts of data, the standard deviations
are not directly comparable. For example, a stdev of 105

bytes would be interpreted differently for a 1TB FlexGroup
than for a 100TB one. To normalize these numbers for com-
parison, we divide the stdev by the mean (µ), producing a
coefficient of variation (CV), or σ/µ, that gives the stdev as
a percentage of the mean.11 A FlexGroup with a CV of 1%
suggests that each FlexVol has a 95% probability of being
±0.02µ; a CV of 3% indicates a 95% probability of being
±0.06µ.

The data indicate that the FlexGroup placement algo-
rithms are working in most customer use cases, as shown
in Fig. 6. Over half (56%) of FlexGroups had a CV less than
1%, 78% of FlexGroups had a CV less than 5%, and 85%
were below 10%. Only FlexGroups larger than 10TB and
more than 5% utilized were included in this analysis. For
the 15% of FlexGroups that had a CV greater than 10%, we
found three patterns that account for most of the cases.

11CV is also known as relative standard deviation.

First there is a group of FlexGroups that have a bi-modal
usage pattern—one set of members with similar high usage
and another set with similar, but lower, usage. These appear
to be FlexGroups that customers have expanded by adding a
set of new member FlexVols, and the newer members show
lower usage than the older ones.

The second pattern includes FlexGroups that hold a small
number of very large files. An example would be a 200 TB
FlexGroup with a small number of backup archives averag-
ing 100 GB each. In these cases there aren’t enough files to
average out the effects of our ingest decisions, and the impact
of allocating (extremely large) outlier file sizes can increase
the CV of the FlexGroup.

Finally, there is a small number of FlexGroups that are
well balanced except for a single volume with much higher
usage. We believe that these cases are caused by oddities in
customer workloads: an output archive file that encompasses
an enormous amount of workload data, or a directory of log
files that were co-located when they were created, but have
grown very large over time.

It should be noted that such examples of capacity imbal-
ance do not necessarily imply imbalance in IOPS load across
the member FlexVols. In the second pattern, backup files ex-
perience sequential appends and infrequent sequential reads.
In the third pattern, output archive files experience infre-
quent bursts of append operations. The WAFL file system
is well tuned to absorb a spike in reads and writes to a sin-
gle FlexVol. And as mentioned earlier, in the worst case a
Volume Move operation can relocate such a FlexVol from a
node that happens to be overloaded.

Based on specific customer experiences, we have im-
proved the ingest heuristics over the four releases since Flex-
Groups were introduced. Early on, an interesting customer
case motivated the addition of the inode usage property to
the refresh process. Without accounting for inode usage, the
heuristics had kept several million small files in a few mem-
bers to balance out some extremely large files in the oth-
ers. The per-FlexVol limit on the number of inodes was hit,
causing out-of-space errors. Another customer experience
resulted in converting the ingest load into a sliding window
average to accommodate spikes. Other tweaks were made to
various constants used while recomputing the probability ta-
bles to prevent the heuristics from over-reacting to changes.

5.4 Applicability Beyond WAFL

The FlexGroup design builds on years of engineering invest-
ment in our WAFL file system, but could these concepts be
applied to other file systems? FlexGroups required modest
changes to WAFL, and we believe that similar enhancements
are possible to other file systems: remote hardlinks and the
ability to traverse, create, and delete them. The inputs to in-
gest heuristics are simple and should be easy to implement.

The biggest challenges may be availability and fault tol-

USENIX Association 2019 USENIX Annual Technical Conference 145

erance. A robust file system like WAFL can persist RAL
metadata locally with its reliable native consistency seman-
tics. Other file systems may require more expensive dis-
tributed consensus techniques, like two-phase commit [22]
or Paxos [21], to ensure fault tolerant updates to remote
hardlinks.

6 Related Work

Many distributed file systems have been developed by the re-
search, commercial, and open source communities. To dis-
cuss FlexGroups in the context of this large body of prior
work, we focus on file systems that share our design goals
and implementation choices. Thus we emphasize systems in
which storage devices are controlled by a single node (or two
nodes for fault tolerance) and in which nodes manage data at
the granularity of files or objects. We will not discuss shared
disk file systems such as GPFS [32] or Frangipani [38].

Distributed file systems use a variety of strategies for as-
signing files and directories to nodes. The simplest ap-
proach is a static partitioning, whereby an administrator as-
signs namespace subtrees to different servers. This strat-
egy is exemplified by systems like NFS [31], AFS [13], and
Sprite [27]. It was also the approach that ONTAP supported
prior to the introduction of FlexGroups [8].

The disadvantage of static namespace partitioning is un-
even load and capacity balancing. Dynamic distribution ad-
dresses this challenge by selecting or updating file locations
on the fly. Slice [1] compared two heuristics for dynamic
partitioning. Name hashing maximizes balancing by assign-
ing every new file and directory to a random node chosen by
hashing its name. Mkdir switching maintains namespace lo-
cality by assigning a configurable fraction of new directories
to a different node than their parent and allocating all other
files and directories on the same node as their parent.

The name hashing strategy has also been used in other dis-
tributed file systems including Vesta [3] and GlusterFS [12].
Like mkdir switching, FlexGroups aim to maintain names-
pace locality by rarely using remote links. But FlexGroups
also uses current load and capacity in deciding when to split
the namespace.

Unlike FlexGroups, many distributed file systems sepa-
rate namespace management from data storage. These de-
signs have nodes that store objects and a metadata service
that maps filenames to objects. For scalability, some systems
have multiple metadata servers, introducing the same trade-
off between load balancing and namespace locality that we
address in FlexGroups. Ceph [39] is a widely-used system of
this type. Unlike FlexGroups, Ceph repartitions the names-
pace in response to observed load. This is facilitated by
Ceph’s use of separate metadata servers; migrating a names-
pace subtree does not require moving the corresponding data
objects. Policies for migrating subtrees is an area of ongoing

research [34]. Ceph manages data placement using a hash-
based algorithm to select object storage devices [40].

PanFS [42] represents another point in the design space.
It statically partitions its namespace across metadata man-
agers and randomly places files on different object servers
(blades). Like FlexGroups it adjusts its allocation proba-
bilities to reflect disparities in free space across the object
servers. PanFS can also actively balance capacity by relocat-
ing data objects. Unlike FlexGroups, PanFS does not take
load into account during data placement.

Farsite [6] takes a unique approach to metadata partition-
ing. It spreads files across servers based on file identifiers.
But instead of using a hash, it uses a tree-structured system of
file identifiers. This supports the colocation of related files,
while avoiding the problem of directory renames forcing data
migration between servers.

Chunkfs [10] is a single-node file system with dynamic
namespace partitioning, but with different goals and imple-
mentation. Chunkfs improves fault isolation and recovery
by dividing the file system into multiple chunks, each con-
taining one or more namespace subtrees that can be checked
independently. Chunkfs uses continuation inodes to connect
subtrees across chunks, similar to remote hardlinks in Flex-
Groups, except that they are restricted to a single node.

Like Chunkfs, SpanFS [16] stitches together multiple
local file systems, called domains, into a single volume.
SpanFS provides better MP scaling because locks and other
resources are local to a single domain, allowing threads in
different domains to execute without contention.

7 Conclusion

In this paper, we presented FlexGroup volumes, a distributed
version of NetApp FlexVol volumes. FlexGroups achieve
seamless scaling across the storage cluster even while simpli-
fying the job of the storage administrator. FlexGroups lever-
age the maturity, stability, and feature richness of FlexVols.
We described the core elements of the design: the infras-
tructure for remote hardlinks and the ingest heuristics that
distribute newly created content. We evaluated FlexGroup
performance using both benchmarks and archived customer
usage data. The success of FlexGroups has been further val-
idated by rapid customer adoption.

Acknowledgements: We thank the many WAFL engi-
neers who contributed to these designs over the years; they
are too many to list. We thank the anonymous reviewers and
our the shepherd, Michael Factor, for their helpful comments
and advice. We also thank Mike Montour and Robert Franz
for their help with performance experiments, and we thank
Jessie Wood for copy editing this paper.

146 2019 USENIX Annual Technical Conference USENIX Association

References

[1] ANDERSON D.C., CHASE J.C., and VAHDAT A.M.
Interposed request routing for scalable network stor-
age. ACM Transactions on Computer Systems, 20(1),
pp. 25–48, February 2002.

[2] CORBETT P., ENGLISH B., GOEL A., GRCANAC T.,
KLEIMAN S., LEONG J., and SANKAR S. Row-
diagonal parity for double disk failure correction. In
Proceedings of the 3rd USENIX Conference on File and
Storage Technologies (FAST), pp. 1–14. March 2004.

[3] CORBETT P.F. and FEITELSON D.G. The Vesta par-
allel file system. ACM Transactions on Computer Sys-
tems, 14(3), pp. 225–264, August 1996.

[4] COREOS. etcd: A distributed, reliable key-value
store for the most critical data of a distributed system.
https://coreos.com/etcd/.

[5] CURTIS-MAURY M., DEVADAS V., FANG V., and
KULKARNI A. To Waffinity and beyond: A scalable ar-
chitecture for incremental parallelization of file system
code. In Proceedings of USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI), pp.
419–434. November 2016.

[6] DOUCEUR J.R. and HOWELL J. Distributed directory
service in the Farsite file system. In Proceedings of
the 7th Symposium on Operating Systems Design and
Implementation (OSDI), pp. 321–334. November 2006.

[7] EDWARDS J.K., ELLARD D., EVERHART C., FAIR
R., HAMILTON E., KAHN A., KANEVSKY A.,
LENTINI J., PRAKASH A., SMITH K.A., and ZAYAS
E. FlexVol: Flexible, efficient file volume virtualiza-
tion in WAFL. In Proceedings of the 2008 USENIX
Annual Technical Conference, pp. 129–142. June 2008.

[8] EISLER M., CORBETT P., KAZAR M., and NYDICK
D.S. Data ONTAP GX: A scalable storage cluster. In
Proceedings of the 5th USENIX Conference on File and
Storage Technologies (FAST), pp. 139–152. February
2007.

[9] GOEL A. and CORBETT P. RAID triple parity. ACM
SIGOPS Operating Systems Review, 46(3), pp. 41–49,
2012.

[10] HENSON V., VAN DE VEN A., GUD A., and BROWN
Z. Chunkfs: Using divide-and-conquer to improve file
system reliability and repair. In Proceedings of the 2nd
Conference on Hot Topics in System Dependency (Hot-
Dep). November 2006.

[11] HITZ D., LAU J., and MALCOLM M. File system de-
sign for an NFS file server appliance. In Proceedings of
USENIX Winter 1994 Technical Conference, pp. 235–
246. January 1994.

[12] How GlusterFS distribution works. https:

//staged-gluster-docs.readthedocs.io/en/

release3.7.0beta1/Features/dht/.

[13] HOWARD J.H., KAZAR M.L., MENEES S.G.,
NICHOLS D.A., SATYANARAYANAN M., SIDE-
BOTHAM R.N., and WEST M.J. Scale and perfor-
mance in a distributed file system. ACM Transactions
on Computer Systems, 6(1), pp. 51–81, February 1988.

[14] HPC IO Benchmark Repository. https://github.com/

hpc/ior.

[15] HUNT P., KONAR M., JUNQUEIRA F.P., and REED B.
ZooKeeper: Wait-free coordination for internet-scale
systems. In Proceedings of the 2010 USENIX Annual
Technical Conference, pp. 145–158. June 2010.

[16] KANG J., BENLONG, WO T., YU W., DU L., MA S.,
and HUAE J. SpanFS: A scalable file system on fast
storage devices. In Proceedings of the 2015 USENIX
Annual Technical Conference, pp. 249–261. July 2015.

[17] KESAVAN R., KUMAR H., and BHOWMIK S. WAFL
Iron: Repairing live enterprise file systems. In Proceed-
ings of the 16th USENIX Conference on File and Stor-
age Technologies (FAST), pp. 33–47. February 2018.

[18] KESAVAN R., SINGH R., GRUSECKI T., and PATEL
Y. Algorithms and data structures for efficient free
space reclamation in WAFL. In Proceedings of the 15th
USENIX Conference on File and Storage Technologies
(FAST), pp. 1–13. February 2017.

[19] KESAVAN R., SINGH R., GRUSECKI T., and PATEL
Y. Efficient free space reclamation in WAFL. ACM
Transactions on Storage, 13(3), September 2017.

[20] KUMAR H., PATEL Y., KESAVAN R., and MAKAM S.
High performance metadata integrity protection in the
WAFL copy-on-write file system. In Proceedings of
the 15th USENIX Conference on File and Storage Tech-
nologies (FAST), pp. 197–211. February 2017.

[21] LAMPORT L. The part-time parliament. ACM Trans-
actions on Computer Systems, 16(2), pp. 133–169.

[22] LAMPSON B.W. and LOMET D. A new presumed
commit optimization for two phase commit. In Pro-
ceedings of the 8th International Conference on Very
Large Data Bases (VLDB), pp. 630–640. August 1993.

USENIX Association 2019 USENIX Annual Technical Conference 147

https://coreos.com/etcd/
https://staged-gluster-docs.readthedocs.io/en/release3.7.0beta1/Features/dht/
https://staged-gluster-docs.readthedocs.io/en/release3.7.0beta1/Features/dht/
https://staged-gluster-docs.readthedocs.io/en/release3.7.0beta1/Features/dht/
https://github.com/hpc/ior
https://github.com/hpc/ior

[23] LANCASTER L. and ROWE A. Measuring real world
data availability. In Proceedings of the 15th Systems
Administration Conference (LISA), pp. 93–100. De-
cember 2001.

[24] MCKUSICK M.K., NEVILLE-NEIL G.V., and WAT-
SON R.N.M. The Design and Implementation of the
FreeBSD Operating System, chapter 10. Addison Wes-
ley, 2nd edition, 2015. ISBN 9780321968975.

[25] NETAPP, INC. Data ONTAP 8. http://www.netapp.

com/us/products/platform-os/data-ontap-8/, 2010.

[26] NETAPP, INC. Volume Move Express Guide.
https://library.netapp.com/ecm/ecm_download_

file/ECMLP2496251, May 2019.

[27] OUSTERHOUT J.K., CHERENSON A.R., DOUGLIS F.,
NELSON M.N., and WELCH B.B. The Sprite network
operating system. IEEE Computer, 21(2), pp. 23–36,
February 1988.

[28] PATTERSON D.A., GIBSON G., and KATZ R.H. A
case for redundant arrays of inexpensive disks (RAID).
In Proceedings of the 1988 SIGMOD International
Conference on Management of Data, pp. 109–116.
June 1988.

[29] PATTERSON H., MANLEY S., FEDERWISCH M., HITZ
D., KLEIMAN S., and OWARA S. SnapMirror: File
system based asychronous mirroring for disaster re-
covery. Proceedings of USENIX Conference on File
and Storage Technologies (FAST), pp. 117–129, Jan-
uary 2002.

[30] RODEH O., BACIK J., and MASON C. BTRFS: The
Linux B-tree filesystem. ACM Transactions on Storage,
9(3), 2013. ISSN 1553-3077. doi:10.1145/2501620.
2501623.

[31] SANDBERG R., GOLDBERG D., KLEIMAN S.,
WALSH D., and LYON B. Design and implementa-
tion of the Sun network filesystem. In Proceedings of
the USENIX Summer 1985 Technical Conference, pp.
119–130. June 1985.

[32] SCHMUCK F. and HASKIN R. GPFS: A shared-disk
file system for large computing clusters. In 1st USENIX
Conference on File and Storage Technologies (FAST),
pp. 213–244. January 2002.

[33] SELTZER M.I., GANGER G.R., MCKUSICK M.K.,
SMITH K.A., SOULES C.A.N., and STEIN C.A. Jour-
naling versus soft updates: Asynchronous meta-data
protection in file systems. In Proceedings of the
2000 USENIX Annual Technical Conference, pp. 71–
84. June 2000.

[34] SEVILLA M.A., WATKINS N., MALTZAHN C., NASSI
I., BRANDT S.A., WEIL S.A., FARNUM G., and
FINEBERG S. Mantle: A programmable metadata load
balancer for the Ceph file system. In SC ’15: Proceed-
ings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis.
November 2015.

[35] STANDARD PERFORMANCE EVALUATION CORPO-
RATION. SPEC SFS 2014. https://www.spec.org/

sfs2014/, 2017.

[36] STANDARD PERFORMANCE EVALUATION CORPO-
RATION. SPEC SFS 2014 SP2 Run and Report-
ing Guide. https://www.spec.org/sfs2014/docs/

runrules.pdf, 2017.

[37] STANDARD PERFORMANCE EVALUATION CORPO-
RATION. SPEC SFS 2014 SP2 Users Guide. https://

www.spec.org/sfs2014/docs/usersguide.pdf, 2017.

[38] THEKKATH C.A., MANN T., and LEE E.K. Frangi-
pani: A scalable distributed file system. In Proceed-
ings of the 16th ACM Symposium on Operating Systems
Principles (SOSP), pp. 224–237. October 1997.

[39] WEIL S.A., BRANDT S.A., MILLER E.L., LONG
D.D.E., and MALTZAHN C. Ceph: A scalable, high-
performance distributed file system. In Proceedings of
the 7th Symposium on Operating Systems Design and
Implementation (OSDI), pp. 307–320. November 2006.

[40] WEIL S.A., BRANDT S.A., MILLER E.L., and
MALTZAHN C. CRUSH: Controlled, scalable, decen-
tralized placement of replicated data. In SC ’06: Pro-
ceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analy-
sis. November 2006.

[41] WELCH B. and OUSTERHOUT J. Prefix tables: A sim-
ple mechanism for locating files in a distributed system.
In Proceedings of the 6th International Conference on
Distributed Computing Systems (ICDCS), pp. 184–189.
May 1986.

[42] WELCH B.B., UNANGST M., ABBASI Z., GIBSON
G.A., MUELLER B., SMALL J., ZELENKA J., and
ZHOU B. Scalable performance of the Panasas parallel
file system. In Proceedings of the 6th USENIX Con-
ference on File and Storage Technologies (FAST), pp.
17–33. February 2008.

NETAPP, the NETAPP logo, and the marks listed at
http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of
their respective owners.

148 2019 USENIX Annual Technical Conference USENIX Association

http://www.netapp.com/us/products/platform-os/data-ontap-8/
http://www.netapp.com/us/products/platform-os/data-ontap-8/
https://library.netapp.com/ecm/ecm_download_file/ECMLP2496251
https://library.netapp.com/ecm/ecm_download_file/ECMLP2496251
https://www.spec.org/sfs2014/
https://www.spec.org/sfs2014/
https://www.spec.org/sfs2014/docs/runrules.pdf
https://www.spec.org/sfs2014/docs/runrules.pdf
https://www.spec.org/sfs2014/docs/usersguide.pdf
https://www.spec.org/sfs2014/docs/usersguide.pdf
http://www.netapp.com/TM

EROFS: A Compression-friendly Readonly File System for

Resource-scarce Devices

Xiang Gao1, Mingkai Dong2, Xie Miao1, Wei Du1, Chao Yu1, and Haibo Chen2,1

1Huawei Technologies Co., Ltd.
2Shanghai Jiao Tong University

Abstract

Smartphones usually have limited storage and runtime mem-

ory. Compressed read-only file systems can dramatically de-

crease the storage used by read-only system resources. How-

ever, existing compressed read-only file systems use fixed-

sized input compression, which causes significant I/O ampli-

fication and unnecessary computation. They also consume

excessive runtime memory during decompression and deteri-

orate the performance when the runtime memory is scarce. In

this paper, we describe EROFS1, a new compression-friendly

read-only file system that leverages fixed-sized output com-

pression and memory-efficient decompression to achieve

high performance with little extra memory overhead. We also

report our experience of deploying EROFS on tens of mil-

lions of smartphones. Evaluation results show that EROFS

outperforms existing compressed read-only file systems with

various micro-benchmarks and reduces the boot time of real-

world applications by up to 22.9% while nearly halving the

storage usage.

1 Introduction

Low-end smartphones with relatively low price are still

prevalent in the market [18, 25], especially in developing

countries. At a price, such devices are usually equipped with

limited resources in both capacity and performance. For ex-

ample, a low-end Android smartphone may have 1-2GB run-

time memory and 8-16GB slow eMMC storage [19, 21, 22].

Even worse, the Android operating system itself can con-

sume more than 3GB in storage, leaving scarce storage space

available to users [46]. Even for high-end smartphones, the

increasing storage and runtime memory consumption of pop-

ular or resident apps usually render a device resource-scarce

for both user-initiated and system-initiated operations.

File systems with compression support, or compressed

file systems, can be used to release more space to the

1Short for Enhanced Read-Only File System. It has been upstreamed to

Linux 4.19 as a major feature and integrated into Huawei’s Smartphone

Operating System (called EMUI) as a top feature (https://consumer.

huawei.com/en/emui/) of version 9.1.

users by transparently compressing/decompressing file data

upon accesses. However, such file systems usually consume

more resources and yield notably worse performance during

compression/decompression. Thus they are not suitable for

resource-limited devices, especially smartphones, on which

user experience has the top priority.

Fortunately, for partitions with read-only data, such as the

/system, /vendor and /odm partitions of Android, the file sys-

tem can be made read-only to boost the performance by sim-

plifying the structures and designs for file changes. How-

ever, existing compressed read-only file systems, such as

Squashfs [10, 11], usually cause notable degradation on ac-

cess performance and incur extra memory usage during de-

compression. One key issue is that such file systems use

fixed-sized input compression, in which file data is divided

into fixed-sized chunks (e.g., 128KB) and each chunk is com-

pressed individually. The fixed-sized input compression in-

curs significant read amplification and excessively unneces-

sary computations (§2.2). Even worse, they usually require a

huge amount of runtime memory, which is scarce on low-end

smartphones or heavily-used high-end smartphones (§2.2).

To save the storage space and retain high performance

with low memory overhead, we design and implement

EROFS, an enhanced read-only file system with compres-

sion support. EROFS introduces the fixed-sized output com-

pression, which compresses file data to multiple fixed-sized

blocks, to significantly mitigate the read amplification prob-

lem and reduce unnecessary computations as much as pos-

sible. By exploiting the characteristics of compression al-

gorithms (such as LZ4), EROFS designs different memory-

efficient decompression schemes to reduce extra memory us-

age during the decompression. EROFS also adopts a set of

optimizations that carefully ensure guaranteed user experi-

ence.

The main contributions of this paper include:

• A study of existing compressed file systems which re-

veals the performance issues on resource-hungry de-

vices (§2).

• A fixed-sized output compression scheme that signifi-

USENIX Association 2019 USENIX Annual Technical Conference 149

https://consumer.huawei.com/en/emui/
https://consumer.huawei.com/en/emui/

cantly mitigates the read amplification issue (§3.1).

• A set of novel decompression schemes for both

memory-efficiency and high performance (§3.3).

• An evaluation of EROFS against other file systems to

validate the effectiveness of EROFS (§5) and a study

on the deployment experience of EROFS on tens of mil-

lions of smartphones (§6).

2 Background and Motivation

2.1 Low user-perceived storage space

Smartphones are usually resource-scarce due to the cost con-

straint. Meanwhile, the space occupied by the Android oper-

ating system is constantly increasing. Fig. 1 shows the /sys-

tem partition size in stock Android factory images [6] for

different Android versions. The sparse image strips off all

zero blocks and thus only contains all effective data; while

the raw image is the actual space consumed once stored into

the devices. From the figure, we can see the data size of

the /system partition increases from 184MB in Android 2.3.6

to 1.9GB in Android 9.0.0. Besides the trend of increasing

the effective data size, we can also see a large number of

zero blocks in Android 7 and 8, which also consume large

space. For Android 9, the zero blocks are significantly less,

which is due to the support of data block deduplication [20]

in the ext4 file system. Besides the /system partition shown

in Fig. 1, there are other space-consuming partitions for An-

droid such as /vendor, /oem and /odm [8]. As reported in pre-

vious work [46], the space used by the whole Android system

itself is increasing and far larger than what we show here.

For example, Android 6.0.0 consumes 3.17GB storage after

a factory-reset [46].

Meanwhile, the storage consumption of Android applica-

tions also keeps growing. As reported by Google Play, by

early 2017, the average app size has quintupled compared

with that at the time Google starts its Android application

marketplace [45]. As a result, the storage capacity of low-end

smartphones available for users is rather small. Further, many

top apps for smartphones tend to consume a huge amount of

memory, leaving only a small amount of memory for system-

initiated operations even on a high-end smartphone.

2.
3.

6

4.
0.

4

4.
1.

2

4.
2.

2
4.

3
4.

4

5.
0.

2

5.
1.

0

6.
0.

0

7.
0.

0

8.
0.

0

9.
0.

0

Android version

0

1

2

3

/s
y
s
te

m
 s

iz
e
 (

G
B

)

Sparse Image Size

Raw Image Size

Fig. 1: Android /system partition sizes

Compressed file systems. One intuitive approach to unleash-

ing more spaces for users is adopting compressed file sys-

tems, which exposes standard file interfaces to the applica-

tions but transparently compress and decompress file data

during file writes and reads.

Btrfs [2] is a modern B-tree file system with compres-

sion support. When compression is enabled, the file data is

divided into multiple 128KB chunks and compressed sepa-

rately. Each of the compressed chunks will be stored in an

extent, which is a run of contiguous blocks that store data

sequentially. The locations of these extents are recorded as

indexes in the B-tree structures. To read the file data, the cor-

responding extents are read from the storage and the whole

chunks are decompressed. To update a file, the new data

is compressed and written to new extents, and then the in-

dexes are updated. To read the file data, Btrfs reads the cor-

responding extents from the storage and decompresses the

whole chunks. To update a file, Btrfs compresses the new

data, writes it to new extents, and updates the indexes.

Btrfs is a general-purpose file system, so its internal struc-

tures must consider efficient data modifications and can-

not be aggressively optimized for compression. Furthermore,

compression is not the only metric. The memory consump-

tion during decompression should also be constrained.

For devices like smartphones, performance and respon-

siveness are important key metrics that cannot be compro-

mised. Hence, with the burden of efficient data modifica-

tion, Btrfs can hardly satisfy the requirements of both per-

formance and compression efficiency, as we will show later

in the evaluation (§5).

Compressed read-only file systems. Considering the ac-

cess patterns of partitions in Android, we find that system

resources are rarely modified once the Android operating sys-

tem is installed. We can thus use compressed read-only file

systems on read-only partitions to reduce the space consump-

tion for system resources while retaining the performance.

Unlike compressed read-write file systems which are com-

plicated by data modifications, compressed read-only file sys-

tems exclude data updates by design, which exposes more op-

portunities for higher compression ratio and faster data reads.

Squashfs [11] is a widely-used compressed read-only file

system in Linux with many features and moderate perfor-

mance. It supports several compression algorithms, and the

chunk (i.e., compression input) size can be chosen from 4KB

to 1MB. In Squashfs, metadata can be compressed, and in-

odes and directories are stored more compactly. File data is

compressed chunk by chunk, and the compressed data blocks

are stored sequentially. The compressed sizes of each origi-

nal data chunk are stored in a list within the inode. These

sizes are used to locate the position of compressed blocks

during decompression.

2.2 Deficiency of existing readonly file systems

Compressed read-only file systems are designed to minimize

storage usage. However, applying existing compressed read-

150 2019 USENIX Annual Technical Conference USENIX Association

only file systems on resource-scarce smartphones can induce

significant overhead on both performance and memory con-

sumption. For example, we first tried to use Squashfs for

the read-only partitions on Android. While the system boots

successfully with Squashfs, booting the camera application

requires tens of seconds even with light background work-

loads.

Why is there such a huge performance slowdown? We

conducted a detailed study of Squashfs with default config-

uration using microbenchmarks and uncover that the perfor-

mance degradation mainly originates from two parts. The

first one is I/O amplification. We used FIO [23] to evalu-

ate the basic performance of Squashfs. When Android se-

quentially reads 16MB from the 1GB enwik9 [40] file stored

in Squashfs, the actually issued I/O is 7.25MB. While the

number looks decent regarding compression, Squashfs issues

165.27MB I/O reads when Android reads 16MB randomly.

Moreover, when Android reads the first 4KB of every 128KB,

reading 16M file data issued as much as 203.91MB I/O read.

The difference suggests that when Squashfs reads some data

that is not decompressed and cached before, the size of data

requested is significantly amplified.

The second reason is extra memory consumption. The to-

tal memory consumption after sequentially reading the 1GB

enwik9 file on Squashfs is about 1.35GB, which suggests

that decompression in Squashfs requires a significant amount

of temporary memory compared to the size of the original

data needed. This causes high pressure to Android since

memory is a key factor for user experience given that An-

droid and its apps already consume a large amount of mem-

ory. On one hand, allocating memory during decompression

may trigger memory swapping, which involves victim selec-

tions and I/Os with high cost. On the other hand, consum-

ing much extra memory during decompression affects other

components or applications by dropping their cached data or

swapping out useful memory pages.

We further analyzed the design and implementation of

Squashfs and found the following two defects.

Fixed-sized input compression. Existing file systems

compress original data in a fixed-sized chunk, generating

variable-sized compressed data. As shown in Fig. 2(a),

Squashfs takes a fixed-sized data (e.g., a 128KB chunk) as

the input of a single invocation of the compression algorithm.

The compression algorithm then generates the compressed

data whose size depends on the content of the input data. The

compressed data of one file is usually compacted in the origi-

nal data order, to reduce wasted space in the first and the last

blocks of each compressed chunk.

Such a compression approach appears decent but has a no-

table deficiency due to amplified I/O and wasted computa-

tion. For example, in Fig. 2(b), the application wants to get

the first byte of the 128KB chunk. To satisfy the application’s

request, the Squashfs has to read all compressed data from

block 1 to block 7. Considering the minimal requested block

size of the underlying storage devices is 4KB, the I/O is am-

plified 7 times! This is because the file system must read all

related compressed blocks, even if the number of compressed

blocks is very large. Even worse, even if not all data stored

in the first block and the last block are useful for the decom-

pression, they must be read from the storage altogether. In

the example, the shadowed parts of block 1 and block 7 in

Fig. 2(b) contribute nothing to the decompression but have

to be read from the storage. Besides, the decompression pro-

cess for useless data also causes huge CPU wastes that lead

to high performance interference of other running apps (such

as the Camera mentioned before).

One possible mitigation would be reducing the input

chunk size to 4KB in Squashfs. While this might alleviate

the I/O amplification, this non-trivially reduces the compres-

sion ratio and incurs higher CPU utilization, as we will show

in section 5.

Massive memory consumption and data move-

ments. The other defect we found is that Squashfs

requires massive temporary memory during the decompres-

sion. Upon file read requests, Squashfs will first look up the

metadata to get the number of related compressed blocks. It

then allocates memory (e.g., the buffer_head structure) for

each of the compressed blocks, and issues I/O reads to fetch

the compressed blocks from the storage to the allocated

buffer_heads. Since the buffers in buffer_heads of adjacent

compressed blocks might not have continuous virtual ad-

dresses, Squashfs has to copy data in the buffer_heads of all

compressed blocks to a single continuous buffer. Then, the

compression algorithm decompresses all original data and

puts them in a temporary output buffer. Finally, Squashfs

copies the original data from the temporary output buffer to

the corresponding page cache pages.

From the above routine, two pre-allocated temporary

buffers are used and an array of buffer_heads are dy-

namically allocated for the decompression. The number of

buffer_head needs to be large enough to store all compressed

blocks. However, allocating such a large amount of mem-

ory can cause severe performance degradation under a low-

memory situation.

In addition to extra memory allocation, there are two data

movements during decompression: from the buffer_heads to

the temporary input buffer, and from the temporary output

buffer to the page cache. These two data movements also

cause performance overhead since, most of the time, the com-

pression/decompression algorithm is bottlenecked by mem-

ory accesses.

The above two defects in Squashfs reveal two challenges

when designing a compressed read-only file system for

resource-scarce smartphones.

• How to reduce I/O amplification during the decompres-

sion without sacrificing the compression ratio?

• How to reduce memory consumption during the decom-

pression to prevent performance degradation?

USENIX Association 2019 USENIX Annual Technical Conference 151

128KB chunk 128KB chunk 128KB chunk 128KB chunk

21 3 4

21 3 4

compress

compact

original data

compressed data in storage

(a) Fixed-sized input

blk
0

blk
1

blk
2

blk
3

blk
4

blk
5

128KB chunk

original data

compressed data in storage

blk
6

blk
7

blk
8

(b) Fixed-sized input issues

chunk chunk chunk

original data

compressed data in storage

4K 4K 4K 4K 4K

chunk chunk

(c) Fixed-sized output

Fig. 2: Compression approaches

3 EROFS:Enhanced Compressed File System

This section presents the design of EROFS, a compression-

friendly readonly file system which overcomes the deficiency

of prior systems. The key design of EROFS includes fixed-

sized output compression, cached I/O and in-place I/O, and

memory-efficient decompression.

3.1 Fixed-sized output compression

To overcome the read amplification incurred by the fixed-

sized input compression, EROFS adopts a different compres-

sion approach: fixed-sized output compression.

To generate fixed-sized output, EROFS compresses the file

data using a sliding window, whose size is a fixed value and

can be configured during image generation. The compression

algorithm is invoked multiple times until all file data is com-

pressed. For example, with a 1MB sliding window, EROFS

feeds the compression algorithm with 1MB original data at

a time. The algorithm then compresses the original data as

much as possible until all 1MB data is consumed or the con-

sumed data can generate exactly 4KB compressed data. The

remaining original data is combined with more data, forming

another 1MB original data for the next invocation of com-

pression. Fig. 2(c) depicts the fixed-sized output compres-

sion, in which variable-sized original data is compressed to

4KB blocks.

There are several benefits of using fixed-sized output com-

pression compared to the fixed-sized input one. First, as what

we will show in the evaluation (§5.3), it has better com-

pression ratio under the same compression unit size. This

is reasonable since the fixed-sized output compression can

compress data as much as possible until the output limit is

reached, while the fixed-sized input compression can only

compress a fixed size of data at a time. Second, during the

decompression, only the compressed blocks that contain the

requested data will be read and processed. In the previous ex-

ample where a single original block is requested, at most two

compressed blocks will be read and decompressed. Third, as

we will show later in §3.3, the fixed-sized output compres-

sion makes it possible to do in-place decompression, which

further reduces the memory consumption in EROFS.

3.2 Cached I/O and in-place I/O

Before the actual decompression, EROFS needs space to

store the compressed data retrieved from the storage. While

this is costly for fixed-sized input compression due to ex-

cessive memory allocation and even page swapping, fixed-

sized output compression would incur much less cost since

EROFS clearly knows that each compression only retrieves

up to two compressed blocks. There are two strategies for

EROFS: cached I/O and in-place I/O. EROFS uses cached

I/O for compressed blocks that will be partially decom-

pressed. EROFS manages a special inode whose page cache

stores compressed blocks indexed by the physical block num-

ber. Thus, for cached I/O, EROFS will allocate a page in the

special inode’s page cache to initiate the I/O request, so that

the compressed data will be directly fetched to the allocated

page by the storage driver.

For compressed blocks that will be completely decom-

pressed, EROFS uses in-place I/O. On each file read, VFS

will allocate pages in the page cache for the file system to put

file data. For any one of these pages that contains no mean-

ingful data before the decompression, we call it a reusable

page. For in-place I/O, EROFS uses the last reusable page to

initialize the I/O request.

Both I/O strategies are necessary. For cached I/O, partially

decompressed blocks are cached in the special page cache,

so that subsequent reads to the uncompressed part can use

these blocks without invoking additional I/O requests. For

blocks that are fully decompressed, they are unlikely to be

used later since all decompressed data is stored in the page

cache, which can serve subsequent reads without decompres-

sion. Thus, cached I/O vainly increases the memory spike

due to page allocations for fully compressed blocks, while

not contributing to subsequent file reads. In such cases, in-

place I/O avoids unnecessary memory allocation, which re-

lieves the memory pressure especially when there are many

in-flight file read requests on different compressed blocks.

Note that although it is possible to put the compressed block

on the stack, it is not recommended to do so since the stack

size is limited to be 16KB [14] and it is not easy to know how

many bytes of the stack are still available.

3.3 Decompression

After loading compressed data into memory, we illustrate

how EROFS decompresses data both fast and memory-

efficiently. Examples in this section are based on Fig. 3(a)

where the first five blocks (D0 to D4) and part of the block

D5 are compressed to block C0, and the rest blocks are com-

pressed to block C1. In this subsection, we only introduce

152 2019 USENIX Annual Technical Conference USENIX Association

D0 D1 D2 D3 D4 D5 D6

C0

D7

original data blocks

compressed blocksC1

D8

(a) Compression

D0 D1 D2 D3

C0 compressed blocks

temporary pages

D4

page cache

virtual
memory

physical
memory

mappings

decompress

(b) Vmap decompression

D8

compressed blocksC1

page cache

D5 D6 D7 D8

per-CPU buffer

decompress
memcpy

(c) Buffer decompression

D 0 D1 D2 D3

temporary pages

D4

page cache

virtual
memory

physical
memory

mappings

decompress

C0
(D5)

(d) In-place decompression

Fig. 3: Decompression

how a single compressed block is decompressed since, for

read requests containing data in multiple compressed blocks,

the compressed blocks are decompressed one by one simi-

larly. For example, to read blocks D4 to D6 in Fig. 3(a), C0

is firstly decompressed to get D4 and the first part of D5; then

C1 is decompressed to get the rest of D5 and D6.

Vmap decompression To get the data in block D3 and D4,

EROFS first reads the compressed block C0 from the storage

and stores it in the memory. Then EROFS will decompress it

in following steps.

1. Find the largest needed block number that is stored in

the compressed block (C0), which is the fifth block (D4)

in the example. As an advantage, EROFS only needs to

decompress the first five blocks (D0 to D4), rather than

decompressing all original data blocks.

2. For each of the data blocks that need to be decom-

pressed, find memory space to store them. In the exam-

ple shown in Fig. 3(b), EROFS allocates three tempo-

rary physical pages to store D0, D1, and D2. For the re-

quested two blocks, D3 and D4, EROFS reuses the two

physical pages that have been allocated by VFS in the

page cache.

3. Since the decompression algorithm requires continuous

memory as the destination of decompression, EROFS

maps physical pages prepared in the previous step into a

continuous virtual memory area via the vmap interface.

4. If it’s in-place I/O, in which case the compressed block

(C0) is stored in the page cache page, EROFS also needs

to copy the compressed data (C0) to a temporary per-

CPU page so that the decompressed data won’t over-

write the compressed data during the decompression.

5. Finally, the decompression algorithm is invoked, and

data in the compressed block is extracted to the continu-

ous memory area. After the compression, the three tem-

poral physical pages and the virtual memory area can

be reclaimed, and the requested data has already been

written to the corresponding page cache pages.

Per-CPU buffer decompression The above decompres-

sion approach causes two problems. The first one is that

it is still required to dynamically allocate physical memory

pages, which increases the memory pressure on memory-

constrained devices. The second problem is that using vmap

and vunmap on each decompression is inefficient.

EROFS leverages per-CPU buffers to mitigate the prob-

lems when the decompressed data is less the four pages.

As shown in Fig. 3(c), a four-page memory buffer is pre-

allocated for each CPU as the per-CPU buffer. For decom-

pression that extracts no more than four blocks of data,

EROFS decompresses the data to the per-CPU buffer and

then copy the requested data to the page cache pages. In the

example demonstrated in Fig. 3(c), data in block D8 is re-

quested. The compressed data in C1 is directly decompressed

to the per-CPU buffer, and the content of D8 is copied to the

page cache page via memcpy.

The length of the per-CPU buffer is empirically decided,

but it can effectively eliminate memory allocations since the

per-CPU buffer can be reused across different decompres-

sions. The per-CPU buffer decompression is a cost-effective

trade-off which mitigates issues in the vmap decompression

while introducing extra memory copies.

Rolling decompression To avoid the overhead of vmap

and vunmap and eliminate other dynamic page allocations,

EROFS allocates a large virtual memory area2 and 16 physi-

cal pages for each CPU.

Before each compression, EROFS uses the 16 physical

pages, along with the physical pages of the page cache to

fill in the VM area, so that step 2 and step 3 of the vmap

decompression can be skipped.

EROFS uses LZ4 as the compression algorithm, which

needs to look backward at no more than 64KB of the decom-

pressed data [7]. Thus, for a compression that extracts more

than 16 pages, EROFS can reuse the physical page mapped

16 virtual pages (i.e., 64KB) before. For example, in Fig. 4,

the virtual addresses to store blocks D0 to D15 are backed by

the 16 physical pages. The virtual page of D16 can be backed

by the same physical page with D0 since each virtual address

in D16 is 64KB away from the corresponding address in D0.

D17 is backed in the same way by the physical page used by

D1. D18, which is requested by the file read, uses the physi-

cal page of the page cache.

As a result, 16 physical pages are sufficient for any decom-

pression cases by using such a rolling decompression.

2A virtual memory of 256 pages is sufficient for all the workloads we have

met.

USENIX Association 2019 USENIX Annual Technical Conference 153

mappings

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18

16 physical pages for each cpu
page cache

physical page

per-CPU VM area

Fig. 4: An example of rolling decompression

In-place decompression In step 4 of the vmap decompres-

sion approach, the compressed data is moved to a temporary

per-CPU page to avoid data not yet compressed from being

overwritten by the compressed data (Fig. 5).

C2

D9 D10 C2’

decompress in-place

seq. A

decompressed seq. A

same blocks

seq. corrupted

Fig. 5: An example compressed block (C0) that cannot

be decompressed in-place. The decompressed data of se-

quence A corrupts the next sequence (the shadow part)

which has not been decompressed.

However, if such a situation will never happen for a com-

pressed block, we can decompress it in-place to avoid the

extra memory allocation and memory copies. EROFS sim-

ulates the decompression during mkfs and marks whether a

compressed block can be decompressed in-place in the block

index. During the decompression of a block that can be de-

compressed in-place, step 4 is skipped. In our tested work-

load enwik9 in §5, 99.6% compressed blocks can be decom-

pressed in-place; thus, most blocks can benefit from the in-

place decompression as long as they are retrieved by in-place

I/O.

4 Implementation

We have implemented EROFS as a Linux file system and

upstreamed the common part of EROFS to Linux kernel3.

In the current implementation, we use 4KB as the fixed

output size since it is the minimal unit of page management

and storage data transfers, and thus I/O amplification can

be minimized. We support LZ4 (v1.8.3) as the compression

algorithm since it has the fastest decompression speed and

good compression ratio in our case. Other compression algo-

rithms, such as LZO, can be supported once they are mod-

ified to provide fixed-sized output compression interfaces.

Only the file data is compressed in EROFS; metadata such

as inode and directory entries is stored without compression.

Currently, EROFS is still under active development and

new features are constantly shipped into the smartphones

3Since some optimizations are not yet upstreamed, we also make the lat-

est version of the code available at https://github.com/erofs/atc19-

erofs and https://github.com/erofs/atc19-mkfs.

after a rigorous commercial testing process. Hence, we in-

troduce two versions of EROFS: 1) the latest version with

all features and optimizations presented in this paper; 2) the

commercially-deployed version, which has all features and

optimizations except the rolling decompression and the in-

place decompression. The two versions are also different in

decompression policies which we will illustrate in §4.2.

4.1 EROFS image layout

Fig. 6 shows the layout of an EROFS image. As in other

file systems, a super block is located at the beginning of the

image. Following the super block, metadata and data may be

stored in a mixed style without constraints on the order.

In the current implementation, metadata and data of a file

are stored together for better locality. For each file, as shown

in Fig. 6, an inode is stored at the beginning, followed by

blocks containing the extended attributes (i.e., xattrs) and

the block index. Blocks for compressed or uncompressed file

data (encoded blocks) are stored at the end of each file.

Since an inode can be placed anywhere in the image, the

inode number is calculated from the position of an inode, so

that the inode can be quickly located. Blocks for xattrs and

the block index are omitted if a file contains no xattrs or is

uncompressed. Further, xattrs, the block index and file data

can also be inlined within an inode if possible, which reduces

storage overhead and decreases the number of I/O requests

since the inlined data/metadata is read along with the inode.

The block index is used to quickly locate the correspond-

ing encoded block for read requests. Fig. 6 shows an exam-

ple block index for a regular file containing ten blocks be-

fore compression. The block index is an array of 8B-length

entries, each of which corresponds to a data block before

compression. Each entry indicates whether the correspond-

ing data block is the head block (the boolean head field in

Fig. 6), which starts a new encoded block. If so, the encoded

block address (blkaddr), the offset of the first byte in the

new encoded block (offset), whether the encoded block is

compressed (cmpr), and whether the block can be decom-

pressed in-place (dip) are also stored. If not, there must be

a head block before the uncompressed block, and the block

number difference to the head block is recorded in dist.

For a read request to an uncompressed data block, EROFS

gets the block index entry according to the requested block

number. For a head block, EROFS decompresses data from

the block at blkaddr, and if the offset is non-zero, EROFS

may also need to decompress from the nearest encode block

stored before the blkaddr. For a non-head block, EROFS

calculates the location of the corresponding head block ac-

cording to the stored dist, and starts to decompress until the

requested block data is decompressed.

Some data blocks (e.g., block 5 in Fig. 6), which are larger

after compression, are not compressed and directly stored

as encoded blocks. For these cases, the corresponding cmpr

fields are set to false (i.e., “N” in the figure).

154 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/erofs/atc19-erofs
https://github.com/erofs/atc19-erofs
https://github.com/erofs/atc19-mkfs

Directories are stored similarly as the regular files, except

that there is no block index, and the encoded blocks are used

to store uncompressed directory entries. For better locality of

random accesses in directories, EROFS puts all dirent head-

ers (e.g., inode number, file type, and name length) at the be-

ginning of directory entries part, and places filenames after

those headers.

Y 710 Y/N0x14 0
N / // 1

8
9

30 1 2 4 5 6 7 8 9

0x10 0x11 0x12 0x13

uncompressed data blocks

encoded blocksblock index

inode
0x14

Y 0 Y/Y0x10
N / //
Y 2019 Y/N0x11

0
1
0

head?offset
cmpr?/dip?

N / // 1
N / //
Y 0 N/N0x12

2
0

Y 0 Y/Y0x13 0
N / // 1

0
1
2
3
4
5
6
7

idx

2019B

Super
Block …

xattrs
(optional)

block index

710B

blkaddr dist

Fig. 6: EROFS image layout and the block index

4.2 Decompression policy

Two versions of EROFS have different decompression poli-

cies. The commercially-deployed EROFS uses the per-CPU

buffer decompression if less than four original data blocks

are to be extracted; otherwise, the vmap decompression is

used.

In the latest EROFS, all four decompression approaches

are implemented. If there is no more than one data block to

be extracted, the per-CPU buffer decompression is chosen.

Otherwise, if a compressed block is retrieved using in-place

I/O and can be decompressed in-place, EROFS employs the

in-place decompression approach which avoids unnecessary

memory allocations and memory copies. For other cases

where the decompressed blocks can fit in the pre-allocated

VM area, EROFS uses the rolling decompression since it

beats the vmap decompression with less memory allocation

overheads. For any other cases, the vmap decompression ap-

proach is adopted.

4.3 Optimizations

Index memory optimization It is possible that EROFS

compresses hundreds of pages of original data into a single

compressed block. In such a case, EROFS needs hundreds

of pointers to keep track of where each page of the original

data should be stored. These pointers can consume a large

amount of memory. To address such a problem, EROFS tries

to store the information with the help of reusable pages. If

there are more than one VFS allocated pages are reusable,

EROFS uses the last page to store the compressed data, and

the other pages to store some of these pointers during the I/O.

Before the actual decompression, these pointers are moved

onto the stack, so that the reusable pages are free to store the

decompressed data.

Scheduling optimization Decompression requires a rel-

atively long time. Thus it is not suitable to be done within

the interrupt context. In some file systems, such as Btrfs [2],

when compressed data has been fetched to memory, a dedi-

cated thread will be woken up to decompress the data. When

the decompression is finished, the reader thread which is-

sues the I/O will be woken up to get the decompressed data

from the page cache. To reduce scheduling overhead, EROFS

decompresses data in the reader thread, without dedicated

threads for decompression. Thus once the compressed data

has been fetched to memory, the reader thread will be directly

woken up and start decompressing the data.

Cohort decompression Several requests can be in-flight

simultaneously. If an original data block is requested on

thread A and the corresponding compressed block is being

decompressed by another thread named thread B, rather than

decompressing the data by itself, thread A can wait for thread

B to finish the decompression, and then directly read the

decompressed data from the page cache. Such cooperation

reuses the decompressed data and prevents a single data be-

ing decompressed multiple times.

Image patching Although EROFS is a compressed read-

only file system, there are cases such as system upgrade or

security patching where the data stored in EROFS needs to

be updated. EROFS provides a feature called image patching,

which supports partial data updates. Usually, modifying a sin-

gle bit in the original file data might cause a huge amount

of scattered modifications in the compressed data. Instead

of modification in-place, image patching places updated data

at the end of the EROFS image, and when the correspond-

ing file data blocks are requested, the origin data blocks are

firstly decompressed and then the updated data is applied to

overwrite the decompressed data in memory. In this way, im-

age patching prevents scattering of changes and supports par-

tial data updates without re-compressing the while file sys-

tem.

5 Evaluation

We have conducted a set of experiments to answer the follow-

ing questions:

• How does compression affect the performance of file

system read accesses?

• How much memory does EROFS consume during de-

compression?

• How does EROFS affect the boot time on real-world

applications?

5.1 Evaluation setup

By default, we conduct experiments on an ARM develop-

ment board, HiKey 960, running Android 9 Pie with Linux

kernel 4.14. The board is equipped with Kirin 960 (four

Cortex-A73 big cores and four Cortex-A53 little cores), 3GB

Hynix LPDDR4 memory and 32GB Samsung UFS storage.

We also evaluate on two kinds of smartphones in some

experiments. The low-end smartphones are equipped with

MT6765 (eight Cortex-A53 cores), 2GB memory and 32GB

USENIX Association 2019 USENIX Annual Technical Conference 155

eMMC storage. High-end smartphones run with Kirin 980

(four Cortex-A76 cores and four Cortex-A55 cores), 6GB

memory and 64GB UFS storage.

For micro-benchmarks, we run FIO [23], a flexible I/O

tester, on various file systems including EROFS, Squashfs,

Btrfs, Ext4, and F2FS. We use the latest version of EROFS

for micro-benchmark evaluation. Among these file systems,

EROFS and Squashfs are designed to be compressed read-

only file systems; Btrfs is a file system with compression

support, but it is not a file system designed for read-only data;

Ext4 is the default file system used by Android; F2FS is a

file system designed for mobiles and is widely used in some

smartphones.

EROFS is configured to use 4KB-sized output compres-

sion with LZ4. Squashfs is configured to use LZ4 with 4KB,

8KB, 16KB, and 128KB compression chunk sizes, indicated

by Squashfs-4K, Squashfs-8K, Squashfs-16K, and Squashfs-

128K, respectively. Btrfs is configured to run in read-only

mode without data integrity checks for a fair comparison.

The compression algorithm used by Btrfs is LZO, since Btrfs

does not support LZ4. Both Ext4 and F2FS are used without

compression in the experiments since they do not support it.

For real-world applications, we compare EROFS with

Ext4, since Ext4 is now the default file system used by An-

droid [17]. We use the commercial version for real-world

evaluation since it takes time to ship the latest version to

smartphones. We also tried to use Squashfs on Android.

However, it costed too much CPU and memory resources,

and when trying to run a camera application, the phone froze

for tens of seconds before it finally failed.

5.2 Micro-benchmarks

We use FIO to show the basic I/O efficiency of different file

systems. In this experiment, we use enwik9 [40] as the work-

load, which is the first 109 bytes of the English Wikipedia

dump. We store the file in different file systems and read the

file to test the file system read throughput. Each read is a 4KB

buffered read. We test the throughput under three scenarios:

sequential read, random read, and stride read. For the sequen-

tial read, we read the file 4KB by 4KB sequentially; thus the

following reads are highly likely to hit in cache since the data

is already loaded in the memory by previous decompression

or prefetching (i.e., readahead). For the random read, we ran-

domly read the whole file; thus the reads can hit in the cache

if the data is already decompressed by previous reads. The

last scenario is the stride read, in which we only read the

first 4KB in every 128KB data. Since the largest compres-

sion chunk is 128KB, stride reads will not hit in cache4. We

test stride reads to illustrate the worst-case performance for

compressed file systems.

Before each test, the page cache is dropped to reduce inter-

ference. All tests are done at least ten times, and the average

4In enwik9 and silesia.tar, no more than 128KB data is compressed to a

single block in EROFS.

throughputs are reported. The max relative standard devia-

tion is 17.3% for stride reads on A53 cores and 5.1% for the

rest results. Fig. 7 shows the following results we observed.

Btrfs performs worst in all tests compared with EROFS and

Squashfs-128K, since it is designed neither for compression

nor for read-only data. On one hand, Btrfs does not take

advantage of the read-only property and has to consider up-

dates; thus it is outperformed by the compressed read-only

file systems EROFS and Squashfs-128K. On the other hand,

decompression in Btrfs incurs notable performance overhead

compared to Ext4 and F2FS which do not need to decom-

press data during reads. This is reasonable since Btrfs is not

designed to be a compressed read-only file system.

Btrfs performs better than other configurations of

Squashfs for sequential reads, which is caused by its larger

compression chunk (128KB). The advantages shrink in ran-

dom reads where prefetching does not work; the advantage

disappears in stride reads where decompressing more data

than requested becomes the burden.

Overall, this result shows the inefficiency of using general

file systems with compression support for read-only data and

emphasizes the necessity of designing compressed read-only

file systems.

As the size of compression input increases, the performance

of Squashfs increases for random reads and sequential reads,

but decreases for stride reads. The main reason for this

phenomenon is the locality and cache. Since file systems

have enough memory to cache file data in this experiment,

all decompressed data will be cached and possibly be read

in the future. Thus for random reads and sequential reads,

the larger-sized data is decompressed, more future reads will

hit the cache. That is basically the reason why the Squashfs

throughputs grow as the compression chunk size increases.

Since both sequential and random reads will read the

whole file, there is only a little performance difference, which

is caused by the good locality and prefetching.

For stride reads, however, FIO only reads the first 4KB

data for each 128KB data, which eradicates the benefits of

memory cache since all the data decompressed but not re-

quested will never be used in the future. Thus the more ir-

relevant data is read and decompressed, the more time and

resource are wasted, yielding worse performance. That ex-

plains why the throughput drops with the increase of the com-

pression chunk size for Squashfs.

EROFS performs best in most of the tests among file sys-

tems with compression support and sometimes outperforms

file systems that do not compress data. For sequential reads,

EROFS exhibits the best performance among compressed

file systems. Most wins come from the design of fixed-sized

output compression and the elimination of unnecessary mem-

ory allocations and data movements compared with Squashfs.

For random reads, EROFS is outperformed by Squashfs-

128K since the latter can decompress and cache the whole

file during the test, while EROFS only benefits from cached

156 2019 USENIX Annual Technical Conference USENIX Association

stride rand seq stride rand seq stride rand seq stride rand seq
0

50

100

150

200

250

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

A73-2362MHz A73-903MHz A53-1844MHz A53-533MHz

EROFS

Btrfs-128K-LZO

Squashfs-4K

Squashfs-8K

Squashfs-16K

Squashfs-128K

Ext4

F2FS

Fig. 7: FIO micro-benchmark results under three read patterns at four CPU frequencies

I/Os. However, EROFS still performs better than other com-

pressed file systems. For stride reads, since the prefetching is

barely useful, EROFS still yields the best throughput among

compressed file systems, but the win is limited.

Compared with Ext4 and F2FS without compression sup-

port, EROFS always performs comparably with and even out-

performs them (e.g., the sequential reads on A73 cores). The

reason is that even if EROFS needs to decompress data, it

reads much less data from the storage thanks to compression.

stride rand seq
0

100

200

300

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

EROFS

Btrfs-128K-LZO

Squashfs-4K

Squashfs-8K

Squashfs-16K

Squashfs-128K

Ext4

F2FS

Fig. 8: FIO micro-benchmark results for silesia.tar

We also use the workload, silesia.tar [9], to conduct the

same experiment. Silesia.tar is a tarball of the silesia com-

pression corpus, which covers typical data types used nowa-

days. The results show the same trends as enwik9, so we only

present the result for A73 cores at 2362MHz in Fig. 8.

5.3 Compression ratio and memory usage

We also evaluated the compression ratio and memory con-

sumption during the decompression of each file system. We

use both enwik9 and silesia.tar to present the compression

ratio of different file systems. Fig. 9(a) and Fig. 9(b) show

the number of bytes used on each file system for enwik9 and

silesia.tar. The origin line in both figures represents the size

of the uncompressed workload file, which is 953.67MB for

enwik9 and 202.1MB for silesia.tar. Currently, EROFS only

supports 4KB-sized output compression, but compared with

Squashfs-4K, the compressed size is 10% and 9% smaller for

the two workloads. The figure also matches the facts that the

larger the compression unit, the better the compression ratio.

0.0 0.5 1.0
Compressed size (GB)

Origin

Btrfs-128K-LZO

EROFS

Squashfs-4K

Squashfs-8K

Squashfs-16K

Squashfs-128K

0.93

0.62

0.52

0.58

0.52

0.47

0.37

(a) enwik9

0 50 100 150 200 250
Compressed size (MB)

202.1

120.0

100.9

109.2

101.2

93.8

78.0

(b) silesia.tar

Fig. 9: Compressed size

0.0 0.5 1.0 1.5
Memory usage (GB)

Ext4

EROFS

Squashfs-4K

Squashfs-8K

Squashfs-16K

Squashfs-128K

0.97

1.01

1.56

1.50

1.45

1.35

Fig. 10: Decompression memory usage

Fig. 10 shows the memory used after decompressing the

enwik9 file. The test is conducted as follows: boot the ma-

chine, mount the file system, read the file stored in the file

system, check the memory used, and then reboot.

Since the file is roughly 1GB, the remainders are either

used by other parts of the operating system or temporarily

USENIX Association 2019 USENIX Annual Technical Conference 157

Table 1: I/O amount under different read patterns

I/O (MB) seq-read rand-read stride-read

Requested 16.00 16.00 16.00

Squashfs-4K 10.65 26.19 26.23

Squashfs-8K 9.82 33.52 34.08

Squashfs-16K 9.05 46.42 48.32

Squashfs-128K 7.25 165.27 203.91

EROFS 10.14 26.12 25.93

Table 2: I/O patterns

I/O size =4K <=8K <=16K <128K =128K >128K

% 19.0 23.9 30.4 78.9 19.9 1.2

used by the file system. Besides EROFS and Squashfs, we

also tested Ext4 as the baseline. From the figure, we can see

that compared to Ext4, the memory overhead for four config-

urations of Squashfs ranges from 39.6% to 61.6%. However,

memory used by EROFS is only slightly higher than the Ext4

(about 4.9%). The result shows that EROFS has much lower

memory spikes than Squashfs and proves the effectiveness of

memory-friendly decompression of EROFS.

In the test, there is only one file to be decompressed,

and we allocate abundant memory to ensure that no mem-

ory reclamation or swapping will happen during the decom-

pression. However, in a real-world scenario where more files

will be decompressed simultaneously, more memory will be

needed by the decompression of Squashfs. Once the avail-

able memory is scarce, memory reclamation or swapping

may happen, which is very expansive and affects not only

the file systems, but also other components or applications in

the whole system. Thus in real-world scenarios, the advan-

tages of EROFS, which uses as little as memory during the

decompression, will be more remarkable.

5.4 I/O amplification and I/O patterns

We reran tests mentioned in §2.2 on EROFS and differ-

ent Squashfs configurations. Table 1 lists the actual I/O is-

sued when reading 16MB file data under three read patterns.

EROFS issued the least I/O for random reads and stride reads.

Yet, since Squashfs-8K, Squashfs-16K and Squashfs-128K

have a better compression ratio, they read less data than

EROFS for sequential reads. In summary, EROFS reduces

the I/O amplification for most cases compared with Squashfs,

especially for random reads and stride reads.

We further identified the I/O pattern in a simulated real-

world environment to illustrate how I/O amplification will

affect real-world applications. We installed 100 apps and ran

the Monkey tool [13] to randomly tap the screen once per

second for 3 hours. We collected the I/O sizes passed to the

readpage and readpages interfaces and show the propor-

tion of different I/O sizes in Table 2. The result shows that

there are quite a lot of I/Os (30.4%) with sizes no more than

16K, which we consider as random I/Os. The amount of ran-

dom I/Os is reasonable since as the system keeps running for

a long time, some pages in the applications’ page cache are

reclaimed due to memory shortage. The insignificant amount

of random I/Os emphasizes the importance of EROFS’s ef-

fort of reducing the I/O amplification.

5.5 Throughput and space savings

0 6 15 24 34 47 52 65 74 85 90 96
Space savings (%)

200

400

600

800

T
h
ro

u
g
h
p
u
t

(M
B

/s
) Ext4-Seq

Ext4-Rand

EROFS-Seq

EROFS-Rand

(a) Throughput on A73 cores 2362MHz

0 6 15 24 34 47 52 65 74 85 90 96
Space savings (%)

50

100

150

200

250

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

(b) Throughput on A73 cores 903MHz

Fig. 11: Throughput under different space savings

Fig. 11 depicts the throughput of EROFS and Ext4 under

different space savings. The space savings is the value of

space reduced by the compression divided by the size of orig-

inal data; thus, a larger space savings indicates more space

saved. For simplicity, we only show the results for big cores,

since similar trends are presented on little cores.

For the test, we collected blocks in our compressed parti-

tions and check their space savings. When we found a block

that matches our expected space savings, the original data

was decompressed and duplicated multiple times to form a

roughly 512MB file. Then we stored the file in EROFS and

read it to get the read throughput under its space savings. We

also stored the file in Ext4 and got the corresponding read

throughput for comparison.

Generally, the throughput of Ext4 remains stable during

the test and the performance of EROFS increases together

with space savings. EROFS achieves much better throughput

than Ext4 when the space savings is high enough. In such

cases, a single compressed block can be decompressed to

dozens of blocks. Thus, the number of I/O requests is no-

tably reduced, leading to higher performance. While when

the space savings is low, the performance of EROFS is simi-

lar to Ext4 for random reads and worse than Ext4 for sequen-

tial reads. This is the result of the conjunction of I/O costs

and decompression computation costs. For random reads, the

I/O is more expensive than the decompression computation.

While for sequential reads, due to prefetching, I/O is less

costly and the computation cost dominates when the space

158 2019 USENIX Annual Technical Conference USENIX Association

savings is low.

5.6 Different decompression approaches and

optimization

To illustrate the effect of different decompression ap-

proaches, we ran FIO sequential reads on the Kirin 980

smartphone with A76 cores at 2600MHz. The vmap de-

compression approach serves file reads at 726.5MB/s while

the per-CPU buffer decompression yields throughput of

736.5MB/s. File data is read at 769.7MB/s in the latest

EROFS with the rolling decompression and the in-place de-

compression added.

We also evaluated the effect of scheduling optimization in

§4.3 with the same configuration. In the random read work-

load, the average throughput of EROFS without the schedul-

ing optimization is 64.49MB/s, while with the optimization,

the performance improves 9.5% to be 70.61MB/s.

5.7 Real-world applications

For real-world applications, we ran modified Android 9 Pie

on both low-end smartphones and high-end smartphones,

whose hardware configurations are listed in §5.1. Android

system partitions such as /system, /vendor, and /odm are com-

pressed with EROFS, and the space savings ranges from 30%

to 35%. We tested the boot time of thirteen popular applica-

tions required by the production team. We compared appli-

cation boot time on EROFS to those on Ext4 and present rel-

ative boot time in Table 3. On average, EROFS reduces the

boot time by 5.0% for low-end smartphones and 2.3% for

high-end smartphones compared with Ext4.

We also conducted the same test while running FIO as the

background workload to simulate real-world scenarios. In

the FIO workloads, four threads randomly read and write in-

dividual files with rate limited at 256KB/s for both reads and

writes. The last two rows in Table 3 show the boot time with

FIO workloads, where the reduction of boot time is 3.2% and

10.9% for low-end and high-end smartphones, respectively.

0 2 4 6 8 10
Camera boot time (s)

0

25

50

75

C
u
m

u
la

ti
v
e
 n

u
m

b
e
rs

Ext4

EROFS

Fig. 12: Camera boot time

Other than the boot time of various applications, we also

tested the boot time distribution of the camera application on

the aforementioned high-end smartphones. To simulate the

situation where memory is scarce, we ran a program in the

background which continuously allocates memory and fills

in garbage data. We waited until the program consumed all

zram in the system before starting the experiment, and kept it

running during the evaluation. In the experiment, we booted

several applications in turn and recorded the boot time when

it’s the camera’s turn to boot. We collected each time of 92

camera boots for both EROFS and Ext4, and present the cu-

mulative distribution in Fig. 12. The camera application run-

ning on EROFS boots faster than on Ext4 for more than 90%

of the boots, while the longest boot time on EROFS is worse

than that on Ext4. We think the result is acceptable since

EROFS saves the storage space while reduces the boot time

in most of the cases.

6 Experience over deployment

EROFS has been deployed to tens of millions of smartphones.

Here, we report some experiences during the deployment.

Optimizing for all cases, not only common

cases. Deploying a new file system to replace an ex-

isting one is much harder than we first imagine. The reason

is that a commercial product like a smartphone needs to

retain the benefit and features of an existing file system.

Hence, we need to carefully optimize EROFS for all cases

instead of common cases to avoid performance degradation

even in some rare cases.

For example, the performance of reading some files on

EROFS is slightly worse than on Ext4. To optimize, we

leave files with low compression ratio uncompressed for bet-

ter performance. Further, we collect access frequencies of

file blocks from anonymous beta users and store them in

dedicated files. According to the frequency information, we

pre-decompress the most frequently requested parts of com-

pressed files and pin them in the memory to balance the stor-

age consumption and the performance. As a result, the per-

formance of EROFS can be as good as, and sometimes better

than Ext4, while the storage consumption is significantly re-

duced.

Incomplete implementation leads to performance abnor-

malities and failures in real-world scenarios. We tested

EROFS after the main functionalities have been imple-

mented. However, several kinds of malfunctions happened

during real-world tests.

One example is that after the smartphone runs on EROFS

for days, several applications become extremely slow at

times. Eventually, we found that the root cause is the missing

implementation of page migration in EROFS. Page migra-

tion is invoked by the memory management subsystem to ask

file systems to move their data somewhere else. Most of the

time, the page migration will not be triggered and thus leav-

ing it unimplemented is benign. However, when the memory

is fragmented, which is the case when the bug happens, the

functionality of page migration is crucial to the success of

allocating contiguous memory in the system. The issue was

solved after we implemented the page migration in EROFS.

Bottlenecks shift on different platforms. We developed

USENIX Association 2019 USENIX Annual Technical Conference 159

Table 3: Relative boot time of thirteen applications on low-end and high-end smartphones. Each number in the table

is the average value of at least five boots. Negative numbers show the boot time reduction (in %) compared with Ext4,

while positive numbers indicate the boot time is prolonged (in %). FIO workloads are running in the background for

cases with ‘w/ FIO’ suffix.

App. # 1 2 3 4 5 6 7 8 9 10 11 12 13

Low-end -16.4 -3.5 +4.2 -4.0 -7.5 -1.4 -6.8 +6.3 -2.2 -18.4 -3.3 -7.6 -4.5

High-end -1.8 -0.7 -2.1 -1.8 -12.3 -3.7 +1.2 -8.0 -2.8 +0.7 +2.0 -2.7 +1.9

Low-end w/ FIO -2.8 -12.9 -5.4 +3.9 -7.6 +3.7 +4.4 -2.6 +9.9 +4.0 -11.1 -10.3 -15.1

High-end w/ FIO -4.6 -14.1 -10.7 -19.3 -7.0 -11.0 -15.0 +0.8 -22.9 -5.0 -18.9 -0.7 -13.2

early versions of EROFS on high-end smartphones where re-

sources are abundant, and tuned it to use as fewer resources

as possible. However, when we adopt the tuned EROFS to

low-end smartphones, the performance is lower than we ex-

pected. This is surprising since we have already considered

the limited resources and EROFS should work well. At last,

the trouble-maker turned out to be the scheduler. Schedul-

ing on low-end smartphones is much more costly and be-

comes the bottleneck of EROFS’s decompression, which mo-

tivated us to introduce the scheduling optimization described

in §4.3. Different platforms not only reflect resource limita-

tion directly on the amount of memory available or how fast

processors can run, but they can also shift the bottleneck of

software.

7 Related Work

Other compressed file systems. Several other file systems

support compression. AXFS [24] is a compressed read-only

file system. It is designed to enable execute-in-place (XIP),

which is not supported by common smartphone storage like

eMMC or UFS. CramFS [3] is another compressed read-

only file system, which is designed to be simple and space-

efficient. However, it also has several limitations such as lim-

ited file size. Cramfs was once obsoleted by Squashfs in the

Linux kernel [4] and then revived for XIP [5], which is not

supported by common smartphone storage like eMMC or

UFS. LeCramFS [27] extends CramFS for better read per-

formance and memory efficiency on flash memory. However,

the compression ratio is reduced, and LeCramFS generates

much larger images.

JFFS2 [15], and UBIFS [12] are two file systems designed

for flash memory. Although they support compression, they

have to manage the wear-leveling, address translation, and

garbage collection for NAND flash. Because all such fea-

tures are already provided by the eMMC and UFS firmware,

EROFS is much simpler and faster than JFFS2 and UBIFS.

Bcachefs [1] is a file system with an emphasis on reliabil-

ity and robustness. ZFS [16] is a full-fledged file system de-

signed by Sun Microsystems for Solaris. Although they both

support compression, they have to consider updates on com-

pressed files, which has a similar issue with Btrfs.

File system and storage for smartphones. File system

and storage for smartphones have long been a hot topic. For

example, Kim et al. [33] illustrated that storage can affect

application performance on smartphones and proposed sev-

eral approaches to mitigating the performance impact. Jeong

et al. [31] uncovered and mitigated the journaling of journal

(JOJ) anomaly by overhauling file systems on smartphones,

which has generated several follow-up efforts [36, 38, 44].

They further identified Quasi-Asynchronous I/O in smart-

phone file systems and boosted them for responsiveness [28].

SmartIO [41] reduces the application delay by prioritizing

reads over writes. MobiFS [43] is a memory-centric design

for smartphone data storage that improves response time and

energy consumption.

There has also been much work [29, 30, 34, 35, 37] pro-

viding benchmarking frameworks to evaluate file systems

and storage on smartphones. Due to the emergence of non-

volatile memory (NVM), recent researchers [26, 32, 39, 42,

47] also investigated how NVM can be used on smartphones.

8 Conclusion and Future Work

We introduce EROFS, a new compressed read-only file

system designed for smartphones with limited resources.

EROFS provides a comparable compression ratio while

having much higher performance and less extra memory

overhead compared to Squashfs. With fixed-sized output

compression and fast and memory-efficient decompression,

EROFS can store system code and resources with less stor-

age usage and sometimes even better performance compared

with file systems without compression support. Evaluation

shows that apps on a system installed on EROFS can boot

comparably or even faster compared with on Ext4. EROFS

has been merged to the mainline Linux and has been de-

ployed and used in tens of millions of smartphones. Cur-

rently, EROFS is still under active development, and we are

continuously adding new features, such as deduplication, ex-

tended file statistics, fiemap, and EROFS-fuse in future ver-

sions of EROFS.

Acknowledgment

We thank our shepherd Ric Wheeler and the anonymous re-

viewers for the constructive comments, Guifu Li for helping

prototype the mkfs utility, and Qiuyang Sun for his help with

the early testing and evaluation. Haibo Chen is the corre-

sponding author.

160 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Bcachefs. https://bcachefs.org.

[2] Btrfs: Main page. https://btrfs.wiki.kernel.

org/index.php/Main_Page.

[3] Cramfs - cram a filesystem onto a small ROM.

https://www.kernel.org/doc/Documentation/

filesystems/cramfs.txt.

[4] Cramfs: mark as obsolete. https://lkml.org/lkml/

2013/9/4/79.

[5] Cramfs refresh for embedded usage. https://lkml.

org/lkml/2017/8/11/726.

[6] Factory images for Nexus and Pixel devices. https://

developers.google.com/android/images.

[7] LZ4 block format description. https://github.com/

lz4/lz4/blob/master/doc/lz4_Block_format.

md.

[8] Partitions and images. https://source.android.

com/devices/bootloader/partitions-images.

[9] Silesia compression corpus. http://sun.aei.polsl.

pl/~sdeor/index.php?page=silesia.

[10] SQUASHFS. http://squashfs.sourceforge.net.

[11] SQUASHFS 4.0 filesystem. https://www.kernel.

org/doc/Documentation/filesystems/squashfs.

txt.

[12] UBIFS file system. https://www.kernel.org/doc/

Documentation/filesystems/ubifs.txt.

[13] UI/Application exerciser monkey. https://

developer.android.com/studio/test/monkey.

[14] x86_64: expand kernel stack to 16K.

https://git.kernel.org/pub/scm/linux/

kernel/git/torvalds/linux.git/commit/?

id=6538b8ea886e472f4431db8ca1d60478f838d14b.

[15] JFFS2: The journalling flash file system, version 2.

http://www.sourceware.org/jffs2/, 2003.

[16] ZFS: the last word in file systems. https://web.

archive.org/web/20060428092023/http://www.

sun.com/2004-0914/feature/, 2004.

[17] Saving data safely. https://android-developers.

googleblog.com/2010/12/saving-data-safely.

html, 2010.

[18] Android one was conceived with india in mind, says

Google’s Sundar Pichai. https://gadgets.ndtv.

com/mobiles/news/googles-sundar-pichai-

on-android-one-in-an-exclusive-chat-with-

ndtvs-vikram-chandra-592062, 2014.

[19] HUAWEI Y3 2018. https://consumer.huawei.

com/za/phones/y3-2018/specs/, 2018.

[20] Libext2fs: add EXT2_FLAG_SHARE_DUP to de-

duplicate data blocks. https://android-review.

googlesource.com/c/platform/external/

e2fsprogs/+/642333, 2018.

[21] Nokia 2.1 - long lasting entertainment. https://www.

nokia.com/phones/en_int/nokia-2, 2018.

[22] Samsung unveils the Galaxy J2 core; an introductory

smartphone packed with performance. https://news.

samsung.com/global/samsung-unveils-the-

galaxy-j2-core-an-introductory-smartphone-

packed-with-performance, 2018.

[23] AXBOE, J. Flexible I/O tester. https://github.com/

axboe/fio.

[24] BENAVIDES, T., TREON, J., HULBERT, J., AND

CHANG, W. The enabling of an Execute-In-Place

architecture to reduce the embedded system memory

footprint and boot time. JCP 3, 1 (2008), 79–89.

[25] BRUMLEY, J. Apple, Samsung continue to lose

smartphone market share in shift toward more value.

https://seekingalpha.com/article/4101007-

apple-samsung-continue-lose-smartphone-

market-share-shift-toward-value, 2017.

[26] CHEN, R., WANG, Y., HU, J., LIU, D., SHAO, Z., AND

GUAN, Y. Unified non-volatile memory and NAND

flash memory architecture in smartphones. In Design

Automation Conference (ASP-DAC), 2015 20th Asia

and South Pacific (2015), IEEE, pp. 340–345.

[27] HYUN, S., BAHN, H., AND KOH, K. Lecramfs: an ef-

ficient compressed file system for flash-based portable

consumer devices. IEEE Transactions on Consumer

Electronics 53 (2007).

[28] JEONG, D., LEE, Y., AND KIM, J.-S. Boosting quasi-

asynchronous I/O for better responsiveness in mobile

devices. In FAST (2015), pp. 191–202.

[29] JEONG, S., LEE, K., HWANG, J., LEE, S., AND WON,

Y. AndroStep: Android storage performance analy-

sis tool. In Software Engineering (Workshops) (2013),

vol. 13, pp. 327–340.

[30] JEONG, S., LEE, K., HWANG, J., LEE, S., AND WON,

Y. Framework for analyzing android I/O stack behavior:

from generating the workload to analyzing the trace.

Future Internet 5, 4 (2013), 591–610.

USENIX Association 2019 USENIX Annual Technical Conference 161

https://bcachefs.org
https://btrfs.wiki.kernel.org/index.php/Main_Page
https://btrfs.wiki.kernel.org/index.php/Main_Page
https://www.kernel.org/doc/Documentation/filesystems/cramfs.txt
https://www.kernel.org/doc/Documentation/filesystems/cramfs.txt
https://lkml.org/lkml/2013/9/4/79
https://lkml.org/lkml/2013/9/4/79
https://lkml.org/lkml/2017/8/11/726
https://lkml.org/lkml/2017/8/11/726
https://developers.google.com/android/images
https://developers.google.com/android/images
https://github.com/lz4/lz4/blob/master/doc/lz4_Block_format.md
https://github.com/lz4/lz4/blob/master/doc/lz4_Block_format.md
https://github.com/lz4/lz4/blob/master/doc/lz4_Block_format.md
https://source.android.com/devices/bootloader/partitions-images
https://source.android.com/devices/bootloader/partitions-images
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
http://squashfs.sourceforge.net
https://www.kernel.org/doc/Documentation/filesystems/squashfs.txt
https://www.kernel.org/doc/Documentation/filesystems/squashfs.txt
https://www.kernel.org/doc/Documentation/filesystems/squashfs.txt
https://www.kernel.org/doc/Documentation/filesystems/ubifs.txt
https://www.kernel.org/doc/Documentation/filesystems/ubifs.txt
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6538b8ea886e472f4431db8ca1d60478f838d14b
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6538b8ea886e472f4431db8ca1d60478f838d14b
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6538b8ea886e472f4431db8ca1d60478f838d14b
http://www.sourceware.org/jffs2/
https://web.archive.org/web/20060428092023/http://www.sun.com/2004-0914/feature/
https://web.archive.org/web/20060428092023/http://www.sun.com/2004-0914/feature/
https://web.archive.org/web/20060428092023/http://www.sun.com/2004-0914/feature/
https://android-developers.googleblog.com/2010/12/saving-data-safely.html
https://android-developers.googleblog.com/2010/12/saving-data-safely.html
https://android-developers.googleblog.com/2010/12/saving-data-safely.html
https://gadgets.ndtv.com/mobiles/news/googles-sundar-pichai-on-android-one-in-an-exclusive-chat-with-ndtvs-vikram-chandra-592062
https://gadgets.ndtv.com/mobiles/news/googles-sundar-pichai-on-android-one-in-an-exclusive-chat-with-ndtvs-vikram-chandra-592062
https://gadgets.ndtv.com/mobiles/news/googles-sundar-pichai-on-android-one-in-an-exclusive-chat-with-ndtvs-vikram-chandra-592062
https://gadgets.ndtv.com/mobiles/news/googles-sundar-pichai-on-android-one-in-an-exclusive-chat-with-ndtvs-vikram-chandra-592062
https://consumer.huawei.com/za/phones/y3-2018/specs/
https://consumer.huawei.com/za/phones/y3-2018/specs/
https://android-review.googlesource.com/c/platform/external/e2fsprogs/+/642333
https://android-review.googlesource.com/c/platform/external/e2fsprogs/+/642333
https://android-review.googlesource.com/c/platform/external/e2fsprogs/+/642333
https://www.nokia.com/phones/en_int/nokia-2
https://www.nokia.com/phones/en_int/nokia-2
https://news.samsung.com/global/samsung-unveils-the-galaxy-j2-core-an-introductory-smartphone-packed-with-performance
https://news.samsung.com/global/samsung-unveils-the-galaxy-j2-core-an-introductory-smartphone-packed-with-performance
https://news.samsung.com/global/samsung-unveils-the-galaxy-j2-core-an-introductory-smartphone-packed-with-performance
https://news.samsung.com/global/samsung-unveils-the-galaxy-j2-core-an-introductory-smartphone-packed-with-performance
https://github.com/axboe/fio
https://github.com/axboe/fio
https://seekingalpha.com/article/4101007-apple-samsung-continue-lose-smartphone-market-share-shift-toward-value
https://seekingalpha.com/article/4101007-apple-samsung-continue-lose-smartphone-market-share-shift-toward-value
https://seekingalpha.com/article/4101007-apple-samsung-continue-lose-smartphone-market-share-shift-toward-value

[31] JEONG, S., LEE, K., LEE, S., SON, S., AND WON, Y.

I/O stack optimization for smartphones. In USENIX

Annual Technical Conference (2013), pp. 309–320.

[32] KANG, D. H., AND EOM, Y. I. FSLRU: a page cache

algorithm for mobile devices with hybrid memory ar-

chitecture. IEEE Transactions on Consumer Electron-

ics 62, 2 (2016), 136–143.

[33] KIM, H., AGRAWAL, N., AND UNGUREANU, C. Re-

visiting storage for smartphones. ACM Transactions on

Storage (TOS) 8, 4 (2012), 14.

[34] KIM, H., RYU, M., AND RAMACHANDRAN, U. What

is a good buffer cache replacement scheme for mobile

flash storage? In ACM SIGMETRICS Performance

Evaluation Review (2012), vol. 40, ACM, pp. 235–246.

[35] KIM, J.-M., AND KIM, J.-S. Androbench: benchmark-

ing the storage performance of android-based mobile

devices. In Frontiers in Computer Education. Springer,

2012, pp. 667–674.

[36] KIM, W.-H., NAM, B., PARK, D., AND WON, Y. Re-

solving journaling of journal anomaly in android I/O:

multi-version B-tree with lazy split.

[37] LEE, K., AND WON, Y. Smart layers and dumb result:

IO characterization of an android-based smartphone. In

Proceedings of the tenth ACM international conference

on Embedded software (2012), ACM, pp. 23–32.

[38] LEE, W., LEE, K., SON, H., KIM, W.-H., NAM, B.,

AND WON, Y. WALDIO: eliminating the filesys-

tem journaling in resolving the journaling of journal

anomaly. Usenix.

[39] LUO, H., TIAN, L., AND JIANG, H. qNVRAM: quasi

non-volatile RAM for low overhead persistency en-

forcement in smartphones. In HotStorage (2014).

[40] MAHONEY, M. About the test data. http://

mattmahoney.net/dc/textdata.html, 2011.

[41] NGUYEN, D. T., ZHOU, G., XING, G., QI, X., HAO,

Z., PENG, G., AND YANG, Q. Reducing smartphone

application delay through read/write isolation. In Pro-

ceedings of the 13th Annual International Conference

on Mobile Systems, Applications, and Services (2015),

ACM, pp. 287–300.

[42] PARK, H., BAEK, S., CHOI, J., LEE, D., AND NOH,

S. H. Exploiting storage class memory to reduce en-

ergy consumption in mobile multimedia devices. In

Consumer Electronics (ICCE), 2010 Digest of Techni-

cal Papers International Conference on (2010), IEEE,

pp. 101–102.

[43] REN, J., LIANG, M. C.-J., WU, Y., AND MOSCI-

BRODA, T. Memory-centric data storage for mobile

systems.

[44] SHEN, K., PARK, S., AND ZHU, M. Journaling of jour-

nal is (almost) free.

[45] TOLOMEI, S. Shrinking APKs, growing installs.

https://medium.com/googleplaydev/shrinking-

apks-growing-installs-5d3fcba23ce2.

[46] ZHANG, X., LI, J., WANG, H., XIONG, D., QU, J.,

SHIN, H., KIM, J. P., AND ZHANG, T. Realizing trans-

parent OS/Apps compression in mobile devices at zero

latency overhead. IEEE Transactions on Computers 66,

7 (2017), 1188–1199.

[47] ZHONG, K., WANG, T., ZHU, X., LONG, L., LIU, D.,

LIU, W., SHAO, Z., AND SHA, E. H.-M. Building

high-performance smartphones via non-volatile mem-

ory: The swap approach. In Proceedings of the 14th

international conference on embedded software (2014),

ACM, p. 30.

162 2019 USENIX Annual Technical Conference USENIX Association

http://mattmahoney.net/dc/textdata.html
http://mattmahoney.net/dc/textdata.html
https://medium.com/googleplaydev/shrinking-apks-growing-installs-5d3fcba23ce2
https://medium.com/googleplaydev/shrinking-apks-growing-installs-5d3fcba23ce2

QZFS: QAT Accelerated Compression in File System for
Application Agnostic and Cost Efficient Data Storage

Xiaokang Hu
Shanghai Jiao Tong University

Intel Asia-Pacific R&D Ltd.

Fuzong Wang∗

Shanghai Jiao Tong University
Intel Asia-Pacific R&D Ltd.

Weigang Li
Intel Asia-Pacific R&D Ltd.

Jian Li
Shanghai Jiao Tong University

Haibing Guan
Shanghai Jiao Tong University

Abstract

Data compression can not only provide space efficiency with
lower Total Cost of Ownership (TCO) but also enhance I/O
performance because of the reduced read/write operations.
However, lossless compression algorithms with high com-
pression ratio (e.g. gzip) inevitably incur high CPU resource
consumption. Prior studies mainly leveraged general-purpose
hardware accelerators such as GPU and FPGA to offload
costly (de)compression operations for application workloads.
This paper investigates ASIC-accelerated compression in file
system to transparently benefit all applications running on
it and provide high-performance and cost-efficient data stor-
age. Based on Intel R© QAT ASIC, we propose QZFS that
integrates QAT into ZFS file system to achieve efficient gzip
(de)compression offloading at the file system layer. A com-
pression service engine is introduced in QZFS to serve as an
algorithm selector and implement compressibility-dependent
offloading and selective offloading by source data size. More
importantly, a QAT offloading module is designed to lever-
age the vectored I/O model to reconstruct data blocks, mak-
ing them able to be used by QAT hardware without incur-
ring extra memory copy. The comprehensive evaluation val-
idates that QZFS can achieve up to 5x write throughput im-
provement for FIO micro-benchmark and more than 6x cost-
efficiency enhancement for genomic data post-processing over
the software-implemented alternative.

1 Introduction

Data compression has reached proliferation in systems involv-
ing storage, high-performance computing (HPC) or big data
analysis, such as EMC CLARiiON [14], IBM zEDC [7] and
RedHat VDO [18]. A significant benefit of data compression
is the reduced storage space requirement for data volumes,
along with the less power consumption for cooling per unit
of logical storage [12, 51]. Furthermore, if the input data to

∗Co-equal First Author

Hadoop [3], Spark [4] or stream processing job [40] is com-
pressed, the data processing performance can be effectively
enhanced as the compression not only saves bandwidth but
also decreases the number of read/write operations from/to
storage systems.

It is widely recognized that the benefits of data compression
come at the expense of computational cost [1, 9], especially
for lossless compression algorithms with high compression
ratio [41]. In a number of fields (e.g., scientific big data or
satellite data), lossless compression is the preferred choice
due to the requirement for data precision and information
availability [12, 43]. Prior studies mainly leveraged general-
purpose hardware accelerators such as GPU and FPGA to
alleviate the computational cost incurred by (de)compression
operations [15, 38, 41, 45, 52]. For example, Ozsoy et al. [38]
presented a pipelined parallel LZSS compression algorithm
for GUGPU and Fowers et al. [15] detailed a scalable fully
pipelined FPGA accelerator that performs LZ77 compression.
Recently, the emerging AISC (Application Specific Integrated
Circuit) compression accelerators, such as Intel R© QuickAssist
Technology (QAT) [24], Cavium NITROX [34] and AHA378
[2], are attracting attentions because of their advantages on
performance and energy-efficiency [32].

Data compression can be integrated into different system
layers, including the application layer (most common), the file
system layer (e.g., ZFS [48] and BTRFS [42]) and the block
layer (e.g., ZBD [27] and RedHat VDO [18]). Professional
storage products such as IBM Storwize V7000 [46] and HPE
3PAR StoreServ [19] may contain competitive compression
feature as well. If compression is performed at the file system
or lower layer, all applications, especially big data processing
workloads, running in the system can transparently benefit
from the enhanced storage efficiency and reduced storage I/O
cost per data unit. This feature also implies that only lossless
compression is acceptable to avoid influences on applications.
To the best of our knowledge, there is no practical solution at
present that provides hardware-accelerated data compression
at the layer of local or distributed file systems.

In this paper, we propose QZFS (QAT accelerated ZFS) that

USENIX Association 2019 USENIX Annual Technical Conference 163

integrates Intel R© QAT accelerator into the ZFS file system
to achieve efficient data compression offloading at the file
system layer so as to provide application-agnostic and cost-
efficient data storage. QAT [24] is a modern ASIC-based
acceleration solution for both cryptography and compression.
ZFS [6,48] is an advanced file system that combines the roles
of file system and volume manager and provides a number
of features, such as data integrity, RAID-Z, copy-on-write,
encryption and compression.

In consideration of the goal of cost-efficiency, QZFS se-
lects to offload the costly gzip [1] algorithm to achieve high
space efficiency (i.e., high compression ratio) and low CPU
resource consumption at the same time. QZFS disassembles
the (de)compression procedures of ZFS to add two new mod-
ules for integrating QAT acceleration. First, a compression
service engine module is introduced to serve as a selector of
diverse compression algorithms, including QAT-accelerated
gzip and a number of software-implemented compression
algorithms. It implements compressibility-dependent offload-
ing (i.e., compression/non-compression switch) and selective
offloading by source data size (i.e., hardware/software switch)
to optimize system performance. Second, a QAT offloading
module is designed to efficiently offload compression and
decompression operations to the QAT accelerator. It lever-
ages the vectored I/O model, along with address translation
and memory mapping, to reconstruct data blocks prepared
by ZFS, making them able to be accessed by QAT hardware
through DMA operations. This kind of data reconstruction
avoids expensive memory copy to achieve efficient offloading.
Besides, considering QAT characteristics, this module further
provides buffer overflow avoidance, load balancing and fail
recovery.

In the evaluation, we deploy QZFS as the back-end file
system of Lustre [44] in clusters with varying nodes, and mea-
sure the performance with FIO micro-benchmark and practi-
cal genomic data post-processing. For FIO micro-benchmark,
QZFS with QAT-accelerated gzip can achieve up to 5x aver-
age write throughput with a similar compression ratio (3.6)
and about 80% reduction of CPU resource consumption (from
more than 95% CPU utilization to less than 20% CPU utiliza-
tion), compared to the software-implemented alternative. For
practical genomic data post-processing workloads, benefiting
from QAT acceleration, QZFS provides 65.83% reduction
of average execution time and 75.58% reduction of CPU re-
source consumption over the software gzip implementation.
Moreover, as compression acceleration is performed at the
file system layer, QZFS also significantly outperforms the
traditional simple gzip acceleration for applications while
conducting genomic data post-processing.

2 Background and Motivation

This section presents data compression benefits and the moti-
vation of hardware-assisted compression.

0 1 2 3 4 5 6 7 8
Dataset size (TB)

0
150
300
450
600
750
900

1050

W
rit

e
th

ro
ug

hp
ut

 (M
B/

s) OFF
GZIP
LZ4

Figure 1: Write throughput on hybrid storage of one 1.6TB
NVMe SSD and backup HDDs. Gzip and LZ4 achieve a
compression ratio of about 3.8 and 1.9 respectively.

2.1 Data Compression on Storage Devices

As high-performance storage devices, NVMe SSDs can re-
markably improve the read/write speed with low energy con-
sumption [25, 49]. Nonetheless, the limited capacity and high
price significantly discourage their widespread use and stor-
age devices have accounted for a large proportion of Total
Cost of Ownership (TCO) [50]. In the Mistral Climate Simu-
lation System, storage devices occupy more than 20% of the
TCO for the entire system [28]. Many studies have investi-
gated data compression on storage devices to improve I/O
performance and reduce system TCO simultaneously [31,36].

To show the benefits of data compression, we evaluated the
performance of a compression-enabled file system (i.e., ZFS)
by the FIO tool [5] on a hybrid storage system, including
one 1.6TB NVMe SSD (Intel R© P3700 series) and backup
HDDs. Two representative lossless compression algorithms,
gzip [16] and LZ4 [35], were used in ZFS to compare with
the compression OFF configuration. As shown in Figure 1,
the write throughput with data compression (for both gzip
and LZ4) outperforms the case of OFF because compression
can effectively reduce the total data size written into the stor-
age [33,53]. If the dataset size is larger than the capacity of the
1.6TB NVMe SSD, the excessive data are written into backup
HDDs. Due to the poor read/write performance of HDD, the
OFF configuration incurs throughput degradation rapidly once
the dataset size exceeds 1.6TB. The gzip algorithm achieves a
compression ratio of about 3.8 in this evaluation and the write
throughput degrades after the dataset size exceeds 6.1TB.
Since LZ4 is a fast compression algorithm (i.e. CPU time for
compression is largely reduced), it can bring a higher write
throughput than the gzip case although the compression ratio
is lower, with a value of about 1.9. However, the performance
of the LZ4 configuration begin to degrade after the dataset
size exceeds 3TB and has no advantage over the gzip algo-
rithm for a dataset size large than 4.5TB. In conclusion, data
compression improves space efficiency and allows more data
to benefit from the high-performance storage devices.

164 2019 USENIX Annual Technical Conference USENIX Association

OFF GZIP LZ4
0

100
200
300
400
500
600
700

Ex
ec

ut
io

n
tim

e
(s

)
NVMe I/O Sorting (De)Compr

0

1

2

3

4

5

6

Co
m

pr
es

sio
n

Ra
tio

Figure 2: The execution time of genomic data sorting under
different compression algorithms

2.2 The Selection of Compression Algorithms

Compression-enabled file systems leverage lossless data com-
pression algorithms to transparently serve upper applications.
An algorithm with both high compression ratio and low CPU
resource consumption is an optimal choice yet these two
aspects are actually hard to achieve at the same time. We
conducted an experiment with scientific big data workloads
running on ZFS to compare two representative lossless algo-
rithm: gzip and LZ4. SAMtools [30], a popular set of utilities
for sequence analysis, was used to manipulate 150GB ge-
nomic data stored on a NVMe SSD and perform the sorting
operation, which needs to create temporary files and conduct
a series of complex data reading and writing actions.

Figure 2 illustrates the breakdown of the total execution
time under different compression algorithms, including NVMe
SSD I/O time (Tio), sorting time (Ts) and (de)compression time
(Tc). The execution time for the compression OFF configu-
ration only comprises of Tio (117.21s) and Ts (231.77s). The
gzip and LZ4 algorithms have a similar Ts value because of
the same sorting processing while Tio is reduced to 35.02s and
48.45s respectively due to the different compression ratios:
3.56 for gzip and 2.41 for LZ4. However, the high compres-
sion ratio of gzip leads to a high Tc value of 278.02s, com-
pared to the 24.77s for the LZ4 configuration. This high CPU
resource consumption of gzip may further cause resource com-
petition and impact other tasks. Intuitively, if (de)compression
operations can be offloaded to hardware accelerators to elimi-
nate Tc for CPU, gzip could be an ideal compression algorithm
as it can achieve the highest space efficiency. This motivates
the design of a hardware-assisted compression-enabled file
system for high-performance and cost-efficient data storage.

2.3 Hardware-Assisted Data Compression

Nowadays, diverse hardware accelerators are continuously
emerging in cloud infrastructures and datacenters [10, 31, 32].
ASIC accelerators are increasingly attracting attentions due to
their advantages on performance and energy-efficiency over
general-purpose CPU, GPU and FPGA [1, 8, 32]. This paper
selects Intel R© QAT, a purpose-built ASIC for cryptography

and compression, to offload (de)compression tasks and free
up CPU resources. The latest high-performance QAT device
has been directly integrated into chipsets and is becoming
increasingly cheaper [22].

In essence, the offloading of a (de)compression task is to
replace the compression-related function call with an I/O call
to interact with the underlying QAT accelerator. However,
the way the QAT hardware treats data (e.g., physical address
and DMA operation) is different from that in the case of
software-implemented compression (i.e., using CPU). Run-
time translation and optimizations are necessary and impor-
tant to achieve an efficient offloading. Moreover, considering
the offload overhead (e.g., preparation/consumption of QAT
requests/responses and PCIe transactions) and the needed
preallocated system resources for QAT offloading, not all
(de)compression tasks are worth being offloaded into QAT
hardware. A well-designed heterogeneous data compression
system should investigate the necessity of software/hardware
switch or even compression/non-compression switch.

3 System Design

In this paper, based on ZFS file system and Intel R© QAT com-
pression accelerator, we propose QZFS (QAT-accelerated
ZFS), which can serve as either a local file system or the
back-end file system of Lustre (a type of parallel distributed
file system). The overall QZFS architecture, including the
I/O path of storage and the QAT acceleration subsystem, is
illustrated in Figure 3. The modification starts with the ZIO
Module of ZFS. The ZIO Module is a centralized I/O pro-
cess module where all I/O requests are abstracted as ZIOs
and forwarded to other modules for further processing, such
as data compression and checksum verification. Among the
subsequent modules, the ZIO_Compress Module is responsi-
ble for data (de)compression. To enable QAT offloading of
(de)compression operations, QZFS introduces two new mod-
ules: the Compression Service Engine and the QAT Offloading
Module.

To explain the functions of these QZFS modules, the com-
pression workflow is depicted in Figure 3. (1)-(2): The ZIO
Module forwards ZIO requests to the ZIO_Compress Module
which registers compression algorithms and delivers config-
uration information to the Compression Service Engine. (3):
The Compression Service Engine selects the compression
algorithm among one (gzip) accelerated by QAT and oth-
ers from software compression libraries. (4)-(5): The QAT
Offloading Module sends compression requests to the QAT
accelerator and consumes QAT responses to fetch compressed
result data. (6)-(8): The compressed result data is returned and
goes through the upper modules one by one. The data decom-
pression workflow is similar to this compression workflow but
does not involve the selection of decompression algorithm.

The main function of the Compression Service Engine is
to serve as a selector of diverse compression algorithms. The

USENIX Association 2019 USENIX Annual Technical Conference 165

Lustre Distributed File System

QZFS

Intel® QuickAssist Technology
Accelerator Firmware

NVMe SSDs

ZIO_Compress
Module

ZIO
Module

QAT Offloading ModuleSoftware
Compression

Library

Compression
Service Engine

(1)Forward
ZIO Requests

(2)Enter Engine

(3)Select
Algorithms

(4)Submit
Requests

(5)Consume
Responses

(6)

(7)(8)Ready Results

Write Data

Read Data

Gennomes Analysis
Application

Genomic Data Post-Proc
essing Application

DNA Sequencing
Application

Figure 3: The overall architecture of QZFS

QAT-accelerated gzip is the default algorithm and another
four software-implemented compression algorithms, includ-
ing gzip, LZ4, ZLE and LZJB, are provided. The engine cur-
rently selects the compression algorithm according to the
configuration set by users. Besides, the Compression Service
Engine provides a uniform interface to the upper module.
This kind of decoupling makes it able to be easily extended to
support other hardware accelerators. Developers only need to
focus on the detailed implementation of a new compression
scheme and add it to this engine.

The QAT Offloading Module is responsible for offloading
data (de)compression operations to the QAT accelerator. The
existing source data prepared by the ZIO_Compress Module
are suitable for software-based compression schemes. How-
ever, they cannot be directly used in the (de)compression re-
quests to the QAT accelerator as data may be mapped into dis-
contiguous physical memory and cannot be accessed through
DMA operations of the QAT accelerator. To address this prob-
lem, a vectored (a.k.a. scatter/gather) I/O model is introduced
to avoid memory copy and ensure that the QAT accelerator
can sequentially read source data from multiple flat (i.e., phys-
ically contiguous) buffers and organize them to a single data
stream for (de)compression, or read (de)compressed result
data from a single data stream and organize them to multiple
flat buffers.

4 Implementation & Optimization

The implementation of QZFS prototype relies on QAT de-
velopment APIs and Linux environment (CentOS with Linux
Kernel 3.10) and it has been integrated into ZFS official re-

leases [37]. This section introduces detailed features and re-
cent bug fixes of QZFS, especially regarding performance
optimizations, to demonstrate the accomplishment of effec-
tive compression offloading in QZFS.

4.1 Compression Service Engine

The detailed architecture of the Compression Service Engine
is illustrated in Figure 4, which contains a compressibility
checker and an algorithm selector.

4.1.1 Compressibility Dependent Offloading

Compressibility is a performance factor that is determined by
data compression ratio to reduce unnecessary offloading op-
erations. Low compressibility means that data are not worth
being stored in a compressed format because, in that case, the
compressed data will not save much storage space but only
incur extra resource consumption for later decompression.
Even with the QAT acceleration, the decrease of unnecessary
offloading operations is beneficial as QAT resources can be
spared for useful (i.e., high compression ratio) tasks, espe-
cially in peak hours.

The compressibility checker in QZFS uses an auto-rejection
method to determine whether to store the data in a compressed
format or not. When the checker receives a ZIO request, it has
the knowledge of the source data size, denoted by Ssrc, and
presets the result data size, denoted by Sres, for placing the re-
turned compressed data. Conventionally, Sres may be set to the
same size as Ssrc when executing compression tasks. In QZFS,
the compressibility checker uses a default Sres = 0.9∗Ssrc for
QAT-accelerated gzip algorithm to indicate a compressibility
threshold of 10%. If the compressed result data overflows
the buffer of Sres, it is automatically rejected and the uncom-
pressed source data is returned to the ZIO_Comress Mod-
ule as the result. Compared to the original compressibility
threshold (i.e., 12.5%) in ZFS, QZFS actually relaxes the re-
striction as the decompression operation can be performed
more efficiently by the QAT accelerator. Users can further
adjust this compressibility threshold to maximize space ef-
ficiency, depending on the characteristics of workloads and
hardware conditions. For data decompression, the compress-
ibility checking is not necessary and the Sres is set to the size
of original uncompressed data, which is recorded by QZFS
during compression processing.

4.1.2 Selective Offloading by Source Data Size

The source data size (i.e., Ssrc) is an important factor that may
have an influence on system performance. ZFS has a parame-
ter named record size which defines the maximum size of a
block that may be compressed and written by ZFS. A storage
I/O operation with data size smaller than the record size may
be packed into one ZIO request for processing. That’s to say,

166 2019 USENIX Annual Technical Conference USENIX Association

GZIP

ZLE

LZJB

GZIP

QAT Offloading
Module

QZFS Compression Service Engine

Software
Compression Library

Compressibilty
Checker

Algorithm
Selector

ZIO_Compress Module

Source Data
Result Data

OFF

LZ4

Figure 4: Architecture of compression service engine

Ssrc is variable within the upper limit defined by the record
size. ZFS uses a default record size value of 128KB, which
achieves a good performance in most cases, and users may
modify this parameter to obtain better performance in their
own scenarios.

QZFS selectively offloads ZIO requests with Ssrc from
4KB to 1MB and uses software alternatives to process other
ZIO requests. For small source data (i.e., Ssrc < 4KB), the
offload overhead, including preparation/consumption of QAT
requests/responses and PCIe communication, offsets most
of the benefit of QAT accelerating, so the software-based
compression is a better choice. The QAT support for big
source data (i.e., Ssrc > 1MB) requires a large kernel memory
preallocated to work as intermediate buffers. This memory
size is several times the product of the maximum Ssrc and
the number of allocated (typically tens of) QAT instances.
Moreover, for a fixed number of worker threads in ZFS that
synchronously offload (de)compression operations to QAT,
the use of bigger source data cannot give obviously higher
performance. Therefore, QZFS only preallocates a kernel
memory region that can support a maximum Ssrc of 1MB to
achieve both good performance and acceptable consumption
of kennel memory resources.

4.1.3 Applicability and Availability

The algorithm selector is implemented as a centralized sched-
uler of data compression algorithms. Algorithms are orga-
nized in a scalable algorithm vector that can easily be ex-
tended to incorporate other algorithms, either software-based
or hardware-assisted ones. Developers only need to focus on
the detailed implementation of a new compression scheme,
add it to this the algorithm vector and update the configura-
tion as needed. When runtime error occurs in some hardware
accelerator, the algorithm selector can seamlessly switch to
other software alternatives to provide fault tolerance and high
availability.

Currently, the selection of compression algorithm mainly
relies the the configuration, which defines the priorities of
different algorithms, with the QAT-accelerated gzip as the
default one. If in future, a number of hardware-assisted com-
pression algorithms with their own features are incorporated

into the Compression Service Engine, an intelligent selection
(e.g., use the hints from upper layers) is a good optimization
to reap the strengths of different compression schemes.

4.2 QAT Offloading Module

4.2.1 Vectored I/O Model

The QAT accelerator accesses data blocks through DMA op-
erations, which require the data to be stored in contiguous
physical memory. The original source and result data of a
ZIO request are stored using virtual memory pointed by two
pointers Psrc and Pres. The vectored I/O model can effectively
bunch together the discontinuous memory to form I/O trans-
actions for DMA operations. As illustrated in the left part
of Figure 5, we employ two buffer structures, flat buffer and
scatter/gather buffer list (SGL), to implement the vectored
I/O model.

The flat buffer consists of two parts: a data buffer length,
denoted by DataLenInByte and a pointer, pData, to the data
buffer owning contiguous physical memory. SGL is intro-
duced to organize multiple flat buffers in a vector manner
and consists of four parts: (1)numBuffers, the number of flat
buffers in this list; (2)pBuffers, a pointer to an unbounded ar-
ray containing multiple flat buffers; (3) pUserData, an opaque
field; (4)pPrivateMetaData, private representation of this
buffer list. In summary, SGL describes a collection of flat
buffers, each of which is physically contiguous. The QAT ac-
celerator can parse the SGL structure to obtain the beginning
physical address of each flat buffer and sequentially access
each data block through DMA operations.

4.2.2 Data Reconstruction and Memory Zero Copy

A simple approach for data reconstruction is to allocate
enough contiguous physical memory and copy data from/to
this memory. Specifically, before the (de)compression offload-
ing, a region of contiguous physical memory is allocated to
store data copied from Psrc and delivered in the request to
QAT. Also, another region of contiguous physical memory
is allocated to store the response (i.e., result data) from QAT.
After the completion of (de)compression offloading, the result
data is copied from the contiguous physical memory to Pres
prepared by ZIO.

Although the allocated contiguous physical memory can
be reused by multiple ZIO requests, this approach inevitably
introduces the overhead of memory copy, which likely be-
come a bottleneck in today’s high speed I/O. Therefore, we
introduce the vectored I/O model, along with virtual address
translation and memory mapping, to achieve memory zero
copy. As shown in Figure 5, the QAT Offloading Module
translates the virtual addresses of the source data prepared
by ZIO into physical addresses and organizes the physical
contiguous data blocks into the Input SGL structure.

USENIX Association 2019 USENIX Annual Technical Conference 167

Scatter Gather Buffer List

numBuffers
pBuffers

pUserData

pPrivateMetaData

FlatBuffer[0]

FlatBuffer[1]

FlatBuffer[2]

FlatBuffer[num
Buffers-1]

dataLenInByte
pData

Flat Buffer

Data Buffer

PAGE_SIZE

Source Data Pointer

dataLenInByte
pData Data Buffer

dataLenInByte
pData Data Buffer

Input SGL

(1) Generate
Header

(3)Generate
Footer

pBuffers

FlatBuffer[0]
FlatBuffer[1]

FlatBuffer[m]

pData

pData

pData

header
compressed

data

Output SGL

Output SGL

pBuffers

FlatBuffer[0]
FlatBuffer[1]

FlatBuffer[m]

pData

pData

pData

header

Output SGL

footer

pBuffers

FlatBuffer[0]
FlatBuffer[1]

FlatBuffer[m]

pBuffers

FlatBuffer[0]
FlatBuffer[1]

FlatBuffer[m]

pData

pData

pData

header

Output SGL

pBuffers

FlatBuffer[0]
FlatBuffer[1]

FlatBuffer[m]

Input SGL

(2) Compress
Data

compressed
data

Data Reconstruction Offloading Workflow

Figure 5: Data reconstruction and QAT offloading workflow in the QAT Offloading Module

A physical page (a.k.a. page frame) is the smallest fixed-
length contiguous block of physical memory into which vir-
tual pages are mapped by the operating system. The source
data represented by contiguous virtual addresses could be
divided into physical contiguous data blocks in terms of phys-
ical pages. The QAT Offloading Module directly maps these
physical pages to serve as the data of the flat buffers and
each flat buffer maps at most one PAGE_SIZE data. Note
that the start and end virtual addresses of the source data
may not be page-aligned, which has an influence on the num-
ber of involved physical pages. For example, in the case of
4KB PAGE_SIZE, a 11KB source data may correspond to
four physical pages (2KB+4KB+4KB+1KB), instead of three
ones. This information is important for the creation of the
data structures of Input/Output SGLs. The memory allocation
for the Input SGL data structure is performed according to
the maximum possible number of flat buffers: numBuffers =
(Ssrc >> PAGE_SHIFT) + 2.

The details of the data reconstruction for source data (i.e.,
building Input SGL) are as follows and the process for the
result data buffer to build Output SGL is similar. At first,
the virtual address indicated by the Psrc pointer (pointing to
the start address of the source data initially) is translated to
obtain the corresponding physical page structure. Note that
the virtual address may come from different kernel memory
zones, including the vmalloc region or the direct memory
region. The QAT Offloading Module checks whether the a
virtual address belongs to the vmalloc region by invoking the
is_vmalloc_addr function. If so, the vmalloc_to_page func-
tion is used to get the corresponding physical page structure;
otherwise, the virt_to_page function is used to obtain the right
page. Next, the QAT Offloading Module employs the kmap
function to establish a long-lasting mapping from kernel’s ad-
dress space to the obtained physical page. The pData field of
the first flat buffer points to the returned mapped address, plus

the same page offset as the Psrc value. The dataLenInBytes
field is accordingly set by considering the page offset. Finally,
the Psrc pointer moves to the beginning of the remaining un-
treated source data and the above steps are repeated to fill
subsequent flat buffers. For the last piece of the source data
that may correspond to only part of a physical page, the dataL-
enInBytes field is set to the actual size of this last piece. After
the completion of an offloading task, the kunmap function
needs to be invoked to release long-lasting mappings.

4.2.3 QAT Offloading Organization

Overflow avoidance and load balancing: When QZFS
boots up, the QAT Offloading Module initializes the QAT
logical instances to set up communication channels for re-
quests/responses to/from the QAT accelerator. Thus, a region
of contiguous physical memory needs to be allocated for
the QAT instance which includes an intermediate buffer to
place run-time process data (e.g., dynamic Huffman encod-
ing) of the QAT accelerator. The size of the intermediate
buffer should be enough for the maximally allowed source
data (i.e., 1MB). Data compression is supposed to reduce data
size but compression algorithms may cause data expansion
at some moment during compression. To avoid the buffer
overflow, its size is enlarged to be double of the maximally
allowed data size. Besides, when too many data compression
tasks are offloaded, the module may not obtain the QAT logi-
cal instances because there are not enough QAT computing
resources. Therefore, the module will balance the system’s
computational resources by sending the task to software alter-
natives and employing the CPU to finish it.

Fail recovery: A QAT compression session describes the
compression parameters to be applied across a number of
requests. After the initialization of logical instances and
source/result data reconstruction, the module sets up the com-

168 2019 USENIX Annual Technical Conference USENIX Association

munication with the QAT accelerator by QAT compression
sessions. Occasionally, the error may occur in these compres-
sion sessions, such as a driver process crash where a wrong
DMA address passed to the accelerator. If a failure on the
QAT accelerator cannot be handled correctly, the QAT device
may be restarted for recovery. In this situation, the QAT Of-
floading Module cleans all sessions and sets an availability
flag as FALSE to disable all QAT offloading actions until
the completion of re-initialization. The related internal data
structures, QAT logical instances and intermediate buffers
will be reset as well.

Offloading workflow: The data compression offloading
operations are organized as three steps shown in the right
part of Fig. 5. First, a header generator API function is called
to produce the gzip style header1, which requires the output
SGL as the parameter. The header is added to the front of
the output SGL, and the pData of the flat buffer is moved to
the corresponding offset of the gzip header. Second, the data
compression API function submits input and output SGLs
to the QAT accelerator that consumes the source data from
the input SGL and generates processed result data to the out-
put SGL. Note that the QAT accelerator uses the interrupt
mode for response processing which requires the module to
use the wait_for_completion_interruptible_timeout function
to wait the completion of the tasks. Third, a gzip compli-
ant footer2 is produced by the footer generator API function.
More details of the header and footer formats are given in
RFC 1952 [13], which are supported by the QAT accelerator.
The difference with data decompression is that it invokes the
data decompression API function for three steps.

5 Evaluation

In this section, we first describe the evaluation platform and
testing methodology. Then we use FIO micro-benchmark
and scientific big data processing workloads to evaluate our
implemented QZFS prototype on cluster servers.

5.1 Evaluation Methodology

Experimental testbed: We established an experimental
testbed with four physical servers, each of which was
equipped with two 22-core Intel R© Xeon R© E5-2699 v4 pro-
cessors, 128GB RAM, one NVMe SSD array and one Intel R©

DH8950 PCIe QAT card [21]. The NVMe SSD array was
comprised of three 1.6TB Intel R© P3700 Series NVNe SSDs.
In each server, a separate SATA SSD was used for housing the
operating system (CentOS 7.2) with Linux Kernel 3.10 and
QZFS. All these servers were connected via Intel R© XL710

1 a gzip header indicates metadata including compression ID, file flags,
timestamp, compression flags and operating system ID.

2 a gzip footer containing a CRC-32 checksum and the length information
of the original uncompressed data.

40GbE NICs and a 100GbE switch. The detailed topology is
illustrated in Figure 6.

QAT QZFS

QAT

QAT

QAT

NVMe-SSDs

Lustre

QZFS

NVMe-SSDs

Lustre

QZFS

NVMe-SSDs

Lustre

QZFS

NVMe-SSDs

Lustre

100G
SWITCH

40G NIC 40G NIC

40G NIC40G NIC

Client1 Client2

OSS1 OSS2

FIO Micro-Benc
hmark

Scientific Big
Data Workloads

Scientific Big
Data Workloads

3 Nodes
Cluster

Single Node
Cluster

4 Nodes
Cluster

Figure 6: Topology of experimental testbed

Cluster: QZFS was deployed as the back-end file system
of Lustre distributed file system. To evaluate different Lustre
scenarios, three types of cluster settings were used: (1) all-
in-one single-node cluster, i.e., a single physical server as
both the client and the Object Storage Server (OSS); (2) three-
node cluster with one physical server as the client and the
other two physical servers as OSSes; (3) four-node cluster
with one more physical server as a client (on the basis of
the three-node cluster). All the servers in a cluster shared
the same Lustre distributed file system. The client server ran
benchmark workloads locally and read/wrote data from/to
one or two OSSes.

Note that Lustre inherently provides the ability to support
a large number of clients. In our in-lab evaluation, the num-
ber of available clients was limited. As a workaround, we
leveraged high-performance physical servers along with high-
speed NICs to work as heavy clients and produce enough
stress. In the following experiments, we will show that the
total stress is equivalent to tens to hundreds of ordinary clients.
The I/O stress from an ordinary client depends on a lot of
factors, including workload characteristics, client hardware
limits (e.g., NIC limit), the interconnection between Luster
clients and OSSes, etc. We assume that each ordinary client
generates an I/O stress between 100Mbps and 1Gbps.

Performance metrics: We mainly compared three con-
figurations: (1) OFF: QZFS without data compression; (2)
GZIP: QZFS with software-implemented gzip algorithm en-
abled; (3) QAT: QZFS with QAT-accelerated gzip algorithm
enabled. Other algorithms in the software compression li-
brary including LZ4, ZLE and LZJB may also be measured
for comparison. The following important metrics were col-
lected as performance indicators: read/write throughput of
micro-benchmarks, average execution time of completing big
data analytic tasks, compression ratio for indicating space
efficiency and CPU utilization (collected using Intel R© Perfor-
mance Analysis Tool [23]) for indicating computing resource

USENIX Association 2019 USENIX Annual Technical Conference 169

consumption.
Particularly, we define a new comprehensive metric to mea-

sure the cost-efficiency of the entire system, which equals
compression ratio divided by CPU utilization (i.e., computing
resource consumption):

compression_ratio
cpu_utilization

CPU and high-performance storage devices account for a
large proportion of TCO. This metric reflects a combined
benefit of saved storage space and saved CPU resources, and
a higher value means more cost-efficiency gains. Note that
we do not consider QAT cost in this metric because QAT
device is becoming increasingly cheaper. The latest high-
performance QAT, directly integrated into chipsets, only costs
about $32 (comparing $132 for C625 chipset with QAT and
$100 for C624 chipset without QAT) [22], which is negligible
in comparison to CPU price.

5.2 Evaluation Benchmark
Micro-benchmark workloads: FIO (Flexible I/O tester) [5]
is a productive tool in Linux that can simulate all kinds of
I/O workloads and accurately measure I/O performance. We
used FIO to spawn several threads or processes for measur-
ing read/write throughput. The default FIO setting for ran-
dom data generation and management were employed. More
specifically, a buffer of random data (actually pseudo-random)
was created at the beginning and it was used continuously
during the test to reduce overhead. To comprehensively eval-
uate QZFS, we conducted the FIO experiments with different
I/O patterns, block sizes (i.e, the size of chunks for issuing
read/write I/O) and compression algorithms.

Scientific big data workloads: Genomic data post-
processing is a representative workload of scientific big data.
The original 3TB genomic dataset used in this experiment are
available in European Nucleotide Archive [29] and Interna-
tional Genome Sample Resource [11]. These data are stored
as specific formats, such as FastQ, BAM and SAM, which
are widely used in both industry and academia. For each
client, two genomic data post-processing tools, SAMTools
(v1.3.1) with htslib (1.3.2) [30] and Biobambam2 (v2.0.82)
with libmaus (2 2.0.435) [47], were used to work as comput-
ing workloads. Specifically, we selected five representative
operations from these two tools to evaluate the advantage of
QZFS. Converting is to convert one kind of genomic data
to other kind (e.g. FastQ format converted to BAM format
in this evaluation), which involves heavy CPU-bound tasks.
Viewing is to print all alignments information in the specified
input file to standard output in SAM format (with no header).
Sorting is to sort these data by leftmost coordinates and create
temporary BAM files as needed when the entire alignment
data cannot fit into memory. Merging is to merge multiple
sorted files, producing a single sorted output file that contains

all the input records and maintains the existing sorting order.
Indexing is to index a coordinate-sorted BAM or CRAM file
for fast random access.

5.3 FIO Micro-benchmark

The experiments were conducted in the four-node cluster
where 16 FIO threads were created in each Lustre client to
read/write job files independently from/to the two Lustre
OSSes. The total size of file I/O for each FIO thread is 2GB.
The read/write throughput stated in the evaluation is the sum
value collected from two clients and the CPU utilization is
the average value collected from Lustre OSSes.

Figure 7a shows experimental results for diverse I/O pat-
terns with a fixed 128KB FIO block size, including se-
quential read/write (SeqR/SeqW) and random read/write
(RandR/RandW). In the compression OFF configuration, the
average read throughput (i.e., the average value of SeqR and
RandR) is 18% higher than the average write throughput,
and RandR achieves up to 3937 MB/s throughput, which is
the highest. These results are in accordance with the hard-
ware characteristics of NVMe SSDs [17]. The average read
throughput in the GZIP configuration outperforms the average
write throughput by about 4.5x because the gzip algorithm has
an asymmetric compression/decompression speed, with the
former lagging much behind the latter [1]. After enabling the
QAT accelerator, the average read throughput is similar with
the average write throughput. In general, the QAT configura-
tion has the highest read/write throughput and cost-efficiency.
The GZIP configuration has a similar compression ratio with
the QAT configuration (3.78:3.65), but its high CPU resource
consumption (i.e., long compression time) causes not only
low write throughput but also low cost-efficiency. The QAT
offloading for gzip compression operations achieves about 5x
improvement on average write throughput and enhances the
cost-efficiency by a factor of more than four. In comparison to
the OFF configuration, the QAT configuration also provides a
throughput improvement (10% for read and 28% for write)
as the compressed data reduces storage I/O cost. Meanwhile,
the cost-efficiency is enhanced by a factor of more than three
due to the high compression ratio (3.65).

Figure 7b shows the I/O throughput and cost-efficiency
with the same amount of sequential read and write opera-
tions (SeqR:SeqW = 1:1) while varying the FIO block size in
each I/O request from 4KB to 1MB. Note that the record size
(128KB by default) in ZFS only defines the maximum size
of a block that may be compressed and written by ZFS. As
a result, a FIO block may be directly compressed/written by
ZFS or multiple FIO blocks may be combined into a whole
block for processing. For the compression OFF configuration
which can directly benefit from the high-performance NVMe
SSDs, the I/O throughput gradually grows from 1899MB/s
to 3213MB/s (about 70% improvement) as the increase of
FIO block size. For the GZIP and QAT configurations, the

170 2019 USENIX Annual Technical Conference USENIX Association

SeqR SeqW RandR RandW
0

1k

2k

3k

4k

5k

6k

Th
ro

ug
hp

ut
 (M

B/
s)

OFF GZIP QAT

0

5

10

15

20

25

30

Co
st

 E
ffi

cie
nc

y

(a) Different I/O patterns

4K 32K 128K 256K 1M
0

1k

2k

3k

4k

5k

6k

Th
ro

ug
hp

ut
 (M

B/
s)

OFF GZIP QAT

0

12

24

36

48

60

72

Co
st

 E
ffi

cie
nc

y

(b) Different block sizes

SeqR SeqW
0

1k

2k

3k

4k

5k

6k

Th
ro

ug
hp

ut
 (M

B/
s)

LZ4
LZJB

ZLE
QAT

0

5

10

15

20

25

30

Co
st

 E
ffi

cie
nc

y

(c) Different compression algorithms

Figure 7: The read/write throughput and cost-efficiency on FIO micro-benchmark

varying of FIO block size does not show obvious influence
on I/O throughput. Still, the QAT configuration always has
the highest I/O throughput and cost-efficiency. A notable phe-
nomenon is that for the case of 4KB FIO block size with
software or QAT-accelerated gzip in ZFS, the cost efficiency
(actually compression ratio) is obviously higher than other
cases with bigger FIO block sizes. This may be a joint result
of the record size mechanism in ZFS and the reuse of ran-
dom data in FIO. Specifically, multiple small (i.e., 4KB) FIO
blocks may have a higher probability of being combined into
a whole block in ZFS for compression. Then, the possible
reuse of random data across these FIO blocks leads to a high
compression ratio for the whole block.

Figure 7c compares the QAT-accelerated gzip with other
software-implemented fast compression algorithms includ-
ing LZE, LZJB and ZLE. The QAT configuration gains an
average of 12.71% throughput improvement with SeqW and
an average of 4.83% throughput improvement with SeqR,
compared to these software-implemented algorithms. Also,
QAT-accelerated gzip in ZFS provides an average of 2.25x
and 1.62x cost-efficiency for SeqW and SeqR respectively.
This performance advantage comes from the high compres-
sion ratio of the gzip algorithm and the offloading of gzip
(de)compression operations. In addition, we can see that
SeqR operations show an obviously higher cost-efficiency
than SeqW operations. This is because decompression typi-
cally costs less computing resources in comparison to com-
pression.

Finally, we give a calculation about how many ordinary
clients the total stress in FIO experiments is equivalent to.
As shown in Figure 7, the average stress from the two heavy
client servers is more than 4000MB/s in the QAT configura-
tion, which equals the stress from 32 to 320 ordinary clients
(100Mbps to 1Gbps each).

5.4 Scientific Big Data Evaluation

The scientific workloads running on Luster clients interact
with the Luster OSSes to access the stored scientific data. We
used two different deployment modes for evaluation: shared

4-CORE
8-CORE

OPENCL FPGA

IBM Verilog

AHA QZFS
0

200

400

600

800

1000

Ex
ec

ut
io

n
Ti

m
e

(s
)

decompression process
converting process

Figure 8: Execution time of a complete converting operation
under different data compression schemes

deployment mode (i.e., single-node cluster) and separate de-
ployment mode (including three-node and four-node clusters).

5.4.1 Shared Deployment Mode

Eight scientific workload processes ran in parallel in the
shared server. Each workload process was set to read/write
9.5GB data and a total of 76GB data may be processed simul-
taneously in memory.

We first validated the benefits of QAT-accelerated gzip
compression at the file system layer over simple gzip use
at the application layer (i.e., the compressed big data needs
to be first decompressed into storage and then read again for
processing). The experiment results are shown in Figure 8. For
the first five configurations, the execution time of a complete
converting operation consists of two parts: (1) decompression
process time with given computing resources (e.g., 4 cores
or AHA accelerator), which includes the time for reading the
compressed data from storage, the time for decompression
and the time for writing the uncompressed data into storage;
(2) converting process time using eight scientific workload
processes, which includes the time for reading uncompressed
data from storage (76GB totally), the time for converting
operations and the time for writing new format data back to
storage.

USENIX Association 2019 USENIX Annual Technical Conference 171

1-thread 2-thread 4-thread 8-thread 16-thread
0

100

200

300

400

500

600

700
Ex

ec
ut

io
n

Ti
m

e
(s

)
GZIP
QAT

0

10

20

30

40

50

60

70

Co
st

 E
ffi

cie
nc

y

(a) Sorting performance with varying thread #

converting viewing sorting merging indexing
0

100

200

300

400

500

600

700

Ex
ec

ut
io

n
Ti

m
e

(s
)

GZIP
QAT

0

6

12

18

24

30

36

42

Co
st

 E
ffi

cie
nc

y

(b) Different operations under 8 threads

Figure 9: The execution time and cost-efficiency on shared mode deployment (single-node cluster)

converting viewing sorting merging indexing
0

100

200

300

400

500

600

700

Ex
ec

ut
io

n
Ti

m
e

(s
)

GZIP
QAT

0

15

30

45

60

75

90

105

Co
st

 E
ffi

cie
nc

y

(a) Three-node cluster with one client and two OSSes

converting viewing sorting merging indexing
0

100

200

300

400

500

600

700

Ex
ec

ut
io

n
Ti

m
e

(s
)

GZIP
QAT

0

10

20

30

40

50

60

70

Co
st

 E
ffi

cie
nc

y

(b) Four-node cluster with two clients and two OSSes

Figure 10: The execution time and cost-efficiency on separate mode deployment

The first five configurations share a same converting pro-
cess time of 161.12s. The decompression process time of
OpenCL FPGA, IBM Verilog and AHA is calculated accord-
ing to the performance results reported in [1]. These accel-
erators show an obvious advantage on decompression com-
pared to the 4 or 8 CPU cores. QZFS keeps data compression
transparent to scientific workloads and obtains the shortest
execution time (156.71s). This value is even smaller than the
above pure converting process time without (de)compression
(161.12s) because QZFS directly reads compressed data from
storage, performs decompression and converting simultane-
ously and then writes compressed data back to storage. Since
the reading/writing of compressed data largely reduces stor-
age I/O cost and (de)compression is offloaded to QAT accel-
erator, a higher performance (i.e., shorter execution time) is
achieved.

It is true that an application may integrate (de)compression
module that can efficiently process compressed big data (e.g.,
small block based (de)compression and multiple threads),
along with the enabling of QAT acceleration, to achieve simi-
lar performance to QZFS. However, this likely involves heavy
modifications for each new application. In comparison, one-
time modification to the file system (i.e., the proposed QZFS)
can transparently benefit all applications running on it.

Figure 9a shows the execution time and cost-efficiency with
varying number of threads in each scientific workload process

performing sorting operations. When there is only one thread
in each workload process, the software gzip configuration
gives an execution time of 426s and a cost-efficiency value
of 6.6. The QAT configuration provides a 30% reduction of
execution time and enhances the cost-efficiency by a factor
of nearly 10 due to the faster (de)compression and largely
reduced CPU resource consumption. As the thread number
increases from 1 to 16, the execution time decreases gradually
for both GZIP and QAT configurations. In the case of 16
threads in each workload process, the performance advantage
of QAT-accelerated gzip grows from 30% to 60% as more
threads produce more parallel I/O requests and increases the
utilization of underlying QAT accelerators. This further leads
to a growing of CPU utilization for sorting from 5.8% to
12.2% in the QAT configuration. In comparison, the CPU
utilization in the GZIP configuration grows from 64% to
83%.

Figure 9b evaluates the post-processing scientific work-
loads performing different operations with a fixed eight
threads in each workload process. All the five types of oper-
ations need to read the genomic data from storage and the
operations excluding viewing further needs to write the newly-
generated data (smaller or bigger) back to storage. We can see
that the QAT configuration achieves 73% and 63% reduction
of execution time for the converting and merging operations
respectively over the GZIP configuration. For other opera-

172 2019 USENIX Annual Technical Conference USENIX Association

tions, the QAT-accelerated gzip in ZFS can provide about
2x performance enhancement. On average, the QAT config-
uration brings a 3.91x cost-efficiency improvement over the
software-implemented gzip. Especially, the cost-efficiency
enhancement is up to 5.57x for the sorting operation because
it is a complicated operation that creates many intermediate
data files and repeatedly involves reading (decompression)
and writing (compression) actions.

The total stress from the one heavy client (eight threads in
each workload process) is up to 75GB/35s=2143MB/s (the
viewing operation), which equals the stress from 17 to 171
ordinary clients (100Mbps to 1Gbps each).

5.4.2 Separate Deployment Mode

We first evaluated QZFS with one client that remotely ac-
cesses two OSSes and then increased the client number to
two. In each client sever, eight scientific workload processes
ran in parallel and each workload process with a fixed eight
threads was set to read/write 9.5GB data.

In the three-node cluster with different operations, as shown
in Figure 10a, the QAT configuration on average reduces
63.10% execution time and achieves more than 6x cost-
efficiency compared with the QAT configuration. Like the
shared deployment mode, the QAT-accelerated gzip in ZFS
still shows a high performance enhancement (68.95% reduc-
tion of the execution time) for the converting operation. A
notable phenomenon is that the biggest cost-efficiency en-
hancement (9.11x) is witnessed on the viewing operation
because it does not need to write data back to the remote stor-
age (i.e., reduced CPU resource consumption on the costly
network stack).

For the case of four-node cluster with double stress from
two heavy clients, as shown in Figure 10b, the overall per-
formance results are similar to the case of three-node cluster.
In comparison to the software-implemented gzip in ZFS, the
QAT acceleration on average provides a 63.14% reduction of
execution time and a 6.26x improvement of cost-efficiency.
It demonstrates that QZFS has a good scalability to provide
stable and effective compression services as the scaling of
clients. The total stress from the two heavy clients is up to
150GB/75s=2000MB/s (the viewing operation), which equals
the stress from 16 to 160 ordinary clients (100Mbps to 1Gbps
each).

6 Bottleneck Analysis

This section analyzes the performance bottleneck in QZFS.
We use the experiment result of RandW in Figure 7a for anal-
ysis, which shows the highest I/O throughput (4680MB/s)
for the QAT configuration. In this case, the average CPU
utilization in the two OSSes is 20.2%, which means CPU
resources are still abundant. The compression ratio is 3.55
and the actual NVMe SSD I/O throughput is 4680/3.55 =

1318MB/s, which means the NVMe SSD is not the bottle-
neck as the compression OFF configuration can achieve a
storage I/O throughput of 3314MB/s. The network through-
put for each physical server is about 4680/2 = 2340MB/s =
18.72Gpbs, which is only half of the hardware limit of 40GbE
NIC. The QAT compression throughput in each Lustre OSS
is also about 18.72Gpbs, which reaches nearly 80% of the
hardware limit (24Gpbs [21]) of a DH8950 QAT card. In
summary, the I/O throughput (4680MB/s) does not achieve
the hardware limit of the testbed system while this through-
put cannot be further enhanced even if we launch more FIO
threads in clients to generate more RandW jobs in parallel.

Actually, the main performance bottleneck may reside in
the ZFS software stack. Although ZFS is designed to auto-
matically leverage multi-core resources, the number of ZFS
worker threads that can offload (de)compression operations to
QAT is restricted by: the number of CPU cores and the number
of available QAT instances. What’s more, the worker thread
interacts with QAT in a synchronous mode, which means
the worker cannot submit the next (de)compression request
until the completion and consumption of the first one. As a
result, the use of more FIO threads at the application layer
cannot give rise to more concurrent/parallel (de)compression
requests sent to QAT.

An approach to overcome this bottleneck is to optimize the
way the worker thread interacts with QAT to increase the uti-
lization of the underlying QAT accelerator. QAT provides an
inherently non-blocking interface with the request/response
mechanism. If we can enable asynchronous offload mode in
ZFS, a single worker thread then has the ability to concur-
rently offload multiple (de)compression operations to QAT
and the QAT hardware limit can be easily reached with only
several threads. However, the enabling of asynchronous of-
fload mode is a hard work, involving the design of (1) asyn-
chronous support in all layers of ZFS software stack to cor-
rectly handle an uncompleted (de)compression block and
(2) efficient pause (context saving) and resumption (context
restoring) of an offload job. One can refer to our previous
work [20] on how to enable high-performance asynchronous
crypto offload framework for TLS servers/terminators.

7 Related Work

Hardware-assisted data compression techniques has been well
studied in the literature by using general-purpose accelerators.
Patel et al. proposed a parallel algorithm and implemented
a bzip2-like lossless data compression scheme on GPU ar-
chitecture [39]. Their implementation enabled the GPU to
become a co-processor of data compression, which lightened
the computing burden of CPU by using idle GPU cycles.
Ozsoy et al. [38] presented a pipelined parallel LZSS com-
pression algorithm for GUGPU. Li et al. proposed an efficient,
scalable GPU-accelerated OLAP system which tackled the
bandwidth discrepancy using compression and an optimized

USENIX Association 2019 USENIX Annual Technical Conference 173

data transfer path [31]. Abdelfattah et al. utilized the Open
Computing Language to implement high-speed gzip compres-
sion on an FPGA, which achieved higher throughput over
standard compression benchmark, with equivalent compres-
sion ratio [1]. Kim et al. presented high throughput Xpress
FPGA compressor to achieve CPU resource saving and high
power efficiency [26]. Fowers et al. detailed a scalable fully
pipelined FPGA accelerator that performs LZ77 compression
and static Huffman encoding at rates up to 5.6 GB/s [15].
Pekhimenko et al. employed FPGA and GPU accelerators
to implement Base-Delta encoding data compression algo-
rithms in stream processing [40]. In comparison, our QZFS
leverages the emerging ASIC accelerator for compression
offloading and integrates it into the layer of file system to
provide transparent, high-performance and cost-efficient com-
pression service.

8 Conclusions

High storage I/O performance and low Total Cost of Owner-
ship (TCO) are two important optimization objectives, which
are hard to be obtained at the same time. Data compression
is considered as an effective solution, but the compression
tasks incur high computing resource consumption and likely
impact the running of application workloads. Instead of di-
rectly accelerating compression tasks in applications, this
paper investigated the data compression offloading at the file
system level. QZFS (QAT accelerated ZFS) was proposed
to integrate Intel R© QAT accelerator into ZFS file system to
provide application-agnostic and cost-efficient data storage.
The evaluation has validated that QZFS can effectively save
CPU resources and further enhance the performance of big
data processing workloads in comparison with the software-
implemented gzip in ZFS or traditional gzip acceleration for
applications.

Acknowledgments

The authors would like to thank the shepherd, Dr. Patrick
P. C. Lee, and the anonymous reviewers for their valuable
comments. This work is supported in part by the National
Key Research and Development Program of China (No.
2016YFB1000502) and the National Science Fund for Dis-
tinguished Young Scholars (No. 61525204). Jian Li is the
corresponding author.

References

[1] Mohamed S Abdelfattah, Andrei Hagiescu, and De-
shanand Singh. Gzip on a chip: High performance
lossless data compression on fpgas using opencl. In
Proceedings of the International Workshop on OpenCL
(IWOCL), pages 4:1–4:9, 2014.

[2] AHA. Aha378: 80.0 gbps gzip compres-
sion/decompression accelerator, 2016. http:
//www.aha.com/DrawProducts.aspx?Action=
GetProductDetails&ProductID=41.

[3] Apache. Apache hadoop, 2018. https://hadoop.
apache.org/.

[4] Apache. Apache spark: Lightning-fast unified analytics
engine, 2018. https://spark.apache.org/.

[5] Jens Axboe. Welcome to fio’s documentation, 2017.
https://fio.readthedocs.io/en/latest/.

[6] Jeff Bonwick, Matt Ahrens, Val Henson, Mark Maybee,
and Mark Shellenbaum. The zettabyte file system. In
Proceedings of the 2nd Usenix Conference on File and
Storage Technologies (FAST), volume 215, 2003.

[7] Paolo Bruni, Maria Kroos Boisen, Gianmauro De
Marchi, and Franco Pinto. Reduce storage occupancy
and increase operations efficiency with ibm zenterprise
data compression. Technical report, 2018.

[8] Adrian M. Caulfield, Eric S. Chung, Andrew Put-
nam, Hari Angepat, Jeremy Fowers, Michael Haselman,
Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young
Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov,
Michael Papamichael, Lisa Woods, Sitaram Lanka,
Derek Chiou, and Doug Burger. A cloud-scale acceler-
ation architecture. In Proceedings of the 49th Interna-
tional Symposium on Microarchitecture (MICRO), pages
7:1–7:13, 2016.

[9] Yanpei Chen, Archana Ganapathi, and Randy H Katz.
To compress or not to compress-compute vs. io tradeoffs
for mapreduce energy efficiency. In Proceedings of the
first ACM SIGCOMM workshop on Green networking,
pages 23–28, 2010.

[10] Eric S Chung, Peter A Milder, James C Hoe, and Ken
Mai. Single-chip heterogeneous computing: Does the
future include custom logic, fpgas, and gpgpus? In
Proceedings of the 43rd International Symposium on
Microarchitecture (MICRO), pages 225–236, 2010.

[11] Laura Clarke, Susan Fairley, Xiangqun Zheng-Bradley,
Ian Streeter, Emily Perry, Ernesto Lowy, Anne-Marie
Tassé, and Paul Flicek. The international genome sam-
ple resource (igsr): A worldwide collection of genome
variation incorporating the 1000 genomes project data.
Nucleic acids research, 45(D1):D854–D859, 2016.

[12] Constantinos Costa, Georgios Chatzimilioudis,
Demetrios Zeinalipour-Yazti, and Mohamed F Mokbel.
Efficient exploration of telco big data with compression
and decaying. In Proceedings of the 33rd International
Conference on Data Engineering (ICDE), pages
1332–1343, 2017.

174 2019 USENIX Annual Technical Conference USENIX Association

http://www.aha.com/DrawProducts.aspx?Action=GetProductDetails&ProductID=41
http://www.aha.com/DrawProducts.aspx?Action=GetProductDetails&ProductID=41
http://www.aha.com/DrawProducts.aspx?Action=GetProductDetails&ProductID=41
https://hadoop.apache.org/
https://hadoop.apache.org/
https://spark.apache.org/
https://fio.readthedocs.io/en/latest/

[13] Peter Deutsch. Gzip file format specification version
4.3. Technical report, 1996.

[14] EMC. Emc data compression: A detailed re-
view. Technical report, 2010. https://www.
emc.com/collateral/hardware/white-papers/
h8045-data-compression-wp.pdf.

[15] Jeremy Fowers, Joo-Young Kim, Doug Burger, and Scott
Hauck. A scalable high-bandwidth architecture for loss-
less compression on fpgas. In Proceedings of the 23rd
International Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM), pages 52–59, 2015.

[16] Jean-Loup Gailly and Mark Adler. The gzip home page,
2018. https://www.gnu.org/software/gzip/.

[17] Eran Gal and Sivan Toledo. Algorithms and data struc-
tures for flash memories. ACM Computing Surveys
(CSUR), 37(2):138–163, 2005.

[18] Christian Horn. A look at vdo, the new linux com-
pression layer, 2018. https://www.redhat.com/en/
blog/look-vdo-new-linux-compression-layer.

[19] HPE. Hpe 3par storeserv storage, 2019. https://www.
hpe.com/us/en/storage/3par.html.

[20] Xiaokang Hu, Changzheng Wei, Jian Li, Brian Will,
Ping Yu, Lu Gong, and Haibing Guan. Qtls: high-
performance tls asynchronous offload framework with
intel R© quickassist technology. In Proceedings of the
24th Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 158–172, 2019.

[21] Intel. Product brief: Intel R© quickassist adapter
8950. https://www.intel.com/content/dam/
www/public/us/en/documents/product-briefs/
quickassist-adapter-8950-brief.pdf, 2015.

[22] Intel. Compare intel R© products. https:
//ark.intel.com/content/www/us/en/ark/
compare.html?productIds=97341,97342, 2019.

[23] Intel. Intel R© platform analysis technol-
ogy. https://software.intel.com/en-us/
intel-platform-analysis-technology, 2019.

[24] Intel. Intel R© quickassist technology (intel R©

qat), 2019. https://www.intel.com/content/
www/us/en/architecture-and-technology/
intel-quick-assist-technology-overview.
html.

[25] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim.
Nvmedirect: A user-space i/o framework for application-
specific optimization on nvme ssds. In Proceedings of
the 8th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage), 2016.

[26] Joo Young Kim, Scott Hauck, and Doug Burger. A
scalable multi-engine xpress9 compressor with asyn-
chronous data transfer. In Proceedings of the 22rd In-
ternational Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 161–164, 2014.

[27] Yannis Klonatos, Thanos Makatos, Manolis Marazakis,
Michail D Flouris, and Angelos Bilas. Transparent on-
line storage compression at the block-level. ACM Trans-
actions on Storage (TOS), 8(2):5:1–5:33, 2012.

[28] Michael Kuhn, Julian Kunkel, and Thomas Ludwig.
Data compression for climate data. Supercomputing
Frontiers and Innovations, 3(1):75–94, 2016.

[29] Rasko Leinonen, Ruth Akhtar, Ewan Birney, Lawrence
Bower, Ana Cerdeno-Tárraga, Ying Cheng, Iain Cle-
land, Nadeem Faruque, Neil Goodgame, Richard Gib-
son, et al. The european nucleotide archive. Nucleic
acids research, 39(suppl_1):D28–D31, 2010.

[30] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell,
Jue Ruan, Nils Homer, Gabor Marth, Goncalo Abecasis,
and Richard Durbin. The sequence alignment/map for-
mat and samtools. Bioinformatics, 25(16):2078–2079,
2009.

[31] Jing Li, Hung-Wei Tseng, Chunbin Lin, Yannis Papakon-
stantinou, and Steven Swanson. Hippogriffdb: balancing
i/o and gpu bandwidth in big data analytics. Proceedings
of the VLDB Endowment, 9(14):1647–1658, 2016.

[32] Ikuo Magaki, Moein Khazraee, Luis Vega Gutierrez, and
Michael Bedford Taylor. Asic clouds: specializing the
datacenter. In Proceedings of the 43rd International
Symposium on Computer Architecture (ISCA), pages
178–190, 2016.

[33] Thanos Makatos, Yannis Klonatos, Manolis Marazakis,
Michail D Flouris, and Angelos Bilas. Using transparent
compression to improve ssd-based i/o caches. In Pro-
ceedings of the 5th European conference on Computer
systems (EuroSys), pages 1–14, 2010.

[34] Marvell. Nitrox iii security processor family, 2019.
https://www.marvell.com/security-solutions/
nitrox-security-processors/nitrox-iii/
index.jsp.

[35] Takayuki Matsuoka. Lz4 - extremely fast compression,
2019. https://lz4.github.io/lz4/.

[36] Sangwhan Moon, Jaehwan Lee, Xiling Sun, and Yang-
suk Kee. Optimizing the hadoop mapreduce framework
with high-performance storage devices. The Journal of
Supercomputing, 71(9):3525–3548, 2015.

USENIX Association 2019 USENIX Annual Technical Conference 175

https://www.emc.com/collateral/hardware/white-papers/h8045-data-compression-wp.pdf
https://www.emc.com/collateral/hardware/white-papers/h8045-data-compression-wp.pdf
https://www.emc.com/collateral/hardware/white-papers/h8045-data-compression-wp.pdf
https://www.gnu.org/software/gzip/
https://www.redhat.com/en/blog/look-vdo-new-linux-compression-layer
https://www.redhat.com/en/blog/look-vdo-new-linux-compression-layer
https://www.hpe.com/us/en/storage/3par.html
https://www.hpe.com/us/en/storage/3par.html
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/quickassist-adapter-8950-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/quickassist-adapter-8950-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/quickassist-adapter-8950-brief.pdf
https://ark.intel.com/content/www/us/en/ark/compare.html?productIds=97341,97342
https://ark.intel.com/content/www/us/en/ark/compare.html?productIds=97341,97342
https://ark.intel.com/content/www/us/en/ark/compare.html?productIds=97341,97342
https://software.intel.com/en-us/intel-platform-analysis-technology
https://software.intel.com/en-us/intel-platform-analysis-technology
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-quick-assist-technology-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-quick-assist-technology-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-quick-assist-technology-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-quick-assist-technology-overview.html
https://www.marvell.com/security-solutions/nitrox-security-processors/nitrox-iii/index.jsp
https://www.marvell.com/security-solutions/nitrox-security-processors/nitrox-iii/index.jsp
https://www.marvell.com/security-solutions/nitrox-security-processors/nitrox-iii/index.jsp
https://lz4.github.io/lz4/

[37] OpenZFS. Zfs hardware acceleration with qat,
2018. http://open-zfs.org/wiki/ZFS_Hardware_
Acceleration_with_QAT.

[38] Adnan Ozsoy, Martin Swany, and Arun Chauhan.
Pipelined parallel lzss for streaming data compression
on gpgpus. In Proceedings of the 18th International
Conference on Parallel and Distributed Systems (IC-
PADS), pages 37–44, 2012.

[39] Ritesh A Patel, Yao Zhang, Jason Mak, Andrew David-
son, and John D Owens. Parallel lossless data com-
pression on the gpu. In Proceedings of the Innovative
Parallel Computing (InPar), 2012.

[40] Gennady Pekhimenko, Chuanxiong Guo, Myeongjae
Jeon, Peng Huang, and Lidong Zhou. Tersecades: ef-
ficient data compression in stream processing. In Pro-
ceedings of the USENIX Annual Technical Conference
(ATC), pages 307–320, 2018.

[41] Weikang Qiao, Jieqiong Du, Zhenman Fang, Libo Wang,
Michael Lo, Mau-Chung Frank Chang, and Jason Cong.
High-throughput lossless compression on tightly cou-
pled cpu-fpga platforms. In Proceedings of the 26th
International Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM), pages 37–44, 2018.

[42] Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The
linux b-tree filesystem. ACM Transactions on Storage
(TOS), 9(3):9:1–9:32, 2013.

[43] Khalid Sayood. Introduction to data compression. Mor-
gan Kaufmann, 2017.

[44] Philip Schwan et al. Lustre: Building a file system for
1000-node clusters. In Proceedings of the 2003 Linux
symposium, pages 380–386, 2003.

[45] Evangelia Sitaridi, Rene Mueller, Tim Kaldewey, Guy
Lohman, and Kenneth A Ross. Massively-parallel loss-
less data decompression. In Proceedings of the 45th In-
ternational Conference on Parallel Processing (ICPP),
pages 242–247, 2016.

[46] Jon Tate, Christian Burns, Bosmat Tuv-El, and Jorge
Quintal. Ibm real-time compression in ibm san volume

controller and ibm storwize v7000. Technical report,
2018.

[47] German Tischler and Steven Leonard. biobambam: tools
for read pair collation based algorithms on bam files.
Source Code for Biology and Medicine, 9(1):13, 2014.

[48] Wikipedia. Zfs, 2019. https://en.wikipedia.org/
wiki/ZFS.

[49] Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh, Manu
Awasthi, Tameesh Suri, Zvika Guz, Anahita Shayesteh,
and Vijay Balakrishnan. Performance characterization
of hyperscale applicationson on nvme ssds. In Proceed-
ings of the International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS),
pages 473–474, 2015.

[50] Zhengyu Yang, Manu Awasthi, Mrinmoy Ghosh, and
Ningfang Mi. A fresh perspective on total cost of owner-
ship models for flash storage in datacenters. In Proceed-
ings of the IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), pages
245–252, 2016.

[51] Xuebin Zhang, Jiangpeng Li, Hao Wang, Kai Zhao, and
Tong Zhang. Reducing solid-state storage device write
stress through opportunistic in-place delta compression.
In Proceedings of the 14th USENIX Conference on File
and Storage Technologies (FAST), pages 111–124, 2016.

[52] Bin Zhou, Hai Jin, and Ran Zheng. A high speed loss-
less compression algorithm based on cpu and gpu hybrid
platform. In Proceedings of the 13th International Con-
ference on Trust, Security and Privacy in Computing and
Communications (TrustCom), pages 693–698, 2014.

[53] Hongbo Zou, Yongen Yu, Wei Tang, and Hsuan-
wei Michelle Chen. Improving i/o performance with
adaptive data compression for big data applications.
In Proceedings of IEEE International Parallel & Dis-
tributed Processing Symposium Workshops (IPDPSW),
pages 1228–1237, 2014.

176 2019 USENIX Annual Technical Conference USENIX Association

http://open-zfs.org/wiki/ZFS_Hardware_Acceleration_with_QAT
http://open-zfs.org/wiki/ZFS_Hardware_Acceleration_with_QAT
https://en.wikipedia.org/wiki/ZFS
https://en.wikipedia.org/wiki/ZFS

Apache Nemo: A Framework for Building
Distributed Dataflow Optimization Policies

Youngseok Yang1 Jeongyoon Eo1 Geon-Woo Kim2 Joo Yeon Kim3

Sanha Lee4 Jangho Seo1 Won Wook Song1 Byung-Gon Chun1*
1Seoul National University 2Viva Republica 3Samsung Electronics 4Naver Corp.

Abstract
Optimizing scheduling and communication of distributed data
processing for resource and data characteristics is crucial for
achieving high performance. Existing approaches to such op-
timizations largely fall into two categories. First, distributed
runtimes provide low-level policy interfaces to apply the op-
timizations, but do not ensure the maintenance of correct
application semantics and thus often require significant effort
to use. Second, policy interfaces that extend a high-level ap-
plication programming model ensure correctness, but do not
provide sufficient fine control.

We describe Apache Nemo, an optimization framework for
distributed dataflow processing that provides fine control for
high performance, and also ensures correctness for ease of
use. We combine several techniques to achieve this, includ-
ing an intermediate representation, optimization passes, and
runtime extensions. Our evaluation results show that Nemo
enables composable and reusable optimizations that bring
performance improvements on par with existing specialized
runtimes tailored for a specific deployment scenario.

1 Introduction

It is becoming increasingly important to optimize schedul-
ing and communication for different characteristics of re-
sources and data in distributed data processing. Examples of
such characteristics widely discussed in recent literature are
geographically-distributed resources [19, 33, 44, 45], cheap
transient resources [37, 38, 42, 47, 48], disk-based large data
shuffle [35, 36, 51], and skewed data [22, 24, 25, 34]. Re-
searchers have shown that the existing scheduling and com-
munication methods, unaware of these characteristics, often
suffer from substantial performance degradation.

Distributed runtimes such as Dryad [20], Tez [40], and the
Spark runtime [4] provide low-level interfaces to plug in com-
putation scheduler and data channel policies to optimize for
such diverse deployment scenarios. These policy interfaces
have direct access to control messages and data elements,
and can apply optimizations such as placing computations on
specific types of resources and performing in-memory data
shuffle. Unfortunately, runtime policy developers must ex-
ercise care to ensure that the policies they build and apply
maintain correct application semantics. The main reason is
that runtime interfaces are designed to be general, and allow

*Corresponding author.

Nemo

Applications

Optimization Passes Intermediate
Representation

Beam

GeoDistResource

TransientResource

LargeShuffle

DataSkew

…

...

Property Property

Nemo-compatible Runtime

RDD

Extensions

Figure 1: Nemo optimizes scheduling and communication of
distributed data processing.

for arbitrary modifications to scheduling and communication
methods.

On the other hand, policy interfaces integrated with a high-
level application programming model offer indirect control
over runtime execution. For example, Optimus [22] integrates
with the DryadLINQ programming model to enable speci-
fying alternative DryadLINQ subqueries. This ensures cor-
rect application semantics as long as the specified subqueries
compute the same results, and thus reduces the effort re-
quired to build different optimization policies. However, such
application-level interfaces do not provide sufficient fine con-
trol over distributed scheduling and communication, because
application programming models are designed to hide dis-
tributed execution from application developers.

To overcome the limitations of existing interfaces, we be-
lieve it is critical to introduce a new policy interface that pro-
vides both fine control for high performance, and also ensures
correct application semantics for ease of use. In this work
we take a middle ground between the existing runtime and
application-level interfaces. We design a policy interface that
transforms an intermediate representation (IR) of applications
to express indirect but fine-grained control over distributed
scheduling and communication.

There are three main challenges to designing an optimiza-
tion framework that embodies this middle ground approach.
First, the framework should define the IR transformation meth-
ods that provide fine control and also ensure correctness.
Second, the framework should enable the development of
reusable and composable user-defined optimization policies

USENIX Association 2019 USENIX Annual Technical Conference 177

that transform the IR. Third, the framework should apply the
transformations of the IR in the distributed execution of the
application.

Figure 1 depicts our Nemo optimization framework that
addresses the challenges. Specifically, its IR directed-acyclic
graph (DAG), optimization passes, and runtime extensions
address the three challenges, respectively. Nemo integrates
with high-level application programming model libraries, and
compatible distributed runtimes.

First, the Nemo IR DAG represents a data processing ap-
plication with vertices representing logical operations and
edges representing data dependencies. To ensure that the
transformed IR DAG produces the same outputs as the origi-
nal IR DAG, we provide two types of transformation methods:
reshaping and annotation. Reshaping methods can insert a
set of utility vertices whose semantics are known to Nemo,
such as a vertex that samples data. Annotation methods set
execution properties of each vertex and edge to configure
fine-grained scheduling and communication, such as specu-
lative cloning and data persistence strategies. Nemo ensures
correctness using the information about the communication
patterns (e.g., shuffle) of edges, and the information about the
configured utility vertices and execution properties.

Second, the Nemo optimization pass abstraction enables
expressing optimizations as a function that takes as input
an IR DAG and calls its transformation methods. Because a
pass is a simple function, different combinations of passes
can be applied across different applications. We show that
optimization techniques previously employed in specialized
runtimes, such as Iridium [33] and Pado [48], can be expressed
as optimization passes with concise lines of code.

Third, the Nemo runtime extensions integrate with the un-
derlying runtime to apply the IR DAG transformations. Run-
times typically provide a runtime DAG abstraction to run com-
putations on a cluster of machines [4, 20, 40]. Our scheduler
extension applies various scheduling policies when schedul-
ing the IR vertices of an IR DAG through a runtime DAG. It
also rewrites the runtime DAG during job execution to apply
run-time optimizations. Our data channel extension applies
the optimized data communication within the runtime DAG.

We have implemented Nemo, and also a distributed run-
time that is compatible with Nemo. At present, Nemo pro-
vides full support for Beam [1] applications and a subset of
Spark RDD [50] applications. Our runtime integrates with
REEF [46] to run on Hadoop YARN [2] and Mesos [18] clus-
ters. We have evaluated Nemo in a cluster of Amazon EC2
instances using different optimization passes, datasets, and
resource environments. Evaluation results show that each op-
timization pass brings performance improvements on par with
existing specialized runtimes, and combinations of passes fur-
ther improve performance for scenarios with a combination of
different resource and data characteristics. Nemo is currently
an Apache Incubator project [3].

class TreeAggregate implements ConnectionManager {
void onUpstreamVertexEvent(event) {
mapVertexGroups = analyzeLocationsAndSizes(event)
aggregateVertices = newVertices(mapVertexGroups)
connect(mapVertexGroups, aggregateVertices)
}
}

class Repartition implements ConnectionManager {
void onUpstreamVertexEvent(event) {
desiredPartitions = analyzeDataStatistics(event)
modifyPartitionVertices(desiredPartitions)
modifyReduceVertices(desiredPartitions)
}
}

Figure 2: Pseudocode of Dryad policies. The Dryad policy
interface provides fine control over distributed scheduling and
communication, but does not ensure correctness.

2 Background

We first discuss in detail the existing runtime policy interfaces
and application-level policy interfaces using concrete code ex-
amples. Specifically we describe the interfaces of Dryad [20]
and Optimus [22].

The Dryad policy interface allows for arbitrary modifica-
tions to its directed-acyclic graph (DAG) representation of
applications. In a Dryad DAG, a vertex represents a unit of
work performed on a machine and an edge represents a data
transfer from a vertex to another. For example, a map-reduce
application can be represented in Dryad as a number of map
vertices fully connected with a number of reduce vertices. The
Dryad runtime coordinates the scheduling and communica-
tion of the vertices on a cluster of machines.

Figure 2 shows the pseudocode of two example Dryad poli-
cies [5]. Here, ConnectionManager is a callback-based ab-
straction that listens to events from the configured upstream
vertices. First, TreeAggregate builds an aggregation tree
with a goal to use network bandwidth resources more ef-
ficiently. Suppose TreeAggregate listens to the map ver-
tices in a map-reduce application, to obtain the information
on the locations and sizes of map vertex outputs. Using the
information, TreeAggregate groups map vertices, creates
intermediate aggregation vertices, and then connects each
map vertex group to an aggregation vertex. Second, Repar-
tition dynamically distributes data with a goal to handle
data skew. Suppose the map-reduce application additionally
has bucketizer vertices that consume sample output data from
the map vertices, and partition vertices that partition the orig-
inal map vertex outputs prior to transferring the data to the
reduce vertices. Then, Repartition can be used to monitor
the bucketizer vertices, and modify the partition and reduce
vertices with the goal to evenly distribute the map outputs.

178 2019 USENIX Annual Technical Conference USENIX Association

// Application code
mulA = defineMatMulSubqueryA(matrixX, matrixY)
mulB = defineMatMulSubqueryB(matrixX, matrixY)

// Policy code
stats = collectDataStatistics(matrixX, matrixY)
rewriter.registerAlternatives(stats, mulA, mulB)

Figure 3: Pseudocode of an Optimus policy. The application-
level Optimus policy interface ensures correctness, but pro-
vides coarse-grained control of substituting subqueries.

As shown by these examples, runtime policies can configure
various scheduling and communication methods.

However, the flexibility of runtime interfaces comes at a
cost: the policy developer must exercise care to ensure appli-
cation correctness when developing, reusing, and composing
different policies [4, 20, 22, 40]. First, the interface allows
for a bug in TreeAggregate to miss connecting one of the
map vertices to an intermediate aggregation vertex, making
the optimized DAG produce partial results. Second, Repar-
tition can break application semantics when applied on a
random vertex in a different DAG that does not use bucketizer
and partition vertices. Third, applying both TreeAggregate
and Repartition on the same DAG can lead to conflicting
executions that produce incorrect results. Manually building
a combined policy can require a significant effort for com-
plex policies, such as the DrDynamicAggregateManager in
Dryad that consists of 1.3K lines of C++ code [5]. As a con-
sequence, runtime policies have been mostly hard coded in
runtimes and data processing application compilers such as
the DryadLINQ compiler [22,49], and the Hive compiler [43].
The authors of Optimus also report that their system-level
optimization policies are hard-coded in the DryadLINQ com-
piler, maintaining the DAG property and operator semantics
for the pre-defined operators in DryadLINQ [22].

In contrast to runtime interfaces, Optimus provides an
application-level policy interface that ensures correctness,
by restricting the interface to substituting DryadLINQ sub-
queries. Figure 3 shows the pseudocode for optimizing a
matrix multiplication application described in the original Op-
timus paper [22]. The code defines two alternative subqueries
for multiplying two matrices, and a policy for selecting a sub-
query to use for the execution. Note that as long as the two
subqueries produce the same results, changing the policy code
does not alter the semantics of the application. However, as
this example shows, such application-level policy interfaces
lack fine-grained control over scheduling and communication
like selecting the types of resources to run specific computa-
tions on. The main reason is that application programming
models are designed to hide distributed execution from appli-
cation developers.

3 System Design

The goal of the Nemo optimization framework is to support
fine control over distributed execution of data processing ap-
plications, and at the same time maintain correct application
semantics. Concretely, given a DAG representation of a data
processing application with deterministic operations and a
user-defined policy P where DAG′ = P(DAG), Nemo aims to
provide the following properties.

• Correctness: Given the same inputs the optimized DAG′

should produce the same outputs as the DAG, even when
P is applied while the DAG is being executed. This en-
sures that the optimizations maintain correct application
semantics.

• Reusability: The same P should be applicable to differ-
ent DAGs. This enables reusing the same policy across
different data processing applications, although the ef-
fects may differ between applications.

• Composability: If P and P′ do not override optimiza-
tions specified by the other policy then enable composing
different policies like P′′ = (P ◦P′). If the policies do
have a conflict, then automatically detect it for analysis.
This enables distinct policies that each optimizes for a
different resource or data characteristic to be incorpo-
rated into a single policy.

We show how Nemo combines an intermediate representa-
tion (IR) DAG, optimization passes, and runtime extensions to
ensure these properties. First, the IR DAG provides reshaping
and annotation methods for specifying optimizations (Sec-
tion 3.1). Second, optimization passes define functions that
operate on the IR DAG methods (Section 3.2). Third, runtime
extensions apply the optimizations in the underlying runtime
(Section 3.3).

3.1 Intermediate Representation

The Nemo IR DAG aims to provide the desired DAG repre-
sentation of an application. The main challenge in design-
ing the IR DAG is defining the methods for transforming it.
For Nemo to ensure the desired properties, we make explicit
both the intention and the effect of the optimization for each
method invocation. For example, instead of providing a single
method to insert arbitrary computations, we provide multiple
higher-level methods such as those specifically for increasing
parallelism, speculative cloning, and sampling. We describe
the IR DAG reshaping and annotation methods that embody
this approach, and in particular how those methods enable en-
suring correctness. We then discuss the types of applications
and runtimes supported by our IR DAG design.

USENIX Association 2019 USENIX Annual Technical Conference 179

IR DAG
Reshaping:

irdag.insert()

Relay(f : x→ x),e : V ∪{v},E \{e}∪{e.comm(e.src→ v),oneToOne(v→ e.dst)}
Reshu f f le(f : x→ x),e : V ∪{v},E \{e}∪{e.comm(e.src→ v),shu f f le(v→ e.dst)}

Sampling(f : x→ sv. f (x)),sv,rate : V ∪{v},E ∪{e.comm(e.src→ v)|e ∈ E ∧ e.dst = sv}
Trigger(f : x→ ud f (x)),ud f ,e : V ∪{v},E ∪{oneToOne(e.src→ v)}

(V /E = original vertex/edge set, v = inserted vertex, f = function of v, e.comm = oneToOne/shuffle/broadcast)

IR Vertex
Annotation:

v.set()

Parallelism/Integer : sets the number of tasks for executing v
SpeculativeCloning/T hresholds : sets the thresholds for determining and cloning straggler tasks
ResourceSite/Map(Index,Site) : sets the geographical sites of the resources to place tasks on

ResourcePriority/Enum(Transient) : sets the priority of the resources to place tasks on

IR Edge
Annotation:

e.set()

DataFlow/Enum(Pull,Push) : e.dst is scheduled after e.src finishes, or scheduled concurrently
DataStore/Enum(Memory,Disk) : e.src tasks store output data for e in memory, or disk

NumPartitions/Integer : sets the number of partitions that e.src tasks create for e
PartitionSets/List(Set(Index)) : sets the partitions that each e.dst task fetches for e

Persistence/Enum(Keep,Discard) : sets whether to keep or discard data after e.dst processes e

Table 1: Example IR DAG transformation methods for optimizing scheduling and communication. Reshaping methods take as
input a utility vertex and additional arguments. Annotation methods take as input a key/value execution property.

3.1.1 Transforming an IR DAG

The Nemo IR DAG represents a data processing application
with vertices representing logical operations and edges rep-
resenting data dependencies. When executed, an IR vertex is
translated into parallel tasks that run on multiple nodes. An
IR edge can be translated into key-partitioned data blocks
that are produced by tasks. The initial IR DAG translated
from an application, such as an RDD [50] and Beam [1] ap-
plication, typically consists of vertices containing functions
defined by the application, and edges with the information on
communication patterns (one-to-one, shuffle, broadcast).

Table 1 shows example reshaping and annotation meth-
ods Nemo provides to transform the IR DAG. The reshaping
methods specify a new utility vertex to insert into the IR DAG,
and Nemo inserts new edges to connect the specified vertex
with the existing vertices in the IR DAG. Table 1 specifies
four utility vertices. Relay and Reshuffle simply apply an
identity function to forward data from an upstream vertex to
a downstream vertex, connecting with the downstream vertex
with the one-to-one and the shuffle dependency, respectively.
Sampling vertex applies the same function as an existing
vertex, and consumes the same data that the existing vertex
consumes. During the execution, Nemo schedules only a sub-
set of Sampling tasks according to the given sampling rate.
Trigger vertex applies a user-defined function on interme-
diate data. When a Trigger vertex executes and completes,
Nemo collects the results of the user-defined function to gen-
erate a message. Nemo then halts the execution of the job,
and uses the message to trigger a corresponding run-time
optimization pass, which we describe in Section 3.2. The IR
DAG also supports deleting the inserted utility vertices.

The annotation methods configure scheduling and commu-
nication of vertices and edges by annotating specified execu-
tion properties. Table 1 specifies nine execution properties.
For scheduling, we have execution properties for deciding

how, where, and when to schedule tasks. Parallelism and
SpeculativeCloning configure how many tasks to sched-
ule. ResourceSite and ResourcePriority specify where
to schedule the tasks. DataFlow determines whether or not to
schedule source and destination tasks concurrently. For com-
munication, we enable configuring the medium to store inter-
mediate data with DataStore, the persistence method with
Persistence, and data partitioning strategies with NumPar-
titions and PartitionSets. Combinations of different ex-
ecution properties can express optimizations that can require
significant efforts to implement with runtime policy interfaces.
For example, we can configure upfront task cloning with a per-
sistent in-memory data shuffle that pushes data eagerly from
transient resources to reserved resources, through simply an-
notating appropriate SpeculativeCloning, ResourcePri-
ority, Persistence, DataStore, and DataFlow proper-
ties on two vertices and a shuffle edge that connects them.
The IR DAG also supports looking up the execution properties
annotated on vertices and edges.

3.1.2 Ensuring Correctness

The reshaping methods ensure correctness, because Nemo
connects the newly inserted utility vertex with existing ver-
tices correctly. As shown in Table 1, only the outputs of the
Relay and Reshuffle vertices are consumed by existing
vertices, and these outputs are equivalent to the data that the
existing vertices originally consumed. The other utility ver-
tices, on the other hand, do not reach data sinks and thus do
not affect the final results that the IR DAG produces. When a
utility vertex is specified to be deleted, Nemo reverts appro-
priate changes.

The annotation methods ensure correctness through en-
abling Nemo to examine the configured execution properties.
For each vertex in the IR DAG, Nemo checks its execution

180 2019 USENIX Annual Technical Conference USENIX Association

properties and the execution properties of its neighboring
edges and vertices, while also examining the communica-
tion patterns of the edges. This ensure correctness because
execution properties do not use and modify computation se-
mantics [17, 21, 52] inside each vertex, and also do not have
direct access to control messages and data elements in the
runtime. For example, Nemo checks that the sets in the Parti-
tionSets are disjoint and together contain all offsets for the
NumPartitions, to read each partition exactly once. Nemo
also checks that PartitionSets and NumPartitions are
set on shuffle edges, and that vertices connected with an one-
to-one edge have the same Parallelism. Persistence, for
example, is not checked, because discarded intermediate data
can always be recomputed from the source data when needed.

Our transformation methods ensure correctness even when
invoked during the execution of the IR DAG. Because the
IR DAG is decoupled from the underlying runtime, Nemo
ensures correctness by controlling when to apply the trans-
formations of the IR DAG in the runtime. Specifically, we
define that a vertex is being executed when its tasks are being
executed, and an edge is being executed when its source or
destination vertex is being executed. First, if the transformed
vertices and edges have not yet been executed, then we apply
the changes immediately, such that the changes are used when
they are executed. Second, if they are being executed, then
we delay applying the changes until they finish execution to
ensure correctness. Third, if they have already finished exe-
cution, then we apply the changes immediately, such that the
changes are used when they are re-executed due to reasons
such as faults.

3.1.3 Supported Applications and Runtimes

The current design of the IR DAG supports data processing
applications that can be represented as a DAG of data-parallel
and deterministic operators that process bounded data. Many
real-world applications, such as Beam and RDD batch ap-
plications and also higher-level domain-specific applications
like machine learning and SQL applications, meet this as-
sumption. The current IR DAG would need to be extended to
support other types of applications, such as those that have
cyclic dependencies and process unbounded data [31].

The IR DAG assumes an underlying distributed runtime
that supports configuring and applying utility vertices and
execution properties. Existing runtimes can be enhanced to
provide full support for the IR DAG optimizations through in-
troducing additional features. For example, new data channels
in addition to the existing ones (FIFO, File, TCP Pipe) can be
introduced in Dryad [20] to provide support for various com-
binations of the DataStore, DataFlow, and Persistence
execution properties. Similarly, a feature to dynamically add
computations to a running application can be introduced in
Tez [40] and the Spark runtime [4] to apply utility vertices
inserted at run time.

3.2 Optimization Passes
Nemo optimization passes aim to provide the desired user-
defined policy abstraction P. A pass is a function that receives
an input IR DAG and produces a transformed IR DAG. We
first describe how to develop and compose passes. We then
describe how Nemo applies the given passes on the IR DAG.

3.2.1 Developing and Composing Passes

We describe the rationale and the algorithm for several exam-
ple passes to demonstrate how to develop and compose new
passes. We can write two types of passes: compile-time and
run-time. Compile-time passes take as input only an IR DAG,
and are run prior to job execution. Run-time passes addition-
ally receive a message produced by a Trigger vertex during
job execution.

Geo-distributed data analytics: We aim to cope with the
low and variable capacity of WAN links when processing data
that are geographically distributed [19, 33, 44, 45]. To reduce
network bottlenecks, we formulate the problem of placing
computations to geographically distributed sites as a linear
program (LP), similar to specialized scheduler extensions like
Iridium [33]. Here, we use bandwidth information and data
size estimations. We also use an off-the-shelf linear solver
library, since Nemo allows using external libraries when writ-
ing a pass. The pseudocode of this algorithm is as follows.

CompileTimePass GeoDistPass(irdag):
solution = solveLP(bwInfo(), sizeEstimates(irdag))
for v in irdag.vertices:
v.set(newResourceSite(solution.get(v)))

Harnessing transient resources: We aim to reduce recom-
putation costs when using transient resources that are cheap
but frequently evicted [37, 38, 42, 47, 48]. Based on the com-
munication patterns, we identify operations that incur large
recomputation costs and place them on reserved resources.
We place the other operations on transient resources. We
also quickly move intermediate data produced on transient to
reserved resources. This applies key scheduling and commu-
nication optimizations employed in specialized runtimes like
Pado [48]. The pseudocode of this algorithm is as follows.

CompileTimePass TransientResourcePass(irdag):
for v in irdag.vertices.topologicallySorted():
if (allOneToOneFromReserved(v.inEdges)
|| existsNonOneToOne(v.inEdges)):
v.set(ResourcePriority.Reserved)
else:
v.set(ResourcePriority.Transient)
for e in v.inEdges:
if fromTransientToReserved(e.src, v):
e.set(DataFlow.Push)

Large-scale data shuffle: We aim to reduce random disk
read overheads that can grow quadratically with data size
when shuffling data, similar to specialized shuffle systems

USENIX Association 2019 USENIX Annual Technical Conference 181

like Sailfish [35] and Riffle [51]. We insert a Relay vertex
to specify shuffling data in memory as soon as produced and
writing the data as-is to a local disk. We also ensure that
the in-memory data are discarded once transferred, to avoid
running into out of memory errors. Following computations
sequentially read the data from the local disk, after the shuffle
completes. The pseudocode of this algorithm is as follows.

CompileTimePass LargeShufflePass(irdag):
for e in irdag.edges.filter(isShuffleEdge()):
rv = newRelayVertex()
irdag.insert(rv, e)
rv.inEdge.set(DataFlow.Push, DataStore.Memory)
rv.inEdge.set(Persistence.Discard)
rv.outEdge.set(DataFlow.Pull, DataStore.Disk)

Mitigating data skew: We aim to assign the same amount
of data across parallel computations to prevent stragglers. We
first set the number of partitions for the data to be shuffled.
We then insert a Trigger vertex with a function for obtaining
the set of data partition sizes. We also ensure that the shuffle
receiver is executed after the the shuffle sender and the Trig-
ger vertex complete, at which point we will have obtained the
statistics and optimized the execution of the shuffle receiver.
The pseudocode of this algorithm is as follows.

CompileTimePass SkewCTPass(irdag):
for e in irdag.edges.filter(isShuffleEdge()):
e.set(newNumPartitions(e), DataFlow.Pull)
irdag.insert(newOptVertex(), sizeFunction(), e)

At run time, when the Trigger vertex completes and
makes available the set of size numbers, we partition the set
into subsets such that the sum of the numbers in the subsets
are as equal as possible. We then assign each subset to a dis-
tinct shuffle receiver task. The pseudocode of this algorithm
is as follows.

RunTimePass SkewRTPass(irdag, message):
subsets = partition(message)
message.edge.set(newPartitionSets(subsets))

Finally, we can compose multiple passes to build an op-
timization policy like the following example. Registering a
run-time pass requires specifying a compile-time pass that
inserts Trigger vertices, which produce the same type of
message the run-time pass uses.

policyBuilder.register(LargeShufflePass)
policyBuilder.register(SkewRTPass, SkewCTPass)
policy = policyBuilder.build()

3.2.2 Applying Passes

Given an IR DAG and a policy composed of passes, Nemo
first applies the compile-time passes on the IR DAG in the
same order as they were registered. The optimized IR DAG
output by the last compile-time pass is executed. As the exe-
cution progresses, each Trigger vertex completes execution

one-to-one

shuffle, Discard
Pull, Memory

LargeShufflePass

V1

V3

V2

V4

shuffle broadcast

one-to-one

TransientResourcePass SkewCTPass

Transient

Reserved

Relay
V3

V2

V4

shuffle,
Discard, Push,

Memory broadcast

one-to-one,
Push

V1

one-to-one,
Pull, Disk

V1 V3

V2 V4

broadcast

one-to-one

Opt

Relay

one-to-one,
Pull, Disk

Relay V3

V2

V4

shuffle, Discard
Push, Memory

broadcast

V1

one-to-one,
Pull, Disk

E3E1

E2

E3

E2

E4

E4

E3

E2

E
5

E
6

E5 E4

E
3

E2

one-to-one

E5

Figure 4: A policy composed of the LargeShufflePass
and the TransientResourcePass, and another policy com-
posed of the LargeShufflePass and the SkewCompli-
eTimePass are applied on an input IR DAG.

and produces a message. For each message, Nemo runs the
corresponding run-time pass to transform the IR DAG. Nemo
runs the passes for different messages serially.

After applying each pass, Nemo checks whether the IR
DAG produced by the pass is correct as described in Sec-
tion 3.1.2, and also whether the pass has encountered a conflict
with a previous pass. A conflict occurs when a pass overwrites
the value of an execution property set by a previous pass to a
different value, or deletes a utility vertex inserted by a previ-
ous pass. Nemo throws an error and refuses to execute in case
of a check failure after running a compile-time pass. Upon
a check failure of a run-time pass, Nemo just ignores the IR
DAG output by the pass and logs the failure, as stopping an
already running application can be costly.

Figure 4 shows how Nemo runs two example policies. Both
policies first apply the LargeShufflePass, which inserts a
Relay vertex between V1 and V3, and annotates E5 and E4.
The first policy then applies the TransientResourcePass,
which performs annotations without any conflict with the
previous pass. The second policy applies the SkewCTPass,
which inserts a Trigger vertex, and tries to annotate E5 with
the pull DataFlow. However, the SkewCTPass encounters a
conflict as the push DataFlow has already been set for E5 by
the previous LargeShufflePass.

Fundamentally, the conflict in the second policy occurs

182 2019 USENIX Annual Technical Conference USENIX Association

Master

Executor Executor

Nemo IR DAG

Task DAG

NemoChannel NemoChannel

Callback Handlers

Run-time Passes

Task

Data FlowControl Flow

(2)

(3)

(4) (5) (6)

(7)

(8)

(9)NemoScheduler

(10)

(1)

Task

Figure 5: Nemo runtime extensions (bold) apply optimiza-
tions in a distributed runtime.

because the LargeShufflePass tries to shuffle data eagerly
in memory, whereas the SkewCTPass tries to use the statis-
tics of the data before the downstream computations start
to consume the data. If undetected, this conflict results in a
pull-based in-memory data shuffle, where the outputs of all
V1 tasks are stored in memory before the Relay tasks start
fetching the data. Although this configuration avoids disk
seek overheads and also handles data skew at the same time,
it can cause out of memory errors for large input data.

Because Nemo detects such conflicts explicitly, we can
quickly address the issue. In this case, we design a
new SkewSamplingPass that avoids the conflict with the
LargeShufflePass. This new compile-time pass clones the
IR DAG using Sampling vertices, and first runs the clone to
obtain the statistics of sampled data. Our third policy with the
LargeShufflePass and the SkewSamplingPass can be ap-
plied together on the IR DAG to optimize for both large data
shuffle and data skew. However, compared to the SkewCT-
Pass, the SkewSamplingPass incurs the cost of executing
additional vertices and using the statistics of sampled data
rather than the entire data.

Next, we describe how these various transformations of the
IR DAG are reflected in the distributed execution.

3.3 Runtime Extensions

We use a Nemo-compatible runtime depicted in Figure 5 to
describe how the Nemo runtime extensions apply the IR DAG
transformations in the distributed runtime. Upon job launch,
the runtime starts a master process and executor processes
on user-specified resources. In the master, the NemoSched-
uler extension operates on the task DAG abstraction that
the runtime provides for scheduling tasks to executors. Ex-
ecutors spawn a thread to run each scheduled task, and uses
the NemoChannel extension to communicate data between
the tasks. In the rest of the section we describe how these
extensions apply optimizations.

First, we set up the initial task DAG using the IR DAG
optimized by compile-time passes (1). Here, we merge neigh-

boring IR vertices into the same tasks as much as possible
to minimize data communication overheads, while consid-
ering communication patterns of the IR edges and related
execution properties such as the Resource properties and the
Parallelism property. In case of a Trigger vertex, we also
register a callback handler to collect the results produced by
the corresponding tasks from executors as a message. Upon
job start, we select candidate tasks for scheduling, which are
the source tasks and their children tasks connected with the
push DataFlow (2). For each candidate task, we select can-
didate executors by comparing the corresponding Resource
properties of the task with the information on the executors.
We then schedule the task to a candidate executor with the
least number of running tasks (3).

When a task emits a data element, we write it to the corre-
sponding DataStore implementation, creating a data block
when all data elements for the channel are written (4). If the
corresponding edge is shuffle, then the block is partitioned
into NumPartitions. When a task reads input data elements,
we look for the locations of the input data blocks, blocking
the call when looking for blocks that are not yet available. We
fetch the input data elements from the local and remote Data-
Stores, while applying PartitionSets for shuffle edges
(5-6). Once all of the downstream tasks successfully read a
block, we decide to either keep or discard the block based on
the Persistence property.

Upon learning about task progress and executor status,
we schedule new tasks, restart tasks to recover from failures
and evictions, and clone tasks based on the Speculative-
Cloning property (7-8). When a message is produced for a
Trigger vertex, we postpone scheduling new tasks, invoke
the corresponding run-time pass (9), rewrite the task DAG
based on the new IR DAG output by the run-time pass at the
correct timing described in Section 3.1.2 (10), and resume
scheduling.

4 Implementation

We have implemented Nemo and a distributed runtime that is
compatible with Nemo in around 32K lines of Java code. Our
Nemo implementation consists of the following three com-
ponents similar to Musketeer [15] and LLVM [26]: frontend,
optimizer, and backend.

The frontend translates applications such as Beam and
RDD applications into an IR DAG (Section 3.1). At present,
our frontend provides translation support for all Beam [1]
operators, and a subset of RDD [50] operators such as map, re-
duce, collect, broadcast, and cache. The main reason
for not fully supporting RDDs is that the current iterator im-
plementation used in Nemo is not readily compatible with
the various RDD implementations. In the future we plan to
modify our iterator implementation to address this limitation.
The optimizer applies optimization passes on the IR DAG
(Section 3.2). The backend configures the underlying runtime

USENIX Association 2019 USENIX Annual Technical Conference 183

with the optimizer and the runtime extensions (Section 3.3).
Existing Beam applications can run on Nemo by modifying

the line importing the Beam PipelineRunner implementa-
tion to our implementation of the runner. The frontend con-
verts each Beam PTransform to an IR vertex, and PCollec-
tion to an IR edge. The frontend also obtains the information
on communication patterns during the translation. For exam-
ple, it specifies shuffle edges for the incoming PCollections
of the GroupByKey PTransforms.

Similar to Beam, existing RDD applications can run on
Nemo with simple modifications to the lines importing the
implementations of SparkSession and SparkContext to
our implementations of the classes. Each RDD becomes an IR
edge, and each user-defined function that generates an RDD
becomes an IR vertex. Our frontend also aims to respect all
of the user-specified parameters on RDDs such as parallelism
and data caching, by setting the execution properties on the
translated IR DAG accordingly.

Our runtime implementation is built on top of REEF [46],
and consists of master and executor processes similar to the
Nemo-compatible runtime described in Section 3.3. A REEF
job consists of the driver that obtains containers from a re-
source manager, and evaluators that provide runtime environ-
ments on containers. To take advantage of the abstractions
provided by REEF, the runtime master runs as the REEF
driver and the runtime executors run as the REEF evalua-
tors. Through the integration with REEF [46], our runtime
runs on resource managers such as Hadoop YARN [2] and
Mesos [18].

5 Experimental Evaluation

We evaluate Nemo on the following three dimensions. First,
we evaluate how Nemo applies fine control under different
resource and data characteristics. Second, we evaluate how
different combinations of optimization passes optimize the
same application. Third, we evaluate how the same Nemo
policy optimizes different applications.

We run data processing applications with different combina-
tions of following resource and data characteristics: geograph-
ically distributed resources, transient resources, large-shuffle
data, and skewed data. We run each application five times, and
we report the mean values with error bars showing standard
deviations.

We use h1.4xlarge Amazon EC2 instances, each of which
provides 16 vCPUs, 64 GiB memory, two 2 TB HDDs, and
10 Gbps network. We use different numbers of instances for
different experiments. On each instance, one of the two disks
is used by a Hadoop Distributed File System [2] cluster that
we set up on the instances, and the other is used as a scratch
disk for maintaining intermediate data. Input datasets are
stored in HDFS, and fetched by the systems at the beginning
of each job.

 0

 5

 10

 15

 20

Low Medium High

JC
T

 (
m

in
)

(a) Cross−site network bandwidth heterogeneity

Nemo
Spark

Iridium

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 1 2 3 4 5 6

T
as

k
 C

D
F

(b) Shuffle read blocked time (min)

Nemo
Spark

Iridium

Figure 6: JCT for different cross-site network bandwidths,
and CDF of shuffle read blocked time of tasks under the high
cross-site network bandwidth heterogeneity.

5.1 Fine Control

In this experiment, we evaluate how Nemo applies fine control
under different resource and data characteristics. For compari-
son we run Spark 2.3.0 [4], because it is an open-source, state-
of-the-art system. We also run a specialized runtime for each
deployment scenario. Specifically, we run Iridium [33] for
geo-distributed resources, Pado [48] for transient resources,
and Hurricane [12] for data skew. We examine the results of
Beam applications on Nemo and Pado, Spark RDD applica-
tions on Spark and Iridium, and a Hurricane application on
Hurricane.

We confirm that the baseline performance is comparable
for Beam and basic RDD applications on Nemo. We also
confirm that the baseline performance is comparable for Spark
and Nemo with the DefaultPass, which configures pull-
based on-disk data shuffle with locality-aware computation
placement similar to Spark. We observe that the overhead of
running the compile-time passes on Nemo is roughly 200ms.
We also measure and report run-time overheads of the Relay
vertex, Trigger vertex, and SkewRTPass in this section.

Geo-Distributed Resources: To set up geo-distributed re-
sources and heterogeneous cross-site network bandwidths, we
use Linux Traffic Control [6] to control the network speed
between instances, as described in Iridium [33]. Each site is
configured with 2Gbps uplink network speed, and a specific
downlink network speed between 25Mbps and 2Gbps. We
experiment with Low, Medium, and High bandwidth hetero-
geneity with the fastest downlink outperforming the slowest
downlink by 10×, 41×, and 82×. With this, we use 20 EC2
instances as resources scattered across 20 sites. To evaluate
data shuffle under heterogeneous network bandwidths, we
use a workload that joins two partitions of 373GB Caida [8]
network trace dataset and computes network packet flow statis-
tics.

The job completion time (JCT) of Iridium, Spark, and

184 2019 USENIX Annual Technical Conference USENIX Association

 0

 15

 30

 45

 60

60min 40min 20min

JC
T

 (
m

in
)

(a) Mean time to eviction on transient resources

Nemo
Spark
Pado

 0.01

 0.1

 1

 10

 100

60min 40min 20minR
e−

co
m

p
le

te
 (

%
)

(b) Mean time to eviction on transient resources

Nemo
Spark
Pado

Figure 7: JCT and ratio of re-completed tasks to original tasks
for different mean times to eviction on transient resources.

Nemo optimized with the GeoDistPass, are shown on Fig-
ure 6 (a). Spark degrades significantly with larger bandwidth
heterogeneity, since tasks that fetch data through slow net-
work links become stragglers. In contrast, Iridium and Nemo
are stable across different network speeds. Figure 6 (b) shows
that the cumulative distributive function (CDF) of shuffle
read time has a long tail for Spark compared to Iridium and
Nemo. Iridium and Nemo show comparable performance with
similar largest shuffle read blocked times, although Iridium
shows overall better shuffle read blocked times using a more
sophisticated linear programming model.

Transient Resources: Based on existing works [42,47,48],
we classify resources that are safe from eviction as reserved
resources and those prone to eviction as transient resources.
We set up 10 EC2 instances for providing transient resources
and 2 instances for reserved resources. When an executor
running on transient resources is evicted, we allow the sys-
tem to immediately re-launch a new executor using the tran-
sient resources to replace the evicted executor as described in
Pado [48]. To evaluate handling long and complex DAGs with
transient resources, we run an Alternating Least Squares [23]
(ALS) workload, an iterative machine learning recommenda-
tion algorithm, on 10GB Yahoo! Music user ratings data [10]
with over 717M ratings of 136K songs given by 1.8M users.
We use 50 ranks and 15 iterations for the parameters. By
varying the mean time to eviction for transient resources, we
show how systems deal with the different eviction frequencies.
The distribution of the time to eviction is approximated as an
exponential distribution, similar to TR-Spark [47].

Figure 7 (a) shows the JCT of Pado, Spark and Nemo opti-
mized with the TransientResourcePass for different mean
times to eviction. With the 40-minute and 20-minute mean
time to eviction, Spark is unable to complete the job even after
running for an hour, at which point we stop the job. The main
reason is heavy recomputation of intermediate data across
multiple iterations of the ALS algorithm, which is repeatedly
lost in recurring evictions. On the other hand, Nemo and Pado

 0

 25

 50

 75

 100

Nemo Spark Nemo Spark Nemo Spark

JC
T

 (
m

in
) Map

Reduce

2TB1TB512GB

(a) Input data size

 0

 15

 30

 45

 60

 0 20 40 60 80 100 120

D
is

k
 (

M
B

/s
)

(b) Time (min)

Nemo−write
Nemo−read
Spark−write
Spark−read

Figure 8: JCT for different input data sizes, and mean through-
put of scratch disks for maintaining intermediate data when
processing the 2TB input data.

successfully finish the job in around 20 minutes, as both sys-
tems are optimized to retain a set of selected intermediate
data on reserved resources. Figure 7 (b) shows the ratio of
re-completed tasks to original tasks for different mean times
to eviction. It shows that Nemo and Pado re-complete sig-
nificantly fewer tasks compared to Spark, leading to a much
shorter JCT. Nemo and Pado show comparable performance
although Nemo re-completes more tasks, because the tasks
that both systems re-complete are executed quickly and do
not cause cascading recomputations of parent tasks.

Large-Shuffle Data: We evaluate how Nemo and Spark
handle large shuffle operations using 512GB, 1TB, and 2TB
data of the Wikimedia pageview statistics [7] from 2014 to
2016, as the datasets provide sufficiently large amount of real-
world data. We use a Map-Reduce application that computes
the sum of pageviews for each Wikimedia project. We choose
the ratio of map to reduce tasks to 5:1, similar to the ratios
used in Riffle [51] and Sailfish [35], and use 20 EC2 instances
to run the workload.

The JCT of Spark and Nemo optimized with the
LargeShufflePass are shown on Figure 8 (a). Both show
comparable performance for the 512GB dataset, but Nemo
outperforms Spark with larger datasets. To understand the
difference, we measured the mean throughput of the disks
used for intermediate data. Figure 8 (b) illustrates the mean
disk throughput of scratch disks used for intermediate data
when running the 2TB workload. Here, a spike in the write
throughput is followed by a spike in the read throughput,
which illustrates disk writes during the map stage followed
by disk reads during the reduce stage while performing the
shuffle operation. For Spark, the disk read throughput during
the reduce stage is as low as about 10 MB/s, indicating severe
disk seek overheads. In contrast, the throughput is as high
as 45 MB/s for Nemo, as the LargeShufflePass enables
sequential read of intermediate data by the following reduce

USENIX Association 2019 USENIX Annual Technical Conference 185

 0

 7

 14

 21

 28

0.8−Zipf 1.0−Zipf 20%−Top10 30%−Top10

O
O

M

JC
T

 (
m

in
)

(a) Input data skewness

Nemo
Spark

Hurricane

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 2 4 6 8 10 12 14 16

Nemo

Hurricane

Spark

R
ed

u
ce

 t
as

k
 C

D
F

(b) Time (min)

Nemo
Spark

Hurricane

Figure 9: JCT for different input data skewness, and CDF of
reduce task completion time when processing the 30%-Top10
skewed data. Each vertical line in the CDF graph denotes the
completion time of the slowest reduce task.

tasks, which minimizes the disk seek overhead.
To measure the overhead of the Relay vertex inserted

by the LargeShufflePass before the reduce operation,
we have also run the 2TB workload on Nemo without the
LargeShufflePass. The reduce operation begins 56 sec-
onds earlier without the LargeShufflePass and the Relay
vertex, where 56 seconds represent 2.05% of the JCT of Nemo
with the LargeShufflePass.

Skewed Data: To experiment with different degrees of data
skewness, we generate synthetic 200GB key-value datasets
with two different key distributions: Zipf and Top10. For the
Zipf distribution, we use parameters 0.8 and 1.0 with 1 million
keys [12]. Datasets with Top10 distribution have heaviest 10
keys that represent 20% and 30% of the total data size. We run
a Map-Reduce application that computes the median of the
values per key on 10 EC2 instances. Because this application
is non commutative-associative, for evaluating Hurricane we
use an approximation algorithm similar to Remedian [39] to
fully leverage its task cloning optimizations [12]. The Hur-
ricane application also uses 4MB data chunks and uses its
own storage to handle input and output data, similar to the
available example application code.

Figure 9 (a) shows the JCT of Hurricane, Spark, and Nemo
optimized with the SkewCTPass and the SkewRTPass. Per-
formance of Spark degrades significantly with increasing
skewness. Especially, Spark fails to complete the job with
the 1.0 Zipf parameter, due to the load imbalance in reduce
tasks with skewed keys which leads to out-of-memory er-
rors. In contrast, both Nemo and Hurricane handle data skew
gracefully. In particular, Nemo achieves high performance,
and at the same computes medians correctly without using an
approximation algorithm.

Figure 9 (b) shows the CDF of reduce task completion time
when processing the 30%-Top10 dataset. The CDF for Spark
shows that reduce tasks with popular keys take a significant

Skewed data on
Geo-distributed

Large Shuffle
on Transient

Large Shuffle
with Skewed

DP: OOM DP: 100m DP: OOM
GDP: OOM TP: OOM LSP: OOM
SKP: 27.2m LSP: 100m SSP: OOM
GDP + SKP:

14.9m
TP + LSP:

48.2m
LSP + SSP:

31.4m

Table 2: JCT when using different combinations of Default-
Pass (DP), GeoDistPass (GDP), SkewCTPass (SKP),
TransientResourcePass (TP), LargeShufflePass
(LSP), and SkewSamplingPass (SSP).

amount of time to finish compared to other tasks. In contrast,
the slowest task completes much quicker for Hurricane and
Nemo. We have observed short-lived tasks alongside with
longer tasks in Hurricane with its task cloning optimization,
and longer tasks with balanced completion times for Nemo
with its data repartitioning optimization.

To measure the overhead of the Trigger vertex inserted
by the SkewCTPass, we also run the 30%-Top10 workload on
Nemo without the SkewCTPass and the SkewRTPass. The re-
duce operation begins 35 seconds earlier without the Trigger
vertex, where 35 seconds represent 5.52% of the JCT of Nemo
configured with the SkewCTPass and the SkewRTPass.

These results for each deployment scenario show that each
optimization pass on Nemo brings performance improve-
ments on par with specialized runtimes tailored for the specific
scenario.

5.2 Composability
We now evaluate combinations of different optimization
passes. Table 2 summarizes the results.

Skewed Data on Geo-distributed Resources: In this ex-
periment, we use the same 1.0-Zipf workload for the skew
handling experiment in Section 5.1, because the workload
showed the largest load imbalance. We use 10 EC2 instances
representing geo-distributed sites with heterogeneous network
speed in between 25Mbps to 2Gbps. Here, DP and GDP run
into out-of-memory errors due to the reduce tasks with skewed
keys that are requested to process excessively large portions
of data. SKP and GDP+SKP both successfully complete the
job with the skew handling technique in SKP, but GDP+SKP
outperforms SKP by also benefiting from the scheduling opti-
mizations in GDP.

Large Shuffle on Transient Resources: For this experi-
ment, we use the same 1TB workload for the large shuffle
experiment in Section 5.1, to use sufficiently large data that
incurs disk seek overheads. In this case, we use 10 reserved
instances and 10 transient instances with the 20-minute mean
time to eviction setting.

Most notably, DP and LSP fail to complete even after 100

186 2019 USENIX Annual Technical Conference USENIX Association

minutes, at which point we stop the job, and TP runs into
out-of-memory errors. We have observed that heavy recom-
putation caused by frequent resource eviction significantly
slows down the DP and LSP cases. We have also found out
that the LSP optimization makes the application much more
vulnerable to resource evictions compared to DP. The main
reason is that with LSP, eviction of a single receiving task in
the shuffle boundary leads to the entire recomputation of the
sending tasks of the shuffle operation, to completely re-shuffle
the intermediate data in memory. In contrast, DP does not
need to recompute shuffle sending tasks whose output data
are not evicted and stored in local disks. TP by itself also
is not sufficient, as it leads to out-of-memory errors while
pushing large shuffle data in memory from transient resources
to reserved resources.

TP+LSP is the only case that successfully completes the
job by leveraging both optimizations in TP and LSP. With
TP+LSP, the job pushes the shuffle data from transient to
reserved resources, and also streams them to local disks on
reserved resources that are safe from evictions. This allows
TP+LSP to handle frequent evictions on transient resources,
and also to utilize disks for storing large shuffle data with
minimum disk seek overheads. However, TP+LSP incurs the
overhead of using only half of the resources (transient or
reserved) for each end of the data shuffle. As a result, the JCT
for TP+LSP with transient resources is around twice the JCT
for LSP without using transient resources, which is displayed
in Section 5.1. Nevertheless, we believe that this overhead is
worthwhile, taking into account that transient resources are
much cheaper than reserved resources from the perspective
of datacenter utilization [38, 48].

Large Shuffle with Skewed Data: For this experiment,
we generate a synthetic key-value dataset with a skewed key
distribution that is around 1TB in size, as the datasets used
in Section 5.1 for skew handling are not sufficiently large to
incur disk seek overheads. This dataset has the distribution
where heaviest 20 keys represent 30% of the total data size.
Using this dataset, we run the same application that we have
used for the skewed data experiment in Section 5.1 on 20 EC2
instances.

In this experiment, only SSP+LSP successfully completes
the job, whereas all other cases run into out-of-memory errors.
DP and LSP fails to complete the job, due to particular tasks
assigned with excessively large portions of data, incurring out-
of-memory errors. SSP by itself also runs into out-of-memory
errors although it repartitions data across the receiving tasks
of the shuffle boundary. We have observed that with large
data size, the absolute size of the heaviest keys is significantly
larger compared to smaller scale experiments with skewed
data shown in Section 5.1. Without the LSP optimization, this
problem is combined with random disk read overheads that de-
grade the running time of the shuffle receiving tasks, leading
to out-of-memory errors. In contrast, SSP+LSP successfully
completes the job by leveraging both of the optimizations

from SSP and LSP.
These various results confirm that Nemo can apply com-

binations of distinct optimization passes to further improve
performance for deployment scenarios with a combination of
different resource and data characteristics.

5.3 Reusability
Finally, we evaluate how the same Nemo policy optimizes
different applications. In addition to different applications
used in prior experiments, we apply the policies on several
ad-hoc BeamSQL [1] TPC-H [9] queries (Q) with different
scale factors (SF), as they are widely used for benchmarking
distributed data processing systems. Here, 1 SF is approx-
imately 1GB of input data. We specifically use workloads
that handle smaller input and intermediate data compared to
the previous experiments, and thus are much less affected by
the issues that occur in the specific scenarios like disk-seek
overheads and resource evictions.

First, using 20 nodes with the LargeShufflePass, we ob-
serve 20.8 minute JCT for SF1000 Q3 that is 25% smaller
than the JCT without the optimization, but no significant per-
formance improvements for SF1000 Q14. We also observe
41.1 minute JCT for SF3000 Q12 that brings 22% perfor-
mance improvements. Second, we do not observe meaningful
performance improvements for SF100 Q4 and Q13 with the
SkewCTPass on 10 nodes, as the dataset is not skewed. Fi-
nally, using 8 transient nodes with the 10-minute expected
eviction rate and 2 reserved resources, we apply the combina-
tion of the TransientResourcePass and the LargeShuf-
flePass on SF100 Q4 and Q14. For the respective queries,
we observe JCTs of 8.2 minutes and 3.4 minutes, which are
smaller than when not applying the optimizations by 9% and
15%.

These results as well as the results of different workloads
in previous experiments confirm that the same optimization
passes on Nemo can speed up different workloads instantly,
with varying degrees of effectiveness.

6 Related Work

Nemo builds on many years of research in dataflow process-
ing, relational database, and compiler optimizations. Never-
theless, we believe the set of trade-offs we have chosen to
design the IR DAG, optimization passes, and runtime exten-
sions for optimizing distributed dataflow processing makes
Nemo a unique system.

Dataflow processing: Nemo differentiates itself from the
existing application-level [22] and runtime-level [4, 20, 22,
40] approaches to dataflow scheduling and communication
optimizations by taking a middle ground approach. Nemo
provides a policy interface that transforms an intermediate
representation (IR) of applications to express indirect but fine
control over distributed scheduling and communication.

USENIX Association 2019 USENIX Annual Technical Conference 187

Our decoupled system design and our DAG-based IR are
similar to Musketeer [15]. However, our work is complemen-
tary to Musketeer, as we focus on providing fine control over
physical scheduling and communication in our IR, whereas
Musketeer focuses on dynamically mapping its IR to a range
of different execution runtimes.

The SparkSQL Catalyst optimizer [11] takes as input a
SparkSQL application and outputs a Spark RDD application,
which Nemo can take as input. Compared to Nemo, Catalyst
has more information about application semantics (e.g., ‘Add’
‘1’ and ‘2’), but has less fine control over scheduling and
communication (e.g., speculative task cloning).

Recently proposed dynamic query optimizers [28, 29] for
distributed dataflow processing runtimes operate on high-level
logical plans for SQL queries. Leveraging the semantics of
SQL queries and the runtime information, these optimizers
focus on choosing an optimal logical plan, for example by
finding an optimal join order. Nemo operates on a lower-level
IR DAG that supports general dataflow processing applica-
tions, and provides the methods to configure scheduling and
communication methods of each data-parallel operation in
the applications.

Weld [32] takes as input code that composes imperative
libraries such as Pandas [30] and Numpy [41], creates a com-
bined Weld IR program, and outputs optimized assembly code
using LLVM. Weld can reduce data movement overheads
across such imperative libraries, but it is not designed to opti-
mize distributed scheduling and communication like Nemo.

Relational databases: Many of the optimizations in Nemo,
such as parallelization and distributed scheduling optimiza-
tions, can be traced to research in parallel databases [14, 16].
Nemo enables expressing and composing various types of
such optimizations for distributed dataflow processing appli-
cations, by introducing a policy interface that provides fine
control and at the same time ensures correctness.

Our idea of annotating operators with execution proper-
ties is similar to using query hints in relational databases to
influence the optimizer [13]. Nevertheless, these works fo-
cus on restricting the search space of SQL query execution
plans, whereas Nemo focuses on tuning the scheduling and
communication of dataflow processing applications.

Compilers: Our approach of expressing optimizations as
passes that transform an IR is similar to LLVM [26]. How-
ever, in contrast to the LLVM IR that represents assembly
code, the Nemo IR explicitly captures the dependencies and
the communication patterns of coarse-grained, data-parallel
operations. This enables passes on Nemo to express various
distributed scheduling and communication optimizations.

Verified compilers, such as CompCert [27], aim to ensure
the correctness of optimized assembly code using formal
verification methods. Nemo aims to ensure the correctness
of optimized distributed execution of dataflow processing
applications, by introducing utility vertices and execution
properties that make it simple to ensure correctness.

7 Discussion

Nemo provides a programming interface for building correct,
reusable, and composable optimization policies. We discuss
several directions to extend the interface and further facilitate
the development of new policies.

Ensuring resource constraints: Although Nemo provides
execution properties to specify where to place computations
and data, Nemo relies on the runtime to determine the actual
resources to acquire. To ensure that the resource constraints
are met in the execution, we can incorporate the information
into the IR DAG on the resource availability and acquisition.

Declaring optimizations ahead of time: To enable
compile-time analysis of run-time pass conflicts and opti-
mizations, we can provide the option to declare intended
optimizations ahead of time. For example, we can receive
more explicit information on the predicates (e.g., is a shuffle
edge) and actions (e.g., store in memory) that a run-time pass
intends to use.

Leveraging historical information: We can enable passes
to use information on previous executions of the same appli-
cation, and employ more sophisticated techniques such as
machine learning to determine how to transform the IR DAG.
To facilitate this, we can maintain a database that stores the
information of the executed IR DAGs and their performance
metrics, and provide an interface for passes to access the
information in the database.

8 Conclusion

We presented Nemo, an optimization framework that provides
fine control over distributed scheduling and communication
of data processing applications, and at the same time ensures
correct application semantics. We hope Nemo serves as a
platform for dataflow optimization research and development.
Nemo is available at https://nemo.apache.org.

Acknowledgments

We thank our shepherd Ashvin Goel and the anonymous re-
viewers for their feedback. We thank Sunghwan Ihm, Brian
Cho, Rodrigo Fonseca, and members of the Software Plat-
form Lab at Seoul National University for their comments on
the draft. We also thank Min Hyeok Kweun, Jaehyeon Park,
Seonghyun Park, Woo-Yeon Lee, Taegeon Um, Gyewon Lee,
Yunseong Lee, Eunji Jeong, and Soojeong Kim for helping
to implement and evaluate Nemo. Finally, we are grateful to
the Apache Nemo community for their contributions. This
work was supported by Institute for Information & commu-
nications Technology Promotion(IITP) grant funded by the
Korea government(MSIT) (No.2015-0-00221, Development
of a Unified High-Performance Stack for Diverse Big Data
Analytics).

188 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Apache Beam. https://beam.apache.org.

[2] Apache Hadoop. https://hadoop.apache.org.

[3] Apache Nemo. https://nemo.apache.org.

[4] Apache Spark. https://spark.apache.org.

[5] Dryad Research Prototype. https://github.com/
MicrosoftResearch/Dryad.

[6] Linux Traffic Control. https://lartc.org/
manpages/tc.txt.

[7] Page view statistics for Wikimedia projects. https://
dumps.wikimedia.org/other/pagecounts-raw.

[8] The CAIDA Anonymized Internet Traces 2016
Dataset. https://www.caida.org/data/passive/
passive_2016_dataset.xml.

[9] TPC-H. http://www.tpc.org/tpch.

[10] Yahoo! Music User Ratings of Songs with
Artist, Album, and Genre Meta Information, v.
1.0. https://webscope.sandbox.yahoo.com/
catalog.php?datatype=r.

[11] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin
Huai, Davies Liu, Joseph K. Bradley, Xiangrui Meng,
Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and
Matei Zaharia. Spark sql: Relational data processing in
spark. In ACM SIGMOD, 2015.

[12] Laurent Bindschaedler, Jasmina Malicevic, Nicolas
Schiper, Ashvin Goel, and Willy Zwaenepoel. Rock
you like a hurricane: Taming skew in large scale analyt-
ics. 2018.

[13] Nicolas Bruno, Surajit Chaudhuri, and Ravishankar Ra-
mamurthy. Power hints for query optimization. In ICDE,
2009.

[14] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider,
A. Bricker, H. I. Hsiao, and R. Rasmussen. The gamma
database machine project. IEEE Trans. on Knowl. and
Data Eng., 1990.

[15] Ionel Gog, Malte Schwarzkopf, Natacha Crooks,
Matthew P. Grosvenor, Allen Clement, and Steven Hand.
Musketeer: All for one, one for all in data processing
systems. In EuroSys, 2015.

[16] Goetz Graefe. Encapsulation of parallelism in the vol-
cano query processing system. In Proceedings of the
1990 ACM SIGMOD International Conference on Man-
agement of Data, 1990.

[17] Zhenyu Guo, Xuepeng Fan, Rishan Chen, Jiaxing Zhang,
Hucheng Zhou, Sean McDirmid, Chang Liu, Wei Lin,
Jingren Zhou, and Lidong Zhou. Spotting code opti-
mizations in data-parallel pipelines through periscope.
In OSDI, 2012.

[18] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D Joseph, Randy Katz, Scott
Shenker, and Ion Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In NSDI,
2011.

[19] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dim-
itris Konomis, Gregory R Ganger, Phillip B Gibbons,
and Onur Mutlu. Gaia: Geo-distributed machine learn-
ing approaching lan speeds. In NSDI, 2017.

[20] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,
and Dennis Fetterly. Dryad: Distributed data-parallel
programs from sequential building blocks. In EuroSys,
2007.

[21] Eaman Jahani, Michael J. Cafarella, and Christopher Ré.
Automatic optimization for mapreduce programs. Proc.
VLDB Endow., 2011.

[22] Qifa Ke, Michael Isard, and Yuan Yu. Optimus: A dy-
namic rewriting framework for data-parallel execution
plans. In EuroSys, 2013.

[23] Yehuda Koren, Robert Bell, and Chris Volinsky. Ma-
trix factorization techniques for recommender systems.
Computer, 2009.

[24] YongChul Kwon, Magdalena Balazinska, Bill Howe,
and Jerome Rolia. Skew-resistant parallel processing of
feature-extracting scientific user-defined functions. In
SOCC, 2010.

[25] YongChul Kwon, Magdalena Balazinska, Bill Howe,
and Jerome Rolia. Skewtune: Mitigating skew in mapre-
duce applications. In ACM SIGMOD, 2012.

[26] Chris Lattner and Vikram Adve. Llvm: A compilation
framework for lifelong program analysis & transforma-
tion. In Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-directed
and Runtime Optimization, 2004.

[27] Xavier Leroy. Formal verification of a realistic compiler.
Commun. ACM, 2009.

[28] Youfu Li, Mingda Li, Ling Ding, and Matteo Interlandi.
Rios: Runtime integrated optimizer for spark. In SOCC,
2018.

[29] Kshiteej Mahajan, Mosharaf Chowdhury, Aditya Akella,
and Shuchi Chawla. Dynamic query re-planning using
qoop. In OSDI, 2018.

USENIX Association 2019 USENIX Annual Technical Conference 189

https://beam.apache.org
https://hadoop.apache.org
https://nemo.apache.org
https://spark.apache.org
https://github.com/MicrosoftResearch/Dryad
https://github.com/MicrosoftResearch/Dryad
https://lartc.org/manpages/tc.txt
https://lartc.org/manpages/tc.txt
https://dumps.wikimedia.org/other/pagecounts-raw
https://dumps.wikimedia.org/other/pagecounts-raw
https://www.caida.org/data/passive/passive_2016_dataset.xml
https://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.tpc.org/tpch
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r

[30] Wes McKinney et al. Data structures for statistical
computing in python. In Proceedings of the 9th Python
in Science Conference, 2010.

[31] Derek G. Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martín Abadi. Na-
iad: A timely dataflow system. In SOSP, 2013.

[32] Shoumik Palkar, James J Thomas, Anil Shanbhag,
Deepak Narayanan, Holger Pirk, Malte Schwarzkopf,
Saman Amarasinghe, Matei Zaharia, and Stanford Info-
Lab. Weld: A common runtime for high performance
data analytics. In CIDR, 2017.

[33] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik,
Srikanth Kandula, Aditya Akella, Paramvir Bahl, and
Ion Stoica. Low latency geo-distributed data analytics.
In ACM SIGCOMM, 2015.

[34] Smriti R. Ramakrishnan, Garret Swart, and Aleksey Ur-
manov. Balancing reducer skew in mapreduce work-
loads using progressive sampling. In SOCC, 2012.

[35] Sriram Rao, Raghu Ramakrishnan, Adam Silberstein,
Mike Ovsiannikov, and Damian Reeves. Sailfish: A
framework for large scale data processing. In SOCC,
2012.

[36] Alexander Rasmussen, Vinh The Lam, Michael Conley,
George Porter, Rishi Kapoor, and Amin Vahdat. Themis:
An i/o-efficient mapreduce. In SOCC, 2012.

[37] Charles Reiss, Alexey Tumanov, Gregory R. Ganger,
Randy H. Katz, and Michael A. Kozuch. Heterogeneity
and dynamicity of clouds at scale: Google trace analysis.
In SOCC, 2012.

[38] Charles Reiss, John Wilkes, and Joseph L. Heller-
stein. Google cluster-usage traces: format + schema.
Technical report. https://github.com/google/
cluster-data.

[39] Peter J Rousseeuw and Gilbert W Bassett Jr. The re-
median: A robust averaging method for large data sets.
Journal of the American Statistical Association, 1990.

[40] Bikas Saha, Hitesh Shah, Siddharth Seth, Gopal Vija-
yaraghavan, Arun Murthy, and Carlo Curino. Apache
tez: A unifying framework for modeling and building
data processing applications. In ACM SIGMOD, 2015.

[41] SciPy.org. NumPy. https://www.numpy.org.

[42] Prateek Sharma, Tian Guo, Xin He, David Irwin, and
Prashant Shenoy. Flint: Batch-interactive data-intensive
processing on transient servers. In EuroSys, 2016.

[43] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng
Shao, Prasad Chakka, Ning Zhang, Suresh Antony, Hao
Liu, and Raghotham Murthy. Hive-a petabyte scale data
warehouse using hadoop. In ICDE, 2010.

[44] Raajay Viswanathan, Ganesh Ananthanarayanan, and
Aditya Akella. Clarinet: Wan-aware optimization for
analytics queries. In OSDI, 2016.

[45] Ashish Vulimiri, Carlo Curino, P. Brighten Godfrey,
Thomas Jungblut, Jitu Padhye, and George Varghese.
Global analytics in the face of bandwidth and regulatory
constraints. In NSDI, 2015.

[46] Markus Weimer, Yingda Chen, Byung-Gon Chun, Tyson
Condie, Carlo Curino, Chris Douglas, Yunseong Lee,
Tony Majestro, Dahlia Malkhi, Sergiy Matusevych,
Brandon Myers, Shravan Narayanamurthy, Raghu Ra-
makrishnan, Sriram Rao, Russel Sears, Beysim Sezgin,
and Julia Wang. Reef: Retainable evaluator execution
framework. In ACM SIGMOD, 2015.

[47] Ying Yan, Yanjie Gao, Yang Chen, Zhongxin Guo, Bole
Chen, and Thomas Moscibroda. Tr-spark: Transient
computing for big data analytics. In SOCC, 2016.

[48] Youngseok Yang, Geon-Woo Kim, Won Wook Song,
Yunseong Lee, Andrew Chung, Zhengping Qian, Brian
Cho, and Byung-Gon Chun. Pado: A data processing
engine for harnessing transient resources in datacenters.
In EuroSys, 2017.

[49] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu,
Úlfar Erlingsson, Pradeep Kumar Gunda, and Jon Currey.
Dryadlinq: A system for general-purpose distributed
data-parallel computing using a high-level language. In
OSDI, 2008.

[50] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael
Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In NSDI, 2012.

[51] Haoyu Zhang, Brian Cho, Ergin Seyfe, Avery Ching, and
Michael J Freedman. Riffle: optimized shuffle service
for large-scale data analytics. In EuroSys, 2018.

[52] Jiaxing Zhang, Hucheng Zhou, Rishan Chen, Xuepeng
Fan, Zhenyu Guo, Haoxiang Lin, Jack Y. Li, Wei Lin,
Jingren Zhou, and Lidong Zhou. Optimizing data shuf-
fling in data-parallel computation by understanding user-
defined functions. In NSDI, 2012.

190 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/google/cluster-data
https://github.com/google/cluster-data
https://www.numpy.org

Tangram: Bridging Immutable and Mutable Abstractions
for Distributed Data Analytics

Yuzhen Huang∗, Xiao Yan∗, Guanxian Jiang, Tatiana Jin, James Cheng, An Xu, Zhanhan Liu, Shuo Tu
The Chinese University of Hong Kong

Abstract
Data analytics frameworks that adopt immutable data abstrac-
tion usually provide better support for failure recovery and
straggler mitigation, while those that adopt mutable data ab-
straction are more efficient for iterative workloads thanks to
their support for in-place state updates and asynchronous
execution. Most existing frameworks adopt either one of
the two data abstractions and do not enjoy the benefits of
the other. In this paper, we propose a novel programming
model named MapUpdate, which can determine whether a
distributed dataset is mutable or immutable in an application.
We show that MapUpdate not only offers good expressive-
ness, but also allows us to enjoy the benefits of both mutable
and immutable abstractions. MapUpdate naturally supports
iterative and asynchronous execution, and can use different
recovery strategies adaptively according to failure scenarios.
We implemented MapUpdate in a system, called Tangram,
with novel system designs such as lightweight local task man-
agement, partition-based progress control, and context-aware
failure recovery. Extensive experiments verified the benefits
of Tangram on a variety of workloads including bulk process-
ing, graph analytics, and iterative machine learning.

1 Introduction

Existing offline data analytics frameworks can be roughly
classified into two categories according to their data abstrac-
tions: immutable or mutable. The choice of data mutability
results in two sets of fundamentally different system features
and complex trade-offs between efficiency and robustness 1.

MapReduce [17] and Spark [70] are representative systems
that adopt immutable data abstractions, where data accesses
are bulk data movements. MapReduce and Spark provide ef-
fective straggler mitigation (by speculative execution) and
efficient failure recovery (by recomputing only the lost par-
titions), which are critical for large-scale production deploy-

∗Co-first-authors ordered alphabetically.
1We refer robustness to efficient failure recovery and straggler mitigation.

ment. As their immutable data abstractions imply a bulk syn-
chronous parallel (BSP) execution model and lack support
for in-place update, MapReduce and Spark do not perform
well for workloads that benefit from fine-grained state access
and asynchronous execution 2, e.g., sparse logistic regression
and single source shortest path (SSSP).

There are also many systems that adopt mutable data ab-
stractions to accelerate iterative workloads, such as vertex-
centric graph systems (e.g., Pregel [36], GraphLab [34, 35],
PowerGraph [21]) and machine learning systems based on
the parameter server architecture (e.g., Parameter Server [31],
Petuum [60], TensorFlow [1]). Mutable abstractions enable
features such as fine-grained state access and asynchronous
execution, which result in enhanced performance for iterative
graph analytics and machine learning workloads. However,
mutable abstractions make failure recovery and straggler mit-
igation more challenging. In these systems, failure recovery
usually relies on a full restart from the latest checkpoint, and
straggler mitigation with speculative execution is not sup-
ported as the backup tasks will conduct repetitive updates.

In general, immutable data abstraction leads to efficient
failure recovery and effective straggler mitigation, while mu-
table data abstraction supports a richer set of features at the
expense of weaker robustness. We discuss in greater details
the interplay among data abstractions, system features and
robustness in Section 2. In summary, a clear distinction in
existing systems is that they support either mutable or im-
mutable data abstraction, and lack a mechanism to choose
which abstraction to use according to a given workload. Our
analysis on the trade-offs between the two data abstractions
leads to the following questions: Can we model both mutable
and immutable data abstractions under a unified framework?
Can the system determine which abstraction to use according
to the workloads? Is it possible to provide efficient failure
recovery and straggler mitigation under mutable abstraction?

2Compared with BSP, asynchronous execution by stale synchronous par-
allel (SSP) [24,60] or asynchronous parallel (ASP) [49,58] allows the machi-
nes/objects to have different progresses in iterative applications. The progress
differences among the machines are bounded in SSP but unbounded in ASP.

USENIX Association 2019 USENIX Annual Technical Conference 191

We propose a distributed data analytics system, called Tan-
gram, to bridge the gap between mutable and immutable
data abstractions. Tangram adopts a new programming model,
MapUpdate, which is used in the form A.map(B).update(C),
where A, B and C are distributed data collections. Similar to
MapReduce, the map tasks in MapUpdate are coarse-grained
and side-effect-free, which allows speculative execution for
straggler mitigation and failure recovery by only recomputing
the lost partitions. However, the side-input (i.e., collection
B) is read on a per-record basis and the update tasks conduct
in-place update on states (i.e., collection C) to make recent
updates visible to the map tasks. On this basis, MapUpdate
also inherently supports iterative and asynchronous execution.

MapUpdate provides a simple rule to determine whether a
collection should be mutable (Section 3), thus enabling the
system to use mutable or immutable data abstraction for each
collection adaptively according to a given workload. With this
adaptability, Tangram provides elegant implementations for
workloads including bulk processing, vertex-centric graph an-
alytics and iterative machine learning (Section 4). In addition
to good expressiveness, the ability to determine data mutabil-
ity also enables the system to apply different failure recovery
strategies for immutable and mutable collections, providing
similar robustness as immutable systems (Section 5).

Tangram translates a MapUpdate plan (i.e., an invocation of
“A.map(B).update(C)”) into a number of map and update tasks.
To reduce the overhead of centralized scheduling, Tangram
uses a lightweight local task management strategy to schedule
the execution of the tasks and to resolve access conflicts on
each machine. A partition-based progress control mechanism
is introduced to support iterations and asynchronous execu-
tion (Section 5). To achieve high efficiency, Tangram also
incorporates optimizations such as delay combiner, process
cache, and local zero-copy communication.

Our experiments show that Tangram provides efficient fail-
ure recovery and effective straggler mitigation. We also imple-
mented a variety of workloads (e.g., bulk processing, machine
learning, graph analytics, distributed crawler) on Tangram
and compared their performance with specialized systems
and highly optimized low-level MPI implementations. We
found that Tangram can concisely express these workloads in
an intuitive manner and the experiments show that Tangram’s
performance is comparable with that of specialized systems.
Tangram’s expressiveness and efficiency are especially useful
for pipelined workloads consisting of multiple types of tasks
as it eliminates context switch overheads.

Our main contributions can be summarized as follows:

• An in-depth analysis of the interplay among data abstrac-
tion, system features and robustness in existing systems.
(Section 2)

• A novel programming model that can determine data
mutability and can model both mutable and immutable
data abstractions, resulting in good expressiveness. (Sec-
tions 3 and 4)

• A set of novel designs (e.g., partition-based progress
control) and optimizations (e.g., delay combiner) that
support different workloads efficiently on a common
runtime. (Section 5)

• A comprehensive evaluation of Tangram’s performance
on a variety of workloads. (Section 6)

2 Immutable and Mutable Abstractions

We review related systems and analyze the complex interplay
among their data abstractions, key features, failure recovery
and straggler mitigation strategies. For convenience of discus-
sion, we refer to systems that adopt an immutable/mutable
data abstraction as immutable/mutable systems. We give a
summary in Table 1 and discuss the details below.

Data-parallel analytics frameworks such as MapRe-
duce [17], DryadLINQ [68] and Spark [70] are typical ex-
amples of immutable systems. They use functional dataflow
graphs to model the dependency among datasets and break a
job into multiple stages with dependency. The parallel tasks
in each stage are independent and the stages are executed in a
synchronous manner in which a stage can only start after its
predecessors finish. This execution model enables straggler
mitigation with speculative execution, which has been widely
adopted and optimized in practice [3–5, 17, 71].

Immutable systems also provide efficient lineage-based
failure recovery, for which only the lost data partitions are re-
constructed from their parent partitions in the lineage graph.
Compared with checkpoint-based recovery, lineage-based re-
covery can distinguish failure scenarios and does not need to
roll back to the latest checkpoint upon every failure. For ex-
ample, in K-means, if a machine holding a part of the training
samples fails (i.e., narrow dependency), Spark only needs to
reload the lost samples in parallel and recompute their updates
to the centers. Only in cases such as PageRank, when the rank
values of some vertices are lost (i.e., wide dependency), a
full re-computation from the latest checkpoint is required.
Moreover, Spark only checkpoints/reloads datasets that have
a long lineage graph containing wide dependency (e.g., the
rank RDD in the above example), which is more efficient than
checkpointing all RDDs involved in computation.

Immutable systems are inherently stateless and only sup-
port BSP. However, many iterative workloads have intuitive
stateful representations (e.g., the rank values in PageRank, and
the model parameters in sparse logistics regression) and can
benefit from asynchronous execution. For example, machine
learning algorithms such as stochastic gradient descent (SGD)
converge faster under SSP and ASP [24, 49, 69], and it has
also been proven that a number of asynchronous graph algo-
rithms have faster convergence compared to their synchronous
counterparts [49, 73]. Therefore, many specialized mutable
systems such as vertex-centric graph systems [21, 35, 36] and
parameter-server-based machine learning systems [31, 60]
support in-place state updates and asynchronous execution.

192 2019 USENIX Annual Technical Conference USENIX Association

Table 1: The data abstractions and key features of some representative systems

Category Systems
Usability Abstraction System Support

Programming
Model

State
Representation

Access Pattern
(Shuffle)

Execution
Model

Straggler
Handling

Failure
Recovery

Stateless
Dataflow

MapReduce [17], DryadLINQ [68],
Spark [70] functional immutable coarse-grained BSP

speculative
execution

lineage and
checkpoint

Distr. Shared
Mem. Piccolo [46] push/pull mutable kv table fine-grained BSP task stealing checkpoint

Parameter
Server based

Parameter Server [31] push/pull mutable kv table fine-grained BSP/SSP/ASP N/A replication

Petuum [60] push/pull mutable kv table fine-grained BSP/SSP/ASP N/A checkpoint

Distributed
Graph

Pregel [36] vertex-program mutable state coarse-grained BSP N/A
checkpoint or

message replay

GraphLab [34, 35], PowerGraph [21] vertex-program mutable state fine-grained BSP/ASP N/A checkpoint

Tangram functional map
in-place update immutable/mutable partition-based BSP/SSP/ASP

partition
migration

lineage and
checkpoint

Asynchronous execution also makes mutable systems more
robust to micro stragglers 3 as fewer barriers are enforced. In
contrast, immutable systems are prone to micro stragglers as
their BSP execution model enforces a synchronization barrier
in every iteration.

However, mutable systems only provide sub-optimal
system-level solutions to straggler mitigation and failure re-
covery. Most of the mutable systems in Table 1 rely on the
nature of the applications for straggler mitigation and do not
provide a system-level support. For example, graph systems
such as Pregel [36] and PowerGraph [21] rely on graph par-
titioning to ensure a balanced workload distribution among
workers. Parameter Server [31], Petuum [60], GRACE [58]
and Maiter [73] utilize the asynchronous nature of the ap-
plication algorithms to mitigate micro stragglers. Mutable
systems do not support speculative execution as updates are
conducted in a fine-grained manner and it is costly to keep
track of the committed writes in order to avoid repetitive up-
dates. Instead, mutable systems typically use task stealing to
handle stragglers [23, 46].

For fault tolerance, mutable systems usually require a full
restart from the latest checkpoint (e.g., Petuum, Pregel), or
use expensive replication when recovery time is critical (e.g.,
Parameter Server). Contrary to immutable systems, mutable
systems often recompute everything from the latest check-
point. In addition, any failure would cause these systems to
discard and reload all data. The key problem is that these
systems do not distinguish the mutable and immutable parts
in an application. Although existing mutable systems can be
modified individually to support more efficient fault tolerance,
we offer a unified mechanism to solve this problem, which
is especially useful for pipelined workloads where datasets
can change between mutable and immutable status (e.g., the
TF-IDF vectors in the pipelined workload in Section 6.2).

3Micro stragglers are transiently stalling workers and may be caused by
packet loss, system cron jobs, etc. Macro stragglers are slow due to more
persistent reasons, such as workload imbalance and resource contention.

3 Programming Model

In this section, we introduce our MapUpdate programming
model and discuss its differences from MapReduce and
stream processing frameworks.

3.1 MapUpdate

The basic data abstraction in our MapUpdate programming
model is collection, which contains a set of objects (or records)
and is usually kept in memory. A collection is divided into
partitions and partitions are distributed across machines in
the cluster (with hash partitioner by default, but configurable
by users). The MapUpdate programming model is typically
used in the form of

A.map(B, map_func).update(C, update_func),
in which A, B, and C are map collection, side-input collec-

tion, and update collection, respectively. The map_func has a
signature (T, [S, . . .]) => seq(K,V), which takes in an object
of type T in the map collection and (optionally) handler(s) S
to the side-input collection(s), and generates some key/value
(K/V) pairs. The update_func has a signature (U∗,V) => nil,
which takes in a pointer U∗ to an object in the update collec-
tion and an update value V , and returns nothing.

To execute a MapUpdate command (also called a plan), a
machine launches parallel map tasks on its local partitions of
the map collection, where each map task performs map_func
on the objects in one partition of A to generate intermediate
results. The map_func may use the information (parameters)
provided in the side-input collection B. The intermediate re-
sults (of a map task) are then shuffled according to their keys
and committed to the corresponding objects in update col-
lection C with the update_func. By default, the retrieval of
the objects in the side-input collection is fine-grained (i.e.,
on a per-key basis), while the shuffle of intermediate results
and modification to the update collection are conducted on
a per-partition basis. MapUpdate associates progress with
each partition and allows different partitions to have differ-

USENIX Association 2019 USENIX Annual Technical Conference 193

ent progresses, and state access is also progress dependent
(Section 5.2). This partition-based state access pattern of
MapUpdate is different from the coarse-grained state access
pattern in dataflow systems (e.g., Spark), in which all parti-
tions have the same progress (i.e., BSP). Task execution in
the Tangram system is also partition-based, i.e., a partition is
the granularity of task execution.

MapUpdate has an explicit side-input collection. In con-
trast, without the side-input, existing systems (e.g., Spark)
may use broadcast for state sharing, which is inefficient for
large and sparse states (e.g., sparse logistic regression). Some
other systems (e.g., Google Dataflow [2]) also support the
side-input collection but require it to be small and immutable.
MapUpdate does not have such constraints, enabling it to suc-
cinctly and efficiently express workloads that have intuitive
stateful representations (see examples of machine learning
and graph analytics applications in Section 4). MapUpdate
also does not require A, B and C to be different collections.
When A =C or B =C, by default, MapUpdate does not make
a copy of C for read. Instead, MapUpdate reads and writes the
same collection, which enables the map tasks to see the latest
(maybe inconsistent) updates. As we will show in Section 4,
this is important for the asynchronous execution of workloads
such as distributed crawler as they can tolerate inconsistent
states and benefit from fewer synchronization barriers.

MapUpdate ensures consistency 4 if a plan (e.g., word
count) does not write/read the same collection. For plans that
write/read the same collection, consistency is not guaranteed.
This is not problematic because applications such as SGD can
trade consistency for efficiency without sacrificing correct-
ness, and many specialized systems deliberately incorporate
designs to benefit from that. When strict consistency is re-
quired, users can create another copy of the read collection for
write as in Spark and Piccolo. MapUpdate does not enforce
any order when committing the updates of the map tasks,
and the results of a plan may not be deterministic for some
applications (e.g., SGD based logistic regression). In the face
of failure, MapUpdate ensures that each update is committed
exactly once.

In general, the map collection A contains the input data,
such as samples in machine learning and documents in word
count, while the side-input collection B provides informa-
tion needed in computation, such as model parameters in
machine learning. The update collection C holds the com-
putation results, e.g., the final count values in word count.
The side-input collection can be omitted, for example, a user
can write docs.map(map_func).update(count, update_func)
for word count. Instead of a single collection and function,
users can provide multiple side-input collections, update col-
lections, and update functions. Users can easily specify how
a plan is executed using the configurations in Table 2, for ex-
ample, A.map(B).update(C).setIter(100).setStaleness(2) will

4At iteration t, a read on data sees all updates from iteration smaller than
t but not updates from iteration equal or larger than t.

Table 2: Configurations in MapUpdate

Configuration Description
setIter(int n) Run for n iterations

setStaleness(int s) Set staleness to s
setCombine(func) Register combiner

setCheckpointInterval(int n) Set checkpoint interval

conduct the MapUpdate plan for 100 iterations using SSP
with staleness = 2. Additionally, setCombine(func) provides
a function to combine the map outputs before shuffling for
communication reduction, and setChecktpointInterval(n) con-
figures the checkpoint interval in an iterative application. We
will show how these flexibilities of MapUpdate translate into
good expressiveness in Section 4.

3.2 Comparison with Existing Frameworks
We highlight the main differences between MapUpdate and
MapReduce [17], Flink [10] and Spark Structured Stream-
ing [6] in this section.
MapReduce. MapUpdate differs from MapReduce in sev-
eral important aspects. First, while map in MapUpdate is
functional (similar to map in MapReduce), update allows
for asynchronous in-place modification to the stateful collec-
tion. Second, MapUpdate allows the side-input collections
to be specified explicitly and access to the side-input col-
lections is fine-grained, which improves efficiency in many
applications such as machine learning and graph analytics.
Third, with designs to be introduced in Section 5, MapUp-
date provides support for iteration and consistency protocols
including BSP, SSP and ASP (configurable by setStaleness).
Although there are attempts to support key-value-style up-
date (IndexedRDD [26]) and iteration (HaLoop [9], itera-
tive MapReduce [18], Map-Reduce-Update [8]) under the
MapReduce framework, MapUpdate is fundamentally dif-
ferent as these systems do not support in-place updates and
asynchronous execution due to their data immutability.

The most important contribution of MapUpdate, however,
is that it provides a simple mechanism for the system to
determine whether a collection is mutable in a plan from
the API call: the update collection is mutable, and other
collections, if different from the update collection, are con-
sidered immutable. For example, a MapUpdate plan train-
ing a logistic regression model may be expressed as sam-
ples.map(param).update(param), and the system can infer
that collection param (storing the parameters) is mutable
and collection samples (storing data samples) is immutable.
The ability to determine data mutability allows the system
to distinguish failure scenarios and provides efficient failure
recovery strategies accordingly as in immutable systems. For
example, when a machine fails, the system can determine
whether the failed machine holds partitions of param. If not,
only the lost partitions of samples need to be reloaded. Other-
wise, the system rolls back to the latest checkpoint for param,
but the partitions of samples on the healthy machines do not

194 2019 USENIX Annual Technical Conference USENIX Association

need to be reloaded.
To support speculative execution, MapUpdate restricts up-

dates to be conducted on a per-partition basis, in which up-
dates from a map partition are committed together. This per-
partition update strategy enables Tangram to record which
partition has already committed update and is crucial for spec-
ulative execution.

Stream Processing Frameworks. Modern stream process-
ing systems such as Flink and Spark Structured Streaming
also support both mutable and immutable abstractions but
with restricted applicability. We discuss how MapUpdate is
different from them here.

First, states in MapUpdate are shared and can be accessed
globally, which allows Tangram to support workloads such
as machine learning and graph analytics more efficiently. In
contrast, states in Flink are bounded with operators and states
in Spark Structured Streaming are restricted to key groups. In
fact, states in Flink and Spark Structured Streaming are mainly
designed for maintaining states across streaming records (e.g.,
for session tracking). Thus, they are not efficient for read/write
in machine learning and graph analytics workloads, which
introduce loops in the computation graph. Specifically, using
loops in Flink requires to limit the input rate of the input
stream to avoid deadlocks caused by cyclic backpressure [20],
while Spark Structured Streaming does not allow loops in the
dataflow graph, which is necessary when using the stateful
operators for iterative workloads. In contrast, MapUpdate
naturally supports iteration and in-place update.

Second, checkpointing in Flink and Spark Structured
Streaming is more complicated (as they are designed for
stream processing), while Tangram is designed for batch
processing and only checkpoints mutable collections. Spark
Structured Streaming uses checkpointing and write-ahead
logs for fault tolerance. Flink also needs to restart from the
latest checkpoint for any failure.

4 Applications

Programming with MapUpdate to construct data-parallel ap-
plications is simple: users define the collections, construct the
MapUpdate plan by providing the map/update functions and
specify the plan configurations. Low-level system issues such
as parallelism and fault tolerance are hidden from users. In
this section, we demonstrate how MapUpdate can be used to
implement a wide range of applications.

4.1 Bulk Processing
MapUpdate can easily implement the bulk processing work-
loads targeted by MapReduce, which are usually stateless,
non-iterative and involve only bulk data movement. We il-
lustrate by the word count example, which is similar to the
one in Spark: the map function generates (word, count) pairs
when scanning local documents, while the update function

aggregates the (word, count) pairs for final counts. Note that
in the plan of word count, there is no side-input collection.

// Doc: (word1, word2...): (string, string...)
// WordCount: (word, count): (string, int)
// docs: collection<Doc>
// wordcount: collection<WordCount>
docs.map(doc => (w, 1) for each word w in doc)

.update(wordcount, (wc, c) => wc.count += c)

4.2 Iterative Machine Learning
Iterative machine learning algorithms repeatedly refine a set
of model parameters with updates computed from the training
samples. These algorithms (e.g., SGD) are usually robust to
asynchronous execution, in which update is calculated us-
ing outdated or inconsistent model parameters. Parameter-
sever-based systems (e.g., Parameter Server [31], Petuum
Bösen [60]) are widely used for distributed machine learn-
ing and support SSP and ASP to benefit from asynchronous
execution. Tangram can model parameter server by using
the model parameters as both the side-input collection and
update collection. We show an example of training logistic
regression using SGD with SSP (s = 2). The map function
calculates the stochastic gradient of local samples using the
model parameters, while the update function commits the
gradient updates to the model parameters. Iteration and asyn-
chronous execution can be configured using the setIter and
setStalenss commands in Table 2. Note that when setStalenss
is not configured, Tangram uses BSP by default.

// Sample: (label,(k,v)..): (int, (int,float)..)
// Param: (k,v): (int, float)
// data: collection<Sample>
// params: collection<Param>
map_func(Sample sample, Params params, Output o):

grad = CalcGrad(sample, params)
o <- grad // grad: ((k,v)...)

update_func(Param param, float update):
param.val -= learning_rate * update

data.map(params, map_func)
.update(params, update_func)
.setIter(100).setStalenss(2)

4.3 Vertex-Centric Graph Analytics
Vertex-centric graph analytics systems (e.g., Pregel [36], Pow-
erGraph [21]) usually update vertex states iteratively accord-
ing to the states of neighboring vertexes. Tangram can model
vertex-centric graph processing by using the vertex state col-
lection as both map collection and update collection 5. We
use PageRank as an example. The map function calculates
the contribution of a vertex’s PageRank value to its out-
neighbors, while the update function merges the contributions
from the in-neighbors. The ranks and the links collection are

5Using vertex state as side-input and update collection is also feasible.

USENIX Association 2019 USENIX Annual Technical Conference 195

co-partitioned (by using the same partitioner) to reduce com-
munication overhead. Similarly, Tangram can also implement
the edge-centric model [51].

// Rank: (id, pr): (int, float)
// Link: (id, nb1, nb2...): (int, int, int...)
map_func(Rank r, Links links, Output o):
for each neighbor nb in links[r.id]:
o <- (nb.id, 0.85 * r.pr/len(links[r.id]))

update_func(Rank r, float contrib):
r.pr += contrib

ranks.map(links, map_func)
.update(ranks, update_func)
.setIter(30)

4.4 Distributed Crawler
Tangram supports crawler by using urls as both the map col-
lection and update collection. The map function downloads
the web page pointed by the current url and extracts new
urls, while the update function inserts the new urls into the
urls collection and marks the processed urls as visited. Note
that there is no side-input collection. setIter(-1) keeps execut-
ing the iteration (i.e., keep crawling), while setStaleness(-1)
means using ASP.

// Url: (url, status): (string, ToFetch/Done)
map_func(Url url, Output o):
if url.status is ToFetch:
new_urls = DownloadAndExtractNewUrls(url)
for each new_url in new_urls:
o <- (new_url, ToFetch)

o <- (url, Done)

update_func(Url url, Status s):
if url.status is not Done:
url.status = s

urls.map(map_func)
.update(urls, update_func)
.setIter(-1).setStaleness(-1)

In the above applications, we use different combinations of
the three collections (A,B,C) to achieve different computation
patterns. Tangram also supports many other applications (e.g.,
Nomad [69] and graph matching [12]) that are hard to be
implemented in existing systems.

4.5 Pipelined Workloads
MapUpdate is especially useful for pipelined workloads. In
fact, the Tangram project was motivated by production data
analytics workloads that are common in companies such as
Alibaba, which consist of pipelines involving different types
of tasks. Typical pipelines begin with MapReduce-style data
processing, then conduct various advanced analytics (e.g.,
parameter-server-style model training), and end with testing
and verification. We briefly describe a user classification
pipeline and a fraud detection pipeline as examples.

In a user classification pipeline, users are divided into
groups according to their purchase records to generate la-
bels. The basic information (e.g., age, gender and location),
search history and activity patterns (e.g., log-in frequency,
active time period) are gathered from multiple tables using
MapReduce-style join to produce features. Then, various ma-
chine learning models (e.g., logistic regression, SVM) are
trained using a parameter-server-based framework to clas-
sify users into different purchase pattern groups. Lastly, the
models are tested on a held-out dataset to select the best-
performing one for use. We remark that user classification is
only a component of the much larger item recommendation
pipeline, which involves a more diverse set of workloads such
as graph analytics and matrix factorization.

In a fraud detection pipeline, the goal is to find malicious
sellers who use fake transactions to bump up their scales
records [47]. The static relationship among users (i.e., buyers
or sellers) and the dynamic payment activities are first pro-
cessed, and a graph is extracted from the pre-processed data
to model the buyer-seller interaction. Then, graph matching is
applied to find interaction patterns that match some predefined
templates corresponding to fraud patterns. Finally, these inter-
actions are verified by further analysis and the results are used
to update the fraud template library. The verification process
typically involves MapReduce (e.g., joins to obtain details of
suspected users) and graph analytics such as computing the
distances from suspected users to blacklisted users.

As we will show in the experiments, processing different
tasks in a pipeline with respective specialized systems intro-
duces expensive context switch overheads for dumping/load-
ing output/input data by the systems. Using many systems for
a single pipeline also hurts robustness because different sys-
tems provide different fault tolerance semantics and require
engineers to learn/tune all the systems. With the expressive
API of MapUpdate, unified fault tolerance semantics and high
efficiency, Tangram (our system that implements MapUpdate)
can handle the entire pipeline in a unified framework and
thus completely remove the context switch overheads. More-
over, the unified MapUpdate API also significantly reduces
development costs without users’ need to learn many systems.

5 System Design

Designing a system to support the MapUpdate API is chal-
lenging in the following aspects: (1) As tasks in MapUp-
date have complicated interactions and dependencies (e.g.,
read/write conflicts, requiring remote data transfer), a low-
overhead task management and scheduling strategy is crucial
for efficiency. (2) MapUpdate supports iterative plans and flex-
ible consistency control, which requires a distributed progress
control protocol that enables various execution models (i.e.,
BSP, SSP and ASP) under a unified framework. (3) To achieve
efficient failure recovery, effective mechanisms are needed
to distinguish failure scenarios and apply different recovery

196 2019 USENIX Annual Technical Conference USENIX Association

strategies accordingly as analyzed in Section 2.
Tangram adopts a master-worker architecture. The master

is responsible for DAG scheduling (coordinating the work-
ers to execute runnable plans), progress tracking (managing
progress and collecting execution statistics from workers for
fault tolerance and straggler mitigation), and partition man-
agement (keeping track of the location of the partitions by
maintaining the master copy of the partition map). The work-
ers serve as the distributed in-memory storage for the parti-
tions and each worker uses a local controller to manage local
task execution. For scheduling, the master only issues control
commands (start, update progress, migrate, recover, etc.) to
workers and the local controller is responsible for scheduling
its own tasks. The local controller also synchronizes the local
copy of the partition map and the execution progress with the
master. This design reduces centralized scheduling overhead
and is crucial for scaling to large clusters.

5.1 Local Task Management

The local controller in each machine manages three kinds of
tasks, i.e., map task, respond task, and update task. A map
task runs the user-defined map function for every object in a
local map partition, combines the intermediate results locally
if a combine function is provided, serializes the (combined)
results and adds the results to the sender, which will send
them to remote machines (according to the partition map)
for update. A map task invokes a fetcher if it needs to fetch
some records (e.g., parameters in machine learning) in the
side-input collection. The requested records are indexed by
keys and the fetcher splits these keys into multiple subsets,
each corresponding to a partition of the side-input collection.
Then the fetcher sends out the fetch requests to the remote con-
trollers holding the records and blocks the map task. The fetch
request will invoke a respond task in the remote controller
and the map task will be unblocked when all the responses
are received. An update task updates a local partition with
the received intermediate results (from a map task) using the
update function, while a respond task answers a fetch request
using a local partition of the side-input collection.

Different from the pull-based shuffle mechanism in
MapReduce-like systems (where reducers pull intermediate
results from mappers), a push-based shuffle mechanism is
used in Tangram, in which updates are pushed to the update
partitions on a per-partition basis. Push-based shuffle can
overlap network communication with the computation of map
tasks, but the system needs to handle more complex read/write
conflicts between tasks. To resolve the read/write conflicts
for a partition, the controller enforces a simple access con-
trol strategy. It assumes that map and respond tasks read a
partition, while update tasks write a partition. The controller
ensures that writes to a partition are exclusive while reads are
not. If there is an ongoing update task on a partition, then map
tasks, respond tasks and other update tasks on the same parti-

tion will be blocked. If there is an ongoing map or respond
task on a partition, then other map and respond tasks on this
partition can still run but update tasks will be blocked.

The execution of a plan starts when the global scheduler
instructs the local controller to push a number of map tasks to
the map thread pool. When the controller receives a fetch/up-
date request, it invokes a respond/update task. The respond/up-
date task is pushed to the thread pool for execution if it satis-
fies the access control policy; otherwise, it will be inserted into
a pending buffer. Once a task finishes, the controller will be
notified and it will check the pending buffer to find tasks sat-
isfying the access control policy and push them to the thread
pool for execution. The local controller is implemented as a
single-thread event loop and manages the pending buffer and
all control-related data structures. The event-loop simplifies
the implementation logic by avoiding complex locking.

5.2 Partition-Based Progress Control

As a partition is the granularity of task execution in Tan-
gram, each partition can have its own progress. Therefore,
Tangram uses a partition-based progress control mechanism
to support the BSP, SSP and ASP execution models. Different
from parameter-server-based systems, in which progress is
associated with a worker, Tangram associates progress with a
partition. The local controller records the map progresses of
the local map partitions and the update progresses of the local
update partitions. Note that when the map collection and the
update collection are the same (e.g., in PageRank), a partition
has both map progress and update progress. We will show
that partition-based progress control also ensures correctness
upon failure and improves recovery efficiency in Section 5.3.

At the start of a plan, the map progresses and the update pro-
gresses are initialized as zero. When a map task finishes, the
map progress of the corresponding partition is incremented
by one, and the update requests generated by this map task
also carry the map progress (before increment). For an up-
date partition, the local controller uses a bitmap (for each
map progress) to record the map partitions for which update
has already been committed. The controller sets the update
progress of a partition as the minimum progress for which
there are still missing updates. The controller assumes that
a map partition will generate update for all partitions in the
update collection and can confirm that all update requests are
committed using the bitmap.

The controller sets its local progress as the minimum update
progress of its partitions and reports it to the global scheduler.
The global scheduler regards the minimum progress among
workers as the global progress and broadcasts it to all workers
upon changes. If the staleness is k and the global progress is
m, the local controller will only schedule map tasks for its
partitions with a progress no larger than m+ k. An example
of progress control is provided in Figure 1. Partition P1 in
worker 0 has an update progress of 2 as it has not received

USENIX Association 2019 USENIX Annual Technical Conference 197

4

3

0 1 2 3

map partition id

pr
og

re
ss

P0

4

3

2

0 1 2 3

map partition id

pr
og

re
ss

5

4

3

0 1 2 3

map partition id

pr
og

re
ss

P1

progress = 3 progress = 2 progress = 3

Worker 0

local progress: 2

Master

<worker, progress>
<0, 2>, <1, 3>

global progress: 2

P2

Worker 1

local progress: 3

Figure 1: Example of progress management. Dark squares
denote the received updates for each update collection.

the update with progress 2 from map partition 3. The local
progress of worker 0 is 2 as the update progress of P0 and P1
are 3 and 2, respectively. Collecting the local progresses from
worker 0 and worker 1, the master sets the global progress as
2. Once the update with progress 2 from map partition 3 is
committed to P1, both the local progress of worker 0 and the
global progress will be updated to 3.

Assume that there are M map partitions in total and a ma-
chine hosts n update partitions, the machine needs O(MnT)
memory to store the bitmap for a plan, where T is the number
of active iterations (iterations for which there are uncommitted
updates) and is usually small. We reduce the memory con-
sumption of the bitmaps by deleting the bitmap for which all
update requests have been committed and creating a bitmap
only when receiving a new map progress. As the number of
partitions is usually not large, the cost of progress control is
acceptable as we will show in our experiments.

5.3 Context-Aware Failure Recovery
Tangram distinguishes two failure scenarios, i.e., local failure
and global failure, and applies different recovery strategies.

Local failure is the case that the failed machines do not
hold update partitions. Local failure does not directly affect
the task execution on the healthy machines and is similar
to losing RDDs with narrow dependency in Spark. In this
case, Tangram only reloads the lost partitions on the healthy
machines in parallel and sets their progresses as the current
global progress. Some of the updates from the lost partitions
may have been committed to the update collection and setting
their progresses as the global progress may result in repetitive
map tasks. Tangram rejects the repetitive updates generated
by these map tasks using the bitmap.

Global failure happens when the failed machines contain
partitions of the update collection. Examples include losing
machines holding the model parameters in logistic regression
or the rank values in PageRank. Global failure directly af-
fects the computation on all machines and is similar to losing
RDDs with wide dependency in Spark. In this case, Tangram
reloads the lost mutable collection from the latest checkpoint
and resets the global progress and the progresses of all parti-
tions to the latest checkpoint. But for immutable collections,

such as the graph links in PageRank, Tangram only reloads
the lost partitions. The master assigns the tasks of loading
the lost partitions to the healthy machines in a balanced man-
ner so that the machines can recover from failure in parallel.
Moreover, Tangram also respects the co-partitioning relation
of the collections in failure recovery.

Tangram infers which collection is mutable and check-
points only the mutable collections. Checkpointing is con-
ducted in an asynchronous manner and on a per-partition
basis, so that the execution of the entire plan does not need to
be stopped. When the progress of an update partition reaches
the checkpoint iteration, write access is blocked and a copy
is written to disk along with the bitmap. Note that this check-
point may be inconsistent, as the partition may have seen
updated from iterations larger than the checkpoint iteration
(under ASP or SSP). The bitmap is used to reject repetitive
updates from these iterations during recovery. For pipelines
that involve multiple plans, Tangram also checkpoints the mu-
table collections once a plan finishes so that failure recovery
can be conducted inside a plan. Tangram only handles worker
failures, while the master failure can be handled by a standby
master (similar to the standby master in Spark [55]) but is not
implemented in the current version.

5.4 Straggler Mitigation

Tangram uses partition migration for straggler handling. As
update tasks and respond tasks are relatively lightweight, Tan-
gram focuses on balancing the workload of map tasks by
migrating map partitions. For non-iterative workloads (e.g.,
word count), the master monitors the number of ongoing and
pending map tasks on each machine. If some machines do
not have map tasks to run, the master migrates some of the
map partitions from the heavily loaded machines to them. We
allow the system to migrate map partitions with ongoing map
tasks, which resembles speculative execution in Spark. Mi-
gration does not necessarily require data transfer from slow
machines, as will be discussed later.

For iterative workloads, Tangram only handles macro strag-
glers, while micro stragglers can often be handled by asyn-
chronous execution. By default (tunable by users), Tangram
considers a machine as a macro straggler if its per-iteration
time is more than 1.1 times of the median (of all machines)
in three consecutive iterations or more than 1.5 times of
the median in one iteration. Tangram also respects the co-
partitioning relation among the collections to avoid high com-
munication overhead after migration.

Tangram adopts different migration strategies for im-
mutable and mutable partitions. For immutable partitions,
the destination machines just load them from a shared stor-
age system like HDFS rather than asking the source machine
for transfer, since the source machine is already overloaded.
For mutable partitions, Tangram uses a migration procedure
similar to the two-stage migration in Piccolo [46].

198 2019 USENIX Annual Technical Conference USENIX Association

The load of the system may be unbalanced due to skewed
partition size (e.g., due to improper hash function). Currently,
Tangram does not support online re-partitioning for workload
redistribution. Similar to other systems, skewed partitions
can be addressed by either fine-grained sharding (setting the
number of partitions to be much larger than the number of
machines) or providing a tailored partitioning function.

5.5 Communication Optimizations
Delay Combiner. In Tangram, combining the updates from
many map tasks leads to higher compression ratio, but sending
out the updates immediately reduces latency. We provide a
delay combiner, in which users can specify the granularity of
combining with a combine_timeout. Setting combine_timeout
to 0 sends out the updates immediately, while setting com-
bine_timeout to kMaxCombineTimeout combines all local
map outputs in an iteration.
Process Cache. The process cache in Tangram is similar
to the one in Petuum. Previously fetched records of the side-
input collection and their versions are kept in the cache. A new
fetch request will not be sent if the records with the required
version are already in the cache.
Local Zero-Copy Communication. Tangram utilizes local
zero-copy communication whenever possible: if an update
request is to be sent to a local partition, it will be moved to
the local controller and can be directly accessed by the update
task. Similarly, zero-copy communication is also used for
fetching local objects.

6 Experiments

We implemented Tangram in about 16K lines of C++ code.
The communication module was built using ZeroMQ [72] and
libhdfs3 [32] was used to exchange data with HDFS without
the JNI overhead. Source code for the system and the appli-
cations in Section 4 can be found at https://github.com/
Yuzhen11/tangram/. We evaluated Tangram on a cluster of
20 machines connected with 1 Gbps Ethernet. Each machine
is equipped with two 2.0GHz E5-2620 Intel(R) Xeon(R) CPU
(12 physical cores in total), 48GB RAM, a 450GB SATA disk
(6Gb/s, 10k rpm, 64MB cache), running on 64-bit CentOS
release 7.2. We optimized the number of partitions for both
Tangram and the systems we compared in the experiments.

6.1 Failure Recovery & Straggler Mitigation
Failure recovery and straggler mitigation are critical for data
analytics in production. In this set of experiments, we show
that Tangram achieves efficient failure recovery and effective
straggler mitigation, even for workloads with mutable states,
by distinguishing immutable and mutable collections.
Failure Recovery. We used two experiments to simulate dif-
ferent failure scenarios. In the first experiment, we unplugged

0

10

20

30

3 4 5 6 7 8 9

It
e

ra
ti

o
n

 T
im

e
 (

s)

Iteration

Recovery

Before Failure

(a) Local Failure

0

5

10

15

3 4 5 6 7 8 9

It
e

ra
ti

o
n

 T
im

e
 (

s)

Iteration

Recovery

Before Failure

(b) Global Failure

Figure 2: Performance of failure recovery

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8

It
e

ra
ti

o
n

 T
im

e
 (

s)

Iteration

No Migration Diff. Migration Normal Migration

Figure 3: Performance of straggler handling

one machine holding the training data for K-means, which is a
local failure according to Section 5.3. The second experiment
unplugged one machine for PageRank, which corresponds to
global failure.

We report the failure recovery performance under the two
scenarios in Figure 2. For clearer presentation, we only plot
the performance of Tangram, while we report the performance
of Spark in text as a baseline. For local failure, Tangram took
17.8 seconds to reload the lost training data (∼6 GB) and
finish the 7th iteration, while Spark took around 40 seconds to
recover. Both Tangram and Spark did not restart the job from
the latest checkpoint, but performed re-computation only on
the lost partitions. In contrast, most of the mutable systems
such as Petuum, PowerGraph and Naiad, would have to roll
back to the latest checkpoint in case of any failure.

For the global failure (occurred at the 7th iteration), Tan-
gram rolled back to the latest checkpoint (taken at the 5th
iteration) and continued by re-executing the 6th iteration. The
roll-back is necessary because some partitions of the (muta-
ble) rank collection are lost. The longer recovery bar at the
6th iteration in Figure 2b includes the normal execution time
for the iteration and another 5.2 seconds to reload the muta-
ble collection (∼50 MB) and the lost immutable partitions
(∼1 GB). In total, Tangram took 29 seconds to finish the 7th
iteration, while Spark took 47 seconds. We note that Spark
also requires a full re-computation from checkpoint in this
case (i.e., long lineage with wide dependency [70]).

To provide a better picture of Tangram’s failure recovery
performance, we also implemented the baseline strategies
(e.g., full reload, full checkpoint) in Tangram for a fair com-
parison. A full reload (as used in existing mutable systems)
needs to load 121GB and 23GB data, and took 56.8 and 15.7
seconds (vs. Tangram’s 17.8 and 5.2 seconds) for K-means
and PageRank, respectively. In addition, distinguishing the
immutable and mutable parts also results in more efficient
checkpointing for PageRank, as checkpointing only the ranks

USENIX Association 2019 USENIX Annual Technical Conference 199

https://github.com/Yuzhen11/tangram/
https://github.com/Yuzhen11/tangram/

(∼1GB) took 5 seconds, while a full checkpoint (∼23GB)
took 127 seconds. Tangram also supports asynchronous back-
ground checkpointing, which makes a copy of the mutable
collection and writes the checkpoint in the background. With-
out background checkpointing, each checkpoint would take
an extra 5 seconds for PageRank.
Straggler Mitigation. To test the performance of straggler
mitigation, we used cpulimit tool to restrict one Tangram
worker to have only 600% of the total 2400% cpu shares in
the PageRank job at the 4th iteration, and the per-iteration
time is reported in Figure 3. Diff. migration asks the straggler
only for mutable partitions, while Normal migration asks the
straggler for both mutable and immutable partitions. Both
strategies were implemented in Tangram. The result shows
that partition migration effectively reduces per-iteration time
as an iteration took about 14.5 seconds without migration,
but only 8.4 seconds with migration. In addition, distinguish-
ing immutable and mutable collections also speeds up the
migration. Diff. migration only requires the straggler to trans-
fer the mutable partitions (ranks: ∼50MB) and reloads the
immutable partitions (links: ∼ 1GB) from HDFS, which im-
proves migration speed by approximately 38% (10 seconds
vs. 16 seconds) compared with Normal migration.

6.2 Expressiveness and Efficiency
We have shown that the MapUpdate API is flexible and can
express a wide variety of workloads in Section 4. In this set
of experiments, we show that Tangram achieves comparable
performance as specialized systems.
Bulk Processing. For non-iterative bulk processing work-
loads, e.g., MapReduce-style workloads, we tested word count
and TF-IDF6, and compared with Spark [70] (version 2.2.0).
We replicated the Wikipedia corpus [19] to test the scalability
of the systems and report the running time in Figure 4.

Tangram achieved slightly better performance compared
with Spark for word count, but is 2x faster for TF-IDF. For
fair comparison, we ensured that Spark does not write in-
termediate results to disk before shuffle. Both Tangram and
Spark have high CPU utilization (over 80% for all cores over-
time) and low disk utilization (less than 20% at most) for the
two applications, similar to the results reported in [44]. We
also tested the systems on a faster 10-Gbps network and on a
single machine, and Tangram’s performance advantage over
Spark on TF-IDF is consistent in both settings, which shows
that network communication is not the key factor that affects
the performance of the systems on TF-IDF. We believe the
language (C++ vs. Scala) and other system overheads are the
main reasons for the performance difference. Tangram also
achieves almost linear scaling when increasing dataset size.
Iterative Machine Learning. For iterative machine learning
workloads, we tested K-means [54] and SGD based logistic
regression (LR). We used a dense dataset (mnist8m [33]) for

6https://en.wikipedia.org/wiki/Tf-idf

55

103

210

49

97

182

0

50

100

150

200

250

50GB 100GB 200GB

Ti
m

e
 (

s)

Spark

Tangram

(a) Word Count

66

118

198

37
65

114

0

50

100

150

200

250

50GB 100GB 200GB

Ti
m

e
 (

s)

Spark

Tangram

(b) TF-IDF

Figure 4: Running time for word count and TF-IDF

70

35

18

54

29

15

0

20

40

60

80

100

5 10 20

It
e

ra
ti

o
n

 T
im

e
 (

s)

Machines

Petuum

Tangram

(a) K-means

7.6

4.4

2.6

5.5

3.4
2.6

0

2

4

6

8

10

5 10 20

It
e

ra
ti

o
n

 T
im

e
 (

s)

Machines

Petuum

Tangram

(b) LR

Figure 5: Per-iteration time for K-means and LR

K-means and a sparse dataset (webspam [59] with a sparsity
of 2.24× 10−4) for LR, in order to test Tangram’s perfor-
mance under different data sparsity. We replicated the datasets
10 times for better scalability tests. BSP was used for K-
means, while SSP (s = 2) was used for LR. We compared
Tangram with the state-of-the-art parameter server system,
Petuum Bösen [60]. We did not compare with Spark as it has
been shown to be inefficient for iterative machine learning
workloads compared with Petuum [29, 62].

Figure 5 reports the per-iteration time obtained by aver-
aging 20 iterations, while varying the numbers of machines.
Tangram’s performance is very competitive compared with
Petuum, as Tangram also supports optimizations generally
used in parameter server based systems, such as process cache
and message combining (Section 5.5). The scaling perfor-
mance of Tangram and Petuum is better for K-means than for
LR since K-means is CPU-bound, while LR is network-bound
due to the large model.
Graph Analytics. For graph analytics workloads, we com-
pared with GraphX [22], PowerGraph [21] and Power-
Lyra [13]. GraphX is built on Spark and adopts immutable
data abstraction, while PowerGraph and PowerLyra use mu-
table abstraction and support fine-grained state access. We
tested PageRank and single source shortest path (SSSP), in
BSP mode. We used the webuk graph [7], which has 133M
vertices and 5.5B edges.

We report the per-iteration time for PageRank and the total
running time for SSSP in Figure 6. Tangram achieves better
performance than even the specialized systems. We found that
this is because both PageRank and SSSP are network-bound,
and message combining in Tangram (edge-cut + delay com-
biner) is more effective in reducing communication than other
systems (vertex/hybrid-cut + combiner). GraphX outperforms
PowerGraph and PowerLyra on PageRank as the workload is
heavy and balanced in each iteration. In contrast, the access

200 2019 USENIX Annual Technical Conference USENIX Association

https://en.wikipedia.org/wiki/Tf-idf

8

16
20

15

0

10

20

30

Ti
m

e
 (

s)

(a) PageRank

158

449
330

0
200
400
600
800

1000

Ti
m

e
 (

s)

6620

(b) SSSP

Figure 6: Comparison on PageRank and SSSP

1 2 5 10 15 20
0

5

10

15

20

25

30

M
B

yt
es

/s

Machines

(a) Crawler

1

1.3

1.6

1.9

2.2

2.5

2.8

0 20 40 60 80 100

Tr
ai

n
in

g
R

M
SE

Time (s)

NOMAD
DSGD++
Tangram

(b) Nomad

Figure 7: Performance of distributed crawler and Nomad

0 50 100 150 200 250

Tangram

Spark

Spark + Glint

Spark + Petuum

Time (s)

TFIDF Context Switch LR

Figure 8: Completion time of the pipelined workload

pattern of SSSP is more sparse, and thus the lack of support
for in-place updates renders GraphX inefficient.
Other Workloads. We also evaluated the performance of
Tangram on a wider variety of computation patterns using
distributed crawler and Nomad [69].

Figure 7a reports the download speed of Tangram-based
crawler. The download speed of the crawler scales almost
linearly with the number of machines and quickly consumes
the download bandwidth of the whole cluster and reaches a
plateau, which is similar to Piccolo-based crawler [46].

Nomad is an efficient SGD-based asynchronous algorithm
for matrix factorization (MF) and has a complex computation
pattern that migrates item latent factors among machines. We
used the Yahoo! Music dataset [63] and compared Tangram-
based Nomad with MPI-based Nomad [69] and DSGD++ [56]
(another state-of-the-art MF algorithm). Figure 7b reports
their training root mean square errors (RMSE). Tangram per-
forms slightly worse than MPI-based Nomad initially but
catches up later. Compared with MPI-based DSGD++, Tan-
gram has better performance most of the time. Although the
MPI-based implementations are efficient, Tangram offers very
competitive performance and more user-friendly API.
Pipelined Workload. We implemented a simple pipelined
workload that computes TF-IDF vectors with 218 features
from the 50GB English Wikipedia dataset and trains an LR
model using gradient descent for 30 iterations. We compared

Table 3: Overhead of Task Management & Progress Control
App Controller CPU % Bitmap size

WordCount 1.12% 636KB
PageRank 0.99% 638KB

LR 0.29% 341KB
K-means 0.02% 4KB
Nomad 3.38% 153KB

Tangram with Spark, Spark + Glint [28], and Spark + Petuum.
Glint is a built-in parameter server for Spark, and thus Spark
+ Glint uses Spark for TF-IDF and Glint for LR. Spark +
Petuum uses Petuum for LR. Other systems (e.g., Naiad [39])
can also handle such a pipeline, but they mainly target at
streaming workloads and have more expensive fault tolerance
mechanisms. This experiment was conducted using a faster
10-Gbps network but the relative performance of the systems
is consistent when running on a 1-Gbps network.

We report the execution time of the pipeline in Figure 8.
Tangram used much less time than Spark mainly because
Spark is not efficient for machine learning workloads [29,62].
However, Spark + Petuum took even longer time, even though
Petuum was much faster than Spark (29 seconds vs. 75 sec-
onds) for LR. This is because there is a costly context switch
overhead when moving from Spark to Petuum (around 170
seconds for dumping and loading the 45GB TF-IDF vectors) 7.
Spark + Glint removes the context-switch overhead and the
performance is slightly better than Spark. However, adding
dependencies (e.g., Glint) in Spark violates Spark’s unified
abstraction and breaks Spark’s fault tolerance semantics.

We also tested Flink [10], but LR was an order of magnitude
slower on Flink compared with Spark 8. Thus, we do not
report the details of Flink’s results. In comparison to these
popular systems, the performance of Tangram in Figure 8
demonstrates its benefits as a general and efficient system for
processing pipelined workloads.

6.3 Evaluation of System Designs
This set of experiments evaluates the effects of the system
designs on the performance of Tangram. We first examine
the average CPU consumption of the local controller on each
worker and the total size of the bitmap used for progress
control. Table 3 shows that the CPU consumption of the lo-
cal controller is consistently low and the bitmap has a small
memory footprint for all workloads. Nomad has the high-
est controller overhead as the algorithm needs to handle the
frequent migration of item latent vectors. K-means has the
smallest bitmap size because a single partition is used for
the centers. In general, both controller CPU consumption and
bitmap size increase with the number of partitions. Empiri-
cally, setting the number of partitions to 1-3 times the number

7Although in-memory caching systems like RAMCloud [41] or optimized
distributed file systems like Tachyon [30] may reduce the context switch cost,
the cost of dumping and loading the datasets is still non-negligible.

8The per-iteration time of LR using Flink Machine Learning library and
using Flink DataSet API is 97x and 21x of that of Spark, respectively.

USENIX Association 2019 USENIX Annual Technical Conference 201

0

1

2

3

100 200 400 800 1600

R
e

la
ti

ve
 R

u
n

ti
m

e

Partitions

delay = 0

delay = 500ms

delay = max

(a) K-means

0

1

2

3

4

100 200 400 800 1600

R
el

at
iv

e
R

u
n

ti
m

e

Partitions

delay = 0
delay = 500ms
delay = max

(b) PageRank

Figure 9: Effects of partitioning and delay combiner

of cores achieves good performance. Thus, the cost of local
task control and progress management is acceptable.

Next we examine the effect of the number of partitions.
Figure 9 shows that the per-iteration time (as a ratio to the
optimal setting) of K-means first decreases and is then stabi-
lized as the number of partitions increases. This is because
increasing the number of partitions improves the parallelism,
until the cores are fully occupied (the cluster has 480 vir-
tual cores). Beyond that point, using more partitions does not
improve performance. For PageRank, the per-iteration time
first slightly decreases and then increases with the number of
partitions. This is because PageRank is network-bound and
thus using more partitions results in more communication.
The delay combiner in Section 5.5 can be used to reduce the
communication overhead by merging the map outputs from
multiple local partitions. By setting the combine timeout to
maximum, the per-iteration time of PageRank stays almost
constant when increasing the number of partitions beyond
400. For K-means, as it is CPU-bound due to a small number
of parameters, using the delay combiner has almost no effect.

7 Related Work

Programming Model. MapReduce [17] has inspired the de-
velopment of many data-parallel analytics frameworks with
two coarse-grained high-order functions, map and reduce.
Map-Reduce-Merge [67] extended MapReduce with a Merge
phase to support the join of multiple heterogeneous datasets.
HaLoop [9], Twister [18] and Map-Reduce-Update [8]
adapted MapReduce for iterative computation. Other frame-
works, e.g., Dryad [27], FlumeJava [11], Spark [70], Tez [52],
etc., generalized the coarse-grained functional model by in-
troducing dataflow graph, which enables easy construction of
pipelines involving multiple stages. CIEL [40] and Ray [38]
further support dynamic task graph. Flink [10] and Naiad [39]
support the dataflow model on top of their streaming execution
engines. Tensorflow [1] adopts dataflow graph to represent
machine learning pipelines.

Some systems adopt the distributed shared memory (DSM)
model. Piccolo [46] allows user-defined kernels to read and
update distributed key-value tables in parallel. Parameter
server systems, e.g., DistBelief [16], Project Adam [14], Pa-
rameter Server [31], Petuum [60,62], FlexPS [25], incorporate
machine learning specialized optimizations such as bounded

delay execution. DSM is flexible but the push/pull API is con-
sidered more low-level than the functional API in the dataflow
model. Husky [66] adopts an object-oriented API to model
different computational frameworks. GraphLab [34, 35] uses
a data graph to represent computational structure and data de-
pendencies for some machine learning problems. Graph pro-
cessing frameworks [12,15,21,22,34,36,50,51,61,64,65,74]
usually expose vertex/edge/subgraph-centric programming
models and incorporate graph specific optimizations.

Execution Model. Popular dataflow systems, e.g., Tez [52],
DryadLINQ [68], and Spark [70], adopt a BSP execution
model, in which a stage waits for its predecessors to finish.
Specialized systems often adopt execution models tailored
for their target workloads. GraphLab [34, 35] allows asyn-
chronous vertex execution and uses distributed locking to
resolve access conflict. Parameter server systems, e.g., Param-
eter Server [31], Petuum [60], adopt a bounded delay model
(SSP) in which the progress differences among workers are
bounded by a user-defined threshold. Maiter [73] and Pow-
erGraph [21] support asynchronous execution optimized for
graph workloads. In comparison, Tangram supports BSP, SSP
and ASP, enabling it to efficiently process various types of
workloads such as graph analytics, machine learning, etc.

Scheduling Model. Recent work [37, 43, 45, 53] observed
that centralized scheduling is the bottleneck for scaling out
when there are a large number of short-lived tasks. To reduce
the control plane overhead, Drizzle [57] and Nimbus [37]
cache the scheduling decision, while MonoSpark [42] and
Canary [48] use local/distributed scheduler. Tangram avoids
the centralized scheduling overhead by relying on the local
controllers to schedule their own tasks. The global scheduler
only launches plans and manages progress.

8 Conclusions

We proposed a programming model called MapUpdate to de-
termine data mutability according to workloads, which not
only brings good expressiveness but also enables a rich set of
system features (e.g., asynchronous execution) and provides
strong fault tolerance. We developed Tangram to support Ma-
pUpdate with novel designs such as partition-based progress
control and context-aware failure recovery. We also incor-
porate optimization techniques such as process cache and
partition migration. Our experiments show that Tangram is ex-
pressive and efficient, and achieves comparable performance
with specialized systems for a wide variety of workloads. Our
work demonstrates that we do not have to choose either muta-
ble or immutable abstraction, but can embrace both of them
in one unified framework to enjoy the best of both worlds.
Acknowledgments. We thank the reviewers and our shepherd
Animesh Trivedi for their constructive comments that help
improved the quality of the paper. This work was supported
in part by ITF 6904945, and GRF 14208318 & 14222816.

202 2019 USENIX Annual Technical Conference USENIX Association

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. A. Tucker, V. Vasudevan, P. War-
den, M. Wicke, Y. Yu, and X. Zheng. Tensorflow: A
system for large-scale machine learning. In OSDI, pages
265–283, 2016.

[2] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak,
R. Fernández-Moctezuma, R. Lax, S. McVeety, D. Mills,
F. Perry, E. Schmidt, and S. Whittle. The dataflow model:
A practical approach to balancing correctness, latency,
and cost in massive-scale, unbounded, out-of-order data
processing. PVLDB, 8(12):1792–1803, 2015.

[3] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Sto-
ica. Effective straggler mitigation: Attack of the clones.
In NSDI, pages 185–198, 2013.

[4] G. Ananthanarayanan, M. C. Hung, X. Ren, I. Stoica,
A. Wierman, and M. Yu. GRASS: trimming stragglers
in approximation analytics. In NSDI, pages 289–302,
2014.

[5] G. Ananthanarayanan, S. Kandula, A. G. Greenberg,
I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining in the
outliers in map-reduce clusters using mantri. In OSDI,
pages 265–278, 2010.

[6] M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin,
A. Ghodsi, I. Stoica, and M. Zaharia. Structured stream-
ing: A declarative API for real-time applications in
apache spark. In SIGMOD, pages 601–613, 2018.

[7] P. Boldi, M. Santini, and S. Vigna. A large time-aware
graph. SIGIR Forum, 42(2):33–38, 2008.

[8] V. R. Borkar, Y. Bu, M. J. Carey, J. Rosen, N. Polyzotis,
T. Condie, M. Weimer, and R. Ramakrishnan. Declar-
ative systems for large-scale machine learning. IEEE
Data Eng. Bull., 35(2):24–32, 2012.

[9] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst.
Haloop: Efficient iterative data processing on large clus-
ters. PVLDB, 3(1):285–296, 2010.

[10] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl,
S. Haridi, and K. Tzoumas. Apache flinkTM: Stream
and batch processing in a single engine. IEEE Data Eng.
Bull., 38(4):28–38, 2015.

[11] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R.
Henry, R. Bradshaw, and N. Weizenbaum. Flumejava:
easy, efficient data-parallel pipelines. In SIGPLAN,
pages 363–375, 2010.

[12] H. Chen, M. Liu, Y. Zhao, X. Yan, D. Yan, and J. Cheng.
G-miner: an efficient task-oriented graph mining system.
In EuroSys, pages 32:1–32:12, 2018.

[13] R. Chen, J. Shi, Y. Chen, and H. Chen. Powerlyra: differ-
entiated graph computation and partitioning on skewed
graphs. In EuroSys, pages 1:1–1:15, 2015.

[14] T. M. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanara-
man. Project adam: Building an efficient and scalable
deep learning training system. In OSDI, pages 571–582,
2014.

[15] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and
S. Muthukrishnan. One trillion edges: Graph processing
at facebook-scale. PVLDB, 8(12):1804–1815, 2015.

[16] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin,
Q. V. Le, M. Z. Mao, M. Ranzato, A. W. Senior, P. A.
Tucker, K. Yang, and A. Y. Ng. Large scale distributed
deep networks. In NIPS, pages 1232–1240, 2012.

[17] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI, pages 137–150,
2004.

[18] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S. Bae,
J. Qiu, and G. C. Fox. Twister: a runtime for iterative
mapreduce. In HPDC, pages 810–818, 2010.

[19] Enwiki Dump. https://dumps.wikimedia.org/
enwiki/.

[20] Flink Parameter Server Limitations. https://github.
com/gaborhermann/flink-parameter-server#
limitations.

[21] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. PowerGraph: Distributed graph-parallel
computation on natural graphs. In OSDI, pages 17–30,
2012.

[22] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica. Graphx: Graph processing in a
distributed dataflow framework. In OSDI, pages 599–
613, 2014.

[23] A. Harlap, H. Cui, W. Dai, J. Wei, G. R. Ganger, P. B.
Gibbons, G. A. Gibson, and E. P. Xing. Addressing the
straggler problem for iterative convergent parallel ML.
In SoCC, pages 98–111, 2016.

[24] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons,
G. A. Gibson, G. R. Ganger, and E. P. Xing. More
effective distributed ML via a stale synchronous parallel
parameter server. In NIPS, pages 1223–1231, 2013.

USENIX Association 2019 USENIX Annual Technical Conference 203

https://dumps.wikimedia.org/enwiki/
https://dumps.wikimedia.org/enwiki/
https://github.com/gaborhermann/flink-parameter-server#limitations
https://github.com/gaborhermann/flink-parameter-server#limitations
https://github.com/gaborhermann/flink-parameter-server#limitations

[25] Y. Huang, T. Jin, Y. Wu, Z. Cai, X. Yan, F. Yang, J. Li,
Y. Guo, and J. Cheng. Flexps: Flexible parallelism con-
trol in parameter server architecture. PVLDB, 11(5):566–
579, 2018.

[26] IndexedRDD for Apache Spark. https://github.
com/amplab/spark-indexedrdd.

[27] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from sequen-
tial building blocks. In EuroSys, pages 59–72, 2007.

[28] R. Jagerman, C. Eickhoff, and M. de Rijke. Computing
web-scale topic models using an asynchronous parame-
ter server. In SIGIR, pages 1337–1340, 2017.

[29] J. Jiang, B. Cui, C. Zhang, and L. Yu. Heterogeneity-
aware distributed parameter servers. In SIGMOD, pages
463–478, 2017.

[30] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica.
Tachyon: Reliable, memory speed storage for cluster
computing frameworks. In SoCC, pages 6:1–6:15, 2014.

[31] M. Li, D. G. Andersen, J. W. Park, A. J. Smola,
A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and
B. Su. Scaling distributed machine learning with the
parameter server. In OSDI, pages 583–598, 2014.

[32] libhdfs3. https://github.com/
Pivotal-DataFabric/attic-libhdfs3.

[33] G. Loosli, S. Canu, and L. Bottou. Training invariant
support vector machines using selective sampling. In
L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, edi-
tors, Large Scale Kernel Machines, pages 301–320. MIT
Press, Cambridge, MA., 2007.

[34] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. M. Hellerstein. Graphlab: A new framework for
parallel machine learning. In UAI, pages 340–349, 2010.

[35] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. M. Hellerstein. Distributed GraphLab: A frame-
work for machine learning in the cloud. PVLDB,
5(8):716–727, 2012.

[36] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system
for large-scale graph processing. In SIGMOD, pages
135–146, 2010.

[37] O. Mashayekhi, H. Qu, C. Shah, and P. Levis. Execution
templates: Caching control plane decisions for strong
scaling of data analytics. In ATC, pages 513–526, 2017.

[38] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw,
E. Liang, M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and
I. Stoica. Ray: A distributed framework for emerging
AI applications. In OSDI, pages 561–577, 2018.

[39] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,
P. Barham, and M. Abadi. Naiad: a timely dataflow
system. In SOSP, pages 439–455, 2013.

[40] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith,
A. Madhavapeddy, and S. Hand. CIEL: A universal
execution engine for distributed data-flow computing.
In NSDI, 2011.

[41] J. K. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,
J. Leverich, D. Mazières, S. Mitra, A. Narayanan, G. M.
Parulkar, M. Rosenblum, S. M. Rumble, E. Stratmann,
and R. Stutsman. The case for ramclouds: scalable high-
performance storage entirely in DRAM. Operating
Systems Review, 43(4):92–105, 2009.

[42] K. Ousterhout, C. Canel, S. Ratnasamy, and S. Shenker.
Monotasks: Architecting for performance clarity in data
analytics frameworks. In SOSP, pages 184–200, 2017.

[43] K. Ousterhout, A. Panda, J. Rosen, S. Venkataraman,
R. Xin, S. Ratnasamy, S. Shenker, and I. Stoica. The
case for tiny tasks in compute clusters. In HotOS, 2013.

[44] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and
B. Chun. Making sense of performance in data analytics
frameworks. In NSDI, pages 293–307, 2015.

[45] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica.
Sparrow: distributed, low latency scheduling. In SOSP,
pages 69–84, 2013.

[46] R. Power and J. Li. Piccolo: Building fast, distributed
programs with partitioned tables. In OSDI, pages 293–
306, 2010.

[47] X. Qiu, W. Cen, Z. Qian, Y. Peng, Y. Zhang, X. Lin, and
J. Zhou. Real-time constrained cycle detection in large
dynamic graphs. PVLDB, 11(12):1876–1888, 2018.

[48] H. Qu, O. Mashayekhi, C. Shah, and P. Levis. Decou-
pling the control plane from program control flow for
flexibility and performance in cloud computing. In Eu-
roSys, pages 1:1–1:13, 2018.

[49] B. Recht, C. Re, S. J. Wright, and F. Niu. Hogwild: A
lock-free approach to parallelizing stochastic gradient
descent. In NIPS, pages 693–701, 2011.

[50] A. Roy, L. Bindschaedler, J. Malicevic, and
W. Zwaenepoel. Chaos: scale-out graph process-
ing from secondary storage. In SOSP, pages 410–424,
2015.

[51] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream:
edge-centric graph processing using streaming parti-
tions. In SOSP, pages 472–488, 2013.

204 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/amplab/spark-indexedrdd
https://github.com/amplab/spark-indexedrdd
https://github.com/Pivotal-DataFabric/attic-libhdfs3
https://github.com/Pivotal-DataFabric/attic-libhdfs3

[52] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. C.
Murthy, and C. Curino. Apache tez: A unifying frame-
work for modeling and building data processing appli-
cations. In SIGMOD, pages 1357–1369, 2015.

[53] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes. Omega: flexible, scalable schedulers for large
compute clusters. In EuroSys, pages 351–364, 2013.

[54] D. Sculley. Web-scale k-means clustering. In WWW,
pages 1177–1178, 2010.

[55] Standby Masters with ZooKeeper. https://spark.
apache.org/docs/latest/spark-standalone.
html#standby-masters-with-zookeeper.

[56] C. Teflioudi, F. Makari, and R. Gemulla. Distributed
matrix completion. In ICDM, pages 655–664, 2012.

[57] S. Venkataraman, A. Panda, K. Ousterhout, M. Arm-
brust, A. Ghodsi, M. J. Franklin, B. Recht, and I. Stoica.
Drizzle: Fast and adaptable stream processing at scale.
In SOSP, pages 374–389, 2017.

[58] G. Wang, W. Xie, A. J. Demers, and J. Gehrke. Asyn-
chronous large-scale graph processing made easy. In
CIDR, 2013.

[59] S. Webb, J. Caverlee, and C. Pu. Introducing the webb
spam corpus: Using email spam to identify web spam
automatically. In CEAS, 2006.

[60] J. Wei, W. Dai, A. Qiao, Q. Ho, H. Cui, G. R. Ganger,
P. B. Gibbons, G. A. Gibson, and E. P. Xing. Managed
communication and consistency for fast data-parallel
iterative analytics. In SoCC, pages 381–394, 2015.

[61] M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei,
H. Lin, Y. Dai, and L. Zhou. Gram: scaling graph com-
putation to the trillions. In SoCC, pages 408–421, 2015.

[62] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee,
X. Zheng, P. Xie, A. Kumar, and Y. Yu. Petuum: A new
platform for distributed machine learning on big data.
In SIGKDD, pages 1335–1344, 2015.

[63] Yahoo! Webscoope. http://webscope.sandbox.
yahoo.com/.

[64] D. Yan, J. Cheng, Y. Lu, and W. Ng. Blogel: A block-
centric framework for distributed computation on real-
world graphs. PVLDB, 7(14):1981–1992, 2014.

[65] D. Yan, J. Cheng, Y. Lu, and W. Ng. Effective techniques
for message reduction and load balancing in distributed
graph computation. In WWW, pages 1307–1317, 2015.

[66] F. Yang, J. Li, and J. Cheng. Husky: Towards a more ef-
ficient and expressive distributed computing framework.
PVLDB, 9(5):420–431, 2016.

[67] H. Yang, A. Dasdan, R. Hsiao, and D. S. P. Jr. Map-
reduce-merge: simplified relational data processing on
large clusters. In SIGMOD, pages 1029–1040, 2007.

[68] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson,
P. K. Gunda, and J. Currey. Dryadlinq: A system for
general-purpose distributed data-parallel computing us-
ing a high-level language. In OSDI, pages 1–14, 2008.

[69] H. Yun, H. Yu, C. Hsieh, S. V. N. Vishwanathan, and
I. S. Dhillon. NOMAD: nonlocking, stochastic multi-
machine algorithm for asynchronous and decentralized
matrix completion. PVLDB, 7(11):975–986, 2014.

[70] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing. In NSDI, pages
15–28, 2012.

[71] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz,
and I. Stoica. Improving mapreduce performance in
heterogeneous environments. In OSDI, pages 29–42,
2008.

[72] ZeroMQ. http://zeromq.org/.

[73] Y. Zhang, Q. Gao, L. Gao, and C. Wang. Maiter: An
asynchronous graph processing framework for delta-
based accumulative iterative computation. IEEE Trans.
Parallel Distrib. Syst., 25(8):2091–2100, 2014.

[74] X. Zhu, W. Chen, W. Zheng, and X. Ma. Gemini: A
computation-centric distributed graph processing sys-
tem. In OSDI, pages 301–316, 2016.

USENIX Association 2019 USENIX Annual Technical Conference 205

https://spark.apache.org/docs/latest/spark-standalone.html#standby-masters-with-zookeeper
https://spark.apache.org/docs/latest/spark-standalone.html#standby-masters-with-zookeeper
https://spark.apache.org/docs/latest/spark-standalone.html#standby-masters-with-zookeeper
http://webscope.sandbox.yahoo.com/
http://webscope.sandbox.yahoo.com/
http://zeromq.org/

STRADS-AP: Simplifying Distributed Machine Learning Programming

without Introducing a New Programming Model

Jin Kyu Kim1 Abutalib Aghayev1 Garth A. Gibson1,2,3 Eric P. Xing1,4

1Carnegie Mellon University 2Vector Institute 3University of Toronto 4Petuum, Inc.

Abstract

It is a daunting task for a data scientist to convert sequential

code for a Machine Learning (ML) model, published by an ML

researcher, to a distributed framework that runs on a cluster

and operates on massive datasets. The process of fitting the

sequential code to an appropriate programming model and data

abstractions determined by the framework of choice requires

significant engineering and cognitive effort. Furthermore, in-

herent constraints of frameworks sometimes lead to inefficient

implementations, delivering suboptimal performance.

We show that it is possible to achieve automatic and efficient

distributed parallelization of familiar sequential ML code by

making a few mechanical changes to it while hiding the details

of concurrency control, data partitioning, task parallelization,

and fault-tolerance. To this end, we design and implement a

new distributed ML framework, STRADS-Automatic Paral-

lelization (AP), and demonstrate that it simplifies distributed

ML programming significantly, while outperforming a pop-

ular data-parallel framework with a non-familiar program-

ming model, and achieving performance comparable to an

ML-specialized framework.

1 Introduction

The systems community has made significant progress on

simplifying distributed parallel programming, producing many

high-level frameworks such as MapReduce [13], Spark [54],

Pregel [34], PowerGraph [19], GraphX [20], PyTorch [40],

and TensorFlow [2]. To automatically parallelize computation

while achieving essential requirements such as fault tolerance

and load balancing, these frameworks offer constrained

programming models and limited data abstractions. For

example, Spark offers Resilient Distributed Datasets (RDDs)

without fine-grained write access; Spark and MapReduce

ask programmers to specify a program using a handful of

operators such as map and reduce while GraphLab requires

adopting a rarely used vertex-centric programming model.

The programming models of these frameworks are different

from a sequential programming model that is widely taught

and easily understood [27]. Therefore, it is not surprising

that rewriting sequential ML code using the data abstractions

and programming models provided by the frameworks incurs

significant effort. Furthermore, the simplicity of the mecha-

nisms provided can often result in suboptimal use of cluster

resources. These frameworks abstract away data placement,

task mapping, and communication, which comes at the cost

of limited access to hardware resources, and challenge in

implementing ML algorithms efficiently. Studies show that a

single threaded [35] or an MPI implementation [50] of popular

ML algorithms is up to two orders of magnitude faster than the

corresponding implementations on popular frameworks. In

summary, a high-level framework often requires data scientists

to switch to a different mental programming model with

its own peculiarities, and it can end up delivering suboptimal

performance. We believe that the complexity surrounding

distributed ML programming as well as the inefficiency in exe-

cution are incidental and not inherent. That is, many sequential

ML code can be automatically parallelized to make near

optimal use of cluster resources. To prove our point, we present

STRADS-AP, a novel distributed ML framework that provides

an API requiring minimally-invasive, mechanical changes to

sequential ML program code, and a runtime that automatically

parallelizes the code on an arbitrary-sized cluster while deliver-

ing the performance of hand-tuned distributed ML programs.

STRADS-AP is an evolution of STRADS [26] that provides

a framework for parallelizing the execution of ML programs

according to user-specified scheduling plan. The plan usually

avoids data conflicts, thereby improving statistical progress

per iteration. The challenge with STRADS is that the user

needs to understand the code and manually come up with a

scheduling plan. STRADS-AP addresses this challenge by

automatically generating data conflict-free scheduling plan.

STRADS-AP’s API frees data scientists from the challenge

of molding sequential ML code to a framework’s program-

ming model. To achieve this, the STRADS-AP API offers

Distributed Data Structures (DDSs), such as vector and map,

that allow fine-grained read/write access to elements, as well

as two familiar loop operators. During runtime, these loop

operators parallelize loop bodies over a cluster following two

popular ML parallelization strategies: asynchronous parallel

execution, and synchronous parallel execution, with strong

or relaxed consistency.

STRADS-AP’s workflow, shown in Figure 1, starts with

a data scientist making mechanical changes to sequential

code (Figure 1(a, b).) The code is then preprocessed by

STRADS-AP’s preprocessor and complied into binary code by

a C++ compiler (Figure 1(c).) Next, STRADS-AP’s runtime

executes the binary on nodes of a cluster while hiding details

of distributed programming (Figure 1(d).) The runtime system

is responsible for (1) transparently partitioning DDSs that

store training data and model parameters, (2) parallelizing

slices of ML computations across a cluster, (3) fault-tolerance,

and (4) enforcing strong consistency on shared data if required,

or synchronizing partial outputs with relaxed consistency.

To fill the gap of debugging tools for distributed ML pro-

USENIX Association 2019 USENIX Annual Technical Conference 207

stl::vector<T1> D; // input data

stl::map<T2> P, Q; // model parameter

float alpha(0.1); // hyper parameters

for(i=0; i<max_iter; i++){

for(j=0; j<N; j++){

- optimization routine

- read i,j, alpha, elements of D

- read/write elements of P,Q

}

alpha *= 0.99;

}

stradsap::dvector<T1> D;

stradsap::dmap<T2> P,Q;

float alpha(0.1);

for(i=0; i<N; i++){

stradsap::ParallelFor

(D, [I, alpha, &D, &P, &Q](int j){

- optimization routine

- read i,j, alpha, elements of D

- read/write elements of P,Q

}, stradsap::ConsistencyModel, stradsap:ReFlag);

alpha *= 0.99;

}

Add few mechanical

changes

STRADS-AP preprocessor Augmented with

language specific

annotations

Binary code

C++ compiler

(d) The STRADS-AP runtime(e) Debugging

(a) Sequential code (b) STRADS-AP code (c) STRADS-AP preprocessor

Log execution ordering

Cluster

Cluster replay

Execution log

2

1

3
Single node replay

Figure 1: STRADS-AP workflow: (a) Data scientist implements an ML algorithm in sequential code; (b) Derives STRADS-AP

parallel code with mechanical changes; (c) STRADS-AP preprocessor adds more annotation to address language-specific

constraints, and the source code is compiled by a native compiler; (d) The STRADS-AP runtime runs the binary in parallel on a

cluster; (e) Debugging features of STRADS-AP: Logging parallel execution order, and replaying it on a cluster 2© for deterministic

re-execution, or on a single node 3© for easy debugging.

grams, STRADS-AP offers two debugging modes—cluster

replay and single-node replay—as shown in Figure 1(e). In

cluster replay mode, the parallel execution log from the pre-

vious parallel run is replayed by obeying the same lock grant

ordering and message ordering (2© in Figure 1(e)), allowing de-

terministic re-execution. In single-node replay mode, the paral-

lel execution log is replayed on a single node (3© in Figure 1(e))

allowing easier inspection of program state with a debugger.

TensorFlow and PyTorch simplify programming Deep

Neural Networks (DNN) models, which is just one of the

plethora of ML models. Implementing or researching non-

DNN models and algorithms in these frameworks, however,

often requires adding new kernel operators for parallelization,

taking significant effort (Section 6.1). STRADS-AP, on the

other hand, provides automatic parallelization of a wide range

of non-DNN algorithms by requiring few mechanical changes

to a serial implementation.

We implement STRADS-AP as a C++ library in about

16,000 lines of code.1 STRADS-AP is largely rewritten

from scratch, reusing some components of STRADS. We

evaluate its performance on a moderate-sized cluster with

four widely-used ML applications, using real data sets. To

evaluate the increase in user productivity, we ask a group of

students to convert a serial ML application to a distributed

one using STRADS-AP, and we report our findings. The key

contributions of our work are:

• The STRADS-AP API, a familiar C++ STL-like data struc-

tures and loop operators, requiring minimal changes when

converting sequential ML code to STRADS-AP parallel code.

1Reported by CLOC [1] tool, skipping blanks and comments.

• The STRADS-AP runtime that achieves low latency DDS

access, fault-tolerance, and concurrency control.

• Two debugging modes that simplify debugging and

verification of distributed ML programs.

• Performance and productivity evaluation with four well-

established ML applications implemented on STRADS-AP.

In the rest of this paper, we first make the case for STRADS-

AP by presenting the complications imposed by high-level

frameworks on users (Section 2), as well as the performance

bottlenecks caused by their simple mechanisms, giving

specific examples. We then present the STRADS-AP API

(Section 3), and runtime implementation details (Section 4).

Next, we give an overview of STRADS-AP’s debugging

features (Figure 5), followed by an extensive performance

and productivity evaluation (Section 6). Finally, we cover the

related work (Section 7) and conclude (Section 8).

2 The Cost of Using a Framework

In this section, we demonstrate that converting sequential

ML code into high-level framework code requires substantial

programming effort and leads to suboptimal performance

Algorithm 1 Pseudocode for SGDMF

1: A: a set of ratings. Each rating contains (i:user id, j:item id, r: rating)

2: W :M×K matrix; initialize W randomly

3: H:N×K matrix; initialize H randomly

4: for each rating r in A

5: err = r.r - W [r.i]∗H[r.j]

6: ∆W = γ∗(err∗H[r.j] -λ∗W [r.i])

7: ∆H = γ∗(err∗W [r.i] -λ∗H[r.j])

8: W [r.i] += ∆W

9: H[r.j] += ∆H

208 2019 USENIX Annual Technical Conference USENIX Association

struct rate{int i, int j, float r};

typedef rate T1;

typedef array<float, K> T2;

vector<T1> A = LoadRatings(Datafile_Path);

vector<T2> W(M); RandomInit(W);

vector<T2> H(N); RandomInit(H);

float gamma(.01f), lambda(.1f);

for(int i=0;i<maxiter;i++){

for(int j=0; j<A.size(); j++){

const T1 &r = A[j];

T2 err = r.r - W[r.i]*H[r.j];

T2 Wd = gamma*(err*W[r.i]-lambda*H[r.j]);

T2 Hd = gamma*(err*H[r.j]-lambda*W[r.i]);

W[r.i] += Wd;

H[r.j] += Hd;

}

}

(a) Sequential SGDMF code

struct rate{int i, int j, float r};

typedef rate T1;

typedef array<float, K> T2;

float gamma(.01f), lambda(.1f);

vector<mutex> WLock(M), HLock(N);

for(auto i(0);i<maxiter;i++){

#pragma omp parallel for

for(int j=0; j<A.size(); j++){

const T1 &r = A[j];

WLock(r.i).lock() // locks to avoid data race

HLock(r.j).lock()// on shared W,H matrices

T2 err = r.r - W[r.i]*H[r.j];

T2 Wd = gamma*(err*W[r.i]-lambda*H[r.j]);

T2 Hd = gamma*(err*H[r.j]-lambda*W[r.i]);

W[r.i] += Wd;

H[r.j] += Hd;

HLock(r.j).unlock()

WLock(r.i).unlock()

// Note that locks are released in reverse

// ordering of obtaining to avoid deadlock

}

}

(b) Code in (a) parallelized with OpenMP

 0

 500

 1000

 1500

 2000

1 16 32 64 128 256

T
im

e
(s

)

Number of Cores

Serial
OpenMP

STRADS-AP
MPI

Spark

 5000

 10000

 15000

 20000

 25000

(e) Time for 60 iterations with Netflix dataset [24], rank = 1000.

struct rate{int i, int j, float r};

typedef rate T1;

typedef array<float, K> T2;

dvector<T1> &A = ReadFromFile(Datafile_Path, parser);

dvector<T2> &W = MakeDVector(M, RandomInit);

dvector<T2> &H = MakeDVector(N, RandomInit);

float gamma(.01f), lambda(.1f);

for(int i=0;i<maxiter;i++){

AsyncFor(0, A.size()-1, [gamma, lambda, &A,&W,&H](int j){

const T1 rate &r = A[j];

T2 err = r.r - W[r.i]*H[r.j];

T2 Wd = gamma*(err*W[r.i]-lambda*H[r.j]);

T2 Hd = gamma*(err*H[r.j]-lambda*W[r.i]);

W[r.i] += Wd;

H[r.j] += Hd;

});

}

(c) Code in (a) parallellized with STRADS-AP API

1 val P = K // number of executors

2 val ratings = sc.textFile(rfile, P).map(parser)

3 val blks=sc.parallelize(0 until P, P).persist()

4 val W = blks.map(a->Create_WpSubmatrix(a))

5 var H = blks.map(a->Create_HpSubmatrix(a))

6 var AW = ratings.join(W,P)

7 var AWH = AW.join(H,P).mapPartitions(a->ComputeFunc(a,0))

8 float gamma(.01f), lambda(.1f);

9 for(auto i(0);i<maxiter;i++){

10 for(auto sub(0);sub<P;sub++){ // subiteration

11 val idx = i*P + sub;

12 if(idx > 0){

13 AWH = AW(idx).join(H,P).

14 mapPartitions(a->ComputeFunc(a,subepoch))

15 }

16 AW = AWH(idx).mapPartitions(x->separateAW_Func(x))

17 H = AWH.map(x->separateH_and_Shift_Func(x))

18 }

19 }

20 def ComputeFunc(it:Iterator to AWH){

21 val tmp = ArrayBuffer[type of AWH]

22 for(e <- it){

23 val Ap = e.Ap

24 var Wp = e.Wp

25 var Hp = e.Hp

26 for(auto r: Ap){

27 if(r.2 not belong to Hp)

28 continue //skip if not in Hp item indices

29 val err = r.3 - Wp[r.1]*Hp[r.2]

30 val Wd = gamma*(err*Wp[r.1]-lambda*Hp[r.2])

31 val Hd = gamma*(err*Hp[r.2]-lambda*Wp[r.1])

32 Wp[r.i] += Wd

33 Hp[r.j] += Hd

34 } // end of for(auto r ..

35 tmp += Tuple2(e.key, ((Ap, Wp), Hp));

36 } // end of for(e ..

37 val ret = tmp.toArray

38 ret.iterator

39 } // end of def update_Func

(d) Algorithm 1 reimplemented with Spark

Figure 2: SGDMF (Algorithm 1) implemented as sequential code (a), and parallelized using OpenMP (b), STRADS-AP (c) and

Spark (d). The code snippets show only the core training routine, and do not include data loading and parsing code. STRADS-AP

code requires fewer changes to the sequential code compared to OpenMP code, while achieving efficient distributed parallelism

in addition to shared-memory parallelism. Spark, on the other hand, requires a complete reimplementation using its abstractions.

STRADS-AP outperforms Spark by more than an order of magnitude (e) and continues to scale up to 256 cores, while Spark

stops scaling at 64 cores. Hand-tuned MPI code is faster than STRADS-AP by 22% on 256 cores at the cost of a significantly

longer programming and debugging effort.

USENIX Association 2019 USENIX Annual Technical Conference 209

that is orders of magnitude slower than a STRADS-AP

implementation, or a hand-tuned implementation.

As a concrete example, we choose Spark as the framework,

and Matrix Factorization (MF) as the algorithm—a popular

recommender systems algorithm. First, we write sequential

code that solves MF using Stochastic Gradient Descent (SGD),

denoted as SGDMF in Algorithm 1. Then, we convert the

sequential code into three different parallel implementations—

shared-memory, STRADS-AP, and Spark—and compare their

performance.

2.1 Programming Effort

MF learns user’s preferences over all items from an incomplete

rating dataset represented as a sparse matrix A∈R
M×N where

M and N are the number of users and items, respectively. MF

factorizes the incomplete matrix A into two low-rank matrices,

W ∈R
M×K and H∈R

N×K , such that W ·HT approximates A.

Algorithm 1 iterates through the ratings in the matrix A and

for each rating ri, j, it calculates gradients ∆W [i], ∆H[j] and

adds the gradients to W [i], H[j], respectively. The computed

parameter values for the rating ri, j are immediately visible

when computing the next rating, which is an example of

asynchronous computation.

2.1.1 Sequential SGDMF code

Sequential implementation of Algorithm 1 is a direct

translation of the pseudocode as shown in Figure 2(a).

2.1.2 OpenMP Parallel SGDMF

We parallelize the sequential code in Figure 2(a) using

OpenMP [12] to form a single-node baseline. We make two

modifications to the sequential code as shown in Figure 2 (b):

annotate the loop with parallel-for pragma to let the OpenMP

runtime know what to parallelize, and add mutexes to avoid

data race on shared matrices W and H. OpenMP parallelizes

the inner loop over loop indices using fork-join model where

threads run the loop body with different loop indices and join

at the completion.

2.1.3 STRADS-AP Distributed SGDMF

Parallelizing the same sequential code using STRADS-AP

is done almost mechanically by (1) replacing serial data

structures with STRADS-AP’s distributed data structures, and

(2) replacing the inner loop with STRADS-AP’s AsyncFor

loop operator, as shown in Figure 2(c).

Unlike OpenMP code, STRADS-AP code has no explicit

locking. The runtime is responsible for addressing data

conflicts on matrices W and H while executing the loop

body in a distributed setting, relieving users from writing

error-prone locking code. With little effort, STRADS-AP

achieves efficient distributed parallelism, in addition to

shared-memory parallelism.

2.1.4 Spark Distributed SGDMF

Unlike with STRADS-AP, parallelizing the sequential code

in Figure 2 (a) with Spark requires significant programming

effort as detailed below.

Concurrency Control: Spark lacks concurrency control

primitives. Since the inner loop of SGDMF leads to data

dependencies when parallelized, we need to implement

a scheduling plan for correct execution. Reasoning about

concurrency control is application-specific and often requires

a significant design effort. For SGDMF, we use the Strata

scheduling algorithm by Gemulla [18]. The scheduling code

shown in Figure 2(d) (lines 9-19) and the training code (lines

20-40) were abridged to fit the page.

Molding SGDMF to Spark API: Even after handling

concurrency, implementing SGDMF in Spark requires

substantial programming effort for the following reasons.

First, Spark operators, such as map, operate on a single

RDD object, while the inner loop body in Figure 2(a) accesses

multiple objects: the input data A, and the parameter matrices

W and H. To parallelize the inner loop with map we need to

merge A, W , and H into a single RDD, requiring multiple join

operations involving costly data shuffling.

Second, merging via join operator requires changes to data

structures. Since join operator works only on RDD[Key,Value]

type, we have to replace the vectors A,W,H, in Figure 2(a),

with RDD[K,V] where V might be also key-value pair type.

Finally, data movement for concurrency control requires

extra join and map operations. At the end of every subiteration,

the Strata scheduling algorithm moves H partitions among

nodes, which requires two extra operations for every subiter-

ation: (1) a map operation that separates H from the merged

RDD and modifies the key field of H, (2) a join operation that

remerges H and AW into AWH for the next subiteration, as

shown in Figure 2(d) (lines 9-19.)

In summary, engineering the Spark implementation of

SGDMF algorithm involves a large amount of incidental

complexity that stems from the limitations of Spark API and

its data abstractions. As we show next, in addition to the loss

in productivity, there is also a loss in efficiency.

2.2 Performance Cost

As a baseline for the distributed implementations, we

implement SGDMF using MPI [16] and OpenMP, which are

efficient at the cost of larger programming effort. MPI SGDMF

uses the same Strata scheduling algorithm and point-to-point

communication to circulate H partitions among nodes. All

SGDMF implementations achieve proper concurrency control,

making similar statistical progress per iteration. Therefore,

our performance comparison focuses only on elapsed time

for running 60 iterations, after which all implementations con-

verge. We run experiments with Netflix dataset using up to 256

cores on 16 machines that are connected via 40Gbps Ethernet.

As Figure 2(e) shows, Spark is about 68× slower than MPI

on 256 cores. In the same setting, STRADS-AP is slower than

210 2019 USENIX Annual Technical Conference USENIX Association

Requires Changing Programming Application-Level Hides Details of Fault Tolerance Debuggability for

Programming Model Language Concurrency Control Distributed Programming Distributed ML

STRADS-AP No C++ Yes Yes Yes (Fast re-execution) Yes

STRADS [26] Yes (model-schedule) C++ Yes(user defined schedule) Partly (communication) Yes (Checkpoint) No

Orion [49] No Julia Yes Yes Yes (Checkpoint) No

GraphLab [19] Yes (vertex-centric) C++ Yes Yes Yes (Checkpoint) No

Spark [54] Yes (map/reduce/...) Multi No Yes Yes (RDD) Partly

TensorFlow [2] Yes (data-flow) Multi No Yes Yes (Checkpoint) Yes

Parameter Server [31] Yes (key-value) C++ No Partly (parameter comm) Yes (Replication) No

MPI [16] Yes (message-passing) C No Partly (communication) No No

UPC [14] Yes (PGAS) C Partly (lock APIs) Yes No No

Table 1: Summary of features of frameworks used in distributed ML programming. For detailed comparison, refer to Section 2.3

and Section 7. For efficiency comparison, see Section 6

MPI by only 22%, whereas it is over 50× faster than Spark. The

suboptimal performance of Spark implementation is due to the

aforementioned factors (Section 2.1.4). STRADS-AP is 38.8

and 4.6 times faster than sequential and OpenMP, respectively.

2.3 Other High-Level Frameworks

Our findings of incidental complexity and suboptimal perfor-

mance are not limited to the example of Spark and SGDMF.

For example, PowerGraph provides concurrency control mech-

anisms, but its vertex-centric programming model requires

users to redesign data structures to fit to a graph representation

and express computations using GAS (Gather, Apply, Scatter)

routines. TensorFlow provides a very high-level programming

model taking a loss function and automates the gradient update

process but does not support serializable asynchronous compu-

tation well. Parameter Servers (PS) [3,11,31,48] abstract away

the details of parameter communication through the key-value

store interface but many other details of distributed parallel pro-

gramming, such as data partitioning, parallelization of tasks,

and application-level concurrency control, are left to the user;

that is, PS does not provide an illusion of sequential program-

ming. UPC [14] extends the C programming language with Par-

titioned Global Address Space (PGAS) programming model

that burdens the programmer with the job of doing careful per-

formance tuning (i.e. affinity between threads and shared mem-

ory partitions, low-level data layout, use of collective functions

such as gather, scatter, reduce.) As Table 1 shows, STRADS-

AP and Orion [49] are the only frameworks that allow users

to take their sequential code and automatically parallelize it to

run on a cluster without sacrificing productivity or efficiency.

STRADS-AP owes this flexibility to its familiar API and data

structures that we describe next. The differences between

STRADS-AP and Orion are described in detail in Section 7.

3 STRADS-AP Programming Interface

STRADS-AP targets ML applications with a common struc-

tural pattern consisting of two parts: (1) pretraining part that

initializes the model and input data structures, and performs

coarse-grained transformations; (2) training part that itera-

tively optimizes the objective function using nested loop(s)

where inner loop(s) perform optimization computations.

To implement a STRADS-AP application, a user writes a

simple driver program that declares hyper-parameters, invokes

Create and initialize data structures D for input data

Create and initialize data structures P for model parameters

// run transformations on input data or parameter if necessary

Create and initialize hyper parameters V to control training

(a) Pretraining part

for(i=0; i<maxiter; i++){// outer loop

for(j=0; j<N; j++){// inner loop

// Computations for optimization happen here

Read a part of input data D

Read hyper parameters V and loop indices i,j

Read/writes to a part of model paraemters P

}

change hyper parameters

if(stop condition is true)

break;

}
(b) Training part

Figure 3: ML applications targeted by STRADS-AP are

divided into two parts: (a) pretraining part and (b) training part.

operators to create and transform DDSs (Figure 3 (a)), and

then invokes STRADS-AP loop operators for optimization

(Figure 3(b).) We describe each of these in the following

subsections.

3.1 Distributed Data Structures (DDSs)

Table 2 shows a subset of STRADS-AP programming inter-

face. DDS[T] is a mutable in-memory container that partitions

a collection of elements of type T over a cluster. DDSs provide

a global address space abstraction with fine-grained read/write

access and uniform access model independent of whether the

accessed element is stored in a local memory or in the memory

of a remote node. STRADS-AP offers three types of contain-

ers: dvector, dmap, and dmultimap, with interfaces similar to

their C++ STL counterparts. These DDSs allow all threads

running on all nodes to read and write arbitrary elements while

unaware of details such as data partitioning and placement.

Support for distributed and fine-grained read/write accesses

gives STRADS-AP an important advantage over other frame-

works. It allows reuse of data structures and routines from a

sequential program by changing just the declaration of the data

type. We describe the inner workings of DDSs in Section 4.3.

3.2 STRADS-AP Operators

The two parts of ML applications, pretraining and training

(Figure 3), have different workload characteristics. Pretraining

is data-intensive, non-iterative, and embarrassingly-parallel,

USENIX Association 2019 USENIX Annual Technical Conference 211

Type Description

Distributed Data dvector[T] A distributed vector of type T elements with per-element read/write access

Structures (DDSs) dmap[K,V] A distributed map of [K,V] element pairs of type K and V with per-element read/write access

dmultimap[K,V] A distributed multimap of [K,V] element pairs of type K and V with per-element read/write access

Loop Operators AsyncFor(int64 S, int64 E, UDF F) Parallelizes closure F over indices [S, E] in isolated manner—avoid ing data conflicts

SyncFor(DDS[T] &D, int M, UDF F, Parallelizes closure F over minibatches of D each of size M using synchronization option S

SyncOpt S, bool RE) in data-parallel manner. RE indicates whether to perform Reconnaissance Execution(§ 4.2)

Table 2: A subset of STRADS-AP API—DDSs, and loop operators for ML training.

whereas training is compute-intensive and iterative, and the

inner loop(s) may have data dependencies. STRADS-AP

provides two sets of operators that allow natural expression

of both types of computation.

3.2.1 Pretraining Operators

STRADS-AP provides Map, Reduce, Join, Load, and Create

operators for loading, storing, and creating DDSs during

pretraining. However, STRADS-AP puts no constraints on

their usage for expressing training computations.

3.2.2 Loop Operators

STRADS-AP provides loop operators shown in Table 2 to

replace the inner loop(s) in the training part of ML programs

(Figure 3 (b)). The loop operators take a user-defined closure

as the loop body. The closure is a C++ lambda expression

that captures the specified DDSs and variables in the scope,

and implements the loop body by reading from and writing

to arbitrary elements of the captured DDSs. This allows users

to mechanically change the loop body of a sequential ML pro-

gram to STRADS-AP code that is automatically parallelized.

STRADS-AP supports four models of parallelizing

ML computations: (1) serializable asynchronous [33], (2)

synchronous (BSP [46]), (3) stale-synchronous (SSP [23]),

and (4) lock-free asynchronous (Hogwild! [38]) within a node

and synchronous across nodes, which we call Hybrid.

STRADS-AP offers two loop operators to support these

models. A user can choose AsyncFor loop operator for serializ-

able asynchronous model. For the remaining models a user can

choose SyncFor operator and specify the desired model as an

argument to the loop operator, as shown in Table 2. Other than

choosing the appropriate loop operator, a user does not have

to write any code for concurrency-control—the STRADS-AP

runtime will enforce the chosen model as described next.

AsyncFor parallelizes the loop over loop indices and ensures

isolated execution of the loop bodies even if loop bodies have

shared data. In other words, it ensures serializability: the

output of the parallel execution matches the ordering of some

sequential execution.

AsyncFor takes three arguments: the start index S, the end

index S+N, and a C++ lambda expression F . It executes N+1

lambda instances, F(S),F(S+1),...,F(S+N) concurrently.

At runtime, STRADS-AP partitions the index range S,...,S+N

into P chunks of size C, and schedules up to P nodes to

concurrently execute F with different indices. A node

schedules multiple threads to run C lambda instances allowing

arbitrary reads and writes to DDSs.

If the lambda expression modifies a DDS, then data conflicts

will happen. Although ML algorithms are error-tolerant [23],

some algorithms, like Coordinate Descent Lasso [29, 45],

LDA [5, 53], and SGDMF [18, 28] converge slowly in the

presence of numerical errors due to data conflicts. Following

previous work [26], STRADS-AP runtime improves statistical

progress by avoiding data conflicts using data conflict-free

scheduling for lambda executions. Figure 2(c) shows an

example use of AsyncFor implementing SGDMF.

SyncFor parallelizes the loop over the input data. It splits

input data into P chunks, where each chunk is processed by P

nodes in parallel. Each node processes its data chunk, updating

a local replica of model parameters.

SyncFor takes five arguments: the input data D of type

DDS[T], the size of a mini-batch M, a C++ lambda expression

F , a synchronization option (BSP, SSP, or Hybrid), and a

flag indicating whether it should perform Reconnaissance

Execution (Section 4.2). The runtime partitions the input

data chunk of a node into L mini-batches of size M (typically

L is much larger than the number of threads per node), and

then schedules multiple threads to process mini-batches

concurrently. A thread executes the lambda expression

with a local copy of captured variables, and allows reads

and writes only to the local copy while running F . At the

end of processing a mini-batch, a separate per-node thread

synchronizes the local copy of only those DDSs captured by

reference across the nodes, and synchronizes local threads

according to the sync option. Figure 4 shows an example use

of SyncFor that reimplements Google’s Word2vec model [22].

By default, SyncFor performs averaging aggregation

of model parameters. Users can override this behavior by

registering an application-specific aggregation function to a

DDS through RegisterAggregationFunc() method.

4 Implementation
This section covers important details of STRADS-AP

implementation: the driver program execution (Section 4.1),

Reconnaissance Execution (Section 4.2), DDSs (Section 4.3),

Concurrency Control (Section 4.4), and STRADS-AP

preprocessor (Section 4.5).

4.1 Execution of Driver Program

In the STRADS-AP driver program, the statements are classi-

fied into three categories: sequential statements, STRADS-AP

212 2019 USENIX Annual Technical Conference USENIX Association

typedef vector<word> T1;

typedef vector<array<float, vec_size>> T2;

dvector<T1> &inputD = ReadFromFile<T1>(path, parser);

dvector<T2> &Syn0 = MakeVector<T2>(vocsize, initrow1);

dvector<T2> &Syn1 = MakeVector<T2>(vocsize, initrow1);

float alpha = 0.025;

int W = 5, N = 10;

vector<int> &dtable = InitUnigramtable();

expTable &e = MakeExpTable();

for (int i = 0; i < maxiter; i++){

SyncFor(inputD, mini-batchsize,

[W, N, alpha, e, dtable, &Syn0, &Syn1]

(const vector<T1> &m){

for (auto &sentence: m){

//for each window in setence, pick up W words

// for each word in the window

// run N negative sampling using dist. table

// r/w to N rows of Syn0 and Syn1 tables

}

}, Hybrid, false);

}

Figure 4: Reimplementing Google’s Word2vec model using

STRADS-AP API.

data processing statements, and STRADS-AP loop statements.

The runtime maintains a state machine with one state per

category to keep track of the type of code to execute. A

driver node starts the driver program in sequential state, and

performs sequential execution locally until the first invocation

of a STRADS-AP operator. On a STRADS-AP operator

invocation, the state machine switches to the corresponding

state and the runtime parallelizes the operator over multiple

nodes. At the completion of the STRADS-AP operator, the

runtime switches back to sequential state and continues

running the driver program locally.

The key challenges of the STRADS-AP runtime design are:

(1) full automation of concurrency control when parallelizing

loop operators, and (2) reducing the latency of accessing DDS

elements located on remote nodes. To address these challenges,

STRADS-AP implements Reconnaissance Execution.

4.2 Reconnaissance Execution

The runtime system keeps track of the number of invocations of

all loop operators in the driver program. On the first invocation

of a loop operator, the runtime starts Reconnaissance Execu-

tion (RE)—a virtual execution of the loop operator. RE is a

read-only execution that performs all reads to DDSs, and dis-

covers read/write sets for individual loop bodies. A read/write

access record of a loop body is a list of tuples, each consisting

of a DDS identifier and a list of read/write element indices.

The runtime uses a read/write set for two purposes: (1)

performing dependency analysis and generating a data

conflict-free scheduling plan for concurrent execution of loop

bodies in the AsyncFor operator, and (2) prefetching and

caching of DDS elements on remote nodes for low-latency

access during the real execution.

For the SyncFor operator, when the parameter access is

sparse (that is, a small portion of parameters are accessed when

processing a mini-batch), the runtime reduces the amount of

data transferred by referring to access records of RE. However,

in applications with dense parameter access, (that is, most

parameters are accessed when processing a mini-batch), RE

does not help to improve the performance. Therefore, the

SyncFor operator’s boolean RE parameter (Table 2) allows

users to skip RE and prefetch/cache all elements of DDSs

captured by the corresponding lambda expression.

To reduce RE overhead, STRADS-AP runs it once per

parallel loop operator in the driver program, and reuses

read/write set for subsequent iterations. This optimization

is based on two assumptions about ML workloads: (1)

iterativeness—a loop operator is repeated many times until

convergence, and (2) static control flow—read/write sets of

loop bodies do not change over different iterations. That is,

the control flow of the inner loop does not depend on model

parameter values. Both assumptions are routinely accepted

in ML algorithms [3–5, 8, 17, 24, 28, 30, 41, 45, 51–53, 55].

4.3 Distributed Data Structures

On the surface, a DDS is a C++ class template that provides

index- or key-based uniform access operator. Under the hood,

the elements of a DDS are stored in a distributed in-memory

key-value store as key-value pairs. The key is uniquely com-

posed of the table id plus the element index for dvector, and the

table id plus the element key for dmap/dmultimap. Each node

in a cluster runs a server of the distributed key-value store con-

taining the elements of a DDS partitioned by the key hash. The

implementation of DDS class template reduces the element

access latency by prefetching and caching remote elements

based on the access records generated by RE (Section 4.2).

The DDSs achieve fault-tolerance through checkpointing.

At the completion of a STRADS-AP operator that runs

on DDSs, the runtime takes snapshots of any DDSs that

were modified or created by the operator. The checkpoint

I/O time overhead is negligible because ML programs

are compute-intensive, and the input data DDSs are not

checkpointed (except once at creation), as they are read-only.

The traditional approach to checkpointing is to dump the

whole program state onto storage during the checkpoint, and

load the state from the last successful checkpoint during the

recovery. Since an ML program may have an arbitrary number

of non-DDS variables (like hyper-parameters), the traditional

approach would require users to write boilerplate code for

saving and restoring the state of these variables, reducing

productivity and increasing opportunities for introducing

bugs. Therefore, STRADS-AP takes a different approach to

checkpointing that obviates the need for such boilerplate code.

Upon a node failure, STRADS-AP restarts the application

program in fast re-execution mode. In this mode, when the

runtime encounters a parallel operator op executing iteration i,

it first checks to see whether a checkpoint for opi exists. If yes,

the runtime skips the execution of opi and loads the DDS state

from the checkpoint. Otherwise, it continues normal execution.

Hence, the state of non-DDS variables are quickly and

correctly restored without forcing the users to write extra code.

USENIX Association 2019 USENIX Annual Technical Conference 213

4.4 Concurrency Control

STRADS-AP implements two concurrency control engines:

(1) serializable engine for the AsyncFor operator, and (2) data-

parallel engine for the SyncFor operator. Both engines use the

read/write set from Reconnaissance Execution (Section 4.2)

for prefetching remote DDS elements, while the serializable en-

gine also uses it for making data conflict-free execution plans.

4.4.1 Serializable Engine for AsyncFor

In the serializable engine, a task is defined as the loop body

with a unique loop index value i, which ranges from S to

E, where S and E are AsyncFor arguments (Table 2). The

serializable engine implements a scheduler module that

takes the read/write set from RE, analyzes data dependencies,

generates a dependency graph, and generates a parallel exe-

cution plan that avoids data conflicts. To increase parallelism,

the serializable engine may change the execution order of

tasks assuming that any serial reordering of the loop body

executions is acceptable. This assumption is also routinely

accepted in ML computations [26, 33, 39].

The scheduler divides the loop bodies into N task groups,

where N is much larger than the number of nodes in a cluster,

using an algorithm that combines the ideas of static scheduling

from STRADS [26] and connected component-based schedul-

ing from Cyclades [39]. The algorithm allows dependencies

within a task group but ensures no dependency across task

groups. At runtime, the scheduler places task groups on nodes,

where each node keeps a pool of task groups.

To balance the load, serializable engine runs a greedy

algorithm that sorts task groups in the descending order of

size, and assigns task groups to the node whose load is the

smallest so far. Once task group placements are finalized, the

runtime system starts the execution of the loop operator.

The execution begins by each node initializing DDSs to

prefetch necessary elements from the key-value store into a

per-node DDS cache. Then each node creates a user-specified

number of threads, and dispatches task groups from the task

pool to the threads. All threads on a node access the per-node

DDS cache without locking, since each thread executes a task

group sequentially, and the scheduling algorithm guarantees

that there will be no data conflicts across the task groups. In

the case of an excessively large task group, we split it among

the threads and use locking to avoid data races, which leads

to non-deterministic execution.

To reduce scheduling overhead, the serializable engine

caches the scheduling plan and reuses it over multiple itera-

tions based on the aforementioned assumptions (Section 4.2).

Hence, the overhead of RE and computing a scheduling plan

is amortized over multiple iterations.

4.4.2 Data-Parallel Engine for SyncFor

In the data-parallel engine, a task is defined as the loop body

with a mini-batch of D with size M, where D and M are

SyncFor arguments (Table 2). Hence, a single SyncFor call

generates multiple tasks with different mini-batches. The

engine places the tasks on nodes that hold the associated

mini-batches, where nodes form a pool of assigned tasks.

Similar to the serializable engine, an execution begins by

each node initializing DDSs to prefetch necessary elements

from the key-value store into the per-node DDS cache, based

on the read/write set from RE, and continues by creating a

user-specified number of threads.

Unlike the serializable engine, the threads contain a per-

thread cache, and are not allowed to access the per-node cache,

since in this case there is no guarantee of data conflict-free

access. When a node dispatches a task from the task pool to a

thread, it copies the parameter values from the per-node cache

to the per-thread cache.

Upon task completion, a thread returns the delta between the

computed parameter values and the starting parameter values.

The node dispatches a new task to the thread, accumulates

deltas from all threads, and synchronizes per-node cache with

the key-value store by sending the aggregate delta and pulling

fresh parameter values.

The SyncFor operator allows users to choose among BSP,

SSP, and Hybrid (Section 3.2.2) models of parallelizing

ML computations. The BSP [46] and SSP [23] models are

well-known, and our implementation follows previous work.

Hybrid, on the other hand, is a lesser-known model [25]. It

allows lock-free asynchronous update of parameters among

threads within a node (Hogwild! [38]), but synchronizes

across machines at fixed intervals. In the Hybrid model, a

node creates a single DDS cache that is accessed by all threads

without taking locks. When all of the threads complete a single

task, which denotes a subiteration, the node synchronizes the

DDS cache with the key-value store.

4.5 STRADS-AP Preprocessor

While there exist mature serialization libraries for C++, none of

them support serializing lambda function objects. The lack of

reflection capability in C++, and the fact that lambda functions

are implemented as anonymous function objects [36], make

serializing lambda challenging. We overcome this challenge

by implementing a preprocessor that analyzes the source code

using Clang AST Matcher library [10], identifies the types of

STRADS-AP operator arguments, and generates RPC stub

code and a uniquely-named function object for each lambda

expression that is passed to STRADS-AP operators.

The preprocessor also analyzes the source code to see if it

declares DDSs of user-defined types. While DDSs of built-in

types are automatically serialized using Boost Serialization li-

brary [6], for user-defined types the library requires adding boil-

erplate code, which is automatically added by the preprocessor.

5 Debugging STRADS-AP Applications
STRADS-AP supports two debugging modes: (1) cluster

replay mode, and (2) single-node replay mode. Currently,

STRADS-AP debugging modes support only serializable

parallel execution generated by AsyncFor operator whose

214 2019 USENIX Annual Technical Conference USENIX Association

Dataset Workload Feature Size Application Purpose

Netflix [24] 100M ratings 489K users, 17K movies, rank=1000 2.2 GB SGDMF Recommendations

1Billion [9] 1 billion words Vocabulary size 308K, vector size=100 4.5 GB Word2Vec Word Embeddings

ImageNet [43] 285K images 1K classes, 21K features, preprocessed by LCC feature extraction [47] 21 GB MLR Multi-Class Classification

FreeBase-15K [7] 483K facts 14,951 entities, 1,345 relations, vector size=100 36 MB TransE Graph Embeddings

Table 3: Datasets used in benchmarks.

Application Serial OpenMP MPI STRADS-AP TF Spark

SGDMF X X X X X

MLR X X X X X

Word2vec X X X X X

TransE X X

Table 4: ML programs used for benchmarking. Serial and

OpenMP are single core and multi-core applications on

a shared-memory machine, respectively, while the rest

are distributed parallel applications. MPI applications use

OpenMP for shared-memory parallelism within the nodes.

execution can be non-deterministic (Section 4.4.1). The

support for SyncFor operator is in progress.

Cluster Replay: The AsyncFor operator allows non-

deterministic execution for achieving high performance.

Instead of predefined deterministic execution [32], STRADS-

AP logs the execution order including lock grant ordering and

message ordering, and allows users to replay the log. For this

purpose, STRADS-AP implements record/replay modules.

The record module records the ordering of lock grantings in

every node, and the ordering of message arrivals in the DDS

key-value store into persistent storage. To avoid coordination

overhead and bottlenecking a single node, each node records

partial ordering locally, without making a total ordering. When

replaying the log, each node enforces the same partial order.

Single-node Replay: Debugging an ML program can be

classified into two categories: (1) search for a traditional

software bug, and (2) the inspection of the optimization path.

Unfortunately, these debugging tasks are not easy to do in a dis-

tributed environment since step-by-step tracing of a distributed

application is hard. To address this problem, STRADS-AP

offers single-node replay mode for parallel ML applications.

The single-node replay mode takes a parallel execution log,

and replays the ordering in a single node setting, where users

can trace the program execution using a debugger like GDB.

6 Evaluation

We evaluate STRADS-AP on (1) application performance, and

(2) programmer productivity, using the following real world

ML applications: SGDMF, Multinomial Logistic Regression

(MLR), Word2vec, and TransE [7], summarized in Table 4.

For performance evaluation, as a baseline we implement

these applications as (1) a sequential C++ application, (2) a

single-node shared-memory parallel C++ application using

OpenMP, and (3) a distributed- and shared-memory parallel

C++ application using MPI and OpenMP. We then compare

the iteration throughput (time per epoch) and the statistical

accuracy of Spark, TensorFlow (TF), and STRADS-AP

implementations of these applications to those of the baselines,

while running them on real datasets shown in Table 3. For

brevity, in the rest of the paper, when we mention that an

application is implemented using MPI, we mean that it uses

OpenMP on a single node and MPI among the nodes.

For productivity evaluation, we conduct two user studies on

a group of students with Word2vec and TransE applications.

As a measure of productivity, we count the lines of code

produced, and measure the time it took students to convert a

serial implementation of the algorithm into a STRADS-AP

implementation.

All experiments were run on a cluster with 16 machines

each with 64 GB of memory and 16-core Intel Xeon E5520

CPUs, running Ubuntu 16.04 Linux distribution, connected

with 40 Gbps Ethernet network. The reported numbers are the

averages of at least three runs. Error bars are not included due

to low variance among the runs.

6.1 Word2Vec

Word2vec is a Natural Language Processing (NLP) model

developed by Google that computes vector representations

of words, called “word embeddings”. These representations

can be used for various NLP tasks, such as discovering

semantic similarity. Word2vec can be implemented using

two architectures: continuous bag-of-words (CBOW) or

continuous skip-gram, the latter of which produces more

accurate results for large datasets [22].

We implement the skip-gram architecture in STRADS-AP

based on Google’s open source multithreaded implementa-

tion [22] written in C. We make two changes to Google’s

implementation: (1) modify it to keep all the input data in mem-

ory to avoid I/O during training, and (2) replace POSIX threads

with OpenMP. After our changes, we observe 6% increase in

performance on 16 cores. We then run our improved implemen-

tation using a single thread for the serial baseline, and using 16

threads on 16 cores for the shared-memory parallel baseline.

Google recently released a highly-optimized multithreaded

Word2vec [21] implementation on TensorFlow with two

custom kernel operators written in C++. As of now, Google

has not yet released a distributed version of Word2vec on

TensorFlow. Therefore, we extend Google’s implementation

to run in a data-parallel distributed setting. To this end, we

modify the kernel operators to work on partitions of input data,

and synchronize parameters among nodes using MPI.

Performance Evaluation: Figure 5 shows the execution time

USENIX Association 2019 USENIX Annual Technical Conference 215

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 16 128 256

Max:

22,160s

Max:

115,100s

T
im

e
(s

)

Number of Cores

Serial OpenMP STRADS-AP MPI

Figure 5: Time for 10 iterations of Word2Vec on 1 Billion

word dataset [9] with vector size = 100, window = 5, negative

sample count = 10.

Cores
Similarity Analogy

STRADS-AP MPI TF STRADS-AP MPI TF

128 0.601 0.601 0.602 0.566 0.564 0.568

256 0.603 0.597 0.601 0.562 0.557 0.561

Serial 0.610 0.570

OpenMP 0.608 0.571

Table 5: The top table reports similarity test accuracy [15],

and analogy test accuracy [37] for distributed Word2Vec

implementations on 1 Billion word dataset, after 10 iterations.

The bottom table shows respective values for the serial and

OpenMP implementations.

of Word2vec for 10 iterations with a 1 billion word data set.

On 256 cores (16 machines), MPI performs better than Tensor-

Flow and STRADS-AP by 9.4% and 10.1%, respectively; that

is, a STRADS-AP program obtained by mechanical changes

to serial code matches the performance of a highly optimized

TensorFlow program. The higher performance of an MPI pro-

gram stems from the serialization overhead in TensorFlow and

STRADS-AP. The MPI implementation stores parameters in

arrays of built-in types, and uses in-place MPI_Allreduce call

to operate on values directly. STRADS-AP outperforms serial

and OpenMP implementations by 45× and 8.7×, respectively.

Table 5 shows the similarity test accuracy [15] and the anal-

ogy test [37] accuracy, after running 10 iterations. Using the

accuracy of the serial algorithm as the baseline, we see that par-

allel implementations report slightly lower accuracy (within

1.1%) than the baseline due to the use of stale parameter values.

Productivity Evaluation: Table 6 shows the line counts

of Word2vec implementations in the first column. The

STRADS-AP implementation has 15% fewer lines than the

serial implementation, which stems mainly from the coding

style and the use of STRADS-AP’s built-in text-parsing library.

If we focus the comparison on the core of the program—the

training routine—both implementations have around 100

lines, since STRADS-AP implementation takes the serial code

and makes a few simple changes to it.

The TensorFlow implementation, however, has three times

more lines in the training routine. The increase is due to

(1) splitting the training into two kernel operators to fit the

Implementation Word2vec MLR SGDMF

Serial 468 235 271

STRADS-AP 404 245 279

MPI 559 313 409

TensorFlow 646∗ 155 (Python) N/A

Spark N/A N/A 249 (Scala)

Table 6: Line counts of model implementations using different

frameworks. Unless specified next to the lines counts, the

language is C++. ∗TensorFlow implementation of Word2vec

has 282 lines in Python and 364 lines in C++.

 0

 30

 60

 90

 120

 150

64 128

T
im

e
(s

)

Number of Cores

STRADS-AP
MPI

TF(minibatch=0.5K)
TF(minibatch=1K)

 0.75

 1

 0 1000 2000 3000 4000P
re

d
ic

ti
o
n
 A

cc
u
ra

cy

Time (s)

Figure 6: The left figure shows time for a single iteration. We

run the TensorFlow implementation with a minibatch sizes

of 500 and 1,000. STRADS-AP and MPI implementations do

not use vector instructions, therefore, we run them with a mini-

batch size of 1. Serial and OpenMP implementations (omitted

from the graph) also run with a minibatch size of 1, and take

3,380 and 467 seconds to complete, respectively. The right

figure shows prediction accuracy as the training progresses.

While each implementation runs for 60 iterations, the graph

shows only the time until all of them converge to a stable value.

dataflow model, (2) converting tensors into C++ Eigen library

matrices and back, and (3) lock management.

While TensorFlow enables users to write simple models

easily, it requires a lot more effort and knowledge, which most

data scientists lack, to produce high-performance distributed

model implementations with custom kernel operators. On

the other hand, STRADS-AP allows ordinary users to easily

obtain performance on par with the code that was optimized by

Google, by making trivial changes to a serial implementation.

6.2 Multinomial Logistic Regression

We implement a serial, OpenMP, MPI, TensorFlow, and

STRADS-AP versions of MLR. Our distributed TensorFlow

implementation uses TensorFlow parameter servers, and is

based on the MNIST code in the TensorFlow repository. Simi-

lar to other implementations in our benchmark, our TensorFlow

implementation preloads the dataset into memory before

starting the training, and uses the Gradient Descent optimizer.

Performance Evaluation: Figure 6 shows single iteration

time on 25% of the ImageNet dataset [43] on the left, and accu-

racy after 60 iterations on the right. TensorFlow makes heavy

use of vector instructions, which explains the 30% decrease in

runtime when increasing the minibatch size from 500 to 1,000,

and almost two times shorter runtime than MPI and STRADS-

216 2019 USENIX Annual Technical Conference USENIX Association

Subject Major (Main PL) C++ Skill Level [T1] [T2] [T3] [T4] [T5] Total Challenges

Student 1 Data Mining (Python) Low 0.25 0.1 0.25 0.1 1.7 2.4 Lack of C/C++ experience

Student 2 Data Mining (Java) Low 0.3 0.2 0.1 0.2 1.4 2.2 Lack of C/C++ experience

Student 3 Machine Learning (Python) Low 0.3 0.5 0.5 0.5 1 2.8 Lack of C/C++ experience

Student 4 Compilers (Java) High 0.3 0.3 0.2 0.1 1.0 1.9 Lack of ML programming familiarity

Student 5 Systems (C++) High 0.25 0.25 0.5 0.25 0.25 1.5 N/A

Table 7: The breakdown of times (in hours) of five students that converted the serial implementation of the TransE [7] graph

embedding algorithm to a distributed STRADS-AP implementation. We split the conversion task into five subtasks: [T1] understand

the algorithm, [T2] understand the reference serial code, [T3] review STRADS-AP API guide, [T4] review the provided serial

MLR code and the corresponding STRADS-AP code, [T5] convert the serial implementation to STRADS-AP implementation.

AP implementations, which do not use vector instructions.

On the other hand, as the right graph in Figure 6 shows,

TensorFlow sacrifices accuracy for higher throughput. Unlike

the MPI and STRADS-AP implementations that achieve

99.5% accuracy after about 2,800 seconds, the accuracy of

TensorFlow remains under 98.4 even after 4,000 seconds. The

difference in accuracy is due to STRADS-AP and MPI imple-

mentations running with a minibatch size of 1, given that they

do not use vector instructions. A single iteration of TensorFlow

with a minibatch size of 1 (for which it was not optimized)

took about 6 hours, which we omitted from the graph.

Productivity Evaluation: Table 6 shows the line counts of

MLR implementations in the second column. The TensorFlow

implementation has 38% and 50% fewer lines than the

STRADS-AP and MPI implementations, respectively, because

while both of the latter implement large chunks of code to

compute gradients and apply them to parameters, TensorFlow

hides all of these under library function calls. On the other

hand, most of the TensorFlow implementation consists of code

for partitioning data and setting up the cluster and parameter

server variables. This is counter-productive for users who do

not want to deal with cluster setup and data partitioning, but

want to change the algorithms.

6.3 Matrix Factorization

We already covered (Section 2.1) the implementation details

and performance evaluation of solving Matrix Factorization

algorithm using SGD optimization (SGDMF). Therefore, we

continue with the productivity evaluation.

Productivity evaluation: Table 6 shows line counts of

SGDMF implementations in the third column. SGDMF

implementation in Scala, even after including the line count

for Gemulla’s Strata scheduling algorithm (Section 2.1.4),

has about 15% fewer lines than STRADS-AP implementation.

This is not surprising, given that functional languages like

Scala tend to have more expressive power than imperative

languages like C++. However, the difficulty of implementing

the Strata scheduling algorithm is not captured well in the line

count. Figuring out how to implement this algorithm using the

limited Spark primitives, and tuning the performance so that

the lineage graph would not consume all the memory on the

cluster took us about a week, whereas deriving STRADS-AP

implementation from the pseudocode took us about an hour.

The line count of MPI is higher than serial code due to Strata

scheduling implementation and manual data partitioning.

6.4 User Study

To further evaluate the productivity gains of using STRADS-

AP, we conducted two more user studies. In the first study, as a

capstone project we assigned a graduate student to implement

a distributed version of Word2vec using STRADS-AP and

MPI, after studying Google’s C implementation [22]. The

student had C and C++ programming experience, and had

just finished an introductory ML course. After studying

the reference source code, the student spent about an hour

studying the STRADS-AP API and experimenting with it. It

then took him about two hours to deliver a working distributed

Word2vec implemented with STRADS-AP API. On the other

hand, it took the student two days to deliver a distributed

Word2vec implemented with MPI. The MPI implementation

was not able to match the STRADS-AP implementation in

terms of accuracy and performance until the student had

invested two weeks of performance optimizations.

In the second study, we conducted an experiment similar

to a programming exam, with five graduate students. We

provided the students with a two-page STRADS-AP API

documentation, example serial MLR code, and the corre-

sponding STRADS-AP code. We then gave the students a

serial C++ program written by an external NLP research group

that implemented the TransE [7] graph embedding algorithm,

and asked them to produce a distributed version of the same

program using STRADS-AP.

Table 7 shows the breakdown of times each student spent

at different phases of the experiment, including the students’

backgrounds, and the primary challenges they faced. While

most students lacked proficiency in C++, they still managed

to complete the conversion in a reasonable amount of time.

Student 5, who was the most proficient in C++, finished the

experiment in 1.5 hours, while Student 1 took 2.4 hours, most

of which he spent in the last subtask debugging syntax errors,

after breezing through the previous subtasks. Feedback from

the participants indicated that (1) converting serial code into

STRADS-AP code was straightforward because data struc-

tures, the control flow, and optimization functions in the serial

program were reusable with a few changes, and (2) the lack

of C++ familiarity was the main challenge. The list of reported

USENIX Association 2019 USENIX Annual Technical Conference 217

mistakes included C++ syntax errors, forgetting to resize local

C++ STL vectors before populating them, and an attempt to

create a nested DDS, which STRADS-AP does not currently

support. We evaluated the students’ implementations by

running them on FreeBase-15K [7] dataset for 1000 iterations

with vector size of 50. The students’ implementations were

about 22× faster than the serial implementation on 128 cores,

averaging at 45.3% accuracy, compared to 46.1% accuracy

achieved by the serial implementation.

6.5 Scope and Limitations of STRADS-AP

STRADS-AP facilitates converting serial ML programs

into distributed ML programs with minimal changes. Our

evaluation shows that the converted ML programs achieve

performance comparable to hand-tuned distributed implemen-

tations, and to implementations written using ML-specialized

frameworks. To achieve higher performance, STRADS-AP

relies on two optimizations: reordering of loop indices to find

more opportunities for parallelism, and reuse of RE output to

amortize the overhead of running RE and making scheduling

decision over multiple iterations. These optimizations require

ML programs to meet three assumptions: serializability (4.4.1),

iterativeness (4.2), and static control flow (4.2). Fortunately,

these three assumptions are commonly found in a broad

range of ML applications. However, STRADS-AP has some

limitations on its expressiveness. For example, it does not

support nested parallel loops and user defined data structures

having nested DDSs.

7 Related Work
STRADS-AP’s design elements rely on a body of previous

work. The virtual iteration of IterStore parameter server [11]

inspired Reconnaissance Execution (RE). IterStore uses the

read/write set only for prefetching parameters into nodes

from the parameter server. STRADS-AP, however, uses the

read/write set for generating a data conflict-free execution

schedule as well as prefetching.

Calvin [44] introduces reconnaissance queries for efficient

distributed transactions with low locking overhead. However,

Calvin cannot reuse the results of the query because DBMS

workloads do not generally have the iterativeness and static

control flow properties of ML workloads. STRADS-AP

runtime runs RE on just the first invocation, and the output of

RE is reused for every iteration until convergence, amortizing

the cost of RE.

OpenMP [12] and Distributed R [42] are popular among ML

programmers and provide parallel loop operators. However

they lack the support of high-level abstractions to parallelize

ML programs in which the ML training routine has data depen-

dencies. For example, when loop bodies of a parallel loop have

data dependencies on shared ML model parameters, OpenMP

and Distributed R delegate concurrency control to the ML

programmer. This requires ML programmers to write routines

for aggregating shared parameters in the case of synchronous

parallel execution, and handling data dependencies in the case

of asynchronous execution. On the contrary, the STRADS-AP

runtime hides parameter aggregation and concurrency control

from ML programmers through Sync/Async loop operators.

GraphLab [19, 33], Cyclades [39], and STRADS [26, 29]

present ML scheduling ideas that avoid executing updates

with data conflicts to improve statistical progress per iteration.

However, GraphLab expects users to express a serial ML algo-

rithm using GAS (Gather, Apply, Scatter) primitives, Cyclades

targets a single shared-memory machine, limiting scalability,

and STRADS requires users to design and implement data

conflict-free scheduling strategy. STRADS-AP addresses all

of these limitations by (1) allowing users to convert a serial pro-

gram into parallel program through mechanical changes, (2)

scaling out to an arbitrary-sized cluster, and (3) automatically

generating data conflict-free execution schedules.

More recently, Orion [49] proposed automatic paralleliza-

tion using static analysis of matrix index access patterns.

STRADS-AP and Orion [49] share the same goal of automating

scheduling decision. However, while Orion targets ML pro-

grams written in Julia scripting language, STRADS-AP targets

C++ ML programs because there are a large number of serial

ML programs in written in C++. This difference in the choice of

programming language leads us to explore substantially differ-

ent design options, such as STL-like DDSs and dynamic anal-

ysis, instead of distributed matrix and static analysis. Specif-

ically, Orion’s static analysis requires that data dependencies

are determined statically in the form of a linear combination

of loop variables. This assumption does not hold frequently

in real-world ML applications. On the contrary, STRADS-AP

performs dynamic analysis that captures data accesses and

dependencies at runtime without relying on such assumptions.

8 Conclusion

Despite the availability of a plethora of frameworks for

distributed Machine Learning (ML) programming, we

believe distributed ML programming is still unnecessarily

complicated. Each framework comes with its own restricted

programming model and abstractions, its inefficiencies, and

peculiarities that add to the growing list of things that data sci-

entists should master. We take a step back and ask: how can we

take a serial imperative implementation of an ML model, and

parallelize it over a cluster with minimal effort from the user.

Our answer is STRADS-AP—a distributed ML framework,

which is a combination of a runtime and an API comprised

of Distributed Data Structures (DDSs) and parallel loop

operators. Using four real-world applications, we show that

STRADS-AP allows data scientists to easily convert a serial

implementation of an ML model to a distributed implemen-

tation that achieves performance comparable to hand-tuned

MPI and TensorFlow implementations, while outperforming

a Spark implementation by more than an order of magnitude.

218 2019 USENIX Annual Technical Conference USENIX Association

Acknowledgements
We thank our shepherd Steven Hand and the anonymous

reviewers. This research is supported in part by National Sci-

ence Foundation under awards CCF-1629559, IIS-1563887,

and IIS-1617583. We thank the member companies of the

PDL Consortium (Alibaba, Broadcom, Dell EMC, Facebook,

Google, Hewlett-Packard, Hitachi, IBM, Intel, Micron,

Microsoft, MongoDB, NetApp, Oracle, Salesforce, Samsung,

Seagate, Two Sigma, Toshiba, Veritas, and Western Digital)

for their interest, insights, feedback, and support.

References
[1] CLOC: Count Lines of Code. http://cloc.

sourceforge.net/.

[2] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay

Ghemawat, Geoffrey Irving, Michael Isard, Manjunath

Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore,

Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay

Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and

Xiaoqiang Zheng. TensorFlow: A system for large-scale

machine learning. In 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI

16), pages 265–283, 2016.

[3] Amr Ahmed, Moahmed Aly, Joseph Gonzalez, Shravan

Narayanamurthy, and Alexander J. Smola. Scalable

inference in latent variable models. In Proceedings of

the Fifth ACM International Conference on Web Search

and Data Mining, WSDM ’12, pages 123–132, New

York, NY, USA, 2012. ACM.

[4] Arthur Asuncion, Max Welling, Padhraic Smyth, and

Yee Whye Teh. On Smoothing and Inference for Topic

Models. In Proceedings of the Twenty-Fifth Conference

on Uncertainty in Artificial Intelligence, UAI ’09, pages

27–34, Arlington, Virginia, United States, 2009. AUAI

Press.

[5] David M. Blei, Andrew Y. Ng, and Michael I. Jordan.

Latent dirichlet allocation. Journal of Machine Learning

Research, 3:993–1022, March 2003.

[6] Boost. Boost C++ Library - Serialization.

http://www.boost.org/doc/libs/1_66_0/libs/

serialization/doc/index.html.

[7] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán,

Jason Weston, and Oksana Yakhnenko. Translating

Embeddings for Modeling Multi-relational Data. In Pro-

ceedings of the 26th International Conference on Neural

Information Processing Systems - Volume 2, NIPS’13,

pages 2787–2795, USA, 2013. Curran Associates Inc.

[8] Joseph K. Bradley, Aapo Kyrola, Danny Bickson,

and Carlos Guestrin. Parallel coordinate descent for

l1-regularized loss minimization. In Proceedings of

the 28th International Conference on International

Conference on Machine Learning, ICML’11, pages

321–328, USA, 2011. Omnipress.

[9] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,

Thorsten Brants, Phillipp Koehn, and Tony Robinson.

One billion word benchmark for measuring progress in

statistical language modeling. Technical report, Google,

2013.

[10] Clang. AST Matcher Reference. http://clang.llvm.

org/docs/LibASTMatchersReference.html.

[11] Henggang Cui, Alexey Tumanov, Jinliang Wei,

Lianghong Xu, Wei Dai, Jesse Haber-Kucharsky, Qirong

Ho, Gregory R. Ganger, Phillip B. Gibbons, Garth A.

Gibson, and Eric P. Xing. Exploiting Iterative-ness for

Parallel ML Computations. In Proceedings of the ACM

Symposium on Cloud Computing, SOCC ’14, pages

5:1–5:14, New York, NY, USA, 2014. ACM.

[12] Leonardo Dagum and Ramesh Menon. OpenMP: An

Industry-Standard API for Shared-Memory Program-

ming. IEEE Comput. Sci. Eng., 5(1):46–55, January

1998.

[13] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simpli-

fied data processing on large clusters. In Proceedings of

the 6th Conference on Symposium on Operating Systems

Design & Implementation - Volume 6, OSDI’04, pages

10–10, Berkeley, CA, USA, 2004. USENIX Association.

[14] Tarek El-Ghazawi and Lauren Smith. Upc: Unified

parallel c. In Proceedings of the 2006 ACM/IEEE

Conference on Supercomputing, SC ’06, New York, NY,

USA, 2006. ACM.

[15] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,

Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan Rup-

pin. Placing Search in Context: The Concept Revisited.

In Proceedings of the 10th international conference on

World Wide Web, pages 406–414. ACM, 2001.

[16] Message P Forum. MPI: A Message-Passing Interface

Standard. Technical report, Knoxville, TN, USA, 1994.

[17] J. Friedman, T. Hastie, H. Hofling, and R. Tibshirani.

Pathwise Coordinate Optimization. Annals of Applied

Statistics, 1(2):302–332, 2007.

[18] Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and

Yannis Sismanis. Large-scale matrix factorization with

distributed stochastic gradient descent. In Proceedings

of the 17th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD ’11,

pages 69–77, New York, NY, USA, 2011. ACM.

USENIX Association 2019 USENIX Annual Technical Conference 219

http://cloc.sourceforge.net/
http://cloc.sourceforge.net/
http://www.boost.org/doc/libs/1_66_0/libs/serialization/doc/index.html
http://www.boost.org/doc/libs/1_66_0/libs/serialization/doc/index.html
http://clang.llvm.org/docs/LibASTMatchersReference.html
http://clang.llvm.org/docs/LibASTMatchersReference.html

[19] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny

Bickson, and Carlos Guestrin. Powergraph: Distributed

graph-parallel computation on natural graphs. In Pro-

ceedings of the 10th USENIX Conference on Operating

Systems Design and Implementation, OSDI’12, pages

17–30, Berkeley, CA, USA, 2012. USENIX Association.

[20] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave,

Daniel Crankshaw, Michael J. Franklin, and Ion Stoica.

GraphX: Graph Processing in a Distributed Dataflow

Framework. In Proceedings of the 11th USENIX Confer-

ence on Operating Systems Design and Implementation,

OSDI’14, pages 599–613, Berkeley, CA, USA, 2014.

USENIX Association.

[21] Google. TensorFLow Optimized Word2vec. https:

//github.com/tensorflow/models/blob/master/

tutorials/embedding/word2vec_optimized.py.

[22] Google. word2vec. https://code.google.com/

archive/p/word2vec/.

[23] Qirong Ho, James Cipar, Henggang Cui, Jin Kyu Kim,

Seunghak Lee, Phillip B. Gibbons, Garth A. Gibson,

Gregory R. Ganger, and Eric P. Xing. More effective

distributed ml via a stale synchronous parallel parameter

server. In Proceedings of the 26th International

Conference on Neural Information Processing Systems

- Volume 1, NIPS’13, pages 1223–1231, USA, 2013.

Curran Associates Inc.

[24] James Bennett and Stan Lanning and Netflix Netflix.

The Netflix Prize. In In KDD Cup and Workshop in

conjunction with KDD, 2007.

[25] Shihao Ji, Nadathur Satish, Sheng Li, and Pradeep Dubey.

Parallelizing Word2Vec in Multi-Core and Many-Core

Architectures. CoRR, abs/1611.06172, 2016.

[26] Jin Kyu Kim, Qirong Ho, Seunghak Lee, Xun Zheng,

Wei Dai, Garth A. Gibson, and Eric P. Xing. STRADS:

A Distributed Framework for Scheduled Model Parallel

Machine Learning. In Proceedings of the Eleventh

European Conference on Computer Systems, EuroSys

’16, pages 5:1–5:16, New York, NY, USA, 2016. ACM.

[27] Keith Kirkpatrick. Parallel Computational Thinking.

Commun. ACM, 60(12):17–19, November 2017.

[28] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix

factorization techniques for recommender systems.

Computer, 42(8):30–37, August 2009.

[29] Seunghak Lee, Jin Kyu Kim, Xun Zheng, Qirong Ho,

Garth A. Gibson, and Eric P. Xing. On model paralleliza-

tion and scheduling strategies for distributed machine

learning. In Proceedings of the 27th International

Conference on Neural Information Processing Systems -

Volume 2, NIPS’14, pages 2834–2842, Cambridge, MA,

USA, 2014. MIT Press.

[30] Aaron Q. Li, Amr Ahmed, Sujith Ravi, and Alexander J.

Smola. Reducing the Sampling Complexity of Topic

Models. In Proceedings of the 20th ACM SIGKDD

International Conference on Knowledge Discovery and

Data Mining, KDD ’14, pages 891–900, New York, NY,

USA, 2014. ACM.

[31] Mu Li, David G. Andersen, Jun Woo Park, Alexander J.

Smola, Amr Ahmed, Vanja Josifovski, James Long,

Eugene J. Shekita, and Bor-Yiing Su. Scaling distributed

machine learning with the parameter server. In 11th

USENIX Symposium on Operating Systems Design and

Implementation (OSDI 14), pages 583–598, Broomfield,

CO, 2014. USENIX Association.

[32] Tongping Liu, Charlie Curtsinger, and Emery D. Berger.

Dthreads: Efficient Deterministic Multithreading. In

Proceedings of the Twenty-Third ACM Symposium

on Operating Systems Principles, SOSP ’11, pages

327–336, New York, NY, USA, 2011. ACM.

[33] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos

Guestrin, Aapo Kyrola, and Joseph M. Hellerstein.

Distributed GraphLab: A Framework for Machine

Learning and Data Mining in the Cloud. Proc. VLDB

Endow., 5(8):716–727, 2012.

[34] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik,

James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz

Czajkowski. Pregel: A system for large-scale graph pro-

cessing. In Proceedings of the 2010 ACM SIGMOD Inter-

national Conference on Management of Data, SIGMOD

’10, pages 135–146, New York, NY, USA, 2010. ACM.

[35] Frank McSherry, Michael Isard, and Derek G. Murray.

Scalability! but at what COST? In 15th Workshop on

Hot Topics in Operating Systems (HotOS XV), Kartause

Ittingen, Switzerland, 2015. USENIX Association.

[36] Microsoft Developer Network. Lambda Expressions

in C++. https://msdn.microsoft.com/en-us/

library/dd293608.aspx, 2015.

[37] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,

and Jeffrey Dean. Distributed Representations of Words

and Phrases and Their Compositionality. In Proceedings

of the 26th International Conference on Neural Infor-

mation Processing Systems - Volume 2, NIPS’13, pages

3111–3119, USA, 2013. Curran Associates Inc.

[38] Feng Niu, Benjamin Recht, Christopher Re, and

Stephen J. Wright. Hogwild!: A lock-free approach to

parallelizing stochastic gradient descent. In Proceedings

220 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://msdn.microsoft.com/en-us/library/dd293608.aspx
https://msdn.microsoft.com/en-us/library/dd293608.aspx

of the 24th International Conference on Neural Infor-

mation Processing Systems, NIPS’11, pages 693–701,

USA, 2011. Curran Associates Inc.

[39] Xinghao Pan, Maximilian Lam, Stephen Tu, Dimitris

Papailiopoulos, Ce Zhang, Michael I. Jordan, Kannan

Ramchandran, Chris Re, and Benjamin Recht. Cyclades:

Conflict-free asynchronous machine learning. In

Proceedings of the 30th International Conference on

Neural Information Processing Systems, NIPS’16, pages

2576–2584, USA, 2016. Curran Associates Inc.

[40] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin,

Alban Desmaison, Luca Antiga, and Adam Lerer.

Automatic differentiation in pytorch. In NIPS 2017

Autodiff Workshopt: The Future of Gradient-based

Machine Learning Software and Techniques, Long

Beach, CA, US, December 9, 2017.

[41] István Pilászy, Dávid Zibriczky, and Domonkos Tikk.

Fast ALS-based Matrix Factorization for Explicit and

Implicit Feedback Datasets. In Proceedings of the Fourth

ACM Conference on Recommender Systems, RecSys ’10,

pages 71–78, New York, NY, USA, 2010. ACM.

[42] R Core Team. R: A Language and Environment for

Statistical Computing. R Foundation for Statistical

Computing, Vienna, Austria, 2014.

[43] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,

Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej

Karpathy, Aditya Khosla, Michael Bernstein, Alexan-

der C. Berg, and Li Fei-Fei. ImageNet Large Scale

Visual Recognition Challenge. Int. J. Comput. Vision,

115(3):211–252, December 2015.

[44] Alexander Thomson, Thaddeus Diamond, Shu-Chun

Weng, Kun Ren, Philip Shao, and Daniel J. Abadi. Calvin:

Fast Distributed Transactions for Partitioned Database

Systems. In Proceedings of the 2012 ACM SIGMOD

International Conference on Management of Data, SIG-

MOD ’12, pages 1–12, New York, NY, USA, 2012. ACM.

[45] R. Tibshirani. Regression Shrinkage and Selection via

the Lasso. Journal of the Royal Statistical Society. Series

B (Methodological), 58(1):267–288, 1996.

[46] Leslie G. Valiant. A bridging model for parallel com-

putation. Commun. ACM, 33(8):103–111, August 1990.

[47] Jinjun Wang, Jianchao Yang, Kai Yu, Fengjun Lv,

Thomas S. Huang, and Yihong Gong. Locality-

constrained linear coding for image classification. In

CVPR, pages 3360–3367. IEEE Computer Society, 2010.

[48] Jinliang Wei, Wei Dai, Aurick Qiao, Qirong Ho,

Henggang Cui, Gregory R. Ganger, Phillip B. Gibbons,

Garth A. Gibson, and Eric P. Xing. Managed Commu-

nication and Consistency for Fast Data-parallel Iterative

Analytics. In Proceedings of the Sixth ACM Symposium

on Cloud Computing, SoCC ’15, pages 381–394, New

York, NY, USA, 2015. ACM.

[49] Jinliang Wei, Garth A. Gibson, Phillip B. Gibbons, and

Eric P. Xing. Automating dependence-aware paralleliza-

tion of machine learning training on distributed shared

memory. In Proceedings of the Fourteenth EuroSys

Conference 2019, EuroSys ’19, pages 42:1–42:17, New

York, NY, USA, 2019. ACM.

[50] Jinliang Wei, Jin Kyu Kim, and Garth A. Gibson.

Benchmarking Apache Spark with Machine Learning

Applications. Technical report, Carnegie Mellon

University, 2016.

[51] T.T. Wu and K. Lange. Coordinate Descent Algorithms

for Lasso Penalized Regression. The Annals of Applied

Statistics, 2(1):224–244, 2008.

[52] Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit Dhillon.

Scalable coordinate descent approaches to parallel

matrix factorization for recommender systems. In

Proceedings of the 2012 IEEE 12th International

Conference on Data Mining, ICDM ’12, pages 765–774,

Washington, DC, USA, 2012. IEEE Computer Society.

[53] Jinhui Yuan, Fei Gao, Qirong Ho, Wei Dai, Jinliang Wei,

Xun Zheng, Eric Po Xing, Tie-Yan Liu, and Wei-Ying Ma.

Lightlda: Big topic models on modest computer clusters.

In Proceedings of the 24th International Conference on

World Wide Web, WWW ’15, pages 1351–1361, Republic

and Canton of Geneva, Switzerland, 2015. International

World Wide Web Conferences Steering Committee.

[54] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,

Ankur Dave, Justin Ma, Murphy McCauley, Michael J.

Franklin, Scott Shenker, and Ion Stoica. Resilient

distributed datasets: A fault-tolerant abstraction for

in-memory cluster computing. In Proceedings of the 9th

USENIX Conference on Networked Systems Design and

Implementation, NSDI’12, pages 2–2, Berkeley, CA,

USA, 2012. USENIX Association.

[55] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and

Rong Pan. Large-scale parallel Collaborative Filtering

for the Netflix Prize. In Algorithmic Aspects in Informa-

tion and Management, pages 337–348. Springer, 2008.

USENIX Association 2019 USENIX Annual Technical Conference 221

SOPHIA: Online Reconfiguration of Clustered NoSQL Databases for Time-Varying
Workload

Ashraf Mahgoub
Purdue University

Paul Wood
Johns Hopkins University

Alexander Medoff
Purdue University

Subrata Mitra
Adobe Research

Folker Meyer
Argonne National Lab

Somali Chaterji
Purdue University

Saurabh Bagchi
Purdue University

Abstract
Reconfiguring NoSQL databases under changing work-

load patterns is crucial for maximizing database throughput.
This is challenging because of the large configuration param-
eter search space with complex interdependencies among
the parameters. While state-of-the-art systems can auto-
matically identify close-to-optimal configurations for static
workloads, they suffer for dynamic workloads as they over-
look three fundamental challenges: (1) Estimating perfor-
mance degradation during the reconfiguration process (such
as due to database restart). (2) Predicting how transient the
new workload pattern will be. (3) Respecting the applica-
tion’s availability requirements during reconfiguration. Our
solution, SOPHIA, addresses all these shortcomings using
an optimization technique that combines workload predic-
tion with a cost-benefit analyzer. SOPHIA computes the rel-
ative cost and benefit of each reconfiguration step, and de-
termines an optimal reconfiguration for a future time win-
dow. This plan specifies when to change configurations and
to what, to achieve the best performance without degrading
data availability. We demonstrate its effectiveness for three
different workloads: a multi-tenant, global-scale metage-
nomics repository (MG-RAST), a bus-tracking application
(Tiramisu), and an HPC data-analytics system, all with vary-
ing levels of workload complexity and demonstrating dy-
namic workload changes. We compare SOPHIA’s perfor-
mance in throughput and tail-latency over various baselines
for two popular NoSQL databases, Cassandra and Redis.

1 Introduction
Automatically tuning database management systems

(DBMS) is challenging due to their plethora of performance-
related parameters and the complex interdependencies
among subsets of these parameters [45, 64, 17]. For ex-
ample, Cassandra has 56 performance tuning parameters
and Redis has 46 such parameters. Several prior works
like Rafiki [45], OtterTune [64], BestConfig [69], and oth-
ers [17, 62, 61], have solved the problem of optimizing a
DBMS when workload characteristics relevant to the data

operations are relatively static. We call these “static config-
uration tuners”. However, these solutions cannot decide on
a set of configurations over a window of time in which the
workloads are changing, i.e., what configuration to change
to and when. Further, existing solutions cannot perform the
reconfiguration of a cluster of database instances without de-
grading data availability.

Workload changes lead to new optimal configurations.
However, it is not always desirable to switch to new con-
figurations because the new workload pattern may be short-
lived. Each reconfiguration action in clustered databases
incurs costs because the server instance often needs to be
restarted for the new configuration to take effect, causing a
transient hit to performance during the reconfiguration pe-
riod. In the case of dynamic workloads, the new workload
may not last long enough for the reconfiguration cost to be
recouped over a time window of interest to the system owner.
Therefore, a proactive technique is required to estimate when
executing a reconfiguration is going to be globally beneficial.

Fundamentally, this is where the drawback of all prior ap-
proaches to automatic performance tuning of DBMS lies—in
the face of dynamic changes to the workload, they are either
silent on when to reconfigure or perform a naı̈ve reconfig-
uration whenever the workload changes. We show that a
naı̈ve reconfiguration, which is oblivious to the reconfigu-
ration cost, actually degrades the performance for dynamic
workloads relative to the default configurations and also rel-
ative to the best static configuration achieved using a static
tuner with historical data from the system (Figure 3). For
example, during periods of high dynamism in the read-write
switches in a metagenomics workload in the largest metage-
nomics portal called MG-RAST [50], naı̈ve reconfiguration
degrades throughput by a substantial 61.8% over default.
Our Solution: We develop an online reconfiguration
system—SOPHIA—for a NoSQL cluster comprising of mul-
tiple server instances, which is applicable to dynamic work-
loads with various rates of workload shifts. SOPHIA uses
historical traces of the workload to train a workload pre-
dictor, which is used at runtime to predict future workload

USENIX Association 2019 USENIX Annual Technical Conference 223

Figure 1: Workflow of SOPHIA with offline model building and the on-
line operation, plus the new components of our system. It also shows
the interactions with the NoSQL cluster and a static configuration
tuner, which comes from prior work.

Figure 2: The effect of reconfiguration on the performance of the sys-
tem. SOPHIA uses the workload duration information to estimate the
cost and benefit of each reconfiguration step and generates plans that
are globally beneficial.

patterns. Workload prediction is a challenging problem and
has been studied in many prior works [43, 19, 51]. How-
ever, the workload predictor itself is not a contribution of
SOPHIA, and it can operate with any workload predictor with
sufficiently accurate and long-horizon predictions. SOPHIA
searches the vast space of all possible reconfiguration plans,
and hence determines the best plan through a novel Cost-
Benefit-Analysis (CBA) scheme. For each shift in the pre-
dicted workload trace, SOPHIA interacts with any existing
static configuration tuner (we use RAFIKI in our work be-
cause it is already engineered for NoSQL databases and is
publicly available [15]), to quickly provide the optimal point
configurations for the new workload and the estimated ben-
efit from this new configuration. SOPHIA performs the CBA
analysis, taking into account the predicted duration of the
new workload and the estimated benefit from each recon-
figuration step. Finally, for each reconfiguration step in the
selected plan, SOPHIA initiates a distributed protocol to re-
configure the cluster without degrading data availability and
maintaining the required data consistency requirement.
During its reconfiguration, SOPHIA can deal with different
replication factors (RF) and consistency level (CL) require-
ments specified by the user. It ensures that the data remains
continuously available through the reconfiguration process,
with the required CL. This is done by controlling the num-
ber of server instances that are concurrently reconfigured.
However, this is only possible when RF>CL. In cases where
RF=CL, reconfiguring any node in the cluster will degrade
data availability as every request will require a response
from every replica before it is returned to the user. There-
fore, we also implement an aggressive variant of our system
(SOPHIA-AGGRESSIVE), which relaxes the data availability
requirement in exchange for faster reconfiguration and hence
better performance.
Evaluation Cases
We evaluate SOPHIA on two NoSQL databases, Cassan-
dra [39] and Redis [7]. The first use case is based on real
workload traces from the metagenomics analysis pipeline,
MG-RAST [9, 49]. It is a global-scale metagenomics por-

tal, the largest of its kind, which allows users to simultane-
ously upload their metagenomic data and use its computa-
tional pipeline. The workload does not have any discernible
daily or weekly pattern, as the requests come from all across
the globe and we find that the workload can change drasti-
cally over a few minutes. This presents a challenging use
case as only 5 minutes or less of accurate lookahead is possi-
ble. The second use case is a bus-tracking application where
read, scan, insert, and update operations are submitted to a
backend database. The data has strong daily and weekly pat-
terns to it. The third use case is a queue of data analytics jobs
such as would be submitted to an HPC computing cluster.
Here the workload can be predicted over long time horizons
(order of an hour) by observing the jobs in the queue and
leveraging the fact that a significant fraction of the job pat-
terns are recurring. Thus, our three cases span the range of
patterns and corresponding predictability of the workloads.
We compare our approach to existing solutions and show that
SOPHIA increases throughput (and decreases tail-latency)
under all dynamic workload patterns and for all types of
queries, with no downtime. For example, SOPHIA achieves
24.5% higher throughput over default configurations and
21.5% higher throughput over a statically determined ide-
alized optimal configuration in the bus-tracking workload.
SOPHIA achieves 38% and 30% higher aggregate through-
put over these two baselines in the HPC cluster workload.
With SOPHIA’s auto-tuning capability, Redis is able to oper-
ate through the entire range of workload sizes and read/write
intensities, while the vanilla Redis fails with large work-
loads. The main contributions of SOPHIA are:
1. We show that state-of-the-art static tuners when applied
to dynamic workloads degrade throughput below the state-
of-practice of using the default parameter values and also
degrade data availability.
2. SOPHIA performs cost-benefit analysis to achieve long-
horizon optimized performance for clustered NoSQL in-
stances in the face of dynamic workload changes, including
unpredictable and fast changes to the workload.
3. SOPHIA executes a decentralized protocol to gracefully

224 2019 USENIX Annual Technical Conference USENIX Association

switch over the cluster to the new configuration while re-
specting the data consistency guarantees and keeping data
continuously available to users.
First, we show the improvement of using SOPHIA to tune a
Cassandra cluster. Afterwards, we show how SOPHIA can
be used to tune Redis and improve its performance. The rest
of the paper is organized as follows. Section 2 provides an
overview of our solution SOPHIA. We provide a background
on Cassandra and its sensitivity to configuration parameters
and on static configuration tuners in Section 3. We describe
our solution in Section 4. We provide details of the work-
loads and our implementation in Section 5. We give the eval-
uation results in Section 6 and finally conclude.

2 Overview of SOPHIA

Here we give an overview of the workflow and the main
components of SOPHIA. A schematic of the system is shown
in Fig. 1. Details of each component are in Sec. 4.

SOPHIA runs as a separate entity outside the Cassandra
cluster. It measures the workload by intercepting and ob-
serving received queries at the entry point(s) to Cassandra.
Periodically, SOPHIA queries the Workload Predictor (box
1 in figure) to determine if any future workload changes ex-
ist that may merit a reconfiguration—no change also con-
tributes information for the SOPHIA algorithm. Also, an
event-driven trigger occurs when the predictor identifies a
workload change. The prediction model is initially trained
from representative workload traces from prior runs of the
application and incrementally updated with additional data
as SOPHIA operates. With the predicted workload, SOPHIA
queries a static configuration tuner that provides the optimal
configuration for a single point in time in the predicted work-
load. The static configuration tuner is initially trained on the
same traces from the system as the workload predictor. Sim-
ilarly, the static configuration tuner is also trained incremen-
tally like the workload predictor.
The Dynamic Configuration Optimizer (box 2) generates
a time-varying reconfiguration plan for a given look-ahead
window using cost-benefit analysis (CBA). This plan gives
both the time points when reconfiguration should be initi-
ated and the new configuration parameters at each such time
point. The CBA considers both the static, point solution
information and the estimated, time-varying workload in-
formation. It is run every look-ahead time window apart
or when the workload characteristics have changed signifi-
cantly enough. The Controller (box 3) initiates a distributed
protocol to gracefully switch the cluster to new configura-
tions in the reconfiguration plan (Sec.4.5). This controller
is conceptually centralized but replicated and distributed
in implementation using off-the-shelf tools like ZooKeeper.
SOPHIA decides how many instances to switch concurrently
such that the cluster always satisfies the user’s availability
and consistency requirements. The Workload Predictor is lo-
cated at a point where it can observe the aggregate workload

such as at a gateway to the database cluster or by querying
each database instance for its near past workload profile. The
Dynamic Configuration Optimizer runs at a dedicated node
close to the workload monitor. A distributed component runs
on each node to apply the new reconfiguration plan.
Cost-Benefit Analysis in the Reconfiguration Plan
Each reconfiguration has a cost, due to changing parameters
that require restarting or otherwise degrading the database
services, e.g., by flushing the cache. The CBA in SOPHIA
calculates the costs of implementing a reconfiguration plan
by determining the number, duration, and magnitude of
degradations. If a reconfiguration plan is found globally ben-
eficial, the controller initiates the plan, else it is rejected.
This insight, and the resulting protocol design to decide
whether and when to reconfigure, are the fundamental con-
tributions of SOPHIA.
Now we give a specific example of this cost-benefit trade-off
from real MG-RAST workload traces. Consider the exam-
ple in Fig. 2 where we apply SOPHIA’s reconfiguration plan
to a cluster of 2 servers with an availability requirement that
at least 1 of 2 be online (i.e. CL=1). The Cassandra cluster
starts with a read-heavy workload but with a configuration
C1 (Cassandra’s default), which favors a write-heavy work-
load and is therefore suboptimal. With this configuration,
the cluster provides a throughput of ∼40,000 ops/s and a tail
latency of 102 ms (P99), but a better read-optimized con-
figuration C2 exists, providing ∼50,000 ops/s and a tail la-
tency of 83 ms. The Cassandra cluster is reconfigured to the
new C2 configuration setting, using SOPHIA’s controller, re-
sulting in a temporary throughput loss due to the transient
unavailability of the server instances as they undergo the
reconfiguration, one instance at a time given the specified
availability requirement. Also during the reconfiguration pe-
riod, the tail latency increases to 122.5 ms on average. The
two dips in throughput at 200 and 270 seconds correspond
to the two server instances being reconfigured serially, in
which two spikes in tail latency of 180 ms are observed.
We plot, using the dashed line, the gain (benefit minus cost)
over time in terms of the total # operations served relative
to the default configuration. We see that there is a crossover
point (the red X point) with the duration of the new work-
load pattern. If the predicted workload pattern lasts longer
than this threshold (190 seconds from the beginning of re-
configuration in our example), then there is a gain from this
step and SOPHIA would include it in the plan. Otherwise, the
cost will outweigh the benefit, and any solution implemented
without the CBA risks degrading the overall system perfor-
mance. Thus, a naı̈ve solution (a simple extension of all ex-
isting static configuration tuners) that always reconfigures
to the best configuration for the current workload will actu-
ally degrade performance for any reasonably fast-changing
workload. Therefore, a workload predictor and a cost-benefit
analysis model are needed to develop a reconfiguration plan
that achieves globally optimal performance over time.

USENIX Association 2019 USENIX Annual Technical Conference 225

3 Background

Overview of Apache Cassandra: Cassandra is one of the
most popular NoSQL databases that is being used by many
companies such as Apple, eBay, Netflix and many others
[8]. This is because of its durability, scalability, and fault-
tolerance, which are essential features for production deploy-
ments with large volumes of data. To be able to support
a wide range of applications and access patterns, Cassan-
dra (like many other DBMS) exposes many configuration
parameters that control its internal behavior and affect its
performance. This is intended to customize the DBMS for
widely different applications. According to the Cassandra ar-
chitecture, it caches writes in an in-memory Log-structured
merge tree [58] called Memtable for a certain period of time.
Afterwards, all Memtables get flushed to their corresponding
persistent representation on disk called SSTables. The same
flushing process can be triggered if the size of the Memtable
exceeds a specific threshold. A Memtable is always flushed
to a new SSTable, which is never updated after construction.
Consequently, a single key can be stored accross many SSTa-
bles with different timestamps, and therefore a read request
to that key will require Cassandra to scan through all exist-
ing SSTables and retrieve the one with the latest timestamp.
To keep the number of SSTables manageable, Cassandra ap-
plies a compaction strategy, which combines a number of
old SSTables into one while removing obsolete records. This
achieves better performance for reads, but is also a heavy op-
eration that consumes CPU and memory and can negatively
impact the performance for writes during compaction.
Dynamic Workloads in Cassandra: Optimal values of
these performance-sensitive parameters are dependent on
the workload. For example, we find empirically that size-
tiered compaction strategy achieves 44% better performance
for write-heavy workloads than leveled compaction strategy,
while leveled compaction strategy achieves 90% better per-
formance for read-heavy workloads (Figure 3). When the
workload changes, the optimal parameters for the new work-
load will likely change as well. An incremental approach is
desired, rather than restarting all servers concurrently, which
renders all the data unavailable during reconfiguration.
Workloads in our pipeline have shifts in the number of re-
quests/s and also the relative ratio of the different opera-
tions on the database (i.e., transaction mixture). Therefore,
SOPHIA needs to react in an agile manner to such shifts. For
example, MG-RAST traces show 443 sharp (more than 80%
change) shift/day on average, mostly from read-heavy to
write-heavy workloads and vice-versa. For the bus-tracking
application, a smaller, but still significant, value of 63 shift/-
day is observed. The static tuners cannot handle such dy-
namism and cannot even pick a single parameter set that will
on an average give the highest throughput aggregated over a
window of time because of the lack of lookahead and also
the lack of the Cost-Benefit analysis model.

4 Design of SOPHIA

SOPHIA seeks to answer the following two broad ques-
tions: When should the cluster be reconfigured? How should
we apply the reconfiguration steps? The answer to the first
question leads to what we call a reconfiguration plan. The
answer to the second question is given by our distributed
protocol that reconfigures the various server instances in
rounds. Next, we describe SOPHIA’s components.

4.1 Workload Modeling and Forecasting: In a
generic sense, we can define the workload at a particular
point in time as a vector of various time-varying features:

WWW (t) = {p1(t), p2(t), p3(t), ..., pn(t)} (1)

where the workload at time t is WWW (t) and pi(t) is the time-
varying i-th feature. These features may be directly mea-
sured from the database, such as the load (i.e., requests/s) and
the occupancy level of the database, or they may come from
the computing environment, such as the number of users or
jobs in a batch queue. These features are application depen-
dent and are identified by analyzing the application’s histori-
cal traces. Details for time-varying features of each applica-
tion are described in Section 5. For workload forecasting, we
discretized time into sliced Td durations (= 30s in our model)
to bound the memory and compute cost. We then predicted
future workloads as:

WWW (tk+1) = fpred(WWW (tk),WWW (tk−1), ...,WWW (t0)) (2)

where k is the current time index into Td-wide steps.
For ease of exposition for the rest of the paper, we drop
the term Td , assuming implicitly that this is one time
unit. The function fpred is any function that can make
such a prediction, and in SOPHIA, we utilize a simple
Markov-Chain model for MG-RAST and Bus-Tracking,
while we use a deterministic, fully accurate output from a
batch scheduler for the HPC data analytics workload, i.e., a
perfect fpred. However, more sophisticated estimators, such
as neural networks [43, 31, 33], even with some degree of
interpretability [32], have been used in other contexts and
SOPHIA is modular enough to use any such predictor.

4.2 Adapting a Static Configuration Tuner
for SOPHIA: SOPHIA uses a static configuration tuner
(RAFIKI), designed to work with Cassandra, to output the
best configuration for the workload at any given point in
time. RAFIKI uses Analysis-of-variance (ANOVA) [55] in
order to estimate the importance of each parameter. It
selects the top-k parameters in its configuration optimiza-
tion method, which is in turn determined by a significant
drop-off in the importance score. The ability to adapt op-
timized “kernels” to build robust algorithms comes from
our vision to accelerate the pipeline of creating efficient al-
gorithms, conceptualized in Sarvavid [44]. The 7 highest
performance-sensitive parameters for all three of our work-
loads are: (1) Compaction method, (2) # Memtable flush

226 2019 USENIX Annual Technical Conference USENIX Association

writers, (3) Memory-table clean-up threshold, (4) Trickle
fsync, (5) Row cache size, (6) Number of concurrent writers,
and (7) Memory heap space. These parameters vary with re-
spect to the reconfiguration cost that they entail. The change
to the compaction method incurs the highest cost as it causes
every Cassandra instance to read all its SSTables and re-write
them to the disk in the new format. However, due to inter-
dependability between these parameters, the compaction fre-
quency is still being controlled by reconfiguring the second
and third parameters with the cost of a server restart. Sim-
ilarly, parameters 4, 6, 7 need a server restart for their new
values to take effect and these cause the next highest level of
cost. Finally, some parameters (parameter 5 in our set) can
be reconfigured without needing a server restart and there-
fore have the least level of cost.

In general, the database system has a set of performance-
impactful configuration parameters CCC = {c1,c2, · · · ,cn} and
the optimal configuration CCCopt depends on the particular
workload WWW (t) executing at that point in time. In order to
optimize performance across time, SOPHIA needs the static
tuner to provide an estimate of throughput for both the opti-
mal and the current configuration for any workload:

Hsys = fops(WWW (t),CCCsys) (3)

where Hsys is the throughput of the cluster of servers with a
configuration CCCsys and fops(WWW (t),CCCsys) provides the system-
level throughput estimate. CCCsys has Ns×|CCC| dimensions for
Ns servers and C different configurations. Cassandra by care-
ful design achieves efficient load balancing across multiple
instances whereby each contributes approximately equally
to the overall system throughput [39, 20]. Thus, we define
a single server average performance as Hi =

Hsys
Ns

.
From these models of throughput, optimal configurations

can be selected for a given workload:

Copt(WWW (t)) = argmax
CCCsys

Hsys = argmax
CCCsys

fops(WWW (t),CCCsys) (4)

In general, CCCopt can be unique for each server, but in
SOPHIA, it is the same across all servers and thus has a
dimension of |CCC| making the problem computationally
easier. This is due to the fact that SOPHIA makes a design
simplification—it performs the reconfiguration of the cluster
as an atomic operation. Thus, it does not abort a reconfigura-
tion action mid-stream and all servers must be reconfigured
in round i prior to beginning any reconfiguration of round
i + 1. We also speed up the prediction system fops by
constructing a cached version with the optimal configuration
CCCopt for a subset of WWW and using nearest-neighbor lookups
whenever a near enough neighbor is available.

4.3 Dynamic Configuration Optimization:
SOPHIA’s core goal is to maximize the total throughput for
a database system when faced with dynamic workloads.
This introduces time-domain components into the optimal
configuration strategy CCCT

opt = CCCopt(WWW (t)), for all points in

(discretized) time till a lookahead TL. Here, we describe
the mechanism that SOPHIA uses for CBA modeling to
construct the best reconfiguration plan (defined formally in
Eq. 5) for evolving workloads.

In general, finding solutions for CCCT
opt can become imprac-

tical since the possible parameter space for CCC is large and
the search space increases linearly with TL. To estimate the
size of the configuration space, consider that in our exper-
iments we assumed a lookahead TL = 30 minutes and used
7 different parameters, some of which are continuous, e.g.,
Memory-table clean-up threshold. If we take
an underestimate of each parameter being binary, then the
size of the search space becomes 27×30 = 1.6×1063 points,
an impossibly large number for exhaustive search. We de-
fine a compact representation of the reconfiguration points
(∆’s) to easily represent the configuration changes. The max-
imum number of switches within TL, say M, is bounded
since each switch takes a finite amount of time. The search
space for the dynamic configuration optimization is then
Combination(T L,M),M)× |CCC|. This comes from the fact
that we have to choose at most M points to switch out of all
the TL time points and at each point there are |CCC| possible
configurations. We define the reconfiguration plan as:

CCC∆
sys = [TTT = {t1, t2, ..., tM},CCC = {C1,C2, ...,CM}] (5)

where tk is a point in time and Ck is the configuration to use
at tk. Thus, the reconfiguration plan gives when to perform
a reconfiguration and at each such point, what configuration
to choose.

The objective for SOPHIA is to select the best reconfigura-
tion plan (CCC∆

sys)
opt for the period of optimization, lookahead

time TL:

(CCC∆
sys)

opt = argmax
CCC∆

sys

B(CCC∆
sys,WWW)−L(CCC∆

sys,WWW) (6)

where CCC∆
sys is the reconfiguration plan, B is the benefit func-

tion, and L is the cost (or loss) function, and WWW is the time-
varying workload description. Detailed derivation of func-
tions B and L is shown in Supplemental Material (Section
9.1). When SOPHIA will extend to allow scale out, we will
have to consider the data movement volume as another cost
to minimize. The L function captures the opportunity cost
of having each of Ns servers offline for Tr seconds for the
new workload versus if the servers remained online with the
old configuration. As the node downtime due to reconfig-
uration never exceeds Cassandra’s threshold for declaring a
node is dead (3 hours by default), data-placement tokens are
not re-assigned due to reconfiguration. Therefore, we do not
include cost of data movement in functions L. SOPHIA can
work with any reconfiguration cost, including different costs
for different parameters—these can be fed into the loss func-
tion L.

The objective is to maximize the time-integrated gain
(benefit – cost) of the reconfiguration from Eq. (6). The three

USENIX Association 2019 USENIX Annual Technical Conference 227

unknowns in the optimal plan are M, TTT , and CCC, from Eq. (5).
If only R servers can be reconfigured at a time (explained
in Sec. 4.5 how R is calculated), at least Tr× Ns

R time must
elapse between two reconfigurations. This puts a limit on M,
the maximum number of reconfigurations that can occur in
the lookahead period TL.

A greedy solution for Eq. (6) that picks the first config-
uration change with a net-increase in benefit may produce
suboptimal CCC∆

sys over the horizon TL because it does not con-
sider the coupling between multiple successive workloads.
For example, considering a pairwise sequence of workloads,
the best configuration may not be optimal for either WWW (t1) or
WWW (t2) but is optimal for the paired sequence of the two work-
loads. This could happen if the same configuration gives
reasonable performance for WWW (t1) or WWW (t2) and has the ad-
vantage that it does not have to switch during this sequence
of workloads. This argument can be naturally extended to
longer sequences of workloads.

A TL value that is too long will cause SOPHIA to include
decision points with high prediction errors, and a value
that is too short will cause SOPHIA to make almost greedy
decisions. The appropriate lookahead period is selected by
benchmarking the non-monotonic but convex throughput
while varying the lookahead duration and selecting the
point with maximum end-to-end throughput. We give our
choices for our three applications when describing the first
experiment with each application (Section 6).

4.4 Finding Optimal Reconfiguration Plan
with Genetic Algorithms: We use a heuristic search
technique, Genetic Algorithms or GA, to find the optimal
reconfiguration plan. Although meta-heuristics like GA do
not guarantee finding global optima, they have two desirable
properties for SOPHIA. Our space is non-convex because
many of the parameters impact the same resources such as
CPU, RAM, and disk, and settings of one parameter impact
the others.Therefore, greedy or gradient descent-based
searches are prone to converge to a local optima. Also the
GA’s tunable completion is needed in our case for speedy
decisions, as the optimizer executes in the critical path.
The representation of the GA solution incorporates two
parts. First, the chromosome orientation, which is simply the
reconfiguration plan (Eq. 5). The second part is the fitness
function definition used to assess the quality of different
reconfiguration plans. For this, we use the cost-benefit
analysis as shown in Eq. 6 where fitness is the total number
of operations (normalized for bus-tracking traces to account
for different operations’ scales) for the TL window for the
tested reconfiguration plan and given workload. We build
a simulator to apply the individual solutions and to collect
the corresponding fitness values, which are used to select
the best solutions and to generate new solutions in the next
generation. We utilize a Python library, pyeasyga, with
0.8 crossover fraction and population size of 200. We run

10 concurrent searches and pick the best configuration from
those. The runtime of this algorithm is dependent on the
length of the lookahead period and the number of decision
points. For MG-RAST, the GA has 30 decision points in the
lookahead period and results in execution time of 30-40 sec.
For the HPC workload, the number of decision points is 180
as it has a longer lookahead period, resulting in a runtime of
60-70 sec. For the bus-tracking workload, the GA has 48 de-
cision points and a runtime of 20-25 sec. The GA is typically
re-run toward the end of the lookahead period to generate the
reconfiguration plan for the next lookahead time window.
Also, if the actual workload is different from the predicted
workload, the GA is re-invoked. This last case is rate limited
to prevent too frequent invocations of the GA during (tran-
sient) periods of non-deterministic behavior of the workload.

4.5 Distributed Protocol for Online Recon-
figuration: Cassandra and other distributed databases
maintain high availability through configurable redundancy
parameters, consistency level (CL) and replication factor
(RF). CL controls how many confirmations are necessary for
an operation to be considered successful. RF controls how
many replicas of a record exist throughout the cluster. Thus,
a natural constraint for each record is RF ≥ CL. SOPHIA
queries token assignment information (where a token
represents a range of hash values of the primary keys which
the node is responsible for) from the cluster, using tools that
ship with all popular NoSQL distributions (like nodetool
ring for Cassandra), and hence constructs what we call a
minimum availability subset (NminCL for short). We define
this subset as the minimum subset of nodes that covers at
least CL replicas of all keys. To meet CL requirements,
SOPHIA insures that NminCL nodes are operational at any
point of time. Therefore, SOPHIA makes the design
decision to configure up to R = Ns−NminCL servers at a time,
where NminCL depends on RF, CL, and token assignment.
If we assume a single token per node (Cassandra’s default
with vnodes disabled), then a subset of d Ns

RF e nodes covers
all keys at least once. Consequently, NminCL becomes
CL× d Ns

RF e to cover all keys at least CL times. Thus, the
number of reconfiguration steps = Ns

R = RF
RF−CL becomes

independent of the cluster size Ns.
In the case where RF = CL, NminCL becomes equivalent
to Ns and hence SOPHIA cannot reconfigure the sys-
tem, without harming data availability, hence we use the
SOPHIA-AGGRESSIVE variant in that case. However, we
expect most systems with high consistency requirements
to follow a read/write quorum with CL = dRF

2 e [23].
Note that SOPHIA reduces the number of available data
replicas during the transient reconfiguration periods, and
hence reduces the system’s resilience to additional failures.
However, one optional parameter in SOPHIA is how many
failures during reconfiguration the user will want to tolerate
(our experiments were run with zero). This is a high-level

228 2019 USENIX Annual Technical Conference USENIX Association

parameter that is intuitive to set by the database admin. Also
notice that data that existed on the offline servers prior to
reconfiguration is not lost due to the drain step, but data
written during the transient phase has lower redundancy
until the reconfigured servers get back online. In order
to reconfigure a Cassandra cluster, SOPHIA performs the
following steps, R server instances at a time:
51. Drain: Before shutting down a Cassandra instance,
we flush the entire Memtable to disk by using Cassandra’s
tool nodetool drain and this ensures that there are no
pending commit logs to replay upon a restart.

1. Drain: Before shutting down a Cassandra instance, we
flush the entire Memtable to disk by using Cassandra’s
tool nodetool drain and this ensures that there are
no pending commit logs to replay upon a restart.

2. Shutdown: The Cassandra process is killed on the
node.

3. Configuration file: Replace the configuration file with
new values for all parameters that need changing.

4. Restart: Restart the Cassandra process on the same
node.

5. Sync: SOPHIA waits for Cassandra’s instance to com-
pletely rejoin the cluster by letting a coordinator know
of where to locate the node and then synchronizing the
missed updates during the node’s downtime.

In Cassandra, writes for down nodes are cached by available
nodes for some period and re-sent to the nodes when they
rejoin the cluster. The time that it takes to complete all these
steps for one server is denoted by Tr, and TR for the whole
cluster, where TR = Tr × RF

RF−CL . During all steps 1-5, ad-
ditional load is placed on the non-reconfiguring servers as
they must handle the additional write and read traffic. Step 5
is the most expensive and typically takes 60-70% of the to-
tal reconfiguration time, depending on the amount of cached
writes. We minimize step 4 practically by installing binaries
from the RAM and relying on draining rather than commit-
log replaying in step 1, reducing pressure on the disk.

5 Datasets
MG-RAST Workload: We use real workload traces from
MG-RAST, the leading metagenomics portal operated by the
US Department of Energy. As the amount of data stored
by MG-RAST has increased beyond the limits of traditional
SQL stores (23 PB as of August 2018), it relies on a dis-
tributed NoSQL Cassandra database cluster. Users of MG-
RAST are allowed to upload “jobs” to its pipeline, with
metadata to annotate job descriptions. All jobs are submit-
ted to a computational queue of the US Department of En-
ergy private Magellan cloud. We analyzed 80 days of query
trace from the MG-RAST system from April 19, 2017 till

July 9, 2017. From this data, we make several observations:
(i) Workloads’ read ratio (RR) switches rapidly with over
26,000 switches in the analyzed period. (ii) A negative cor-
relation of -0.72 is observed between the Workloads’ read
ratio and number of requests/s (i.e., load). That is due to the
fact that most of the write operations are batched to improve
network utilization. (iii) Majority (i.e., more than 80%) of
the switches are abrupt, from RR=0 to RR=1 or vice versa.
(iv) KRD (key reuse distance) is very large. (v) No daily
or weekly workload pattern is discernible, as expected for a
globally used cyberinfrastructure.
Bus Tracking Application Workload: Secondly, we use
real workload traces from a bus-tracking mobile application
called Tiramisu [43]. The system provides live tracking of
the public transit bus system. It updates bus locations pe-
riodically and allows users to search for nearby bus stops.
There are four types of queries—read, update, insert, and
scan (retrieving all the records in the database that satisfy a
given predicate, which is much heavier than the other op-
erations). A sample of the traces is publicly available [42].
We trained our model using 40 days of query traces, while
18 days were used as testing data. We draw several obser-
vations from this data: (i) The traces show a daily pattern
of workload switches. For example, the workload switches
to scan-heavy in the night and switches to update-heavy in
the early morning. (ii) The Workload is a mixture of Up-
date, Scan, Insert, and Read operations in the ratio of 42.2%,
54.8%, 2.82%, and 0.18% respectively. (iii) KRD is very
small. From these observations, we notice that the workload
is very distinct from MG-RAST and thus provides a suitable
point for comparison.
Simulated Analytics Workload: For long-horizon recon-
figuration plans, we simulate synthetic workloads represen-
tative of batch data analytics jobs, submitted to a shared
HPC queue. We integrate SOPHIA with a job scheduler (like
PBS [27]), that examines jobs while they wait in a queue
prior to execution. Thus, the scheduler can profile the jobs
waiting in the queue, and hence forecast the aggregate work-
load over a lookahead horizon, which is equal to the length
of the queue. We model the jobs on data analytics jobs sub-
mitted to a Microsoft Cosmos cluster [21] and as in that pa-
per, we achieve high accuracy in predicting when a job will
start executing. Thus, SOPHIA is able to drive long-horizon
reconfiguration plans. Each job is divided into phases: a
write-heavy phase resembling an upload phase of new data, a
read-heavy phase resembling executing analytical queries to
the cluster, and a third, write-heavy phase akin to committing
the analysis results. However, some jobs can be recurring (as
shown in [1, 21]) and running against already uploaded data.
These jobs will execute the analysis phase directly, skipping
the first phase. The size of each phase is a random vari-
able with U(200,100K) operations, and whenever a job fin-
ishes, a new job is selected from the queue and executed. We
vary the level of concurrency and have an equal mix of the

USENIX Association 2019 USENIX Annual Technical Conference 229

two types of jobs and monitor the aggregate workload. Fig-
ure 11 in Supplemental Material shows the synthetic traces
for three job sizes. With increase in concurrency, the aggre-
gate pattern becomes smoother and the latency of individual
jobs increases.

6 Experimental Results
Here we evaluate the performance of SOPHIA under dif-

ferent experimental conditions for the 3 applications. We
use a simple query model typical for NoSQL databases and
is in contrast to complex analytics queries supported by more
complex database engines. Hence, our throughput is defined
as the number of queries per second. In all experiments, we
collect both throughput and tail latency (p99) performance
metrics. However, since the two parameters have an almost
perfect inverse relationship in all experiments, we omit tail
latency (except in Figures 4 and 6). We evaluate SOPHIA
on Amazon EC2 using instances of size M4.xlarge with 4
vCPU’s, 16 GB of RAM, provisioned IOPS (SSD) EBS for
storage and network bandwidth of 0.74 Gbits/s for all Cas-
sandra servers and workload drivers. Each node is loaded
with 6 GB of data initially (SOPHIA’s performance is eval-
uated with greater data volumes in Experiment 4). We use
multiple concurrent clients to saturate the database servers
and aggregate the throughput and tail latency observed by
every client.
Baseline Comparisons
We compare the performance of SOPHIA to baseline config-
urations (1-5). We consider 3 variants of SOPHIA (6-8).
(1) Default: The default configuration that ships with
Cassandra. This configuration favors write-heavy workloads
by design [48].
(2) Static Optimized: This baseline resembles the static
tuner (RAFIKI) when queried to provide the one constant
configuration that optimizes for the entire future workload.
This is an impractically ideal solution since it is assumed
here that the future workload is known perfectly. However,
non-ideally no configuration changes are allowed dynami-
cally.
(3) Naı̈ve Reconfiguration: Here, when the workload
changes, RAFIKI’s provided reconfiguration is always
applied, instantiated by concurrently shutting down all
server instances, changing their configuration parameters,
and restarting all of them. Practically, this makes data
unavailable and may not be tolerable in many deployments
such as user-facing applications. The static configuration
tuners are silent about when the optimal configurations
determined by them must be applied and this baseline is a
logical instantiation of all of the prior work.
(4) ScyllaDB: The performance of NoSQL database Scyl-
laDB [57] in its vanilla form. ScyllaDB is touted to be a
much faster (10X or higher) drop-in replacement to Cassan-
dra [56]. This stands in for other self-tuning databases [30].
(5) Theoretical Best: This baseline resembles the theo-

retically best achievable performance over the predicted
workload period. This is simulated by assuming Cassandra
is running with the optimal configuration at any point of
time and not penalizing it for the cost of reconfiguration.
This serves as an upper bound for the performance.
(6) SOPHIA with Oracle: This is SOPHIA with a fully
accurate workload predictor.
(7) SOPHIA-AGGRESSIVE: A variant from SOPHIA that
prefers faster reconfiguration over data availability and is
used only when RF=CL. SOPHIA-AGGRESSIVE violates
the availability requirement by reconfiguring all servers at
the same time. Unlike Naı̈ve, it uses the CBA model to
decide when to reconfigure, and therefore it does not execute
reconfiguration every time the workload changes.
(8) SOPHIA: This is our complete system.
Major Insights
We draw some key insights from the experimental results.
First, globally shared infrastructures with black-box jobs
only allow for short-horizon workload predictions. This
causes SOPHIA to take single-step reconfiguration plans
and limits its benefit over a static optimized approach
(Figure 3). In contrast, when job characteristics can be
predicted well (bus tracking and data analytics applications),
SOPHIA achieves significant benefit over both default and
static optimized cases (Figures 4 and 5). This benefit stays
even when there is significant uncertainty in predicting the
exact job characteristics as shown in Figure 9. Second,
Cassandra can be used in preference to the recent popular
drop-in ScyllaDB, an auto-tuning database, with higher
throughput across the entire range of workload types, as
long as we overlay a dynamic tuner, such as SOPHIA, atop
Cassandra (Figures 3 and 5). Third, as the replication
factor increases while the number of server are fixed, the
reconfiguration time of SOPHIA decreases, thus improving
its benefit (Figure 7). Contrarily, as CL increases, the
benefit of SOPHIA shrinks (Figure 7).Finally, SOPHIA is
applied to a different NoSQL database, Redis, and solves
a long-standing configuration problem with it, one which
has caused Redis to narrow its scope to being an in-memory
database only (Figure 10).

Experiment 1: MG-RAST Workload
We present our experimental evaluation with 20 test days of
MG-RAST data. To zoom into the effect of SOPHIA with
different levels of dynamism in the workload, we segment
the workload into 4 scenarios and present those results in
addition to the aggregated ones.
Workload Prediction Model: We created 16,512 training
samples composed of Td = 5min steps across the 60 days
MG-RAST workloads. We compare the performance of a
first-order and a second-order Markov Chain model. We
represent the states as the proportion of read operations
during the Td interval. We use a quantization level of 10%
in the read ratio between different states. We categorize

230 2019 USENIX Annual Technical Conference USENIX Association

the test days into 4: “Slow”, “Medium”, and “Fast”, by the
frequency of switching from the read- to the write-intensive
workloads and this maps to the average read ratios (RR)
shown in Table 1. “Write” represents days with long
write-heavy periods. Table 1 shows the prediction RMSE
for the four representative workload scenarios. Because of
the lack of application-level knowledge, in addition to the
well-known uncertainty in job execution times in genomics
pipelines [40], the Markov Chain model only provides
accurate predictions for short time intervals. Moreover,
increasing the order of the model has very little impact on
the prediction performance and also increases the number
of states (11 states in the First-order model vs. 120 states
in the Second-order model). We also tried to train a more
complex model (RNN) but its prediction quality was similar.
We notice that the best accuracy is for the “Slow” scenario,
whereas it drops below 50% for “Medium”, and it is always
below 50% for the “Fast” and “Write” scenarios. Because
the “Slow” scenario is the most common (observed 74% of
time in the training data), we use a value of TL = 5min.

Table 1: RMSE for predicting MG-RAST and Bus-Tracking workloads.
MG-RAST

MC-Order First Second RR
Frequency 5m 10m 5m 10m -
Slow 34.4% 56% 34% 55% 70%
Medium 59% 90% 59% 89% 50%
Fast 66% 93% 63% 89% 45%
Write 52.8% 76.1% 51.5% 75.5% 35%
Aggregate 43.7% 68.7% 43.4% 68.2% -

Bus-Tracking
Lookahead First Second

15m 6.9% 7.12%
1h 7.4% 7.4%
2h 7.9% 7.4%
5h 10% 7.5%

10h 13.7% 8%
#States 117 647

Performance Comparison:
Now we show the performance of SOPHIA with respect

to the four workload categories. We first present the result
with the smallest possible number of server instances, 4, run
with operational MG-RAST’s parameters RF=3 and CL=1
[35]. We show the result in terms of total operations for each
test workload as well as a weighted average “combined” rep-
resentation that models behavior for the entire MG-RAST
workload. Figure 3 shows the performance improvements
for our test cases.

From Figure 3, we see that SOPHIA always outperforms
naı̈ve in total ops/s (average of 31.4%) and individually in
read (31.1%) and write (33.5%) ops/s. SOPHIA also outper-
forms the default for the slow and the mid frequency cases,
while it slightly under performs in the fast frequency case.
The average improvement due to SOPHIA across the 4 cat-
egories is 20.4%. The underperformance for the fast case
is due to increased prediction error. Naı̈ve baseline has a
significant loss compared to default: 21.6%. The static op-
timized configuration (which for this workload favors read-
heavy pattern) has a slightly higher throughput over SOPHIA
by 6.3%. This is because the majority of the selected samples
are read periods (RR=1), which hides the gain that SOPHIA
achieves for write periods. However, we see that with respect
to write operations, SOPHIA achieves 17.6% higher through-
put than the static optimized configuration. Increased write

Figure 3: Improvement for four different 30-minute test windows from
MG-RAST real traces over the baseline solutions.

throughput is critical for MG-RAST to support the bursts of
intense writes. This avoids unacceptable queuing of writes,
which can create bottlenecks for subsequent jobs that rely
on the written shared dataset. Moreover, we observe that
SOPHIA performs within 2-3% to SOPHIA w/ Oracle in all
scenarios, which shows the minor impact of the workload
predictor accuracy. For instance, SOPHIA w/ Oracle shows
a 2% reduction in performance compared to SOPHIA in the
slow trace. This is because Oracle has perfectly accurate pre-
dictions for TL = 5min only. With this very short lookahead,
SOPHIA makes greedy reconfiguration decisions, and hence
does not achieve globally optimal performance over other
baselines.

ScyllaDB has an auto-tuning feature that is supposed to
continuously react to changes in workload characteristics
and the current state (such as, the amount of dirty memory
state). ScyllaDB is claimed by its developers to outperform
Cassandra in all workload mixes by an impressive 10X [56].
However, this claim is not borne out here and only in
the read-heavy case (the “Slow” scenario) does ScyllaDB
outperform. Even in this case, SOPHIA is able to reconfigure
Cassandra at runtime and turn out a performance benefit
over ScyllaDB. We conclude that based on this workload
and setup, a system owner can afford to use Cassandra with
SOPHIA for the entire range of workload mixes and not have
to transition to ScyllaDB.

Experiment 2: Tiramisu Workload
We evaluate the performance of SOPHIA using the bus-
tracking application traces. Figure 4 shows the gain of us-
ing SOPHIA over the various baselines. In this experiment,
we report the normalized average Ops/s instead of the abso-
lute average Ops/s metric. This means we normalize each
of the 4 operation’s throughputs by dividing by the maxi-
mum Ops/s seen under a wide variety of configurations and
then average the 4 normalized throughputs. The reason for

USENIX Association 2019 USENIX Annual Technical Conference 231

0

50

100

150

200

250

0%

20%

40%

60%

80%

100%

Default Static-Opt Naïve SOPHIA

P9
9

La
te

nc
y

m
s

N
or

m
al

iz
ed

 A
ve

ra
ge

O

ps
/S

Ops/S P99
Figure 4: Gain of applying SOPHIA to the bus-
tracking application. We use 8 Cassandra servers
with RF=3, CL=1. A 100% on the Y-axis repre-
sents the theoretical best performance. SOPHIA
achieves improvements of 24.5% over default,
21.5% over Static-Opt, and 28.5% over naı̈ve.

0
5

10
15
20
25
30
35
40
45

1 5 10

Av
er

ag
e

O
ps

/S
 (x

10
00

)

Level of Concurrency (# of jobs)
Default Static-Opt Naïve ScyllaDB Theoretical Best SOPHIA

Figure 5: Improvement for HPC data analyt-
ics workload with different levels of concurrency.
We notice that SOPHIA achieves higher average
throughput over all baselines

0%

10%

20%

30%

40%

50%

4-servers 8-servers 16-servers 32-servers

Pe
rc

en
ta

ge
%

%Gain in Ops/S %Reduction in p99
Figure 6: Improvement with scale using HPC
workload with 5 jobs with RF=3 and CL=1.
SOPHIA provides consistent gains across scale be-
cause the cost of reconfiguration does not change
with scale (for the same RF and CL). The higher
gains for 16 and 32 servers is due to the use of
M5 instances, which can be exploited by SOPHIA
better than Static-Opt.

this is that for this workload, different operations have vastly
different throughput scales. For example, when the work-
load switches to a Scan-heavy phase, the performance of the
cluster varies from 34 Ops/s to 219 Ops/s depending on the
configuration of the cluster. For an Update-heavy phase, the
performance varies from 1,739 Ops/s to 5,131 Ops/s. This
is because Scan is a much heavier operation for the DBMS
compared to Update.

SOPHIA outperforms default configuration by 24.5%,
Static-Opt by 21.5%, and Naı̈ve by 28.5%. The gains are
higher because SOPHIA can afford longer lookahead times
with accurate workload prediction. We notice that Naı̈ve
is achieving a comparable performance to both Default
and Static-Opt configurations, unlike MG-RAST. This is
because the frequency of workload changes is lower here.
However, Naı̈ve still renders the data unavailable during the
reconfiguration period.
Workload Prediction Model: Unlike MG-RAST, the
bus-tracking application traces show a daily pattern which
allows our prediction model to provide longer lookahead
periods with high accuracy (Table 1). We use a Markov
Chain prediction model to capture the workload switching
behavior. We start by defining the state of the workload
as the proportion of each operation type in an aggregation
interval (15 minutes in our experiments). For example,
Update=40%, Read=20%, Scan=40%, Insert=0% represents
a state of the workload. We use a quantization level of
10% in any of the 4 dimensions to define the state. We
use the second-order Markov Chain with a lookahead
period of 5 hours as this is when our prediction error is ≤
8%. As expected theoretically, the second order model is
more accurate at all lookahead times, since there is enough
training data available for training the models. Seeing the
seeming regular diurnal and weekly pattern in the workload,
we create two simple predictor straw-men that uses only the
current time-stamp or the current time-stamp and day of the
week as input features to perform prediction. The predicted
workload is the average of the mixtures at the previous 10
points. These predictors have unacceptably high RMSE
of 31.4% and 24.0%. Therefore, although the workload
is showing a pattern, we cannot generate the optimal plan

once and use it for all subsequent days. Therefore, online
workload monitoring and prediction is needed to achieve the
best performance

Experiment 3: HPC Data Analytics
We evaluate the performance of SOPHIA using HPC data
analytics workload patterns described in Section 5. Here
our lookahead is the size of the job queue, which is con-
servatively taken as 1 hour. Figure 5 shows the result for
the three levels of concurrency (1, 5, and 10 jobs). We
see that SOPHIA outperforms the default for all the three
cases, with average improvement of 30%. In comparison
with Static-Opt (which is a different configuration in each
of the three cases), we note that SOPHIA outperforms for
the 1 job and 5 jobs cases by 18.9% and 25.7%, while it is
identical for the 10 jobs case. This is because in the 10 jobs
case, the majority of the workload lies between RR=0.55
and RR=0.85, and in this case, SOPHIA switches only once:
from the default configuration to the same configuration as
Static-Opt. We notice that SOPHIA achieves within 9.5% of
the theoretical best performance for all three cases. We no-
tice that SOPHIA achieves significantly better performance
over Naı̈ve by 27%, 13%, and 122% for the three cases.
Naı̈ve, in fact, degrades the performance by 32.9% (10
concurrent jobs). In comparison with ScyllaDB, SOPHIA
achieves a performance benefit of 17.4% on average, which
leads to a similar conclusion as in MG-RAST about the
continued use of Cassandra.

Experiment 4: Scale-Out & Greater Volume
Figure 6 shows the behavior of SOPHIA with increasing
scale using the data analytics workload. We show the
comparison between SOPHIA and Static-Opt (all other
baselines performed worse than Static-Opt). We use a weak
scaling pattern, i.e., keeping the amount of data per server
fixed while still operating close to saturation. We increase
the number of shooters as well to keep the request rate
per server fixed. By our design (Sec. 4.5), the number of
reconfiguration steps stays constant with scale. We notice
that the network bandwidth needed by Cassandra’s gossip
protocol increases with the scale of the cluster, causing the

232 2019 USENIX Annual Technical Conference USENIX Association

0

20

40

60

80

100

RF=1
CL=1

RF=3
 CL=1

RF=3
CL=2

RF=5
CL=1

RF=5
CL=3

Av
er

ag
e

O
ps

/S
(x

10
00

)

Default Static-Opt Naïve Theoretical Best SOPHIA
Figure 7: Effect of varying RF and CL on sys-
tem throughput. We use a cluster of 8 nodes
and compare the performance of SOPHIA to
Default, Static-Opt, and naı̈ve. SOPHIA out-
performs the static baselines and approaches
the theoretical best as RF–CL increases.

0
10
20
30
40

3 GB 6 GB 15 GB 30 GBA
ve

ra
ge

 O
ps

/S

(x
10

00
)

Data Volume
SOPHIA Static-Opt

30.1%28.8% 29.1% 47.9%

Figure 8: Effect on increasing data volume
per node. We use a cluster of 4 servers and
compare the performance to the static opti-
mized. The results show that SOPHIA’s gain
is consistent with increasing data volumes per
node.

25
27
29
31
33
35
37
39

Static-Opt SOPHIA
(0%)

SOPHIA
(10%)

SOPHIA
(30%)

SOPHIA
(50%)

SOPHIA
(80%)

Av
er

ag
e

O
ps

/S

(X
10

00
)

30.1% 29.6% 28.4% 29.5%
24.7%

Figure 9: Effect of noise in workload prediction on the
performance of SOPHIA on the data analytics work-
load with level of concurrency = 5. The percentage
represents the amount of noise added to the predicted
workload pattern.

network to become the bottleneck in the case of 16 and
32 servers when M4.xlarge instances are used. Therefore,
we change the instance type to M5.xlarge in these cases
(network bandwidth of 10 Gbit/s compared to 0.74 Gbit/s).
The results show that SOPHIA’s optimal reconfiguration
policy has a higher performance over Static-Opt across all
scales. Moreover, we see a higher gain in the cases of 16
and 32 servers since M5 instances have higher CPU power
than M4 ones. This extra CPU capacity allows for faster
leveled compaction, which is used by SOPHIA’s plan (while
Static-Opt uses size-tiered compaction), and hence leads to
greater performance difference for reads.

We also evaluate SOPHIA with the same workload when
the data volume per node increases. We vary the amount of
data loaded initially into each node (in a cluster of 4 nodes)
and measure the gain over Static-Opt in Figure 8. For the
30GB case, the data volume grows beyond the RAM size
of the used instances (M4.xlrage with 16 GB RAM). We
notice that the gain from applying SOPHIA’s reconfiguration
plan is consistent with increasing the data volume from
3 GB to 30 GB. We also notice that the gain increases
for the case of 30 GB. This is also due to the different
compaction methods used by Static-Opt (size-tiered) and
SOPHIA (Leveled compaction), the later can provide better
read performance with increasing data volumes. However,
this benefit of Leveled compaction was not captured by
RAFIKI predictions, which was trained on a single node
with 6 GB of data. This can be addressed by either replacing
RAFIKI by a data volume-aware static tuner, or re-training
RAFIKI when a significant change in data volume per node
occurs.

Experiment 5: Varying RF and CL
We evaluate the impact of applying SOPHIA to clusters with
different RF and CL values. We use the HPC workload with
5 concurrent jobs. We fix the number of nodes to 8 and
vary RF and CL as shown in Figure 7 (CL quorum implies
CL = dRF/2e). We notice that SOPHIA continues to achieve
better performance than all 3 static baselines for all RF, CL
values. For RF=1, CL=1, we use SOPHIA-AGGRESSIVE
because when RF=CL, we cannot reconfigure the cluster

without degrading availability. The key observation is that
SOPHIA’s performance gets closer to the Theoretical best
as RF-CL becomes higher (compare the RF=3,CL=1 to the
RF=5,CL=1 case). This is because the number of steps
SOPHIA needs to perform the reconfiguration is inversely
proportional to RF-CL as discussed in Sec. 4.5). This allows
SOPHIA to react faster to changes in the applied workload
and thus achieve better performance. Moreover, we notice
that the performance of the cluster degrades with increasing
RF or CL. Increasing RF increases the data volume stored
by each node, which increases the number of SSTables
and hence reduces the read performance. Also increase
in CL requires more nodes to respond to each request
before acknowledgment to the client, which also reduces the
performance.

Experiment 6: Noisy Workload Predictions
We show how sensitive SOPHIA is to the level of noise in
the predicted workload pattern. We use the HPC workload
with 5 concurrent jobs. In HPC queues, there are two typical
sources of such noise—an impatient user removing a job
from the queue and the arrival of hitherto unseen jobs. We
add noise to the predicted workload pattern ∼ U(-R,R),
where R gives the level of noise. The resulting value is
bounded between 0 and 1.
From Figure 9, we see that adding noise to SOPHIA slightly
reduces its performance. However, such noise will not cause
significant changes to SOPHIA’s optimal reconfiguration
plan. This is because SOPHIA treats each entry in the
reconfiguration plan as a binary decision, i.e., reconfigure if
Benefit ≥ Cost. So even if the values of both Benefit and
Cost terms change, the same plan takes effect as long as
the inequality still holds. This allows SOPHIA to achieve
significant improvements for long-term predictions even
with high noise levels.

Experiment 7: Redis Case Study
We now show a case study with the popular NoSQL database
Redis, which has a long-standing pain point in setting a
performance-critical parameter against changing workloads.
Large-scale processing frameworks such as Spark can de-

USENIX Association 2019 USENIX Annual Technical Conference 233

(a) (b)
Figure 10: Impact of tuning Redis’ VM configuration parameters with SOPHIA with the data analytics workload. The percentage improvement of SOPHIA
is shown on each bar and the right Y-axis is for the 2M jobs. A missing bar represents a failed job. We notice that the current Redis fails for large workloads
(2M), while SOPHIA achieves the best of both worlds

liver much higher performance when combined with Redis
due to its shared distributed memory infrastructure [67, 38].
Redis is an in-memory data store (stores all keys and val-
ues in memory) while writing to persistent storage is only
supported for durability. However, in its earlier versions
(till V2.4), Redis used to offer a feature called Virtual Mem-
ory [36]. This feature allowed Redis to work on datasets
larger than the available memory by swapping rarely used
values to disk, while keeping all keys and hot values in mem-
ory. Since V2.4, this feature was removed as it caused se-
rious performance degradation in many Redis deployments
due to non-optimal setting as reflected in many posts in dis-
cussion forums [59, 25, 60]. We use SOPHIA to tune this
feature and compare the performance to three baselines: (1)
Redis V2.4 with VM-disabled (Default configuration), (2)
Redis V2.4 with VM-enabled, (3) Redis V4 with default con-
figuration (no VM support, most production-proven).
To tune Redis’ VM, we investigate the impact of two con-
figuration parameters: (1) vm-enable: a Boolean parameter
that enables or disables the feature. (2) vm-max-memory:
the memory limit after which Redis starts swapping least-
recently-used values to disk. These features cannot be re-
configured without a server restart.
We tune the performance of Redis for simulated data analyt-
ics workloads that vary with respect to job sizes and access
patterns. We use the popular YCSB (Yahoo! Cloud Serv-
ing Benchmark) tool [12] to simulate HPC workloads as in
[28, 24]. We collect 128 data points for jobs that vary with
respect to their sizes (0.5M, 1M, 2M), their access patterns
(i.e., read-heavy vs write-heavy) and also their request dis-
tribution (i.e., Uniform vs Zipfian). We use 75% of the data
points (selected uniformly) to train a linear regression model
and 25% for testing. The model provides accurate prediction
of throughput for any job and configuration (avg. R2=0.92).
Therefore, we use this simpler model in place of Rafiki.
Redis can operate in Stand-alone mode as well as a
Cluster mode [37]. In Cluster mode, data is automati-
cally sharded across multiple Redis nodes. We show the gain
of using our system with Redis for both modes of operation.
No replication is used for Stand-alone mode. Whereas
for Cluster mode, we use a replication factor of 1 (i.e.,
a single slave per master). We use AWS servers of type

C3.Large with 2 vCPUs and 3.75GB RAM each. Selecting
such a small RAM server demonstrates the advantage of us-
ing VM with jobs that cannot fit in memory—1.8M records
fit in the memory. We evaluate the performance SOPHIA on
a single server (Figure 10a) as well as a cluster of 6 servers
with 3 masters and 3 slaves (Figure 10b) and report the av-
erage throughput per server. From Figure 10 we see that for
all record sizes and request distributions, SOPHIA performs
the best or close to the best. If records fit in memory, then
the no VM configuration is better. For Uniform distribution,
VM performs worst, because records often have to be fetched
from disk. If records do not fit in memory, the no VM options
(including the latest Redis) will simply fail (hence the lack
of a bar for 2.0M records). Thus, SOPHIA, by automatically
selecting the right parameters for changing workloads, can
achieve the best of both worlds: fast in-memory database,
and leverage disk in case of spillover.

7 Related Work
Reconfiguration for dynamic workloads. A few systems
such as Rafiki [45], Outtertune [64], and SmartConf [65]
have been proposed to automatically find the optimal soft-
ware configurations for a given workload. All these sys-
tems assume that the workload change is a long-term, and for
which reconfiguring the system is always beneficial. How-
ever, we show that in many real-world workloads, both
long-term and short-term changes are observed and there-
fore SOPHIA decides when and how to apply the new con-
figurations to achieve globally optimal performance, while
respecting the user’s availability requirements.
Reconfiguration in databases. Several works proposed
online reconfiguration for databases where the goal is
not to update the configuration settings, but to control
how the data is distributed among multiple server in-
stances [14, 6, 22, 18, 66]. Among these, Morphus [22]
targets MongoDB but cannot handle Cassandra due to its
peer-to-peer topology and sharding. Tuba [5] reconfigures
geo-replicated key-value stores by changing locations of
primary and secondary replicas to improve overall utility of
the storage system. Rocksteady [34] is a data migration pro-
tocol for in-memory databases to keep tail latency low with
respect to workload changes. However, no parameter tuning

234 2019 USENIX Annual Technical Conference USENIX Association

or cost-benefit analysis is involved. A large body of work
focused on choosing the best logical or physical design for
static workloads in DBMS [13, 10, 70, 26, 11, 63, 2, 53, 54].
Another body of work improves performance for static
workloads by finding correct settings for DBMS perfor-
mance knobs [17, 16, 45, 69, 64]. SOPHIA performs online
reconfiguration of the performance tuning parameters of
distributed databases for dynamic workloads.
Reconfiguration in distributed systems and clouds.
Several works have addressed the problem in the context
of traditional distributed systems [29, 3] and cloud plat-
forms [41, 68, 47, 46]. Some solutions present a theoretical
approach, reasoning about correctness for example [3],
while some present a systems-driven approach such as
performance tuning for MapReduce clusters [41, 4].
BerkeleyDB [52] models probabilistic dependencies
between configuration parameters. A recent work, Smart-
Conf [65] provides a rigorous control-theoretic approach to
continuously tune a distributed application in an application-
agnostic manner. However, it cannot consider dependencies
among the performance-critical parameters and cannot
handle categorical parameters.

8 Conclusion
Current static tuners can provide close to optimal config-

uration for a static workload. However, they cannot deter-
mine whether and when to perform a configuration switch
to maximize benefit over a future time horizon with chang-
ing workloads. We design SOPHIA to perform such recon-
figuration while maintaining data availability and respecting
the consistency level requirement. Our fundamental techni-
cal contribution is a cost-benefit analysis that analyzes the
relative cost and the benefit of each reconfiguration action
and determines a reconfiguration plan for a future time win-
dow. It then develops a distributed protocol to gracefully
switch over the cluster from the old to the new configura-
tion. We find benefits of SOPHIA applied to three distinct
workloads (a metagenomics portal, a bus-tracking applica-
tion, and a data analytics workload) over the state-of-the-art
static tuners, for two NoSQL databases, Cassandra and Re-
dis. Our work uncovers two big open challenges. How to do
anticipatory configuration changes for future workload pat-
terns? How to handle heterogeneity in the cluster, i.e., one
where each server instance may have its own configuration
and may contribute differently to the overall performance?

Acknowledgement
We thank our shepherd Asaf Cidon and all the reviewers

for their insightful comments. This work is supported in part
by NSF grant 1527262, NIH Grant 1R01AI123037, Lilly En-
dowment (Wabash Heartland Innovation Network - WHIN),
and Adobe Research. This material was in part based upon
research supported by the U.S. Department of Energy, Of-

fice of Science, Office of Biological and Environmental Re-
search, under contract DE-AC02-06CH11357. The funders
had no role in the design or execution of the work. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this paper are those of the authors and do not nec-
essarily reflect the views of the funding agencies.

9 Supplemental Material
9.1 Cost-Benefit Analysis Derivation

Qualitatively, the benefit summed up over the time win-
dow is the increase in throughput due to the new optimal
configuration option relative to the current configuration op-
tion.

B = ∑
k∈[0,TL]

Hsys(WWW (k),CCCT
sys(k)) (7)

where WWW (k) is the k-th element in the time-varying workload
vector WWW and CCCT

sys is the time-varying system configuration
derived from CCC∆

sys. Likewise, the cost summed up over the
time window is the loss in throughput incurred during the
transient period of reconfiguration.

L = ∑
k∈[1,M]�

��
R
Ns
·Hsys(WWW (tk),CCCk) ·

�
��Ns

R
·Tr

= ∑
k∈[1,M]

Hsys(WWW (tk),CCCk) ·Tr

(8)

where CCCk the configuration specified by the k-th entry of the
reconfiguration plan CCC∆

sys, and Tr is the number of seconds a
single server is offline during reconfiguration.

9.2 Synthetic HPC Workloads
For long-horizon reconfiguration plans, we simulate

synthetic workloads representative of batch data analytics
jobs, submitted to a shared HPC queue. We integrate
SOPHIA with a job scheduler (like PBS [27]), that examines
jobs while they wait in a queue prior to execution. Thus,
the scheduler can profile the jobs waiting in the queue, and
hence forecast the aggregate workload over a lookahead
horizon, which is equal to the length of the queue. We model
the jobs on data analytics jobs submitted to a Microsoft
Cosmos cluster [21]

Figure 11 shows the simulated workload pattern for HPC
Analytics case. We vary the level of concurrency and collect
the aggregate workload observed by the NoSQL datastore.

0 2000 4000

Time (discrete seconds)

0

0.5

1

R
e
a
d
 R

a
ti
o

1 Job

0 2000 4000

Time (discrete seconds)

0

0.5

1
5 Concurrent Jobs

0 2000 4000

Time (discrete seconds)

0

0.5

1
10 Concurrent Jobs

Figure 11: Simulated Workload patterns for 1, 5, and 10 concurrent jobs

USENIX Association 2019 USENIX Annual Technical Conference 235

References
[1] AGARWAL, S., KANDULA, S., BRUNO, N., WU, M.-

C., STOICA, I., AND ZHOU, J. Re-optimizing data-
parallel computing. In Proceedings of the 9th USENIX
conference on Networked Systems Design and Imple-
mentation (2012), USENIX Association, pp. 21–21.

[2] AGRAWAL, S., NARASAYYA, V., AND YANG, B. In-
tegrating vertical and horizontal partitioning into auto-
mated physical database design. In ACM SIGMOD in-
ternational conference on Management of data (2004).

[3] AJMANI, S., LISKOV, B., AND SHRIRA, L. Modu-
lar software upgrades for distributed systems. ECOOP
2006–Object-Oriented Programming (2006), 452–476.

[4] ANANTHANARAYANAN, G., AGARWAL, S., KAN-
DULA, S., GREENBERG, A., STOICA, I., HARLAN,
D., AND HARRIS, E. Scarlett: coping with skewed
content popularity in mapreduce clusters. In Pro-
ceedings of the sixth conference on Computer systems
(2011), ACM, pp. 287–300.

[5] ARDEKANI, M. S., AND TERRY, D. B. A self-
configurable geo-replicated cloud storage system. In
OSDI (2014), pp. 367–381.

[6] BARKER, S. K., CHI, Y., HACIGÜMÜS, H., SHENOY,
P. J., AND CECCHET, E. Shuttledb: Database-aware
elasticity in the cloud. In ICAC (2014), pp. 33–43.

[7] CARLSON, J. L. Redis in action. Manning Publica-
tions Co., 2013.

[8] CASSANDRA. Cassandra. http://
cassandra.apache.org/, September 2018.

[9] CHATERJI, S., KOO, J., LI, N., MEYER, F., GRAMA,
A., AND BAGCHI, S. Federation in genomics
pipelines: techniques and challenges. Briefings in
bioinformatics 20, 1 (2017), 235–244.

[10] CHAUDHURI, S., AND NARASAYYA, V. Self-tuning
database systems: a decade of progress. In Proceedings
of the 33rd international conference on Very large data
bases (2007), VLDB Endowment, pp. 3–14.

[11] CHAUDHURI, S., AND NARASAYYA, V. R. An effi-
cient, cost-driven index selection tool for microsoft sql
server. In VLDB (1997).

[12] COOPER, B. F., SILBERSTEIN, A., TAM, E., RA-
MAKRISHNAN, R., AND SEARS, R. Benchmarking
cloud serving systems with ycsb. In Proceedings of
the 1st ACM symposium on Cloud computing (2010),
ACM, pp. 143–154.

[13] CURINO, C., JONES, E., ZHANG, Y., AND MADDEN,
S. Schism: a workload-driven approach to database
replication and partitioning. VLDB Endowment (2010).

[14] DAS, S., NISHIMURA, S., AGRAWAL, D., AND
EL ABBADI, A. Albatross: lightweight elasticity in
shared storage databases for the cloud using live data
migration. VLDB Endowment (2011).

[15] DCSL. Rafiki configuration tuner middleawre.
https://engineering.purdue.edu/dcsl/
software/, February 2018.

[16] DEBNATH, B. K., LILJA, D. J., AND MOKBEL, M. F.
Sard: A statistical approach for ranking database tuning
parameters. In IEEE International Conference on Data
Engineering Workshop (ICDEW) (2008).

[17] DUAN, S., THUMMALA, V., AND BABU, S. Tuning
database configuration parameters with ituned. Pro-
ceedings of the VLDB Endowment 2, 1 (2009), 1246–
1257.

[18] ELMORE, A. J., DAS, S., AGRAWAL, D., AND
EL ABBADI, A. Zephyr: live migration in shared
nothing databases for elastic cloud platforms. In ACM
SIGMOD International Conference on Management of
data (2011).

[19] FALOUTSOS, C., GASTHAUS, J., JANUSCHOWSKI,
T., AND WANG, Y. Forecasting big time series: old
and new. Proceedings of the VLDB Endowment 11, 12
(2018), 2102–2105.

[20] FEATHERSTON, D. Cassandra: Principles and appli-
cation. Department of Computer Science University of
Illinois at Urbana-Champaign (2010).

[21] FERGUSON, A. D., BODIK, P., KANDULA, S.,
BOUTIN, E., AND FONSECA, R. Jockey: guaranteed
job latency in data parallel clusters. In Proceedings of
the 7th ACM European Conference on Computer Sys-
tems (Eurosys) (2012), ACM, pp. 99–112.

[22] GHOSH, M., WANG, W., HOLLA, G., AND GUPTA,
I. Morphus: Supporting online reconfigurations in
sharded nosql systems. IEEE Transactions on Emerg-
ing Topics in Computing (2015).

[23] GIFFORD, D. K. Weighted voting for replicated data.
In SOSP (1979).

[24] GREENBERG, H., BENT, J., AND GRIDER, G.
{MDHIM}: A parallel key/value framework for
{HPC}. In 7th {USENIX} Workshop on Hot Topics
in Storage and File Systems (HotStorage 15) (2015).

236 2019 USENIX Annual Technical Conference USENIX Association

http://cassandra.apache.org/
http://cassandra.apache.org/
https://engineering.purdue.edu/dcsl/software/
https://engineering.purdue.edu/dcsl/software/

[25] GROUPS.GOOGLE. Problem with restart redis with
vm feature on. https://groups.google.com/
forum/#!topic/redis-db/EQA0WdvwghI,
March 2011.

[26] GUPTA, H., HARINARAYAN, V., RAJARAMAN, A.,
AND ULLMAN, J. D. Index selection for olap. In IEEE
International Conference on Data Engineering (ICDE)
(1997).

[27] HENDERSON, R. L. Job scheduling under the portable
batch system. In Workshop on Job Scheduling Strate-
gies for Parallel Processing (1995), Springer, pp. 279–
294.

[28] JIA, Z., WANG, L., ZHAN, J., ZHANG, L., AND LUO,
C. Characterizing data analysis workloads in data cen-
ters. In 2013 IEEE International Symposium on Work-
load Characterization (IISWC) (2013), IEEE, pp. 66–
76.

[29] KEMME, B., BARTOLI, A., AND BABAOGLU, O. On-
line reconfiguration in replicated databases based on
group communication. In Dependable Systems and
Network (DSN) (2001), IEEE, pp. 117–126.

[30] KHANDELWAL, A., AGARWAL, R., AND STOICA,
I. Blowfish: Dynamic storage-performance tradeoff in
data stores. In NSDI (2016), pp. 485–500.

[31] KIM, S. G., HARWANI, M., GRAMA, A., AND
CHATERJI, S. EP-DNN: a deep neural network-based
global enhancer prediction algorithm. Scientific reports
6 (2016), 38433.

[32] KIM, S. G., THEERA-AMPORNPUNT, N., FANG, C.-
H., HARWANI, M., GRAMA, A., AND CHATERJI, S.
Opening up the blackbox: an interpretable deep neural
network-based classifier for cell-type specific enhancer
predictions. BMC systems biology 10, 2 (2016), 54.

[33] KOO, J., ZHANG, J., AND CHATERJI, S. Tire-
sias: Context-sensitive approach to decipher the pres-
ence and strength of MicroRNA regulatory interac-
tions. Theranostics 8, 1 (2018), 277.

[34] KULKARNI, C., KESAVAN, A., ZHANG, T., RICCI,
R., AND STUTSMAN, R. Rocksteady: Fast migration
for low-latency in-memory storage. In Proceedings of
the 26th Symposium on Operating Systems Principles
(2017), ACM, pp. 390–405.

[35] LAB, A. N., AND OF CHICAGO, U. MG-RAST’s
m5nr-table schema, 2019. [Online; accessed 1 29-
August-2018].

[36] LABS, R. Redis Virtual Memory. https:
//redis.io/topics/virtual-memory, 2018.
[Online; accessed 1-September-2018].

[37] LABS, R. Redis Cluster. https://redis.io/
topics/cluster-tutorial, 2019. [Online; ac-
cessed 1-May-2019].

[38] LABS, R. Spark-Redis: Analytics Made Lightning
Fast. https://redislabs.com/solutions/
use-cases/spark-and-redis/, 2019. [On-
line; accessed 1-May-2019].

[39] LAKSHMAN, A., AND MALIK, P. Cassandra: a de-
centralized structured storage system. ACM SIGOPS
Operating Systems Review 44, 2 (2010), 35–40.

[40] LEIPZIG, J. A review of bioinformatic pipeline frame-
works. Briefings in bioinformatics 18, 3 (2017), 530–
536.

[41] LI, M., ZENG, L., MENG, S., TAN, J., ZHANG, L.,
BUTT, A. R., AND FULLER, N. Mronline: Mapreduce
online performance tuning. In Proceedings of the 23rd
international symposium on High-performance paral-
lel and distributed computing (2014), ACM, pp. 165–
176.

[42] MA, L. Tiramisu: Dataset for bus tracking appli-
cations. http://www.cs.cmu.edu/˜malin199/
data/tiramisu-sample/, June 2018. [Online;
accessed 1-September-2018].

[43] MA, L., VAN AKEN, D., HEFNY, A., MEZERHANE,
G., PAVLO, A., AND GORDON, G. J. Query-based
workload forecasting for self-driving database manage-
ment systems. In Proceedings of the 2018 Interna-
tional Conference on Management of Data (SIGMOD)
(2018), ACM, pp. 631–645.

[44] MAHADIK, K., WRIGHT, C., ZHANG, J., KULKA-
RNI, M., BAGCHI, S., AND CHATERJI, S. SAR-
VAVID: A domain specific language for developing
scalable computational genomics applications. In
International Conference on Supercomputing (2016),
ACM, p. 34.

[45] MAHGOUB, A., WOOD, P., GANESH, S., MITRA, S.,
GERLACH, W., HARRISON, T., MEYER, F., GRAMA,
A., BAGCHI, S., AND CHATERJI, S. Rafiki: A Mid-
dleware for Parameter Tuning of NoSQL Datastores for
Dynamic Metagenomics Workloads. In Proceedings of
the 18th International ACM/IFIP/USENIX Middleware
Conference (2017), pp. 1–13.

[46] MAJI, A. K., MITRA, S., AND BAGCHI, S. Ice: An
integrated configuration engine for interference mitiga-
tion in cloud services. In EEE International Conference
on Autonomic Computing (ICAC) (2015).

USENIX Association 2019 USENIX Annual Technical Conference 237

https://groups.google.com/forum/#!topic/redis-db/EQA0WdvwghI
https://groups.google.com/forum/#!topic/redis-db/EQA0WdvwghI
https://redis.io/topics/virtual-memory
https://redis.io/topics/virtual-memory
https://redis.io/topics/cluster-tutorial
https://redis.io/topics/cluster-tutorial
https://redislabs.com/solutions/use-cases/spark-and-redis/
https://redislabs.com/solutions/use-cases/spark-and-redis/
http://www.cs.cmu.edu/~malin199/data/tiramisu-sample/
http://www.cs.cmu.edu/~malin199/data/tiramisu-sample/

[47] MAJI, A. K., MITRA, S., ZHOU, B., BAGCHI, S.,
AND VERMA, A. Mitigating interference in cloud ser-
vices by middleware reconfiguration. In ACM Interna-
tional Middleware Conference (2014).

[48] MEDIUM. Cassandra: Distributed key-
value store optimized for write-heavy work-
loads. https://medium.com/coinmonks/
cassandra-distributed-key-value-
store-optimized-for-write-heavy-
workloads-77f69c01388c. [Online; accessed
1-May-2019].

[49] MEYER, F., BAGCHI, S., CHATERJI, S., GERLACH,
W., GRAMA, A., HARRISON, T., PACZIAN, T.,
TRIMBLE, W. L., AND WILKE, A. MG-RAST version
4lessons learned from a decade of low-budget ultra-
high-throughput metagenome analysis. Briefings in
bioinformatics (2017).

[50] MEYER, F., BAGCHI, S., CHATERJI, S., GERLACH,
W., GRAMA, A., HARRISON, T., TRIMBLE, W.,
AND WILKE, A. Mg-rast version 4–lessons learned
from a decade of low-budget ultra-high-throughput
metagenome analysis. Briefings in Bioinformatics 105
(2017).

[51] MOZAFARI, B., CURINO, C., JINDAL, A., AND
MADDEN, S. Performance and resource modeling in
highly-concurrent oltp workloads. In Proceedings of
the 2013 acm sigmod international conference on man-
agement of data (2013), ACM, pp. 301–312.

[52] OLSON, M. A., BOSTIC, K., AND SELTZER, M. I.
Berkeley db. In USENIX Annual Technical Conference
(1999), pp. 183–191.

[53] PAVLO, A., JONES, E. P., AND ZDONIK, S. On pre-
dictive modeling for optimizing transaction execution
in parallel oltp systems. VLDB Endowment (2011).

[54] RAO, J., ZHANG, C., MEGIDDO, N., AND LOHMAN,
G. Automating physical database design in a parallel
database. In ACM SIGMOD international conference
on Management of data (2002).

[55] SCHEFFE, H. The analysis of variance, vol. 72. John
Wiley & Sons, 1999.

[56] SCYLLADB. Scylla vs. Cassandra benchmark.
http://www.scylladb.com/technology/
cassandra-vs-scylla-benchmark-2/,
October 2015.

[57] SCYLLADB. ScyllaDB. http://
www.scylladb.com/, September 2017.

[58] SEARS, R., AND RAMAKRISHNAN, R. blsm: a gen-
eral purpose log structured merge tree. In Proceedings
of the 2012 ACM SIGMOD International Conference
on Management of Data (2012), ACM, pp. 217–228.

[59] SERVERFAULT. Should I use vm or set the maxmem-
ory. https://serverfault.com/questions/
432810/should-i-use-vm-or-set-the-
maxmemory-with-redis-2-4, September 2012.

[60] STACKOVERFLOW. Redis Virtual Memory in 2.6.
https://stackoverflow.com/questions/
9205597/redis-virtual-memory-in-2-6,
February 2012.

[61] SULLIVAN, D. G., SELTZER, M. I., AND PFEFFER,
A. Using probabilistic reasoning to automate software
tuning, vol. 32. ACM, 2004.

[62] TRAN, D. N., HUYNH, P. C., TAY, Y. C., AND TUNG,
A. K. A new approach to dynamic self-tuning of
database buffers. ACM Transactions on Storage (TOS)
(2008).

[63] VALENTIN, G., ZULIANI, M., ZILIO, D. C.,
LOHMAN, G., AND SKELLEY, A. Db2 advisor: An
optimizer smart enough to recommend its own indexes.
In IEEE International Conference on Data Engineering
(ICDE) (2000).

[64] VAN AKEN, D., PAVLO, A., GORDON, G. J., AND
ZHANG, B. Automatic database management system
tuning through large-scale machine learning. In Pro-
ceedings of the 2017 ACM International Conference on
Management of Data (2017), ACM, pp. 1009–1024.

[65] WANG, S., LI, C., HOFFMANN, H., LU, S., SEN-
TOSA, W., AND KISTIJANTORO, A. I. Understand-
ing and auto-adjusting performance-sensitive configu-
rations. In International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS) (2018).

[66] WEI, X., SHEN, S., CHEN, R., AND CHEN, H.
Replication-driven live reconfiguration for fast dis-
tributed transaction processing. In USENIX Annual
Technical Conference (2017).

[67] ZAHARIA, M., CHOWDHURY, M., FRANKLIN, M. J.,
SHENKER, S., AND STOICA, I. Spark: Cluster
computing with working sets. In Proceedings of the
2Nd USENIX Conference on Hot Topics in Cloud
Computing (Berkeley, CA, USA, 2010), HotCloud’10,
USENIX Association, pp. 10–10.

[68] ZHANG, R., LI, M., AND HILDEBRAND, D. Finding
the big data sweet spot: Towards automatically recom-
mending configurations for hadoop clusters on docker

238 2019 USENIX Annual Technical Conference USENIX Association

https://medium.com/coinmonks/cassandra-distributed-key-value-store-optimized-for-write-heavy-workloads-77f69c01388c
https://medium.com/coinmonks/cassandra-distributed-key-value-store-optimized-for-write-heavy-workloads-77f69c01388c
https://medium.com/coinmonks/cassandra-distributed-key-value-store-optimized-for-write-heavy-workloads-77f69c01388c
https://medium.com/coinmonks/cassandra-distributed-key-value-store-optimized-for-write-heavy-workloads-77f69c01388c
http://www.scylladb.com/technology/cassandra-vs-scylla-benchmark-2/
http://www.scylladb.com/technology/cassandra-vs-scylla-benchmark-2/
http://www.scylladb.com/
http://www.scylladb.com/
https://serverfault.com/questions/432810/should-i-use-vm-or-set-the-maxmemory-with-redis-2-4
https://serverfault.com/questions/432810/should-i-use-vm-or-set-the-maxmemory-with-redis-2-4
https://serverfault.com/questions/432810/should-i-use-vm-or-set-the-maxmemory-with-redis-2-4
https://stackoverflow.com/questions/9205597/redis-virtual-memory-in-2-6
https://stackoverflow.com/questions/9205597/redis-virtual-memory-in-2-6

containers. In Cloud Engineering (IC2E), 2015 IEEE
International Conference on (2015), IEEE, pp. 365–
368.

[69] ZHU, Y., LIU, J., GUO, M., BAO, Y., MA, W., LIU,
Z., SONG, K., AND YANG, Y. Bestconfig: Tapping the
performance potential of systems via automatic con-

figuration tuning. In Symposium on Cloud Computing
(SoCC) (2017).

[70] ZILIO, D. C., AND SEVCIK, K. C. Physical database
design decision algorithms and concurrent reorganiza-
tion for parallel database systems. PhD Thesis Cite-

seer, 1999.

USENIX Association 2019 USENIX Annual Technical Conference 239

libmpk: Software Abstraction for Intel Memory Protection Keys (Intel MPK)

Soyeon Park Sangho Lee† Wen Xu Hyungon Moon∗ Taesoo Kim

Georgia Institute of Technology
†Microsoft Research

∗Ulsan National Institute of Science and Technology

Abstract
Intel Memory Protection Keys (MPK) is a new hardware prim-
itive to support thread-local permission control on groups of
pages without requiring modification of page tables. Unfortu-
nately, its current hardware implementation and software sup-
port suffer from security, scalability, and semantic problems:
(1) vulnerable to protection-key-use-after-free; (2) providing
the limited number of protection keys; and (3) incompatible
with mprotect()’s process-based permission model.

In this paper, we propose libmpk, a software abstraction for
MPK. It virtualizes the hardware protection keys to eliminate
the protection-key-use-after-free problem while providing
accesses to an unlimited number of virtualized keys. To sup-
port legacy applications, it also provides a lazy inter-thread
key synchronization. To enhance the security of MPK itself,
libmpk restricts unauthorized writes to its metadata. We apply
libmpk to three real-world applications: OpenSSL, JavaScript
JIT compiler, and Memcached for memory protection and
isolation. Our evaluation shows that it introduces negligi-
ble performance overhead (<1%) compared with the origi-
nal, unprotected versions and improves performance by 8.1×
compared with the secure equivalents using mprotect(). The
source code of libmpk is publicly available and maintained
as an open source project.

1 Introduction
Maintaining and enforcing memory access permission is an
important duty of OSes and CPUs. Traditionally, they have
used page tables to specify whether processes have rights to
read from, write to, or execute specific memory pages. OSes
can change access permission by updating page-table en-
tries (PTEs) and flushing corresponding translation lookaside
buffer (TLB) entries to reload them. In addition to page ta-
bles, some CPUs, e.g., ARM [5] and IBM Power [18], allow
OSes to maintain the permission of a page group together by
assigning the same key to the correlated pages and controlling
the key’s permission. To modify the permission of the page
groups, OSes should, on behalf of the process, change the
permission of the corresponding registers.

Recently, Intel deployed a similar key-based permis-
sion control, called Intel Memory Protection Keys (Intel

MPK) [20], that allows a userspace process to change the
permission of the page groups. MPK has three key bene-
fits over page-table-based mechanisms: (1) performance, (2)
group-wise control, and (3) per-thread view. First, MPK uti-
lizes a protection key rights register (PKRU) to maintain the
access rights of individual keys associated with specific pages:
read/write, read-only, or no access. Processes only need to
execute a non-privileged instruction (WRPKRU) to update PKRU,
which takes less than 20 cycles (§2.3) and requires no TLB
flush and context switching. Note that PKRU and page-table
permissions cannot override each other, so the effective per-
mission is the intersection of both.

Second, MPK can change the access rights of up to 16
different page groups at once, where each group consists of
pages associated with the same key1. This group-wise control
allows applications to change access rights to page groups
according to the types and contexts of data stored in them
(e.g., per-session data of a web server).

Third, MPK allows each thread (i.e., each hyperthread)
to have a unique PKRU, realizing per-thread memory view.
Accordingly, even if two threads share the same address space,
their access rights to the same page can be different.

Although MPK is a promising primitive in concept, its
current hardware implementation as well as standard library
and kernel support suffer from three problems: (1) security,
(2) scalability, and (3) subtle semantic differences, hindering
its broader adoption. First, we found that MPK suffers from
the protection-key-use-after-free problem. The Linux kernel
provides two system calls, pkey_alloc() and pkey_free(),
to allocate and de-allocate protection keys, respectively. Dur-
ing key de-allocation (pkey_free()), however, it does not
invalidate pages associated with a de-allocated key, resulting
in ambiguity when the de-allocated key is re-allocated and
assigned to different pages later.

Second, MPK fails in scaling because PKRU can manage
only up to 16 protection keys because of its hardware lim-
itation. When an application tries to allocate more than 16
protection keys, pkey_alloc() simply fails, implying that the
application itself should implement its own mechanism to

1The default group (0) has a special purpose, so only 15 groups are
available for general uses.

USENIX Association 2019 USENIX Annual Technical Conference 241

multiplex these protection keys.
Third, the semantic of MPK is different from the

conventional mprotect(), i.e., thread-view versus process-
view, which results in potential security and performance
problems. For example, the Linux kernel implements an
execute-only memory with MPK by disabling read access
through PKRU and allowing execution through a page table:
mprotect(addr, len, PROT_EXEC). Although this feature is
invoked via mprotect(), it only changes the PKRU’s permis-
sion of the calling thread, meaning that other threads sharing
the same address space can still read the execute-only memory.
In other words, it is non-trivial to apply MPK securely and
efficiently to legacy applications that rely on a process-level
memory permission model.

In this paper, we propose libmpk, a secure, scalable, and
semantic-compatible software abstraction to fully utilize
MPK in a practical manner. In particular, libmpk implements
(1) protection key virtualization to eliminate the protection-
key-use-after-free problem and to support the unrestricted
number of memory page groups, (2) lazy inter-thread key syn-
chronization to selectively ensure per-process semantics with
MPK, allowing us to substitute mprotect() in an efficient
and compatible manner, and (3) metadata integrity to ensure
the integrity of the mapping information while minimizing
the number of system call invocations. libmpk consists of a
userspace library mainly for efficient permission change and
a kernel module mainly for synchronization and metadata
integrity.

To show the effectiveness and practicality, we apply libmpk
to three real-world applications: OpenSSL library, JavaScript
just-in-time (JIT) compiler, and Memcached. First, we mod-
ify the OpenSSL library to create secure memory pages for
storing cryptographic keys to mitigate information leakage.
Second, we modify three JavaScript JIT compilers (i.e., Spi-
derMonkey, ChakraCore, and v8) to protect the code cache
from memory corruption by enforcing the W⊕X security pol-
icy. Third, we modify Memcached to secure almost all its data,
including the slab and hash table, whose size can be several
gigabytes. The evaluation results show that libmpk and its
applications have negligible overhead (<1%). Furthermore,
libmpk is 1.73–3.78× faster than mprotect() when changing
the permission of 1–1,000 pages at the view of a process, and,
especially, the throughput of Memcached with libmpk is 8.1×
higher than that of Memcached with mprotect().

We summarize the contributions of this paper as follows:
• Comprehensive study. We study the design, functional-

ity, and characteristics of Intel MPK in detail. We iden-
tify the critical challenges of utilizing MPK in terms of
security, scalability, and semantics.

• Software abstraction. We design and implement
libmpk, a software abstraction to fully utilize MPK. The
protection key virtualization, metadata protection, and
inter-thread key synchronization of libmpk allow appli-

 page# pkey perm.
 120 8 r/w
 232 1 r/o
 456 8 r/o

DTLB

 page# perm.
 232 x

ITLB

120 r/w

page# effective
perm.

effective
perm.

...
0 1 8 15

PKRU (corea)

r/w n/a r/w n/a...

page#

...
0 1 8 15

r/w r/w r/o n/a...

WRPKRU
RDPKRU

...

...
(per-process,

PKRU (coreb)

(per-core, asynchronous)

232
456

x
r

120 r
232
456

r/x
r

OS-managed Userspace process

perm:
pkey:

(corea) (coreb)

red
 synchronized) blue

: pkey = 1
: pkey = 8

Figure 1: An example showing how MPK checks the permission of
a logical core (hyperthread) on a specific memory page according
to PKRU and page permissions. The intersection of the permissions
determines whether a data access will be allowed. An instruction
fetch is independent of the PKRU.

cations to effectively overcome the three challenges.
• Case studies. We apply libmpk to OpenSSL library,

JavaScript JIT compiler, and Memcached to show its
effectiveness and practicality. libmpk secures them with
a few modifications and negligible overhead.

2 Intel MPK Explained
In this section, we describe the hardware design of Intel MPK
and current kernel and library support. Also, we check the
performance characteristics of MPK to show its efficiency.

2.1 Hardware Primitives
Intel MPK updates the permission of a group of pages by
associating a protection key to the group and changing the ac-
cess rights of the protection key instead of individual memory
pages (Figure 1).
Protection key field in page table entry. MPK assigns a
unique protection key to a memory page group to update its
permission at the same time. MPK exploits the previously
unused four bits of each page table entry (from 32nd to 35th
bits) to store a memory page’s corresponding key value. Thus,
MPK supports up to 16 different page groups. Since only
supervised code can access and change PTEs, the Linux ker-
nel (from version 4.6) starts to provide a new system call,
pkey_mprotect(), to allow applications to assign or change
the keys of their memory pages (§2.2).
Protection key rights register (PKRU). MPK uses the value
of PKRU to determine its access right to each page group.
Two bits representing the right are access disable (AD) and
write disable (WD) bits. The value of (AD,WD) represents a
thread’s permission to a page group: read/write (0,0), read-
only (0,1), or no access (1,x). PKRU exists for each hyper-
thread to provide a per-thread view.
Instruction set. MPK introduces two new instructions to
manage the PKRU: (1) WRPKRU to update the protection infor-
mation of the PKRU and (2) RDPKRU to retrieve the current
protection information from the PKRU. WRPKRU uses three reg-
isters as input: the EAX register containing new protection

242 2019 USENIX Annual Technical Conference USENIX Association

Name Cycles Description

pkey_alloc() 186.3 Allocate a new pkey
pkey_free() 137.2 Deallocate a pkey
pkey_mprotect() 1,104.9 Associate a pkey key with memory pages

pkey_get()/RDPKRU 0.5 Get the access right of a pkey
pkey_set()/WRPKRU 23.3 Update the access right of a pkey

Ref. mprotect(): 1,094.0 / MOVQ (rbx to rdx): 0.0 / MOVQ (rdx to xmm): 2.09

Table 1: Overhead of MPK instruction, system calls, and standard
library APIs. ref shows the overhead of mprotect() and normal
register move instructions for comparison. We averaged 10 runs of
microbenchmarks, where each one executes individual instruction,
system call, or API 10 million times while measuring the latency
with the RDTSCP instruction.

information to overwrite the PKRU, and the other two registers,
ECX and EDX, filled with zeroes. RDPKRU also uses the three
registers for its operation: it returns the current PKRU value
via the EAX register while overwriting the EDX register with 0.
The ECX register also should be filled with zeroes to execute
RDPKRU correctly. Note that the actual usage of ECX and EDX
registers is undocumented.

2.2 Kernel Integration and Standard APIs
The Linux kernel has supported MPK since version 4.6,
and glibc has supported MPK since version 2.27. They
focus on how to manage protection keys and how to as-
sign them to particular PTEs. The Linux kernel provides
three new system calls: pkey_mprotect(), pkey_alloc(),
and pkey_free(). The kernel also changes the behavior of
mprotect() to provide execute-only memory. glibc provides
two userspace functions, pkey_get and pkey_set, to retrieve
and update the access rights of a given protection key. Table 1
summarizes the APIs.
pkey_mprotect(). The pkey_mprotect() system call ex-
tends the mprotect() system call to associate a protection
key with the PTEs of a specified memory region while chang-
ing its page protection flag. Interestingly, pkey_mprotect()
does not allow a user thread to reset a protection key to zero,
the default protection key value assigned to newly created
memory pages such that it should be public to avoid acciden-
tal application crashes. We anticipate that resetting a key to
zero is prohibited to avoid such potential crashes made by
mistakes (i.e., denying access to the key zero).
pkey_alloc() and pkey_free(). The Linux kernel provides
two other new system calls to allocate and de-allocate mem-
ory protection keys: pkey_alloc() and pkey_free(). When
a user thread invokes pkey_alloc() with access right, the ker-
nel allocates and returns a protection key with corresponding
permission according to a 16-bit bitmap that tracks which
protection keys are allocated. When a user thread invokes
pkey_free(), the kernel simply marks the freed key as avail-
able in the bitmap. The pkey_mprotect() function examines
the bitmap afterward to prohibit the use of non-allocated keys.
Execute-only memory. The Linux kernel supports execute-

−5

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

L
at

en
cy

(c
yc

le
s)

Number of instructions

Succeeding WRPKRU (W2)
Preceding WRPKRU (W1)

Figure 2: Effect of WRPKRU serialization on simple (i.e., ADD) in-
structions either preceding or succeeding WRPKRU (average of 10
million repetitions).

only memory with MPK. If a user thread invokes mprotect()
only with PROT_EXEC, the kernel (1) allocates a new protection
key, (2) disables the read and write permission of the key, and
(3) assigns the key to the given memory region.

2.3 Quantifying Characteristics of Intel MPK
To evaluate the overhead and benefits of MPK, we measure
(1) the overhead of the MPK instructions, (2) the overhead
of the MPK system calls, and (3) the overhead of mprotect()
for contiguous memory and sparse memory.
Environment. Our system consists of two Intel Xeon Gold
5115 CPUs (each CPU has 20 logical cores at 2.4 GHz) and
192GB of memory. Linux kernel version 4.14 configured for
MPK is installed to this system.
Instruction latency. We measure the latency of RDPKRU and
WRPKRU to identify their micro-architectural characteristics. Ta-
ble 1 summarizes the results. The latency of RDPKRU is similar
to that of reading a general register, but the latency of WRPKRU
is high. We anticipate that WRPKRU performs serialization (e.g.,
pipeline flushing) to avoid potential memory access violation
resulting from out-of-order execution. To confirm this, we
insert various numbers of ADD instructions before (W1) and
after (W2) WRPKRU and measure the overall latency (Figure 2).
The results show that W2 is always slower than W1, implying
that the instructions executed right after WRPKRU fail to benefit
from out-of-order execution because of the serialization.
System calls. We measure the latency of the four Linux
system calls for MPK (Table 1). The latency of mprotect()
and pkey_mprotect() on a 4 KB page is almost the same
because they all rely on do_mprotect_pkey() internally.
pkey_alloc() and pkey_free() are fast since they involve
only simple operations in the kernel, and the domain switch-
ing between kernel and userspace dominates their time costs.
Contiguous versus sparse memory pages. Using MPK to
change page permission involves only an update on the PKRU
and thus is independent of the number of targeted pages and
their sparseness. To show the performance benefit of MPK
over mprotect(), we check how the number and sparseness
of the targeted pages affect the performance of mprotect().

USENIX Association 2019 USENIX Annual Technical Conference 243

0
2
4
6
8

10
12
14
16
18

0
5000

10000
15000

20000
25000

30000
35000

40000

m
s

Number of Pages

mprotect(sparse)
mprotect(contiguous)

Figure 3: Overhead of mprotect() on contiguous and sparse mem-
ory (average cost of 10 million repetitions). Protecting contiguous
pages takes less time than protecting sparse pages.

To construct contiguous memory pages, we call mmap() one
time with certain memory size. For sparse memory pages, we
call mmap() several times with one page size. Figure 3 shows
that the overhead of mprotect() increases in proportion to the
number of pages. The number of pages affects how many vir-
tual memory areas (VMAs) [10] mprotect() needs to look up
for permission update. Moreover, the overhead of mprotect()
on sparse memory pages is high because multiple mprotect()
calls introduce frequent context switchings between kernel
and userspace.

Summary. Intel MPK allows a thread to rapidly change the
per-thread access rights to a group of pages associated with
the same protection key by updating a thread-local register
PKRU which only takes around 20 cycles. Its performance
is independent of the number of pages composing a group
and their sparseness, unlike mprotect().

3 Challenges of Utilizing Intel MPK
In this section, we explain the challenges of using MPK in
terms of security, scalability, and synchronization.

3.1 Potential Security Problem
The existing OS support of MPK [3] suffers from
the protection-key-use-after-free problem. In particular,
pkey_free() just removes a protection key from a key bitmap
and does not update the corresponding PTEs. Regardless of
whether a key could already be associated with some pages,
the kernel will allocate the key if it is freed by pkey_free().
If a program obtains a key that is still associated with some
memory pages through pkey_alloc(), the new page group
will include unintended pages that it is supposed to have. A
developer can face this vulnerable situation unconsciously, as
current kernel implementation neither handles this automat-
ically nor checks if a free key is still associated with some
pages. The developer community also recognized the problem
and recommends not to free the protection keys [2, 13]. Han-
dling this problem superficially (i.e., wiping protection keys
in PTE) without a fundamental design change of memory
management in the kernel will introduce huge performance
overhead because it requires traversing the page table and

VMAs to detect entries associated with a freed key to update
them and flushing all corresponding TLB entries.

3.2 Limited Hardware Resources
Currently, MPK relies on a 32-bit PKRU such that it supports
up to 16 keys. Developers are responsible for ensuring that
an application never creates more than 16 page groups at the
same time. This implies that developers have to examine at
runtime the number of active page groups, which are used
by both the application itself and the third-party libraries it
depends on. Otherwise, the program may fail to properly ben-
efit from MPK. This issue undermines the usability of MPK
and discourages developers from utilizing it actively. Using
a large register (e.g., 1024 bits) does not scale because MPK
needs additional storage to associate keys with pages. For
example, to support 512 protection keys, nine bits are neces-
sary for each PTE, requiring enlarged page tables, shrunken
address bits, or separate storage.

3.3 Semantic Differences
To change the permission of any page group, MPK modifies
the value of the PKRU. However, the value is effective only in
a single thread because PKRU is thread-local intrinsically as a
register. As a result, different threads in a process can have dif-
ferent permissions for the same page group. This thread-local
inherence helps to improve security for the applications that
require isolation on memory access among different threads,
but hinders MPK from optimizing and improving mprotect().
mprotect() semantically guarantees that page permissions
are synchronized among all threads in a process on which
particular applications rely. This not only makes it difficult to
accelerate mprotect() with MPK, but also breaks the guaran-
tee of execute-only memory implemented on mprotect in the
latest kernel. mprotect() supporting executable-only memory
relying on MPK does not consider synchronization among
threads, which developers basically expect of mprotect().
Even when the kernel successfully allocates a key for the
execute-only page, another thread might have a read access to
it due to a lack of synchronization. To make MPK a drop-in
replacement of mprotect() for both security and usability,
developers need to synchronize the PKRU values among all the
threads.

4 Software Abstraction of libmpk
libmpk provides a secure and usable abstraction for MPK by
overcoming the challenges (§3). A developer can use MPK
easily by either adding calls to libmpk APIs or replacing ex-
isting mprotect() calls with those of libmpk. By decoupling
the protection keys from APIs, libmpk is immunized against
protection-key-use-after-free. Also, libmpk allows an applica-
tion to create more than 16 page groups by virtualizing the
protection keys and provides a lightweight inter-thread PKRU
synchronization mechanism. Figure 4 illustrates an overview
of libmpk. The current version of libmpk consists of 1.5k

244 2019 USENIX Annual Technical Conference USENIX Association

100

200

300

7

10

null

virtual

key

hardware

key

page

group

...

Kernel

Userspace

...mpk_begin()

mpk_end() PKRU

Threada
PKRU

Threadb

mpk_mprotect()

mpk_init()

Constant

retrieve keys

pkey:1

page perm: rw-...

pkey:1

page perm: rw-...

pkey:1

page perm: rw-...

prot. key:7

page perm.: rw-...

...
pkey:1

page perm: rw-...

pkey:1

page perm: rw-...

pkey:1

page perm: rw-...

prot. key:7

page perm.: rw-...

...

pkey:1

page perm: rw-...

pkey:1

page perm: rw-...

pkey:1

page perm: rw-...

prot. key:0

page perm.: ---...

PTEs

...

mpk_mmap()

mpk_munmap()

Figure 4: libmpk overview. mpk_init() pre-allocates hardware
keys and initializes the metadata table. mpk_mmap() creates a page
group with metadata, and mpk_munmap() destroys the page group and
the corresponding metadata. mpk_begin() and mpk_end() provide
domain-based thread-local isolation. mpk_mprotect() synchronizes
permission changes globally.

Name Argument Description

mpk_init() evict_rate Initialize libmpk with an eviction rate
mpk_mmap() vkey, addr, len, prot Allocate a page group for a virtual key

flags, fd, offset
mpk_munmap() vkey Unmap all pages related to a given virtual key

mpk_begin() vkey, prot Obtain thread-local permission for a page group
mpk_end() vkey Release the permission for a page group

mpk_mprotect() vkey, prot Change the permission for a page group globally

mpk_malloc() vkey, size Allocate a memory chunk from a page group
mpk_free() size Free a memory chunk allocated by mpk_malloc()

Table 2: libmpk APIs.

lines of C/C++ code in total.
Goals. To utilize MPK for domain-based isolation and as a
substitute for mprotect(), we have to overcome the three chal-
lenges: (1) insecure key management, (2) hardware resource
limitations, and (3) different semantics from mprotect().
libmpk adopts two approaches: (1) key virtualization, and
(2) inter-thread key synchronization, which effectively solve
the challenges. libmpk also protects its internal metadata from
corruption.

4.1 Threat Model and Assumptions
libmpk has the following threat model and assumptions, in
accordance with prior studies [21, 33, 35].
libmpk aims to prevent an adversary from reading from or

writing in sensitive pages through memory corruption vulner-
abilities. libmpk achieves this goal by protecting the sensitive
pages with new MPK APIs and preventing the adversary from
arbitrarily executing the WRPKRU instruction. We assume that
a program should solely use the libmpk APIs to utilize MPK
in a controlled manner. That is, the program should not use
conventional MPK APIs together with the libmpk APIs. Also,
any uncontrolled execution of the WRPKRU instruction should

1 #define GROUP_1 100
2 #define GROUP_2 101
3

4 int domain_based_isolation () {
5 mpk_init(-1); // default eviction rate: 100%
6 char* addr = (char *)mpk_mmap(GROUP_1, NULL, 0x1000,
7 PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
8 // page permission: rw- & pkey permission: --
9

10 mpk_begin(GROUP_1, PROT_READ | PROT_WRITE);
11 // page permission: rw- & pkey permission: rw
12

13 // write data in GROUP_1
14

15 mpk_end(GROUP_1);
16 // page permission: rw- & pkey permission: --
17

18 printf("%s\n", addr); // SEGMENTATION FAULT
19 }
20

21 int quick_permission_change () {
22 mpk_init(0.5); // set cache eviction rate: 50%
23 void* addr = mpk_mmap(GROUP_2, NULL, 0x1000,
24 PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
25 // page permission: rw- & pkey permission: --
26

27 mpk_mprotect(GROUP_2, PROT_READ | PROT_WRITE | PROT_EXEC);
28 // page permission: rwx & pkey permission: rw
29 }

Figure 5: Example code for libmpk APIs.

be prohibited by using existing countermeasures, such as data
execution prevention [1], control-flow integrity [4, 22, 23, 38],
and call gate [35].

4.2 libmpk API
libmpk provides eight APIs, shown in Table 2. To utilize
libmpk, an application first calls mpk_init() to obtain all the
hardware protection keys from the kernel and initialize its
metadata. mpk_mmap() allocates a page group for a virtual key,
which should be a constant integer that the developer passes.
mpk_munmap() destructs a page group by freeing a virtual key
for the group and unmaps all the pages. libmpk maintains the
mappings between virtual keys and pages to avoid scanning
all pages at this destruction step. On top of these, libmpk also
provides simple heap over each page group (mpk_malloc()
and mpk_free()), so that a developer can also use one or more
page groups to create a heap memory region for sensitive data.
libmpk provides two usage models for developers. The first

model, a thread-local domain-based isolation model, allows
an application to temporarily grant permission to a page group
only for the calling thread. mpk_begin() and mpk_end() are
the APIs for this model, which make a page group accessi-
ble and inaccessible, respectively. The second model allows
an application to quickly change the access rights to a page
group by replacing mprotect() with mpk_mprotect(). Fig-
ure 5 shows an example of utilizing libmpk APIs.

4.3 Protection Key Virtualization
libmpk enables an application to create more than 16 page
groups by virtualizing the hardware protection keys. When an
application creates a new page group by calling mpk_mmap(),
a virtual key passed as argument is associated with newly

USENIX Association 2019 USENIX Annual Technical Conference 245

allocated metadata for the new group. The application uses
the virtual key to obtain or release the permission, or free the
group, while being prohibited from manipulating hardware
keys. The exact physical key that a page is associated with is
hidden from the program and developer.
libmpk maintains the mappings between virtual and hard-

ware keys through a cache-like structure (Figure 6). If a virtual
key is already associated with a hardware key, the virtual key
exists inside the cache and further access to it produces a
few latencies. Otherwise, libmpk evicts another virtual key
or does nothing but just invokes mprotect() for performance
to change page permission. The frequency of eviction or
calling mprotect() is determined by the eviction rate. The
cache guarantees that a frequently updated virtual key will be
mapped with a hardware key since it has a high possibility to
be placed into the cache.
libmpk provides two policies to determine the mappings

between virtual and hardware keys. When an application
grants permission to a page group thread-locally by calling
mpk_begin(), libmpk always maps the group’s virtual key
with a hardware key and uses it to grant access to the calling
thread. libmpk maintains the mapping until the thread calls
mpk_end() to release the access. For this reason, libmpk does
not ensure that a calling thread always obtains the access
due to hardware limitations. That is, if all hardware keys are
actively used, libmpk is no longer able to provide any key. In
this case, mpk_begin() raises an exception and lets the calling
thread handle it (e.g., sleeps until a key is available). If a page
group is not used by a thread, libmpk evicts the group by
changing its protection key to 0 (default) and revoking its
page permission to disallow subsequent accesses.

The second policy, mpk_mprotect(), also needs to map the
virtual key to a hardware key, but not exclusively. Even when
the page group is accessible, libmpk can unmap a hardware
key and rely solely on the page attributes because all threads
have the access. Hence, libmpk maps only the page groups
whose access rights change frequently. If libmpk fails to find
an available hardware key when it handles mpk_mprotect(),
it unmaps and uses the least recently used (LRU) key for
handling mpk_mprotect(). The hardware key of the evicted
page group turns to 0. To avoid excessive overhead result-
ing from frequent unmapping, a developer can configure an
eviction rate to control whether a hardware key has to be
evicted according to how frequently its permission updates.
In our approach, enforcing executable-only permission is
not straightforward because a conventional approach (i.e.,
mprotect()) does not support executable-only permission.
Therefore, mpk_mprotect() reserves one key for execute-only
pages when an application creates them first, and does not
evict this key until all executed-only pages disappear. Every
incoming executable-only permission request is guaranteed
to get a hardware protection key to achieve executable-only
permission. If mpk_mprotect() has already been invoked for
executable-only page groups, further requests will merge the

vkey pkey

 24 ?

vkey pkey #threads

 24 10 2
 1 1 0

...

 75 0 0

vkey pkey

 24 10

❶ retrieve ❷ return

(a) Hit case: 1 A thread calls mpk_begin() or mpk_mprotect()with
a vkey; 2 libmpk returns the corresponding pkey immediately.

vkey pkey

 75 ?

vkey pkey #threads

 24 10 2
 1 1→0 0

...

 75 0→1 0

vkey pkey

 75 1

PTEs (vkey=1)

...

pkey: 1→0
...

perm: rw- → ---

PTEs (vkey=75)

...

pkey: 0→1

...

perm: --- → rw-

❶ retrieve

❷ evict and load

❸�return

(only for

mpk_begin)

(b) Miss case: 1 A thread retrieves a vkey, but no corresponding
pkey exists (pkey=0); 2 libmpk evicts the LRU pkey. In addition,
mpk_begin() updates the page permission of the evicted and loaded
page groups using mprotect(); 3 libmpk returns the new pkey.
Figure 6: Key virtualization in libmpk. vkey and pkey represent a
virtual key and its corresponding hardware protection key associated
with a page group. #threads indicates the number of threads running
parallel inside a particular domain.

Userspacempk_mprotect()

do_pkey_sync()

Kernel

PKRU

Threada

state: running

add hooks

return

update

(scheduled)

PKRU

Threadb

state: running

PKRU

Threadc

 state: sleep

task_work

WRPKRU

task_work

WRPKRU

kick

call

...

Figure 7: PKRU synchronization: 1 mpk_mprotect() calls
do_pkey_sync() to update the PKRU values of remote threads;
2 do_pkey_sync() adds hooks to the threads’ task_work; 3
do_pkey_sync() kicks all the running threads for synchronization;
4 do_pkey_sync() returns to its caller; 5 The threads update their
PKRUs when they are scheduled to run.

incoming page groups with the existing executable-only ones
to utilize the reserved key.

The integrity of libmpk metadata (e.g., the mappings be-
tween virtual and hardware keys, and the page group infor-
mation) is important to prevent attackers from manipulating
libmpk’s protection. For the metadata integrity, libmpk maps
each metadata physical page into two virtual pages: a read-
only page for its userspace code and a writable page for its
kernel-space code. Updating the metadata can be done only
by the libmpk kernel module and slightly modified system
calls (e.g., mmap(), munmap(), and mprotect()). Most of sim-
ple metadata retrieval can be done by the userspace code to
avoid unnecessary user-kernel mode switches.

246 2019 USENIX Annual Technical Conference USENIX Association

Application Protection Protected data #pkeys #vkeys Changed LoC

OpenSSL Isolation Private key 1 1 83
JIT (key/page) W⊕X Code cache 15 > 15 CC 10 | SM 18
JIT (key/process) W⊕X Code cache 1 1 CC 18 | SM 24 | v8 134
Memcached Isolation Slab, hashtable 2 2 117

Table 3: Three real-world applications of libmpk. To enable W⊕X in
JavaScript engines, we use two approaches, including using a virtual
key for every page in the code cache (One key per page) and using a
single protection key for all the pages in the code cache (One key per
process). CC, SM, and v8 indicate Microsoft ChakraCore, Mozilla
SpiderMonkey, and Google v8, respectively. pkeys and vkeys stand
for protection keys and virtual keys, respectively.

4.4 Inter-thread Key Synchronization
libmpk implements an inter-thread PKRU synchronization tech-
nique, do_pkey_sync(), in mpk_mprotect() for two purposes:
(1) to ensure no thread has the read access to an execute-only
page and (2) to replace existing page-table-based mprotect()
for performance. do_pkey_sync() guarantees that a PKRU up-
date is globally visible and effective as soon as it returns.
Intuitively, this requires a synchronous inter-thread commu-
nication; the calling thread needs to send messages to the
other threads and wait until they update the PKRU value and
acknowledge it, which suffers from a high cost.

We minimize the inter-thread PKRU synchronization latency
in a lazy manner, leveraging the fact that the PKRU values are
utilized in the userspace. If a remote thread is not currently
being scheduled, it does not need the up-to-date PKRU value
immediately. Even if the thread is currently being scheduled,
we only need to update its PKRU value when it returns to the
userspace. If the calling thread can create a hook that the
other threads will invoke right before jumping back to the
userspace and ensure that they are not in the userspace, we
can guarantee that all the other threads have the new PKRU
value when do_pkey_sync() returns. Figure 7 illustrates the
overall procedure of mpk_mprotect(). do_pkey_sync() uti-
lizes an existing hooking point in the Linux kernel to enforce
the remote threads to update the PKRU values right before re-
turning to the userspace and ensures that all threads use the
new PKRU value by sending rescheduling interrupts. In Linux,
a thread can register a list of callback functions (task_work)
that are invoked at designated points (e.g., when returning
to the userspace) by calling task_work_add(). In this way,
do_pkey_sync() guarantees that all the remote threads even-
tually acquire the new PKRU value. Although do_pkey_sync()
still needs to send inter-processor interrupts to ensure that no
other thread uses the old PKRU value after a certain point, our
evaluation shows that the overall latency of mpk_mprotect()
is less than that of mprotect() (§6.2).

5 Applications
We demonstrate the security benefit, efficiency, and usability
of libmpk by augmenting three types of popular applications:

an SSL library, three JavaScript Just-in-time (JIT) compilation
engines, and an in-memory key-value store. Table 3 summa-
rizes the mechanisms (e.g., page isolation or W⊕X) that we
aim to provide as well as the protected data (e.g., key or code).
Evaluation results are described in §6.

5.1 OpenSSL
OpenSSL is a popular open-source library implementing the
secure sockets layer (SSL) and transport layer security (TLS)
protocols. Since it manages sensitive information (e.g., pri-
vate keys and encrypted data), its information leakage bugs
are security-critical. For example, OpenSSL’s Heartbleed
bug [26] allowed attackers the chance to leak sensitive data
from millions of web servers.

We apply libmpk to OpenSSL to protect its private keys
from potential information leakage by storing the keys in iso-
lated memory pages. More specifically, the isolated memory
pages are protected by single pkey or multiple pkeys assigned
per private key to show the trade-off between performance and
security. First, we identify all the data types that store private
keys (e.g., EVP_PKEY) and replace their heap memory alloca-
tion function from OpenSSL_malloc() to mpk_malloc() for
single pkey or mpk_mmap() for multiple pkeys to store them in
an isolated memory region. Next, we locate all the functions
that access private keys (e.g., pkey_rsa_decrypt()) and mod-
ify them to access the isolated memory region by inserting
mpk_begin() and mpk_end() before and after their call sites.
Note that assigning pkey per private key offers finer-grained
security, which minimizes the attack window for the isolated
memory region. For example, even if a function whose call
site is located between mpk_begin() and mpk_end() has a
memory leakage bug, it cannot access any other isolated pages
except the single page isolated with the pkey provided to
mpk_begin() as argument.

5.2 Just-in-time (JIT) Compilation
JIT compilation dynamically translates interpreted script lan-
guages, e.g., JavaScript and ActionScript, into native machine
code or bytecode to avoid the overhead of full compilation and
repeated interpretation. Technically, it relies on writable code,
resulting in potential arbitrary code execution. To support
JIT compilation, the code cache that stores code generated
at runtime needs to be writable for a JIT compilation thread
and be executable for an execution thread. Thus, if attackers
compromise the JIT compilation thread, they can make the
execution thread execute the code they provide.

ChakraCore [27] and SpiderMonkey [28] mitigate the
above-mentioned problem by enforcing the W⊕X security
policy on the code cache with mprotect(). They make the
code cache writable while disallowing execution when they
are updating code, and, after it has updated, they make the
code cache executable while disallowing write. However,
they can suffer from race condition attacks [33] because they
use mprotect() to change page permissions; that is, when a

USENIX Association 2019 USENIX Annual Technical Conference 247

thread makes the code cache writable with mprotect(), other
threads compromised by attackers can also manipulate the
code cache with the same permission.

We apply libmpk to the three popular JavaScript engines
(SpiderMonkey, ChakraCore, and v8) to enforce the W⊕X
security policy without the race condition problem while
ensuring better performance. We propose two approaches
to implement the W⊕X policy with libmpk.
One key per page. A context-free solution is to replace
mprotect() with libmpk APIs to perform fast permission
switches on targeted pages in the code cache. All the protec-
tion keys are initialized with read-only permission when a
new thread is created. We dedicate one protection key to one
page when it is the first time to be re-protected via mprotect()
and change its page permission to rwx. Later, we only need
to call mpk_begin() and mpk_end() before and after when
the JIT compiler updates the corresponding page. Based on
the observation that generally only one page is updated at
a time, we still invoke mprotect() if multiple pages change
permission.
One key per process. Another approach is to use a single
protection key for the entire code cache. When pages are first
committed from the preserved memory region into the code
cache, they are assigned with the protection key and their page
permission is set to rwx. Whenever any page in the code cache
is to be updated, the script engine needs to call mpk_begin()
and mpk_end(). Although more pages become temporarily
writable, the security of the code cache is ensured thanks to
the per-thread view of the protection key.

5.3 In-Memory Key-Value Store
In-memory key-value stores, such as Memcached, are widely
used to manage a large amount of data in memory to ensure
low latency and high throughput. With a high requirement
for performance, such key-value stores normally avoid us-
ing security techniques whose performance depends on input
size (e.g., mprotect() and encryption) to protect stored data.
This implies that, if an in-memory key-value store has arbi-
trary read or write vulnerabilities, attackers are able to leak or
corrupt sensitive information stored inside.
libmpk manages to efficiently mitigate such attacks. To

demonstrate this, we apply libmpk to Memcached. libmpk
protects Memcached’s slabs that contain values and hash
tables that maintain key-value mappings by replacing Mem-
cached’s malloc() function with mpk_malloc(), and wraps
the call sites of all the legitimate functions (e.g., ITEM_key()
and assoc_find()), which operate on protected data with
mpk_begin() and mpk_end(). Note that we assign two differ-
ent keys to slabs and hash tables, to narrow the attack surface.
It is possible to use more keys to secure slabs in a fine-grained
manner, e.g., differentiating them according to their sizes.
More importantly, libmpk’s performance is independent of
the size of memory to protect, and thereby efficiently works
with Memcached even when protecting data of several giga-

bytes.

6 Evaluation
In this section, we evaluate libmpk in terms of its security
implication and performance by answering the following ques-
tions:

• What security guarantees does libmpk provide? (§6.1)
• Does libmpk solve the security, scalability, and semantic-

gap problems of existing MPK APIs without introducing
much performance overhead? (§6.2)

• Does libmpk have negligible performance impact and
outperform mprotect() in real-world applications?
(§6.3)

The same system environment explained in §2.3 is used for
performance evaluations.

6.1 Security Evaluation
We first evaluate the security benefits from libmpk regarding
memory protection and isolation. For OpenSSL and Mem-
cached, libmpk provides domain-based isolation to protect
memory space that stores sensitive data. The permission for
the particular memory space set by libmpk is locally effective,
which also prevents malicious accesses from other compro-
mised threads. In particular, exploiting a memory corruption
bug to leak or ruin sensitive data stored in the isolated pages is
killed by segmentation faults resulting from the lack of permis-
sion. To verify this, we mimic the Heartbleed vulnerability by
deliberately introducing a heap-out-of-bounds read bug and
inserting a decoy private key placed next to the victim heap
region. When the vulnerability is triggered, OpenSSL hard-
ened by libmpk crashes with invalid memory access. How-
ever, libmpk cannot fully mitigate memory leakage that origi-
nates inside the protected domain. Thus, developers should
carefully design the domain to minimize the potential attack
surface when using libmpk in their applications.

JavaScript JIT compilers can use libmpk to guarantee
W⊕X for JIT code pages. Unlike mprotect(), libmpk is im-
mune to race condition attacks launched by compromised
threads running in parallel resulting from the thread-local
effectiveness of protection keys. When the JIT compiler uses
libmpk to switch the permission of a code page for updates,
other threads controlled by attackers cannot write malicious
shellcode into the page simultaneously. To verify this, we
introduce two custom JavaScript APIs for arbitrary memory
read and write to SpiderMonkey and ChakraCore, and test a
simple PoC that leverages these two APIs to locate a JIT code
page and write shellcode into it. Both engines crash with a
segmentation fault at the end.

6.2 Microbenchmarks
We run several microbenchmarks to understand the perfor-
mance behavior of APIs in libmpk.
Cache performance. libmpk introduces a cache to enable
protection on more than 16 page groups, whose performance

248 2019 USENIX Annual Technical Conference USENIX Association

0
0.5

1
1.5

2
2.5

3

0 25 50 7510
0

0
0.5

1
1.5

2
2.5

3

0 25 50 7510
0

0
0.5

1
1.5

2
2.5

3

0 25 50 7510
0

0
2
4
6
8

10
12
14

0 25 50 7510
0

0
2
4
6
8

10
12
14

0 25 50 7510
0

0
2
4
6
8

10
12
14

0 25 50 7510
0

Ti
m

e
(µ

s)

<4, 100%>

<1, 100%>
hit

miss
mprotect

<4, 50%>

<#threads, eviction rate>
<1, 50%>

<4, 25%>

<1, 25%>

Hit rates (%)

Figure 8: Latency of libmpk’s key cache with various hit rates, evic-
tion rates, and different number of threads. mpk_mprotect() and
mprotect() are invoked on a 4 KB page. Red line marks the over-
head of mprotect(). When the hit rate is 100%, mpk_mprotect() is
12.2× faster than mprotect() for one thread and 3.11× faster for
four threads.

is affected by its eviction rate and hit rate and the number of
virtual keys in use. We run the following two microbench-
marks to check the cache performance.

Hit rate and eviction rate. The first benchmark measures
cache performance with different hit rates, eviction rates, and
number of threads. We run the benchmark with both one
thread and four threads, where each thread warms up by filling
the key cache to evade cold miss and invokes mpk_mprotect()
on one page for a hundred times after 15 entries are filled.
Figure 8 presents the evaluation results, where (1) the green
box indicates the overhead incurred by the cache hit, which
is dominated by the time cost on WRPKRU and maintaining
internal data structures; (2) the blue box indicates the over-
head incurred by the cache miss, which is dominated by the
time cost on key eviction. More specifically, mpk_mprotect()
needs to unset the protection key that is to be evicted and
bind a new virtual key to it. We test the microbenchmark with
three eviction rates that indicate the ratio of cache misses
that eventually leads to key eviction. If a cache miss occurs
without key eviction, mprotect() is invoked to change the
permission of the pages.

Experimental results show that mpk_mprotect() outper-
forms mprotect() except when the cache hit rate is below
25% with an eviction rate above 50%. This is because, unlike
mprotect(), mpk_mprotect() does not merge and split the
VMAs of targeted pages. It becomes slow when being tested
with four threads, but is still comparable with mprotect(),
whose latency also increases in a multi-threading program.

Number of virtual keys. To evaluate how the number of
used virtual keys affects the cache performance of libmpk,
we re-implement W⊕X in ChakraCore in a one-key-per-page
approach (see §5.2) and set the eviction rate as 100%. To
introduce an increasing number of pages to be protected (i.e.,

0
100
200
300
400
500
600
700
800
900

1000

0 5 10 15 20 25 30 35

Ti
m

e
(µ

s)

Number of hot functions

mprotect()
libmpk

Figure 9: Average time cost to update permission when original
and modified ChakraCore JIT-compile an increasing number of hot
functions demanding distinct virtual keys.

an increasing number of virtual keys to be used) during the
execution of ChakraCore, we design a simple microbench-
mark. The microbenchmark consists of a set of JavaScript
files, and the ith file contains i hot functions being invoked
for 100,000 times. For each hot function, ChakraCore allo-
cates one new executable page to store the native code and
performs nine permission switches on the page through one
virtual key at runtime. Without any hot function, ChakraCore
allocates one page in the code cache. We run the original
ChakraCore (version 1.9.0.0-beta) and the modified one with
our microbenchmarks, and record the time cost of changing
permission of the pages in the code cache (i.e., the execu-
tion time of VirtualProtect() and that of mpk_begin() and
mpk_end()) in total. Each JavaScript file is executed 200 times,
and the average time is presented in Figure 9.

The result shows that with the libmpk-based implementa-
tion of W⊕X, the time cost on permission switches linearly
increases when more hot functions are emitted and thus more
virtual keys are allocated to protect the code pages of the hot
functions. In particular, after 15 virtual keys are allocated
(marked in red), the time cost increases slightly faster than
before (marked in blue) as a result of cache eviction. Never-
theless, the ChakraCore hardened by libmpk still outperforms
by 3.2× the original ChakraCore using mprotect() to enforce
W⊕X.

Memory overhead. libmpk dedicates memory space to
store its internal data structures for maintaining the meta-
data of these page groups under protection (see §4.3). Each
mpk_mmap() allocates 32 bytes of memory to store the infor-
mation of a new page group (e.g., base address and size).
libmpk maintains a hashmap to store the mapping between
virtual keys and hardware keys for fast query and access. In
the current implementation, we pre-allocate 32 KB of mem-
ory for the hashmap, and its size will automatically expand
when a program invokes mpk_mmap() more than about 4,000
times.

Synchronization latency. Figure 10 shows the la-
tency of inter-thread permission synchronization using
mpk_mprotect() and mprotect() on memory of varying sizes.

USENIX Association 2019 USENIX Annual Technical Conference 249

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35 40

L
at

en
cy

(µ
s)

Number of threads

mprotect() (4,000 KB)
mprotect() (400 KB)
mprotect() (40 KB)
mprotect() (4 KB)
mpk_mprotect()

Figure 10: Latency of inter-thread permission synchronization using
mpk_mprotect() and mprotect() calls on memory of varying sizes.
mpk_mprotect() outperforms mprotect() 1.73× for a single page
and 3.77× for 1,000 pages.

mpk_mprotect() is 1.73× faster than mprotect() when up-
dating the permission of a single page. The latency of
mprotect() increases with the number of pages it changes due
to the expensive operations of managing VMAs. Compared to
mpk_mprotect(), mprotect() costs at least 3.78× to change
the permission of 1,000 pages. The performance overhead of
mpk_mprotect() is independent of the number of pages whose
permission has been updated. Figure 10 also shows that when
there are many threads, the latency of both mprotect() and
mpk_mprotect() increases; mprotect() flushes more TLBs,
whereas mpk_mprotect() creates many hooks in the kernel.

6.3 Application Benchmarks
We measure the performance overhead of libmpk in practice
by evaluating three applications proposed in §5.
OpenSSL. The Apache HTTP server [12] (httpd) uses
OpenSSL to implement SSL/TLS protocols. To evaluate the
overhead caused by libmpk, which is introduced to protect
private keys, we use ApacheBench to test httpd with both the
original OpenSSL library and the modified one with libmpk.
ApacheBench is launched 10 times and each time sends 1,000
requests of different sizes from four concurrent clients to the
server. We choose the DHE-RSA-AES256-GCM-SHA256 al-
gorithm with 1024-bit keys as a cipher suite in the evaluation.

Figure 11 presents the evaluation result. On average,
libmpk introduces 0.58% and 4.82% performance overhead,
respectively, in terms of the throughput. In the single pkey
case, the negligible overhead mainly comes from internal
data structure maintenance in libmpk. In the multiple pkeys
case, httpd utilizes more than 1,000 pkeys, as it allocates
a new pkey while creating a new session. These pkeys are
maintained by cache invoke eviction, so the multiple pkeys
generates higher overhead than the single pkey case.
Just-in-time compilation. We applied two proposed W⊕X
solutions based on libmpk, namely, one key per page and
one key per process (§5.2) to both SpiderMonkey (version
59.0) and ChakraCore (version 1.9.0.0-beta) and evaluated
their performance with the Octane benchmark [15], which
involves heavy JIT-compilation workloads at runtime. Each

0
200
400
600
800

1000
1200
1400
1600

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

0
0.2
0.4
0.6
0.8

1
1.2
1.4

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

re
qu

es
t/s

ec

size of each request (KB)

original
libmpk (1 pkey)

libmpk (1000+ pkeys)

no
rm

al
iz

ed
th

ro
ug

hp
ut

Figure 11: Throughput of original httpd and httpd hardened by
libmpk. Protecting private keys with single pkey and 1000+ pkeys,
libmpk slows down httpd by at most 2.52% and 18.84% respectively.
The averages of overhead are 0.58% and 4.82% respectively.

0.9
0.95

1
1.05

1.1

0.9
1

1.1
1.2
1.3

Rich
ard

s

Delt
aB

lue

Cryp
to

Ray
Trac

e

Earl
ey

Boy
er

Reg
Exp

Spla
y

Spla
yL

ate
nc

y

Nav
ier

Stok
es
PdfJ

S

M
an

dre
el

M
an

dre
elL

at.

Gam
eb

oy

Cod
eL

oa
d

Box
2D zli

b

Typ
esc

rip
t
Tota

l

N
or

m
.s

co
re

(a) SpiderMonkey
mprotect() key/page key/process

(b) ChakraCore

Figure 12: Octane benchmark scores of SpiderMonkey and Chakra-
Core with original and libmpk-based W⊕X solutions. libmpk out-
performs the original, mprotect()-based defense by at most 4.75%
(SpiderMonkey) and 31.11% (ChakraCore).

0.7
0.8
0.9

1

Rich
ard

s

Delt
aB

lue

Cryp
to

Ray
Trac

e

Earl
ey

Boy
er

Reg
Exp

Spla
y

Spla
yL

ate
nc

y

Nav
ier

Stok
es
PdfJ

S

M
an

dre
el

M
an

dre
elL

at.

Gam
eb

oy

Cod
eL

oa
d

Box
2D zli

b

Typ
esc

rip
t
Tota

lN
or

m
.s

co
re

No prot. libmpk SDCG

Figure 13: Octane benchmark scores of original v8 and two mod-
ified versions of v8 ensuring W⊕X by SDCG and libmpk. libmpk
only introduces 0.81% overall performance overhead for W⊕X in
v8, compared with 6.68% caused by SDCG.

JavaScript program in the benchmark was directly executed
by the original and modified script engines for 20 times, and
we calculated the average score (Figure 12).

For SpiderMonkey, both libmpk-based approaches out-
perform the mprotect()-based approach on the total score,
namely, 0.38% and 1.26%, which is consistent with the claim
from Firefox developers that enabling W⊕X with mprotect()
in SpiderMonkey introduces less than 1% overhead for the
Octane benchmark. The reason is that SpiderMonkey is de-
signed to get rid of unnecessary mprotect() calls when its
JIT compiler works. The performance scores of nearly all

250 2019 USENIX Annual Technical Conference USENIX Association

0

100

200

300

400

500

250 500 750 1000
0

200

400

600

800

1000

250 500 750 1000

K
by

te
/s

ec

#connections

original
mpk_begin

mpk_mprotect
mprotect

#u
nh

an
dl

ed
co

nn
ec

tio
ns

Figure 14: Throughput and unhandled concurrent connections of
original Memcached and three versions of Memcached whose key-
value pairs are protected by mpk_begin(), mpk_mprotect(), and
mprotect(). mpk_begin()’s overhead is negligible compared to the
original. mpk_mprotect() outperforms mprotect() 8.1× while en-
suring the same semantics.

the programs increase through one key per page (at most
3.60% on Box2D) and one key per process (at most 4.75% on
Box2D), except for SplayLatency protected by one key per
page (dropped by 1.36%). SplayLatency becomes worse be-
cause it barely updates the code cache such that the initial
overhead to associated keys with pages cannot be hidden.

Our two libmpk-based approaches improve ChakraCore by
1.01% and 4.39% on the total score of the Octane benchmark,
respectively. ChakraCore is suitable for libmpk-based W⊕X
solutions since it only makes one page writable per time
regardless of emitted code size. One key per page increases
the performance score of ChakraCore at most 7.96% when
testing SplayLatency, while one key per process improves
the performance by at most 31.11% on Box2D. Similar to
the results of SpiderMonkey, we observe a few performance
degradations when benchmarks rarely update code cache.

For v8, we compare our approach with a mprotect()-based
scheme, SDCG [33]. SDCG protects the JIT code pages of v8
with W⊕X by emitting the code in a dedicated process. No
other processes can change the code pages. To demonstrate
the performance advantage of our in-process libmpk-based
approaches, which are free of race condition attacks, we ap-
plied one of our approaches, one key per process, to Google
v8 (version 3.20.17.1 used in [33]) and evaluated the per-
formance through the Octane benchmark as well. Figure 13
presents the performance comparison among the original v8,
v8 with SDCG, and v8 with libmpk. Note that originally, v8
has not deployed W⊕X to protect its code cache so far. Our
approach only introduces 0.81% overall performance loss,
compared with 6.68% caused by SDCG.

To summarize, our libmpk-based approaches, which are
free of the race condition attacks, outperform the mprotect()-
based approach currently applied in practice to enforce W⊕X
protection on code cache pages with negligible overhead.
In-memory key-value store. To study the performance over-
head of libmpk when protecting large memory, we evaluate
the modified Memcached whose key-value pairs are isolated
by libmpk. More specifically, the modified Memcached pre-

allocates 1 GB memory, which is used instead of slab pages
allocated by glibc malloc() to store key-value pairs. Besides
the original Memcached, we also evaluate the Memcached
whose key-value pairs are protected by mprotect(). To study
the performance of mpk_mprotect() in real-world applica-
tions, we also create the Memcached guarded by libmpk
with permission synchronized as another evaluation target
for comparison. Each aforementioned version of Memcached
launches with four concurrent threads, and we connect to it
remotely through twemperf [34]. We create from 250 to 1,000
connections per second, and 10 requests are sent during each
connection.

Figure 14 presents the evaluation results. The modified
Memcached hardened by libmpk only has 0.01% overhead
in terms of data throughput and almost no overhead regard-
ing concurrent connections processed per second, which in-
dicates that libmpk performs well even when protecting a
huge number of pages. By contrast, mprotect() introduces
nearly 89.56% overhead in terms of data throughput when
protecting 1 GB memory in Memcached and a large num-
ber of unhandled concurrent connections accumulate in this
case. This is because mprotect() involves page table travers-
ing, which is considered expensive when dealing with a large
number of pages. To evaluate the synchronization service
of libmpk in practice, we also run Memcached protected by
mpk_mprotect(). This design ensures the same semantics but
outperforms mprotect() 8.1× regarding throughput.
libmpk provides the same functionality of mprotect()with

much better performance when protecting huge memory.
Moreover, in multi-threading applications, using mprotect()
to ensure in-thread memory isolation requires lock, which
is not required when using libmpk because of its inherent
property.

7 Discussion
In this section, we discuss a potential attack on both Intel
MPK and libmpk.
Rogue data cache load (Meltdown). We found that Intel
MPK can suffer from the rogue data cache load, also known as
the Meltdown attack [19,24]. The Meltdown attack is possible
because current Intel CPUs check the access permission to a
specific memory page after they have loaded it into the cache.
MPK is not an exception because Intel CPUs check the access
rights of PKRU when checking the page permission at the same
pipeline phase. This allows attackers to infer the content of
a present (accessible) page even when its protection key has
no access right. Since Intel is considering hardware-level
mitigation techniques [19], we believe this problem will be
solved in the near future.

8 Related Work
MPK applications. While conducting our study, we no-
ticed that there were a few ongoing studies using MPK to
achieve different goals. Burow et al. [8] leverage both MPK

USENIX Association 2019 USENIX Annual Technical Conference 251

and memory protection extension (MPX) to efficiently iso-
late the shadow stack. ERIM [35] utilizes MPK to isolate
sensitive code and data. MemSentry [21] provides a unified
memory isolation framework to use various hardware features,
including MPK and Memory Protection Extensions (MPX),
with the same interface. XOM-Switch [39] relies on MPK
to enable execute-only memory for unmodified binaries, and
IskiOS [16] leverages MPK and kernel page table isolation
(KPTI) to enforce execute-only memory in kernel. Our effort
to provide a software abstraction for MPK is orthogonal to
these studies, which are all potential applications of libmpk.
These schemes can leverage libmpk to achieve secure and
scalable key management to create as many sensitive memory
regions as required securely.
Memory protection with other hardware features. Other
hardware features exist for efficient memory protection such
as ARM Domain [5] and IBM Storage Protection [18], which
have a similar concept to MPK. For instance, ARMlock [40],
FlexDroid [31], and Shreds [9] rely on Domain to isolate
untrusted program modules, third-party libraries, and sensi-
tive code modules, respectively. libmpk helps to port these
applications from ARM to the Intel platform.
Software-based fault isolation (SFI). SFI [36] prohibits
unintended memory accesses by inserting address masking
instructions just before load and store instructions. This idea
motivates many applications to utilize and further optimize it.
Sandboxing mechanisms, such as Native Client (NaCl) [14,
30], relies on SFI to isolate untrusted code. Code-Pointer
Integrity [23] also uses SFI to protect the code pointers from
unsanitized memory accesses. SFI enables an application
to partition its memory into multiple regions, but the cost
of address masking limits the shape of partitions, which are
commonly contiguous pieces of memory. By contrast, MPK
enables an application to partition the memory into the regions
with arbitrary shape. Further, the overhead of SFI on address
masking increases by the number of isolated memory regions,
unlike MPK.
Multiple virtual address spaces. Using multiple virtual ad-
dress spaces for a single program can protect the memory of
sensitive or untrusted components from the others. Some sys-
tems [7, 17, 29, 37] rely on multiple page tables to isolate the
memory of threads in a single process from each other. Other
systems [6, 11, 25] also provide different memory views to in-
dividual threads or small execution units using separated page
tables. Kenali [32] uses a page-table-based isolation mecha-
nism to protect sensitive data in which a separate page table
is created for each thread. Unlike libmpk, these mechanisms
suffer from non-negligible performance overhead resulting
from slow and frequent page table switches.

9 Conclusion
Intel MPK supports efficient per-thread permission control
on groups of pages. However, its hardware implementation
and software support suffer from security, scalability, and

semantic-gap problems. libmpk proposes a secure, scalable,
and semantic-gap-mitigated software abstraction of MPK for
developers to perform fast memory protection and domain-
based isolation in their applications. Evaluation results show
that libmpk incurs negligible performance overhead (<1%) for
domain-based isolation and better performance for a substi-
tute of mprotect() when adopted to real-world applications:
OpenSSL, JavaScript JIT compiler, and Memcached.

10 Acknowledgment
We thank the anonymous reviewers, and our shepherd,
John Criswell, for their helpful feedback. This research
was supported, in part, by the NSF award CNS-1563848,
CNS-1704701, CRI-1629851 and CNS-1749711 ONR under
grant N00014-18-1-2662, N00014-15-1-2162, N00014-17-1-
2895, DARPA TC (No. DARPA FA8650-15-C-7556), and
ETRI IITP/KEIT[B0101-17-0644], and gifts from Facebook,
Mozilla and Intel.

References
[1] "Exec Shield", new Linux security feature, 2003. https:
//lwn.net/Articles/31032/.

[2] Linux kernel, v4.20, 2018. https://elixir.
bootlin.com/linux/v4.20-rc1/source/mm/
mprotect.c#L630.

[3] Pkeys(7) linux programmer’s manual, 2018.
http://man7.org/linux/man-pages/man7/
pkeys.7.html.

[4] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay
Ligatti. Control-flow integrity. In Proceedings of the
12th ACM Conference on Computer and Communica-
tions Security (CCS), Alexandria, VA, November 2005.

[5] ARM. ARM® Architecture Reference Manual ARMv7-
A and ARMv7-R edition, 2018.

[6] A. Bittau, P. Marchenko, M. Handley, and B. Karp.
Wedge: Splitting Applications into Reduced-Privilege
Compartments. In Proceedings of the 5th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion (NSDI), San Francisco, CA, April 2008.

[7] David Brumley and Dawn Song. Privtrans: Automati-
cally partitioning programs for privilege separation. In
Proceedings of the 13th USENIX Security Symposium
(Security), San Diego, CA, August 2003.

[8] Nathan Burow, Xinping Zhang, and Mathias Payer. SoK:
Shining light on shadow stacks. In Proceedings of the
40th IEEE Symposium on Security and Privacy (Oak-
land), San Francisco, CA, May 2019.

[9] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang
Sun, and Long Lu. Shreds: Fine-grained Execution

252 2019 USENIX Annual Technical Conference USENIX Association

https://lwn.net/Articles/31032/
https://lwn.net/Articles/31032/
https://elixir.bootlin.com/linux/v4.20-rc1/source/mm/mprotect.c#L630
https://elixir.bootlin.com/linux/v4.20-rc1/source/mm/mprotect.c#L630
https://elixir.bootlin.com/linux/v4.20-rc1/source/mm/mprotect.c#L630
http://man7.org/linux/man-pages/man7/pkeys.7.html
http://man7.org/linux/man-pages/man7/pkeys.7.html

Units with Private Memory. In Proceedings of the 37th
IEEE Symposium on Security and Privacy (Oakland),
San Jose, CA, May 2016.

[10] Gustavo Duarte. How the Kernel Manages Your Mem-
ory, 2009. https://manybutfinite.com/post/
how-the-kernel-manages-your-memory/.

[11] Izzat El Hajj, Alexander Merritt, Gerd Zellweger, Dejan
Milojicic, Reto Achermann, Paolo Faraboschi, Wen-mei
Hwu, Timothy Roscoe, and Karsten Schwan. SpaceJMP:
Programming with Multiple Virtual Address Spaces. In
Proceedings of the 21st ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), Atlanta, GA, April
2016.

[12] Apache Software Foundation. Apache HTTP Server
Project, 2018. https://httpd.apache.org/.

[13] Free Software Foundation. The gnu c library, 2018.
https://www.gnu.org/software/libc/manual/
html_mono/libc.html#Memory-Protection.

[14] Google. NaCl SFI model on x86-64 sys-
tems. https://developer.chrome.com/
native-client/reference/sandbox_
internals/x86-64-sandbox.

[15] Google. The JavaScript Benchmark Suite for the mod-
ern web, 2017. https://developers.google.com/
octane.

[16] Spyridoula Gravani, Mohammad Hedayati, John
Criswell, and Michael L. Scott. IskiOS: Lightweight
defense against kernel-level code-reuse attacks. arXiv
preprint arXiv:1903.04654, 2019.

[17] Terry Ching-Hsiang Hsu, Kevin Hoffman, Patrick Eu-
gster, and Mathias Payer. Enforcing Least Privilege
Memory Views for Multithreaded Applications. In Pro-
ceedings of the 23rd ACM Conference on Computer
and Communications Security (CCS), Vienna, Austria,
October 2016.

[18] IBM. Power ISATM Version 3.0 B, 2017.

[19] Intel. Intel Analysis of Speculative Execution Side Chan-
nels, 2018.

[20] Intel. Intel® 64 and IA-32 Architectures Software De-
veloper’s Manual, 2018.

[21] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida,
and Elias Athanasopoulos. No Need to Hide: Protecting
Safe Regions on Commodity Hardware. In Proceedings
of the 12th European Conference on Computer Systems
(EuroSys), Belgrade, Serbia, April 2017.

[22] Hyungjoon Koo, Yaohui Chen, Long Lu, Vasileios P Ke-
merlis, and Michalis Polychronakis. Compiler-assisted
Code Randomization. In Proceedings of the 39th IEEE
Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2018.

[23] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea,
R. Sekar, and D. Song. Code-Pointer Integrity. In Pro-
ceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Broom-
field, Colorado, October 2014.

[24] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading Kernel Mem-
ory from User Space. In Proceedings of the 27th
USENIX Security Symposium (Security), Baltimore, MD,
August 2018.

[25] James Litton, Anjo Vahldiek-Oberwagner, Eslam El-
nikety, Deepak Garg, Bobby Bhattacharjee, and Peter
Druschel. Light-Weight Contexts: An OS Abstraction
for Safety and Performance. In Proceedings of the
12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Savannah, GA, November
2016.

[26] N. Mehta and Codenomicon. The Heartbleed Bug, 2014.
http://heartbleed.com/.

[27] Microsoft. ChakraCore is the core part of the Chakra
Javascript engine that powers Microsoft Edge, 2018.
https://github.com/Microsoft/ChakraCore.

[28] Mozilla. Spidermonkey, 2018. https:
//developer.mozilla.org/en-US/docs/
Mozilla/Projects/SpiderMonkey.

[29] Niels Provos, Markus Friedl, and Peter Honeyman. Pre-
venting Privilege Escalation. In Proceedings of the 12th
USENIX Security Symposium (Security), Washington,
DC, August 2003.

[30] David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko,
Egor Pasko, Karl Schimpf, Bennet Yee, and Brad Chen.
Adapting Software Fault Isolation to Contemporary
CPU Architectures. In Proceedings of the 19th USENIX
Security Symposium (Security), Washington, DC, Au-
gust 2010.

[31] Jaebaek Seo, Daehyeok Kim, Donghyun Cho, Taesoo
Kim, and Insik Shin. FlexDroid: Enforcing In-App
Privilege Separation in Android. In Proceedings of the
2016 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, February 2016.

USENIX Association 2019 USENIX Annual Technical Conference 253

https://manybutfinite.com/post/how-the-kernel-manages-your-memory/
https://manybutfinite.com/post/how-the-kernel-manages-your-memory/
https://www.gnu.org/software/libc/manual/html_mono/libc.html#Memory-Protection
https://www.gnu.org/software/libc/manual/html_mono/libc.html#Memory-Protection
https://developer.chrome.com/native-client/reference/sandbox_internals/x86-64-sandbox
https://developer.chrome.com/native-client/reference/sandbox_internals/x86-64-sandbox
https://developer.chrome.com/native-client/reference/sandbox_internals/x86-64-sandbox
https://developers.google.com/octane
https://developers.google.com/octane
http://heartbleed.com/
https://github.com/Microsoft/ChakraCore
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey

[32] Chengyu Song, Byoungyoung Lee, Kangjie Lu,
William R. Harris, Taesoo Kim, and Wenke Lee. Enforc-
ing Kernel Security Invariants with Data Flow Integrity.
In Proceedings of the 2016 Annual Network and Dis-
tributed System Security Symposium (NDSS), San Diego,
CA, February 2016.

[33] Chengyu Song, Chao Zhang, Tielei Wang, Wenke Lee,
and David Melski. Exploiting and Protecting Dynamic
Code Generation. In Proceedings of the 2015 Annual
Network and Distributed System Security Symposium
(NDSS), San Diego, CA, February 2015.

[34] Twitter. twemperf, 2018. https://github.com/
twitter-archive/twemperf.

[35] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O.
Duarte, Michael Sammler, Peter Druschel, and Deepak
Garg. ERIM: Secure, Efficient In-process Isolation with
Protection Keys (MPK). In Proceedings of the 28th
USENIX Security Symposium (Security), Santa Clara,
CA, August 2019.

[36] Robert Wahbe, Steven Lucco, Thomas E Anderson, and
Susan L Graham. Efficient Software-based Fault Isola-
tion. In Proceedings of the 14th ACM Symposium on

Operating Systems Principles (SOSP), Asheville, NC,
December 1993.

[37] Jun Wang, Xi Xiong, and Peng Liu. Between Mutual
Trust and Mutual Distrust: Practical Fine-grained Privi-
lege Separation in Multithreaded Applications. In Pro-
ceedings of the 2015 USENIX Annual Technical Confer-
ence (ATC), Santa Clara, CA, July 2015.

[38] Chao Zhang, Chengyu Song, Kevin Zhijie Chen,
Zhaofeng Chen, and Dawn Song. VTint: Protecting
Virtual Function Tables Integrity. In Proceedings of the
2015 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, February 2015.

[39] Mingwei Zhang, Ravi Sahita, and Daiping Liu.
eXecutable-Only-Memory-Switch (XOM-Switch): Hid-
ing Your Code From Advanced Code Reuse Attacks in
One Shot. In Black Hat Asia Briefings (Black Hat Asia),
Singapore, March 2018.

[40] Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang.
ARMlock: Hardware-based Fault Isolation for ARM.
In Proceedings of the 21st ACM Conference on Com-
puter and Communications Security (CCS), Scottsdale,
Arizona, November 2014.

254 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/twitter-archive/twemperf
https://github.com/twitter-archive/twemperf

Effective Static Analysis of Concurrency Use-After-Free Bugs
in Linux Device Drivers

Jia-Ju Bai
Tsinghua University

Julia Lawall
Sorbonne University/Inria/LIP6

Qiu-Liang Chen, Shi-Min Hu
Tsinghua University

Abstract

In Linux device drivers, use-after-free (UAF) bugs can cause
system crashes and serious security problems. According to
our study of Linux kernel commits, 42% of the driver com-
mits fixing use-after-free bugs involve driver concurrency. We
refer to these use-after-free bugs as concurrency use-after-free
bugs. Due to the non-determinism of concurrent execution,
concurrency use-after-free bugs are often more difficult to
reproduce and detect than sequential use-after-free bugs.

In this paper, we propose a practical static analysis ap-
proach named DCUAF, to effectively detect concurrency use-
after-free bugs in Linux device drivers. DCUAF combines a
local analysis analyzing the source code of each driver with a
global analysis statistically analyzing the local results of all
drivers, forming a local-global analysis, to extract the pairs of
driver interface functions that may be concurrently executed.
Then, with these pairs, DCUAF performs a summary-based
lockset analysis to detect concurrency use-after-free bugs. We
have evaluated DCUAF on the driver code of Linux 4.19,
and found 640 real concurrency use-after-free bugs. We have
randomly selected 130 of the real bugs and reported them to
Linux kernel developers, and 95 have been confirmed.

1 Introduction

Use-after-free (UAF) bugs in device drivers are often dan-
gerous. They not only cause system crashes, but also can be
exploited by hackers to attack the operating system [7,39,40].
Among use-after-free bugs, concurrency use-after-free bugs,
which are due to concurrent execution, are more difficult to
detect. Indeed, they are not always triggered at runtime due
to the non-determinism of concurrent execution. According
to our study of Linux kernel commits, 42% of the driver com-
mits fixing use-after-free bugs involve driver concurrency, and
nearly all of these concurrency use-after-free bugs appear to
have been found by manual inspection or runtime testing.

To detect use-after-free bugs, many approaches use dy-
namic analysis [6, 25, 33, 36, 45] to monitor memory accesses

at runtime. However, the code coverage and detection results
of these approaches heavily rely on the tested workloads.
Several approaches [41, 42, 44] use static analysis to detect
use-after-free bugs. They can cover much code and find many
possible bugs without running the tested programs. However,
these approaches are designed to detect use-after-free bugs
that occur within sequential execution instead of those due
to concurrency. Some static approaches [12, 13, 17, 37, 38]
for detecting data races in device drivers can find concur-
rency use-after-free bugs. However, when identifying which
driver functions may be concurrently executed, they assume
that all driver interface functions can be concurrently exe-
cuted [13, 37, 38] or rely on manual guidance [12, 17]. These
strategies can introduce many false positives or require much
manual work. They often report many data races, but many
of the reported races are benign or false positives, and only a
few are real concurrency use-after-free bugs.

In this paper, we propose DCUAF, a static analysis ap-
proach to detect concurrency use-after-free bugs in Linux
device drivers. DCUAF first uses a local-global strategy to
extract concurrent function pairs, namely the pairs of driver
interface functions that can be executed concurrently. Then,
with these function pairs, DCUAF performs a summary-based
lockset analysis to detect concurrency use-after-free bugs.
Our local-global strategy has two stages. In the local stage,
DCUAF scans the code of each driver, and identifies calls
to lock-acquiring functions, such as spin_lock. According
to these calls and the driver’s function call graph, DCUAF
extracts local concurrent interface pairs, namely the pairs of
driver interfaces that may be concurrently executed for the
driver. In the global stage, DCUAF gathers the local concur-
rent interface pairs of all drivers and performs a statistical
analysis to identify the pairs of driver interfaces that are fre-
quently considered to be concurrently executed, from which
it produces global concurrent interface pairs. Using these
interface pairs, for each driver, DCUAF identifies the driver
interface functions associated with these pairs as concurrent
function pairs for this driver. For each driver function in a
concurrent function pair, our lockset analysis analyzes each

USENIX Association 2019 USENIX Annual Technical Conference 255

variable access in the driver function, and records the lockset
that protects this access. Then, for each pair of accesses in
the functions of a concurrent function pair, the analysis com-
pares their variables and locksets, and reports concurrency
use-after-free bugs. To improve accuracy, our lockset analysis
is inter-procedural, context-sensitive and flow-sensitive, and
it maintains function summaries to reduce repeated analysis.

We have implemented DCUAF using Clang 6.0 [9] for
Linux drivers. DCUAF is fully automatic, given the set of
driver source files in the kernel. Overall, we make four main
contributions:

• We perform a study of Linux kernel commits, and find
that 42% of driver commits fixing use-after-free bugs
involve concurrency. Moreover, we infer that nearly all
of these concurrency use-after-free bugs have been found
by manual inspection or runtime testing. To find more
concurrency use-after-free bugs in device drivers, we
propose to explore static analysis.

• We propose DCUAF, to detect concurrency use-after-
free bugs in device drivers. To our knowledge, DCUAF
is the first systematic static approach that targets concur-
rency use-after-free bugs in device drivers.

• We propose a novel local-global strategy to extract con-
current function pairs.

• We evaluate DCUAF on device drivers in Linux 3.14 and
4.19, and find 559 and 679 concurrency use-after-free
bugs, respectively. We manually check these bugs, and
find that 526 and 640 bugs are real, respectively. 35 of
the real bugs found in Linux 3.14 have been fixed in
Linux 4.19. We have randomly selected 130 of the real
bugs in Linux 4.19, and reported them to Linux kernel
developers. 95 of these bugs have been confirmed.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the background. Section 3 shows the chal-
lenges of detecting concurrency use-after-free bugs in Linux
device drivers and our key techniques to address these chal-
lenges. Section 4 introduces DCUAF. Section 5 presents the
evaluation. Section 6 discusses how to apply our approach to
other kinds of driver problems. Section 7 gives related work,
and Section 8 concludes.

2 Background

We first introduce the Linux driver interface model, and then
motivate our work by a concurrency use-after-free bug in a
Linux driver and by our study of Linux kernel commits.

2.1 Linux Driver Interface Model
A Linux device driver needs to implement some specified
driver interfaces, including kernel-driver interfaces and inter-

rupt handler interfaces. A kernel-driver interface is invoked
by non-driver threads through function calls when the driver
communicates with related management code in the kernel,
and an interrupt handling interface is called when a hardware
interrupt occurs. We call the driver functions implemented for
these driver interfaces driver interface functions. The driver
interface functions are assigned to driver interfaces through
specific data structure fields or specific kernel interfaces. The
driver interface functions form the entry points of the driver,
so all other functions defined in the driver are called by them.
From the kernel’s point of view, different drivers of the same
device class should have the same functionalities, so drivers
in the same device class share the same driver interfaces.

Figure 1 shows two typical Ethernet controller drivers
(dl2k and ne2k-pci) in Linux 4.19. These drivers both define
a net_device_ops data structure, containing some function
pointer fields. Each network controller driver uses this data
structure to communicate with network management code
in the kernel, and each function pointer field represents a
kernel-driver interface that performs a specific functionality
of the driver. For example, in the net_device_ops data struc-
ture, the field ndo_open is used to open a network device,
the field ndo_stop is used to close a network device, and
the field ndo_start_xmit is used to transmit data packets.
These drivers also both call a kernel interface request_irq,
to register their interrupt handler functions through a function
pointer argument. According to the functionalities of these
driver interfaces, for a given network device instance, the
interface net_device_ops.ndo_start_xmit can be concur-
rently executed with the interrupt handler function, but the in-
terface net_device_ops.ndo_open is never concurrently exe-
cuted with the interface net_device_ops.ndo_stop. However,
whether two driver interfaces can be concurrently executed is
often poorly documented in the Linux kernel.

Based on this driver interface model, driver concurrency
is often determined by the concurrent execution of driver
interfaces. Thus, to detect concurrency problems in device
drivers, we need to know which driver interfaces can be con-
currently executed. We refer to driver interfaces that can be
concurrently executed as concurrent interface pairs.

2.2 Concurrency Use-After-Free Bug

Use-after-free (UAF) bugs are known to be hard to debug. If
the freed memory is not reallocated, and thus not reinitialized,
before the use, there is no visible problem, so the bug can
linger. If the freed memory is reallocated and reinitialized
before the use, then a read use can return an unexpected
value and a write use can destroy data relied on by another
part of the program. These problems are compounded in the
case of kernel code, as the memory can be reinitialized by a
different process, allowing information leaks. Some recent
works [39, 40] have discussed how to exploit use-after-free
bugs to attack an operating system.

256 2019 USENIX Annual Technical Conference USENIX Association

FILE: linux-4.19/drivers/net/ethernet/8390/ne2k-pci.c
203. static const struct net_device_ops ne2k_netdev_ops = {
204. .ndo_open = ne2k_pci_open,
205. .ndo_stop = ne2k_pci_close,
206. .ndo_start_xmit = ei_start_xmit,

215. };

432. static int ne2k_pci_open(...) {

434. int ret = request_irq(dev->irq, ei_interrupt, ...);

443. }

FILE: linux-4.19/drivers/net/ethernet/dlink/dl2k.c
 98. static const struct net_device_ops netdev_ops = {
99. .ndo_open = rio_open,

100. .ndo_stop = rio_close,
101. .ndo_start_xmit = start_xmit,

108. };

628. static int rio_open(...) {

640. err = request_irq(irq, rio_interrupt, ...);

655. }

Figure 1: Examples of driver interfaces.

We motivate our work by a real concurrency use-after-
free bug in the Linux cw1200 wireless controller driver.
The cw1200 driver manages the ST-Ericsson CW1200
wireless controller that is used in many embedded sys-
tems. The bug was introduced in Linux 3.11 (Sep. 2013)
and was fixed 5 years later (Dec. 2018) by us, based
on a report generated by DCUAF. Figure 2 shows the
driver code related to this bug in Linux 4.19. In the
ieee80211_ops data structure, as the driver interfaces rep-
resented by the fields hw_scan and bss_info_changed
can be executed concurrently, the driver interface func-
tions cw1200_hw_scan and cw1200_bss_info_changed
can be executed concurrently. In scan.c, the function
cw1200_hw_scan calls dev_kfree_skb to free frame.skb
on line 126, without holding the lock priv->conf_mutex.
In sta.c, the function cw1200_bss_info_changed calls
cw1200_upload_beacon, which reads frame.skb on line
2221, while holding the lock priv->conf_mutex. Because
the free operation is performed without holding a lock but the
read operation is performed while holding a lock, a concur-
rency use-after-free bug may occur. To fix this bug, our com-
mit [2] moved the call to mutex_unlock in cw1200_hw_scan
behind the call to dev_kfree_skb.

This example illustrates some reasons why concurrency
use-after-free bugs occur in device drivers: (1) Determining
which driver interfaces can be executed concurrently requires
substantial driver knowledge. In the example, without know-
ing wireless controller drivers in the Linux kernel well, it may
be hard to know that the driver interfaces represented by the
fields hw_scan and bss_info_changed can be executed con-
currently. (2) Concurrency use-after-free bugs are not always

FILE: linux-4.19/drivers/net/wireless/st/cw1200/main.c
208. static const struct ieee80211_ops cw1200_ops = {

215. .hw_scan = cw1200_hw_scan,

223. .bss_info_changed = cw1200_bss_info_changed,

238. };

FILE: linux-4.19/drivers/net/wireless/st/cw1200/scan.c
 54. int cw1200_hw_scan(...) {

 91. mutex_lock(&priv->conf_mutex);

123. mutex_unlock(&priv->conf_mutex);
125. if (frame.skb)
126. dev_kfree_skb(frame.skb); // FREE

129. }

FILE: linux-4.19/drivers/net/wireless/st/cw1200/sta.c
1799. void cw1200_bss_info_changed(...) {

1807. mutex_lock(&priv->conf_mutex);

1849. cw1200_upload_beacon(...);

2075. mutex_unlock(&priv->conf_mutex);

2081. }

2189. static int cw1200_upload_beacon(...) {

2221. mgmt = (void *)frame.skb->data; // READ

2238. }

Figure 2: A reported bug in the cw1200 driver in Linux 4.19.

triggered in real execution and are hard to reproduce. In the ex-
ample, cw1200_hw_scan and cw1200_bss_info_changed
are not always concurrently executed at runtime. (3) Multiple
functions needs to be considered, including the concurrently
executed driver interface functions and the functions they call.
In the example, three driver functions are involved.

2.3 Our Study of Linux Kernel Commits

To understand the state of the art in detecting use-after-free
bugs in the Linux kernel, we study the Linux kernel commits
to the mainline kernel [27]. We select the non-merge commits
from Jan. 2016 to Dec. 2018 that fix use-after-free bugs, by
searching (git --grep) for “use after free”and “use-after-
free” in the log message, resulting in 949 commits. From
them, we identify the driver commits, i.e., those affecting the
drivers or sound directories. For the driver commits, we then
study the log messages and code changes to determine: (1)
whether the reported bugs are concurrency use-after-free bugs;
(2) whether the reported bugs were detected by tools. Table 1
shows the results.

As shown in the table, 49% of the use-after-free related
commits are for device drivers. Moreover, 42% of the use-
after-free driver commits involve concurrency. Around 65% of
the driver use-after-free commits, whether or not they involve
concurrency, mention the use of tools, including KASAN [19],
Syzkaller [34], Coverity [11], Coccinelle [30] and LDV [24].

USENIX Association 2019 USENIX Annual Technical Conference 257

Time Commits Drivers Concurrency Tool
2016 (Jan-Dec) 186 111 42 (38%) 26
2017 (Jan-Dec) 478 205 87 (42%) 49
2018 (Jan-Dec) 285 145 66 (46%) 52
Total 949 461 195 (42%) 127

Table 1: Linux kernel commits fixing use-after-free bugs.

Tool KASAN Syzkaller Coverity Coccinelle LDV
Type Runtime Runtime Static Static Static
Commit 92 28 4 2 1
Concurrency 38 18 0 0 0

Table 2: Use-after-free bugs found by different analyses and
testing tools.

For the remaining driver use-after-free commits, we infer
that the reported bugs in these commits are found by manual
inspection of the source code and execution failures.

Table 2 breaks down the tool results by the specific tools.
KASAN and Syzkaller are runtime testing tools. 120 of the
commits fix the bugs found by these tools, including 56 that
fix concurrency use-after-free bugs. Coverity, Coccinelle and
LDV are static analysis tools. Only 7 of the commits fix bugs
found by these tools, with no bug involving concurrency.

From the results, we can infer that nearly all of reported
use-after-free bugs in released kernels have been found by
manual inspection or runtime testing. However, runtime test-
ing heavily relies on workloads to cover code, and thus it
may miss many real bugs in practice. For this reason, it is
important to explore static analysis as an alternative to detect
concurrency use-after-free bugs in device drivers, but no sys-
tematic static tool has yet been proposed. Thus, we aim to
design an effective static approach to solve this problem.

3 Challenges and Key Techniques

Our basic idea is to first extract concurrent function pairs,
namely the pairs of driver interface functions that can be
executed concurrently, and then perform a lockset analysis on
these pairs of functions to detect concurrency use-after-free
bugs. Implementing this idea requires addressing two main
challenges:

C1: Extracting concurrent function pairs. Determining
which driver functions may be concurrently executed requires
substantial driver knowledge. Moreover, the Linux kernel
documentation often lacks explicit descriptions about the con-
currency of driver interfaces, and thus driver developers may
err when implementing the code.

C2: Accuracy and efficiency of code analysis. The Linux
driver code base is very large, amounting to 12.6M code lines
in our tested version Linux 4.19. Thus, the lockset analysis
can be quite time-consuming.

To solve the above challenges, we propose two key tech-
niques. For C1, we propose a local-global strategy to extract
concurrent function pairs from driver source files in the ker-
nel. For C2, we propose a summary-based lockset analysis to
detect concurrency use-after-free bugs.

3.1 Local-Global Strategy
Reviewing the example in Figure 2 suggests the following
strategy: concurrent interface pairs could be inferred ac-
cording to the lock-acquiring function calls in driver inter-
face functions. In Figure 2, cw1200_bss_info_changed and
cw1200_hw_scan both call mutex_lock with a lock variable
priv->conf_mutex. This information suggests that these
two driver functions may be concurrently executed. From
this information, we could infer that the related driver inter-
faces hw_scan and bss_info_changed in the data structure
ieee80211_ops may be a concurrent interface pair. But this
kind of inference can be wrong in two common cases:

Case 1. It is possible that two functions that acquire the
same lock are actually never concurrently executed. Figure 3
shows an example in the e100 Ethernet controller driver. The
driver functions e100_enable_irq and e100_disable_irq
both call the lock-acquiring function spin_lock_irqsave
with the same lock variable nic->cmd_lock, but they are
also both called by the driver function e100_netpoll. This
suggests that the spinlock acquired in e100_enable_irq and
e100_disable_irq is used by e100_netpoll to synchro-
nize with other driver functions, not to synchronize the calls
to these two functions with each other.

FILE: linux-4.19/drivers/net/ethernet/intel/e100.c
 616. static void e100_enable_irq(...) {

 620. spin_lock_irqsave(&nic->cmd_lock, flags);

 623. spin_unlock_irqsave(&nic->cmd_lock, flags);
 624. };

 626. static void e100_disable_irq(...) {

 630. spin_lock_irqsave(&nic->cmd_lock, flags);

 633. spin_unlock_irqsave(&nic->cmd_lock, flags);
 634. };

2238. static void e100_netpoll(...) {

2242. e100_disable_irq();

2245. e100_enable_irq();
2246. }

Figure 3: Part of the e100 driver in Linux 4.19.

Case 2. For two given driver interfaces, only a few of the
drivers having the both driver interfaces acquire the same
lock in these two driver interfaces, but most drivers do not.
Table 3 shows some examples. The first and second columns
show the names of involved driver interfaces; the third col-
umn shows the number of driver source files that have both

258 2019 USENIX Annual Technical Conference USENIX Association

Driver Interface 1 Driver Interface 2 Both Concurrent
spi_driver.probe spi_driver.remove 227 3
file_operations.open file_operations.llseek 462 3
watchdog_ops.start watchdog_ops.stop 75 1
net_device_ops.ndo_open ethtool_ops.get_link 124 2

Table 3: Example drivers having the same driver interfaces.

the involved driver interfaces; the fourth column shows the
number of driver source files where the involved driver in-
terfaces both acquire the same lock. For example, 227 driver
source files have the driver interfaces spi_driver.probe and
spi_driver.remove, but only 3 acquire the same lock in both
driver interfaces. Indeed, spi_driver.probe is used to initial-
ize an SPI device while spi_driver.remove is used to remove
a running SPI device, and a device cannot be initialized and
removed at the same time. Thus, the two driver interfaces
should not be concurrently executed.

To handle the above two cases, we collect information
about the lock usage of each driver as local information, and
then combine the information about all drivers to perform a
global statistical analysis. Based on this idea, we propose a
local-global strategy to extract concurrent function pairs from
driver code. The local and global stages handle Case 1 and
Case 2, respectively.

Local stage. In this stage, our strategy analyzes each driver
source file, and extracts local concurrent interface pairs,
namely the pairs of driver interfaces that may be concurrently
executed for each driver. Figure 4 defines this stage, which
has three steps:

Step 1. This step identifies the pairs of possible concur-
rently executed functions in each driver source file. Firstly,
this step clears the result set pos_func_pair_set, and collects
the set of lock-acquiring function calls as the set lock_call_-
set (lines 1-2). Secondly, this step performs an alias analysis
and checks each call in the set lock_call_set (lines 4-15). We
identify whether the locks are the same by checking whether
the related lock variables are aliased. If two different calls
in the set have an aliased lock variable, their callers are con-
sidered as a pair of possible concurrently executed functions
for the source file. In this case, the pair of callers is added to
pos_func_pair_set. Finally, this step returns the final value of
pos_func_pair_set (line 17).

Our alias analysis is field-based [16] and focuses on the
lock variables stored in data structure fields. We take this
strategy for two reasons. Firstly, drivers often use data struc-
ture fields to share data (such as locks) between different
functions, as illustrated in Figures 2 and 3. Secondly, a vari-
able stored in a data structure field can be explicitly distin-
guished from other variables using the data structure type
and field name. However, for some lock frameworks, their
lock-acquiring functions do not have any argument, such as
rcu_read_lock. Thus, our analysis does not support these
lock frameworks at present.

Step 2. This step filters out the pairs of possible concur-
rently executed functions that may actually not be executed
concurrently. For each pair of possible concurrently executed
functions, this step collects and checks the sets of their ances-
tors in the call graph (lines 2-5). Note that “ancestor” here
include callers, callers of the callers, etc. Common ancestors
are only collected up to the point of encountering a function
that has no caller in the driver but instead is only assigned to
a function pointer. As described in Section 2.1, a driver inter-
face that forms an entry point of the driver is often presented
as a function pointer stored in a data structure field. If the two
driver functions have a common ancestor, the pair of the two
functions is deleted from the set pos_func_pair_set (line 6),
to avoid the possible false positives exemplified by Case 1.
Finally, this step returns pos_func_pair_set (line 9).

1

Step 1: Get the pairs of possible concurrently executed functions

1: pos_func_pair_set := ø;

2: lock_call_set := GetLockCall();

 3: for i := 0 to SizeOf(lock_call_set) - 1 do

4: lock_call1 := lock_call_set[i];

5: lock_var1 := GetLockVar(lock_call1);

6: caller_func1 := GetCallerFunc(lock_call1);

7: for j := i + 1 to SizeOf(lock_call_set) - 1 do

8: lock_call2 := lock_call_set[j];

9: lock_var2 := GetLockVar(lock_call2);

10: caller_func2 := GetCallerFunc(lock_call2);

11: if lock_var1 is aliased to lock_var2 then

12: func_pair := <caller_func1, caller_func2>

13: Add func_pair to pos_func_pair_set;

14: end if

15: end for

16: end for

17: return pos_func_pair_set;

Step 2: Filter out may-false pairs of concurrently executed functions

 1: foreach func_pair in pos_func_pair_set do

2: <caller_func1, caller_func2> := GetFuncPair(func_pair);

3: func_set1 := GetAncestorFunc(caller_func1);

4: func_set2 := GetAncestorFunc(caller_func2);

5: if func_set1∩ func_set2 ≠ ø then

6: Delete func_pair from pos_func_pair_set;

7: end if

8: end foreach

9: return pos_func_pair_set;

Step 3: Get local concurrent interface pairs

1: local_interface_pair_set := ø;

 2: foreach func_pair in pos_func_pair_set do

3: <caller_func1, caller_func2> := GetFuncPair(func_pair);

4: interface_set1 := GetDriverInterface(caller_func1);

5: interface_set2 := GetDriverInterface(caller_func2);

6: foreach interface1 in interface_set1 do

7: foreach interface2 in interface_set2 do

8: if interface1 == interface2 then

9: continue;

10: end if

11: interface_pair := <interface1, interface 2>

12: Add interface_pair to local_interface_pair_set;

13: end foreach

14: end foreach

15: end foreach

16: return local_interface_pair_set;

Figure 4: The local stage.

USENIX Association 2019 USENIX Annual Technical Conference 259

Step 3. From the remaining pairs of possible concurrently
executed functions, this step extracts the local concurrent
interface pairs for the driver. For each function in a pair of
possible concurrently executed functions, this step gets the set
of driver interfaces that call this function (lines 3-5). Then, this
step computes the Cartesian product of the two sets of driver
interfaces, omitting the pairs where both driver interfaces are
the same (lines 6-14) to avoid the case that different driver
functions are assigned to the same driver interface.

 1. void FuncA();
 2. void FuncB();
 3. void FuncC();
 4. static struct dev_ops my_ops = {
5. .field1 = FuncA,

 6. .field2 = FuncB,
 7. .field3 = FuncC,
 8. };
 9. void myfunc1(struct device *dev) {

10. spin_lock(&dev->lock);
11. reg_write(dev->reg, 0x01, 0xf1);
12. spin_unlock(&dev->lock);
13. }
14. void myfunc2(struct device *dev) {
15. spin_lock(&dev->lock);
16. reg_write(dev->reg, 0x02, 0xf2);
17. spin_unlock(&dev->lock);
18. }
19. void myfunc3(struct device *dev) {
20. spin_lock(&dev->lock);
21. reg_write(dev->reg, 0x03, 0xf3);
22. spin_unlock(&dev->lock);
23. }
24. void FuncA() {
25. myfunc1();
26. }
27. void FuncB() {
28. myfunc1();
29. myfunc2();
30. }
31. void FuncC() {
32. myfunc2();
33. myfunc3();
34. }

Possible Function Pair: <myfunc1, myfunc2>:
Ancestor:
 myfunc1: FuncA, FuncB;
 myfunc2: FuncB;
 common: FuncB;

Possible Function Pair: <myfunc2, myfunc3>:
Ancestor:
 myfunc2: FuncB, FuncC;
 myfunc3: FuncC;
 common: FuncC;

Possible Function Pair: <myfunc1, myfunc3>:
Ancestor:
 myfunc1: FuncA, FuncB;
 myfunc3: FuncC;
 common: Ø

Function Pair: <myfunc1, myfunc3>:
Driver Interface:
 myfunc1: dev_ops.field1, dev_ops.field2;
 myfunc3: dev_ops.field3;
 Concurrent interface pairs:
 <dev_ops.field1, dev_ops.field3>
 <dev_ops.field2, dev_ops.field3>

(a) Driver source code (c) Step3

(b) Step1 and Step2

Figure 5: Example of performing the local stage.

Example. To illustrate the local stage, we use some driver-
like code shown in Figure 5. In Figure 5(a), the data structure
dev_ops has three fields field1, field2 and field3, and
each of them stores a driver function, namely FuncA, FuncB
and FuncC. Step 1 identifies three lock-acquiring function
calls on lines 10, 15 and 20, with the same lock dev->lock.
Thus, this step gets three pairs of possible concurrently exe-
cuted functions, namely <myfunc1, myfunc2>, <myfunc2,
myfunc3> and <myfunc1, myfunc3>. Then, as shown in Fig-
ure 5(b), for each pair, Step 2 checks the ancestors of the
involved functions. myfunc1 and myfunc2 have a common
caller FuncB, and myfunc2 and myfunc3 have a common
caller FuncB, and thus the two pairs are filtered out, leav-
ing only <myfunc1, myfunc3>. Finally, as shown in Figure
5(c), Step 3 uses this function pair to get two lock concurrent
interface pairs.

Note that the local stage assumes that a driver function
or interface cannot be concurrently executed with itself. The
main reason is that only analyzing the lock usage in a function
is insufficient to infer whether this function can be concur-
rently executed with itself. However, this case indeed exists
for some drivers, and may make our strategy miss some real
local concurrent interface pairs.

Global stage. In this stage, with the local concurrent inter-
face pairs of each driver, we perform a statistical analysis to
extract global concurrent interface pairs for all drivers.

As shown in Figure 6, this stage first clears the result set
global_interface_pair_set, and gathers the local concurrent
interface pairs of all drivers (lines 1-2). Secondly, this stage
handles each concurrent interface pair interface_pair in the
gathered set (lines 4-9). It calculates the percentage of source
files containing the two driver interfaces that have the two
driver interfaces as an extracted local concurrent interface
pair. This percentage is represent as ratio in Figure 6. If
ratio > R (a given threshold), interface_pair is considered
as a global concurrent interface pair, and is added to the set
global_interface_pair_set. Finally, this stage returns the final
value of global_interface_pair_set (line 11).

1

GlobalStage: Get global concurrent interface pairs

1: global_interface_pair_set := ø;

2: local_interface_pair_info_set := GatherLocalInterfacePairSet();

 3: foreach interface_pair in local_interface_pair_info_set do

4: conc_num := GetFileNumOfConcInterfacePair(interface_pair);

5: file_num := GetFileNumOfInterfacePair(interface_pair);

6: ratio := conc_num / file_num;

7: if ratio ≥ R then

8: Add interface_pair to global_interface_pair_set;

9: end if

10: end foreach

11: return global_interface_pair_set;

Figure 6: The global stage.

In this stage, the value of the threshold R is important,
because the number of extracted global concurrent interface
pairs decreases as R becomes larger. Increasing R may cause
more false global concurrent interface pairs to be dropped,
but more real interface pairs may be missed. We study the
impact of the value of R in Section 5.3.

With the extracted global concurrent interface pairs, we
identify concurrent function pairs for each driver. Specifically,
given two driver interfaces in a driver, if they are in a global
concurrent interface pair, the two driver functions associated
with these driver interfaces are identified as a concurrent func-
tion pair for this driver.

3.2 Summary-Based Lockset Analysis

To improve accuracy and efficiency, our summary-based lock-
set analysis has the following properties: (1) The analysis is
context-sensitive and inter-procedural, in order to maintain
locksets and detect bugs across functions calls. (2) The anal-
ysis is flow-sensitive to improve accuracy. (3) The analysis
uses function summaries to reduce repeated analysis and im-
prove efficiency. (4) The analysis is field-based, and it focuses
on the variables stored in data structure fields.

Given driver source code and a concurrent function pair,
our lockset analysis has two steps:

260 2019 USENIX Annual Technical Conference USENIX Association

Step 1. For each driver function in the concurrent function
pair, this step collects the lockset of each variable access
(read or write). During the collection, this step uses function
summaries to handle called driver functions. Each function
summary has the function name, source file name and a set
that stores the information about all variable accesses in the
function, including the accessed variable, the lockset of the
access, the code path that reaches the access from the start of
the function and the location of the access.

Figure 7 shows the treatment of a called function func by
the caller caller, with caller’s function summary caller_sum,
the collected lockset lockset_caller and the code path
path_info_caller through caller when reaching the call to func.
Firstly, this step checks whether there is already a call to func
in the current path by searching path_info_caller (lines 1-3). If
so, this step returns to avoid infinite looping on recursive calls.
Secondly, this step searches the stored function summaries
to check whether func has been handled (line 4). If so, this
step directly uses its function summary func_sum. Otherwise,
this step performs flow-sensitive analysis to collect informa-
tion about variable accesses in func and then stores func’s
function summary func_sum (lines 5-8). Thirdly, whether an
existing function summary is found or a new one is created,
this step gets the set access_info_set that stores the informa-
tion about all variable accesses in func (line 9). Fourthly, for
each variable access in access_info_set, this step concatenates
its lockset and code path to the end of the caller’s lockset and
code path, and then stores the information about this vari-
able access in the function summary caller_sum (lines 10-16).
Using function summaries, repeated flow-sensitive analyses
of function definitions are reduced, which can improve the
efficiency of the lockset analysis.

1

HandleFunc(func, caller_sum, lockset_caller, path_info_caller)

1: if func exists in path_info_caller then
2: return;

3: end if

4: func_sum := FindFuncSummary(func);

5: if func_sum == ø then

6: func_sum := AnalyzeFuncSummary(func);

7: StoreFuncSummary(func_sum);

8: end if

9: access_info_set := GetAccessInfoSet(func_sum);

10: foreach access_info in access_info_set do

11: lockset := lockset_caller + GetLockSet(access_info);

12: path_info := path_info_caller + GetPathInfo(access_info);

13: SetLockSet(access_info, lockset);

14: SetPathInfo(access_info, path_info);

15: AddAccessInfo(access_info, caller_sum);

16: end foreach

Figure 7: Handling a called function in our lockset analysis.

Step 2. For each pair of variable accesses in the driver func-
tions of a concurrent function pair, this step compares the
accessed variables and held locksets, and reports a concur-
rency use-after-free bug if: (1) the accessed variables are the
same; (2) the intersection of the locksets is empty; (3) one
of the accessed variable is used as an argument of a call to a

memory freeing function. If both of the accessed variables are
used as an argument of a call to a memory freeing function, a
double-free bug is also reported.

4 Approach

Based on the two key techniques in Section 3, we propose
a practical static approach named DCUAF, to detect concur-
rency use-after-free bugs in Linux device drivers. We imple-
ment DCUAF using Clang 6.0 [9], and perform static analysis
on the LLVM bytecode of the driver code. Figure 8 shows the
overall architecture of DCUAF.

DCUAF

Information
Collector

Bug Detector
Function
Analyzer

Concurrent
Function Pairs

Linux Driver
Source Files

Clang
Compiler

LLVM
Bytecode

Code
Information

Bug Reports

Figure 8: Overall architecture of DCUAF.

Based on this architecture, DCUAF has four phases:
P1: Source code compilation. In this phase, the Clang

compiler compiles the driver source files and generates their
LLVM bytecode files. Because a driver can be implemented
across multiple source files, a driver function can call another
driver function that is defined in another source file. During
linking, DCUAF thus records the set of related source files.
This set is used to locate the definition of a called function
that is not in the same source file as the caller function.

P2: Code information collection. In this phase, the in-
formation collector analyzes each LLVM bytecode file, and
records code information in a database. The information in-
cludes the name and position of each function definition and
interrupt handler function, driver functions assigned to func-
tion pointers that are stored in data structure fields, the callee
and caller functions of each function call, etc. The collected
information is used in the remaining phases.

P3: Concurrent function pair extraction. In this phase,
with the collected information, the function analyzer uses
our local-global strategy to analyze LLVM bytecode files. It
produces concurrent function pairs for each driver.

P4: Bug detection. In this phase, with the collected code
information and extracted concurrent function pairs, the bug
detector performs our summary-based lockset analysis to an-
alyze each LLVM bytecode file and detect concurrency use-
after-free bugs. Some reported bugs may be repeated, when
the two bugs are associated with the same driver function and
end up at the same variable access but differ in their code
paths. Thus, the bug detector also filters out such repeated
bug reports, by checking the positions of variable accesses.

USENIX Association 2019 USENIX Annual Technical Conference 261

Parallelism. The phases P1, P2 and P4 can work on indi-
vidual LLVM bytecode files independently, and thus they can
be parallelized straightforwardly. In P3, the local stage also
works on individual LLVM bytecode files, and thus it can
be parallelized, too. Only the global stage must be carried
out in a single thread to perform the statistical analysis of the
collected information. Because this stage does not require pro-
cessing LLVM bytecode files, it is fast. Thus, overall, DCUAF
can greatly benefit from parallelism.

5 Evaluation

We evaluate DCUAF on the source code of Linux device
drivers. To cover different kernel versions, we select an old
version 3.14 (released in March 2014) and a recent version
4.19 (released in October 2018). Table 4 shows information
about the driver code in these kernel versions.

Description Linux 3.14 Linux 4.19
Release time March 2014 October 2018
Driver source files (.c) 11.2K 16.6K
Driver source code lines 6.7M 9.5M

Table 4: Properties of the evaluated driver code.

We run the experiments on a Lenovo x86-64 PC with
four Intel i5-3470@3.20G processors and 8GB memory. We
use the kernel configuration allyesconfig to enable all device
drivers that can be compiled for the x86 architecture. We com-
pile the driver code using the Clang 6.0 compiler [9]. Because
DCUAF can work in parallel, we configure DCUAF to run
on 4 threads.

5.1 Extracting Concurrent Function Pairs
DCUAF first uses our local-global strategy to extract con-
current function pairs. In the global strategy, we set R = 0.2.
Table 5 shows the results for Linux 3.14 and 4.19.

The results show that DCUAF can scale to large code bases.
It handles 5.1M and 7.9M source code lines in 7.9K and 13.1K

Description 3.14 4.19

Code handling Handled source files (.c) 7957 13100
Handle code lines 5.1M 7.9M

Local stage Dropped function pairs 61.4K 99.8K
Remaining function pairs 40.7K 67.8K

Global stage
Candidate concurrent interface pairs 7354 11793
Global concurrent interface pairs 694 1497
Extracted concurrent function pairs 15.6K 69.5K

Time usage

Code information collection 10m16s 12m20s
Local stage 4m36s 5m23s
Global stage 10s 15s
Total 14m52s 17m58s

Table 5: Results of extracting concurrent function pairs.

Driver Interface 1 Driver Interface 2 Both Concurrent
tty_operations.write tty_operations.put_char 14 12
hc_driver.urb_enqueue hc_driver.endpoint_disable 16 9
ieee80211_ops.bss_info_changed ieee80211_ops.hw_scan 12 7
uart_ops.set_termios console.write 21 14
Interrupt handler snd_pcm_ops.trigger 49 25

Table 6: Examples of global concurrent interface pairs.

Description 3.14 4.19

Bug detection

Filter repeated 348 390
Final detected (real / all) 526 / 559 640 / 679
Double free (real / all) 82 / 89 117 / 132
Interrupt handler (real / all) 25 / 25 23 / 23

Time usage 8m43s 10m15s

Table 7: Results of detecting bugs.

source files in Linux 3.14 and 4.19, respectively, within 20
minutes. The remaining 1.6M and 1.8M source code lines in
3.3K and 3.5K source files in Linux 3.14 and 4.19 are not
handled, because they are not enabled by allyesconfig for the
x86 architecture.

The results also show that our local-global strategy is ef-
fective in extracting concurrent function pairs. For example,
for Linux 4.19, our strategy extracts 1497 global concurrent
interface pairs from the 11,793 candidate concurrent interface
pairs identified in the local stage. The remaining interface
pairs are not extracted, because they are not identified as be-
ing able to execute concurrently by our strategy. For example,
DCUAF deletes nearly all interface pairs related to driver
initialization and removal (like probe and remove), which
cannot run concurrently in real execution.

Table 6 shows a few of the extracted global concurrent
interface pairs in Linux 4.19. The first and second columns
show the names of the involved driver interfaces; the third
column shows the number of driver source files that have both
the involved driver interfaces; the fourth column shows the
number of driver source files where the local stage identifies
the involved driver interfaces as a concurrent interface pair.

5.2 Detecting Bugs

With the extracted concurrent interface pairs, DCUAF runs
our summary-based lockset analysis to detect concurrency
use-after-free bugs. To validate whether DCUAF can find
known bugs, we use it to check Linux 3.14 drivers. To vali-
date whether DCUAF can find new bugs, we use it to check
Linux 4.19 drivers. We also manually check all found bugs to
validate accuracy. The results are shown in Table 7.

The results show that DCUAF finds 559 concurrency use-
after-free bugs in Linux 3.14. We identify 526 of them as real
bugs that are in 108 source files. Among these bugs, 35 have
been fixed in Linux 4.19. Thus, DCUAF can find known bugs.

262 2019 USENIX Annual Technical Conference USENIX Association

The results show that DCUAF finds 679 concurrency use-
after-free bugs in Linux 4.19. We identify 640 of them as real
bugs that are in 132 source files. Among these bugs, 372 are
also found in Linux 3.14, and thus they have been present for
at least 4.5 years. We have randomly selected 130 of these
real bugs, and reported them to Linux kernel developers. 95
of them have been confirmed, and 12 of our patches that fix
42 real bugs have been applied (such as commits [1] and [3])
in the kernel code. Thus, DCUAF can find new bugs.

Among the bugs found by DCUAF, many are also double-
free bugs. Specifically, DCUAF finds 89 and 132 double-free
bugs in Linux 3.14 and 4.19, respectively, and we identify 82
and 89 of them as real bugs. Furthermore, DCUAF finds 25
and 23 bugs that involve interrupt handling in Linux 3.14 and
4.19, respectively, and we identify all of them as real bugs.

Over 60% of the real bugs found by DCUAF are in network,
TTY, character and ISDN drivers. Specifically, 359 and 455
of the found real bugs are in these drivers in Linux 3.14 and
4.19, respectively, amounting to 68% and 71% of all found
real bugs. Indeed, compared to other drivers, these drivers
have more driver functions that can be concurrently executed.

FILE: linux-4.19/drivers/usb/host/r8a66597-hcd.c
1885. static int r8a66597_urb_enqueue(...) {

1895. spin_lock_irqsave(&r8a66597->lock, flags);

1905. if (!hep->hcpriv) // READ

1951. spin_unlock_irqrestore(&r8a66597->lock, flags);
1952. return ret;
1953. };

1980. static void r8a66597_endpoint_disable(...) {

1995. kfree(hep->hcpriv); // FREE

2000. spin_lock_irqsave(&r8a66597->lock, flags);

2010. spin_unlock_irqrestore(&r8a66597->lock, flags);
2011. }

2304. static const struct hc_driver r8a66597_hc_driver = {

2320. .urb_enqueue = r8a66597_urb_enqueue,

2322. .endpoint_disable = r8a66597_endpoint_disable,

2336. }

========== BUG REPORT ==========
[READ] r8a66597_urb_enqueue (drivers/.../r8a66597-hcd.c, LINE 1905)
 [LOCK] r8a66597_urb_enqueue (drivers/.../r8a66597-hcd.c, LINE 1895)
[FREE] r8a66597_endpoint_disable (drivers/.../r8a66597-hcd.c, LINE 1995)

Figure 9: A confirmed bug in the r8a66597 driver.

Figure 9 shows a new confirmed bug found by DCUAF
in the Linux 4.19 r8a66597 driver. The r8a66597 driver
manages the Renesas R8A66597 USB host controller that
is used in many embedded systems with USB ports. In the
data structure hc_driver, the driver interfaces represented
by the fields urb_enqueue and endpoint_disable are ex-
tracted as a global concurrent interface pair (the second row
in Table 6) by our local-global strategy. Accordingly, DCUAF
considers that the driver functions r8a66597_urb_enqueue
and r8a66597_endpoint_disable may be concurrently
executed. In r8a66597_endpoint_disable, the variable

hep->hcpriv is freed on line 1995 without holding the spin-
lock r8a66597->lock. But in r8a66597_urb_enqueue, this
variable is read on line 1905 while holding the spinlock
r8a66597->lock. Thus, a concurrency use-after-free bug
may occur. The bug report generated by DCUAF shows the
related call paths, including the positions of the free, read and
lock-acquiring operations. To fix this bug, we move the call
to spin_lock_irqsave (line 2000) before the call to kfree
(line 1995). Our patch1 making this change has been applied
by the Linux kernel maintainers.

The found bug in Figure 9 was introduced in Linux 2.6.22
(Jul. 2007), and had existed for over 11 years. Indeed, the
USB related documentations in the Linux kernel [35] does
not mention that the driver interfaces urb_enqueue and
endpoint_disable can be concurrently executed.

5.3 Result Variation

As described in Section 3.1, the value of R is important. The
above results are obtained with R = 0.2. To see the variation
caused by R, we test R = 0.1, 0.2, 0.3, 0.4 and 0.5 on the Linux
4.19 drivers. Figure 10 shows the results.

0k

40k

80k

120k

160k

200k

0

400

800

1200

1600

2000

0.1 0.2 0.3 0.4 0.5

Concurrent interface pairs

Concurrent function pairs

The threshold value R

0

300

600

900

1200

1500

0

300

600

900

1200

1500

0.1 0.2 0.3 0.4 0.5

Detected bugs

Real bugs

The threshold value R

N
u

m
b

er
 o

f
co

n
cu

rr
en

t
in

te
rf

ac
e

 p
ai

rs

N
u

m
b

er
 o

f
co

n
cu

rr
en

t
fu

n
ct

io
n

 p
ai

rs

N
u

m
b

er
 o

f
d

et
ec

te
d

 b
u

gs

N
u

m
b

er
 o

f
re

al
 b

u
gs

Figure 10: Variation of results by changing the value of R.

The numbers of extracted global concurrent interface pairs
and extracted concurrent function pairs both decrease when R
becomes larger. In this case, more false concurrent interface
pairs and concurrent function pairs are dropped, but more of
the dropped pairs are actually real concurrent interface pairs
and concurrent function pairs, and thus the bugs involving
these pairs are missed. Thus, if the value of R is too small,
many false positives will be introduced, and if the value of R
is too big, many false negatives will be introduced.

1https://lore.kernel.org/patchwork/patch/1025934/

USENIX Association 2019 USENIX Annual Technical Conference 263

5.4 False Positive and Negative Analysis
5.4.1 False Positives

DCUAF reports 33 and 39 false bugs in Linux 3.14 and 4.19,
resulting in false positive rates of 5.9% and 5.7% respectively.
These false bugs are introduced for the following reasons:

Firstly, the alias analysis in our lockset analysis is field-
based. It cannot distinguish between different variables stored
in the same data structure field, and thus it may identify dif-
ferent variables (for locks and data uses) as the same. This
reason causes DCUAF to report 12 and 19 false bugs in Linux
3.14 and 4.19.

Secondly, our lockset analysis is flow-sensitive but does
not validate path conditions. Thus, it may search infeasible
code paths when detecting bugs. This reason causes DCUAF
to report 8 and 5 false bugs in Linux 3.14 and 4.19.

Finally, our lockset analysis only handles lock-related func-
tion calls, but does not consider other kinds of synchronization.
For example, the kernel interface synchronize_irq is used
to wait until the end of an interrupt handler. Thus, code after
the call to synchronize_irq should never be concurrently
executed with an interrupt handler. But our lockset analysis
does not consider this case. This reason causes DCUAF to
report 13 and 15 false bugs in Linux 3.14 and 4.19.

Besides the reasons for the false positives observed in our
evaluation, there are some other potential reasons for false
positives that we have not yet observed in practice. For ex-
ample, the value of R in our local-global strategy can largely
influence the accuracy of extracting concurrent function pairs.
If R is not properly set, some extracted global concurrent
interface pairs and concurrent function pairs may be false.
Moreover, unnecessary locks acquired in the driver code can
also influence the accuracy of extracting concurrent function
pairs. This case can occur when two driver functions should
not be concurrently executed, but they acquire the same lock,
because the driver developer is too conservative. Indeed, it
has been observed that the Linux kernel does not provide sys-
tematic documentation about where locks should be used [28].
Unnecessary locks may cause DCUAF to identify the two
driver functions as a concurrent function pair.

5.4.2 False Negatives

To analyze the false negatives of DCUAF, we compare its bug
reports with the driver commits fixing concurrency use-after-
free bugs identified in Section 2.3. Specifically, we focus on
the commits in the few months after the release of Linux 4.19
in October 2018, i.e., between October and December in 2018,
resulting in 22 commits. DCUAF finds the bugs in 6 of these
commits (including the commit in Figure 2), but misses the
bugs in the remaining 16 commits. These bugs are missed for
the following reasons:

Firstly, DCUAF lacks function pointer analysis in the local-
global strategy and lockset analysis, and thus cannot build

complete call graphs of the driver code. As a result, it can-
not find real bugs involving code reached through function
pointers. This reason causes DCUAF to miss the bugs in 2
commits.

Secondly, our alias analysis is field-based, and may err in
complex cases, such as the cases involving function argu-
ments and pointer assignments. It may identify two identical
variables (for locks and data uses) as different variables. This
reason causes DCUAF to miss the bugs in 4 commits.

Thirdly, our local-global strategy neglects some real cases
of driver concurrency. For example, the strategy does not con-
sider that a driver function can be concurrently executed with
itself, or that driver functions can create new kernel threads.
This reason causes DCUAF to miss the bugs in 2 commits.

Finally, DCUAF does not handle some other cases in driver
code, which causes it to miss the bugs in 8 commits. For
example, the RCU lock-acquiring functions do not have any
argument, so DCUAF cannot use a lock argument to perform
static analysis and find related bugs. Moreover, DCUAF does
not consider the multi-queue framework that is used in some
network and storage drivers. Besides, DCUAF does not con-
sider reference count puts as possible freeing operations.

5.5 Sensitivity Analysis

DCUAF uses two key techniques: a local-global strategy to ex-
tract concurrent function pairs in driver code, and a summary-
based lockset analysis to reduce repeated analysis. To better
understand the value of these two techniques, we modify
DCUAF to remove each of them, and evaluate each resulting
tool on Linux 4.19 drivers.

Dropping the local-global strategy. We implement two
tools by respectively following two assumptions used by pre-
vious approaches for detecting data races [37, 38]: (1) all
driver interfaces can be concurrently executed; (2) driver inter-
faces whose field names containing some common keyword
pairs for device initialization and deinitialization, including
<probe, remove>, <start, stop>, <open, close>, <init, fini> and
<resume, suspend>, cannot be concurrently executed . These
amount to 257 pairs of driver interfaces. The first tool runs
for 350 minutes and reports around 50K bugs. The second
tool runs for 302 minutes and reports around 42K bugs. We
found that most of the reported bugs found by these tools are
false, because many involved driver interfaces that are never
concurrently executed. Thus, our local-global strategy indeed
reduces false positives in bug detection.

Dropping the summary-based lockset analysis. We imple-
ment this tool by dropping function summaries, keeping only
the names of functions previously analyzed in the current
execution path to avoid infinite loops due to recursion. The
resulting tool runs for 850 minutes and then aborts due to in-
sufficient memory. Thus, our summary-based analysis indeed
improves the efficiency of the analysis.

264 2019 USENIX Annual Technical Conference USENIX Association

6 Discussion

In this section, we discuss how our approach may apply to
other kinds of driver problems.

Other concurrency bugs. DCUAF can be used to detect
other kinds of concurrency bugs in drivers, by modifying the
lockset analysis. For example, it can detect a data race in two
driver functions that can be concurrently executed. We have
implemented such a prototype approach based on DCUAF. It
reports around 149K data races in Linux 4.19 drivers. How-
ever, many of the reported data races are benign. Thus, we
have focused on a specific kind of serious concurrency bug,
namely concurrency use-after-free bugs.

Violations of other properties of driver interfaces. In fact,
which driver interfaces can be concurrently executed is an im-
portant property of driver interfaces. To identify this property,
in DCUAF, we first collect specific code information in each
driver and then perform a statistical analysis of the collected
information. This idea can be used to identify other important
properties of driver interfaces and detect related violations.
An example property is whether a driver interface can sleep.
If a driver interface is called in atomic context [10], this driver
interface cannot call any function that can sleep. Otherwise,
a sleep-in-atomic-context (SAC) bug will occur, which can
cause a system hang or crash [4]. Following our local-global
strategy in DCUAF, for a given driver interface, we can first
collect the information about whether the related driver func-
tion calls sleep-able functions in each driver; then we can
perform a statistical analysis of all the collected information
to infer whether this driver interface is in atomic context; and
finally using the inference results, we can detect SAC bugs.

7 Related Work

7.1 Detecting Use-After-Free Bugs
Many approaches [6,25,33,36,45] for detecting use-after-free
bugs are based on dynamic analysis. They monitor memory
accesses at runtime and report bugs according to exact run-
time information. They can detect both sequential and concur-
rency use-after-free bugs. For example, DangSan [36] is an
effective use-after-free detection system that can efficiently
scale to large numbers of pointer writes and to many concur-
rent threads. To reduce the runtime overhead of monitoring
pointer tracking, DangSan uses a lock-free design inspired
by log-structured file systems. This design refrains from us-
ing complicated shared data structures and simply opts for
append-only per-thread logs for each object in the common
case. However, these approaches require workloads that can
achieve good code coverage and bug-detection results, and
they often introduce runtime overhead.

Several approaches [41, 42, 44] use static analysis to de-
tect use-after-free bugs in user-mode applications. For ex-
ample, UAFChecker [44] combines taint analysis and sym-

bolic execution to find use-after-free bugs inter-procedurally.
CRED [42] is an efficient pointer-analysis-based static anal-
ysis to detect use-after-free bugs in large code bases. It uses
a spatio-temporal context reduction technique to reduce the
exponential number of considered contexts in code analysis.
It also uses a multi-stage analysis to efficiently filter out false
alarms, and uses a path-sensitive demand-driven method to
find the required points-to information.

These static approaches target use-after-free bugs that oc-
cur within sequential execution. To do this, they start dataflow
analysis from a given free operation, and check whether there
is a subsequent use operation. However, they do not consider
bugs caused by concurrent execution. Different from these ap-
proaches, DCUAF targets concurrency use-after-free bugs. To
do this, DCUAF starts alias analysis from two driver functions
that may be concurrently executed. Besides, these approaches
target user-mode applications, while DCUAF targets device
drivers by considering the driver interface model.

7.2 Detecting Concurrency Problems

To detect concurrency problems in device drivers, many ex-
isting approaches are based on dynamic analysis or static
analysis:

Dynamic analysis. Related dynamic analysis approaches
are sampling-based [15, 18] or lockset-based [8, 20, 32]. Data-
Collider [15] is an effective sampling-based approach to de-
tect data races in the Windows kernel. It randomly samples
memory accesses at runtime. To increase the possibility of
capturing concurrent accesses to identical memory addresses,
it delays the current running thread for a short time, and uses
hardware breakpoints to trap any second access during delay.
If a second access happens and at least one is a write, a real
data race is detected. Eraser [32] was the first lockset-based
approach for detecting data races. It instruments binary code
to perform runtime monitoring of shared-variable accesses
for each running thread, and detects data races by maintaining
and checking locksets of shared variables during execution.

Dynamic approaches require associated hardware devices
to actually run the tested drivers, which may be hard to obtain
in practice. Besides, due to the non-determinism of concurrent
execution, they may miss many real concurrency bugs.

Static analysis. Most related static analysis approaches [12,
13, 17, 29, 37, 38] are based on static lockset analysis. Rac-
erX [13] is a well-known static lockset-based approach for
detecting data races and deadlocks in OS kernel code. It uses
an inter-procedural, flow-sensitive and context-sensitive anal-
ysis to maintain and check locksets in code paths, and detects
data races and deadlocks. It also ranks the reported bugs.
WHOOP [12] is an efficient static lockset-based approach
for detecting data races in device drivers. It uses a symbolic
pairwise lockset analysis to attempt to prove a driver race-
free. It also uses a sound partial-order reduction to accelerate
CORRAL [21], an existing concurrency-bug detector.

USENIX Association 2019 USENIX Annual Technical Conference 265

These static approaches target general concurrency bugs
such as data races and atomicity violations, and they often
have many false positives (for example, the work on Rac-
erX [13] reports a false positive rate of nearly 50%). They do
not focus on concurrency use-after-free bugs. Besides, they
assume that all driver interface functions can be concurrently
executed [13, 37, 38] or rely on manual guidance [12, 17],
which can introduce many false positives or require much
manual work. Different from these approaches, DCUAF tar-
gets concurrency use-after-free bugs, and uses a local-global
strategy to accurately and automatically extract concurrent
function pairs from driver source code.

7.3 Mining Code Rules in Systems Software
Some approaches mine implicit code rules in systems soft-
ware, and then use the mined rules to detect related bugs.
They mine rules by statistically analyzing source code [14,
23, 26, 31, 46] or execution traces [5, 22, 43]. PR-Miner [26]
uses data mining techniques to extract implicit programming
rules from the source code of large code bases. It extracts
frequent function-call patterns that occur within a single func-
tion. Using the extracted rules, it detects related violations
in the source code. PairCheck [5] uses software fault injec-
tion to generate test cases that cover error handling code in
device drivers, and then runs these test cases to mine resource-
acquire and -release rules from execution traces. Using the
mined rules, it detects resource leaks in error handling code.

These approaches focus on code rules that occur within
sequential execution, such as resource-acquire and -release
pairs [5, 31] and function-call sequences [26, 43], but do not
consider code rules involving concurrency. Inspired by these
approaches, DCUAF uses a statistical analysis of driver code
information when extracting concurrent function pairs.

8 Conclusion

In this paper, we have proposed a practical static analysis
approach named DCUAF, to effectively and automatically de-
tect concurrency use-after-free bugs in Linux device drivers.
DCUAF uses two key techniques: (1) a local-global strat-
egy to extract the pairs of driver interface functions that may
be concurrently executed as concurrent function pairs; (2) a
summary-based lockset analysis to detect concurrency use-
after-free bugs, given two driver functions that may be con-
currently executed. We have evaluated DCUAF on the driver
code of Linux 4.19, and found 640 real concurrency use-after-
free bugs. We have randomly selected 130 of these real bugs
and reported them to Linux kernel developers, and 95 have
been confirmed.

DCUAF can be improved in some aspects. Firstly, the code
analysis in DCUAF can be improved to reduce false posi-
tives. For example, DCUAF does not consider path condi-
tions and non-lock-related synchronization primitives in its

lockset analysis. Secondly, DCUAF still misses concurrency
use-after-free bugs involving complex patterns, such as using
reference counters to free objects. Runtime testing tools such
as KASAN [19] have found some such bugs in Linux drivers.
We will consider these complex patterns in our lockset anal-
ysis to find more concurrency use-after-free bugs. Thirdly,
besides concurrency use-after-free bugs, DCUAF can be ap-
plied to other driver problems, including other concurrency
bugs such as data races and violations of other properties of
driver interfaces such as sleep-in-atomic-context bugs. Finally,
DCUAF only checks Linux drivers at present. We will port
DCUAF in other operating systems (such as FreeBSD and
NetBSD) to check their driver code.

Acknowledgment

We thank our shepherd Nadav Amit and the anonymous re-
viewers for their helpful advice on the paper. We also thank
the Linux kernel developers who gave useful feedback to us.

References

[1] BAI, J.-J. Linux kernel commit 2ff33d663739: fix some
concurrency double-free bugs in the isdn_tty driver.
https://github.com/torvalds/linux/commit/2ff33d663739.

[2] BAI, J.-J. Linux kernel commit 4f68ef64cd7f: fix some
concurrency use-after-free bugs in the cw1200 driver.
https://github.com/torvalds/linux/commit/4f68ef64cd7f.

[3] BAI, J.-J. Linux kernel commit 7418e6520f22: fix a
concurrency use-after-free bug in the hfc_pci driver.
https://github.com/torvalds/linux/commit/7418e6520f22.

[4] BAI, J.-J., WANG, Y.-P., LAWALL, J., AND HU, S.-
M. DSAC: effective static analysis of sleep-in-atomic-
context bugs in kernel modules. In Proceedings of
the 2018 USENIX Annual Technical Conference (2018),
pp. 587–600.

[5] BAI, J.-J., WANG, Y.-P., LIU, H.-Q., AND HU, S.-M.
Mining and checking paired functions in device drivers
using characteristic fault injection. Information and
Software Technology 73 (2016), 122–133.

[6] CABALLERO, J., GRIECO, G., MARRON, M., AND
NAPPA, A. Undangle: early detection of dangling point-
ers in use-after-free and double-free vulnerabilities. In
Proceedings of the 2012 International Symposium on
Software Testing and Analysis (ISSTA) (2012), pp. 133–
143.

[7] CHEN, H., MAO, Y., WANG, X., ZHOU, D., ZEL-
DOVICH, N., AND KAASHOEK, M. F. Linux kernel

266 2019 USENIX Annual Technical Conference USENIX Association

vulnerabilities: state-of-the-art defenses and open prob-
lems. In Proceedings of the 2nd Asia-Pacific Workshop
on Systems (APSys) (2011), pp. 1–5.

[8] CHEN, Q.-L., BAI, J.-J., JIANG, Z.-M., LAWALL, J.,
AND HU, S.-M. Detecting data races caused by incon-
sistent lock protection in device drivers. In Proceed-
ings of the 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER) (2019),
pp. 366–376.

[9] Clang compiler. http://clang.llvm.org/.

[10] CORBET, J. Atomic context and kernel api design, 2008.
https://lwn.net/Articles/274695/.

[11] Coverity. https://scan.coverity.com.

[12] DELIGIANNIS, P., DONALDSON, A. F., AND RAKA-
MARIC, Z. Fast and precise symbolic analysis of con-
currency bugs in device drivers. In Proceedings of the
30th International Conference on Automated Software
Engineering (ASE) (2015), pp. 166–177.

[13] ENGLER, D., AND ASHCRAFT, K. RacerX: effective,
static detection of race conditions and deadlocks. In
Proceedings of the 19th International Symposium on
Operating Systems Principles (SOSP) (2003), pp. 237–
252.

[14] ENGLER, D., CHEN, D. Y., HALLEM, S., CHOU, A.,
AND CHELF, B. Bugs as deviant behavior: a general
approach to inferring errors in systems code. In Proceed-
ings of the 18th International Symposium on Operating
Systems Principles (SOSP) (2001), pp. 57–72.

[15] ERICKSON, J., MUSUVATHI, M., BURCKHARDT, S.,
AND OLYNYK, K. Effective data-race detection for the
kernel. In Proceedings of the 9th International Confer-
ence on Operating Systems Design and Implementation
(OSDI) (2010), pp. 151–162.

[16] HEINTZE, N., AND TARDIEU, O. Ultra-fast aliasing
analysis using CLA: a million lines of C code in a sec-
ond. In Proceedings of the 2001 International Confer-
ence on Programming Language Design and Implemen-
tation (PLDI) (2001), pp. 254–263.

[17] HONG, S., AND KIM, M. Effective pattern-driven con-
currency bug detection for operating systems. Journal
of Systems and Software (JSS) 86, 2 (2013), 377–388.

[18] JIANG, Y., YANG, Y., XIAO, T., SHENG, T., AND
CHEN, W. DRDDR: a lightweight method to detect
data races in Linux kernel. The Journal of Supercom-
puting 72, 4 (2016), 1645–1659.

[19] The Kernel Address Sanitizer. https://www.kernel.org/
doc/html/latest/dev-tools/kasan.html.

[20] KernelStrider: Detecting data races in Linux ker-
nel modules by collecting runtime information.
https://github.com/euspectre/kernel-strider.

[21] LAL, A., QADEER, S., AND LAHIRI, S. K. A solver
for reachability modulo theories. In Proceedings of
the 2012 International Conference on Computer Aided
Verification (CAV) (2012), pp. 427–443.

[22] LAROSA, C., XIONG, L., AND MANDELBERG, K. Fre-
quent pattern mining for kernel trace data. In Proceed-
ings of the 2008 ACM symposium on Applied computing
(2008), pp. 880–885.

[23] LAWALL, J. L., BRUNEL, J., PALIX, N., HANSEN,
R. R., STUART, H., AND MULLER, G. WYSIWIB:
a declarative approach to finding API protocols and
bugs in Linux code. In Proceedings of the 39th Interna-
tional Conference on Dependable Systems and Networks
(DSN) (2009), pp. 43–52.

[24] Linux Driver Verification. http://linuxtesting.org/ldv.

[25] LEE, B., SONG, C., JANG, Y., WANG, T., KIM, T., LU,
L., AND LEE, W. Preventing use-after-free with dan-
gling pointers nullification. In Proceedings of the 2015
Network and Distributed System Security Symposium
(NDSS) (2015).

[26] LI, Z., AND ZHOU, Y. PR-Miner: automatically ex-
tracting implicit programming rules and detecting viola-
tions in large software code. In Proceedings of the 13th
International Symposium on Foundations of Software
Engineering (FSE) (2005), pp. 306–315.

[27] Linux kernel source tree. https://github.com/torvalds/
linux.

[28] LOCHMANN, A., SCHIRMEIER, H., BORGHORST, H.,
AND SPINCZYK, O. LockDoc: trace-based analysis of
locking in the Linux kernel. In Proceedings of the 14th
European Conference on Computer Systems (EuroSys)
(2019), pp. 11:1–11:15.

[29] LU, S., PARK, S., HU, C., MA, X., JIANG, W., LI, Z.,
POPA, R. A., AND ZHOU, Y. MUVI: automatically in-
ferring multi-variable access correlations and detecting
related semantic and concurrency bugs. In Proceedings
of 21st International Symposium on Operating Systems
Principles (SOSP) (2007), pp. 103–116.

[30] PADIOLEAU, Y., LAWALL, J., HANSEN, R. R., AND
MULLER, G. Documenting and automating collateral
evolutions in linux device drivers. In Proceedings of
the 3rd European Conference on Computer Systems
(EuroSys) (2008), pp. 247–260.

USENIX Association 2019 USENIX Annual Technical Conference 267

[31] SAHA, S., LOZI, J.-P., THOMAS, G., LAWALL, J. L.,
AND MULLER, G. Hector: Detecting resource-release
omission faults in error-handling code for systems soft-
ware. In Proceedings of the 43rd International Con-
ference on Dependable Systems and Networks (DSN)
(2013), pp. 1–12.

[32] SAVAGE, S., BURROWS, M., NELSON, G., SOBAL-
VARRO, P., AND ANDERSON, T. Eraser: a dynamic
data race detector for multithreaded programs. ACM
Transactions on Computer Systems (TOCS) 15, 4 (1997),
391–411.

[33] SEREBRYANY, K., BRUENING, D., POTAPENKO, A.,
AND VYUKOV, D. AddressSanitizer: a fast address
sanity checker. In Proceedings of the 2012 USENIX
Annual Technical Conference (2012), pp. 309–318.

[34] Syzkaller: an unsupervised, coverage-guided kernel
fuzzer. https://github.com/google/syzkaller.

[35] The USB related documentations in the Linux kernel.
https://www.kernel.org/doc/Documentation/usb/.

[36] VAN DER KOUWE, E., NIGADE, V., AND GIUFFRIDA,
C. DangSan: scalable use-after-free detection. In Pro-
ceedings of the 12th European Conference on Computer
Systems (EuroSys) (2017), pp. 405–419.

[37] VOJDANI, V., APINIS, K., RÕTOV, V., SEIDL, H.,
VENE, V., AND VOGLER, R. Static race detection for
device drivers: the Goblint approach. In Proceedings
of the 31st International Conference on Automated Soft-
ware Engineering (ASE) (2016), pp. 391–402.

[38] VOUNG, J. W., JHALA, R., AND LERNER, S. RE-
LAY: static race detection on millions of lines of code.
In Proceedings of the 2007 International Symposium
on Foundations of Software Engineering (FSE) (2007),
pp. 205–214.

[39] WEICHBRODT, N., KURMUS, A., PIETZUCH, P., AND
KAPITZA, R. AsyncShock: exploiting synchronisation
bugs in Intel SGX enclaves. In Proceedings of the 2016

European Symposium on Research in Computer Security
(ESORICS) (2016), pp. 440–457.

[40] XU, W., LI, J., SHU, J., YANG, W., XIE, T., ZHANG,
Y., AND GU, D. From collision to exploitation: unleash-
ing use-after-free vulnerabilities in Linux kernel. In
Proceedings of the 22nd International Conference on
Computer and Communications Security (CCS) (2015),
pp. 414–425.

[41] YAN, H., SUI, Y., CHEN, S., AND XUE, J. Machine-
learning-guided typestate analysis for static use-after-
free detection. In Proceedings of the 33rd Annual
Computer Security Applications Conference (ACSAC)
(2017), pp. 42–54.

[42] YAN, H., SUI, Y., CHEN, S., AND XUE, J. Spatio-
temporal context reduction: a pointer-analysis-based
static approach for detecting use-after-free vulnerabil-
ities. In Proceedings of the 40th International Confer-
ence on Software Engineering (ICSE) (2018), pp. 327–
337.

[43] YANG, J., EVANS, D., BHARDWAJ, D., BHAT, T., AND
DAS, M. Perracotta: mining temporal API rules from
imperfect traces. In Proceedings of 28th International
Conference on Software Engineering (ICSE) (2006),
pp. 282–291.

[44] YE, J., ZHANG, C., AND HAN, X. UAFChecker: scal-
able static detection of use-after-free vulnerabilities. In
Proceedings of the 21st International Conference on
Computer and Communications Security (CCS) (2014),
pp. 1529–1531.

[45] YOUNAN, Y. FreeSentry: protecting against use-after-
free vulnerabilities due to dangling pointers. In Pro-
ceedings of the 2015 Network and Distributed System
Security Symposium (NDSS) (2015).

[46] YUN, I., MIN, C., SI, X., JANG, Y., KIM, T., AND
NAIK, M. APISan: sanitizing API usages through se-
mantic cross-checking. In Proceedings of the 2016
USENIX Security Symposium (2016), pp. 363–378.

268 2019 USENIX Annual Technical Conference USENIX Association

LXDs: Towards Isolation of Kernel Subsystems
Vikram Narayanan

University of California, Irvine
Abhiram Balasubramanian∗

University of Utah
Charlie Jacobsen∗

University of Utah

Sarah Spall†

University of Utah
Scott Bauer‡

University of Utah
Michael Quigley§

University of Utah
Aftab Hussain

University of California, Irvine

Abdullah Younis¶

University of California, Irvine
Junjie Shen

University of California, Irvine

Moinak Bhattacharyya
University of California, Irvine

Anton Burtsev
University of California, Irvine

Abstract
Modern operating systems are monolithic. Today, however,

lack of isolation is one of the main factors undermining se-
curity of the kernel. Inherent complexity of the kernel code
and rapid development pace combined with the use of unsafe,
low-level programming language results in a steady stream
of errors. Even after decades of efforts to make commodity
kernels more secure, i.e., development of numerous static and
dynamic approaches aimed to prevent exploitation of most
common errors, several hundreds of serious kernel vulnerabil-
ities are reported every year. Unfortunately, in a monolithic
kernel a single exploitable vulnerability potentially provides
an attacker with access to the entire kernel.

Modern kernels need isolation as a practical means of con-
fining the effects of exploits to individual kernel subsystems.
Historically, introducing isolation in the kernel is hard. First,
commodity hardware interfaces provide no support for ef-
ficient, fine-grained isolation. Second, the complexity of a
modern kernel prevents a naive decomposition effort. Our
work on Lightweight Execution Domains (LXDs) takes a
step towards enabling isolation in a full-featured operating
system kernel. LXDs allow one to take an existing kernel
subsystem and run it inside an isolated domain with minimal
or no modifications and with a minimal overhead. We evalu-
ate our approach by developing isolated versions of several
performance-critical device drivers in the Linux kernel.

1 Introduction
Modern operating system kernels are fundamentally insecure.
Due to rapid development rate (the de-facto industry standard
Linux kernel features over 70 thousand commits a year), a
huge codebase (the latest version of the Linux kernel contains
over 17 million lines of unsafe C/C++ and assembly code1),

∗Currently at Ubiquiti Networks. Work done at the University of Utah.
†Currently at Indiana University. Work done at the University of Utah.
‡Currently at Qualcomm. Work done at the University of Utah.
§Currently at Google. Work done at the University of Utah.
¶Currently at the University of California, Berkeley. Work done at the

University of California, Irvine
1Calculated using David Wheeler’s sloccount on Linux 5.0-rc1.

and inherent complexity (typical kernel code adheres to mul-
tiple allocation, synchronization, access control, and object
lifetime conventions) bugs and vulnerabilities are routinely
introduced into the kernel code. In 2018, the Common Vul-
nerabilities and Exposures database lists 176 Linux kernel
vulnerabilities that allow for privilege escalation, denial-of-
service, and other exploits [20]. This number is the lowest
across several years [19].

Even though a number of static and dynamic mechanisms
have been invented to protect execution of the low-level kernel
code, e.g., modern kernels deploy stack guards [18], address
space layout randomization (ASLR) [45], and data execution
prevention (DEP) [72], attackers come up with new ways to
bypass these protection mechanisms [8, 35, 45, 49, 51, 57–59,
71]. Even advanced defense mechanisms that are yet to be
deployed in mainstream kernels, e.g., code pointer integrity
(CPI) [1, 53] and safe stacks [14, 53], become vulnerable
in the face of data-only attacks combined with automated
attack generation tools [46, 77]. In a monolithic kernel, a
single vulnerability provides an attacker with access to the
entire kernel. An attacker can redirect control to any part
of the kernel and change any data structure escalating its
privileges [46, 77].

Modern kernels need isolation as a practical means of con-
fining the effects of individual vulnerabilities. However, in-
troducing isolation in a kernel is hard. First, despite many
advances in the architecture of modern CPUs, low-overhead
hardware isolation mechanisms [74–76] did not make it into
commodity architectures. On modern machines, the minimal
call/reply invocation that relies on traditional address-spaces
for isolation [26] takes over 834 cycles (Section 5). To put
this number into perspective, in the Linux kernel a system
call that sends a network packet through the network stack
and network device driver takes 2299 cycles. A straightfor-
ward isolation of a network device driver which requires two
domain crossings on the packet transmission path (Section 4),
would introduce an overhead of more than 72%.

Second, the complexity of a shared-memory kernel that
accumulates decades of development in a monolithic setting

USENIX Association 2019 USENIX Annual Technical Conference 269

prevents a trivial decomposition effort. Decomposition re-
quires cutting through a number of tightly-connected, well-
optimized subsystems that use rich interfaces and complex
interaction patterns. Two straightforward isolation strategies—
developing isolated subsystems from scratch [21, 24, 31]
or running them inside a full copy of a virtualized ker-
nel [11, 16, 30, 60]—result in either a prohibitively large engi-
neering effort or overheads of running a full copy of a kernel
for each isolated domain.

Our work on Lightweight Execution Domains (LXDs)
takes a step towards enabling isolation in a full-featured op-
erating system kernel. LXDs allow one to take an existing
kernel subsystem and run it inside an isolated domain with
minimal or no modifications and with a minimal overhead.
While isolation of core kernel subsystems, e.g., a buffer cache
layer, is beyond the scope of our work due to tight integration
with the kernel (i.e., complex isolation boundary and frequent
domain crossings), practical isolation of device drivers, which
account for over 11 millions lines of unsafe kernel code and
significant fraction of kernel exploits, is feasible.

Compared to prior isolation attempts [9, 12, 15, 27, 32–
34, 40–43, 66, 68, 69], LXDs leverage several new design
decisions. First, we make an observation that synchronous
cross-domain invocations are prohibitively expensive. The
only way to make isolation practical is to leverage asyn-
chronous communication mechanisms that batch and pipeline
multiple cross-domain invocations. Unfortunately, explicit
management of asynchronous messages typically requires a
clean-slate kernel implementation built for explicit message-
passing [5, 42]. LXDs, however, aim to enable isolation in
commodity OS kernels that are originally monolithic (com-
modity kernels accumulate decades of software engineering
effort that is worth preserving). To introduce asynchronous
communication primitives in the code of a legacy kernel,
LXDs build on the ideas from asynchronous programming lan-
guages [3,13,39]. We develop a lightweight asynchronous run-
time that allows us to create lightweight cooperative threads
that may block on cross-domain invocations and hence imple-
ment batching and pipelining of cross-domain calls in a way
transparent to the kernel code.

Second, to break the kernel apart in a manner that requires
only minimal changes to the kernel code, we develop de-
composition patterns, a collection of principles and mecha-
nisms that allow decomposition of the monolithic kernel code.
Specifically, we support decomposition of typical idioms used
in the kernel code—exported functions, data structures passed
by reference, function pointers, etc. To achieve such backward
compatibility, decomposition patterns define a minimal run-
time layer that hides isolated, share-nothing environment by
synchronizing private copies of data structures, invoking func-
tions across domain boundaries, implementing exchange of
pointers to data structures and functions, handling dispatch
of cross-domain function calls, etc. Further, to make our ap-
proach practical, we develop an interface definition language

(IDL) that generates runtime glue-code code required for de-
composition.

Finally, similar to existing projects [54, 67], we make an
observation that on modern hardware cross-core communica-
tion via the cache coherence protocol is faster then crossing
an isolation boundary on the same CPU. By placing isolated
subsystems on different cores it is possible to reduce isola-
tion costs. While dedicating cores for every isolated driver
is impractical, the ability to run several performance-critical
subsystems, e.g., NVMe block and network device drivers,
with the lowest possible overhead makes sense.

We demonstrate practical isolation of several performance-
critical device drivers in the Linux kernel: software-only net-
work and NVMe block drivers, and a 10Gbps Intel ixgbe
network driver. Our experience with decomposition patterns
shows that majority of the decomposition effort can be done
with no modification to the kernel source. We hope that our
work—general decomposition patterns, interface definition
language, and asynchronous execution primitives—will grad-
ually enable kernels that employ fine-grained isolation as the
first-class abstraction. At the moment, two main limitations of
LXDs are 1) requirement of a dedicated core for each thread
of an isolated driver (Section 5), and 2) manual development
of the IDL interfaces. We expect to relax both of the limita-
tions in our future work.

2 Background and Motivation
The concept of decomposing operating systems for isolation
and security is not new [9,12,15,27,32–34,40–43,66,68,69].
In the past, multiple projects tried to make isolation prac-
tical in both microkernel [9, 27, 41–43, 68] and virtual ma-
chine [12, 15, 33, 66] systems. SawMill was a research effort
performed by IBM aimed at building a decomposed Linux en-
vironment on top of the L4 microkernel [34]. SawMill was an
ambitious effort that outlined many problems of fine-grained
isolation in OS kernels. SawMill relied on a synchronous IPC
mechanism and a simple execution model in which threads
migrated between isolated domains. Unfortunately, the cost of
a synchronous context switch more than doubled in terms of
CPU cycles over the last two decades [26]. Arguably, with ex-
isting hardware mechanisms the choice of a synchronous IPC
is not practical (on our hardware a bare-bone synchronous
call/reply invocation takes over 834 cycles on a 2.6GHz In-
tel machine; a cache-coherent invocation between two cores
of the same die takes only 448-533 cycles, moreover, this
number can be reduced further with batching (Section 5)).
Furthermore, relying on a generic Flick IDL [25], SawMill
required re-implementation of OS subsystem interfaces. In
contrast, LXDs’s IDL is designed with an explicit goal of
backward compatibility with the existing monolithic code,
i.e., we develop mechanisms that allow us to transparently
support decomposition of typical code patterns used in the
kernel, e.g., registration of interfaces as function pointers,
passing data structures by reference, etc.

270 2019 USENIX Annual Technical Conference USENIX Association

Nooks further explored the idea of isolating device drivers
in the Linux kernel [69]. Similar to SawMill, Nooks relied
on the synchronous cross-domain procedure calls that are
prohibitively expensive on modern hardware. Nooks main-
tained and synchronized private copies of kernel objects, how-
ever, the synchronization code had to be developed manually.
Nooks’ successors, Decaf [64] and Microdrivers [32] devel-
oped static analysis techniques to generate glue code directly
from the kernel source. LXDs do not have a static analysis
support at the moment. We, however, argue that IDL is still an
important part of a decomposed architecture—IDL provides a
generic intermediate representation that allows us to generate
glue code for different isolation boundaries, e.g., cross-core
invocations, address-space switches, etc.

OSKit developed a set of decomposed kernel subsys-
tems out of which a full-featured OS kernel could be con-
structed [29]. While successful, OSKit was not a sustainable
effort—decomposition glue code was developed manually,
and required a massive engineering effort in order to pro-
vide compatibility with the interface of Component Object
Model [17]. OSKit quickly became outdated and unsupported.

Rump kernels develop glue code that allows execution of
unmodified subsystems of the NetBSD kernel in a variety of
executable configurations on top of a minimal execution envi-
ronment [48], e.g., as a library operating system re-composed
out of Rump kernel subsystems. Rump’s glue code follows the
shape of the kernel subsystems and hence provides compatibil-
ity with unmodified kernel code that ensures maintainability
of the project. LXDs follow Rump’s design choice of ensur-
ing backward compatibility with unmodified code, but aim
at automating the decomposition effort. Specifically, LXDs
rely on decomposition patterns and IDL to extract unmodified
device drivers from the kernel source and seamlessly enable
their functionality for the monolithic kernel.

User-level device drivers [11, 21, 24, 30, 60] allow execu-
tion of device drivers in isolation. Two general approaches
are used for isolating the driver. First, it is possible to run an
unmodified device driver on top of a device driver execution
environment that provides a backward compatible interface
of the kernel inside an isolated domain [24]. Unfortunately,
development of a kernel-compatible device driver execution
environment requires a large engineering effort. Sometimes,
backward compatibility is sacrificed to simplify development,
but in this case the device driver or a kernel subsystem have
to be re-implemented from scratch [31]. LXDs aim to provide
a general framework for automating development of custom
backward compatible device driver environments. With a pow-
erful IDL, fast communication primitives, and asynchronous
threads, LXDs enable nearly transparent decomposition of
kernel code.

Alternatively, the device driver environment is constructed
from a partial or complete copy of the kernel that can host
the isolated driver on top of a VMM [11, 30, 60] or in-
side a user process [11, 48]. Unfortunately, a virtualized ker-

nel [11, 30, 60] extends the driver execution environment
with a nested copy of multiple software layers, e.g., interrupt
handling, thread scheduling, context-switching, memory man-
agement, etc. These layers introduce overheads of tens of
thousands of cycles on the critical data-path of the isolated
driver, and provide a large attack surface. A library operat-
ing system that provides full or partial compatibility with the
original kernel can be used as an execution environment for
the isolated device driver [48, 62, 70]. Smaller and lighter
compared to the full kernel, library operating systems elimi-
nate performance overheads of the full kernel. LXDs provide
ability to run an unmodified device driver in a very mini-
mal kernel environment hence achieving lean data path of a
custom-built device driver execution environment.

3 LXDs Architecture
LXDs execute as a collection of isolated domains running
side by side with the monolithic kernel (Figure 1). This de-
sign allows us to enable isolation incrementally, i.e., develop
isolated device drivers one at a time, and seamlessly enable
their functionality in the monolithic kernel.

Each LXD is developed as a loadable kernel module. An
unmodified source of the isolated driver is linked against the
two components that provide a backward compatible execu-
tion environment for the driver: 1) the glue code generated by
the IDL compiler Figure 1, 6), and 2) a minimal library, li-
bLXD (Figure 1, 7), that provides common utility functions
normally available to the driver in a monolithic kernel, e.g.,
memory allocators, synchronization primitives, routines like
memcpy(), etc.

LXDs rely on hardware-assisted virtualization (VT-x) for
isolation. The choice of the hardware isolation mechanism
is orthogonal to the LXDs architecture. VT-x, however, im-
plements convenient interface for direct assignment of PCIe
devices to isolated domains, and direct interrupt delivery (sup-
port for which we envision in the future). On the critical path
LXDs rely on asynchronous cross-core communication prim-
itives, and hence the cost of transitions to and from the VT-x
domain (which is higher than a regular context switch) is
acceptable.

LXDs are created and managed by a small microkernel that
runs inside the commodity operating system kernel (Figure 1,
8). The LXD microkernel follows design of the L4 microker-

nel family [26]: it is centered around a pure capability-based
synchronous IPC that explicitly controls authority of each
isolated subsystem. The synchronous IPC is used for request-
ing microkernel resources, and exchange of capabilities, e.g.,
establishing regions of shared memory that are then used for
fast asynchronous channels. Each LXD starts with at least
one synchronous IPC channel that allows the LXD to gain
more capabilities, exchange capabilities to its memory pages
with the non-isolated kernel, and establish fast asynchronous
communication channels.

To provide an interface of the isolated driver inside the

USENIX Association 2019 USENIX Annual Technical Conference 271

while (...) {
 thc_ipc_poll recv(chnl_group, &msg);
 ASYNC ({
 dispatch_async_loop(msg);
 });
};

ixgbe_xmit_frame(struct sk_buff *skb,
 struct net_device *netdev)

{
 ...
}

DO_FINISH({
 ...
 ASYNC({
 rc = dev->ndo_start_xmit(skb, dev);
 ...
 });
 }
});

8

2

Run-queue

ASYNC ndo_start_xmit() recv()

netdev_tx_t ndo_start_xmit(...) {
 ...
 send(channel, msg);
 ...
}

IPC
channel

Isolated Ixgbe Driver

LXD
Microkernel

Unmodified driver code

libLXD

Linux Kernel

send();

User Process

3

4

7

6

klibLXD

1

5

Figure 1: LXDs architecture (isolated ixgbe network driver).

monolithic kernel, every LXD loads the corresponding kli-
bLXD module (Figure 1, 3). The klibLXD is automatically
generated by the IDL compiler. The glue code inside klibLXD
transparently marshals arguments of cross-domain invoca-
tions to the actual isolated driver.

In the example of the isolated ixgbe driver (Figure 1), a
user process invokes an unmodified send() system call initiat-
ing transmission of the network packet through the isolated
device driver (Figure 1, 1). The monolithic kernel relies
on the interface of the isolated ixgbe driver (a collection of
function pointers registered by the driver with the kernel)
to pass the packet to the device (dev−>ndo_start_xmit()). The
dev−>ndo_start_xmit() function pointer is implemented by the
glue code of the klibLXD module. Internally, the glue code
relies on the low-level send and receive primitives of the asyn-
chronous communication channels to send the message to
the isolated driver. The message reaches the isolated driver
where it is processed by the dispatch loop generated by the
IDL compiler (Figure 1, 6). The dispatch loop then invokes
the actual ixgbe_xmit_frame() function of the unmodified ixgbe
driver (Figure 1, 5).
Transparent decomposition LXDs rely on a collection of
decomposition patterns to break the code of a monolithic sys-
tem and emulate a shared-memory environment for isolated
subsystems (Section 4). In LXDs, isolated subsystems do not
share any state that might break isolation guarantees, e.g.,
memory pointers, indexes into memory buffers, etc. Instead,
each isolated subsystem maintains its own private hierarchy of
data structures. LXDs rely on a powerful IDL to automatically
generate all inter-domain communication and synchroniza-
tion code (Figure 1, 3 and 6). In contrast to existing IDLs
used for constructing multi-server [25,38] and distributed sys-
tems [23, 50, 61, 73] the main design goal behind the LXDs’

IDL is backward compatibility with unmodified code. The
IDL is designed to generate caller and callee stubs that hide
details of inter-domain communication and synchronization
of data structures.
Asynchronous runtime Compared to the monolithic kernel,
a decomposed environment requires a cross-domain invoca-
tion in place of a regular procedure call for every function
that crosses the boundary of an isolated domain. On mod-
ern hardware the overhead of such crossings is prohibitively
expensive. LXDs include a minimal runtime built around
lightweight asynchronous threads that aims to hide over-
heads of cross-domain invocations by exploiting available
request parallelism. Specifically, the ASYNC() primitive cre-
ates a lightweight cooperative thread that yields execution
to the next thread when blocked on the reply from an iso-
lated domain (Figure 1, 2). Asynchronous threads allow us
to introduce asynchrony to the kernel code in a transparent
manner.
Cross-core IPC To reduce overheads of crossing domain
boundaries, LXDs schedule isolated subsystems with tight
latency and throughput requirements, i.e., network and block
device drivers, on separate CPU cores. The reason is that
on modern hardware cross-core communication via cache
coherence is faster than a context switch on the same CPU.
LXDs rely on efficient cross-core communication channels to
send messages across isolated subsystems (Figure 1, 4).

3.1 Interface Definition Language
We develop a collection of decomposition patterns— a col-
lection of principles and mechanisms, e.g., remote references,
projections, and hidden arguments, that allow isolation of typ-
ical code patterns used in the kernel, e.g. exported functions,
data structures passed by reference, registration of interfaces

272 2019 USENIX Annual Technical Conference USENIX Association

dummy
net_device_ops

net_device

Linux
Kernel

Net

Glue code

Shadow Copies

register_netdevice()

register_netdevice()

net_device_ops

net_device

Remote reference

LXD

Figure 2: Private object hierarchies.

as function pointers, etc. To support implementation of decom-
position patterns, we develop a powerful IDL that generates
all inter-domain communication code.
Modules The IDL describes each subsystem as a module, i.e.,
a collection of functions exported and imported by an isolated
driver or the kernel. To illustrate decomposition patterns and
the design of the IDL, we consider an example of a minimal
dummy network device driver [44]. The following IDL is used
to define the dummy module.

include <net.idl>
module dummy() {

require net;
}

By itself the dummy module does not export any functions.
Instead it relies on the net interface provided by the kernel
to register itself with the kernel, i.e., register a collection of
function pointers that provide the driver-specific implemen-
tation of the network device interface. The kernel uses these
function pointers to invoke the isolated dummy device driver.

The require keyword instructs the IDL compiler to import
the net module into the context of the dummy module. At a
high level, the compiler is instructed to generate glue code
required for remote invocations of the functions exported by
the net module.

A typical network interface defines a collection of functions
that implement a specific kernel interface. For example, the
net module defines the interface of the network subsystem,
i.e., a collection of functions that allow network device drivers
to register with the kernel.

module net() {
rpc int register_netdevice(projection net_device ∗dev);
rpc void ether_setup(projection net_device ∗dev);
...

}

From the above module definition the IDL generates code
for caller stubs of the net interface so the isolated dummy
module can transparently invoke functions of the interface.
The IDL also generates the dispatch loops for both the dummy
LXD and kLXD so both isolated subsystem and non-isolated

kernel can process remote function invocations from each
other.
Data structures In LXDs, isolated device drivers and the ker-
nel do not share any state that might break isolation guarantees.
Instead, each isolated subsystem maintains its own private hi-
erarchy of data structures. In our example, the register_netdev()
function takes a pointer to the net_device data structure that
describes the network device. Since net_device is allocated in-
side the isolated dummy driver, a corresponding shadow copy
will be created by the glue code in the non-isolated kernel
(Figure 2).

The shadow hierarchies are synchronized upon function
invocations. LXDs provide support for transparent synchro-
nization of shadow data structure copies across domains with
the mechanism of projections. A projection explicitly defines
a subset of fields of the data structure that will be passed
to the callee and returned to the caller during the domain
invocation.2

projection <struct net_device> net_device {
unsigned int flags;
unsigned int priv_flags;
...
projection net_device_ops [alloc(caller)] ∗netdev_ops;

}

Here, the projection net_device only lists the fields that will
be used by the non-decomposed code in the kernel to regis-
ter a network device. The projection omits the members of
struct net_device that are private to the LXD, e.g., pointers to
other data structures. The IDL supports lexical scopes, so the
same data structure can be projected differently by different
functions.

The IDL supports explicit [in] and [out] directional attributes
to specify whether each field is marshalled from caller to
callee or vice versa. In most cases, however, they are optional.
The IDL compiler can infer the default direction from the way
the projection is used in the code. In the example above, the
default direction is [in]—all fields of the projection are copied
from the caller to the callee side, which is decided based on
the [alloc(callee)] qualifier that we discuss below.
Allocation of shadow object copies When the
register_netdev() function is invoked by the LXD, the
callee side of the invocation, i.e., the non-decomposed
kernel, does not have a private version of the net_device data
structure. The IDL provides support for controlling when
remote objects are allocated, looked up, and freed with the
alloc, bind, and dealloc qualifiers. The alloc qualifier instructs
the IDL to allocate the new data structure of the projected
type, i.e., struct net_device. The callee attribute instructs the
IDL to perform the allocation on the callee side, as the data
structure already exists on the caller side. The allocation
attribute also serves as a hint to the compiler to marshal
all fields of the projection from the already existing data

2Hence defining how a data structure is projected into another domain.

USENIX Association 2019 USENIX Annual Technical Conference 273

structure on the caller side to the callee (i.e., all fields of the
projection above have the implicit [in] attribute). The data
structure is deallocated when the dealloc qualifier is used with
the projection.
Remote object references In most cases isolated subsys-
tems refer to the same data structure multiple times. For ex-
ample, the net_device data structure is first registered with
the register_netdev() function, then used in a number of func-
tions that attach, turn on, and eventually unregister the device.
LXDs provide a mechanism of remote references to refer to
a specific object across domain boundaries. Similar to a ca-
pability in the LXD microkernel, each remote reference is a
number that is resolved through a fast hash that is private to
each thread of execution. References are transparent to the
code, the IDL generates all necessary code to pair every local
object with a reference that is used to lookup a corresponding
shadow copy in another domain.
Function pointers Many parts of the kernel rely on the con-
cept of an interface that allows dynamic registration of a
specific subsystem implementation. In a native language like
C an interface is implemented as a data structure with a col-
lection of function pointers that are defined by each subsys-
tem that provides a concrete interface implementation. In
our example, net_device_ops is a data structure that defines a
collection of function pointers implemented by the network
device. We implement support for export of function pointers
that cross boundaries of isolated domains. The following code
provides a definition of the projection for the net_device_ops
data structure.

projection <struct net_device_ops> net_device_ops {
rpc [alloc] int (∗ndo_open)(projection netdev_empty [bind] ∗dev);
rpc [alloc] int (∗ndo_stop)(projection netdev_empty [bind] ∗dev);
rpc [alloc] int (∗ndo_start_xmit)(projection sk_buff ∗skb,

projection net_device [bind] ∗dev);
...

}

For every function pointer, the IDL generates caller and callee
stubs that behave like normal function pointers and hide de-
tails of cross-domain communication. To implement cross-
domain function pointers while providing unmodified func-
tion signatures, we implement a concept of hidden arguments.
For each function pointer, the IDL dynamically generates an
executable trampoline in the caller’s address space. The caller
invokes this trampoline like any other function, however, the
trampoline resolves additional hidden arguments as an offset
from its own address. The hidden arguments describe which
channel to use and passes this information to the cross-domain
stub generated by the IDL compiler. A remote reference to a
function pointer on the callee side allows the caller to resolve
a specific instance of a function pointer.
Implementation We implement the IDL compiler as a
source-to-source translator from the LXD IDL to C. To build
the compiler, we rely on the formalism of parsing expression

1 DO_FINISH({
2 while (skb) {
3 struct sk_buff ∗next = skb−>next;
4 ASYNC({
5 ...
6 rc = ndo_start_xmit(skb, dev);
7 ...
8 });
9 skb = next;

10 }
11 });

Listing 1: Asynchronous threads.

grammars (PEG). This choice allows us to design a modular
grammar that is easy to extend with new IDL primitives. We
use Vembyr PEG parser generator [63] to automate develop-
ment of a compiler. Vembyr provides a convenient extension
interface that allows us to construct an abstract syntax tree
(AST) as a set of C++ classes. We then perform a compilation
step as a series of passes over the AST, e.g., module import,
derivation of directional attributes, etc.. The final pass con-
verts the AST into a concrete syntax tree (CST) that we use
to print out the C code.

3.2 Asynchronous Execution Runtime
Traditionally, asynchronous communication requires explicit
message passing [5, 42]. Programming of asynchronous
message-passing systems, however, is challenging as it re-
quires manual management (saving and restoring) of compu-
tation as execution gets blocked on remote invocations. In
general, message-based systems work well as long as they
are limited to a simple run-to-completion loop, but become
nearly impossible to program if multiple blocking invocations
are required on the message processing path [2, 52]. Further,
in a message-passing environment, re-use of existing kernel
code becomes hard or even impossible.

With LXDs we aim to satisfy two contradicting
goals: 1) utilize asynchrony for cross-domain invocations,
and 2) provide backward compatibility with existing ker-
nel code, i.e., avoid re-implementation of the system in a
message-passing style. To meet these goals, we implement a
lightweight runtime that hides details of asynchronous com-
munication behind an interface of asynchronous threads.

The core of the LXDs asynchronous runtime is built around
two primitives: ASYNC() and DO_FINISH(). In Listing 1 the
ASYNC() macro creates a new lightweight thread for execut-
ing a block of code (lines 4–8) asynchronously. Our imple-
mentation is based on GCC macros as it allows us to avoid
modifications to the compiler and therefore provides compati-
bility with the existing kernel toolchain. When ndo_start_xmit()
blocks on sending a message to the isolated driver (line 6),
the asynchronous runtime continues execution from the next
line after the asynchronous block (line 9) and starts the next
iteration of the loop creating the new asynchronous thread.

274 2019 USENIX Annual Technical Conference USENIX Association

Instead of blocking on the first ndo_start_xmit() cross-domain
invocation, we dispatch multiple asynchronous invocations,
hence submitting multiple network packets to the driver in a
pipelined manner.

Internally, ASYNC() creates a minimal thread of execution
by allocating a new stack and switching to it for execution
of the code inside of the asynchronous block. ASYNC() cre-
ates a continuation, i.e., it saves the point of execution that
follows the asynchronous block, which allows the runtime to
resume execution when the thread either blocks or finishes.
We save the state of the thread, i.e., its callee saved regis-
ters, on the stack, and therefore, can represent continuation
as a tuple {instruction pointer, stack pointer}. The continuation is
added to the run-queue that holds all asynchronous threads
that are created in the context of the current kernel thread.
When asynchronous thread blocks waiting on a reply from
an isolated domain, it invokes the yield() function that again
saves the state of the thread by creating another continuation
that is added to the run-queue. The yield() function picks the
next continuation from the run-queue and switches to it.

The DO_FINISH() macro specifies the scope in which
all asynchronous threads must complete. When execution
reaches the end of the DO_FINISH() block, the runtime checks
if any of unfinished asynchronous threads are still on the
run-queue. If yes, the runtime creates a continuation for the
current thread knowing that it has to finish the DO_FINISH()
block later, and switches to a thread from the run-queue.

Integration with the messaging system Every time a re-
mote invocation blocks waiting on a reply, the asynchronous
runtime switches to the new thread. The runtime system
checks the reply message ring for incoming messages and
whether any of them can unblock one of the blocked asyn-
chronous threads. We implement a lightweight data structure
that allows us to resolve response identifiers into pointers
to asynchronous threads waiting on the run-queue. If the re-
sponse channel is empty, the runtime system tries to return to
the main thread to dispatch more asynchronous threads, but if
the main thread reached the end of the DO_FINISH() block it
picks one of the existing threads from the run-queue.

Nested invocations In most cases a cross-domain invocation
triggers one or more nested remote invocations back into
the caller domain, be it an LXD or a non-isolated kernel.
For example, the ndo_start_xmit() triggers invocation of the
consume_skb() function that releases the skb after it is sent.
We need to process nested invocations in the caller domain.
To avoid using an extra thread to dispatch remote invocations,
we process nested invocations in the context of the caller
thread. We embed a dispatch loop, the optimization we call
“sender’s dispatch loop”, inside the message receive function
thc_ipc_poll_recv() in such a way that it listens and processes
incoming invocations from the callee.

Implementation ASYNC() and DO_FINISH() leverage func-
tionality of GCC macros that allow us to declare the block

of code as a nested function that can be executed on a new
stack. We base implementation of the threading runtime on
the eager version of AC [39] (in LXDs cross-domain invo-
cations always block, therefore, eager creation of the stack
for each asynchronous thread is justified). Besides changing
AC to work inside the Linux kernel and integrating it with the
LXDs messaging primitives, we employ several aggressive
optimizations. To minimize the number of thread switches,
we introduce an idea of a “direct” continuation, the continua-
tion that is known to follow the current context of execution,
e.g., the instruction following the ASYNC() block. We also
defer deallocation of stacks. Normally, the stack cannot be
deallocated from the context of the thread that is using it. AC
switches into the context of the “idle” scheduler thread and
deallocates the stack from there. This, however, introduces an
extra context switch. Instead, we maintain the queue of stacks
pending de-allocation and deallocate them all at once right
when the execution exits the DO_FINISH() block.

3.3 Fast Cross-Core Messaging
Trying to reduce overheads of crossing the isolation bound-
ary, LXDs schedule isolated subsystems on separate CPU
cores and use a fast cross-core communication mechanism to
send “call” and “reply” invocations between the cores. The
performance of cross-core invocations is dominated by the la-
tency of cache coherence protocol, which synchronizes cache
lines between cores (a single cache-line transaction incurs a
latency of 100-400 cycles [22, 56, 57]). In order to achieve
the lowest possible communication overhead, similar to prior
projects [5,6,47], we minimize the number of cache coherence
transactions. In LXDs, each channel consists of two rings: one
for outgoing “call” messages and one for incoming “replies”.
We configure each message to be the size of a single cache
line (64 bytes on our hardware). Similar to FastForward [36],
we avoid shared producer and consumer pointers, as they add
extra transactions for each message. Instead, we utilize an
explicit state flag that signals whether the ring slot is free.

4 Decomposition Case-Studies
To evaluate the generality of LXDs abstractions, we develop
several isolated device drivers in the Linux kernel.

4.1 Network Device Drivers
We develop isolated versions of two network drivers: 1) a
software-only dummy network driver that emulates an in-
finitely fast network adapter, and 2) Intel 82599 10Gbps Eth-
ernet driver (ixgbe). The network layer of the Linux kernel
has one of the tightest performance budgets among all ker-
nel subsystems. Further, the dummy is not connected to a real
network interface, and hence allows us to stress overheads of
isolation without any artificial limits of existing NICs.

Decomposed network drivers To isolate the dummy and
ixgbe network drivers, we develop IDL specifications of the
network driver interface. The IDL specification is 64 lines of

USENIX Association 2019 USENIX Annual Technical Conference 275

code for the dummy, and 153 lines for the ixgbe driver (110
lines for the network and 43 for the PCIe bus interfaces). Each
network device driver registers with the kernel by invoking a
kernel function and passing a collection of function pointers
that implement an interface of a specific driver. Since ixgbe
manages a real PCIe device, it registers with the PCIe bus
driver that enumerates all PCIe devices on the bus and con-
nects them to matching device drivers. Therefore, we develop
an IDL specification for the PCI bus interface.

In contrast to block device drivers that implement a zero-
copy path for block requests, the network stack copies each
packet from a user process into a freshly allocated kernel
buffer. To ensure a zero-copy transfer of the packet from the
kernel to the LXD, we allocate a region of memory shared
between the non-isolated kernel and the LXD of the network
driver. The kernel allocates memory for the skb payload us-
ing the alloc_skb() function. We modify it to allocate payload
data from this shared region. Linux does not provide a simple
mechanism to configure one of its memory allocators to run
on a specified region of memory. We, therefore, develop a
lock-free allocator that uses a dedicated memory region to
allocate blocks of a fixed size. To enable device access to
the region of shared memory where packet payload is allo-
cated, we extend the libLXD and the LXD microkernel with
support for the IOMMU interface. We configure the IOMMU
to enable access to the packet payload region that is shared
between the kernel and the LXD.

The ixgbe device driver uses system timers for several
control plane operations. To provide timers inside LXDs, we
rely on the timer infrastructure of the non-isolated kernel.
Much like any other function pointer, we register the timer
callback function pointer with the kernel. The callback caller
stub sends an IPC to the isolated driver to trigger the actual
callback inside the LXD. Finally, in the native driver, the
NAPI polling function is invoked in the context of the softirq
thread. We implement softirq threads as asynchronous threads
dispatched from the LXD’s dispatch loop.

The isolated dummy driver requires two cross-domain calls
on the packet transmission path. The first call is invoked by
the non-isolated kernel to submit the packet to the driver
(ndo_start_xmit()), and the second is called by the driver after
the packet was processed by the device and is ready to be
released (consume_skb()). To reduce overheads of isolation,
we introduce the “half-crossing” optimization. Specifically,
for the functions that do not return a value, e.g., consume_skb()
that releases the network packet to the kernel, we send the
“call” message across the isolation boundary, but do not wait
for the arrival of the reply message.

4.2 Multi-Queue Block Device Drivers
We implement a decomposed version of the nullblk block
driver [4]. The nullblk driver is not connected to a real NVMe
device, but instead emulates the behavior of the fastest possi-
ble block device in software.

Linux multi-queue block layer Linux implements a multi-
queue (MQ) block layer [7] to support low-latency, high-
throughput PCIe-attached non-volatile memory (NVMe)
block devices. On par with network adapters, today NVMe
is one of the fastest I/O subsystems in the kernel. To fully
benefit from the asynchronous multi-queue layer, user-level
processes rely on the new asynchronous block I/O interface
that allows applications to submit batches of I/O requests to
the kernel and poll for completion later. In the case of di-
rect device access, the kernel performs all request processing
starting from the system call to leaving the request ready for
the DMA in the context of the same process that issued the
io_submit() system call. The kernel returns to the process right
after leaving request in the DMA ring buffers. Later the pro-
cess polls for completion of the request by either entering the
kernel again, or by monitoring a user-mapped page where the
kernel advertises completed requests. Being allocated inside
a user-level page, the pointer to the request is passed to the
kernel, the kernel “pins” the page ensuring that it does not get
swapped out while the request is in-flight. For each request
the device driver adds the page containing the request to the
IOMMU of the device, hence permitting the direct access to
the request payload.
Decomposed block driver Similar to network drivers, we
develop IDL specifications of the block driver interface, which
consists of 68 lines of IDL code. The isolated nullblk driver re-
quires three cross-domain calls on the I/O path. The first call
is invoked by the non-isolated kernel to pass a block request
from the block layer to the driver. The driver itself invokes
two functions of the non-isolated kernel: blk_mq_start_request()
and blk_mq_end_request(). The blk_mq_start_request() function
passes the pointer to the request back to the block layer to
inform it that request processing has started, and the I/O is
ready to be issued to the device. The block layer now asso-
ciates a timer with this particular request to ensure that if
the completion for that request does not arrive in time, it can
either abort the I/O operation or try to enqueue the request
again. The blk_mq_end_request() allows the driver to inform
the block layer that the request is completed by the device,
and is ready to go up the block layer back to the user process.

We utilize ASYNC() and DO_FINISH() to implement an asyn-
chronous loop on the submission path. A batch of requests is
submitted by the application, hence we dispatch them to the
nullblk LXD asynchronously. We provide a detailed analysis
of isolation overheads in Section 5.6.

5 Evaluation
We conduct all experiments in the openly-available CloudLab
network testbed [65].3 We utilize CloudLab d820 servers with
four 2.2 GHz 8-Core E5-4620 processors and 128 GB RAM.
All machines run 64-bit Ubuntu 18.04 Linux with the kernel
version 4.8.4. In all experiments we disable hyper-threading,

3LXDs are available at https://github.com/mars-research/

lxds.

276 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/mars-research/lxds
https://github.com/mars-research/lxds

Operation Cycles (Cycles per request)

Context switch 29-41
1 non-blocking ASYNC() 46
1 blocking ASYNC() 124
4 blocking ASYNC()s 374 (93.5)

Table 1: Overhead of asynchronous threads.

Operation Cycles

seL4 same-core d820 (without PCIDs) 1005
seL4 same-core c220g2 (with PCIDs) 834
LXDs cross-core r320 (non-NUMA) 448
LXDs cross-core d820 (NUMA) 533

Table 2: Intra-core vs cross-core IPC.

turbo boost, and frequency scaling to reduce the variance in
benchmarking.

5.1 Asynchronous Runtime
LXDs rely on the asynchronous runtime to hide the overheads
of cross-domain invocations. To evaluate the effectiveness of
this design choice, we conduct two sets of experiments that
measure and compare overheads of asynchronous threads,
and synchronous invocations.

Overhead of asynchronous threads We conduct four exper-
iments that measure overheads of the asynchronous runtime
(Table 1). In all tests we run 10M iterations and report an
average across five runs. The first test measures the overhead
of creating and tearing down a minimal asynchronous block
of code that just increments an integer, but does not block.
Each iteration takes 46 cycles which includes allocating and
deallocating a stack for the new thread, and two stack switches
to start and end execution of the thread. In the second test we
measure the overhead of switching between a pair of asyn-
chronous threads that takes 29 cycles and uses a sequence of
20 CPU instructions. Out of 20 instructions 16 are memory
accesses that touch the first level cache and take two cycles
each [28] (six instructions are required to save and restore
callee saved registers, and two save and restore instruction
pointer and stack registers). If, however, the context switch
touches additional metadata, e.g., adds the thread to the run-
queue, the overhead of the context switch grows to 41 cycles
due to additional memory accesses.

The third and fourth tests measure the overhead of exe-
cuting one and four blocking ASYNC() code blocks, i.e., each
thread executes yield() similar to the IPC path. The overhead
of creating one blocking asynchronous block (third test in
Table 1) is 124 cycles, which consist of the cost to create
and tear down a non-blocking asynchronous thread (46 cy-
cles) and three context switches required to block and un-
block the thread, and switch back to the main thread when the
DO_FINISH() block is reached. If, however, we execute four
asynchronous blocks in a loop the total overhead comes to 374
cycles or 93.5 cycles per one asynchronous block. Overall, we

Batch size Cycles (cycles per msg)

Manual ASYNC()
1 533 568
4 876 (219) 1111 (277)
8 1262 (157) 2096 (262)

Table 3: Benefits of manual and ASYNC() batching.

conclude that asynchronous threads are fast, and come close
to the speed of manual management of pending invocations
in a message-passing system.

5.2 Same-core vs cross-core IPC
Same-core IPC To understand the benefits of cache-coherent
cross-core invocations over traditional same-core address-
space switches, we compare LXDs’ cross-core channels with
the synchronous IPC mechanism implemented by the seL4
microkernel [26]. We choose seL4 as it implements the fastest
synchronous IPC across several modern microkernels [55]. As
d820 servers do not provide support for tagged TLBs (PCIDs)
that improve IPC performance by avoiding an expensive TLB
flush on the IPC path, in addition to the d820 machines we
report results for the same IPC tests on an Intel E5-2660 v3 10-
core Haswell 2.6GHz machine (CloudLab c220g2 server) that
implements support for tagged TLBs. To defend against Melt-
down attacks, seL4 provides support for a page-table-based
kernel isolation mechanism similar to KPTI [37]. However,
this mechanism negatively affects IPC performance due to
an additional reload of the page table root pointer. Since re-
cent Intel CPUs address Meltdown attacks in hardware, we
configure seL4 without these mitigations. On d820 machines
without PCIDs support, seL4 achieves the median IPC latency
of 1005 cycles (Table 2). On the c220g2 servers with tagged
TLBs enabled the IPC latency drops to 834 cycles (Table 2).
Cross-core IPC To measure the overhead of cross-core
cache-coherent invocations, we conduct a minimal call/re-
ply test in which a client thread repeatedly invokes a func-
tion of a server via an LXD’s asynchronous communication
channel. Client and server are running on two cores of the
same CPU socket. Since multi-socket NUMA machines in-
cur higher cache-coherence overheads and thus have slower
cross-domain invocations, in our experiments we a NUMA
and a non-NUMA machine with a similar CPU: a four socket
d820 NUMA server and a single-socket non-NUMA r320
CloudLab server configured with one 2.1 GHz 8-core Xeon
E5-2450 CPU. In all experiments we run 100M call/reply
invocations and report an average across five runs (Table 2).
On a non-NUMA r320 machine, cross-core IPC takes 448
cycles. On a NUMA d820 machine, this number increases to
533 cycles.

Two additional observations are important. First, communi-
cation between hardware threads of the same CPU core takes
less time than communication between cores (we measure the
overhead of cross-core invocations to be only 105 cycles on
the non-NUMA r320 machine and 133 cycles on the NUMA

USENIX Association 2019 USENIX Annual Technical Conference 277

d820). Typically, however, a single LXD serves requests from
multiple cores of the monolithic kernel, and hence only a
single core can benefit from proximity to the logical core.

Second, communication outside of the NUMA node incurs
high overheads due to crossing inter-socket links. On the d820
server, a cross-socket call/reply invocation takes 1988 cycles
over one inter-socket hop, which is higher than overhead of a
synchronous same-core IPC. Note that on a batch of 4 and 8
this number drops to 900 and 535 cycles per message respec-
tively. We anticipate that each NUMA node will run a local
LXD thread and hence the crossings of NUMA nodes will
be rare (this design makes sense as high-throughput isolated
subsystems, e.g., network and NVMe drivers, are CPU-bound
and anyway require multiple LXD threads to keep up with
invocations from multiple kernel threads).

Finally, we make an observation that compared to over-
heads of synchronous IPC invocations (both on the same
core and cross-core) the overheads of asynchronous threads
is relatively small (93.5 cycles per-request in a batch of four
(Table 1)). Therefore, the use of asynchronous threads for
batching and pipelining of multiple cross-domain invocations
is justified.

5.3 Message Batching

To evaluate the benefits of aggregating multiple cross-core
invocations in a batch, we conduct an experiment that per-
forms call/reply invocations in batches of messages ranging
from 1 to 8. On a batch of 4 messages a call/reply invocation
takes only 876 cycles, or 219 cycles per invocation on a d820
NUMA machine (Table 3). On a batch of 8 messages the
overhead per one call/reply invocation drops to 157 cycles per
message. For a batch of messages, the cross-core IPC sends
call/reply invocations through independent cache lines. The
CPU starts sending the next message right after issuing loads
and stores to the hardware load/store queue, but without wait-
ing for completion of the cache-coherence requests effectively
pipelining multiple outstanding cache coherence requests.

Composable batching with ASYNC() Finally, we analyze
how cross-core invocations are affected if the batches of mes-
sages are created by blocking asynchronous threads instead
of the manual, message-passing style batching we analyzed
above. To evaluate overheads of asynchronous threads, we de-
sign an IPC test that performs a series of cross-core function
invocations from inside an ASYNC() block (Table 3). We run
a loop of length 1, 4, and 8. The body of the loop is an asyn-
chronous code block that invokes a function on another core.
Instead of waiting for the reply, each asynchronous thread
yields and continues to the next iteration of the loop that dis-
patches the new asynchronous thread. For the loop of length
1, 4, and 8, compared to the manual batch, ASYNC() introduces
overhead ranging from 35 cycles on a batch of one to 105
cycles per message on a batch of 8 (Table 3).

0

5000

10000

15000

20000

25000

5 10 15 20 25

IO
P

S
 (

K
)

native
dummy-1

dummy-1.5
dummy-2

0

2000

4000

6000

8000

10000

12000

14000

5 10 15 20 25

IO
P

S
 (

K
)

Number of threads

native
sync-4lcds

async-4lcds

Figure 3: Performance of the dummy driver

5.4 Dummy Device Driver
We utilize the dummy driver as a platform for several bench-
marks that highlight overheads of isolation in the context of a
“fast” device driver (dummy is a good, representative example
of such device driver as it serves an infinitely fast device and
is accessed through a well-optimized I/O submission path
of the kernel network stack). In all experiments we use the
iperf2 benchmark that measures the transmit and receive band-
width for different payload sizes, and run the tests on d820
servers (Figure 3). We configure the isolated dummy driver
with a varying number of cores ranging from one to four in
such a manner that one LXD thread runs on each socket of
the 4-socket d820 system. Specifically, on a 32-core system,
the isolated dummy can support up to 27 iperf threads (i.e.,
four cores of the system are dedicated to LXD threads, and
one core is occupied by the kLXD thread servicing control
plane invocations from the LXD). We assign the first six iperf
threads to the first socket (one core of the CPU socket is occu-
pied by the LXD thread and one by the kLXD thread), then we
assign the next seven iperf threads (7-13) to the next socket,
and so on (Figure 3). We report the total number of device
driver I/O requests per-second (IOPS) across all threads (we
report an average across five runs on the maximum transmis-
sion unit (MTU) size packets).

In our first experiment we change dummy to perform only
one crossing between the kernel and the driver for sending
each packet (dummy-1, Figure 3). This synthetic configuration
allows us to analyze overheads of isolation in the ideal sce-
nario of a device driver that requires only one crossing on the
device I/O path. With one application thread the non-isolated
driver achieves 956K IOPS (i.e., on average, a well-optimized
network send path takes only 2299 cycles to submit an MTU-
sized packet from the user process to the network interface).
The isolated driver achieves 730K IOPS (76% of the non-
isolated performance), and on average requires 3009 cycles to
submit one packet. Of course, the isolated driver utilizes one
extra core for running the LXD. Isolation adds an overhead of

278 2019 USENIX Annual Technical Conference USENIX Association

710 cycles per-packet, which includes the overhead of the IPC
and processing of the packet by the driver (in this experiment,
LXDs do not benefit from any asynchrony; all packets are
submitted synchronously). On 27 threads the isolated driver
achieves 70% of the performance of the non-isolated driver.
Compared to the configuration with one application thread,
the slight drop in performance is due to the fact that each of
four LXDs service up to seven application threads which adds
overhead to the LXD’s dispatch processing loop.

In practice, the dummy driver requires two domain cross-
ings for submitting each packet (Section 4). We evaluate how
performance of isolated drivers degrades with the number of
crossings by running a version of dummy that performs two
full cross-domain invocations (dummy-2, Figure 3). On one
thread, two crossings add overhead of 1794 cycles per packet.
The “half-crossing” optimization, however, reduces the over-
head of two crossings from 1794 cycles per-packet to only
814 cycles (dummy-1.5, Figure 3).

Asynchronous threads To evaluate the impact of asyn-
chronous communication, we perform the same iperf2 test
with a packet size of 4096 bytes. When the packet size ex-
ceeds MTU, the kernel fragments each packet into MTU-size
chunks suitable for transmission and submits each chunk to
the driver individually. In general, multiple domain cross-
ings caused by fragmentation negatively affect performance
of the isolated driver. We compare three configurations: a
non-isolated dummy driver (native, Figure 3), a synchronous
version of LXDs (sync-4-lcds) and asynchronous version
that leverages ASYNC() to invoke the driver in a parallel loop
(async-4-lcds). Configured with one iperf thread, a non-
isolated driver achieves 534K IOPS, i.e., on average it requires
4114 cycles to submit a 4096 byte packet split in three frag-
ments. Performance of the synchronous version of the isolated
driver is heavily penalized by the inability to overlap com-
munication, i.e., waiting for LXD replies, and processing of
further requests. The synchronous version achieves only 236K
IOPS (44% of non-isolated performance). The asynchronous
isolated driver is able to benefit from pipelining of three frag-
mented packets with asynchronous threads (it achieves 341K
IOPS or 63.8% of non-isolated performance). Note, that as
the number of application threads grows, the benefits of asyn-
chronous threads gradually disappear. With 27 iperf threads
both synchronous and asynchronous configurations achieve
similar performance (36% and 37% of the native driver re-
spectively). As the number of application threads increases,
each core of the isolated driver that processes requests from
up to seven iperf threads becomes heavily utilized. Each LXD
thread dispatches kernel invocations in a round-robin man-
ner from a set of cross-core communication channels. If all
channels are active, the performance of each iperf thread is
dominated by the time spent waiting for its turn to be pro-
cessed by the LXD. On a batch of only three messages, asyn-
chronous threads do not provide sufficient benefits to tolerate
this latency.

0

2

4

6

8

10

1 2 3 4 5 6

T
x
 B

a
n

d
w

id
th

 (
G

b
p

s
)

native
isolated

0

2

4

6

8

10

1 2 3 4 5 6

R
x
 B

a
n

d
w

id
th

 (
G

b
p

s
)

Number of threads

native
isolated

Figure 4: Ixgbe Tx and Rx bandwidth.

5.5 Ixgbe Device Driver
To measure performance of the isolated ixgbe driver, we con-
figure an iperf2 test with a varying number of iperf threads
ranging from one to six (Figure 4). On our system, a small
number of application threads saturates a 10Gbps network
adapter. Configured with one iperf thread, on the MTU size
packet the isolated ixgbe is 12% faster compared to the iso-
lated system on the network transmit path, although at the
cost of using an extra core. This advantage disappears as the
LXD becomes busy handling more than one iperf thread. Nev-
ertheless, from three to seven threads, the isolated driver stays
within 6-13% of the performance of the native device driver
which saturates the network interface with three and more
application threads.

On the receive path, the isolated driver is 1% slower for
one application thread. Two factors attribute to performance
of the isolated driver: 1) it benefits from an additional core,
and 2) it uses asynchronous threads for NAPI polling instead
of native threads used by the Linux kernel for handling IRQs.
Asynchronous threads provide a faster context switch com-
pared to the native Linux kernel threads. Similar to transmit
path, this advantage disappears with larger number of applica-
tion threads. From two to six threads the isolated driver stays
within 12-18% of the performance of the native driver.

To measure the end-to-end latency, we rely on the UDP
request-response test implemented by the netperf benchmark-
ing tool. The UDP_RR measures the number of round-trip
request-response transactions per second, i.e., the client sends
a 64 byte UDP packet and waits for the response from the
server. The native driver achieves 26688 transactions per sec-
ond (which equals the round-trip latency of 40µs), the isolated
driver is 7% (2.6µs) faster with 24975 transactions per sec-
ond (round-trip latency of 37.4µs). Again the isolated driver
benefits from a faster receive path due to low-overhead con-
text switch of asynchronous threads. As the network is lightly
loaded during the latency test even with six application threads
the isolated driver remains 3.4µs faster achieving the latency

USENIX Association 2019 USENIX Annual Technical Conference 279

of 43.4µs versus 46.8µs achieved by the native driver.

5.6 Multi-Queue Block Device Driver
In our block device experiments, we use fio to generate I/O
requests. To set an optimal baseline for our evaluation, we
chose the configuration parameters that provide the lowest
latency path to the driver, so that overheads of isolation are
emphasized the most. We use fio’s libaio engine to overlap I/O
submissions, and bypass the page cache by setting direct I/O
flag to ensure raw device performance. Similar to dummy, in
isolated configuration, the nullblk LXD fully utilizes one extra
core on every CPU socket. We run the same configurations
as for dummy, e.g., one LXD thread on each NUMA node.
We placing the first six fio threads on the first NUMA node,
next seven fio threads on the second NUMA node, and so on,
up until 27 fio threads. We vary the number of fio threads
from 1 to 27 and report results for two block sizes—512 bytes
and 1MB—which represent two extreme points: a very small
and a very large data block. For each block size, we submit a
set of requests at once ranging the number of requests from
1 to 16 and then poll for the same number of completions.
Since the nullblk driver does not interact with an actual storage
medium writes perform as fast as reads, hence we utilize read
I/O operations in all experiments.

The native driver achieves 295K IOPS for the packet size
of 512 bytes and the queue of one (Figure 5). In other words,
a single request takes about 7457 cycles to complete. The
isolated driver achieves 235K IOPS (or 79% of non-isolated
performance). The isolation incurs an overhead of 1904 cycles
due to three domain crossings on the critical path. For a queue
of 16 requests, the isolated driver benefits from asynchronous
threads which allow it to stay within 4% of the performance
of the native driver for as long as it stays in one NUMA node
(from 1 to 6 fio threads). Both native and isolated drivers suffer
from NUMA effects due to the fact that Linux block layer
collects performance statistics for every device partition. The
blk_mq_end_request() function acquires a per-partition lock
and updates several global counters. The native driver faces
performance drops when it spills outside of a NUMA node
at 9, 17, and 25 fio threads (Figure 5). The isolated driver
experiences similar drops at 7, 14, and 21 fio threads. On
the block size of 1M, inside one NUMA node the isolated
driver stays within 10% of the performance of the native
driver for both queues of one and 16 requests. Outside of
one NUMA node the performance of both native and isolated
drivers suffers from NUMA effects. We speculate that NUMA
degradation can be fixed by changing the kernel to use per-
core performance counters [10].

6 Conclusions
LXDs provide general abstractions and mechanisms for iso-
lating device drivers in a full-featured operating system ker-
nel. By employing several design choices—relying on an
asynchronous execution runtime for hiding latency of cross-

0

500

1000

1500

2000

2500

3000

5 10 15 20 25

IO
P

S
 (

K
)

native-512-q1
isolated-512-q1

0

2000

4000

6000

8000

10000

12000

5 10 15 20 25

IO
P

S
 (

K
)

native-512-q16
isolated-512-q16

0
20
40
60
80

100
120
140
160
180
200

5 10 15 20 25

IO
P

S
 (

K
)

native-1M-q1
isolated-1M-q1

0

50

100

150

200

250

300

5 10 15 20 25

IO
P

S
 (

K
)

Number of threads

native-1M-q16
isolated-1M-q16

Figure 5: Performance of the nullblk driver

domain invocations, developing general decomposition pat-
terns, and relying on cross-core invocations—we demonstrate
the ability to isolate kernel subsystems with tightest perfor-
mance budgets. We hope that our work will gradually enable
kernels to employ practical isolation of most device drivers
and other kernel subsystems that today account for the major-
ity of the kernel code.

Acknowledgments
We thank ASPLOS 2018, OSDI 2018, and USENIX ATC
2019 reviewers and our shepherd, Andrew Baumann, for in-
depth feedback on earlier versions of the paper and numerous
insights. Also we would like to thank the Utah Emulab and
CloudLab team, and especially Mike Hibler, for his contin-
uous support and endless patience in accommodating our
hardware requests. This research is supported in part by the
National Science Foundation under Grant Numbers 1319076,
1527526, and 1817120 and Google.

References
[1] Code-Pointer Integrity in Clang/LLVM. https://

github.com/cpi-llvm/compiler-rt.

[2] Atul Adya, Jon Howell, Marvin Theimer, William J.

280 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/cpi-llvm/compiler-rt
https://github.com/cpi-llvm/compiler-rt

Bolosky, and John R. Douceur. Cooperative task man-
agement without manual stack management. In USENIX
Annual Technical Conference (ATC), pages 289–302,
Berkeley, CA, USA, 2002.

[3] Eric Allen, David Chase, Joe Hallett, Victor Luchangco,
Jan-Willem Maessen, Sukyoung Ryu, Guy L Steele Jr,
Sam Tobin-Hochstadt, Joao Dias, Carl Eastlund, et al.
The Fortress language specification. Sun Microsystems,
139(140):116, 2005.

[4] Jens Axboe. Null block device driver.
https://www.kernel.org/doc/Documentation/

block/null_blk.txt, 2019.

[5] Andrew Baumann, Paul Barham, Pierre-Evariste Da-
gand, Tim Harris, Rebecca Isaacs, Simon Peter, Timo-
thy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
The Multikernel: A new OS architecture for scalable
multicore systems. In ACM SIGOPS Symposium on Op-
erating Systems Principles (SOSP), pages 29–44, New
York, NY, USA, 2009.

[6] Brian N Bershad, Thomas E Anderson, Edward D
Lazowska, and Henry M Levy. User-level interpro-
cess communication for shared memory multiproces-
sors. ACM Transactions on Computer Systems (TOCS),
9(2):175–198, 1991.

[7] Matias Bjørling, Jens Axboe, David Nellans, and
Philippe Bonnet. Linux block IO: Introducing multi-
queue SSD access on multi-core systems. In ACM In-
ternational Systems and Storage Conference (SYSTOR),
pages 22:1–22:10, New York, NY, USA, 2013.

[8] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and
Zhenkai Liang. Jump-oriented programming: a new
class of code-reuse attack. In Proceedings of the 6th
ACM Symposium on Information, Computer and Com-
munications Security (ASIACCS), pages 30–40, 2011.

[9] Bomberger, A.C. and Frantz, A.P. and Frantz, W.S.
and Hardy, A.C. and Hardy, N. and Landau, C.R. and
Shapiro, J.S. The KeyKOS nanokernel architecture. In
Proceedings of the USENIX Workshop on Micro-Kernels
and Other Kernel Architectures, pages 95–112, 1992.

[10] Silas Boyd-Wickizer, Austin T. Clements, Yandong
Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert Mor-
ris, and Nickolai Zeldovich. An analysis of linux scala-
bility to many cores. In USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), pages
1–16, Berkeley, CA, USA, 2010.

[11] Silas Boyd-Wickizer and Nickolai Zeldovich. Tolerating
malicious device drivers in Linux. In USENIX Annual
Technical Conference (ATC), pages 9–22, 2010.

[12] Bromium. Bromium micro-virtualization,
2010. http://www.bromium.com/misc/

BromiumMicrovirtualization.pdf.

[13] Philippe Charles, Christian Grothoff, Vijay Saraswat,
Christopher Donawa, Allan Kielstra, Kemal Ebcioglu,
Christoph Von Praun, and Vivek Sarkar. X10: an object-
oriented approach to non-uniform cluster computing. In
Acm Sigplan Notices, volume 40, pages 519–538. ACM,
2005.

[14] Gang Chen, Hai Jin, Deqing Zou, Bing Bing Zhou,
Zhenkai Liang, Weide Zheng, and Xuanhua Shi. Safes-
tack: Automatically patching stack-based buffer over-
flow vulnerabilities. IEEE Transactions on Dependable
and Secure Computing, 10(6):368–379, 2013.

[15] Citrix. XenClient. http://www.citrix.com/

products/xenclient/how-it-works.html.

[16] Patrick Colp, Mihir Nanavati, Jun Zhu, William Aiello,
George Coker, Tim Deegan, Peter Loscocco, and An-
drew Warfield. Breaking up is hard to do: security
and functionality in a commodity hypervisor. In ACM
SIGOPS Symposium on Operating Systems Principles
(SOSP), pages 189–202. ACM, 2011.

[17] Microsoft Corporation and Digital Equipment Corpora-
tion. The component object model specification, 1995.

[18] Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton,
and Jonathan Walpole. StackGuard: Automatic adaptive
detection and prevention of buffer-overflow attacks. In
USENIX Security Symposium, 1998.

[19] CVE Details. Vulnerabilities in the Linux kernel by
year. http://www.cvedetails.com/product/47/

Linux-Linux-Kernel.html?vendor_id=33.

[20] CVE Details. Vulnerabilities in the Linux ker-
nel in 2018. http://www.cvedetails.com/

vulnerability-list/vendor_id-33/product_

id-47/year-2018/Linux-Linux-Kernel.html.

[21] Data61 Trustworthy Systems. seL4 Reference Man-
ual, 2017. http://sel4.systems/Info/Docs/

seL4-manual-latest.pdf.

[22] Tudor David, Rachid Guerraoui, and Vasileios Trigo-
nakis. Everything you always wanted to know about
synchronization but were afraid to ask. In ACM SIGOPS
Symposium on Operating Systems Principles (SOSP),
pages 33–48. ACM, 2013.

[23] Distributed component object model (DCOM) remote
protocol specification. https://msdn.microsoft.

com/library/cc201989.aspx.

USENIX Association 2019 USENIX Annual Technical Conference 281

https://www.kernel.org/doc/Documentation/block/null_blk.txt
https://www.kernel.org/doc/Documentation/block/null_blk.txt
http://www.bromium.com/misc/BromiumMicrovirtualization.pdf
http://www.bromium.com/misc/BromiumMicrovirtualization.pdf
http://www.citrix.com/products/xenclient/how-it-works.html
http://www.citrix.com/products/xenclient/how-it-works.html
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/year-2018/Linux-Linux-Kernel.html
http://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/year-2018/Linux-Linux-Kernel.html
http://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/year-2018/Linux-Linux-Kernel.html
http://sel4.systems/Info/Docs/seL4-manual-latest.pdf
http://sel4.systems/Info/Docs/seL4-manual-latest.pdf
https://msdn.microsoft.com/library/cc201989.aspx
https://msdn.microsoft.com/library/cc201989.aspx

[24] DDEKit and DDE for Linux. http://os.inf.

tu-dresden.de/ddekit/.

[25] Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau, and
Gary Lindstrom. Flick: A flexible, optimizing IDL com-
piler. In ACM SIGPLAN Notices, volume 32, pages
44–56. ACM, 1997.

[26] Kevin Elphinstone and Gernot Heiser. From L3 to seL4
what have we learnt in 20 years of L4 microkernels? In
ACM SIGOPS Symposium on Operating Systems Princi-
ples (SOSP), pages 133–150. ACM, 2013.

[27] Feske, N. and Helmuth, C. Design of the Bastei OS
architecture. Technische Universität, Dresden, Fakultät
Informatik, 2007.

[28] Agner Fog. Instruction tables. http://www.agner.

org/optimize/instruction_tables.pdf.

[29] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau,
Albert Lin, and Olin Shivers. The flux OSKit: A sub-
strate for kernel and language research. In ACM SIGOPS
Symposium on Operating Systems Principles (SOSP),
pages 38–51, 1997.

[30] Keir Fraser, Steven H, Rolf Neugebauer, Ian Pratt, An-
drew Warfield, and Mark Williamson. Safe hardware
access with the Xen virtual machine monitor. In In
1st Workshop on Operating System and Architectural
Support for the on demand IT InfraStructure (OASIS,
2004.

[31] Linux FUSE (filesystem in userspace). https://

github.com/libfuse/libfuse.

[32] Vinod Ganapathy, Matthew J Renzelmann, Arini Balakr-
ishnan, Michael M Swift, and Somesh Jha. The design
and implementation of microdrivers. In ACM SIGARCH
Computer Architecture News, volume 36, pages 168–
178. ACM, 2008.

[33] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum,
and Dan Boneh. Terra: a virtual machine-based platform
for trusted computing. In ACM SIGOPS Symposium on
Operating Systems Principles (SOSP), pages 193–206,
2003.

[34] Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen
Liedtke, Kevin J Elphinstone, Volkmar Uhlig,
Jonathon E Tidswell, Luke Deller, and Lars Reuther.
The SawMill multiserver approach. In Proceedings of
the 9th workshop on ACM SIGOPS European workshop:
beyond the PC: new challenges for the operating system,
pages 109–114. ACM, 2000.

[35] Gerardo Richarte. Four different tricks to bypass stack-
shield and stackguard protection. World Wide Web,
2002.

[36] John Giacomoni, Tipp Moseley, and Manish Vachhara-
jani. FastForward for efficient pipeline parallelism: a
cache-optimized concurrent lock-free queue. In ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), pages 43–52, 2008.

[37] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard
Fellner, Clémentine Maurice, and Stefan Mangard.
KASLR is dead: long live KASLR. In International
Symposium on Engineering Secure Software and Sys-
tems, pages 161–176. Springer, 2017.

[38] Andreas Haeberlen, Jochen Liedtke, Yoonho Park, Lars
Reuther, and Volkmar Uhlig. Stub-code performance is
becoming important. In Proceedings of the 1st Work-
shop on Industrial Experiences with Systems Software,
San Diego, CA, October 22 2000.

[39] Tim Harris, Martin Abadi, Rebecca Isaacs, and Ross
McIlroy. AC: composable asynchronous IO for native
languages. ACM SIGPLAN Notices, 46(10):903–920,
2011.

[40] Härtig, H. Security architectures revisited. In Proceed-
ings of the 10th workshop on ACM SIGOPS European
workshop, pages 16–23. ACM, 2002.

[41] Heiser, G. and Elphinstone, K. and Kuz, I. and Klein,
G. and Petters, S.M. Towards trustworthy computing
systems: taking microkernels to the next level. ACM
SIGOPS Operating Systems Review, 41(4):3–11, 2007.

[42] Herder, J.N. and Bos, H. and Gras, B. and Homburg, P.
and Tanenbaum, A.S. MINIX 3: A highly reliable, self-
repairing operating system. ACM SIGOPS Operating
Systems Review, 40(3):80–89, 2006.

[43] Hohmuth, M. and Peter, M. and Härtig, H. and Shapiro,
J.S. Reducing TCB size by using untrusted compo-
nents: small kernels versus virtual-machine monitors.
In Proceedings of the 11th workshop on ACM SIGOPS
European workshop, page 22. ACM, 2004.

[44] Nick Holloway. Dummy net driver. https:

//elixir.bootlin.com/linux/latest/source/

drivers/net/dummy.c, 1994.

[45] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh,
Nagendra Modadugu, and Dan Boneh. On the effective-
ness of address-space randomization. In ACM Confer-
ence on Computer and Communications Security (CCS),
pages 298–307, 2004.

[46] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger,
and Mathias Payer. Block oriented programming: Au-
tomating data-only attacks. In ACM Conference on
Computer and Communications Security (CCS), pages
1868–1882, New York, NY, USA, 2018. ACM.

282 2019 USENIX Annual Technical Conference USENIX Association

http://os.inf.tu-dresden.de/ddekit/
http://os.inf.tu-dresden.de/ddekit/
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse
https://elixir.bootlin.com/linux/latest/source/drivers/net/dummy.c
https://elixir.bootlin.com/linux/latest/source/drivers/net/dummy.c
https://elixir.bootlin.com/linux/latest/source/drivers/net/dummy.c

[47] Stefan Kaestle, Reto Achermann, Roni Haecki, Moritz
Hoffmann, Sabela Ramos, and Timothy Roscoe.
Machine-aware atomic broadcast trees for multicores.
In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 33–48, 2016.

[48] Antti Kantee. Flexible operating system internals: the
design and implementation of the anykernel and rump
kernels. PhD thesis, 2012.

[49] Vinay Katoch. Whitepaper on bypassing ASLR/DEP.
http://www.exploit-db.com/wp-content/

themes/exploit/docs/17914.pdf, 2011.

[50] Kenton Varda. Cap’n Proto Cerealization Protocol.
http://kentonv.github.io/capnproto/.

[51] Kil3r and Bulba. Bypassing StackGuard and Stack-
Shield. Phrack Magazine, 53, 2000.

[52] Maxwell Krohn, Eddie Kohler, and M. Frans Kaashoek.
Events can make sense. In USENIX Annual Technical
Conference (ATC), pages 7:1–7:14, 2007.

[53] Volodymyr Kuznetsov, László Szekeres, Mathias Payer,
George Candea, R. Sekar, and Dawn Song. Code-pointer
integrity. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 147–163,
2014.

[54] Alex Landau, Muli Ben-Yehuda, and Abel Gordon.
SplitX: Split guest/hypervisor execution on multi-core.
In Workshop on I/O Virtualization, 2011.

[55] Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and
Haibo Chen. Skybridge: Fast and secure inter-process
communication for microkernels. In Proceedings of
the Fourteenth EuroSys Conference 2019, EuroSys ’19,
pages 9:1–9:15, New York, NY, USA, 2019. ACM.

[56] Daniel Molka, Daniel Hackenberg, and Robert Schöne.
Main Memory and Cache Performance of Intel Sandy
Bridge and AMD Bulldozer. In Proceedings of the Work-
shop on Memory Systems Performance and Correctness
(MSPC), pages 4:1–4:10, New York, NY, USA, 2014.
ACM.

[57] Daniel Molka, Daniel Hackenberg, Robert Schone, and
Matthias S Muller. Memory performance and cache
coherency effects on an Intel Nehalem multiprocessor
system. In International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT), pages
261–270. IEEE, 2009.

[58] Tilo Müller. ASLR smack and laugh reference. Seminar
on Advanced Exploitation Techniques, 2008.

[59] Nergal. The advanced return-into-lib(c) exploits: Pax
case study. Phrack Magazine, Volume 11, Issue 0x58,
File 4 of 14, 2001.

[60] Ruslan Nikolaev and Godmar Back. VirtuOS: An operat-
ing system with kernel virtualization. In ACM SIGOPS
Symposium on Operating Systems Principles (SOSP),
pages 116–132, New York, NY, USA, 2013.

[61] Object Management Group. OMG IDL Syntax and
Semantics. http://www.omg.org/orbrev/drafts/
3_idlsyn.pdf.

[62] Octavian Purdila. Linux kernel library. https://lwn.
net/Articles/662953/.

[63] Jon Rafkind. Vembyr - multi-language PEG parser
generator written in Python, November 2011. http:

//code.google.com/p/vembyr/.

[64] Matthew J Renzelmann and Michael M Swift. De-
caf: Moving device drivers to a modern language. In
USENIX Annual Technical Conference (ATC), 2009.

[65] Robert Ricci, Eric Eide, and the CloudLab Team. Intro-
ducing CloudLab: Scientific infrastructure for advancing
cloud architectures and applications. ;login:, 39(6):36–
38, December 2014.

[66] Rutkowska, J. and Wojtczuk, R. Qubes OS architecture.
Invisible Things Lab Tech Rep, 2010.

[67] Livio Soares and Michael Stumm. FlexSC: flexible
system call scheduling with exception-less system calls.
In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 1–8, 2010.

[68] Green Hills Software. INTEGRITY Real-Time Op-
erating System. http://www.ghs.com/products/

rtos/integrity.html.

[69] Michael M Swift, Steven Martin, Henry M Levy, and
Susan J Eggers. Nooks: An architecture for reliable
device drivers. In Proceedings of the 10th workshop
on ACM SIGOPS European workshop, pages 102–107.
ACM, 2002.

[70] Hajime Tazaki. An introduction of library operat-
ing system for Linux (LibOS). https://lwn.net/

Articles/637658/.

[71] Tyler Durden. Bypassing PaX ASLR protection. Phrack
Magazine, 59, 2002.

[72] Arjan van de Ven. New Security Enhance-
ments in Red Hat Enterprise Linux v.8, update
3. https://static.redhat.com/legacy/f/pdf/

rhel/WHP0006US_Execshield.pdf.

USENIX Association 2019 USENIX Annual Technical Conference 283

http://www.exploit-db.com/wp-content/themes/exploit/docs/17914.pdf
http://www.exploit-db.com/wp-content/themes/exploit/docs/17914.pdf
http://kentonv.github.io/capnproto/
http://www.omg.org/orbrev/drafts/3_idlsyn.pdf
http://www.omg.org/orbrev/drafts/3_idlsyn.pdf
https://lwn.net/Articles/662953/
https://lwn.net/Articles/662953/
http://code.google.com/p/vembyr/
http://code.google.com/p/vembyr/
http://www.ghs.com/products/rtos/integrity.html
http://www.ghs.com/products/rtos/integrity.html
https://lwn.net/Articles/637658/
https://lwn.net/Articles/637658/
https://static.redhat.com/legacy/f/pdf/rhel/WHP0006US_Execshield.pdf
https://static.redhat.com/legacy/f/pdf/rhel/WHP0006US_Execshield.pdf

[73] Kenton Varda. Protocol buffers: Google’s data inter-
change format. Google Open Source Blog, 2008.

[74] L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Etsion, and
M. Valero. CODOMs: Protecting software with code-
centric memory domains. In ACM/IEEE International
Symposium on Computer Architecture (ISCA), pages
469–480, June 2014.

[75] Emmett Witchel, Junghwan Rhee, and Krste Asanović.
Mondrix: Memory isolation for Linux using Mondrian
memory protection. In ACM SIGOPS Operating Sys-
tems Review, volume 39, pages 31–44. ACM, 2005.

[76] Jonathan Woodruff, Robert NM Watson, David Chisnall,
Simon W Moore, Jonathan Anderson, Brooks Davis,
Ben Laurie, Peter G Neumann, Robert Norton, and
Michael Roe. The CHERI capability model: Revisiting
RISC in an age of risk. In ACM/IEEE International
Symposium on Computer Architecture (ISCA), pages
457–468. IEEE, 2014.

[77] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui
Gong, and Wei Zou. FUZE: Towards facilitating ex-
ploit generation for kernel use-after-free vulnerabilities.

In Usenix Security Symposium, 2018.

284 2019 USENIX Annual Technical Conference USENIX Association

JumpSwitches: Restoring the Performance of
Indirect Branches In the Era of Spectre

Nadav Amit
VMware Research

Fred Jacobs
VMware

Michael Wei
VMware Research

Abstract
The Spectre family of security vulnerabilities show that

speculative execution attacks on modern processors are prac-
tical. Spectre variant 2 attacks exploit the speculation of indi-
rect branches, which enable processors to execute code from
arbitrary locations in memory. Retpolines serve as the state-
of-the-art defense, effectively disabling speculative execution
for indirect branches. While retpolines succeed in protecting
against Spectre, they come with a significant penalty — 20%
on some workloads.

In this paper, we describe and implement an alternative
mechanism: the JumpSwitch, which enables speculative ex-
ecution of indirect branches on safe targets by leveraging
indirect call promotion, transforming indirect calls into con-
ditional direct calls. Unlike traditional inlining techniques
which apply call promotion at compile time, JumpSwitches
aggressively learn targets at runtime and leverage an opti-
mized patching infrastructure to perform just-in-time promo-
tion without the overhead of binary translation.

We designed and optimized JumpSwitches for common
patterns. If a JumpSwitch cannot learn safe targets, we fall
back to the safety of retpolines. JumpSwitches seamlessly
integrate into Linux, and are evaluated in Linux v4.18. We
show that JumpSwitches can improve performance over ret-
polines by up to 20% for a range of workloads. In some cases,
JumpSwitches even show improvement over a system without
retpolines by directing speculative execution into conditional
direct calls just-in-time and reducing mispredictions.

1 Introduction

Spectre is a family of security vulnerabilities first disclosed
to the public in January 2018 [38]. Spectre manipulates a pro-
cessor to speculatively execute code which leaves side-effects
that can be observed even after a processor decides the specu-
lation is incorrect and reverses its execution. Spectre attacks
have shown that it is practical to extract data which leaks
from these observable side-effects, known as side-channels.
As a result, both processor manufacturers and software devel-
opers have sought to defend against Spectre-style attacks by
restricting speculative execution.

In order to execute a Spectre attack, malicious code must
be able to control what the processor speculatively executes.

While several vectors of attack exist, indirect branches, which
enable a processor to execute code from arbitrary locations in
memory have been shown to be especially vulnerable. Vari-
ant 2 of Spectre, known as “Branch Target Injection” [38],
leverages indirect branches by causing the processor to mis-
predict the branch target and speculatively execute code de-
signed to leave side-effects. To mitigate against this attack,
a code sequence known as a retpoline [49] was developed,
which is used in software and throughout the OS kernels today.
Retpolines work by effectively disabling speculative execu-
tion of indirect branches. Instead of allowing the processor to
speculate on the target of an indirect branch, retpolines force
the processor to speculatively execute an infinite loop until
the target is known. This is achieved by leveraging return (or
RET) instructions, which are speculatively executed using a
different mechanism than indirect branches.

While retpolines are effective in mitigating against Spec-
tre variant 2, preventing speculative execution of indirect
branches comes at a significant cost: in some benchmarks,
we observe up to a 20% slowdown due to retpolines, making
Spectre variant 2 one of the most expensive Spectre attacks
to defend against. Unfortunately, indirect branches are used
extensively in software: they are the basis for software indi-
rection, they enable object-oriented constructs such as virtual
functions and they are present throughout the OS kernels to
enable their modular design. Spectre has made optimizing
indirect branches in software more important than ever, since
Spectre vulnerable hardware is no longer able to do so.

This paper describes our implementation of an alternative
mechanism, the JumpSwitch, which leverages a technique
known as indirect call promotion to transform indirect calls
into conditional direct calls. Indirect call promotion is often
employed by compilers [6, 9] to take advantage of profiling
data, or binary translators and JIT engines to avoid expen-
sive lookups in code caches [20]. These techniques alone,
however, are insufficient for OS kernels. Mechanisms such
as kernel address space layout randomization (KASLR) [45]
dynamic modules and JITed code (e.g., eBPF) make it dif-
ficult to reliably determine branch targets. Compiler-based
approaches such as PDO/FDO “lock” the results in a binary,
requiring recompilation for best performance and preventing
regressions [40] when the workload changes [54], which may
be untenable as most distributions package kernels as binaries.
Binary translation of the kernel incurs significant overheads

USENIX Association 2019 USENIX Annual Technical Conference 285

while restricting functionality, obviating the benefits of indi-
rect call promotion [27].

Building on this observation, JumpSwitches learn execu-
tion targets either statically at compile-time or dynamically
at runtime and promote indirect calls using just-in time pro-
motion, learning targets using a lightweight mechanism as
the kernel runs. If correct targets cannot be learned, Jump-
Switches fall back to using retpolines. JumpSwitches are fully
integrated with the Linux kernel’s build system.1 Through the
Linux build infrastructure, we are able to seamlessly update
the kernel to leverage JumpSwitches without source code
changes. However, to further improve performance, we pro-
vide more advanced JumpSwitches known as semantic Jump-
Switches which are able to take advantage of the rich semantic
information available within the kernel such as process tables,
and we provide five different types of JumpSwitches tailored
for different use cases.

Our evaluation of JumpSwitches shows a performance im-
provement over retpolines in a variety of workloads by up to
20%. In some cases, we are able to even show improvement
on a system without retpolines, so JumpSwitches are use-
ful even if Spectre variant 2 is mitigated in hardware. Since
JumpSwitches are implemented within the kernel, they may
potentially benefit every workload running on Linux.

While conditional direct calls are vulnerable to Spectre
variant 1 (“Bounds Check Bypass”) [30,39,49], another Spec-
tre vulnerability which retpolines do defend against, other less
expensive mechanisms which JumpSwitches are compatible
with, such as static analysis and selective masking/serializa-
tion are typically used to defend against Spectre variant 1 [12].
Notably, future “Spectre safe” hardware which do not need
retpolines will still be vulnerable to Spectre variant 1 [46] and
require Spectre variant 1 mitigations. JumpSwitches provide
the same level of safety as this future hardware.

This paper makes the following contributions:
• We explore Spectre and the impact of current and future

mitigations on the performance of indirect calls. (§2.1)
• We explore previous work for indirect call promotion

and describe how JumpSwitches revisit indirect call pro-
motion in the era of Spectre. (§2.2, §2.4).

• We describe our implementation of JumpSwitches (§3)
which features:

– Five types of JumpSwitches, which are optimized
for the common case (generic JumpSwitches) and
special use cases (semantic JumpSwitches) (§3.1).

– A mechanism for learning which updates Jump-
Switches outside the path of execution (§3.2).

– A integration with the Linux kernel which lever-
ages semantic information within the kernel (sys-
tem calls, process information, seccomp) (§3.4).

• We evaluate JumpSwitches and show that they improve
performance in real-world benchmarks by up to 20%

1We have submitted upstream patches to the Linux kernel, with positive
feedback from the Linux community.

(§4).
• We conclude with remarks about the future of specula-

tive execution (§5).

2 Indirect Branches

Indirect branches are a basic type of processor instruction
which enable programs to dynamically change what code is
executed by the processor at runtime. To execute an indirect
branch, the processor computes a branch target, which deter-
mines what instruction to execute after the indirect branch.
Since targets are dynamically computed, indirect branches
can execute code depending on what data is present. This
indirection is most frequently used to enable polymorphism.
For example, in C++, different functions may be executed
depending on an object’s type, or in Linux, different functions
may be executed depending on whether an address is IPv4 or
IPv6. To enable this functionality, a compiler will generate
an indirect branch which computes the correct function as a
branch target based on the object’s type. Indirect branches are
not limited to object-oriented code: they are used by many
constructs such as callbacks and jump tables as well.

The use of indirect branches, however, poses a significant
problem for modern processors which are heavily pipelined
and require a constant instruction stream to achieve max-
imum performance. With an indirect branch, the processor
cannot fetch the next instruction until the branch target is com-
puted, resulting in pipeline stalls that significantly degrade
performance. To eliminate these stalls, processors leverage
speculation, which guesses the branch target and rolls back
executed instructions if the guess is later determined to be
incorrect. In many processors, speculation is done through
a branch target buffer (BTB), which serves as a cache for
previous branch targets of indirect branches.

The Spectre family of attacks observed that rolling back
speculative execution can be incomplete. For example, spec-
ulative execution of privileged code could leave memory as
a result of that execution in the processor’s caches. Timing
attacks can be used by an unprivileged process to determine
what memory was fetched, resulting in a data leak. Spectre
variant 2, known as “Branch Target Injection” specifically
targeted indirect branches and the BTB [30, 38]. In variant 2,
either training the predictor to speculatively execute a mali-
cious branch target or causing a collision in the BTB (which
uses a subset of address bits for performance) resulting in
an indirect branch speculatively executing code which leaves
side-effects in the processor cache. This work focuses on vari-
ant 2, and when we refer to Spectre we refer to variant 2 of
the attack.

In the next sections, we discuss both current and future
mitigations for Spectre and how performance is affected. We
then discuss software mechanisms currently used to optimize
indirect branches, and present how JumpSwitches enable dy-
namically optimization of indirect branches while mitigating

286 2019 USENIX Annual Technical Conference USENIX Association

1 c a l l %r a x

2
3
4
5
6
7
8

c a l l r a x _ r e t p o l i n e

r a x _ r e t p o l i n e :
c a l l t a r g e t

c a p t u r e : pause
l f e n c e
jmp c a p t u r e

t a r g e t : mov %rax , [% r s p]
r e t

Figure 1: Retpolines. Unsafe indirect branches on the left are
replaced with a call (line 1) to a retpoline thunk (lines 2-8).

Spectre style attacks. For the rest of this paper, we focus on
the Intel x86 architecture. We believe that JumpSwitch can
be applied to other Spectre vulnerable architectures, such as
AMD, ARM and IBM.

2.1 Spectre Mitigations
Mitigations for Spectre can be categorized into three general
categories: software, hardware microcode and hardware.

Software mitigations. Retpolines [49] are the currently
preferred method for mitigating Spectre. Retpolines, shown in
Figure 1, work by directing speculative execution of indirect
branches into an infinite loop. This is achieved by redirect-
ing indirect branches to a thunk which captures the branch
target on the return stack buffer (RSB) and uses a RET in-
struction instead of a CALL. A RET uses a different speculative
prediction mechanism which leverages the RSB rather than
the vulnerable BTB, so it does not suffer from the same vul-
nerability as a CALL instruction. Speculative execution of the
return path will execute lines 4-6, labeled capture, which
exhausts speculative execution by looping forever. The PAUSE
instruction on line 4 is used to release processor resources to
a hardware simultaneous multithread (SMT) or to save power
if no execution is needed, and the LFENCE instruction acts as
a speculation barrier [15, 36].

Retpoline safety is based on the behavior of the predictor
for the RET instruction. On Intel architectures before Skylake,
speculation for RET instructions were always computed from
the RSB [14]. On Skylake and after however, the contents of
the BTB may be used if the RSB is empty, making these archi-
tectures vulnerable even if retpolines are used [31]. To prevent
an attack which causes the underflow of the RSB, a technique
known as RSB stuffing can be used on these architectures
on events which could cause the RSB to be emptied [51].
However, a deep call stack may still result in unpredictable
overflows, leaving these architectures vulnerable even with
both RSB stuffing and retpolines enabled.

Measuring precise performance overheads of retpolines
is difficult because they affect deep microarchitectural state

such as the RSB, and may cause future mispredictions. Em-
pirically, retpolines have been observed to result in as much
as a 20% slowdown on some workloads, increasing the cost
of an indirect branch from a worst-case cost of around 10
cycles [13] (indirect branch misprediction) to almost 70 cy-
cles in the common case. The performance penalty Spectre
imposes on indirect branches makes optimizing them much
more important.

Hardware microcode mitigations. As a result of Spectre,
microcode updates have been introduced which add func-
tionality to control indirect branch predictions. These mecha-
nisms include Indirect Branch Restricted Speculation (IBRS),
Single Thread Indirect Branch Predictors (STIBP) and In-
direct Branch Predictor Barrier (IBPB) [14]. IBRS works
by defining four privilege levels: host and guest modes with
corresponding user and supervisor modes. The processor guar-
antees that lower privilege modes and other logical proces-
sors cannot control the predictors of more privileged modes.
STIBP and IBPB are used to protect VMs and processes
across context switches by preventing predictions in one
thread or context from affecting another thread or context.

These microcode mechanisms can replace retpolines. Un-
fortunately, the performance penalty of IBRS is quite high:
Since it is implemented in microcode, it likely flushes the BTB
on each privilege transition and requires a model-specific
register (MSR) write whenever a privilege transition occurs.
IBRS has an extremely high overhead compared to retpolines
(observed to be as high as 25–53%+) [17, 47, 50].

IBRS is the only mechanism which completely protects
Skylake and future processors, because the BTB may be used
if the RSB underflows. However, due to concerns with com-
plexity and performance, the Linux kernel has adopted the
use of retpolines on all vulnerable architectures instead, using
RSB stuffing to protect the RSB [51, 53].

Hardware mitigations. Finally, Intel has proposed mitiga-
tions for Spectre in new microarchitectures which require new
microprocessors to be deployed. These mitigations cannot
address Spectre in the billions of already deployed proces-
sors [37]. This includes technologies such as Enhanced In-
direct Branch Restricted Speculation (Enhanced IBRS) [16]
and control flow enforcement technology (CET) [14]. En-
hanced IBRS eliminates the overhead of IBRS by removing
the requirement to write to an MSR. CET restricts the specula-
tions which the processor can make by requiring that indirect
branches target only special ENDBR (end-branch) instructions.

Hardware mitigations will be much more performant than
software or hardware microcode mitigation today, since future
processors will be able to make deep changes to the microar-
chitecture to account for Spectre. Practically implementing
these technologies on code which must run on both secure
and vulnerable hardware remains an open question, especially

USENIX Association 2019 USENIX Annual Technical Conference 287

in the cloud where live migration between processors remains
a real possibility [36, 48].

2.2 Indirect Call Promotion
The cost of indirect calls have been historically observed
to be high, even before the discovery of Spectre. The most
common technique used to reduce the cost of indirect calls
is known as indirect call promotion, where likely call targets
are promoted to conditional direct calls, reducing the chance
that the processor will mis-speculate an indirect call using a
code fragment similar to that shown in Figure 2 [6, 7].

Promoting indirect calls comes at a cost, however. Each pro-
moted call increases code size, which significantly decreases
performance if infrequently used targets are promoted. Code
size also limits the number of targets that can be promoted.
Indirect branches which call a large number of targets with
equal likelihood are poor candidates for promotion.

Compilers can determine and promote likely targets at
compile-time [9, 23], through the use of profile-guided opti-
mization or feedback-directed optimization (PGO/FDO) [10,
11, 26, 32, 41, 42]. Collection of targets in the Linux kernel,
which is the focus of this paper, is complicated by several fac-
tors. First, branches collected through the use of profiling may
not resemble the actual execution at runtime and incorrect
learned targets may even result in regressions [40], particu-
larly if the code is executed under diverse conditions. Previous
work has shown that simply executing the Linux kernel un-
der different workloads results in different profiles [54, 55].
Second, mechanisms such as KASLR [45], JITed code (e.g.,
eBPF programs) and dynamically loaded modules, may make
it impossible to learn targets until runtime. Finally, incorporat-
ing learned branch targets requires recompilation, which may
mean having different binaries for each workload or a deploy-
ment infrastructure which adapts binaries over time [10, 42].
This is incompatible with how kernels are provided in most
OS distributions: as binary packages.

While binary translators [18, 27, 28] and JIT compil-
ers [25, 33, 44] are capable of collecting branch targets at
runtime, binary translators result in a significant overhead as
they are designed to translate and instrument the entire binary,
and may need to restrict the kernel’s functionality for best
performance [27]. JIT compilers cannot directly run the Linux
kernel, although some progress has been made to leverage
LLVM to run applications as complex as Linux [3].

2.3 Alternative Solutions
After we released parts of our code [4], several solutions that
employ indirect call promotion have been proposed by Linux
developers. Hellwig added a fast-path to code that invokes
DMA operation based on the I/O memory management unit
(IOMMU) that the system uses. This solution effectively per-
forms indirect branch promotion of each call to a single static

1 c a l l %r a x
2
3
4
5
6

cmp ${ l i k e l y },% eax
jnz miss
c a l l { l i k e l y }
jmp done

miss : c a l l %eax
done :

Figure 2: Indirect call promotion. Indirect branches on the
left are replaced with a direct branch (line 3) which is called
if the prediction is correct at runtime (lines 1, 2). Otherwise,
a normal indirect call is made (line 5).

predetermined target: the functions that are used when no
IOMMU is used. As a result, the solution does not provide
any benefit when an IOMMU is used [21].

A similar solution was introduced by Abeni to reduce the
overhead of indirect branches in the network stack [2]. This
solution is also static, requiring the developer to determine at
development time what the likely targets are of each call. In
addition, this solution is not suitable for calls to functions in
loadable modules, whose address is unknown at compilation
time. The implementation, which requires changing function
calls into C macros reduces code readability. As a result this
solution is limited to certain use-cases.

Finally, Poimboeuf [43] proposed a mechanism that ad-
dresses indirect calls whose target rarely changes. The pro-
posed solution uses direct calls, and when the target changes,
performs binary rewriting to change the direct call target. As
this mechanism does not have a fallback path, it is only useful
in certain calls. In addition, it requires the programmer to
explicitly invoke binary rewriting and the use of C macros
negatively affects code readability.

2.4 JumpSwitches
JumpSwitches are designed to mitigate Spectre by taking
advantage of indirect call promotion and leveraging semantic
information not available by compile-time. JumpSwitches are
motivated by the following observations:

• Retpolines induce ≈70 cycles of overhead which can be
leveraged by software to resolve indirect branches.

• Promoting indirect branches can be combined with en-
suring the safety of speculative branch execution.

• Committing to specific optimizations at compile-time
can limit performance and potentially risk safety (such
as assuming Spectre-safe hardware).

Threat Model. JumpSwitches assume that only indirect
branches and returns are vulnerable to Spectre variant 2, as
stated by Intel [14] and the original Spectre disclosure [30,38].
It is also to important to note that while retpolines can serve
as a defense against Spectre variant 1 (“Bounds Check By-
pass”) [30,39,49], JumpSwitches do not defend against Spec-

288 2019 USENIX Annual Technical Conference USENIX Association

Mechanism Overhead Spectre-Safe Learning
retpolines [49] medium yes none
EIBRS [48] low yes none
PGO/FDO [54] low w/retpoline static
DBT/JIT [27] high w/retpoline dynamic
JumpSwitches low dynamic dynamic+semantic

Table 1: Comparison of various indirect call mechanisms,
their relative overheads and if they are Spectre-safe.

tre variant 1. We assert that replacing retpolines with Jump-
Switches does not make the Linux kernel vulnerable to Spec-
tre variant 1, as retpolines are used solely as a Spectre variant
2 defense. In Linux, static analysis and selective masking/se-
rialization is used to defend against Spectre v1 [12], since
Spectre variant 1 defenses are still necessary even in “Spectre
safe hardware”, where retpolines are turned off for perfor-
mance. Spectre variant 1 is not expected to be fixed in future
hardware [46]. We assert that JumpSwitches are as safe as fu-
ture “Spectre safe” processors currently on vendor roadmaps.

Compared to indirect call promotion implemented with
a compiler, JumpSwitches are able to dynamically adapt to
changing workloads and take advantage of semantic informa-
tion only available at runtime, much as a JIT compiler may
employ polymorphic inline caching [22]. Unlike binary trans-
lation, JumpSwitches are integrated in the kernel and designed
for minimal overhead to only instrument indirect calls rather
than the entire binary. Furthermore, JumpSwitches are able
to take advantage of the rich semantic information available
in the kernel source and lost in the binary. A summary of
indirect call mechanisms can be found in Table 1.

Our work is focused on the Linux kernel since it fully
supports retpolines and runs privileged code which must be
protected against Spectre. We believe, however, that Jump-
Switches can be applied as a general mechanism and be
widely deployed as retpolines are today. The goals of Jump-
Switches are to:

• Predict indirect branch targets while preserving safety.
• Require minimal programmer effort: leveraging Jump-

Switches should not require source code changes.
• Be flexible: allow the programmer to provide additional

semantic information when available.

3 JumpSwitch Architecture

JumpSwitches are code fragments which, like retpolines,
serve as trampolines for indirect calls. Their purpose is to
leverage indirect call promotion and use direct calls which
have a much lower cost than indirect calls, especially in the era
of Spectre. JumpSwitches are Spectre aware: if a JumpSwitch
cannot promote an indirect call, a Spectre mitigated indirect
call is made. In Spectre-vulnerable hardware, JumpSwitches
fall back to retpolines, but future hardware may easily take
advantage of technologies such as Enhanced IBRS.

We have developed five different types of JumpSwitches,
each optimized for a different purpose. The simplest and de-
fault type of JumpSwitch is known as an Inline JumpSwitch,
which is optimized for code size and covers the majority of
use cases. The Outline JumpSwitch is used when we learn
that an indirect branch has multiple targets. Inline and out-
line JumpSwitches are known as generic JumpSwitches and
can be used on all indirect branches. We also provide three
semantic JumpSwitches which support commonly encoun-
tered indirect branches where deeper semantic information
is available from the programmer. Search JumpSwitches sup-
port a large number (hundreds) of targets. The Registration
JumpSwitch covers the commonly used registration pattern
used in callback lists. Finally, the Instance JumpSwitch covers
the case where call targets are strongly correlated with an
instance, such as an object or a process. Within the Linux
kernel, the JumpSwitch worker learns about new branch tar-
gets and makes decisions on whether a JumpSwitch should
be changed to a different type, outside the path of execution.
To change the active JumpSwitch, the worker makes use of a
multi-stage patching mechanism which atomically updates a
JumpSwitch without risking safety.

JumpSwitches are integrated into the Linux build infras-
tructure through the use of a compiler plugin. Thanks to our
integration with the Linux build system, taking advantage
of inline JumpSwitches and outline JumpSwitches requires
no source code changes. We also supply additional Jump-
Switches which leverage semantic information available in
the kernel provided by developers, enabling the search, regis-
tration and instance JumpSwitches.

In the next sections, we first describe each type of Jump-
Switch. Then, we show how the JumpSwitch worker learns
and adapts JumpSwitches during runtime. Finally, we show
how we patch Linux with JumpSwitches as well as optimiza-
tions we made during integration.

3.1 JumpSwitch Types

Generic JumpSwitches can be used on all indirect calls, while
semantic JumpSwitches cover common use cases. We enu-
merate the types of JumpSwitches below:

Inline JumpSwitch. These JumpSwitches serve as generic
trampolines which replace an indirect call. They act as a basic
building block for other JumpSwitches and enable dynamic
learning of branch targets. Because they replace code, they
must be short, otherwise they risk bloating code and increas-
ing pressure on the instruction cache. At the same time, they
must be upgradable by the JumpSwitch worker at runtime and
support learning. In order to fulfill these three requirements,
inline JumpSwitches are designed to be safe by default and
easily patched. An example of an inline JumpSwitch and the
indirect call it replaces is given in Figure 3.

USENIX Association 2019 USENIX Annual Technical Conference 289

1 c a l l %eax
2
3
4
5
6

cmp ${ l i k e l y },% eax
jnz miss
c a l l { l i k e l y r e l }
jmp done

miss : c a l l { slow r e l }
done :

Figure 3: Inline JumpSwitch. Indirect branches on the left are
replaced with a sequence that may promote a likely call to a
direct call (lines 1–4), falling back to a slow path if the likely
target was not in %eax.

1 cmp ${ e n t r y 0 } , %eax
2 j z { e n t r y 0 r e l }
3 cmp ${ e n t r y 1 } , %eax
4 j z { e n t r y 1 r e l }
5 . . .
6 jmp l e a r n i n g r e l

Figure 4: Outline JumpSwitch. Multiple targets are supported,
using JZ instructions to avoid the need for a function epilogue
and falling back to learning if the target is not found.

The inline JumpSwitch may point to one of two targets:
likely or slow. Likely represents a branch target that the Jump-
Switch has learned to be likely and is promoted to avoid an
indirect jump. Slow can represent one of three targets, depend-
ing on which mode the inline JumpSwitch is in:

• Learning mode, where slow points to learning code
which updates a table of learned targets.

• Outline mode, where slow points to an outline Jump-
Switch leading to more targets.

• Fallback mode, where slow points to either a retpoline
or is a normal indirect call, depending on if the system
is Spectre vulnerable.

When compiled, the inline JumpSwitch is set to fallback
mode and both likely and slow point to a retpoline. At runtime,
the JumpSwitch worker may patch likely and slow depending
on which mode is required and what targets have been learned.
When an inline JumpSwitch is executed, if likely matches the
contents of the register holding the branch target (in this case,
eax), the call on line 3 is executed. Otherwise, the call to
slow is executed. It is important to note that while the value
of likely is used by the CMP instruction represents a direct
address, the target of the CALLs are relative, since there are no
direct absolute jumps in x86-64.

Outline JumpSwitch. To support multiple targets dynam-
ically without increasing code size in the common case
where there is only a single learned target, outline Jump-
Switches may be called by inline JumpSwitches. Unlike in-
line JumpSwitches, outline JumpSwitches are dynamically

allocated and generated by the JumpSwitch worker as targets
are learned. As an optimization, since outline JumpSwitches
are called by inline JumpSwitches, we avoid the normal work
of setting the frame pointer and returning by using jump in-
structions, as shown in Figure 4. As a result, each target uses
two instructions: a CMP and a JZ. If the target is not in the
outline JumpSwitch, we fall back to learning code, as in the
inline JumpSwitch in learning mode.

While outline JumpSwitches support multiple targets, each
target adds an additional conditional branch, which induces
overhead. To avoid reducing performance due to excessive
or unpredictable branch targets, we limit targets in an outline
JumpSwitch to 6, for a total of 7 (1 in the inline JumpSwitch
and 6 in the outline). To support more targets, a search Jump-
Switch can be used.

In addition to the generic indirect branches targeted by
inline and outline JumpSwitches, we also target common
indirect branches when semantic information is available.

Registration JumpSwitch. The registration pattern occurs
when a list of callbacks is registered for later use. Regis-
tration is used in the kernel for structures such as callback
lists (e.g., notifiers such as user_return_notifier and
mmu_notifier), or filter lists (e.g. seccomp).

In such cases, since the callbacks are called from a sin-
gle call-site in a loop, learning targets would fail if the call-
back list length is greater than the maximum number of learn-
ing JumpSwitch targets. Instead, we use a registration Jump-
Switch, which unrolls callback list invocation code, sets mul-
tiple call instructions to callbacks. When a function is added
or removed callbacks from a callback list the registration
JumpSwitch is explicitly invoked and patches the callback
addresses into the call instructions.

Instance JumpSwitch. Another common pattern that
JumpSwitches target are cases where the likely branch tar-
gets are strongly correlated with a process. For example, the
running process may dictate which seccomp filters are run-
ning, or per-process preemption_notifier used. Instance
JumpSwitches take advantage of semantic knowledge about
the running workload, and contain one of the previous three
JumpSwitch types, but on a per-instance basis.

To support instance JumpSwitches, a separate executable
memory area is allocated for each process. This memory
area contains the instance JumpSwitches. While each area is
located in a different physical memory address, the instance
JumpSwitch is always mapped in a fixed virtual address. This
allows us to invoke process specific JumpSwitches by direct
calls, as context switches between different processes also
switch instance JumpSwitches to the process-specific ones.
Learning and code modifications are then done on a per-
process basis.

290 2019 USENIX Annual Technical Conference USENIX Association

1 i n t s y s c a l l (i n t nr , r e g s _ t ∗ r e g s)
2 {
3 i n t d i r e c t _ n r = p r i v a t e _ n r [n r] ;
4
5 i f (d i r e c t _ n r == INVALID)
6 re turn c a l l _ t a b l e [n r] (r e g s) ;
7
8 /∗ H i t ; 4 e n t r i e s per−p r o c e s s ∗ /
9 i f (d i r e c t _ n r < 2) {

10 i f (d i r e c t _ n r < 1)
11 re turn p r i v a t e _ c a l l _ 0 (r e g s) ;
12 re turn p r i v a t e _ c a l l _ 1 (r e g s) ;
13 }
14 i f (d i r e c t _ n r < 3)
15 re turn p r i v a t e _ c a l l _ 2 (r e g s) ;
16 re turn p r i v a t e _ c a l l _ 3 (r e g s) ;
17 }

Figure 5: Search JumpSwitch pseudo-code, similar to the one
that is used to invoke system-calls. In this example there are
4 slots for the most common targets. If there is a miss, an
indirect call is initiated (line 6). Otherwise, a direct branch is
performed (lines 9-16). System-call indirection table and func-
tions (prefixed with “private”) are set per instance (i.e., pro-
cess). They are located at a fixed virtual address, by mapped
to different physical memory on each process.

Search JumpSwitch. Some indirect branches may have
potentially hundreds of targets, such as in call tables (e.g.,
syscall, hypercalls) and event handlers (e.g., virtualization
traps) and other jump tables commonly used to execute se-
lection control, as commonly done by C “switch” statements.
These constructs typically translate a key such a handler num-
ber to a function for that key, and can be compiled to machine
code that use binary decision tree or to code that use jump-
tables. In practice, compilers prefer jump-tables for densely
packed case items, as they usually require fewer instructions
and branches [8]. However, this behavior is based on the
assumption that an indirect branches are inexpensive, an as-
sumption which has changed and should be reevaluated in the
era of Spectre, particularly when retpolines are required.

In these cases, the JumpSwitch may benefit from a search
tree which may reduce the number of branches needed for an
indirection lookup and support many more targets. However,
in the Linux kernel, we experimented with the most commonly
used table, the system call table, which is used to dispatch
the function that handles system calls based on a well known
(“magic”) number. Linux implements this table manually and
does not use a switch statement. In x86 Linux, there are over
300 system calls. When retpolines are enabled, we found both
static jump tables and binary decision trees to be inefficient.
Our experiments with static binary decision tree showed they

easily degrade performance when more than very few system
calls are used. Unfortunately, outline JumpSwitches do not
perform well as all the slots quickly fill up and the learning
mechanism disables the outline block to prevent excessive
overhead and performance degradation.

To address this situation, search JumpSwitches use an adap-
tive binary decision tree that caches the most frequent call
translations (in the case of a system call, from system call
number to handler), and the jump-table is used as a fallback.
We dynamically construct a binary decision tree and keep a
bitmap, where each bit corresponds to the respective trans-
lation in the jump-table. When the translation is called, the
search JumpSwitch checks and updates the bitmap if learning
is enabled, then dispatches the request (Figure 5). The Jump-
Switch worker periodically updates the decision tree based
on the learned frequency data.

3.2 Learning and the JumpSwitch Worker
To learn new targets, JumpSwitches use a learning routine,
which buffers learned targets in an optimized hash table, and
the worker periodically updates JumpSwitches using multi-
stage patching. Different routines are used for learning on
generic (inline and outline JumpSwitches) and search Jump-
Switches. Registration and instance JumpSwitches do not
learn asynchronously and do not require the worker.

Generic Learning Routine. To learn new branch targets,
we could have used hardware mechanisms such as Precise
Event-Based Sampling (PEBS) [24], which is used by many
PGO and FDO frameworks. However, PEBS has several limi-
tations, such as not being able to selectively profile branches
and cannot be run in most virtual environments. To ensure
that JumpSwitches are hardware agnostic, we developed a
lightweight software mechanism for learning branch targets.

Our software learning routine records branch targets in a
small 256-entry per-core hash table. The branch source and
destination instruction pointers are XOR’d and the low 8 bits
are used as a key for the table. Each entry of the table saves
the instruction pointer of the source and the destination (only
the low 32-bits, as the top 32-bits are fixed), as well as a
counter of number of invocations. We ignore hash collisions,
which can potentially cause destinations that do not match
the source to be recorded and wrong invocation count, as they
only lead to suboptimal decisions in the worst case and do
not affect correctness. This allows us to keep the learning
routine simple and short (14 assembly instructions), which is
important for keeping the overhead of learning low.

After the learning routine is done, fallback code is called,
which may either be a retpoline if Spectre-vulnerable hard-
ware is present or a normal indirect call.

Search Learning Routine. For search JumpSwitches, an
alternate method is used. Search JumpSwitches are tracked

USENIX Association 2019 USENIX Annual Technical Conference 291

per process. Each thread holds a flag that indicates whether
learning needs to be done. When learning is on, each thread
records which calls have been performed in a per-core fre-
quency table. Upon context-switch the frequencies are added
to a per-process frequency table that sums them up, and the
per-core table is cleared. When training is over, an inter-
processor interrupt (IPI) is sent to cores that still run threads
of the process to sum them up into the per-process table.

JumpSwitch Worker. The worker runs once every epoch
(1 second default, configurable), or when a relearning event is
triggered. The worker performs learning by reading the targets
that were discovered by the learning routines and updating the
JumpSwitch. The worker processes generic JumpSwitches
and search JumpSwitches differently:

Generic JumpSwitch Updates. During each epoch, the
JumpSwitch worker checks if new call targets were encoun-
tered by reading the hash tables on each core and summing
the total calls for each source-destination pair on all cores. For
each source, the worker sorts each destination by the number
of hits and promotes those destinations. If the destinations
have already been promoted, they are ignored, and if the maxi-
mum capacity of an outline JumpSwitch is reached, the inline
JumpSwitch is put into fallback mode, which disables learn-
ing for the target. As a result, a worker run can result in the
following changes to a JumpSwitch:

• Update an inline JumpSwitch’s likely target.
• Switch an inline JumpSwitch from learning to outline.
• Create or add targets to an outline JumpSwitch.
• Switch an inline JumpSwitch to fallback mode.
Once the worker is done processing data, it clears all hash

tables allowing calls with hash conflicts to save their data.

Generic Learning Policy. Learning imposes some over-
head and should only be performed when a performance gain
will likely result. To mitigate learning overheads, the worker
holds generic JumpSwitches in three lists:

• Learning JumpSwitches, which are in learning mode.
They do not improve performance, but track targets.

• Stable JumpSwitches, which have a single target. These
JumpSwitches do not need to be disabled for relearning,
as their fallback path jumps to the learning routine.

• Unstable JumpSwitches, which have more than a single
target. These include JumpSwitches with an outlined
block, and those that have too many targets, and were
therefore set not to have an outlined block.

During each epoch, if no JumpSwitches were updated, the
JumpSwitch worker picks a number of JumpSwitches (con-
figurable, 16 default) from the unstable list and converts them
into learning JumpSwitches, disabling them and setting the
fallback to jump to the learning routine. To avoid being too

aggressive, the worker does not switch a JumpSwitch into
learning mode more than once every 60 seconds.

Search Learning Updates. For search JumpSwitches, the
worker sums up per-cpu frequency tables, but instead of up-
dating an inline JumpSwitch, a binary-search tree is updated,
promoting frequent values and clearing the bitmap.

Search Learning Policy. Learning is turned on periodically
per-process. For each process, we save whether learning is on
and the last time it was performed. When a thread is scheduled
to run, it checks if learning is on. If so, it caches the status
in thread-local memory. If it is off, a check is performed to
see whether a time interval passed since learning was last
on (20 seconds default). If that time has elapsed, learning is
turned back on, and the process is added into a list of learning
processes. Learning is stopped on the next update.

3.3 Patching and Updating
To minimize the performance impact of patching inline Jump-
Switches, the worker employs a multi-phase mechanism to
ensure that JumpSwitches are safely updated as multiple in-
structions are patched live without locks or halting execution.
We leverage the Linux text_poke infrastructure [29], de-
signed for live patching of code.2 Patching is a three phase
process, outlined below, and line numbers refer to inline Jump-
Switch shown on the right of figure 3.

1. A breakpoint is installed on line 1 by writing the single-
byte breakpoint opcode onto the first byte of the instruc-
tion. If the breakpoint is hit, the handler emulates a call to
the retpoline, as if it was executed on line 5. To simplify
implementation, the handler does not perform the emu-
lation directly, but instead moves the instruction pointer
to a newly created chunk that pushes onto the stack the
return address (line 6) and executes JMP branch to the
retpoline chunk.

2. The patching mechanism waits for a quiescence period,
to ensure no thread runs the instructions in lines 2–5.
In the Linux kernel, this is performed by calling the
synchronize_sched function. Afterwards, the instruc-
tions on lines 2, 3 and 5 are patched. The instruction
on line 4 is not changed, to allow functions that return
from the CALL in line 3 to succeed in completing the
JumpSwitch.

3. The same breakpoint mechanism in phase 1 is used, this
time restoring the CMP on line 1 with the new promoted
target, re-enabling the JumpSwitch.

When a fully-preemptable kernel is used, we also check
whether the JumpSwitch code was interrupted before the
target function was called and rewind the saved instruction

2We have submitted upstream patches to Linux to further harden the
security of this mechanism [5].

292 2019 USENIX Annual Technical Conference USENIX Association

pointer to line 1. This ensures the code will be executed again
when the thread is re-scheduled. To efficiently determine if
JumpSwitch code was interrupted, a check is only performed
only if instructions we use (cmp, jnz, jz, call and jmp) are
interrupted.

3.4 Linux Integration
We implement and integrate JumpSwitches on Linux v4.18
through a gcc-plugin integrated into the Linux build system.
The gcc-plugin is built during the kernel build and replaces
call sites with our JumpSwitch code, allowing generic Jump-
Switches to be seamlessly integrated into the Linux kernel
without source code changes. We write the instruction pointer
and the register used for the indirect call into a new ELF sec-
tion. This information is read during boot to compose a list of
calls, allowing the worker to easily realize which register is
used in each JumpSwitch. It also serves as a security precau-
tion to prevent intentional or malicious memory corruption
of the JumpSwitch sampling data from causing the Jump-
Switch worker from patching the wrong code. The use of
JumpSwitches is configurable via a Kconfig CONFIG option.

Semantic JumpSwitches require slight changes to kernel
source. To support instance JumpSwitches for processes, we
mapped a per-process page in kernel space. We implemented
both search and registration JumpSwitches to be placed in
per-process instance JumpSwitches. We modified seccomp
to use a registration JumpSwitch, which accounts for the fact
that filters are per process by being placed in an instance
JumpSwitch. We also patch system call dispatching to use
a search JumpSwitch, to account for the large system call
table which is used, and place it in an instance JumpSwitch.
Overall, implementing our semantic JumpSwitches in the
kernel required changing about 30 SLOC.

The JumpSwitch worker is integrated into the kernel in
a similar manner to other periodic tasks in Linux which
patch code such as the static-keys, jump-label and
alternatives infrastructure in Linux.

3.5 Direct Kernel Entry
During our Linux integration, we observed that JumpSwitches
did not provide the full speedup we expected. Further analy-
sis revealed that this was due to the overhead of page-table
isolation (PTI), which was introduced to mitigate against Melt-
down, a different speculative execution vulnerability [1, 34].
PTI introduced a new trampoline used during system calls to
switch between the user and kernel page tables. This tram-
poline is mapped to a different virtual address on each core
so the trampoline can determine the correct per-core transi-
tional kernel stack. The trampoline is part of a per-core data
structure, and since this data-structure is large, it is located
“far” (more than 2GB away from the kernel [19]), preventing
a direct jump. Unfortunately, the resulting indirect jump must

use a retpoline [52] on Spectre vulnerable hardware, resulting
in lower than expected gains when we used JumpSwitches.

To eliminate the need for this retpoline, we split the per-
core data structure into two data structures: a small one which
includes the transitional kernel stack, TSS and trampoline
code, which are all needed to transition into the kernel during
a system call; and a second larger one that includes the other
fields. This allowed us to move the small part of the tram-
poline back into the same 2GB in which the kernel code is
mapped, and use a relative jump instead of a retpoline, result-
ing in a significant performance gain. Our solution requires
replicating the trampoline page, which consumes a minimal
amount of extra physical memory (< 32MB for 8192 cores).

4 Evaluation

Our evaluation is guided by the following questions:
• How does the specialization of each JumpSwitch impact

the performance of the kernel in isolation? (§4.1)
• How do JumpSwitches perform with real-world applica-

tions and benchmarks? (§4.2)
• How does learning impact JumpSwitches? (§4.3)
• How many targets are needed per indirect branch? (§4.4)
• Is JumpSwitch is useful after the recent security vulnera-

bilities are resolved in hardware? (§4.5)

Testbed. Our testbed consists of a Dell PowerEdge R630
server with Intel E5-2670 CPUs, a Seagate ST1200 disk,
which runs Ubuntu 18.04. The benchmarks are run on guests
with a 2-VCPUs and 16GB of RAM. Each measurement was
performed at least 5 times and the average result and standard
deviation are reported. All workloads were executed with a
warm-up run prior to measurement.

Configurations. We run and report the speedup relative to
the baseline system which uses retpolines as a mitigation
against Spectre. We report the results of:

• base: The baseline system with retpolines enabled.
• direct-entry: direct jump kernel entry trampoline.
• +inline: direct-entry with inline JumpSwitches.
• +outline: +inline with outline JumpSwitches when

there are multiple targets.
• +registration: +outline with per-process (instance)

registration JumpSwitches for seccomp
• +search: +registration with per-process (instance)

search JumpSwitches for system calls.
• unsafe: the baseline system with retpolines disabled.

4.1 Microbenchmarks

Given the diversity of JumpSwitches we implemented, we
first wanted to evaluate how each type of JumpSwitch would

USENIX Association 2019 USENIX Annual Technical Conference 293

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

null

(268ns)

read

(388ns)

write

(338ns)

stat

(613ns)

fstat

(384ns)

open

(1585ns)

s
p

e
e

d
u

p

base
direct-entry

+inline
+outline

+registration
+search

unsafe

Figure 6: System call speedup relative to the baseline setup
that uses retpolines. The runtime of the baseline system is
reported in parentheses.

improve the performance of the kernel in isolation. We evalu-
ate system calls in a microbenchmark as they have shown to
a particular source of slowdown as a result of both the Melt-
down [1] and Spectre hardware vulnerabilities, as system calls
stress user-kernel transitions, which must now be protected.

We measure the impact of JumpSwitch on the time it takes
to run common system-calls using the lmbench tools for
performance analysis [35]. Figure 6 shows the speedup rela-
tive to the baseline protected system. As shown, eliminating
the indirect call in the entry trampoline provides a benefit
of roughly 15ns which is more pronounced in short system
calls. The inline JumpSwitch improves performance by up
to 15%, making the system calls run as fast as they would
without retpolines. It is noteworthy that this is due to the fact
that the workload is very simple, which allows the training
mechanism to inline call targets with very high precision.

This high precision is the reason that Outline JumpSwitches
do not provide any benefit in this benchmark. Semantic Jump-
Switches also offer little benefit here: seccomp filters are not
installed and the same system call is called repeatedly.

To further understand the performance benefits of Jump-
Switches, we some simple operations: Redis key-value store
commands using redis-benchmark. Snapshotting is disabled
to reduce variance. Each test runs the same command re-
peatedly, and the results are depicted in Figure 7. As seen,
using registration JumpSwitches to avoid indirect calls when
seccomp filters are invoked, provide up to 9%, performance
improvement. This is due to the fact that systemd, software
which acts as a system and service manager in Ubuntu, at-
taches 17 seccomp filters, which are executed upon each sys-
tem call. Search JumpSwitches, whose benefit was not shown
when the same system call was repeatedly executed, improve
performance by up roughly 2%.

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

ping(m)

(971k/sec)

set

(711k/sec)

get

(833k/sec)

incr

(798k/sec)

lpush

(660k/sec)

rpush

(691k/sec)

s
p

e
e

d
u

p

base
direct-entry

+inline
+outline

+registration
+search

unsafe

Figure 7: Relative speedup of Redis using JumpSwitch. The
operations are are invoked and measured by redis-benchmark.
The runtime of the baseline system is reported in parentheses.

 0.95

 1

 1.05

 1.1

 1.15

sysbench

(488 kops/s)

dbench

(1984 MB/s)

nginx

(20 kops/s)

redis

(26 kops/s)

s
p

e
e

d
u

p

base
direct-entry

+inline
+outline

+registration
+search

unsafe

Figure 8: Relative speedup of macro-benchmarks using Jump-
Switch. The baseline system is reported in parentheses.

4.2 Macrobenchmarks

Next, we want to see how JumpSwitches perform with
real-world workloads which do not necessarily stress the
userspace-kernel transition. We run the following bench-
marks: sysbench, which runs a mixture of file read, write and
flush operations, running on a temporary file-system (tmpfs);
dbench, a disk benchmark that simulates file server workload,
running on tmpfs; Nginx web-server, using ApacheBench
workload generator to send 500k requests for a static web-
page using with 10 concurrent requests at a time; and Redis,
using Yahoo Cloud System Benchmark (YCSB) as a work-
load generator (running workloadA). In all cases we ensure
the workload generator is not the bottleneck.

Figure 8 depicts the results. Eliminating the indirect branch
from the entry trampoline provides a modest performance

294 2019 USENIX Annual Technical Conference USENIX Association

 3.1

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 0 20 40 60 80 100 120
 0

 100

 200

 300

 400

th
ro

u
g

h
p

u
t

[M
b

it
s
/s

e
c
]

p
a

tc
h

e
d

 b
ra

n
c
h

e
s
 [

#
]

seconds

throughput
patched branches

Figure 9: UDP throughput and the number of patched
branches when the workload changes and learning is initi-
ated after 60 seconds. A single inlined JumpSwitch is used.

improvement, which is most pronounced in dbench as it in-
vokes many system calls. The inline JumpSwitch provides
the major part of the performance gains, up to 8% improve-
ment over the baseline system for the Redis benchmark. Like
the Redis micro-benchmarks, the macro-benchmark shows
a considerable gain (3%) from a registration JumpSwitch,
due to the multiple (17) seccomp filters which are attached to
it. Dbench shows a performance gain of up to 4% from the
search JumpSwitch, as it repeatedly runs a small subset of
system calls, which are quickly learned by the adaptive search
tree. It appears that this mechanism also improves Redis per-
formance, but due to the high standard deviation, it is hard to
say so definitively. For the same reason it is hard to conclude
whether the experienced performance degradation in nginx
with some mechanisms is meaningful, especially since regis-
tration JumpSwitches have almost no effect on nginx, whose
system calls do not go through seccomp filters.

Overall, the macro-benchmarks evaluation show that Jump-
Switches can restore most of the performance loss due to
retpolines, narrowing the difference between protected and
non-protected systems to less than 3%.

4.3 Dynamic Learning
One of the main benefits of the runtime instrumentation of
JumpSwitches over compile-time decisions is the ability to
dynamically learn branch targets. To evaluate the value, ef-
fectiveness and performance of dynamic learning we create
a scenario where the workload behavior changes. In this ex-
periment we only enable inline JumpSwitches, emulating
how compilers perform indirect branch prediction. To control
learning, we disable the automatic learning mechanism and
use a user-visible knob that initiates the relearning.

First, we run iperf—a network bandwidth measurement
tool—to send and receive UDP packets using IPv6, and we
set the kernel to learn and adapt the branches accordingly.
Then we use iperf to measure the throughput of IPv4 UDP
performance, by sending messages of a single byte. After 60
seconds, we restart the learning process.

Figure 9 shows the throughput (sampled every 5 seconds),

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8+

targets [#]

branches
hit-rate

Figure 10: Hit-rate of the inlined and outlined JumpSwitch
compared against a CDF of the number of targets that each
indirect call-site holds while running Nginx.

and the number of adapted branches (sampled every sec-
ond). As shown, restarting the learning process resets all
the branches, dropping the number of patched branches to
zero momentarily. Yet, within 5 seconds, over half of the
branches that were patched prior to the benchmark execution
are patched again with updated targets. The adaptation of the
branches improves the overall throughput by ≈5%.

This demonstrates the value of dynamic learning over
profile-based techniques, which “bake” in indirect branch pro-
motions at compile time. Since learning is fast, it can be done
periodically without degrading the overall performance of the
system. Future work may apply a more advanced algorithm
to do relearning, such as on a system event.

4.4 Branch Targets

The usefulness of inline and outline JumpSwitches depends
on the number of branch targets and the distribution of the
frequency in which they are used. To study this distribution,
we used our system by modifying the number of branch tar-
get slots in each JumpSwitch and measuring the hit rate. In
addition, we measured how many targets each branch has
and created a cumulative distribution function to compare
with the hit-rate. As shown in Figure 10, 71% of the function
calls had a single target, and the inlined JumpSwitch by itself
(only 1 allowed destination) achieved a hit-rate of 82%. As
we increase the number of allowed destinations, the outline
JumpSwitch further improves the hit-rate up to 96% when
both outlined and inlined JumpSwitch are used.

This shows that inline JumpSwitches alone are able to han-
dle a majority of cases, while outline JumpSwitches provide
more complete coverage for branches with many targets. Only
few branches require beyond 7 targets. In the small fraction
of branches with 8 or more targets, outline JumpSwitches
are disabled because the cost of the additional conditional
branches outweigh the benefits of call promotion.

USENIX Association 2019 USENIX Annual Technical Conference 295

 0.98

 1

 1.02

 1.04

 1.06

sysbench

(505 kops/s)

dbench

(2506 MB/s)

nginx

(22 kops/s)

redis

(30 kops/s)

s
p

e
e

d
u

p

base
inline

Figure 11: Benchmark speedup relative to the baseline when
Spectre and Meltdown protections are disabled. The runtime
of the baseline system is reported in parentheses.

4.5 Post-Spectre Benefits
Finally, we examine whether JumpSwitches are relevant when
hardware solutions for Spectre and Meltdown mitigations are
present, and retpolines are not longer needed. The benefit of
JumpSwitches would be smaller, since the cost of an indirect
branch becomes considerably lower. Some of our proposed
mechanisms will become irrelevant. If Meltdown is resolved,
the indirect branch in the trampoline page is not used. If Spec-
tre is resolved, search and outline JumpSwitches become too
costly relatively to the cost of an indirect branches. Registra-
tion JumpSwitches may improve performance, but our exper-
iments indicate they require further micro-optimizations.

In contrast, inline JumpSwitches are potentially valuable
even after the recent CPU bugs are fixed. Their performance
benefit might be lower, making aggressive retraining of inline
JumpSwitches inappropriate, yet retraining can still be done
infrequently, based on user requests or in response to system
events (e.g., CPU saturation). To evaluate the impact of Jump-
Switches in such setups, we run the same macro-benchmarks
while directing Linux to drop the protections against Melt-
down (no page table isolation) and Spectre (no retpoline).
We disable the automatic relearning mechanism and relearn
manually when the workload is first invoked.

The results are shown in Figure 11. JumpSwitch can pro-
vide up to 2% performance improvement on systems which
that are not vulnerable to Spectre and Meltdown. As shown
on Redis, however, this benefit can be nullified in some cases.

5 Conclusion

The recent CPU vulnerabilities due to speculative execution
revealed that the CPU cannot be regarded as a black-box that
can be blindly relied on. Hardware bugs are hard to fix in ex-
isting systems, which necessitates the mitigation against the
vulnerabilities using software techniques. JumpSwitch per-
forms this task by extending compiler-optimization to make
runtime decisions, while reducing the overhead of the current
mitigation techniques. We have shown that JumpSwitches
achieve our goal of leveraging speculative execution cycles to

predict indirect branch targets while preserving safety, requir-
ing minimal programmer effort while providing the flexibility
for the programmer to add rich semantic information.

JumpSwitches show that software can efficiently perform
hardware tasks such as branch prediction. Since proposed
hardware mitigations against speculation will come with a
cost in performance, a hardware-software solution would al-
low software to define in fine granularity which speculation
is permitted and which needs to be blocked. JumpSwitches
limit the allowed speculation using direct branches. Hardware
mechanisms provide tools for software to perform this task
more efficiently, for example, by providing raw interfaces
to content addressable-memory. The benefit of combining
both solutions is both in performance, by leveraging software
knowledge, and in security, by allowing easier mitigation of
potential hardware vulnerabilities.

6 Acknowledgment

We would like to thank the paper shepherd, Yuval Yarom and
the anonymous reviewers for the insightful comments. We
would also like to thank Andy Lutomirski, Josh Poimboeuf
and Peter Zijlstra for their imperative technical feedback. This
research was supported by the Blavatnik Interdisciplinary Cy-
ber Research Center, Tel Aviv University, grant 0605714731.

References

[1] CVE-2017-5754. Available from NVD, CVE-
ID CVE-2017-5754, https://nvd.nist.gov/vuln/
detail/CVE-2017-5754, January 1 2018. [Online; ac-
cessed 21-May-2019].

[2] Paolo Abeni. Patch: net: mitigate retpo-
line overhead. Linux Kernel Mailing List,
https://lwn.net/ml/linux-kernel/cover.
1544032300.git.pabeni@redhat.com/, 2018.
[Online; accessed 21-May-2019].

[3] Varun Agrawal, Amit Arya, Michael Ferdman, and
Donald Porter. Jit kernels: An idea whose time has
(just) come. http://compas.cs.stonybrook.edu/
~mferdman/downloads.php/SOSP13_JIT_Kernels_
Poster.pdf. [Online; accessed 21-May-2019].

[4] Nadav Amit. Rfc dynamic indirect call promotion.
Linux Kernel Mailing List, https://lkml.org/lkml/
2018/10/18/175, 2018. [Online; accessed 21-May-
2019].

[5] Nadav Amit. PATCH: x86: text_poke() fixes and
executable lockdowns. https://lore.kernel.org/
patchwork/cover/1067359/, 2019. [Online; ac-
cessed 21-May-2019].

296 2019 USENIX Annual Technical Conference USENIX Association

https://nvd.nist.gov/vuln/detail/CVE-2017-5754
https://nvd.nist.gov/vuln/detail/CVE-2017-5754
https://lwn.net/ml/linux-kernel/cover.1544032300.git.pabeni@redhat.com/
https://lwn.net/ml/linux-kernel/cover.1544032300.git.pabeni@redhat.com/
http://compas.cs.stonybrook.edu/~mferdman/downloads.php/SOSP13_JIT_Kernels_Poster.pdf
http://compas.cs.stonybrook.edu/~mferdman/downloads.php/SOSP13_JIT_Kernels_Poster.pdf
http://compas.cs.stonybrook.edu/~mferdman/downloads.php/SOSP13_JIT_Kernels_Poster.pdf
https://lkml.org/lkml/2018/10/18/175
https://lkml.org/lkml/2018/10/18/175
https://lore.kernel.org/patchwork/cover/1067359/
https://lore.kernel.org/patchwork/cover/1067359/

[6] Andrew Ayers, Richard Schooler, and Robert Gottlieb.
Aggressive inlining. In ACM SIGPLAN Notices, vol-
ume 32, pages 134–145. ACM, 1997.

[7] Ivan Baev. Profile-based indirect call promotion. 2015.
[Online; accessed 21-May-2019].

[8] Robert L Bernstein. Producing good code for the
case statement. Software: Practice and Experience,
15(10):1021–1024, 1985.

[9] Brad Calder and Dirk Grunwald. Reducing indirect
function call overhead in C++ programs. In Proceed-
ings of the 21st ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 397–408.
ACM, 1994.

[10] Dehao Chen, David Xinliang Li, and Tipp Moseley. Aut-
oFDO: Automatic feedback-directed optimization for
warehouse-scale applications. In Proceedings of the
2016 International Symposium on Code Generation and
Optimization, pages 12–23. ACM, 2016.

[11] Dehao Chen, Neil Vachharajani, Robert Hundt, Xinliang
Li, Stephane Eranian, Wenguang Chen, and Weimin
Zheng. Taming hardware event samples for precise
and versatile feedback directed optimizations. IEEE
Transactions on Computers, 62(2):376–389, 2013.

[12] Jonathan Corbet. Finding spectre vulnerabilities with
smatch. Linux Kernel Mailing List, https://lwn.net/
Articles/752408/, 2018. [Online; accessed 21-May-
2019].

[13] Intel Corporation. Intel 64 and IA-32 architectures opti-
mization reference manual. 6 2016. [Online; accessed
21-May-2019].

[14] Intel Corporation. Intel analysis of speculative execution
side channels. https://newsroom.intel.com/wp-
content/uploads/sites/11/2018/01/Intel-
Analysis-of-Speculative-Execution-Side-
Channels.pdf, 1 2018. [Online; accessed 21-May-
2019].

[15] Intel Corporation. Retpoline: A branch
target injection mitigation - white paper.
https://software.intel.com/sites/default/
files/managed/1d/46/Retpoline-A-Branch-
Target-Injection-Mitigation.pdf, 2018. [On-
line; accessed 21-May-2019].

[16] Intel Corporation. Speculative execution side channel
mitigations. 5 2018. [Online; accessed 21-May-2019].

[17] Matthew Dillon. Clarifying the Spectre mitigations...
http://lists.dragonflybsd.org/pipermail/
users/2018-January/335637.html, 2018. [Online;
accessed 21-May-2019].

[18] Timothy Garnett. Dynamic optimization if IA-32 appli-
cations under DynamoRIO. PhD thesis, Massachusetts
Institute of Technology, 2003.

[19] Thomas Gleixner. x86/cpu_entry_area: Move it out
of fixmap. Linux Kernel Mailing List, https://lore.
kernel.org/patchwork/patch/866046/, 2017. [On-
line; accessed 21-May-2019].

[20] Byron Hawkins, Brian Demsky, Derek Bruening, and
Qin Zhao. Optimizing binary translation of dynami-
cally generated code. In Proceedings of the 13th Annual
IEEE/ACM International Symposium on Code Gener-
ation and Optimization, pages 68–78. IEEE Computer
Society, 2015.

[21] Christoph Hellwig. RFC: avoid indirect calls
for DMA direct mappings v2. Linux Ker-
nel Mailing List, https://lwn.net/ml/linux-
kernel/20181207190720.18517-1-hch@lst.de/,
2018. [Online; accessed 21-May-2019].

[22] Urs Hölzle, Craig Chambers, and David Ungar. Optimiz-
ing dynamically-typed object-oriented languages with
polymorphic inline caches. In European Conference on
Object-Oriented Programming, pages 21–38. Springer,
1991.

[23] Urs Hölzle and David Ungar. Optimizing dynamically-
dispatched calls with run-time type feedback. In ACM
SIGPLAN Notices, volume 29, pages 326–336. ACM,
1994.

[24] Intel Corporation. Intel 64 and IA-32 architectures opti-
mization reference manual, 2016.

[25] Jose A Joao, Onur Mutlu, Hyesoon Kim, Rishi Agarwal,
and Yale N Patt. Improving the performance of object-
oriented languages with dynamic predication of indirect
jumps. In ACM SIGOPS Operating Systems Review
(OSR), volume 42, pages 80–90, 2008.

[26] Teresa Johnson, Mehdi Amini, and Xinliang David Li.
Thinlto: scalable and incremental lto. In Code Genera-
tion and Optimization (CGO), 2017 IEEE/ACM Inter-
national Symposium on, pages 111–121. IEEE, 2017.

[27] Piyus Kedia and Sorav Bansal. Fast dynamic binary
translation for the kernel. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Princi-
ples, pages 101–115. ACM, 2013.

[28] Hyesoon Kim, José A Joao, Onur Mutlu, Chang Joo
Lee, Yale N Patt, and Robert Cohn. Vpc prediction:
reducing the cost of indirect branches via hardware-
based dynamic devirtualization. In ACM SIGARCH
Computer Architecture News (CAN), volume 35, pages
424–435, 2007.

USENIX Association 2019 USENIX Annual Technical Conference 297

https://lwn.net/Articles/752408/
https://lwn.net/Articles/752408/
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
http://lists.dragonflybsd.org/pipermail/users/2018-January/335637.html
http://lists.dragonflybsd.org/pipermail/users/2018-January/335637.html
https://lore.kernel.org/patchwork/patch/866046/
https://lore.kernel.org/patchwork/patch/866046/
https://lwn.net/ml/linux-kernel/20181207190720.18517-1-hch@lst.de/
https://lwn.net/ml/linux-kernel/20181207190720.18517-1-hch@lst.de/

[29] Andi Kleen. Add a text_poke syscall. LWN.net
https://lwn.net/Articles/574309/, 2013. [On-
line; accessed 21-May-2019].

[30] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019.

[31] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh,
Chengyu Song, and Nael Abu-Ghazaleh. Spectre re-
turns! speculation attacks using the return stack buffer.
arXiv preprint arXiv:1807.07940, 2018.

[32] David Xinliang Li, Raksit Ashok, and Robert Hundt.
Lightweight feedback-directed cross-module optimiza-
tion. In Proceedings of the 8th annual IEEE/ACM inter-
national symposium on Code generation and optimiza-
tion, pages 53–61. ACM, 2010.

[33] Tao Li, Ravi Bhargava, and Lizy Kurian John. Adapting
branch-target buffer to improve the target predictability
of Java code. ACM Transactions on Architecture and
Code Optimization (TACO), 2(2):109–130, 2005.

[34] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel memory
from user space. In 27th USENIX Security Symposium
(USENIX Security 18), 2018.

[35] Larry W McVoy, Carl Staelin, et al. lmbench: Portable
tools for performance analysis. In USENIX annual tech-
nical conference, pages 279–294. San Diego, CA, USA,
1996.

[36] Microsoft. Mitigating speculative execution
side channel hardware vulnerabilities. https:
//blogs.technet.microsoft.com/srd/2018/03/
15/mitigating-speculative-execution-side-
channel-hardware-vulnerabilities/, 2018.
[Online; accessed 21-May-2019].

[37] MIT Technology Review. At least three billion
computer chips have the spectre security hole.
https://www.technologyreview.com/s/609891/
at-least-3-billion-computer-chips-have-
the-spectre-security-hole/, 1 2018. [Online;
accessed 21-May-2019].

[38] MITRE. CVE-2017-5715: branch target injec-
tion, spectre-v2. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2017-5715, 2018. [Online;
accessed 21-May-2019].

[39] MITRE. CVE-2017-5753: bounds check bypass,
spectre-v1. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2017-5753, 2018. [Online;
accessed 21-May-2019].

[40] Paweł Moll. FDO: Magic “make my program faster”
compilation option? https://elinux.org/images/
4/4d/Moll.pdf, 2016. [Online; accessed 21-May-
2019].

[41] Sungdo Moon, Xinliang D Li, Robert Hundt, Dhruva R
Chakrabarti, Luis A Lozano, Uma Srinivasan, and Shin-
Ming Liu. Syzygy-a framework for scalable cross-
module ipo. In Proceedings of the international sympo-
sium on Code generation and optimization: feedback-
directed and runtime optimization, page 65. IEEE Com-
puter Society, 2004.

[42] Maksim Panchenko, Rafael Auler, Bill Nell, and Guil-
herme Ottoni. Bolt: A practical binary optimizer for data
centers and beyond. arXiv preprint arXiv:1807.06735,
2018.

[43] Josh Poimboeuf. Patch: Static calls. Linux Kernel Mail-
ing List, https://lkml.org/lkml/2018/11/26/951,
2018. [Online; accessed 21-May-2019].

[44] Michiel Ronsse and Koen De Bosschere. JiTI: A robust
just in time instrumentation technique. ACM SIGARCH
Computer Architecture News, 29(1):43–54, 2001.

[45] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh,
Nagendra Modadugu, and Dan Boneh. On the effective-
ness of address-space randomization. In ACM Confer-
ence on Computer and Communications Security (CCS),
pages 298–307. ACM, 2004.

[46] Ryan Smith. Intel publishes spectre & melt-
down hardware plans: Fixed gear later this year.
https://www.anandtech.com/show/12533/intel-
spectre-meltdown, 2018. [Online; accessed
21-May-2019].

[47] Linus Torvalds. Create macros to restrict/unrestrict
indirect branch speculation. 2018. [Online; accessed
21-May-2019].

[48] Linux Torvalds. x86/speculation: Add basic IBRS sup-
port infrastructure. 2018. [Online; accessed 21-May-
2019].

[49] Paul Turner. Retpoline: a software construct for pre-
venting branch-target-injection. https://support.
google.com/faqs/answer/7625886, 2018. [Online;
accessed 21-May-2019].

[50] Vertica. Update: Vertica test results with microcode
patches for the meltdown and spectre security flaws.
2018. [Online; accessed 21-May-2019].

298 2019 USENIX Annual Technical Conference USENIX Association

https://lwn.net/Articles/574309/
https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
https://www.technologyreview.com/s/609891/at-least-3-billion-computer-chips-have-the-spectre-security-hole/
https://www.technologyreview.com/s/609891/at-least-3-billion-computer-chips-have-the-spectre-security-hole/
https://www.technologyreview.com/s/609891/at-least-3-billion-computer-chips-have-the-spectre-security-hole/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5715
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5715
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5753
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5753
https://elinux.org/images/4/4d/Moll.pdf
https://elinux.org/images/4/4d/Moll.pdf
https://lkml.org/lkml/2018/11/26/951
https://www.anandtech.com/show/12533/intel-spectre-meltdown
https://www.anandtech.com/show/12533/intel-spectre-meltdown
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886

[51] David Woodhouse. Fill RSB on context switch for af-
fected cpus. https://lkml.org/lkml/2018/1/12/
552, 2018. [Online; accessed 21-May-2019].

[52] David Woodhouse. x86/retpoline/entry: Convert entry
assembler indirect jumps. Linux Kernel Mailing List,
https://lore.kernel.org/patchwork/patch/
876057/, 2018. [Online; accessed 21-May-2019].

[53] David Woodhouse. x86/speculation: Add basic IBRS
support infrastructure. 2018. [Online; accessed 21-May-

2019].

[54] Pengfei Yuan, Yao Guo, and Xiangqun Chen. Expe-
riences in profile-guided operating system kernel opti-
mization. In ACM Asia-Pacific Workshop on Systems
(APSys), page 4, 2014.

[55] Pengfei Yuan, Yao Guo, and Xiangqun Chen. Rethink-
ing compiler optimizations for the Linux kernel: An
explorative study. In Proceedings of the 6th Asia-Pacific
Workshop on Systems, page 2. ACM, 2015.

USENIX Association 2019 USENIX Annual Technical Conference 299

https://lkml.org/lkml/2018/1/12/552
https://lkml.org/lkml/2018/1/12/552
https://lore.kernel.org/patchwork/patch/876057/
https://lore.kernel.org/patchwork/patch/876057/

Multi-Queue Fair Queueing

Mohammad Hedayati
University of Rochester

Kai Shen
Google

Michael L. Scott
University of Rochester

Mike Marty
Google

Abstract
Modern high-speed devices (e.g., network adapters, storage,
accelerators) use new host interfaces, which expose multiple
software queues directly to the device. These multi-queue in-
terfaces allow mutually distrusting applications to access the
device without any cross-core interaction, enabling through-
put in the order of millions of IOP/s on multicore systems.
Unfortunately, while independent device access is scalable,
it also introduces a new problem: unfairness. Mechanisms
that were used to provide fairness for older devices are no
longer tenable in the wake of multi-queue design, and straight-
forward attempts to re-introduce it would require cross-core
synchronization that undermines the scalability for which
multiple queues were designed.

To address these challenges, we present Multi-Queue Fair
Queueing (MQFQ), the first fair, work-conserving scheduler
suitable for multi-queue systems. Specifically, we (1) reformu-
late a classical fair queueing algorithm to accommodate multi-
queue designs, and (2) describe a scalable implementation
that bounds potential unfairness while minimizing synchro-
nization overhead. Our implementation of MQFQ in Linux
4.15 demonstrates both fairness and high throughput. Evalua-
tion with an NVMe over RDMA fabric (NVMf) device shows
that MQFQ can reach up to 3.1 Million IOP/s on a single
machine—20× higher than the state-of-the-art Linux Bud-
get Fair Queueing. Compared to a system with no fairness,
MQFQ reduces the slowdown caused by an antagonist from
3.78× to 1.33× for the FlashX workload and from 6.57× to
1.03× for the Aerospike workload (2× is considered “fair”
slowdown).

1 Introduction
Recent years have seen the proliferation of very fast devices
for I/O, networking, and computing acceleration. Commod-
ity solid-state disks (e.g., Intel Optane DC P4800X [22] or
Samsung PM1725a [38]) can perform at or near a million
I/O operations per second. System-area networks (e.g., In-
finiBand) can sustain several million remote operations per
second over a single link [25]. RDMA delivers data across fab-

ric within a few microseconds. GPUs and machine learning
accelerators may offload computations that run just a few mi-
croseconds at a time [30]. At the same time, the proliferation
of multicore processors has necessitated architectures tuned
for independent I/O across multiple hardware threads [4, 36].

These technological changes have shifted performance bot-
tlenecks from hardware resources to the software stacks that
manage them. In response, it is now common to adopt a multi-
queue architecture in which each hardware thread owns a
dedicated I/O queue, directly exposed to the device, giving
it an independent path over which to send and receive re-
quests. Examples of this architecture include multi-queue
SSDs [22, 38, 50] and NICs [42], and software like the
Windows and Linux NVMe drivers, the Linux multi-queue
block layer [5], SCSI multi-queue support [8], and data-plane
OSes [4, 36]. A recent study [51] demonstrated up to 8×
performance improvement for YCSB-on-Cassandra, using
multi-queue NVMe instead of single-queue SATA.

To support the full bandwidth of modern devices, multi-
queue I/O systems are designed to incur no cache-coherence
traffic in the common case when sending and receiving re-
quests. It’s easy to see why: a device supporting millions of
IOP/s sees each new request in a fraction of a microsecond—a
time interval that allows for fewer than 10 cross-core cache
coherence misses, and is comparable to the latency of a single
inter-processor interrupt (IPI). Serializing requests at such
high speeds is infeasible now, and will only become more
so as device speeds continue to increase while single-core
performance stays relatively flat. As a result, designers have
concluded that conventional fair-share I/O schedulers, includ-
ing fair queueing approaches [35, 40], which reorder requests
in a single queue, are unsuited for modern fast devices.

Unfortunately, by cutting out the OS resource scheduler,
direct multi-queue device access undermines the OS’s tradi-
tional responsibility for fairness and performance isolation.
While I/O devices (e.g., SSD firmware, NICs) may multiplex
hardware queues, their support for fairness is hampered by
their inability to reason in terms of system-level policies for
resource principals (applications, virtual machines, or Linux

USENIX Association 2019 USENIX Annual Technical Conference 301

cgroups), or to manage an arbitrary number of flows. As a
result, device-level scheduling tends to cycle naively among
I/O queues in a round robin fashion [44]. Given such simple
scheduling, a greedy application or virtual machine may gain
unfair advantage by issuing I/O operations from many CPUs
(so it can obtain resource shares from many queues). It may
also gain advantage by “batching” its work into larger requests
(so more of its work gets done in each round-robin turn). Even
worse, a malicious application may launch a denial-of-service
attack by submitting a large number of artificially created ex-
pensive requests (e.g., very large SSD writes) through many
or all command queues.

As a separate issue, it is common for modern SSDs [9, 44]
and accelerators [20, 32] to support parallel requests internally.
Traditional resource scheduling algorithms, which assume
underlying serial operation, are unsuitable for devices with a
high degree of internal parallelism.

To overcome these problems, we present Multi-Queue Fair
Queueing (MQFQ)—the first fair scheduler, to the best of our
knowledge, capable of accommodating multi-queue devices
with internal parallelism in a scalable fashion. As in classical
fair queueing [13, 34], we ensure that each flow (e.g., an ap-
plication, virtual machine, or Linux cgroup) receives its share
of bandwidth. While classical fair queueing employs a single
serializing request queue, we adapt the fair queueing prin-
ciple to multi-queue systems, by efficiently tracking global
resource utilization and arranging to throttle any queue that
has exceeded its share by some bounded amount.

Accordingly, we introduce a throttling threshold T such
that each core can dispatch, without coordinating with other
cores, as long as the lead request in its queue is within T
of the utilization of the slowest active queue, system-wide.
This threshold creates a window within which request dis-
patches can commute [10], enabling scalable dispatch. We
show mathematically that this relaxation has a bounded im-
pact on fairness. When T = 0, the guarantees match those of
classical fair queueing.

The principal obstacle to scalability in MQFQ is the need
for cross-queue synchronization to track global resource uti-
lization.We demonstrate that it is possible, by choosing ap-
propriate data structures, to sustain millions of IOP/s while
guaranteeing fairness. The key to our design is to localize syn-
chronization (intra-core rather than inter-core; intra-socket
rather than inter-socket) as much as possible. An instance
of the mindicator of Liu et al. [29] allows us to track flows’
shares without a global cache miss on every I/O request. A
novel data structure we call the token tree allows us to track
available internal device parallelism: an I/O completion frees
up a slot that is preferentially reused by the local queue if
possible; otherwise, our token tree allows fast reallocation
to a nearby queue. Finally, a nonblocking variant of a timer
wheel [43, 47] keeps track of queues whose head requests
are too far ahead of the shares of their contributing flows:
when resource utilization has advanced sufficiently, update

of a single index suffices to turn the wheel and unblock the
appropriate flows. MQFQ demonstrates that while scalable
multi-queue I/O precludes serialization, it can tolerate infre-
quent, physically localized synchronization, allowing us to
achieve both fairness and high performance.

Summarizing contributions:
• We present Multi-Queue Fair Queueing—to the best

of our knowledge, the first scalable, fair scheduler for
multi-queue devices.
• We demonstrate mathematically that adapting the fair

queueing principle to multi-queue devices results in a
bounded impact on fairness.
• We introduce the token tree, a novel data structure that

tracks available dispatch slots in a multi-queue device
with internal parallelism.
• We present a scalable implementation of MQFQ. Our

implementation uses the token tree along with two other
scalable data structures to localize synchronization as
much as possible.

2 Background and Design
Fair queueing [13, 34] is a class of algorithms to schedule a
network, processing, or I/O resource among competing flows.
Each flow comprises a sequence of requests or packets ar-
riving at the device. Each request has an associated cost,
which reflects its resource usage (e.g., service time or band-
width). Fair queueing then allocates resources in proportion
to weights assigned to the competing flows.

A flow is said to be active if it has any requests in the system
(either waiting to be dispatched to the device, or waiting to
be completed in the device), and backlogged if it is active
and has at least one outstanding request to be dispatched.
Fair queueing algorithms are work-conserving: they schedule
requests to consume surplus resources in proportion to the
weights of the active flows. A flow whose requests arrive
too slowly may become inactive and forfeit the unconsumed
portion of its share.

Start-time Fair Queueing (SFQ) [18, 19] assigns a start
and finish tag to each request when it arrives, and dispatches
requests in increasing order of start tags; ties are broken ar-
bitrarily. The tag values represent the point in the history of
resource usage at which each request should start and com-
plete according to a system notion of virtual “time.” Virtual
time always advances monotonically and is identical to real
time if: (1) all flows are backlogged, (2) the device (server)
completes work at a fixed ideal rate, (3) request costs are an
accurate measure of service time, and (4) the weights sum to
the service capacity. The start tag for a request is set to be the
maximum of the virtual time at arrival and the last finish tag
of the flow. The finish tag for a request is its start tag plus its
cost, normalized to the weight of the flow.

When the server is busy, virtual time is defined to be equal
to the start tag of the request in service, and when it is idle,
maximum finish tag of any request that has been serviced by

302 2019 USENIX Annual Technical Conference USENIX Association

(a) (b) (c)

Figure 1: MQFQ (b) employs a set of per-CPU priority queues,
rather than (a) a single central queue or (c) fully independent access.
Queues coordinate through scalable data structures (suggested by
the dotted line; described in Sec. 3) to maintain fairness.

that time. Note that this definition assumes at most a single
request can be in service at any moment.

Parallel Dispatch A server with internal parallelism may
service multiple requests simultaneously, so virtual time as
defined in SFQ is not well-defined in this setting. Moreover,
even an active flow may lag behind in resource utilization if
it generates an insufficient number of concurrent requests to
consume its assigned share.

SFQ(D) [23] works the same as SFQ but allows up to D in-
service requests (D = 1 reduces to SFQ). Due to out-of-order
completion, for the busy server case, virtual time is redefined
to be the start tag of the last dispatched request. Note that
this definition requires requests to be dispatched in increasing
order of start tags, which precludes scalable implementation
on multi-queue systems.

2.1 Multi-Queue Fair Queueing
The main obstacle in adapting fair queueing—or most other
scheduling algorithms, for that matter—to a multi-queue I/O
architecture is the need to dispatch requests in an order en-
forced by a central priority queue. Additional challenges in-
clude the need to dispatch multiple requests concurrently (to
saturate an internally parallel device) and the inability to sim-
ply advance virtual “time” on dispatch or completion events,
since these may occur out of order.

In MQFQ, we replace the traditional central priority queue
(Fig. 1(a)) with a set of per-CPU priority queues (Fig. 1(b)),
each of which serves to order local requests. To limit imbal-
ance across queues, we suspend (throttle) any queue whose
lead request is ahead of the slowest backlogged flow in the
system (the one that determines the virtual time) by more than
some predefined threshold T , allowing other queues to catch
up. Setting T = 0, while limits scalability in practice, would
effectively restore the semantics of a global priority queue.
Setting T > 0 leads to relaxed semantics but lower synchro-
nization overhead by utilizing the Scalable Commutativity
Rule [10] to allow requests dispatches to be reordered, i.e., to
commute. Specifically, it allows for windows of conflict free
operations (i.e., no core writes a cache line that was read or
written by another core) enabling scalable implementation.
While short-term fluctuations of as much as T in the relative
progress of flows is possible, it still preserves long-term shares.

By adjusting T appropriately, we can find a design point that
provides most of the fairness of traditional fair queueing with
most of the performance of fully independent queues.

For an internally parallel device, in order to keep the device
busy, we will often need to dispatch a new request before the
previous one has finished. At the same time, since the device
decides the order in which dispatched requests are served,
we must generally avoid dispatching more requests than can
actually be handled in parallel, thereby preserving our ability
to order them. We therefore introduce a second parameter,
D, which represents the maximum number of outstanding
dispatched requests across all queues.

Recall that a backlogged flow is one that has requests ready
to be dispatched, and an active flow is one that is either back-
logged or has requests pending in the device. For any de-
vice that supports D≥ 2 concurrent requests, the distinction
between backlogged and active is quite important: it is no
longer the case that an active flow is using at least its fair share
(i.e., the flow could be non-saturating). In a traditional fair
queueing system, an active flow determines the progression
of virtual time. With a parallel device, this convention would
allow a non-saturating active flow to keep idle resources from
being allotted to other flows, leading to underutilization. To
fix this, a scheduler aware of internal parallelism needs to use
backlogged (instead of active) flows to determine virtual time.
We therefore define virtual time (and thus the start tag of a
newly arriving request on a previously non-backlogged flow)
to be the minimum start tag of all requests across all queues.
In a multi-queue system, computing this global minimum
without frequent cache misses is challenging. In Sec. 3.1 we
show how we localize the misses using a mindicator [29].

The lack of a central priority queue, and our use of the throt-
tling threshold T, raises the possibility not only that requests
will complete out of order, but that they may be dispatched
out of order.

We now define our notion of per-flow virtual time, in a
way that accommodates the internal parallelism of the device
while retaining the essential property that a lagging flow (i.e.,
a flow that is not backlogged) can never accumulate resources
for future use. Recall that queues hold requests that have been
submitted but not yet dispatched to the device. The flows that
submitted these requests are backlogged by definition. For
each such flow f , its virtual time is defined to be the start tag
of f ’s first (oldest) backlogged (waiting to be dispatched) re-
quest. (Note that f may have backlogged requests in multiple
queues.) Assuming f has multiple pending requests, dispatch-
ing this first request would increase f ’s virtual time by l/r,
where r is f ’s weight (its allotted share of the device) and l is
the length (size) of the request. (For certain devices we may
also scale the “size” in accordance with operation type—e.g.,
to reflect the fact that writes are more expensive than reads
on an SSD.)

We define global virtual time to be the minimum of per-flow
virtual times across all backlogged flows. This is the same

USENIX Association 2019 USENIX Annual Technical Conference 303

as the minimum of the start tags of the lead requests across
all queues, since requests in each queue are sorted by start
tags. This equivalence allows us to ignore the maintenance
of per-flow virtual times; instead, we directly maintain the
global virtual time (hereafter, simply "virtual time") as the
minimum start tag of the lead requests across all queues.

As soon as a flow becomes lagging, it stops contributing to
the virtual time, which may advance irrespective of a lack of
activity in the lagging flow. Request start tags from a lagging
flow are still subject to the lower bound of current virtual
time. MQFQ then ensures that no request is dispatched if its
start tag exceeds the virtual time by more than T. To throttle
a flow f that has advanced too far, it suffices to throttle any
queues headed by f ’s requests: since requests in each queue
are sorted by start tags, all other requests in such a queue are
also guaranteed to be more than T ahead of virtual time.

High-level pseudocode for MQFQ appears in Fig. 2.

2.2 Fairness Analysis
If flows have equal weight, allocation of the device is fair if
equal bandwidth is allocated to each (backlogged) flow in
every time interval. With unequal weights, each backlogged
flow should receive bandwidth proportional to its weight.

If we represent the weight of flow f as r f and the service
(in bytes) that it receives in the interval [t1, t2] as Wf (t1, t2),
then an allocation is fair if for every time interval [t1, t2], for
every two backlogged flows f and m, we have:

Wf (t1, t2)
r f

−Wm(t1, t2)
rm

= 0

Clearly, this is possible only if the flows can be broken into
infinitesimal units. For a packet- or block-based resource we
want ∣∣∣∣Wf (t1, t2)

r f
−Wm(t1, t2)

rm

∣∣∣∣≤ H(f ,m)

to be as close to 0 as possible. H(f ,m) is a function of the
maximum request lengths, lmax

f and lmax
m , of flows f and m.

Golestani [17] derives a lower bound on the fairness of any
scheduler with single dispatch:

H(f ,m)≥ 1
2

(lmax
f

r f
+

lmax
m

rm

)
We similarly derive bounds on the fairness achieved by

MQFQ. Our analysis builds on the fairness bounds for Start-
time Fair Queueing (SFQ) [18] and SFQ(D) [23]. Goyal et
al. [18] have previously shown in SFQ that in any interval for
which flows f and m are backlogged during the entire interval,
the difference of weighted services received by two flows at
an SFQ server, given as:∣∣∣∣Wf (t1, t2)

r f
−Wm(t1, t2)

rm

∣∣∣∣≤ lmax
f

r f
+

lmax
m

rm

is twice the lower bound. SFQ uses a single priority queue
and serves one request at a time. Now consider an otherwise

global structures:
VT mindicator
wheel of throttled queues
token tree of available slots
set of ready queues (nonempty, unthrottled)

per-flow structures:
end tag of last submitted request

per-CPU structures:
local queue of not-yet-dispatched requests

on submission of request R:
set R’s start tag = MAX(VT, per-flow end tag)
set R’s end tag =

R’s start tag + R’s service time
update per-flow end tag
insert R in local queue
if R goes at the head

update VT
dispatch()

dispatch():
if local queue is in throttling wheel

remove it from wheel
if local queue is in ready queues

remove it from ready queues
if local queue is empty

return
for lead request R from local queue

if R’s start tag is more than T ahead of VT
add local queue to throttling wheel
return

attempt to obtain slot from token tree
if unsuccessful

add local queue to set of ready queues
return

remove R from local queue
deliver R to device
update VT
if VT has advanced a bucket’s worth

turn the throttling wheel
unblock any no-longer-throttled queues

for which slots are readily available
add the rest to the set of ready queues

on unblock:
dispatch()

on request completion:
choose nearest Q in ready queues (could be self)
return slot to token tree w.r.t. Q
unblock Q

Figure 2: High-level pseudocode for the MQFQ algorithm. Logic to
mitigate races has been elided, as have certain optimizations (e.g.,
to avoid pairs of data structure changes that cancel one another out).

unchanged variant of SFQ in which the single priority queue
is replaced by multiple priority queues with throttled dispatch.
We service one request at a time, which can come from any
of the queues so long as its start tag is less than or equal to
the global minimum + T. We call this variant Multi-Queue
Fair Queueing with single dispatch—MQFQ(1).

Theorem 1 For any interval in which flows f and m are back-
logged during the entire interval, the difference in weighted
services received by two flows at an MQFQ(1) server with
throttling threshold T is:∣∣∣∣Wf (t1, t2)

r f
−Wm(t1, t2)

rm

∣∣∣∣≤ 2T +
lmax

f

r f
+

lmax
m

rm

304 2019 USENIX Annual Technical Conference USENIX Association

We sketch a proof of Theorem 1 as follows.

Lemma 1 (Lower bound of service received by a flow): If
flow f is backlogged throughout the interval [t1, t2], then in
an MQFQ(1) server with throttling threshold T :

Wf (t1, t2)≥ r f · (v2−T − v1)− lmax
f

where v1 is virtual time at t1 and v2 is virtual time at t2.

Lemma 1 is true since at t2 any backlogged flow has dis-
patched all requests whose start tag ≤ v2−T . Only the last
request may be outstanding at t2—i.e., all but the last request
must have completed. Since the last request’s size is at most
lmax

f , the finish tag of the last completed request must be at
least v2−T − lmax

f /r f . Therefore if we just count the com-
pleted requests in [t1, t2], the minimum service received by
backlogged flow f is at least r f · (v2−T − v1)− lmax

f .

Lemma 2 (Upper bound of received service by a flow): If
flow f is backlogged throughout the internal [t1, t2], then in
an MQFQ(1) system with throttling threshold T :

Wf (t1, t2)≤ r f · (v2 +T − v1)+ lmax
f

Lemma 2 is true since at t2 flow f may have, at most, dis-
patched all requests with start tag ≤ v2 +T. In the maximum
case, the last completed request’s finish tag will be no more
than v2 + T . In addition, one more request of size at most
lmax

f may be outstanding and, in the maximum case, almost
entirely serviced. Counting the completed requests and the
outstanding request, the maximum service received by flow f
is at most r f · (v2 +T − v1)+ lmax

f .
Unfairness is maximized when one flow receives its upper

bound of service while another flow receives its lower bound.
Therefore, unfairness in MQFQ(1) with throttling threshold
T is bounded by∣∣∣∣Wf (t1, t2)

r f
−Wm(t1, t2)

rm

∣∣∣∣≤ 2T +
lmax

f

r f
+

lmax
m

rm

This completes the proof of Theorem 1.
Note that when T = 0, MQFQ(1) provides the same fairness

bound as SFQ. Therefore T represents a tradeoff between
fairness and scalability in a multi-queue system.

If we allow D > 1 parallel dispatches in an MQFQ(D)
server, the fairness bound changes as follows:

Theorem 2 In any interval for which flows f and m are back-
logged during the entire interval, the difference of weighted
services received by the two flows at an MQFQ(D) server
with throttling threshold T is given as:∣∣∣∣Wf (t1, t2)

r f
−Wm(t1, t2)

rm

∣∣∣∣ ≤ (D+1)
(

2T +
lmax

f

r f
+

lmax
m

rm

)
This is true based on a combination of Theorem 1 and

the proved fairness bound for SFQ(D) [23]. We omit the de-
tailed proof. When the throttling threshold T = 0, MQFQ(D)
provides the same fairness bound as SFQ(D).

3 Scalability
MQFQ employs a separate priority queue for every CPU
(hardware thread), to minimize coherence misses and maxi-
mize scalability. A certain amount of sharing and synchroniza-
tion is required, however, to maintain fairness across queues.
Specifically, we need to track (1) the progression of virtual
time; (2) the number of available I/O slots and the queues that
can use them; and (3) the state of queues (throttled or not)
and when they should be unthrottled. Our guiding principle is
to maximize locality wherever possible. So long as utilization
and fairness goals are not violated, we prefer to dispatch from
the local queue, queues on the same core, queues on the same
socket, and queues on another socket, in that order.

3.1 Virtual Time
Virtual time in MQFQ reflects resource usage (e.g., bandwidth
consumed), and not wall-clock time. When a flow transitions
from lagging to backlogged, the request responsible for the
transition is set to have its start tag equal to current virtual
time. As long as the flow remains backlogged, its following
requests get increasing start tags with respect to the flow’s
resource usage: the start tag of each new request is set to the
end tag of the previous request. Virtual time, in turn, is the
minimum start tag of any request across all queues.

Naively, one might imagine an array, indexed by queue,
with each slot indicating the start tag of its queue’s lead re-
quest (if any). We could then compute the global virtual time
by scanning the array. Such a scan, however, is far too expen-
sive to perform on a regular basis (see Sec. 4.3.1). Instead,
we use an instance of Liu et al.’s mindicator structure [29],
modified to preclude decreases in the global minimum. The
mindicator is a tree-based structure reminiscent of a priority-
queue heap. Each queue is assigned a leaf in the tree; each
internal node indicates the minimum of its children’s values.
A flow whose virtual time changes updates its leaf and, if its
previous value was the minimum among its siblings, prop-
agates the update root-ward. Changes reach the root only
when the global minimum changes. While this is not uncom-
mon (time continues to advance, after all), many requests in a
highly parallel device complete a little out of order, and the
mindicator achieves a significant reduction in contention.

Within each flow, we must also track the largest finish tag
across all threads. For this we currently employ a simple
shared integer value, updated (with fetch-and-add) on each
request dispatch. In future work, we plan to explore whether
better performance might be obtained with a scalable mono-
tonic counter [6, 14], at least for flows with many threads.

3.2 Available Slots
A queue in MQFQ is unable to dispatch either when it is too
far ahead of virtual time or when the device is saturated. For
the latter case, MQFQ must track the number of outstanding
(dispatched but not yet completed) requests on the device.
Ideally, we want to dispatch exactly as many requests as the

USENIX Association 2019 USENIX Annual Technical Conference 305

root

socket

core

queue1 0 0 0 0 0 1 0 00 2 1 32 0

0 2 0 3 0 0 0 0

0
0 1 2 4 8 9 11 12 137 10 14 153 5 6

9

3 0

Figure 3: Example token tree for a 2-socket, 4-core-per, 2-thread-per
machine. Values indicate currently unused device capacity. (If the
device were fully subscribed [D outstanding requests], all values in
the tree would be zero.) In the figure, there are 3 slots immediately
available to queue 15. Queues 6 or 7 could use capacity allocated to
their core; queues 4 or 5 could use capacity allocated to their socket;
queues 8 or 9 would need to use capacity from the root.

device can handle in parallel, thereby avoiding any buildup
in the device and preserving our ability to choose the ideal
request to submit when an outstanding request completes.

We find (see Sec. 4.3.3) that a naive single shared cache
line, atomically incremented and decremented upon dispatch
and completion of requests, fails to scale when many queues
are frequently trying to update its value. We therefore aim to
improve locality by preferentially allocating available slots to
physically nearby queues, in a manner reminiscent of cohort
locks [15]. This approach meshes well with our notification
mechanism, which prefers to unblock nearby queues.

As a compromise between locality and flexibility, we have
implemented a structure we call the token tree (Fig. 3). Values
in leaves represent unused capacity (“slots”) currently allo-
cated to a given local queue. Parent nodes represent additional
capacity allocated to a given core, and so on up the tree. The
values of all nodes together sum to the difference between D
and the number of active requests on the device. When we
need to dispatch a request, we try to acquire a slot from the
leaf associated with the local queue. If the leaf is zero, we try
to fetch from its parent, continuing upward until we reach the
root. If nothing is available at that level, we suspend the queue.
If there is unused capacity elsewhere in the tree, queues in
that part of the tree will eventually be throttled. Capacity will
then percolate upward, and ready queues will be awoken.

When releasing slots (in the completion interrupt handler,
when the local queue is throttled or empty), we first choose a
queue to awaken. We then release slots to the lowest common
ancestor (LCA) of the local and the target CPUs in the token
tree. Finally, we awaken the target CPU with an interprocessor
interrupt (IPI). The strategy of picking nearby queues tends
to keep capacity near the leaves of the token tree, minimizing
contention at the higher levels, minimizing the cost of the
IPI, and maximizing the likelihood that slots will be passed
through a cache line in a higher level of the memory hierar-
chy. Experiments described in Sec. 4.3.2 confirm that IPIs
significantly outperform an alternative based on polling.

1
2

0 0 0 0 1 0 0 0 1 0
. . . 6 5 4 3 2 1 0

3

4

5
. . .

B

Figure 4: Timer wheel for throttled queues. If queue q is k > T units
ahead of global virtual time, it is placed in bucket min(dk/be,B),
where B is the number of buckets and b is a quantization parameter.
In the figure, queues 1 and 5 are throttled in bucket 4.

3.3 Ready and Throttled Queues
The D parameter in MQFQ controls the number of outstand-
ing requests and is a trade-off between utilization and fairness.
While a larger D may better utilize the device, it can also
impose looser fairness bounds and higher waiting time for
incoming requests from a slower flow. Therefore, MQFQ will
stop dispatching once there are D outstanding requests in the
device. A queue in this case is likely to be both nonempty and
unthrottled; such a queue is said to be ready.

As noted in Sec. 3.2, a completion handler whose local
queue is empty or throttled will give away its released to-
ken. To do so, it looks for the closest queue (based on a
pre-computed proximity matrix) that is flagged as ready and
passes the token through the token tree.

Regardless of the number of outstanding requests, a queue
will be throttled when its lead request is T ahead of global
virtual time. When this happens, we need to be able to tell
when virtual time has advanced enough that the queue can be
unthrottled. To support this operation, we employ a simple
variant of the classical timer wheel structure [43, 47] (Fig. 4).
Each bucket of the wheel represents a b-unit interval of virtual
time, and contains (as a bitmask) the set of queues that should
be unthrottled at the beginning of that interval. Conceptually,
we turn the wheel every b time units (in actuality, of course,
we update an index that identifies bucket number 1), clear the
bitmask in the old bucket 1, and unthrottle the queues that
used to appear in that mask.

Given a finite number of buckets, B, a queue that needs to
be throttled for longer than B×b will be placed in bucket B;
this means that the wakeup handler for a queue must always
double-check to make sure it doesn’t have to throttle the
queue again. Unlike a classical timing wheel, which contains
a list of timer events in every bucket, our bitmask buckets can
be manipulated with compare-and-swap, making the whole
wheel trivially nonblocking.

As noted in Sec. 3.2, when slots become available in a
completion handler, we choose queues from among the ready
set, release the slots to the token tree, and send IPIs to the
CPUs of the chosen queues. In a similar vein, if slots are
available at the root of the token tree when the throttling wheel
is turned, we likewise identify ready queues to which to send

306 2019 USENIX Annual Technical Conference USENIX Association

IPIs. No fairness pathology arises in always choosing nearby
queues: if some far-away queue lags too far behind, nearby
queues will end up throttling, slots will percolate upward in
the token tree, and the lagging queues will make progress.

3.4 Determining D and T in Practice
In practice, we use a hand-curated workload with varying
degrees of concurrency and request sizes (with an approach
similar to that of Chen et al. [9]) as a one-time setup step
to discover the internal parallelism of a given multi-queue
device which determines the parameter D. Any smaller value
for D will not saturate the device, while larger Ds would lead
to greater unfairness – specially for burstier workloads.

Unlike D which is determined solely by the degree of paral-
lelism in the multi-queue device, the parameter T is affected
by the characteristic of the workload – i.e., concurrency and
request size. While a single-threaded workload can afford to
have T = 0, a workload with small requests being submitted
from multiple threads across multiple sockets require larger
T value. To that end, once we have determined D, in a one-
time setup step, we over-provision the parameter T for the
worst-case workload so that the maximum throughput of the
device can always be met.

4 Evaluation
We evaluate fairness and performance of MQFQ on two fast,
multi-queue devices: NVMe over RDMA (NVMf, with multi-
queue NICs) and multi-queue SSD (MQ-SSD). We also eval-
uate the scalability of each of our concurrent data structures.

In our NVMf setup, the host machine (where MQFQ runs)
issues NVMe requests over RDMA to the target machine,
which serves the requests directly from DRAM. We use the
kernel host stack and SPDK [21] target stack. This setup can
reach nearly 4 M IOP/s for 1KB requests. In our MQ-SSD
setup, requests are fulfilled by a PCIe-attached Intel P3700
NVMe MQ-SSD. This setup provides nearly 0.5 M IOP/s for
4K requests.

We measured (with an approach similar to that of Chen et
al. [9]) available internal parallelism to be 128 for the NVMf
setup and 64 for the MQ-SSD setup. We chose T in each setup
to be (roughly) the smallest value that didn’t induce significant
contention. We preconditioned the MQ-SSD with sequential
writes to the whole address space followed by a series of
random writes to reach steady state performance. We also
disabled power management to ensure consistent results. We
ran all experiments on a Linux 4.15 kernel in which KPTI [12]
was disabled via boot parameter. For scalability experiments,
thread affinities were configured to fill one hardware thread
on each core of the first socket, then one on each core of
the second socket before returning to populate the second
hardware thread of each core. The CPU mask for fairness
experiments was configured to partition the cores among
competing tasks. Table 1 summarizes the experimental setup.
In all of the experiments we use the length of requests in KB

to advance virtual time—hence the unit for T is KB. Because
the MQ-SSD setup has significantly lower bandwidth than
the NVMf setup, we use it only for fairness experiments, not
for scalability. The source code for our implementation is
available at http://github.com/hedayati/mqfq.

4.1 Fairness and Efficiency
We compare MQFQ to two existing systems: (1) the recom-
mended Linux setup for fast parallel devices, which performs
no I/O scheduling (nosched) and is thus contention free, and
(2) Budget Fair Queueing (BFQ) [46], a proportional share
scheduler included for multi-queue stacks since Linux 4.12.
For each of these, we consider three benchmarks: (a) the Flex-
ible I/O Tester (FIO) [3], (b) the FlashX graph processing
framework [52], and (c) the Aerospike key-value store [41].

FIO: FIO is a microbenchmark that allows flexible config-
uration of I/O patterns and scales quite well. We use FIO to
generate workloads with known characteristics. Because FIO
does so little processing per request, we also use it as an antag-
onist in multiprogrammed runs with FlashX and Aerospike.
Each FIO workload has a name of the form αxβ (e.g., 2x4K)
where α indicates the number of threads (each on a dedicated
queue) and β indicates the size of each request. For propor-
tional sharing tests, we also indicate the weight of the flow in
parentheses (e.g., 2x4K(3)). The FIO queue depth (i.e., the
number of submitted but not yet completed requests) is set to
128—large enough to maintain maximum throughput to the
device.

To evaluate fairness and efficiency, we consider co-runs of
FIO workloads where the internal device scheduler (if any)
fails to provide fairness. We compare the slowdown of the
flows relative to their time when running alone (in the absence
of resource competition) as a measure of fairness as well as
aggregated throughput as a measure of efficiency. We ex-
plore three cases in which competing flows differ in only one
characteristic—request size, concurrency, or priority (weight).
The results show that the underlying request processing, being
oblivious to these characteristics, fails to provide fairness.

In Fig. 5 top-left and bottom-left, each of the flows uses
an equal number of device queues. The device alternates
between queues and guarantees the same number of processed
requests from each. This results in flows sharing the device in
proportion to request sizes rather than getting equal shares.

Fig. 5 top-middle and bottom-middle show two flows, one
of which uses half the number of physical queues used by
the other flow. With both flows submitting 4KB requests, the
requests are processed in proportion to the number of utilized
queues, causing unfairness.

Finally, Fig. 5 top-right and bottom-right show how MQFQ
can be used to enforce shares in proportion to externally-
specified per-flow weights (shown in parentheses).

In all of the above cases, the BFQ scheduler also guarantees
fairness (as defined by flows’ throughputs) but at a much
higher cost compared to MQFQ.

USENIX Association 2019 USENIX Annual Technical Conference 307

http://github.com/hedayati/mqfq

Table 1: Experimental setup.

MQ-SSD Setup NVMf Setup
CPU & Mem. Intel E5-2620 v3 (Haswell) @ 2.40GHz – 8GB Intel E5-2630 v3 (Haswell) @ 2.40GHz – 64GB
Sockets×Cores 2×6 (24 hardware threads) 2×8 (32 hardware threads)
Target device Intel P3700 NVMe MQ-SSD (800GB) NVMe over RDMA

Mellanox ConnectX-3 VPI Dual-Port 40Gbps
MQFQ parameters D = 64, T = 45KB D = 128, T = 64KB

2
4GB/s

8KB vs. 4KB on NVMf

nosched mqfq bfq

6

12

18

Sl
o

w
d

o
w

n
re

l.
to

 r
un

 a
lo

ne

16x8KB

16x4KB

nosched mqfq bfq

1
2GB/s

8KB vs. 4KB on SSD

nosched mqfq bfq

2

4

Sl
o

w
d

o
w

n
re

l.
to

 r
un

 a
lo

ne

12x8KB

12x4KB

nosched mqfq bfq

2
4GB/s

16 vs. 8 Channels on NVMf

nosched mqfq bfq

6

12

Sl
o

w
d

o
w

n
re

l.
to

 r
un

 a
lo

ne

16x4KB

8x4KB

nosched mqfq bfq

1
2GB/s

12 vs. 6 Channels on SSD

nosched mqfq bfq

2

4

Sl
o

w
d

o
w

n
re

l.
to

 r
un

 a
lo

ne

12x4KB

6x4KB

nosched mqfq bfq

2
4GB/s

Proportional Share on NVMf

nosched mqfq bfq

20

40

Sl
o

w
d

o
w

n
re

l.
to

 r
un

 a
lo

ne

8x4KB(1)

8x4KB(2)

8x4KB(3)

nosched mqfq bfq

1
2GB/s

Proportional Share on SSD

nosched mqfq bfq

6

12

Sl
o

w
d

o
w

n
re

l.
to

 r
un

 a
lo

ne

8x4KB(1)

8x4KB(2)

8x4KB(3)

Figure 5: FIO fairness and efficiency. Round-robin (nosched) processing is unfair with respect to different request sizes (left), different
numbers of queues (middle) and different proportional shares (right). Red dashed lines in the left and middle columns indicate proportional
(ideal) slowdown. Aggregate bandwidth is shown above each graph.

FlashX: FlashX is a data analytics framework that utilizes
SSDs to scale to large datasets. It can efficiently store and
retrieve large graphs and matrices, and uses FlashR, an ex-
tended R programming framework, to process terabyte-scale
datasets in parallel. We used FlashX to execute pagerank on
the SOC-LiveJournal1 social network graph from SNAP [28].
The graph has 4.8M vertices and 68.9M edges and is stored
on SSD or the NVMf target’s DRAM for corresponding tests.
We use FIO as an antagonist process to create contention with
FlashX over the storage resource.

Fig. 6 shows the slowdown of co-runs of FlashX and FIO
with different schedulers (or none—nosched). FlashX does
not maintain a large queue depth; as a result, it can sustain
only a fraction of the device’s throughput. FIO, by contrast, is
able to fully utilize the device given its large (I/O) parallelism.
Running these together, MQFQ guarantees that FlashX gets
its small share of I/O, while the rest is available to FIO, result-
ing in small (better than proportional) slowdowns (33% for
FlashX and 14% for FIO on average between MQ-SSD and
NVMf) — note that this is not unexpected since one of the

flows, i.e., FlashX, is not saturating. While BFQ also reduces
the slowdown for FlashX (from almost 4× to less than 2×), it
slows down FIO due to its lack of support for I/O parallelism.

Aerospike: Aerospike is a flash-optimized key-value store.
It uses direct I/O to a raw device in order to achieve high
performance. Meta-data is kept in memory, but we configure
our instance to make sure all requests will result in an I/O to
the underlying device. We use the benchmark tool provided
with Aerospike, running on a client machine, to drive a work-
load of small (512B) reads, ensuring that there will be no
contention over the network for the NVMf setup. As in the
FlashX experiments, we use FIO as a competitor workload.

Fig. 7 shows the slowdown of co-runs of Aerospike and FIO
under BFQ, MQFQ, and nosched. For the NVMf setup, de-
spite performing nearly 1 M transactions /sec., Aerospike fails
to saturate the device before running out of CPUs. Therefore,
as with FlashX, the co-run under MQFQ has negligible slow-
down (3% for Aerospike and less than 20% for FIO). How-
ever, on the MQ-SSD setup Aerospike can fully utilize the

308 2019 USENIX Annual Technical Conference USENIX Association

nosched mqfq bfq
0

1

2

3

Sl
o

w
d

o
w

n
re

l.
to

 r
un

 a
lo

ne

proportional
slowdown

FlashX vs. FIO on NVMf

flashx-pagerank

fio-6x4KB

nosched mqfq bfq
0

1

2

3

4

Sl
o

w
d

o
w

n
re

l.
to

 r
un

 a
lo

ne

proportional
slowdown

FlashX vs. FIO on SSD

flashx-pagerank

fio-6x4KB

Figure 6: Fairness comparison for FlashX. MQFQ maintains fairness
for FlashX, while allowing FIO to utilize the remaining bandwidth
of the device.

nosched mqfq bfq
0

5

10

15

Sl
o

w
d

o
w

n
re

l.
to

 r
un

 a
lo

ne

proportional
slowdown

Aerospike vs. FIO on NVMf

aerospike

fio-8x4KB

nosched mqfq bfq
0

1

2

3

4

5

6

Sl
o

w
d

o
w

n
re

l.
to

 r
un

 a
lo

ne

proportional
slowdown

Aerospike vs. FIO on SSD

aerospike

fio-4x4KB

Figure 7: Fairness comparison for Aerospike. MQFQ maintains
fairness (approximately at or below proportional slowdown). On the
MQ-SSD (right), where Aerospike can utilize the full device, FIO is
slowed down to half the available bandwidth.

device (with nearly 0.5 M transactions /sec.) and Aerospike
and FIO end up getting half the available bandwidth each.
BFQ’s lack of support for parallel dispatch is evident on the
faster NVMf device, where it results in 15× slowdown for
FIO while giving only a modest improvement for Aerospike.

4.2 Scalability
We compare the scalability of MQFQ to that of an existing
single-queue implementation of fair queueing—i.e., BFQ [46].
As noted in Sec. 1, Linux BFQ doesn’t support concurrent
dispatches and may not be able to fully utilize a device with
internal parallelism. Other schedulers with support for par-
allel dispatch (e.g., FlashFQ [40]) have no multi-queue im-
plementation. As a reasonable approximation of the missing
strategy, we also compare MQFQ to a modified version of
itself (MQFQ-serial) that serializes dispatches using a global
lock. It differs from a real single-queue scheduler for a device
with internal parallelism in that it maintains the requests in
separate, per-CPU queues coordinated with our scalable data
structures and the T and D parameters.

0 5 10 15 20 25 30
of CPUs

0

1000

2000

3000

4000

T
hr

o
ug

hp
ut

 (
x1

00
0

IO
P

/s
)

Scalability for 1KB IO on NVMf

nosched

mqfq

mqfq-serial

bfq

Figure 8: Overall scalability of unfair Linux multi-queue vs. MQFQ
vs. MQFQ-serial vs. BFQ.

Our MQ-SSD setup at 460K IOP/s is not suitable for scala-
bility experiments—the IOP/s limit, rather than the scheduler,
becomes the scaling bottleneck. Some higher-IOP/s devices
exist in the market and more will surely emerge in the future.
Employing an array of SSDs can also enable over a million
IOP/s. Alternatively, remote storage software solutions (e.g.,
ReFlex [26], NVMe over Fabric [33], FlashNet [45]) have the
potential to yield more than a million IOP/s.

For this scalability evaluation, we therefore rely on the
NVMf setup with 1KB requests. We chose 1KB because
it yields the largest number of IOP/s (more request churn,
leading to higher scheduler contention). In the nosched (no
contention) case, this setup can reach 4 M IOP/s. We need
multiple FIO threads to reach this maximum throughput.

Fig. 8 compares the throughput achieved with nosched,
MQFQ, MQFQ-serial, and BFQ. With 15–19 active threads,
MQFQ reaches more than 3 M IOP/s—2.6× better than
MQFQ-serial and 20× better than BFQ. This constitutes 71%
of the peak throughput of the in-memory NVMf device while
providing the fairness properties needed for shared systems
(as demonstrated in Sec. 4.1).

4.3 Design Decisions and Parameters
We assess the degree to which each of MQFQ’s scalable data
structures improves performance.

4.3.1 Virtual Time

We first evaluate the scalability of computing virtual time in
MQFQ. As described in Sec. 3.1, our implementation uses
a variant of the mindicator [29] to find the smallest start tag
among queued requests across all queues. As in the token tree
(Fig. 3), we structure the mindicator with successive levels
for cores, sockets, and the full machine.

Fig. 9 shows how the mindicator scales with the number
of queues. We are unaware of any existing data structure suit-
able as a replacement for the mindicator; we therefore imple-
mented another lock-free alternative in which the minimum is

USENIX Association 2019 USENIX Annual Technical Conference 309

0 5 10 15 20 25 30
of CPUs

1000

2000

3000

4000

T
hr

o
ug

hp
ut

 (
x1

00
0

IO
P

/s
)

Virtual Time Computation Scalability for 1KB IO on NVMf

nosched

mindicator

array-min

Figure 9: Throughput when maintaining virtual time with a mindica-
tor vs. iterating over an array of queue minima.

0 8 16 24 32
of CPUs

500

1000

1500

2000

2500

3000

T
hr

o
ug

hp
ut

 (
x1

00
0

IO
P

/s
)

Throughput

timing-wheel

1usec polling

5usec polling

0 8 16 24 32
of CPUs

102

103

104

105

106

#
 o

f
re

sc
he

d
ul

es
/s

Overhead

timing-wheel

1usec polling

Timing Wheel Scalability for 1KB IO on NVMf

Figure 10: Scalability of unthrottling. Left: MQFQ throughput
achieved using timing wheel vs. 1µs and 5µs polling. Right: polling
causes spurious reschedules.

found by iterating over an array of queue-local minima after
each request dispatch. (This could be thought as a one-level
mindicator.) Our contention-localizing structure outperforms
the array scan by nearly 40% at 32 threads.

4.3.2 Unthrottling

As discussed in Sec. 2, when a queue cannot dispatch it will be
throttled. Once the situation changes (completion or progress
of virtual-time) some throttled queues may need to be un-
throttled. Any delay in doing so could leave the device un-
derutilized. Our approach uses inter-processor interrupts to
promptly notify appropriate CPUs that they can proceed when
the unthrottling condition is met. We use a scalable timer
wheel (Sec. 3.3) to support such notifications efficiently.

For comparison, arranging for each queue to poll the con-
dition would be an easy but expensive way to implement
unthrottling. We explore this option with a pinned, high reso-
lution timer (hrtimer [11]), as it requires no communication
between queues and can provide latency comparable to that

0 5 10 15 20 25 30
of CPUs

1000

2000

3000

4000

T
hr

o
ug

hp
ut

 (
x1

00
0

IO
P

/s
)

Token Tree Scalability for 1KB IO on NVMf

nosched

token-tree

sbitmap

counter

Figure 11: Scalability of token-tree vs. global counter vs. scalable
bitmap in maintaining available dispatch slots.

of a cross-socket inter-processor interrupt. The timer is armed
whenever the queue is throttled and upon firing, reschedules
the dispatch routine. The effect is essentially polling for a
change in virtual time, with a polling frequency determined
by the value of the timer.

Fig. 10 (left) compares the throughput that MQFQ can
achieve with the timing wheel vs. polling at 1µs or 5µs in-
tervals. Results confirm that a delay in unthrottling leads
to throughput degradation. Even extremely frequent (1µs)
polling cannot achieve IOP/s performance comparable to that
of our timer wheel approach. Less frequent polling leads to a
dispatch delay that leaves the device underutilized.

In order to quantify the wasted CPU, we measure the num-
ber of reschedule operations caused by our timer wheel and
by 1µs polling. The difference between the two shows how
inefficient polling can be (the timer wheel incurs no spurious
reschedules). Fig. 10 (right) shows the savings, in resched-
ules per second, achieved by using the timer wheel instead
of a 1µs timer. With a few CPUs, roughly every queue is
being signaled on every completion (so a carefully chosen fre-
quency for polling that matches the rate of completion could
be practical when the device is fully utilized), but the number
of wasted cycles grows with the number of CPUs. With the
timing wheel, on the other hand, unthrottling comes only as a
result of completion, and therefore is upper-bounded by the
device throughput.

4.3.3 Dispatch Slots

In order to keep a device with internal parallelism fully uti-
lized, while also avoiding queue build-up in the device (which
would adversely affect the fairness guarantee), MQFQ has to
track the number of available dispatch slots. This number is
modified by each queue as a result of a dispatch or a comple-
tion. Our scalable MQFQ design uses a novel token tree data
structure for this purpose (presented in Sec. 3.2).

Kyber [39], a multi-queue I/O scheduler added since Linux
4.12, uses another data structure, called sbitmap (for Scalable

310 2019 USENIX Annual Technical Conference USENIX Association

Bitmap), to throttle asynchronous I/O operations if the latency
experienced by synchronous operations exceeds a threshold.
The main idea in sbitmap is to distribute the tokens as bits in
a number of cache lines (determined by expected contention
over acquiring tokens). A thread tries to find the first clear bit
in the cache line where the last successful acquire happened,
falling back to iterating over all cache lines if all bits are set.
This data structure reduces contention when the number of
tokens is significantly larger than the number of threads. Yet
another alternative to maintain a single global count of avail-
able dispatch slots using atomic increments and decrements.

Fig. 11 plots 1KB MQFQ IOP/s as a function of thread
count using an atomic counter, a scalable bitmap, and a token
tree to track the number of dispatched requests. To isolate
the impact of these data structures, we disable virtual time
computation in MQFQ. Using an atomic counter doesn’t scale
beyond the first socket. The scalable bitmap falls short when
the number of waiting requests is significantly larger than
device parallelism, resulting in local acquire and release of
tokens. In comparison, the token tree paired with our throttling
mechanism prefers interaction with local queues (based on
a pre-computed proximity matrix) as long as they are no
more than T ahead of virtual time, resulting in significantly
better scalability (more than 2× the throughput of the atomic
counter and 36% more than the scalable bitmap).

5 Related Work
Fairness-oriented resource scheduling has been extensively
studied in the past. Lottery scheduling [49] achieves proba-
bilistic proportional-share resource allocation. Fairness can
also be realized through per-task timeslices as in Linux
CFQ [2] and BFQ [46], Argon [48], and FIOS [35]. Time-
slice schedulers, however, are generally not work-conserving:
they will sometimes leave the device unused when there are
requests available in the system. The original fair queueing
approaches, including Weighted Fair Queueing (WFQ) [13],
Packet-by-Packet Generalized Processor Sharing (PGPS) [34],
and Start-time Fair Queueing (SFQ) [18], employ virtual-time–
controlled request ordering across per-flow request queues to
maintain fairness.

Fair queueing approaches like SFQ(D) [23] and FlashFQ
[40] have been tailored to manage I/O resources, allowing
requests to be re-ordered and dispatched concurrently for
better I/O efficiency in devices with internal parallelism. To
maintain fairness in a multi-resource (e.g., CPU, memory
and NIC) environment, DRFQ [16] adapted fair queueing by
tracking usage of the respective dominant resource of each
operation. Disengaged fair queueing [30] emulates the effect
of fair queueing on GPUs while requiring only infrequent OS
kernel involvement. It accomplishes its goal by monitoring
and mitigating potential unfairness through occasional traps.
All previous fair queueing schedulers assume a serializing
scheduler over a single device queue, which does not scale
well on modern multicores with fast multi-queue devices.

For multi-queue SSDs, Ahn et al. [1] supported I/O re-
source sharing by implementing a bandwidth throttler at the
Linux cgroup layer (above the multi-queue device I/O paths).
However, their time interval budget-based resource control is
not work conserving: if one cgroup does not use its allotted re-
sources in an interval, those resources are simply wasted. Lee
et al. [27] improved read performance by isolating queues of
multi-queue SSDs used for reads from those used for writes.
Kyber [39] achieves better synchronous I/O latency by throt-
tling asynchronous requests. However, neither approach is
a full solution for fair I/O resource management. Stephens
et al. [42] found that the internal round-robin scheduling of
hardware queues in NICs leads to unfairness when the load
is asymmetrically distributed across a NIC’s multiple hard-
ware queues. Their solution, Titan, requires programmable
NICs to internally implement deficit round-robin and ser-
vice queues in proportion to configured weights. FLIN [44]
identifies major sources of interference in multi-queue SSDs
and implements a scheduler in SSD controller firmware to
protect against them. Unlike MQFQ, which is applicable to
accelerators and multi-queue NICs, FLIN deals with the id-
iosyncrasies of Flash devices such as garbage collection and
access patterns. In addition, FLIN considers any request orig-
inating from the same host-side I/O queue as belonging to
the same “flow” and, being implemented in hardware, is un-
able to reason in terms of system-level resource principals
(applications, virtual machines, or Linux cgroups).

For performance isolation and quality-of-service, ReFlex
[26] employs a per-tenant token bucket mechanism to achieve
latency objectives in a shared-storage environment. The to-
ken bucket mechanism and fair queueing resource allocation
are complementary—the former performs admission control
under a given resource allocation while the latter supports
fair, work-conserving resource uses. Decibel [31] presents a
system framework for resource isolation in rack-scale stor-
age but it does not directly address the problem of resource
scheduling. It uses two existing scheduling policies in its
implementation—strict time sharing is not work-conserving;
deficit round robin is work-conserving but requires a serializ-
ing scheduler queue that limits scalability.

Among multicore operating systems, Arrakis [36] and IX
[4] support high-speed I/O by separating the control plane
(managed by the OS) and the data plane (bypassing the OS) to
achieve coherency-free execution. Their OS control planes en-
force access control but not resource isolation or fair resource
allocation. Zygos [37] suggests that sweeping simplification
introduced by shared-nothing architectures like IX [4] leads
to (1) not being work-conserving and (2) suffering from head-
of-the-line blocking. They propose a work-stealing packet
processing scheme that, while introducing cross-core inter-
actions, eliminates head-of-the-line blocking and improves
latency. Recent work has also built scalable data structures
that localize synchronization in the multicore memory hier-
archy (intra-core rather than inter-core; intra-socket rather

USENIX Association 2019 USENIX Annual Technical Conference 311

than inter-socket). Examples include the mindicator global
minimum data structure [29], atomic broadcast trees [24], and
NUMA-aware locks [15] and data structures [7]. For MQFQ,
we introduce new scalable structures, including a timer wheel
to track virtual time indexes and a token tree to track available
device dispatch slots.

6 Conclusion
With the advent of fast devices that can complete a request
every microsecond or less, it has become increasingly difficult
for the operating system to fulfill its responsibility for fair
resource allocation—enough so that some OS implementa-
tions have given up on fairness altogether for such devices.
Our work demonstrates that surrender is not necessary: with
judicious use of scalable data structures and a reformulation
of the analytical bounds, we can maintain fairness in the long
term and bound it in the short term, all without compromising
throughput.

Our formalization of multi-queue fair queueing introduces
a parameter, T, that bounds the amount of service that a flow
can receive in excess of its share. Crucially, this bound does
not grow with time. Moreover, our new definition of virtual
time is provably equivalent to existing definitions when T is
set to zero. Experiments with a modified Linux 4.15 kernel,
a two-socket server, and a fast NVMe over RDMA device
confirm that MQFQ can provide both fairness and very high
throughput. Compared to running without a fairness algorithm
on an NVMf device, our MQFQ algorithm reduces the slow-
down caused by an antagonist from 3.78× to 1.33× for the
FlashX workload and from 6.57× to 1.03× for the Aerospike
workload. Its peak throughput reaches 3.1 Million IOP/s on
a single machine, outperforming a serialized version of our
own algorithm by 2.6× and Linux BFQ by 20×.

In future work, we plan to develop strategies for automatic
tuning of the T and D parameters; extend our implementation
to handle small computational kernels for GPUs and accel-
erators; and evaluate the extent to which fairness guarantees
can continue to apply even to kernel-bypass systems, with
dispatch queues in user space.

Acknowledgment
We thank our shepherd, Jian Huang, and the anonymous re-
viewers for their helpful feedback. This work was supported
in part by NSF grants CNS-1319417, CCF-1717712, CCF-
1422649 and by a Google Faculty Research award. Any opin-
ions, findings, conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of our sponsors.

References
[1] S. Ahn, K. La, and J. Kim. Improving I/O resource

sharing of Linux cgroup for NVMe SSDs on multi-core
systems. In 8th USENIX Workshop on Hot Topics in

Storage and File Systems (HotStorage), Denver, CO,
June 2016.

[2] J. Axboe. Linux block IO—Present and future. In
Ottawa Linux Symp., pages 51–61, Ottawa, ON,
Canada, July 2004.

[3] J. Axboe et al. Flexible I/O tester.
github.com/axboe/fio.

[4] A. Belay, G. Prekas, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion. IX: A protected
dataplane operating system for high throughput and low
latency. In 11th USENIX Symp. on Operating Systems
Design and Implementation (OSDI), pages 49–65,
Broomfield, CO, Oct. 2014.

[5] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet.
Linux block IO: Introducing multi-queue SSD access
on multi-core systems. In 6th ACM Intl. Systems and
Storage Conf. (SYSTOR), Haifa, Israel, June 2013.

[6] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev,
M. F. Kaashoek, R. Morris, and N. Zeldovich. An
analysis of Linux scalability to many cores. In 9th
USENIX Symp. on Operating Systems Design and
Implementation (OSDI), pages 1–16, Vancouver, BC,
Canada, 2010.

[7] I. Calciu, S. Sen, M. Balakrishnan, and M. K. Aguilera.
Black-box concurrent data structures for NUMA
architectures. In 22nd Intl. Conf. on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pages 207–221, Xi’an, China, Apr.
2017.

[8] B. Caldwell. Improving block-level efficiency with
scsi-mq. arXiv e-prints, abs/1504.07481v1, Apr. 2015.

[9] F. Chen, R. Lee, and X. Zhang. Essential roles of
exploiting internal parallelism of flash memory based
solid state drives in high-speed data processing. In 2011
IEEE 17th Intl. Symp. on High Performance Computer
Architecture (HPCA), pages 266–277, San Antonio, TX,
2011.

[10] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T.
Morris, and E. Kohler. The scalable commutativity rule:
Designing scalable software for multicore processors.
In 24th ACM Symp. on Operating Systems Principles
(SOSP), pages 1–17, Farminton, PA, 2013.

[11] J. Corbet. The high-resolution timer API.
lwn.net/Articles/167897.

[12] J. Corbet. The current state of kernel page-table
isolation. lwn.net/Articles/741878/, Dec. 2017.

[13] A. Demers, S. Keshav, and S. Shenker. Analysis and
simulation of a fair queueing algorithm. In ACM
SIGCOMM Conf. on Applications, Technologies,
Architectures, and Protocols for Computer
Communications, pages 1–12, Austin, TX, Sept. 1989.

[14] D. Dice, Y. Lev, and M. Moir. Scalable Statistics
Counters. In 25th ACM Symp. on Parallelism in

312 2019 USENIX Annual Technical Conference USENIX Association

github.com/axboe/fio
lwn.net/Articles/167897
lwn.net/Articles/741878/

Algorithms and Architectures (SPAA), pages 43–52,
Montreal, PQ, Canada, 2013.

[15] D. Dice, V. J. Marathe, and N. Shavit. Lock cohorting:
A general technique for designing NUMA locks. ACM
Trans. on Parallel Compututing, 1(2):13:1–13:42, Feb.
2015.

[16] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica.
Multi-resource fair queueing for packet processing. In
ACM SIGCOMM Conf. on Applications, Technologies,
Architectures, and Protocols for Computer
Communication, pages 1–12, Helsinki, Finland, 2012.

[17] S. J. Golestani. A self-clocked fair queueing scheme for
broadband applications. In 13th IEEE Conf. on
Networking for Global Communications (INFOCOM),
pages 636–646, San Jose, CA, 1994.

[18] P. Goyal, H. M. Vin, and H. Cheng. Start-time fair
queueing: A scheduling algorithm for integrated
services packet switching networks. IEEE/ACM Trans.
on Networking, 5(5):690–704, Oct. 1997.

[19] A. G. Greenberg and N. Madras. How fair is fair
queueing. Journal of the ACM, 39(3):568–598, July
1992.

[20] Hyper-Q Example. developer.download.nvidia.com/
compute/DevZone/C/html_x64/6_Advanced/
simpleHyperQ/doc/HyperQ.pdf.

[21] Intel Corp. Storage performance development kit.
www.spdk.io.

[22] Intel Optane SSD DC P4800X Series.
www.intel.com/content/www/us/en/products/
memory-storage/solid-state-drives/data-center-ssds/
optane-dc-p4800x-series/p4800x-750gb-aic.html.

[23] W. Jin, J. S. Chase, and J. Kaur. Interposed Proportional
Sharing for a Storage Service Utility. In Joint Intl. Conf.
on Measurement and Modeling of Computer Systems,
SIGMETRICS, pages 37–48, New York, NY, 2004.

[24] S. Kaestle, R. Achermann, R. Haecki, M. Hoffmann,
S. Ramos, and T. Roscoe. Machine-aware atomic
broadcast trees for multicores. In 12th USENIX Symp.
on Operating Systems Design and Implementation
(OSDI), pages 33–48, Savannah, GA, Nov. 2016.

[25] A. Kalia, M. Kaminsky, and D. G. Andersen. Design
guidelines for high performance RDMA systems. In
USENIX Annual Technical Conf. (ATC), pages
437–450, Denver, CO, June 2016.

[26] A. Klimovic, H. Litz, and C. Kozyrakis. Reflex:
Remote flash ≈ local flash. In 22nd Intl. Conf. on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 345–359, Xi’an,
China, Apr. 2017.

[27] M. Lee, D. H. Kang, M. Lee, and Y. I. Eom. Improving
read performance by isolating multiple queues in
NVMe SSDs. In 11th Intl. Conf. on Ubiquitous
Information Management and Communication, Beppu,
Japan, Jan. 2017.

[28] J. Leskovec and A. Krevl. SNAP datasets: Stanford
large network dataset collection.
snap.stanford.edu/data/.

[29] Y. Liu, V. Luchangco, and M. Spear. Mindicators: A
Scalable Approach to Quiescence. In 2013 IEEE 33rd
Intl. Conf. on Distributed Computing Systems (ICDCS),
pages 206–215, Philadelphia, PA, July 2013.

[30] K. Menychtas, K. Shen, and M. L. Scott. Disengaged
scheduling for fair, protected access to fast
computational accelerators. In 19th Intl. Conf. on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Salt Lake City, UT, Mar.
2014.

[31] M. Nanavati, J. Wires, and A. Warfield. Decibel:
Isolation and sharing in disaggregated rack-scale
storage. In 14th USENIX Symp. on Networked Systems
Design and Implementation (NSDI), pages 17–33,
Boston, MA, Mar. 2017.

[32] Nvidia Corp. Sharing a GPU between MPI processes:
Multi-process service (MPS).
docs.nvidia.com/deploy/mps/index.html.

[33] NVM Express Workgroup. NVM express, revision 1.3a.
nvmexpress.org/wp-content/uploads/
NVM-Express-1_3a-20171024_ratified.pdf, Oct. 2017.

[34] A. K. Parekh. A generalized processor sharing
approach to flow control in integrated services
networks. PhD thesis, Dept. of Electrical Engineering
and Computer Science, MIT, 1992.

[35] S. Park and K. Shen. FIOS: A Fair, Efficient Flash I/O
Scheduler. In 10th USENIX Conf. on File and Storage
Technologies (FAST), pages 13–13, San Jose, CA, 2012.

[36] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe.
Arrakis: The Operating System is the control plane. In
11th USENIX Symp. on Operating Systems Design and
Implementation (OSDI), pages 1–16, Broomfield, CO,
Oct. 2014.

[37] G. Prekas, M. Kogias, and E. Bugnion. Zygos:
Achieving low tail latency for microsecond-scale
networked tasks. In 26th Symp. on Operating Systems
Principles (SOSP), pages 325–341, Shanghai, China,
2017.

[38] Samsung SSD PM1725a.
www.samsung.com/semiconductor/global/file/insight/
2016/08/Samsung_PM1725a-1.pdf.

[39] O. Sandoval. Kyber multi-queue I/O scheduler.
lwn.net/Articles/720071/.

[40] K. Shen and S. Park. FlashFQ: A fair queueing I/O
scheduler for flash-based SSDs. In USENIX Annual
Technical Conf. (ATC), San Jose, CA, June 2013.

[41] V. Srinivasan, B. Bulkowski, W.-L. Chu,
S. Sayyaparaju, A. Gooding, R. Iyer, A. Shinde, and
T. Lopatic. Aerospike: Architecture of a real-time

USENIX Association 2019 USENIX Annual Technical Conference 313

developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
www.spdk.io
www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series/p4800x-750gb-aic.html
www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series/p4800x-750gb-aic.html
www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series/p4800x-750gb-aic.html
snap.stanford.edu/data/
docs.nvidia.com/deploy/mps/index.html
nvmexpress.org/wp-content/uploads/NVM-Express-1_3a-20171024_ratified.pdf
nvmexpress.org/wp-content/uploads/NVM-Express-1_3a-20171024_ratified.pdf
www.samsung.com/semiconductor/global/file/insight/2016/08/Samsung_PM1725a-1.pdf
www.samsung.com/semiconductor/global/file/insight/2016/08/Samsung_PM1725a-1.pdf
lwn.net/Articles/720071/

operational dbms. Proc. of the VLDB Endowment,
9(13):1389–1400, Sept. 2016.

[42] B. Stephens, A. Singhvi, A. Akella, and M. Swift.
Titan: Fair packet scheduling for commodity
multiqueue NICs. In USENIX Annual Technical Conf.
(ATC), pages 431–444, Santa Clara, CA, 2017.

[43] S. A. Szygenda, C. W. Hemming, and J. M. Hemphill.
Time flow mechanisms for use in digital logic
simulation. In 5th ACM Winter Simulation Conf., pages
488–495, New York, NY, 1971.

[44] A. Tavakkol, M. Sadrosadati, S. Ghose, J. S. Kim,
Y. Luo, Y. Wang, N. M. Ghiasi, L. Orosa,
J. Gómez-Luna, and O. Mutlu. FLIN: Enabling fairness
and enhancing performance in modern NVMe solid
state drives. In 45th Intl. Symp. on Computer
Architecture (ISCA), pages 397–410, Los Angeles, CA,
2018.

[45] A. Trivedi, N. Ioannou, B. Metzler, P. Stuedi,
J. Pfefferle, I. Koltsidas, K. Kourtis, and T. R. Gross.
Flashnet: Flash/network stack co-design. In 10th ACM
Intl. Systems and Storage Conf. (SYSTOR), pages
15:1–15:14, Haifa, Israel, 2017.

[46] P. Valente and A. Avanzini. Evolution of the BFQ
Storage-I/O scheduler. algo.ing.unimo.it/people/paolo/
disk_sched/mst-2015.pdf.

[47] G. Varghese and A. Lauck. Hashed and hierarchical
timing wheels: Efficient data structures for

implementing a timer facility. ACM/IEEE Trans. on
Networking, 5(6):824–834, Dec. 1997.

[48] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R.
Ganger. Argon: Performance insulation for shared
storage servers. In 5th USENIX Conf. on File and
Storage Technologies (FAST), pages 61–76, San Jose,
CA, Feb. 2007.

[49] C. Waldspurger and W. Weihl. Lottery scheduling:
Flexible proportional-share resource management. In
1st USENIX Symp. on Operating Systems Design and
Implementation (OSDI), pages 1–11, Monterey, CA,
Nov. 1994.

[50] Skyhawk & Skyhawk Ultra NVMe PCIe SSD.
www.sandisk.com/content/dam/sandisk-main/en_us/
assets/resources/data-sheets/
Skyhawk-Series-NVMe-PCIe-SSD-DS.pdf.

[51] Q. Xu, H. Siyamwala, M. Ghosh, T. Suri, M. Awasthi,
Z. Guz, A. Shayesteh, and V. Balakrishnan.
Performance analysis of NVMe SSDs and their
implication on real world databases. In 8th ACM Intl.
Systems and Storage Conf. (SYSTOR), Haifa, Israel,
May 2015.

[52] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E.
Priebe, and A. S. Szalay. Flashgraph: Processing
billion-node graphs on an array of commodity SSDs. In
13th USENIX Conf. on File and Storage Technologies
(FAST), pages 45–58, Santa Clara, CA, 2015.

314 2019 USENIX Annual Technical Conference USENIX Association

algo.ing.unimo.it/people/paolo/disk_sched/mst-2015.pdf
algo.ing.unimo.it/people/paolo/disk_sched/mst-2015.pdf
www.sandisk.com/content/dam/sandisk-main/en_us/assets/resources/data-sheets/Skyhawk-Series-NVMe-PCIe-SSD-DS.pdf
www.sandisk.com/content/dam/sandisk-main/en_us/assets/resources/data-sheets/Skyhawk-Series-NVMe-PCIe-SSD-DS.pdf
www.sandisk.com/content/dam/sandisk-main/en_us/assets/resources/data-sheets/Skyhawk-Series-NVMe-PCIe-SSD-DS.pdf

BRAVO – Biased Locking for Reader-Writer Locks

Dave Dice
Oracle Labs

dave.dice@oracle.com

Alex Kogan
Oracle Labs

alex.kogan@oracle.com

Abstract
Designers of modern reader-writer locks confront a diffi-

cult trade-off related to reader scalability. Locks that have a
compact memory representation for active readers will typi-
cally suffer under high intensity read-dominated workloads
when the “reader indicator” state is updated frequently by a di-
verse set of threads, causing cache invalidation and coherence
traffic. Other designs use distributed reader indicators, one
per NUMA node, per core or even per thread. This improves
reader-reader scalability, but also increases the size of each
lock instance and creates overhead for writers.

We propose a simple transformation, BRAVO, that aug-
ments any existing reader-writer lock, adding just two inte-
ger fields to the lock instance. Readers make their presence
known to writers by hashing their thread’s identity with the
lock address, forming an index into a visible readers table
and installing the lock address into the table. All locks and
threads in an address space can share the same readers table.
Crucially, readers of the same lock tend to write to different
locations in the table, reducing coherence traffic. Therefore,
BRAVO can augment a simple compact lock to provide scal-
able concurrent reading, but with only modest and constant
increase in memory footprint.

We implemented BRAVO in user-space, as well as in-
tegrated it with the Linux kernel reader-writer semaphore
(rwsem). Our evaluation with numerous benchmarks and real
applications, both in user and kernel-space, demonstrate that
BRAVO improves performance and scalability of underlying
locks in read-heavy workloads while introducing virtually
no overhead, including in workloads in which writes are fre-
quent.

Readers attempt to

install the lock

address into that

element in the table,

making their

existence known to

potential writers.

Updates by readers

tend to be diffused

over the table,

resulting in a

NUMA-friendly

design. Specifically,

BRAVO allows a

simple compact

lock to be

augmented so as to

provide scalable

concurrent reading

but with only a

modest increase in

footprint.

1 Introduction

A reader-writer lock, also known as a shared-exclusive lock, is
a synchronization primitive for controlling access by multiple
threads (or processes) to a shared resource (critical section).
It allows shared access for read-only use of the resource,

while write operations access the resource exclusively. Such
locks are ubiquitous in modern systems, and can be found, for
example, in database software, file systems, key-value stores
and operating systems.

Reader-writer locks have to keep track of the presence of
active readers before a writer can be granted the lock. In the
common case, such presence is recorded in a shared counter,
incremented and decremented with every acquisition and re-
lease of the lock in the read mode. This is the way reader-
writer locks are implemented in the Linux kernel, POSIX
pthread library and several other designs [3, 35, 42]. The use
of a shared counter lends itself to a relatively simple imple-
mentation and has a compact memory representation for a
lock. However, it suffers under high intensity read-dominated
workloads when the “reader indicator” state is updated fre-
quently by a diverse set of threads, causing cache invalidation
and coherence traffic [7, 17, 20, 31].

Alternative designs for reader-writer locks use distributed
reader indicators, for instance, one per NUMA (non-uniform
memory access) node as in cohort locks [6], or even one
lock per core as in the Linux kernel brlock [10] and other
related ideas [26, 31, 39, 46]. This improves reader-reader
scalability, but also considerably increases the size of each
lock instance. Furthermore, the lock performance is hampered
when writes are frequent, as multiple indicators have to be
accessed and/or modified. Finally, such locks have to be in-
stantiated dynamically, since the number of sockets or cores
can be unknown until the runtime. As a result, designers of
modern reader-writer locks confront a difficult trade-off re-
lated to the scalability of maintaining the indication of the
readers’ presence.

In this paper, we propose a simple transformation, called
BRAVO, that augments any existing reader-writer lock,
adding just two integer fields to the lock instance. When
applied on top of a counter-based reader-writer lock, BRAVO
allows us to achieve, and often beat, the performance levels of
locks that use distributed reader indicators while maintaining
a compact footprint of the underlying lock. With BRAVO,
readers make their presence known to writers by hashing their

USENIX Association 2019 USENIX Annual Technical Conference 315

thread’s identity with the lock address, forming an index into
a visible readers table. Readers attempt to install the lock
address into the element (slot) in the table identified by that
index. If successful, readers can proceed with their critical
section without modifying the shared state of the underlying
lock. Otherwise, readers resort to the acquisition path of the
underlying lock. Note that the visible readers table is shared
by all locks and threads in an address space. Crucially, read-
ers of the same lock tend to write to different locations in
the table, reducing coherence traffic and thus resulting in a
NUMA-friendly design. At the same time, a writer always
uses the acquisition path of the underlying lock, but also scans
the readers table and waits for all readers that acquired that
lock through it. A simple mechanism is put in place to limit
the overhead of scanning the table for workloads in which
writes are frequent.

We implemented BRAVO and evaluated it on top of sev-
eral locks, such as the POSIX pthread_rwlock lock and the
PF-Q reader-writer lock by Brandenburg and Anderson [3].
For our evaluation, we used numerous microbenchmarks as
well as rocksdb [40], a popular open-source key-value store.
Furthermore, we integrated BRAVO with rwsem, a read-write
semaphore in the Linux kernel. We evaluated the modified
kernel through kernel microbenchmarks as well as several
user-space applications (from the Metis suite [33]) that create
contention on read-write semaphores in the kernel. All our
experiments in user-space and in the kernel demonstrate that
BRAVO is highly efficient in improving performance and
scalability of underlying locks in read-heavy workloads while
introducing virtually no overhead, even in workloads in which
writes are frequent.

The rest of the paper is organized as following. The related
work is surveyed in Section 2. We present the BRAVO al-
gorithm in Section 3 and discuss how we apply BRAVO in
the Linux kernel in Section 4. The performance evaluation
in user-space and the Linux kernel is provided in Sections 5
and 6, respectively. We conclude the paper and elaborate on
multiple directions for future work in Section 7.

2 Related Work

I Reader-Indicator Design Readers that are active – cur-
rently executing in a reader critical section – must be visible to
potential writers. Writers must be able to detect active readers
in order to resolve read-vs-write conflicts, and wait for ac-
tive readers to depart. The mechanism through which readers
make themselves visible is the reader indicator. Myriad de-
signs have been described in the literature. At one end of the
spectrum we find a centralized reader indicator implemented
as an integer field within each reader-writer lock instance
that reflects the number of active readers. Readers use atomic
instructions (or a central lock) to safely increment and decre-
ment this field. Classic examples of such locks can be found

in the early work of Mellor-Crummey and Scott [35] and more
recent work by Shirako et al. [42]. Another reader-writer lock
algorithm having a compact centralized reader indicator is
Brandenburg and Anderson’s Phase-Fair Ticket lock, desig-
nated PF-T in [3], where the reader indicator is encoded in
two central fields. Their Phase-Fair Queue-based lock, PF-Q,
uses a centralized counter for active readers and an MCS-like
central queue, with local spinning, for readers that must wait.
We refer to this latter algorithm as “BA” throughout the re-
mainder of this paper. Such approaches are compact, having
a small per-lock footprint, and simple, but, because of coher-
ence traffic, do not scale in the presence of concurrent readers
that are arriving and departing frequently [7, 17, 20, 31].

To address this concern, many designs turn toward dis-
tributed reader indicators. Each cohort reader-writer lock [6],
for instance, uses a per-NUMA node reader indicator. While
distributed reader indicators improve scalability, they also sig-
nificantly increase the footprint of a lock instance, with each
reader indicator residing on its own private cache line or sec-
tor to reduce false sharing. In addition, the size of the lock is
variable with the number of nodes, and not known at compile-
time, precluding simple static preallocation of locks. Writers
are also burdened with the overhead of checking multiple
reader indicators. Kashyap et al. [27] attempt to address some
of those issues by maintaining a dynamic list of per-socket
structures and expand the lock instance on-demand. However,
this only helps if a lock is accessed by threads running on a
subset of nodes.

At the extreme end of the spectrum we find lock de-
signs with reader indicators assigned per-CPU or per-thread
[10, 26, 31, 39, 46]. These designs promote read-read scal-
ing, but have a large variable-sized footprint. They also fa-
vor readers in that writers must traverse and examine all the
reader-indicators to resolve read-vs-write conflicts, possibly
imposing a performance burden on writers. We note that there
are a number of varieties of such distributed locks: a set of
reader-indicators coupled with a central mutual exclusion lock
for writer permission, as found in cohort locks [6]; sets of mu-
texes where readers must acquire one mutex and writers must
acquire all mutexes, as found in Linux kernel brlocks [10]; or
sets of reader-writer locks where readers must acquire read
permission on one lock, and writers must acquire write per-
mission on all locks. To reduce the impact on writers, which
must visit all reader indicators, some designs use a tree of
distributed counters where the root element contains a sum of
the indicators within the subtrees [30].

Dice et al. [19] devised read-write byte-locks for use in the
TLRW software transactional memory infrastructure. Briefly,
read-write byte-locks are reader-writer locks augmented with
an array of bytes, serving as reader indicators, where indices
in the array are assigned to favored threads that are frequent
readers. These threads can simply set and clear these reader
indicators with normal store operations. The motivation for
read-write byte-locks was to avoid atomic read-modify-write

316 2019 USENIX Annual Technical Conference USENIX Association

instructions, which were particularly expensive on the system
under test. The design, as described, is not NUMA-friendly
as the byte array occupies a single cache line.

In addition to distributing or dispersing the counters, indi-
vidual counters can themselves be further split into constituent
ingress and egress fields to further reduce write sharing.
Arriving readers increment the ingress field and departing
readers increment the egress field. Cohort reader-writer locks
use this approach [6].

BRAVO takes a different approach, opportunistically rep-
resenting active readers in the shared global visible readers
table. The table (array) is fixed in size and shared over all
threads and locks within an address space. Each BRAVO
lock has, in addition to the underlying reader-writer lock,
a boolean flag that indicates if reader bias is currently en-
abled for that lock. Publication of active readers in the array
is strictly optional and best-effort. A reader can always fall
back to acquiring read permission via the underlying reader-
writer lock. BRAVO’s benefit comes from reduced coherence
traffic arising from reader arrival. Such coherence traffic is
particularly costly on NUMA systems, consuming shared in-
terconnect bandwidth and also exhibiting high latency. As
such, BRAVO is naturally NUMA-friendly. However, unlike
most other NUMA-aware reader-writer locks, it does not need
to understand or otherwise query the system topology, further
simplifying the design and reducing dependencies1.

I Optimistic Invisible Readers Synchronization constructs
such as seqlocks [9,23,29] allow concurrent readers, but forgo
the need for readers to make themselves visible. Critically,
readers do not write to synchronization data and thus do not
induce coherence traffic. Instead, writers update state – typi-
cally a modification counter – to indicate that updates have
occurred. Readers check that counter at the start and then
again at the end of their critical section, and if writers were
active or the counter changed, the readers self-abort and retry.
An additional challenge for seqlocks is that readers can ob-
serve inconsistent state, and special care must be taken to
constrain the effects and avoid errant behavior in readers. Of-
ten, non-trivial reader critical sections must be modified to
safely tolerate optimistic execution. Various hybrid forms
exist, such as the StampedLock [36] facility in java.util.
concurrent, which consists of a reader-writer lock coupled
with a seqlock, providing 3 modes: classic pessimistic write
locking, classic pessimistic read locking, and optimistic read-
ing.

To avoid the problem where optimistic readers might see
inconsistent state, transactional lock elision [16,18,24,28,38]
based on hardware transactional memory can be used. Read-
ers are invisible and do not write to shared data. Such ap-

1While BRAVO is topology oblivious, it does require high-resolution low-
latency means of reading the system clock. We further expect that reading
the clock is scalable, and that concurrent readers do not interfere with each
other. On systems with modern Intel CPUs and Linux kernels the RDTSCP
instruction or clock_gettime(CLOCK_MONOTONIC) fast system call suffice.

proaches can be helpful, but are still vulnerable to indefinite
abort and progress failure. In addition, the hardware transac-
tional memory facilities required to support lock elision are
not available on all systems, and are usually best-effort, with-
out any guaranteed progress, requiring some type of fallback
to pessimistic mechanisms.

I Biased Locking BRAVO draws inspiration from biased
locking [14, 22, 37, 41, 44]. Briefly, biased locking allows the
same thread to repeatedly acquire and release a mutual ex-
clusion lock without requiring atomic instructions, except on
the initial acquisition. If another thread attempts to acquire
the lock, then expensive revocation is required to wrest bias
from the original thread. The lock would then revert to nor-
mal non-biased mode for some period before again becoming
potentially eligible for bias. (Conceptually, we can think of
the lock as just being left in the locked state until there is
contention. Subsequent lock and unlock operations by the
original thread are ignored – the unlock operation is deferred
until contention arises). Biased locking was a response to
the CPU-local latencies incurred by atomic instructions on
early Intel and SPARC processors and to the fact that locks in
Java were often dominated by a single thread. Subsequently,
processor designers have addressed the latency concern, ren-
dering biased locking less profitable.

Classic biased locking identifies a preferred thread, while
BRAVO identifies a preferred access mode. That is, BRAVO
biases toward a mode instead of thread identity. BRAVO is
suitable for read-dominated workloads, allowing a fast-path
for readers when reader bias is enabled for a lock. If a write
request is issued against a reader-biased lock, reader bias is
disabled and revocation (scanning of the visible readers table)
is required, shifting some cost from readers to writers. Classic
biased locking provides benefit by reducing the number of
atomic operations and improving latency. It does not improve
scalability. BRAVO reader-bias, however, can improve both
latency and scalability by reducing coherence traffic on the
reader indicators in the underlying reader-writer lock.

3 The BRAVO Algorithm

BRAVO transforms any existing reader-writer lock A into
BRAVO-A, which provides scalable reader acquisition. We say
A is the underlying lock in BRAVO-A. In typical circumstances
A might be a simple compact lock that suffers under high lev-
els of reader concurrency. BRAVO-A will also be compact, but
is NUMA-friendly as it reduces coherence traffic and offers
scalability in the presence of frequently arriving concurrent
readers.

Listing 1 depicts a pseudo-code implementation of the
BRAVO algorithm. BRAVO extends A’s structure with a new
RBias boolean field (Line 2). Arriving readers first check the
RBias field, and, if found set, then hash the address of the
lock with a value reflecting the calling thread’s identity to

USENIX Association 2019 USENIX Annual Technical Conference 317

form an index into the visible readers table (Lines 12–13).
(This readers table is shared by all locks and threads in an
address space. In all our experiments we sized the table at
4096 entries. Each table element, or slot, is either null or a
pointer to a reader-writer lock instance). The reader then uses
an atomic compare-and-swap (CAS) operator to attempt to
change the element at that index from null to the address of
the lock, publishing its existence to potential writers (Line 14).
If the CAS is successful then the reader rechecks the RBias
field to ensure it remains set (Line 18). If so, the reader has
successfully gained read permission and can enter the critical
section (Line 19). Upon completing the critical section the
reader executes the complementary operation to release read
permission, simply storing null into that slot (Lines 29–31).
We refer to this as the fast-path. The fast-path attempt prefix
(Lines 11-23) runs in constant time. Our hash function is
based on the Mix32 operator found in [43].

If the recheck operation above happens to fail, as would
be the case if a writer intervened and cleared RBias and the
reader lost the race, then the reader simply clears the slot
(Line 21) and reverts to the traditional slow-path where it
acquires read permission via the underlying lock (Line 24).
Similarly, if the initial check of RBias found the flag clear
(Line 12), or the CAS failed because of collisions in the array
(Line 14) – the slot was found to be populated – then control
diverts to the traditional slow-path. After a slow-path reader
acquires read permission from the underlying lock, it enters
and executes the critical section, and then at unlock time
releases read permission via the underlying lock (Line 33).

Arriving writers first acquire write permission on the un-
derlying reader-writer lock (Line 36). Having done so, they
then check the RBias flag (Line 37). If set, the writer must
perform revocation, first clearing the RBias flag (Line 40)
and then scanning all the elements of the visible readers table
checking for conflicting fast-path readers (Lines 42–44). If
any elements match the lock, the writer must wait for that
fast-path reader to depart and clear the slot. If lock L has 2
fast-path active readers, for instance, then L will appear twice
in the array. Scanning the array might appear to be onerous,
but in practice the sequential scan is assisted by the automatic
hardware prefetchers present in modern CPUs. We observe
a scan rate of about 1.1 nanoseconds per element on our
system-under-test (described later). Having checked RBias
and performed revocation if necessary, the writer then enters
the critical section (Line 50). At unlock-time, the writer sim-
ply releases write permission on the underlying reader-writer
lock (Line 51). Therefore the only difference for writers under
BRAVO is the requirement to check and potentially revoke
reader bias if RBias was found set.

Amortized scan rate

We note that writers only scan the visible reader table, and
never write into it. Yet, this scan may pollute the writer’s
cache. One way to cope with it is to use non-temporal loads,
however, exploring this idea is left for the future work. Note
that revocation is only required on transitions from reading to

1 class BRAVOLock<T> :
2 int RBias
3 Time InhibitUntil
4 T Underlying
5

6 ## Shared global :
7 BRAVOLock * VisibleReaders [4096]
8 int N = 9 # slow-down guard
9

10 def Reader(BRAVOLock * L) :
11 BRAVOLock * * slot = null
12 if L.RBias :
13 slot = VisibleReaders + Hash(L, Self)
14 if CAS(slot, null, L) == null :
15 # CAS succeeded
16 # store-load fence required on TSO
17 # typically subsumed by CAS
18 if L.RBias : # recheck
19 goto EnterCS # fast path
20 *slot = null # raced - RBias changed
21 slot = null
22 # Slow path
23 assert slot == null
24 AcquireRead (L.Underlying)
25 if L.RBias == 0 and Time() >= L.InhibitUntil :
26 L.RBias = 1
27 EnterCS:
28 ReaderCriticalSection()
29 if slot != null :
30 assert *slot == L
31 *slot = null
32 else :
33 ReleaseRead (L.Underlying)
34

35 def Writer(BRAVOLock * L) :
36 AcquireWrite (L.Underlying)
37 if L.RBias :
38 # revoke bias
39 # store-load fence required on TSO
40 L.RBias = 0
41 auto start = Time()
42 for i in xrange(VisibleReaders) :
43 while VisibleReaders[i] == L :
44 Pause()
45 auto now = Time()
46 # primum non-nocere :
47 # limit and bound slow-down
48 # arising from revocation overheads
49 L.InhibitUntil = now + ((now - start) * N)
50 WriterCriticalSection()
51 ReleaseWrite (L.Underlying)

Listing 1: Simplified Python-like implementation of
BRAVO

writing and only when RBias was previously set.
In summary, active readers can make their existence pub-

lic in one of two ways : either via the visible readers table
(fast-path), or via the traditional underlying reader-writer lock
(slow-path). Our mechanism allows both slow-path and fast-
path readers simultaneously. Absent hash collisions, concur-
rent fast-path readers will write to different locations in the
visible readers table. Collisions are benign, and impact per-

318 2019 USENIX Annual Technical Conference USENIX Association

formance but not correctness. Writers resolve read-vs-write
conflicts against fast-path readers via the visible readers table
and against slow-path readers via the underlying reader-writer
lock.

BRAVO provides a

dual existence rep-

resentation for ac-

tive readers, with

their existence re-

flected in either the

array or the underly-

ing lock.

One important remaining question is how to set RBias.
In our early prototypes we set RBias in the reader slow-
path based on a low-cost Bernoulli trial with probability
P = 1/100 using a thread-local Marsgalia XOR-Shift [34]
pseudo-random number generator. While this simplistic pol-
icy for enabling bias worked well in practice, we were con-
cerned about situations where we might have enabled bias
too eagerly, and incur frequent revocation to the point where
BRAVO-A might be slower than A. Specifically, the worst-case
scenario would be where slow readers repeatedly set RBias,
only to have it revoked immediately by a writer.

The key additional cost in BRAVO is the revocation step,
which executes under the underlying write lock and thus seri-
alizes operations associated with the lock2. As such, we mea-
sure the latency of revocation and multiply that period by N,
a configurable parameter, and then inhibit the subsequent set-
ting of bias in the reader slow-path for that period, bounding
the worst-case expected slow-down from BRAVO for writers
to 1/(N+1) (cf. Lines 41-49). Our specific performance goal
is primum non nocere – first, do no harm, with BRAVO-A
never underperforming A by any significant margin on any
workload3. This tactic is simple and effective, but excessively
conservative, taking into account only the worst-case per-
formance penalty imposed by BRAVO, and not accounting
for any potential benefit conferred by the BRAVO fast-path.
Furthermore, measuring the revocation duration also incorpo-
rates the waiting time, as well as the scanning time, yielding
a conservative over-estimate of the revocation scan cost and
resulting in less aggressive use of reader bias. Despite these
concerns, we find this policy yields good and predictable per-
formance. For all benchmarks in this paper we used N = 9
yielding a worst-case writer slow-down bound of about 10%.
Our policy required adding a second BRAVO-specific times-
tamp field InhibitUntil (Line 3), which reflects the earliest
time at which slow readers should reenable bias4. We note that
for safety, readers can only set RBias while they hold read
permission on the underlying reader-writer lock, avoiding
interactions with writers (cf. Lines 25–26).

In our implementations revoking waiters busy-wait for read-
ers to depart. There can be at most one such busy-waiting

2Additional costs associated with BRAVO include futile atomic opera-
tions from collisions, and sharing or false-sharing arising from near-collisions
in the table. Our simplified cost model ignores these secondary factors. We
note that the odds of collision are equivalent to those given by the “Birth-
day Paradox” [48] and that the general problem of deciding to set bias is
equivalent to the classic “ski-rental” problem [47].

3Our approach conservatively forgoes the potential of better performance
afforded by the aggressive use of reader bias in order to limit the possibility
of worsened performance [49].

4We observe that it is trivial to collapse RBias and InhibitUntil into
just a single field. For clarity, we did not do so in our implementation.

thread for a given lock at any given time. We note, however,
that it is trivial to shift to a waiting policy that uses blocking.

BRAVO acts as an accelerator layer, as readers can always
fall back to the traditional underlying lock to gain read ac-
cess. The benefit arises from avoiding coherence traffic on
the centralized reader indicators in the underlying lock, and
instead relying on updates to be diffused over the visible read-
ers table. Fast-path readers write only into the visible readers
table, and not the lock instance proper. This access pattern im-
proves performance on NUMA systems, where write sharing
is particularly expensive. We note that if the underlying lock
algorithm A has reader preference or writer preference, then
BRAVO-A will exhibit that same property. Write performance
and the scalability of read-vs-write and write-vs-write behav-
ior depends solely on the underlying lock. Under high write
intensity, with write-vs-write and write-vs-read conflicts, the
performance of BRAVO devolves to that of the underlying
lock. BRAVO accelerates reads only. BRAVO fully supports
the case where a thread holds multiple locks at the same time.

BRAVO supports try-lock operations as follows. For read
try-lock attempts an implementation could try the BRAVO
fast path and then fall back, if the fast path fails, to the slow
path underling try-lock. An implementation can also opt to
forgo the fast path attempt and simply call the underlying
try-lock operator. We use the former approach when applying
BRAVO in the Linux kernel as detailed in the next section.
We note that if the underlying try-lock call is successful, one
may set RBias if the BRAVO policy allows that (e.g., if the
current time is larger than InhibitUntil). For write try-lock
operators, an implementation will invoke the underlying try-
lock operation. If successful, and bias is set, then revocation
must be performed following the same procedure described
in Lines 37–49.

As seen in Listing 1, the slot value must be passed from
the read lock operator to the corresponding unlock. null indi-
cates that the slow path was used to acquire read permission.
To provide correct errno values in the POSIX pthread envi-
ronment, a thread must be able to determine if it holds read,
write, or no permission on a given lock. This is typically ac-
complished by using per-thread lists of locks currently held
in read mode. We leverage those list elements to pass the
slot. We note that the Cohort read-write lock implementa-
tion [6] passed the reader’s NUMA node ID from lock to
corresponding unlock in this exact fashion.

4 Applying BRAVO to the Linux Kernel
rwsem

In this section, we describe prototype integration of BRAVO
in the Linux kernel, where we apply it to rwsem. Rwsem is a
read-write semaphore construct. Among many places inside
the kernel, it is used to protect the access to the virtual memory
area (VMA) structure of each process [11], which makes it a

USENIX Association 2019 USENIX Annual Technical Conference 319

source of contention for data intensive applications [8, 11].
On a high level, rwsem consists of a counter and a waiting

queue protected by a spin-lock. The counter keeps track of
the number of active readers, as well as encodes the presence
of a writer. To acquire the rwsem in the read mode, a reader
atomically increments the counter and checks its value. If a
(waiting or active) writer is not present, the read acquisition
is successful; otherwise, the reader acquires the spin-lock
protecting the waiting queue, joins the queue at the tail, re-
leases the spin-lock and blocks, waiting for a wake-up signal
from a writer. As a result, when there is no reader-writer
contention, the read acquisition boils down to one atomic
counter increment. On architectures that do not support an
atomic increment instruction, this requires acquisition (and
subsequent release) of the spin-lock. Even on architectures
that have such an instruction (such as Intel x86), the read
acquisition of rwsem creates contention over the cache line
hosting the counter.

In our integration of BRAVO on top of rwsem, we make a
simplifying assumption that the semaphore is always released
by the same thread that acquired it for read. This is not guar-
anteed by the API of rwsem, however, this is a common way
of using semaphores in the kernel. This assumption allows
us to preserve the existing rwsem API and limits the scope of
changes required, resulting in a patch of only three files and
adding just a few dozens lines of code. We use this assump-
tion when determining the slot into which a thread would
store the semaphore address on the fast acquisition path, and
clear that slot during the release operation5.

While we have not observed any issue when running and
evaluating the modified kernel, we note that our assumption
can be easily eliminated by, for example, extending the API
of rwsem to allow an additional pointer argument for read
acquisition and release functions. In case the acquisition is
made on the fast path, this pointer would be used to store the
address of the corresponding slot; later, this pointer can be
passed to a (different) releasing thread to specify the slot to
be cleared. Alternatively, we can extend the API of rwsem
to include a flag explicitly allowing the use of the fast path
for read acquisition and release. This flag would be set only
in call sites known for high read contention (such as in func-
tions operating on VMAs), where a thread that releases the
semaphore is known to be the one that acquired it. Other
call sites for semaphore acquisition and release can be left
untouched, letting them use the slow path only.

We note that the default configuration of the kernel enables
a so-called spin-on-owner optimization of rwsem [32]. With
this optimization, the rwsem structure includes an owner field
that contains a pointer to the current struct of the owner task
when rwsem is acquired for write. Using this field, a reader
may check whether the writer is currently running on a CPU,
and if so, spin rather than block [32]. While writers do not use

5We determine the slot by hashing the task struct pointer (current) with
the address of the semaphore.

this field to decide whether they have to spin (as there might
be multiple readers), in the current rwsem implementation a
reader updates the owner field regardless, storing there its
current pointer along with a few control bits (that specify
that the lock is owned by a reader). These writes by readers
are for debugging purposes only, yet they create unnecessary
contention on the owner field. We fix that by letting a reader
set only the control bits in the owner field, and only if those
bits were not set before, i.e., when the first reader acquires
that rwsem instance after a writer. Note that all subsequent
readers would read, but not update the owner field, until it is
updated again by a writer.

5 User-space Evaluation

All user-space data was collected on an Oracle X5-2 system.
The system has 2 sockets, each populated with an Intel Xeon
E5-2699 v3 CPU running at 2.30GHz. Each socket has 18
cores, and each core is 2-way hyperthreaded, yielding 72 log-
ical CPUs in total. The system was running Ubuntu 18.04
with a stock Linux version 4.15 kernel, and all software was
compiled using the provided GCC version 7.3 toolchain at
optimization level “-O3”. 64-bit code was used for all ex-
periments. Factory-provided system defaults were used in
all cases, and turbo mode [45] was left enabled. In all cases
default free-range unbound threads were used.

We implemented all locks within LD_PRELOAD inter-
position libraries that expose the standard POSIX pthread_
rwlock_t programming interface. This allows us to change
lock implementations by varying the LD_PRELOAD envi-
ronment variable and without modifying the application code
that uses reader-writer locks. This same framework was used
to implement Cohort reader-writer locks [6].

In the following figures “BA” refers to the Brandenburg-
Anderson PF-Q lock [3]; “Cohort-RW” refers to the C-RW-
WP lock [6]; “Per-CPU” reflects a lock that consists of an
array of BA locks, one for each CPU, where readers acquire
read-permission on the sub-lock associated with their CPU,
and writers acquire writer permission on all the sub-locks
(this lock is similar to the Linux kernel brlock construct [10]);
“pthread” is a default Linux POSIX “pthread_rwlock” read-
write lock mechanism; “BRAVO-BA” reflects BRAVO im-
plemented on top of BA and “BRAVO-pthread” is BRAVO
implemented on top of pthread_rwlock.

Arrival cost vs wait-

ing cost
We also experimented with several other reader-writer

locks. In particular, we took data on the Brandenburg-
Anderson PF-T lock and the BRAVO form thereof. PF-T
implements the reader indicator via a central pair of counters,
one incremented by arriving readers and the other incremented
by departing readers. Waiting readers busy-wait on a dedi-
cated writer present bit encoded in the reader arrival counter.
In PF-Q active readers are tallied on a central pair of counters
in the same fashion as PF-T, but waiting readers enqueue on
an MCS-like queue. In both PF-T and PF-Q, arriving read-

320 2019 USENIX Annual Technical Conference USENIX Association

ers update the central reader indicator state, generating more
coherence traffic than would be the case for locks that use
distributed reader indicators or BRAVO. Waiting readers in
PF-T use global spinning, while waiting readers in PF-Q use
local spinning on a thread-local field in the enqueued element.
PF-T enjoys slightly shorter code paths but also suffers from
lessened scalability because of the global spinning. We found
that PF-T and PF-Q offer broadly similar performance, with
PF-T having a slight advantage when the arrival rate is high,
the number of waiting threads is low, and the waiting period
is shorter. PF-T is slightly more compact having just 4 integer
fields, while PF-Q has 2 such fields and 4 pointers. For brevity,
we do not include PF-T results. We also found that “fair lock
with local only spinning” by Mellor-Crummey and Scott [35]
yielded performance similar to or slower than that of PF-Q.

We note that the default pthread read-write lock imple-
mentation found in our Linux distribution provides strong
reader preference, and admits indefinite writer starvation6.
The reader indicator is centralized and the lock has a footprint
of 56 bytes for 64-bit programs. Waiting threads block imme-
diately in the kernel without spinning. While this policy incurs
overheads associated with voluntary context switching, it may
also yield benefits by allowing “polite” waiting by enabling
turbo mode for those threads making progress. Except where
otherwise noted, we plot the number of concurrent threads
on the X-axis, and aggregate throughput on the Y-axis, and
report the median of 7 independent runs for each data point.

We use a 128 byte sector size on Intel processors for align-
ment to avoid false sharing. The unit of coherence is 64 bytes
throughout the cache hierarchy, but 128 bytes is required
because of the adjacent cache line prefetch facility where
pairs of lines are automatically fetched together. BA requires
just 128 bytes – 2 32-bit integer fields plus 4 pointers fields
with the overall size rounded up to the next sector boundary.
BRAVO-BA adds the 8-byte InhibitUntil field, which con-
tains a timestamp, and the 4-byte RBias field. Rounding up
to the sector size, this still yields a 128 byte lock instance.
Per-CPU consists of one instance of BA for each logical CPU,
yielding a lock size of 9216 bytes on our 72-way system.
Cohort-RW consists of one reader indicator (128 bytes) per
NUMA node, a central location for state (128 bytes) and a
full cohort mutex [21] to provide writer exclusion. In turn,
the cohort mutex requires one 128-byte sub-lock per NUMA
node, and another 256 bytes for central state. Thus, the to-
tal size of the Cohort-RW lock on our dual-socket system
is 896 bytes. (While our implementation did not do so, we
note that a more space aggressive implementation of Cohort-
RW could colocate the per-node reader indicators with the
mutex sub-locks, and the central state for the read-write lock
with its associated cohort mutex, yielding a size of 512 bytes).

6The pthread implementation allows writer preference to be selected via
a non-portable API. Unfortunately this feature currently has bugs that result
in lost wakeups and hangs: https://sourceware.org/bugzilla/show_
bug.cgi?id=23861.

As noted above, the size of the pthread read-write lock is
56 bytes, and the BRAVO variant adds 12 bytes. The size of
BA, BRAVO-BA, pthread, and BRAVO-pthread are fixed, and
known at compile-time, while the size of Per-CPU varies with
the number of logical CPUs, and the size of Cohort-RW varies
with the number of NUMA nodes. Finally, we observe that
BRAVO allows more relaxed approach toward the alignment
and padding of the underlying lock. Since fast-path readers
do not mutate the underlying lock fields, the designer can
reasonably forgo alignment and padding on that lock, without
trading off reader scalability.

The size of the lock can be important in concurrent data
structures, such as linked lists or binary search trees, that use
a lock per node or entry [4,12,25]. As Bronson at el. observe,
when a scalable lock is striped across multiple cache lines to
avoid contention in the coherence fabric, it is “prohibitively
expensive to store a separate lock per node” [4].

BRAVO also requires the visible readers table. With 4096
entries on a system with 64-bit pointers, the additional foot-
print is 32KB. The table is aligned and sized to minimize the
number of underlying pages (reducing TLB footprint) and to
eliminate false sharing from variables that might be placed
adjacent to the table. We selected a table size 4096 empiri-
cally but in general believe the size should be a function of
the number of logical CPUs in the system. Similar tables in
the linux kernel, such as the futex hash table, are sized in this
fashion [5].

BRAVO yields a favorable performance trade-off between
space and scalability, offering a viable alternative that resides
on the design spectrum between classic centralized locks,
such as BA, having small footprint and poor reader scalability,
and the large locks with high reader scalability.

Ideally we’d place

the visible readers

array on large pages

to reduce TLB pres-

sure.

5.1 Sensitivity to Inter-Lock Interference

As the visible readers array is shared over all locks and threads
within an address space, one potential concern is collisions
that might arise when multiple threads are using a large set of
locks. Near collisions are also of concern as they can cause
false sharing within the array. To determine BRAVO’s per-
formance sensitivity to such effects, we implemented a mi-
crobenchmark program that spawns 64 concurrent threads.
Each thread loops as follows: randomly pick a reader-writer
lock from a pool of such locks; acquire that lock for read;
advance a thread-local pseudo-random number generator 20
steps; release read permission on the lock; and finally advance
that random number generator 100 steps. At the end of a 10
second measurement interval we report the number of lock ac-
quisitions. No locks are ever acquired with write permission.
Each data point is the median of 7 distinct runs. We report the
results in Figure 1 where the X-axis reflects the number of
locks in the pool (varying through powers-of-two between 1
and 8192) and the Y-axis is the number of acquisitions com-
pleted by BRAVO-BA divided by the number completed by a

USENIX Association 2019 USENIX Annual Technical Conference 321

https://sourceware.org/bugzilla/show_bug.cgi?id=23861
https://sourceware.org/bugzilla/show_bug.cgi?id=23861

1 10 100 1000 10000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Locks

T
h
ro

u
g
h
p
u
t
F

ra
c
ti
o
n

Figure 1: Inter-lock interference

specialized version of BRAVO-BA where each lock instance
has a private array of 4096 elements. This fraction reflects
the performance drop attributable to inter-lock conflicts and
near conflicts in the shared array, where the modified form
of BRAVO-BA can be seen as an idealized form that has
a large per-instance footprint but which is immune to inter-
lock conflicts7. The worst-case penalty arising from inter-lock
interference (the lowest fraction value) is always under 6%.

See

InterferenceRW.cc

5.2 Alternator

Figure 2 shows the results of our alternator benchmark.
The benchmark spawns the specified number of concurrent
threads, which organize themselves into a logical ring, each
waiting for notification from its “left” sibling. Notification
is accomplished via setting a thread-specific variable with
a store instruction and waiting is via simple busy-waiting.
Once notified, the thread acquires and then immediately re-
leases read permission on a shared reader-writer lock. Next
the thread notifies its “right” sibling and then again waits.
There are no writers, and there is no concurrency between
readers. At most one reader is active at any given moment.
At the end of a 10 second measurement interval the program
reports the number of notifications.

The BA lock suffers as the lines underlying the reader indi-
cators “slosh” and migrate from cache to cache. In contrast
BRAVO-BA readers touch different locations in the visible
readers table as they acquire and release read permissions.
BRAVO enables reader-bias early in the run, and it remains
set for the duration of the measurement interval. All locks
experience a significant performance drop between 1 and 2
threads due to the impact of coherent communication for no-
tification. Crucially, we see that BRAVO-BA outperforms the

7We note that as we increase the number of locks, cache pressure con-
stitutes a confounding factor for the specialized version of BRAVO-BA.
For full discussion, see the extended version of this paper available at
https://arxiv.org/abs/1810.01553.

1 2 5 10 20 50

2
0

5
0

1
0
0

2
0
0

Threads

A
g
g
re

g
a
te

 t
h
ro

u
g
h
p
u
t
ra

te
 :
 M

s
te

p
s
/1

0
 s

e
c
s Cohort−RW

per−CPU

BA

BRAVO−BA

pthread

BRAVO−pthread

Figure 2: Alternator

underlying BA by a wide margin, and is competitive with
the much larger Per-CPU lock. In addition, the performance
of BA can be seen to degrade as we add threads, whereas
the performance of BRAVO-BA remains stable. The same
observations are true when considering BRAVO-pthread and
pthread locks.

Since the hash function that associates a read locking re-
quest with an index is deterministic, threads repeatedly lock-
ing and unlocking a specific lock will enjoy temporal locality
and reuse in the visible readers table.

5.3 test_rwlock
We next report results from the test_rwlock benchmark
described by Desnoyers et al. [13]8. The benchmark was de-
signed to evaluate the performance and scalability of reader-
writer locks against the RCU (Read-Copy Update) synchro-
nization mechanism. We used the following command-line:
test_rwlock T 1 10 -c 10 -e 10 -d 1000. The bench-
mark launches 1 fixed-role writer thread and T fixed-role
reader threads for a 10 second measurement interval. The
writer loops as follows: acquire a central reader-writer lock
instance; execute 10 units of work, which entails counting
down a local variable; release writer permission; execute a
non-critical section for 1000 work units. Readers loop acquir-
ing the central lock for reading, executing 10 steps of work in
the critical section, and then release the lock. (The benchmark
has no facilities to allow a non-trivial critical section for read-
ers). At the end of the measurement interval the benchmark
reports the sum of iterations completed by all the threads.
As we can see in Figure 3, BRAVO-BA significantly outper-
forms BA, and even the Cohort-RW lock at higher thread
counts. Since the workload is extremely read-dominated, the
Per-CPU lock yields the best performance, albeit with a very

8obtained from https://github.com/urcu/userspace-rcu/blob/
master/tests/benchmark/test_rwlock.c and modified slightly to allow
a fixed measurement interval.

322 2019 USENIX Annual Technical Conference USENIX Association

https://arxiv.org/abs/1810.01553
https://github.com/urcu/userspace-rcu/blob/master/tests/benchmark/test_rwlock.c
https://github.com/urcu/userspace-rcu/blob/master/tests/benchmark/test_rwlock.c

1 2 5 10 20 50

5
e
+

0
3

2
e
+

0
4

1
e
+

0
5

Threads

A
g
g
re

g
a
te

 t
h
ro

u
g
h
p
u
t
ra

te
 :
 o

p
s
/m

s
e
c

Cohort−RW

per−CPU

BA

BRAVO−BA

pthread

BRAVO−pthread

Figure 3: test_rwlock

large footprint and only because of the relatively low write
rate. For that same reason, and due to its default reader prefer-
ence, BRAVO-pthread easily beats pthread, and comes close
to the performance level of Per-CPU.

5.4 RWBench

Using RWBench – modeled on a benchmark of the same name
described by Calciu et al. [6] – we evaluated the reader-write
lock algorithms over a variety of read-write ratios, ranging
from write-intensive in Figure 4a (9 out of every 10 opera-
tions are writes) to read-intensive in Figure 4f (1 out of every
10000 operations are writes), demonstrating that BRAVO in-
flicts no harm for write-intensive workloads, but improves
performance for more read-dominated workloads. RWBench
launches T concurrent threads for a 10 second measurement
interval. Each thread loops as follows: using a thread-local
pseudo-random generator, decide to write with probability P
via a Bernoulli trial; writers acquire a central reader-write lock
for write permission and then execute 10 steps of a thread-
local C++ std::mt19937 random number generator and then
release write permission, while readers do the same, but under
read permission; execute a non-critical section of N steps of
the same random-number generator where N is a random num-
ber uniformly distributed in [0,200) with average and median
of 100. At the end of the measurement interval the benchmark
reports the total number of top-level loops completed.

In Figure 4a we see poor scalability over all the locks by
virtue of the highly serialized write-heavy nature of the work-
load. Per-CPU fairs poorly as writes, which are common,
need to scan the array of per-CPU sub-locks. Cohort-RW
provides some benefit, while BRAVO-BA (BRAVO-pthread)
tracks closely to BA (pthread, respectively), providing nei-
ther benefit nor harm. The same behavior plays out in Fig-
ure 4b (P = 1/2) and Figure 4c (P = 1/10), although in the
latter we see some scaling from Cohort-RW. In Figure 4d
(P = 1/100) we begin to see BRAVO-BA outperforming BA

at higher thread counts. Figure 4e (P = 1/1000) and Figure 4f
(P = 1/10000 – extremely read-dominated) are fairly similar,
with BRAVO-BA and BRAVO-pthread yielding performance
similar to that of Per-CPU, Cohort-RW yielding modest scal-
ability, and BA and pthread yielding flat performance as the
thread count increases.

5.5 rocksdb readwhilewriting

We next explore performance sensitivity to the reader-
writer lock in the rocksdb database [40]. We observed
high frequency reader traffic arising in the readwhilewrit-
ing benchmark from calls in ::Get() to GetLock() defined
in db/memtable.cc9. In Figure 5 we see the performance
of BRAVO-BA and BRAVO-pthread tracks that of Per-CPU
and always exceeds that of Cohort-RW and the respective
underlying locks.

5.6 rocksdb hash_table_bench

rocksdb also provides a benchmark to stress the hash table
used by their persistent cache10. The benchmark implements
a central shared hash table as a C++ std::unordered_map
protected by a reader-writer lock. The cache is pre-populated
before the measurement interval. At the end of the 50 second
measurement interval the benchmark reports the aggregate
operation rate – reads, erases, insertions – per millisecond.
A single dedicated thread loops, erasing random elements,
and another dedicated thread loops inserting new elements
with a random key. Both erase and insertion operations re-
quire write access. The benchmark launches T reader threads,
which loop, running lookups on randomly selected keys. We
vary T on the X-axis. All the threads execute operations
back-to-back without a delay between operations. The bench-
mark makes frequent use of malloc-free operations in the
std::unordered_map. The default malloc allocator fails to
fully scale in this environment and masks any benefit con-
ferred by improved reader-writer locks, so we instead used
the index-aware allocator by Afek el al. [1].

The results are shown in Figure 6. Once again, BRAVO
enhances the performance of underlying locks, and shows
substantial speedup at high thread counts.

9We used rocksdb version 5.13.4 with the following command
line: db_bench -threads=T -benchmarks=readwhilewriting
-memtablerep=cuckoo -duration=100 -inplace_update_support=1
-allow_concurrent_memtable_write=0 -num=10000
-inplace_update_num_locks=1 -histogram
-stats_interval=10000000

10https://github.com/facebook/rocksdb/blob/master/
utilities/persistent_cache/hash_table_bench.cc run with
the following command-line: hash_table_bench -nread_thread=T
-nsec=50

USENIX Association 2019 USENIX Annual Technical Conference 323

https://github.com/facebook/rocksdb/blob/master/utilities/persistent_cache/hash_table_bench.cc
https://github.com/facebook/rocksdb/blob/master/utilities/persistent_cache/hash_table_bench.cc

1 2 5 10 20 50

5
0

0
1

0
0

0
1

5
0

0
2

0
0

0
2

5
0

0

Threads

A
g

g
re

g
a

te
 t

h
ro

u
g

h
p

u
t

ra
te

 :
 o

p
s
/m

s
e

c

Cohort−RW

Per−CPU

BA

BRAVO−BA

pthread

BRAVO−pthread

(a) RWBench with 90% writes (9/10)

1 2 5 10 20 50

5
0

0
1

0
0

0
2

0
0

0
3

0
0

0

Threads

A
g

g
re

g
a

te
 t

h
ro

u
g

h
p

u
t

ra
te

 :
 o

p
s
/m

s
e

c

Cohort−RW

Per−CPU

BA

BRAVO−BA

pthread

BRAVO−pthread

(b) RWBench with 50% writes (1/2)

1 2 5 10 20 50

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

Threads

A
g

g
re

g
a

te
 t

h
ro

u
g

h
p

u
t

ra
te

 :
 o

p
s
/m

s
e

c

Cohort−RW

Per−CPU

BA

BRAVO−BA

pthread

BRAVO−pthread

(c) RWBench with 10% writes (1/10)

1 2 5 10 20 50

5
0

0
0

1
0

0
0

0
1

5
0

0
0

2
0

0
0

0

Threads

A
g

g
re

g
a

te
 t

h
ro

u
g

h
p

u
t

ra
te

 :
 o

p
s
/m

s
e

c

Cohort−RW

Per−CPU

BA

BRAVO−BA

pthread

BRAVO−pthread

(d) RWBench with 1% writes (1/100)

1 2 5 10 20 50

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

Threads

A
g

g
re

g
a

te
 t

h
ro

u
g

h
p

u
t

ra
te

 :
 o

p
s
/m

s
e

c

Cohort−RW

Per−CPU

BA

BRAVO−BA

pthread

BRAVO−pthread

(e) RWBench with .1% writes (1/1000)

1 2 5 10 20 50

0
e

+
0

0
2

e
+

0
4

4
e

+
0

4
6

e
+

0
4

8
e

+
0

4
1

e
+

0
5

Threads

A
g

g
re

g
a

te
 t

h
ro

u
g

h
p

u
t

ra
te

 :
 o

p
s
/m

s
e

c

Cohort−RW

Per−CPU

BA

BRAVO−BA

pthread

BRAVO−pthread

(f) RWBench with .01% writes (1/10000)

Figure 4: RWBench

1 2 5 10 20 50

0
2
0

4
0

6
0

8
0

Threads

A
g
g
re

g
a
te

 t
h
ro

u
g
h
p
u
t
ra

te
 :
 M

 o
p
s
/s

e
c

Cohort−RW

per−CPU

BA

BRAVO−BA

pthread

BRAVO−pthread

Figure 5: rocksdb readwhilewriting

6 Linux Kernel Experiments

All kernel-space data was collected on an Oracle X5-4 system.
The system has 4 sockets, each populated with an Intel Xeon
CPU E7-8895 v3 running at 2.60GHz. Each socket has 18
cores, and each core is 2-way hyperthreaded, yielding 144
logical CPUs in total. The patch was applied on top of a recent
Linux version 4.20.rc4 kernel, which we refer to as stock. We
refer to the kernel version modified to use BRAVO simply as
BRAVO.

1 2 5 10 20 50

5
e
+

0
4

1
e
+

0
5

2
e
+

0
5

5
e
+

0
5

1
e
+

0
6

Threads

A
g
g
re

g
a
te

 t
h
ro

u
g
h
p
u
t
ra

te
 :
 o

p
s
/m

s
e
c

Cohort−RW

per−CPU

BA

BRAVO−BA

pthread

BRAVO−pthread

Figure 6: rocksdb hash_table_bench with
std::unordered_map

Factory-provided system defaults were used in all cases. In
particular, we compiled the kernel in the default configuration,
which notably disables the lock performance data collection
mechanism (aka lockstat11) built into the kernel for debug-
ging lock performance. As we mention below, this mechanism
was useful to gain insights into usage patterns of kernel locks
in various applications. However, we kept it disabled during

11https://www.kernel.org/doc/Documentation/locking/
lockstat.txt

324 2019 USENIX Annual Technical Conference USENIX Association

https://www.kernel.org/doc/Documentation/locking/lockstat.txt
https://www.kernel.org/doc/Documentation/locking/lockstat.txt

performance measurements as it adds a probing effect by gen-
erating stores into shared variables, e.g., by keeping track of
the last CPU on which a given lock instance, rwsem included,
was acquired. These stores hamper the benefit of techniques
like BRAVO that aim to reduce updates to the shared state
during lock acquisition and release operations.

Each experiment is repeated 7 times, and the reported num-
bers are the average of the corresponding results. Unless
noted, the reported results were relatively stable, with vari-
ance of less than 5% from the average in most cases.

6.1 will-it-scale

will-it-scale is an open-source collection of microbench-
marks12 for stress-testing various kernel subsystems. will-
it-scale runs in user-mode but is known to induce con-
tention on kernel locks [15]. Each microbenchmark runs a
given number of tasks (that can be either threads or processes),
performing a series of specific system calls (such as opening
and closing a file, mapping and unmapping memory pages,
raising a signal, etc.). We experiment with a subset of mi-
crobenchmarks that access the VMA structure and create con-
tention on mmap_sem, an instance of rwsem that protects the
access to VMA [11]. In particular, the relevant microbench-
marks are page_fault and mmap. The former continuously
maps a large (128M) chunk of memory, writes one word into
every page in the chunk (causing a page fault for every write),
and unmaps the memory. The latter simply maps and unmaps
large chunks of memory. (Each of those benchmarks has sev-
eral variants denoted as page_fault1, page_fault2, etc.)

Page faults require the acquisition of mmap_sem for read,
while memory mapping and unmapping operations acquire
mmap_sems for write [8]. Therefore, the access pattern for
mmap_sem is expected to be read-heavy in the page_fault
microbenchmark and more write-heavy in mmap. We con-
firmed that through lockstat statistics. We note that BRAVO
is not expected to provide any benefit for mmap, yet we include
it to evaluate any overhead BRAVO might introduce in write-
heavy workloads.

Figure 7 presents the results of our experiments for
page_fault and mmap, respectively. In page_fault, the
BRAVO version performs similarly to stock as long as the
latter scales. After 16 threads, however, the throughput of the
stock version decreases while the BRAVO version continues
to scale, albeit at a slower rate. At 142 threads, BRAVO out-
performs stock by up to 93%. At the same time, mmap shows
no significant difference in the performance of BRAVO vs.
stock, suggesting that BRAVO does not introduce overhead
in scenarios where it is not profitable.

12https://github.com/antonblanchard/will-it-scale

(a) page_fault1_threads (b) page_fault2_threads

(c) mmap1_threads (d) mmap2_threads

Figure 7: will-it-scale results

6.2 Metis
Metis is an open-source MapReduce library [33] used in the
past to assess the scalability of Linux kernel locks [2, 8, 27].
Metis is known for a relatively intense access to VMA through
the mix of page-fault and mmap operations [27]. By collect-
ing lock performance statistics with lockstat, however, we
found that only few of Metis benchmarks have both a large
number of mmap_sem acquisitions and a large portion of those
acquisitions is for read. We note that like in all other kernel
benchmarks, lockstat was disabled when measuring perfor-
mance numbers reported below.

Tables 1 and 2 present the performance results, respectively,
for wc, a map-reduce based word count, and wrmem, which
allocates a large chunk of memory and fills it with random
“words”, which are fed into the map-reduce framework for
inverted index calculation. The BRAVO version can achieve
speedups of over 30%. We note that some of the data, partic-
ularly for wc, was noisy; we print values with variance larger
than 5% from the mean in italics. (All values have variance
of 19% or less). We also note that BRAVO did not create
significant overhead for any other Metis benchmark, although
some benchmarks produced noisy results similarly to wc.

7 Conclusion and Future Work

BRAVO easily composes with existing locks, preserving de-
sirable properties of those underlying locks, and yielding
a composite lock with improved read-read scalability. We
specifically target read-dominated workloads with multiple
concurrent threads that acquire and release read permission at
a high rate. The approach is simple, effective, and yields im-
proved performance for read-dominated workloads compared
to commonly used compact locks. The key trade-off inherent
in the design is the benefit accrued by reads against the po-
tential slow-down imposed by revocation. Even in mixed or

USENIX Association 2019 USENIX Annual Technical Conference 325

https://github.com/antonblanchard/will-it-scale

#threads stock BRAVO speedup
1 18.059 17.957 0.6%
2 12.189 12.090 0.8%
4 10.045 9.652 3.9%
8 8.880 7.976 10.2%

16 13.321 11.325 15.0%
32 23.654 19.281 18.5%
72 119.018 98.054 17.6%

108 132.147 111.139 15.9%
142 143.217 125.160 12.6%

Table 1: wc runtime (sec)

#threads stock BRAVO speedup
1 279.553 279.423 0.0%
2 137.271 136.706 0.4%
4 68.989 69.013 0.0%
8 36.161 36.210 -0.1%

16 22.647 21.985 2.9%
32 18.332 14.707 19.8%
72 48.397 31.868 34.2%

108 58.529 36.910 36.9%
142 58.994 42.544 27.9%

Table 2: wrmem runtime (sec)

write-heavy workloads, we limit any slow-down stemming
from revocation costs and bound harm, making the decision
to use BRAVO simple. BRAVO incurs a very small footprint
increase per lock instance, and also adds a shared table of
fixed size that can be used by all threads and locks. BRAVO’s
key benefit arises from reducing coherence cost that would
normally be incurred by locks having a central reader indi-
cator. Write performance is left unchanged relative to the
underlying lock. BRAVO provides read-read performance at,
and often above, that of the best modern reader-writer locks
that use distributed read indicators, but without the footprint
or complexity of such locks. By reducing coherence traffic,
BRAVO is implicitly NUMA-friendly.

I Future directions We identify a number of future direc-
tions for our investigation into BRAVO-based designs:

• Dynamic sizing of the visible readers table based on colli-
sions. Large tables will have reduced collision rates, but
larger scan revocation overheads.

• The reader fast-path currently probes just a single location
and reverts to the slow-path after a collision. We plan on
using a secondary hash to probe an alternative location.
In that vein, we note that while we currently use a hash
function to map a thread’s identity and the lock address to
an index in the table, there is no particular requirement that

the function that associates a read request with an index
be deterministic. We plan on exploring other functions,
using time or random numbers to form indices. While this
will be less beneficial in terms of cache locality for the
reader, it might be helpful in case of temporal contention
over specific slots.

• Accelerate the revocation scan operation via SIMD instruc-
tions such as AVX. The visible readers table is usually
sparsely populated, making it amenable to such optimiza-
tions. As already noted, non-temporal non-polluting loads
may also be helpful for the scan operation.

• As noted, our current policy to enable bias is conservative,
and leaves untapped performance. We intend to explore
more sophisticated adaptive policies based on recent be-
havior and to use a more faithful cost model.

• An interesting variation is to implement BRAVO on top of
an underlying mutex instead of a reader-writer lock. Slow-
path readers must acquire the mutex, and the sole source
of read-read concurrency is via the fast path. We note that
some applications might expect the reader-write lock im-
plementation to be fully work conserving and maximally
admissive – always allowing full read concurrency where
available. For example, an active reader thread T 1, under-
standing by virtue of application invariants that no writers
are present, might signal another thread T 2 and expect that
T 2 can enter a reader critical section while T 1 remains
within the critical section. This progress assumption would
not necessarily hold if readers are forced through the slow
path and read-read parallelism is denied.

If no writers are

waiting or arrive,

and a reader ar-

rives while another

reader is active, the

first reader will be

allowed admission –

if a thread can enter,

then it will enter.

• In our current implementation arriving readers are blocked
while a revocation scan is in progress. This could be
avoided by adding a mutex to each BRAVO-enhanced lock.
Arriving writers immediately acquire this mutex, which
resolves all write-write conflicts. They then perform revo-
cation, if necessary; acquire the underlying reader-vs-write
lock with write permission; execute the writer critical sec-
tion; and finally release both the mutex and the underlying
reader-writer lock. The underlying reader-writer lock re-
solves read-vs-write conflicts. The code used by readers
remains unchanged. This optimization allows readers to
make progress during revocation by diverting through the
reader slow-path, mitigating the cost of revocation. This
also reduces variance for the latency of read operations. We
note that this general technique can be readily applied to
other existing reader-writer locks that employ distributed
reader indicators, such as Linux’s brlock [10].

Acknowledgments

We thank Shady Issa for useful discussions about revocation
and the cost model. We also thank the anonymous reviewers
and our shepherd Yu Hua for providing insightful comments.

326 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Yehuda Afek, Dave Dice, and Adam Morrison. Cache
index-aware memory allocation. In Proceedings of
the International Symposium on Memory Management.
ACM, 2011.

[2] Silas Boyd-Wickizer, Austin T. Clements, Yandong
Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert Mor-
ris, and Nickolai Zeldovich. An analysis of Linux scal-
ability to many cores. In Proceedings of the USENIX
Conference on Operating Systems Design and Imple-
mentation (OSDI), pages 1–16, 2010.

[3] B. B. Brandenburg and J. H. Anderson. Spin-based
reader-writer synchronization for multiprocessor real-
time systems. In Real-Time Systems Journal, 2010.

[4] Nathan G. Bronson, Jared Casper, Hassan Chafi, and
Kunle Olukotun. A practical concurrent binary search
tree. In Proceedings of the ACM Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP),
pages 257–268, 2010.

[5] Davidlohr Bueso. futexes and hash table colli-
sions. https://blog.stgolabs.net/2014/01/
futexes-and-hash-table-collisions.html,
2014. Accessed: 2019-05-14.

[6] Irina Calciu, Dave Dice, Yossi Lev, Victor Luchangco,
Virendra J. Marathe, and Nir Shavit. NUMA-aware
reader-writer locks. In Proceedings of ACM PPoPP,
pages 157–166. ACM, 2013.

[7] Bryan Cantrill and Jeff Bonwick. Real-world concur-
rency. ACM Queue, 6(5):16–25, 2008.

[8] Austin T. Clements, M. Frans Kaashoek, and Nickolai
Zeldovich. Scalable address spaces using RCU balanced
trees. In Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 199–210, 2012.

[9] Jonathan Corbet. Driver porting: mutual exclusion with
seqlocks. http://lwn.net/Articles/22818, 2003.
Accessed: 2018-04-20.

[10] Jonathan Corbet. Big reader locks. https://lwn.net/
Articles/378911, 2010. Accessed: 2018-04-20.

[11] Jonathan Corbet. The LRU lock and mmap_sem. https:
//lwn.net/Articles/753058, 2018. Accessed: 2019-
01-10.

[12] Tyler Crain, Vincent Gramoli, and Michel Raynal. A
speculation-friendly binary search tree. In Proceedings
of ACM PPoPP. ACM, 2012.

[13] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Da-
genais, and J. Walpole. User-level implementations of
read-copy update. IEEE Transactions on Parallel and
Distributed Systems, 2012.

[14] Dave Dice. Biased locking in HotSpot.
https://blogs.oracle.com/dave/
biased-locking-in-hotspot, 2006.

[15] Dave Dice and Alex Kogan. Compact NUMA-aware
locks. In Proceedings of the ACM European Conference
on Computer Systems (EuroSys), 2019.

[16] Dave Dice, Alex Kogan, and Yossi Lev. Refined trans-
actional lock elision. In Proceedings of ACM PPoPP,
2016.

[17] Dave Dice, Yossi Lev, and Mark Moir. Scalable statistics
counters. In Proceedings of the ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA),
2013.

[18] Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum.
Early experience with a commercial hardware transac-
tional memory implementation. In Proceedings of the
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), 2009.

[19] Dave Dice and Nir Shavit. TLRW: Return of the read-
write lock. In Proceedings of the ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA),
2010.

[20] David Dice, Danny Hendler, and Ilya Mirsky.
Lightweight contention management for efficient
compare-and-swap operations. In Proceedings of
the International Conference on Parallel Processing
(EuroPar). Springer-Verlag, 2013.

[21] David Dice, Virendra J. Marathe, and Nir Shavit. Lock
cohorting: A general technique for designing NUMA
locks. ACM Trans. Parallel Comput., 2015.

[22] David Dice, Mark Moir, and William N. Scherer III.
Quickly reacquirable locks – US Patent 7,814,488, 2002.

[23] William B. Easton. Process synchronization without
long-term interlock. In Proceedings of the ACM Sympo-
sium on Operating Systems Principles (SOSP), 1971.

[24] Pascal Felber, Shady Issa, Alexander Matveev, and Paolo
Romano. Hardware read-write lock elision. In Proceed-
ings of the ACM European Conference on Computer
Systems (EuroSys), 2016.

[25] Steve Heller, Maurice Herlihy, Victor Luchangco, Mark
Moir, William N. Scherer, and Nir Shavit. A lazy concur-
rent list-based set algorithm. In Proceedings of the 9th

USENIX Association 2019 USENIX Annual Technical Conference 327

https://blog.stgolabs.net/2014/01/futexes-and-hash-table-collisions.html
https://blog.stgolabs.net/2014/01/futexes-and-hash-table-collisions.html
http://lwn.net/Articles/22818
https://lwn.net/Articles/378911
https://lwn.net/Articles/378911
https://lwn.net/Articles/753058
https://lwn.net/Articles/753058
https://blogs.oracle.com/dave/biased-locking-in-hotspot
https://blogs.oracle.com/dave/biased-locking-in-hotspot

International Conference on Principles of Distributed
Systems, OPODIS’05. Springer-Verlag, 2006.

[26] W. C. Hsieh and W. E. Weihl. Scalable reader-writer
locks for parallel systems. In Proceedings Sixth Inter-
national Parallel Processing Symposium, 1992.

[27] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim.
Scalable NUMA-aware blocking synchronization primi-
tives. In Proceedings of the USENIX Annual Technical
Conference (USENIX ATC), 2017.

[28] Andi Kleen. Lock elision in the GNU C library. https:
//lwn.net/Articles/534758, 2013. Accessed: 2019-
05-13.

[29] Christoph Lameter. Effective synchronization on Lin-
ux/NUMA systems. In Gelato Conference, 2005.

[30] Yossi Lev, Victor Luchangco, and Marek Olszewski.
Scalable reader-writer locks. In Proceedings of the Sym-
posium on Parallelism in Algorithms and Architectures
(SPAA), 2009.

[31] Ran Liu, Heng Zhang, and Haibo Chen. Scalable
read-mostly synchronization using passive reader-writer
locks. In Proceedings of the USENIX Annual Technical
Conference (USENIX ATC), 2014.

[32] Waiman Long. locking/rwsem: Enable reader optimistic
spinning. https://lwn.net/Articles/724384/,
2017. Accessed: 2019-01-24.

[33] Yandong Mao, Robert Morris, and Frans Kaashoek. Op-
timizing MapReduce for multicore architectures. Tech-
nical report, MIT, 2010.

[34] George Marsaglia. Xorshift rngs. Journal of Statistical
Software, Articles, 2003.

[35] John M. Mellor-Crummey and Michael L. Scott. Scal-
able reader-writer synchronization for shared-memory
multiprocessors. In Proceedings of ACM PPoPP, 1991.

[36] Oracle. Api documentation for
java.util.concurrent.locks.stampedlock. https:
//docs.oracle.com/javase/8/docs/api/java/
util/concurrent/locks/StampedLock.html,
2012.

[37] Filip Pizlo, Daniel Frampton, and Antony L. Hosking.
Fine-grained adaptive biased locking. In Proceedings of
the International Conference on Principles and Practice
of Programming in Java (PPPJ), 2011.

[38] Ravi Rajwar and James R. Goodman. Speculative lock
elision: Enabling highly concurrent multithreaded exe-
cution. In Proceedings of the ACM/IEEE International
Symposium on Microarchitecture (MICRO), 2001.

[39] Andreia Craveiro Ramalhete and Pedro Ramalhete.
Distributed cache-line counter scalable RW-lock.
http://concurrencyfreaks.blogspot.com/2013/
09/distributed-cache-line-counter-scalable.
html, 2013.

[40] rocksdb.org. A persistent key-value store for fast storage
environments. rocksdb.org, 2018.

[41] Kenneth Russell and David Detlefs. Eliminating
synchronization-related atomic operations with biased
locking and bulk rebiasing. In Proceedings of the ACM
SIGPLAN Conference on Object-oriented Programming
Systems, Languages, and Applications (OOPSLA), 2006.

[42] Jun Shirako, Nick Vrvilo, Eric G. Mercer, and Vivek
Sarkar. Design, verification and applications of a new
read-write lock algorithm. In Proceedings of the ACM
Symposium on Parallelism in Algorithms and Architec-
tures (SPAA), 2012.

[43] Guy L. Steele, Jr., Doug Lea, and Christine H. Flood.
Fast splittable pseudorandom number generators. In
Proceedings of the ACM Conference on Object Ori-
ented Programming Systems Languages & Applications
(OOPSLA), pages 453–472, 2014.

[44] N. Vasudevan, K. S. Namjoshi, and S. A. Edwards. Sim-
ple and fast biased locks. In Proceedings of the In-
ternational Conference on Parallel Architectures and
Compilation Techniques (PACT), 2010.

[45] U. Verner, A. Mendelson, and A. Schuster. Extending
Amdahl’s law for multicores with turbo boost. IEEE
Computer Architecture Letters, 2017.

[46] D. Vyukov. Distributed reader-writer
mutex. http://www.1024cores.
net/home/lock-free-algorithms/
reader-writer-problem/
distributed-reader-writer-mutex, 2011.

[47] Wikipedia contributors. Ski rental prob-
lem — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=
Ski_rental_problem&oldid=813551905, 2017.
[Online; accessed 8-August-2018].

[48] Wikipedia contributors. Birthday prob-
lem — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=
Birthday_problem&oldid=853622452, 2018. [On-
line; accessed 8-August-2018].

[49] Wikipedia contributors. Loss aversion. https://en.
wikipedia.org/wiki/Loss_aversion, 2018.

328 2019 USENIX Annual Technical Conference USENIX Association

https://lwn.net/Articles/534758
https://lwn.net/Articles/534758
https://lwn.net/Articles/724384/
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html
http://concurrencyfreaks.blogspot.com/2013/09/distributed-cache-line-counter-scalable.html
http://concurrencyfreaks.blogspot.com/2013/09/distributed-cache-line-counter-scalable.html
http://concurrencyfreaks.blogspot.com/2013/09/distributed-cache-line-counter-scalable.html
rocksdb.org
http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/distributed-reader-writer-mutex
http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/distributed-reader-writer-mutex
http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/distributed-reader-writer-mutex
http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/distributed-reader-writer-mutex
https://en.wikipedia.org/w/index.php?title=Ski_rental_problem&oldid=813551905
https://en.wikipedia.org/w/index.php?title=Ski_rental_problem&oldid=813551905
https://en.wikipedia.org/w/index.php?title=Birthday_problem&oldid=853622452
https://en.wikipedia.org/w/index.php?title=Birthday_problem&oldid=853622452
https://en.wikipedia.org/wiki/Loss_aversion
https://en.wikipedia.org/wiki/Loss_aversion

Mitigating Asymmetric Read and Write Costs in Cuckoo Hashing for Storage
Systems

Yuanyuan Sun, Yu Hua*, Zhangyu Chen, Yuncheng Guo
Wuhan National Laboratory for Optoelectronics, School of Computer

Huazhong University of Science and Technology
*Corresponding Author: Yu Hua (csyhua@hust.edu.cn)

Abstract
In storage systems, cuckoo hash tables have been widely
used to support fast query services. For a read, the cuckoo
hashing delivers real-time access with O(1) lookup com-
plexity via open-addressing approach. For a write, most
concurrent cuckoo hash tables fail to efficiently address the
problem of endless loops during item insertion due to the
essential property of hash collisions. The asymmetric fea-
ture of cuckoo hashing exhibits fast-read-slow-write perfor-
mance, which often becomes the bottleneck from single-
thread writes. In order to address the problem of asymmetric
performance and significantly improve the write/insert effi-
ciency, we propose an optimized Concurrent Cuckoo hash-
ing scheme, called CoCuckoo. To predetermine the oc-
currence of endless loops, CoCuckoo leverages a directed
pseudoforest containing several subgraphs to leverage the
cuckoo paths that represent the relationship among items.
CoCuckoo exploits the observation that the insertion oper-
ations sharing a cuckoo path access the same subgraph, and
hence a lock is needed for ensuring the correctness of con-
currency control via allowing only one thread to access the
shared path at a time; Insertion operations accessing different
subgraphs are simultaneously executed without collisions.
CoCuckoo improves the throughput performance by a graph-
grained locking to support concurrent writes and reads. We
have implemented all components of CoCuckoo and exten-
sive experiments using the YCSB benchmark have demon-
strated the efficiency and efficacy of our proposed scheme.

1 Introduction
Efficient query services are demanding and important to
storage systems, which hold and process much more data
than ever and the trend continues at an accelerated pace.
The widespread use of mobile devices, such as phones and
tablets, accelerates the generation of large amounts of data.
There exist 1.49 billion mobile daily active users on Face-
book in September 2018, with an increase of 9% year-over-
year. In each minute, 300 new profiles are created and more
than 208 thousand photos are uploaded to Facebook [5].

The explosion of data volume leads to nontrivial challenge
on storage systems, especially on the support for query ser-
vices [8, 12, 49]. Moreover, write-heavy workloads further
exacerbate the storage performance. Much attention has
been paid to alleviate the pressure on storage systems, which
demands the support of low-latency and high-throughput
queries, such as top-k query processing [30, 33], optimizing
big data queries via automated program reasoning [42], of-
fering practical private queries on public data [47], and opti-
mizing search performance within memory hierarchy [9].

In order to improve the performance of query services for
storage systems, efficient hash structures have been widely
used. In general, each hash function maps each item to
a unique bucket in a hash table, which needs to support
constant-scale and real-time access. However, items may be
hashed into the same bucket by hash functions, called hash
collisions. Due to the use of efficient open-addressing de-
sign, cuckoo hashing [38] is able to mitigate hash collisions
with amortized constant-time insertion overhead and lookup
consumption to meet the throughput needs of real-world ap-
plications. Unlike conventional hashing schemes that offer
only one bucket for each item, the cuckoo hashing provides
multiple (usually two in practice [11, 19, 37, 40]) candidate
positions for each item to reduce the probability of hash col-
lisions. To perform a lookup operation, at most two posi-
tions are probed, and the worst-case time is constant-scale,
thus delivering high performance especially in terms of low-
latency read and lookup operations [10,16,18,20,25,31,44].
However, to insert an item, the cuckoo hashing has to probe
the two candidate buckets for finding an empty position. If an
empty slot does not exist, recursive replacement operations
are needed to kick items out of their current positions until a
vacant bucket is found, which forms a cuckoo path. There
exists a certain probability of producing an endless loop,
which occurs after a large number of step-by-step kick-out
operations and turn out to be an insertion failure, thus result-
ing in slow-write performance. The property of asymmetric
reads and writes in the cuckoo hashing becomes a potential
performance bottlenecks for storage systems.

USENIX Association 2019 USENIX Annual Technical Conference 329

The endless loops not only lead to the slow-write opera-
tion, but also make storage systems unable to efficiently sup-
port concurrent operations on both reads and writes, which
results in poor performance.

As the number of cores is increasing in modern proces-
sors, concurrent data structures are promising approaches to
provide high performance for storage systems [13, 15, 21,
22, 43, 48, 50]. In general, locks are often utilized to en-
sure the consistency among multiple threads [4]. To miti-
gate the hash collisions for writes, most existing hash tables
store items in a linked list with coarse-grained locks for en-
tire tables [19], fine-grained locks for per bucket [2, 32] or
Read-Copy-Update (RCU) mechanisms [35, 36, 46] for con-
currency control. However, the coarse-grained locks for en-
tire tables lead to poor scalability on multi-core CPUs due to
the long lock time, and fine-grained per-bucket locks result
in substantial resource consumption due to frequent lock-
ing and unlocking operations in a cuckoo path. RCU [34]
works well for read-heavy workloads, but inefficiently for
the workloads with more writes than reads. Moreover, the
cuckoo hashing with per-bucket locks suffers from substan-
tial performance degradations due to the occurrence of end-
less loops. The read operation has to wait for the write opera-
tion on the same bucket to complete and then release the lock
before being executed. Hence, it is inefficient to frequently
lock and unlock buckets during the long cuckoo paths of end-
less loops.

In order to offer a high-throughput and concurrency-
friendly cuckoo hash table, we need to address two main
challenges.

Poor Insertion Performance. Cuckoo hashing executes
recursive replacing operations to kick items from their stor-
age positions to the candidate positions for finding an empty
bucket during an insertion procedure. Moreover, all efforts
become useless when encountering an endless loop. To en-
sure the correctness of concurrency control, two continuous
buckets in a path have to be locked for each kick-out opera-
tion. The frequent locking and unlocking on a cuckoo path
will lead to high time overhead, which decreases the inser-
tion performance.

Poor Scalability. The cuckoo path is possible to be very
long in real-world applications. For example, the kick-out
threshold is 500 in MemC3 [19], and thus the longest cuckoo
path contains 500 buckets. All kick-out operations have to
be completed in the buckets protected by the locks. Due to
frequent use of locks to ensure consistency among multiple
threads, the concurrent hash table results in poor scalability.

In fact, only insertion operations sharing the cuckoo path
require locks for ensuring the consistency. Insertion op-
erations through different cuckoo paths can be simultane-
ously executed. Based on this observation, we propose
a lock-efficient concurrent cuckoo hashing scheme, named
CoCuckoo. It leverages a directed pseudoforest containing
several subgraphs to represent items’ hashing relationship,

which is further used to indicate the cuckoo paths of inser-
tion operations. In the pseudoforest, each vertex corresponds
to a bucket in the hash table, and each edge corresponds to
an inserted item from its storage vertex to its backup vertex.
In our CoCuckoo, the vertices corresponding to candidate
positions of the path-overlapped items must be in the same
subgraph. The path-overlapping can be interpreted that two
or more cuckoo paths of items share the same nodes during
insertion. In our design, each node only exists in a subgraph
with a unique subgraph number. Hence, the operations on the
path-overlapped nodes access the same subgraph. We lever-
age a graph-grained, rather than per-bucket, locking scheme
to avoid potential contention. Once locking a subgraph num-
ber, all buckets with the same number cannot be accessed by
different threads at the same time. If one thread intends to
access a bucket, it first obtains the number of the subgraph to
which the bucket belongs, to check if the subgraph number
has been locked.

Specifically, we have the following contributions.
High Throughput. CoCuckoo not only retains cuckoo

hashing’s strength of supporting constant-scale lookups via
open addressing, but also delivers high throughput by a
graph-grained locking to support concurrent insertions.

Contention Mitigation. We optimize the graph-grained
locking mechanism to pursue low lock overheads for differ-
ent cases of insertions and release the locks as soon as possi-
ble to ease the contention. CoCuckoo is able to predetermine
the insertion failures without the need of carrying out contin-
uous kick-out operations, and thus avoids many unnecessary
locking operations.

System Implementation. We have implemented all the
components and algorithms of CoCuckoo. Moreover, we
compared CoCuckoo with state-of-the-art and open-source
scheme, libcuckoo [32], which offers multi-reader/multi-
writer service.

2 Backgrounds
2.1 The Cuckoo Hashing
Cuckoo hashing [38] is an open-addressing technique with
O(1) amortized insertion and lookup time. In order to miti-
gate hash collisions, items can be stored in one of two buck-
ets in a hash table. If one position is occupied, the item can
be kicked out to the other [17, 26]. The frequent kick-out
operations help items find empty positions for insertion with
the costs of possible extra latency. On the other hand, we
can definitely read the queried data in one of two hashed po-
sitions, thus obtaining constant-scale query time complexity.

Definition 1 Conventional Cuckoo Hashing. Suppose that
k is the number of hash functions, and S is a set of items. For
the case of k = 2, conventional cuckoo hashing table H uses
two independent and uniformly distributed hash functions h1,
h2: S→ {0, . . . ,n−1}, where n is the size of the hash table.
An item x can be stored in any of Buckets h1(x) and h2(x) in
H, if being inserted successfully.

330 2019 USENIX Annual Technical Conference USENIX Association

The operation for inserting Item x proceeds by computing
two hash values of Item x to find Buckets h1(x) and h2(x) that
could be used to store the item. If either of the two buckets is
empty, the item is then inserted into that bucket. Otherwise,
an item is randomly chosen from the two candidate buckets
and kicked out by Item x. The replaced item is then relo-
cated to its own backup position, possibly replacing another
item, until an empty bucket is found or a kick-out threshold is
reached. The sequence of replaced items in an insertion op-
eration is called a cuckoo path. For example, “b→ k→ φ”
is one cuckoo path to identify one bucket available to in-
sert Item x as illustrated in Figure 1, which shows a standard
cuckoo hash table with two hash functions. The start point of
an edge (arrow) represents the actual storage position of an
item, and the end point is the backup position. For instance,
the bucket storing Item c is the backup position of Items a
and n.

a n c m k f b

h1(x)h2(x)

Figure 1: The conventional cuckoo hashing table.

A cuckoo graph is formed by considering each bucket in
the hash table as a vertex and each item as an edge. The
cuckoo graph can be transformed into a pseudoforest based
on graph theory [29].

2.2 Pseudoforest Theory
A pseudoforest is an undirected graph where each vertex
only corresponds to at most an edge, and each of maximally
connected components, named subgraphs, has at most one
cycle [7, 23]. The cycle formation starts from a vertex and
returns to the vertex through connected edges. Namely, each
subgraph in a pseudoforest has no more edges than vertices.

In order to clearly illustrate the direction of a cuckoo path
in insertion operations, we extend the pseudoforest into a di-
rected graph by adding the directions from storage positions
of items to their backup positions. In the directed pseudo-
forest, each vertex corresponds to a bucket, and each edge
corresponds to an inserted item from the storage vertex to
its backup vertex. In the conventional cuckoo hash tables,
each bucket stores at most one item, and thus each vertex in
a directed pseudoforest has an outdegree of at most one. If
the outdegree of a vertex is zero, the vertex corresponds to a
vacant bucket, and the subgraph having the vertex contains
no cycles, which is called non-maximal subgraph. Other-
wise, if the outdegrees of all vertices are equal to one, the
number of edges of the subgraph is equal to that of vertices,
and thus the subgraph contains a cycle, which is a maximal
subgraph. Any insertion into the subgraph containing a cy-
cle leads to an endless loop [28]. Therefore, if the states of
corresponding subgraphs are known before the item is in-

serted, the insertion result can be predetermined. Based on
this property, we can accurately predetermine the occurrence
of endless loops without the need of brute-force checking in
a step-by-step way.

Figure 2a shows the corresponding pseudoforest of the
cuckoo hash table before inserting Item x in Figure 1, which
contains one maximal subgraph and one non-maximal sub-
graph. After inserting Item x, the two subgraphs are merged
into a maximal subgraph, as shown in Figure 2b. In particu-
lar, after executing the kick-out operations during the inser-
tion, the original vacant vertex becomes the storage position
of Item k, and the vertex currently storing Item b becomes the
backup position of Item k. The arrow between two vertices
needs to be reversed.

a

c

f

m

n
b

k

Maximal Non-maximal

Vacancy

(a) Before inserting x.

a

c

f

m

n

x

b

k

Maximal

(b) After inserting x.

Figure 2: The directed pseudoforest.

In order to maintain the relationship of subgraphs in the
pseudoforest, we assign a subgraph number to each bucket
and its corresponding vertex, and hence the buckets with the
same subgraph number belong to the same subgraph. How-
ever, as the subgraphs are merged during item insertion, the
vertices with different subgraph numbers are merged into the
same subgraph and need to be represented by the same sub-
graph number. Frequent updates to subgraph numbers of ver-
tices cause severe insertion latency. In order to address this
problem, we leverage the disjoint-set data structure [24] to
maintain the relationship of subgraphs without updating the
subgraph numbers.

2.3 The Disjoint-set Data Structure
In general, a disjoint-set data structure [24] is a tree-based
structure that handles merging and lookup operations upon
disjoint (non-overlapping) subsets, like our design goal. This
structure offers near-constant-time complexity in adding new
subsets, merging existing subsets, and determining if two or
more elements exist in the same subset. Each element in the
structure stores an id, and a parent pointer. If an element’s
parent pointer does not point to any other elements, this ele-
ment is called the root of the tree and becomes the represen-
tative member of its subset. A subset may contain only one
element. However, if the element has a parent, the element
is part of the subset that is identified by uptracking the par-
ents’ chain until a representative element (without a parent)
is found at the root of the tree.

Three operations can be performed efficiently on the
disjoint-set data structure:

MakeSet(x) creates a subset of a new element x, which
has a unique id, and a parent pointer to itself. The parent

USENIX Association 2019 USENIX Annual Technical Conference 331

pointer to itself indicates that the element is the representa-
tive member of its own subset. The MakeSet operation has
O(1) time complexity.

Find(x) follows the chain of parent pointers from a leaf
element x up to the tree until it reaches the representative
member of the tree to which x belongs. In order to make
Find operations time-efficient, path compression operation
is used to flatten the tree-based structure by allowing each
element to point to the root whenever Find is performed.
This is valid because each element accessed on the way to
the root is part of the same subset. The resulting flatter tree
not only speeds up the future operations on these elements,
but also accelerates the operations that reference them.

Union(x,y) uses Find(x) and Find(y) to determine the
roots of x and y. If the roots are distinct, the two correspond-
ing trees are combined by attaching the root of one to that of
the other, e.g., the root of the tree with fewer elements to the
root of the tree having more elements.

The unique number of each subgraph in the directed
pseudoforest is viewed as an element in the disjoint-set data
structure. When a new subgraph with a unique number is
generated, the MakeSet operation is called to generate a
new corresponding subset. The Find operation is performed
when we want to know if the subgraphs of two vertices be-
long to the same subgraph. Moreover, the Union operation
is triggered when subgraphs are merged.

3 The CoCuckoo Design
The cost-efficient CoCuckoo improves throughput perfor-
mance via a graph-grained locking to support concurrent in-
sertions and lookups. CoCuckoo leverages a directed pseud-
oforest containing several subgraphs to represent items’
hashing relationship, which is used to indicate the cuckoo
paths in insertion operations. A subgraph consists of the ver-
tices corresponding to buckets, as well as the edges corre-
sponding to the inserted items from their storage positions to
their backup positions. The disjoint-set data structure is used
to maintain the relationship among subgraphs and stored in
memory. Meanwhile, the pseudoforest is just a variant of
the cuckoo hash table and is not stored. Figure 3 shows the
framework of CoCuckoo. A key and its corresponding meta-
data are stored in each bucket of the hash table (H Table).
The metadata per bucket include the position of the value
corresponding to the key (v pos), and the subgraph number
of the subgraph to which the bucket belongs (sub id). The
sub ids are initialized to -1. Moreover, the disjoint-set data
structure called UF Array is described in Section 3.3.2.

Each candidate bucket of an item to be inserted into the
hash table possibly corresponds to a vertex in the pseudo-
forest. If a bucket in the hash table does not correspond to
any vertices in the pseudoforest, it means that this bucket
has not been visited before and is not a candidate bucket for
any inserted items. In general, this bucket corresponds to
an EMPTY subgraph, and its sub id is -1. Hence, an item

f a kH_Table

v_pos

0 1 n-1

Key Metadata

-1 1 -1 3 -1 -1 -1

1 2 3 4 k

UF_Array

...

...

...

...

sub_id

Figure 3: The CoCuckoo framework.

can be directly inserted into a bucket corresponding to an
EMPTY subgraph. There are at most two EMPTY sub-
graphs for each item insertion due to the existence of two
candidate positions. According to the number of correspond-
ing EMPTY subgraphs, we classify item insertions into three
cases, namely, TwoEmpty, OneEmpty, and ZeroEmpty, re-
spectively showing 2, 1, and 0 EMPTY subgraphs.

Moreover, only insertion operations sharing the same
cuckoo path require the locks for guaranteeing the correct-
ness of concurrent insertions. Insertion operations through
different cuckoo paths access different subgraphs, which
can be simultaneously executed and have no lock con-
tention. Based on this observation, CoCuckoo allows the
vertices, which correspond to candidate positions of the path-
overlapped items, to exist in the same subgraph. We leverage
graph-grained locking to avoid potential collisions. These
threads won’t conflict as long as they manipulate different
subgraphs. Most subgraphs are small enough as demon-
strated in Figure 6, and hence only a few vertices are con-
strained at a time.

3.1 Intra-thread Operation
Items inserted into cuckoo hashing form a cuckoo graph,
which is represented as a directed pseudoforest in our
CoCuckoo. Each vertex in the pseudoforest corresponds to a
bucket of the hash table and each edge corresponds to an
item. An inserted item generates an edge from its actual
storage position to its backup position. The pseudoforest re-
veals cuckoo paths of kick-out operations for item insertion.
Hence, the directed pseudoforest can be used to track and ex-
hibit path overlapping of items in advance to avoid potential
collisions by a graph-grained locking.

3.1.1 The Case of TwoEmpty
When two candidate positions of an item have not yet been
used and represented by any vertices in subgraphs of the
pseudoforest, i.e., two EMPTY subgraphs, the item can be
directly inserted into one bucket (the position hashed by the
first function by default). Hence, the insertion needs to cre-
ate a new subgraph, which is non-maximal and ends up with
an empty vertex, as shown in Figure 4a to insert Items a, f ,
and k, respectively. To clearly show these cases, we leverage
two hash tables in the following examples. Items hashed by
the second function is inserted into the second hash table.

332 2019 USENIX Annual Technical Conference USENIX Association

f a k

0 1 2 3 4 5 6 7

T1

T2

(a) TwoEmpty

f a n k

b

0 1 2 3 4 5 6 7

T1

T2

(b) OneEmpty

f a n k

c b

0 1 2 3 4 5 6 7

T1

T2

(c) Diff non non

f a n k

m c b

0 1 2 3 4 5 6 7

T1

T2

(d) Same non

f a n k

m c b

0 1 2 3 4 5 6 7

T1

T2

(e) Same max

f a n b

m c y k
0 1 2 3 4 5 6 7

T1

T2

(f) Diff non max

f a n k i

m c b e

0 1 2 3 4 5 6 7

T1

T2

(g) Diff max max

Figure 4: The cases of item insertions.

3.1.2 The Case of OneEmpty
One of two candidate buckets of an item corresponds to an
existing vertex in the pseudoforest, and the other corresponds
to an EMPTY subgraph, which will become a new vertex af-
ter inserting the item. As shown in Figure 4b, Items b and n
can be directly inserted into Buckets T2[5] and T1[4] respec-
tively due to available vacancy.

3.1.3 The Case of ZeroEmpty
Two candidate positions of an item correspond to two ex-
isting vertices in the pseudoforest, which exist either in the
same subgraph or both subgraphs. Moreover, each subgraph
is either maximal or non-maximal. According to the states
and number of subgraphs, we classify the case of ZeroEmpty
into four subcases.

Diff non non: If the vertices corresponding to two can-
didate positions of an item exist in two non-maximal sub-
graphs, the item can be successfully inserted into the hash ta-
ble due to the existence of vacancies. The two subgraphs will
be further merged, i.e., inserting Item c into Bucket T2[3], as
shown in Figure 4c.

Same non: When the two vertices are in the same non-
maximal subgraph, there exists a vacant bucket for the item.
It will be inserted into the hash table and the corresponding
subgraph becomes maximal. For example, Item m is inserted
into the hash table and we add an edge from Bucket T2[1] to
Bucket T1[2]. Hence the corresponding subgraph forms a
loop, as shown in Figure 4d.

Max: If the two vertices exist in one maximal directed
subgraph (named Same max, e.g., Item x in Figure 4e), or
two maximal subgraphs (named Diff max max, e.g., Item z
in Figure 4g), no vacancies are available for the new item.
The insertion fails even if executing many kick-out opera-
tions within a loop. Unlike it, CoCuckoo predetermines the
failure in advance and store the item in temporary space (e.g.,
a stash) [16, 26].

Diff non max: One vertex exists in a maximal subgraph
and the other is in a non-maximal subgraph in this case.
There exists a vacant bucket for the item. The insertion will

be successful after several kick-out operations. For example,
as shown in Figure 4f, the cuckoo path is “b→ k→ φ” when
inserting Item y. The two subgraphs are further merged into
a new maximal directed subgraph after the insertion.

3.2 Inter-thread Synchronization Optimiza-
tion

Each thread gets a request from its own task queue each
time. Only insertion operations sharing the same cuckoo
path require locks for guaranteeing the correctness of con-
current insertions. If two or more insertion requests are path-
overlapped, the corresponding threads access to the same
subgraph. Hence, the threads that visit the same subgraph
have to wait for locks due to guaranteeing the correctness,
and the threads that visit different subgraphs can be executed
concurrently. To further alleviate the lock contention and
overheads, we optimize the operations on different cases of
insertions to release locks as soon as possible.

Algorithm 1 shows the steps involved in the insertion of
Item x. First, we predetermine the insertion failure if the
case is MAX , and then lock the subgraphs as shown in Algo-
rithm 2. Second, we determine the case of item insertion and
execute corresponding insertion operations.

3.2.1 The Case of TwoEmpty

The corresponding thread allocates a new subgraph num-
ber, which is locked and assigned to the two EMPTY sub-
graphs. The subgraph number is used to identify a unique
subgraph. Since the buckets of EMPTY subgraphs can be
accessed without acquiring locks, other threads may occupy
these buckets before the thread assigns a subgraph number to
them. We utilize two atomic subgraph number assignment
operations (based on Compare-And-Swap instructions) for
consistency. If both atomic operations are successful, the two
EMPTY subgraphs are assigned the same subgraph number.
The item can be inserted directly into one of its candidate
buckets without kick-out operations. Finally, a non-maximal
subgraph is produced. Once the two EMPTY subgraphs are

USENIX Association 2019 USENIX Annual Technical Conference 333

Algorithm 1 Insert(Item x, Hash a, Hash b)
1: /*a and b are two indexes of Item x’s candidate positions*/
2: if SGa is maximal && SGb is maximal then
3: Return; /*Failure predetermination*/
4: end if
5: LockGraphs(a,b);
6: Result← False;
7: if SGa and SGb are EMPTY then
8: Result← InsertTwoEmpty(x,a,b);
9: else if SGa is EMPTY ‖ SGb is EMPTY then

10: if SGa is EMPTY then
11: Result← InsertOneEmpty(x,a,b);
12: else
13: Result← InsertOneEmpty(x,b,a);
14: end if
15: else
16: if SGa is maximal && SGb is maximal then
17: Result← InsertMax(x,a,b);
18: else if SGa is non-maximal && SGb is non-maximal then
19: if SGa == SGb then
20: Result← InsertSameNon(x,a,b);
21: else
22: Result← InsertDi f f NonNon(x,a,b);
23: end if
24: else if SGa is non-maximal then
25: Result← InsertDi f f NonMax(x,a,b);
26: else
27: Result← InsertDi f f NonMax(x,b,a);
28: end if
29: end if
30: if Result == False then
31: Goto 2;
32: end if

Algorithm 2 LockGraphs(Int a, Int b)
1: while True do
2: if SGb < SGa then
3: SWAP(SGa,SGb);
4: end if
5: if SGa is EMPTY then
6: Return;
7: else
8: /*Lock subgraphs in order to avoid deadlocks*/
9: LOCK(SGa);

10: if SGa 6= SGb then
11: LOCK(SGb);
12: end if
13: end if
14: if SG′a == SGa&&SG′b == SGb then
15: /*SG′a and SG′b are subgraph numbers after locking*/
16: break;/*Double check*/
17: else
18: UNLOCK(SGa);
19: if SGa 6= SGb then
20: UNLOCK(SGb);
21: end if
22: end if
23: end while

found with different subgraph numbers, the atomic opera-
tions fail, and the Insert operation has to be re-executed as
shown in Algorithm 3.

Algorithm 3 InsertTwoEmpty(Item x, Hash a, Hash b)

1: LOCK(SG); /*The corresponding subgraph number*/
2: if AtomicAssign(&SGa,SG)&&AtomicAssign(&SGb,SG)

then
3: DirectInsert(x,Bucket[a]);/*Insert directly into B[a]*/
4: Tag[SG]← NON MAX MARK;
5: UNLOCK(SG);
6: Return True;
7: else
8: UNLOCK(SG);
9: Return False;

10: end if

3.2.2 The Case of OneEmpty

One candidate bucket of the item to be inserted corresponds
to an EMPTY subgraph, which is vacant. The other can-
didate bucket of the item corresponds to an existing vertex
of a subgraph. The item can be directly inserted into the
EMPTY subgraph, no matter what the state of another sub-
graph is. Hence, we utilize two atomic operations without
locks to execute the insertion operation. The Insert opera-
tion atomically assigns the number of the existing subgraph
to the new vertex, and inserts the item into the new ver-
tex by an atomic write operation as shown in Algorithm 4.
Moreover, the state of the final merged subgraph depends
on the pre-merged subgraph without changes. If the vertex
has been already occupied by another item, the subsequent
atomic write operation of insertion fails, which means that
the original EMPTY subgraph has been merged with another
subgraph and becomes not empty. The Insert operation has
to be restarted, and the insertion case becomes ZeroEmpty.
Hence, the insertion protocol ensures forward progress and
doesn’t produce repeated atomic operation failures.

Algorithm 4 InsertOneEmpty(Item x, Hash a, Hash b)

1: if AtomicAssign(&SGa,SGb) then
2: if AtomicInsert(x,Bucket[a]) then
3: Return True;
4: else
5: Return False;
6: end if
7: else
8: Return False;
9: end if

3.2.3 The Case of ZeroEmpty

Diff non non: The Insert operation locks the two corre-
sponding non-maximal subgraphs, inserts the item after sev-
eral kick-out operations, and then releases the lock after the

334 2019 USENIX Annual Technical Conference USENIX Association

two subgraphs have been merged as shown in Figure 5. The
merged subgraph is non-maximal, which has a vacant bucket
for another item to be inserted.

Algorithm 5 InsertDiffNonNon(Item x, Hash a, Hash b)
1: Kick-out(x,Bucket[a]); /*Enter from B[a]*/
2: Union(SGa,SGb);
3: UNLOCK(SGa);
4: UNLOCK(SGb);
5: Return True;

Same non: The merged subgraph is maximal after the
item is inserted, and no vacancies are available for other
items to be inserted. Hence, to ease the lock contention, our
optimization is to lock the corresponding subgraph and mark
it to be maximal, and unlock the subgraph before execut-
ing kick-out operations of the insertion, as shown in Algo-
rithm 6.

Algorithm 6 InsertSameNon(Item x, Hash a, Hash b)
1: Tag[SG]←MAX MARK;
2: UNLOCK(SG);
3: Kick-out(x,Bucket[a]);/*Enter from B[a]*/
4: Return True;

Max: No vacancies are available in the corresponding
subgraphs for items in this case, and the Insert operation
will always walk into a loop and be predetermined to a fail-
ure. We just unlock the corresponding subgraph(s) without
any other operations, as shown in Algorithm 7.

Algorithm 7 InsertMax(Item x, Hash a, Hash b)
1: UNLOCK(SGa);
2: if SGa 6= SGb then
3: UNLOCK(SGb);
4: end if
5: Return True;

Diff non max: There exists only one vacancy for an item,
and the state of the merged subgraph is predetermined to be
maximal after the item is inserted in the case. Other threads
accessing the subgraph first obtain the subgraph state and
will not insert items when the subgraph is maximal. For
the Insert operation, the corresponding thread obtains the
lock of the non-maximal subgraph and marks it to be max-
imal, and then releases the lock immediately. The insertion
with several kick-out operations and the merging operation
of two subgraphs complete outside the lock, as shown in Al-
gorithm 8.

3.3 Subgraph Management
3.3.1 Subgraph Number Allocation
We allocate each newly created subgraph a new number for
identification. Each subgraph number represents a unique

Algorithm 8 InsertDiffNonMax(Item x, Hash a, Hash b)
1: Tag[SGa]←MAX MARK;
2: UNLOCK(SGa);
3: UNLOCK(SGb);
4: Kick-out(x,Bucket[a]);/*Enter from B[a]*/
5: Union(SGa,SGb);
6: Return True;

subgraph, and each vertex of the subgraph records the num-
ber of its corresponding bucket. All threads allocate sub-
graph numbers concurrently. When a thread requests a sub-
graph number, we lock the number generator. Other threads
have to wait for unlocking, thus increasing the response time
of requests and possibly becoming performance bottleneck.
Moreover, we only need to confirm that the subgraph num-
bers are unique without the need of continuity. In order to
decrease the response time without locks and ensure consis-
tency of subgraph number allocation, we leverage a simple
modular function to compute the subgraph numbers for all
threads. In the modular function, the modulus is the total
number of threads p, and the remainder is the number of
each thread r. Hence, the subgraph number allocated by each
thread is n = kp+ r, while the parameter k is an accumula-
tor. A subgraph number generator serves for a thread. For
example, in the 8-thread CoCuckoo, the subgraph numbers
allocated by T hread 2 is 2, 10, 18, and so on. Hence, we
allocate subgraph numbers for each thread in order, and then
add one to the accumulator k after creating a new subgraph.

3.3.2 Subgraph Merging
When vertices corresponding to two candidate positions of
an inserted item exist in two subgraphs, they are merged after
item insertion. To avoid exhaustively searching for all ver-
tex members of corresponding subgraphs and updating their
subgraph numbers (sub ids in metadata) when subgraphs are
merged, a tree-based data structure called disjoint-set data
structure is utilized to maintain the relationship between
subgraphs. Each node in the tree stores a subgraph num-
ber and a parent pointer. In order to avoid deadlocks, we
always merge the subgraphs with bigger numbers into that
with smaller numbers. After subgraphs are merged, the par-
ent pointer of the node with bigger number points to the
node with smaller number, which becomes the representa-
tive of the tree. The newly merged subgraph is possible to be
merged again with others. Finally, the subgraph number of
the tree’s root represents the number of the subgraph merged
from all prior subgraphs.

The Union operation is called when merging subgraphs
is needed. Union(sub id1,sub id2) uses Find(sub id1) and
Find(sub id2) to determine the roots of the nodes with
sub id1 and sub id2. If the roots are distinct, the trees are
combined by attaching the tree whose root has the bigger
subgraph number to the root of the smaller one. Furthermore,

USENIX Association 2019 USENIX Annual Technical Conference 335

Find(sub id) follows the chain of parent pointers from a leaf
node with sub id1 up to the tree until it reaches a root node,
whose parent is itself. The subgraph number stored in the
root node is the actual subgraph number of all nodes in the
chain.

An array UF Array is used to implement the disjoint-set
data structure. The length of the array is the number of sub-
graphs, and the indexes of the array indicate the subgraph
numbers. The values of elements are initialized to -1, and
updated to the indexes of their parents after merging. Specif-
ically, there are two cases for the value of an element in the
array: (1) If the value of an element is equal to -1, the sub-
graph number represented by the index is a root node; (2) If
the value of an element is larger than 0, the subgraph number
corresponding to the value is the parent node of the subgraph
number represented by the index. As shown in Figure 3,
UF Array[1] =−1 means that the subgraph number 1 is the
root node; UF Array[2] = 1 means that the subgraph num-
ber 1 is the parent node of the subgraph number 2. Therefore,
all buckets with subgraph number 2 have the actual subgraph
number of 1.
3.3.3 Item Deletion and Subgraph Splitting
For an item, when the vertex of the storage position is not
on a cycle, the corresponding subgraph is split into two
subgraphs when deleting the item [6]. To avoid recon-
structing the hash table and updating sub ids of all buck-
ets, the re edge information in metadata per bucket is added
to record the related edges of the bucket in the correspond-
ing subgraph. When deleting Item x, we first compute the
two corresponding buckets of Item x, i.e., determine the stor-
age and backup positions. Item x is deleted from the stor-
age bucket in the hash table, and the corresponding edge is
deleted from the re edge in two buckets. All related edges
and buckets are then recursively searched from the re edge
in the candidate buckets. Finally, all searched buckets are
updated with a new sub id. In order to optimize the delete
operation after splitting subgraphs, all buckets in the sub-
graph containing the storage position of Item x do not need
to update their sub ids. Their actual sub ids can be searched
by UF Array. The thread that performed the delete oper-
ation acquires the lock of the corresponding subgraph until
the operation completes. Figure 5 shows an example of split-
ting subgraph when deleting Item x. The backup position
of Item x (namely, the storage position of Item c) is found
by hash computation, and all related nodes in the left sub-
graph are iteratively searched by the re edge information in
the metadata of related buckets. We then update all sub ids
of searched related buckets in hash tables.

4 Performance Evaluation
4.1 Experimental Setup
The server used in our experiments is equipped with an Intel
2.4GHz 16-core CPU, 24GB DDR3 RAM, and 2TB hard

a

c

f

m

n

x

b

k

Maximal

(a) Before deleting x.

�

�

�

�

�

�

�

���	�
���

�
���

(b) After deleting x.

Figure 5: An example of splitting subgraph.

disk. The L1 and L2 caches of the CPU are 32KB and
256KB, respectively. The programming language of all func-
tional components of CoCuckoo scheme is C/C++. More-
over, multi-threading is implemented by the pthread via a
pthread.h header and a thread library.

Workloads: The widely-used industry standard in eval-
uating the performance of key-value stores is the Yahoo!
Cloud Serving Benchmark (YCSB) [14]. We use this bench-
mark to generate five workloads, each with different propor-
tions of Insert and Lookup queries to represent real-world
scenarios, as shown in Table 1. Especially, the INS workload
is the worst case for cuckoo hashing (resulting in a nearly full
table), and the remaining four workloads are common cases
with Lookup operations. Moreover, each workload has two
million key-value pairs. Each key in workloads is 16 bytes
and each value is 32 bytes for most experiments (except in
Section 4.2.4 that uses various sizes for evaluating the effect
of size on throughput). The default cuckoo hash table has
221 = 2,097,152 slots, which consumes about 96MB mem-
ory in total.

Table 1: Distributions of different queries in each workload.
Workload Insert Lookup

Insert-only (INS) 100% 0%
Insert-heavy (IH) 75% 25%

Insert-lookup balance (ILB) 50% 50%
Lookup-heavy (LH) 25% 75%
Lookup-only (LO) 0% 100%

Threads: In our experiments, there are five settings for
the number of threads, including a single thread, 4, 8, 12,
and 16 threads, to evaluate the concurrency performance.

Comparisons: We compare our proposed CoCuckoo
with open-source libcuckoo [3, 32], which is optimized to
offer multi-reader/multi-writer service through spin locks
based on concurrent multi-reader/single-writer cuckoo hash-
ing used in MemC3 [19]. Since libcuckoo has multiple slots
per bucket to mitigate collisions [19,39,41,51], we also eval-
uate the performance of 2-, 4-, 8- and 16-way libcuckoo. We
follow the default configuration of libcuckoo in the original
paper [32] and only adjust the numbers of threads and slots
to facilitate fair comparisons in concurrency. The results of
CoCuckoo and libcuckoo come from in the same experimen-
tal environment.

We focus on the performance improvements from our de-
sign in the context of workloads with concurrent insertions
and lookups by measuring the throughput and latency of

336 2019 USENIX Annual Technical Conference USENIX Association

multiple threads accessing the same hash table. In general,
the request response on the cuckoo hashing table becomes
slower as the load factor increases, since more items have to
be moved [32]. Hence, we measure the throughput and la-
tency for certain load factor intervals (from 0 to 80%), and
average throughput and latency.

4.2 Results and Analysis
4.2.1 Lock Granularity
A graph-grained lock is used for concurrency control in our
CoCuckoo. Since most subgraphs are small, the granular-
ity of graph-grained locks is acceptable, which only con-
strain a very small number of buckets. We have measured
the number of subgraphs in each size interval with Insert-
only workload. Figure 6 demonstrates that most subgraphs
are small. For example, 44.25% subgraphs contain only 3
vertices, and about 99% subgraphs contain no more than 10
vertices. Very few buckets are constrained once for ensuring
the correctness of concurrency control of the multi-thread
hash tables. We obtained identical experimental results un-
der single-threaded and multi-thread conditions. The reason
is that for given hash functions, the hash location of each
item is determined. Based on hashed locations, the cuckoo
subgraphs are also determined, except the difference of the
order in which the vertices are added into subgraphs due to
the concurrency of threads.

44.25%

29.06%

12.49%

6.21% 6.92%

1.04% 0.03%

0%

10%

20%

30%

40%

50%

0

1

2

3

4

5

6

7

8

3 4 5 6 [7,10] [11,50] >50

T
h

e
 p

er
ce

n
ta

g
e

T
h

e
n

u
m

b
e
r

o
f

su
b

g
ra

p
h

s
(t

h
o

u
sa

n
d

)

The size of subgraphs

frequency

percentage

Figure 6: The number of subgraphs in each size interval.

4.2.2 Throughput
This subsection evaluates the average throughput under
an increasing number of threads with five workloads and
throughput at different table occupancies with Insert-only
workload. The throughput is the average number of requests
completed per second.

Figure 7 shows the average throughput under an increas-
ing number of threads with five different workloads. The
average throughput increases with the increasing number of
threads in all cuckoo hashing tables, due to the multi-thread
acceleration. In libcuckoo, the lower associativity improves
the throughput, because each lookup checks fewer slots in
order to find the key, and each insertion needs to probe fewer
slots in a bucket for an empty slot. In 4-way libcuckoo, each
Lookup requires at most two cache-line reads to find the key
and one more cache-line read to obtain the value. Further-
more, in 16-way libcuckoo, each Lookup requires at most

eight cache-line reads to find the key and one more cache-
line read to obtain the value. With the increasing number of
threads, we observe that CoCuckoo significantly increases
the average throughput over libcuckoo by 50% to 130% as
shown in Figure 7f. In particular, the growth rate is defined
as the throughput growth ratio of CoCuckoo relative to 2-
way libcuckoo.

Figure 8a illustrates that the impact of load factors on 16-
thread cuckoo hashing throughput for Insert-only workload.
With the increase of load factors, the throughput decreases,
since each Insert operation has to probe more buckets for
finding an empty slot, and requires more item replacements
to insert the new item. The libcuckoo utilizes Breadth-First
Search (BFS) to find an empty slot for item insertion, and
the path threshold is 5 in open-source implementation [3]. In
1-way libcuckoo, the threshold is reached at lower load fac-
tor, and expensive rehashing operations are executed, which
results in poor performance. However, a higher load factor
(more than 0.65) results in performance decrease in terms of
throughputs of CoCuckoo. We argue that as the load factor
increases, the subgraph merge operations become more fre-
quent, thus leading to the decreasing number of subgraphs
and the increasing number of vertices included in a sin-
gle subgraph. Hence, more vertices are constrained by one
thread that handles the Insert operation due to the graph-
grained locking. Compared with libcuckoo, the proposed
CoCuckoo obtains significant performance improvements in
terms of throughputs.

4.2.3 Predetermination for Insertion
Table 2 shows the fractions of all cases with different work-
loads of containing Insert operations in 16 threads. In each
workload, the two cases of TwoEmpty and OneEmpty ac-
count for a large proportion, which means that most inser-
tion operations probe new and empty buckets, and add new
vertices into corresponding subgraphs in the pseudoforest.
Hence, with executing these insertion operations, the threads
leverage short-term (TwoEmpty) or no (OneEmpty) locks
the shared buckets, which alleviates the lock contention and
further improves the throughput of CoCuckoo. The Max
case occurs in INS and IH workloads, which means the
proposed CoCuckoo predetermines insertion failures and re-
leases locks without any kick-out operations to ease the con-
tention.

4.2.4 Different Key Sizes
All prior experiments used the workloads with 16-byte keys
and 32-byte values. We further evaluate the average through-
put of cuckoo hash tables with different key sizes at the load
factor of 0.8, as shown in Figure 8b- 8f.

In each figure, we show the average throughput, as the
key size increases from 8 bytes to 64 bytes with Insert-only
workload. The throughput decreases, as the key size in-
creases due to the increased String copy and String comp
overheads, as well as memory bandwidth overhead. More-

USENIX Association 2019 USENIX Annual Technical Conference 337

0.41 0.56 0.60
0.54 0.51 0.89

3.03

5.87 6.34
7.61

0

5

10

15

20

25

1 4 8 12 16

T
h

ro
u

g
h

p
u

t

(m
il

li
o

n
 r

e
q

s
p

e
r

se
c
)

Number of threads

1-way libcuckoo 2-way libcuckoo

4-way libcuckoo 8-way libcuckoo

16-way libcuckoo CoCuckoo

(a) Insert-only (INS)

0.43 0.60 0.61
0.56 0.51 1.01

3.52

6.81
7.54

8.81

0

5

10

15

20

25

1 4 8 12 16

T
h

ro
u

g
h

p
u

t

(m
il

li
o

n
 r

e
q

s
p

e
r

se
c)

Number of threads

(b) Insert-heavy (IH)

0.47 0.60 0.66
0.64 0.55

1.28

4.69

9.15 9.75

12.62

0

5

10

15

20

25

1 4 8 12 16

T
h

ro
u

g
h

p
u

t

(m
il

li
o
n

 r
eq

s
p

er
 s

ec
)

Number of threads

(c) Insert-lookup balance (ILB)

1.00
2.31

3.91
4.34 4.36

1.66

6.34

12.56 13.09

16.58

0

5

10

15

20

25

1 4 8 12 16

T
h

ro
u

g
h

p
u

t

(m
il

li
o

n
 r

e
q

s
p

e
r
se

c)

Number of threads

(d) Lookup-heavy (LH)

1.29

4.84

8.86

10.29

12.75

2.24

9.14

18.26
17.12

22.28

0

5

10

15

20

25

1 4 8 12 16

T
h

ro
u

g
h

p
u

t

(m
il

li
o

n
 r

e
q

s
p

e
r

se
c)

Number of threads

(e) Lookup-only (LO) (f) Growth rate compared with libcuckoo.

Figure 7: The average throughput and growth rate compared with 2-way libcuckoo.

Table 2: The fractions of all cases in 16 threads.
Workloads TwoEmpty OneEmpty Same non Max Diff non non Diff non max
Insert-only 25.673% 37.9628% 0.0003% 13.9802% 13.1447% 9.239%

Insert-heavy 32.9343% 40.4907% 0.0004% 3.5921% 16.7513% 6.2312%
Insert-lookup balance 44.675% 39.6011% 0.0002% 0% 15.7235% 0.0002%

Lookup-heavy 64.4448% 30.1658% 0% 0% 5.3894% 0%

0

2

4

6

8

10

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

T
h

ro
u

g
h

p
u

t

(m
il

li
o

n
 r

eq
s

p
er

 s
ec

)

Load factor

1-way libcuckoo 2-way libcuckoo
4-way libcuckoo 8-way libcuckoo
16-way libcuckoo CoCuckoo

(a) 16-thread throughput

0.42 0.40 0.40
0.39

0.97 1.00 0.77 0.55

0

2

4

6

8

8 16 32 64

T
h

ro
u

g
h

p
u

t

(m
il

li
o

n
 r

e
q

s
p

er
 s

ec
)

Key size (byte)

1-way libcuckoo 2-way libcuckoo

4-way libcuckoo 8-way libcuckoo

16-way libcuckoo CoCuckoo

(b) Single thread

0.56 0.54 0.53
0.54

3.23

2.72 2.58
2.09

0

2

4

6

8

8 16 32 64

T
h

ro
u

g
h

p
u

t

(m
il

li
o
n

 r
e
q

s
p

e
r

se
c)

Key size (byte)

(c) 4 threads

0.61 0.59 0.58
0.56

5.94

4.94

4.33

3.29

0

2

4

6

8

8 16 32 64

T
h

ro
u

g
h

p
u

t

(m
il

li
o

n
 r

e
q

s
p

e
r

se
c
)

Key size (byte)

(d) 8 threads

0.54 0.53 0.51
0.44

6.40

5.72

5.16

4.31

0

2

4

6

8

8 16 32 64

T
h

ro
u

g
h

p
u

t

(m
il

li
o
n

 r
eq

s
p

er
 s

e
c)

Key size (byte)

(e) 12 threads

0.52 0.44 0.52
0.44

6.43 6.41 6.22

5.02

0

2

4

6

8

8 16 32 64

T
h

ro
u

g
h

p
u

t

(m
il

li
o
n

 r
eq

s
p

er
 s

e
c)

Key size (byte)

(f) 16 threads

Figure 8: The throughput in different table occupancies and sizes of keys with Insert-only workload.

over, our concurrent cuckoo hashing becomes much less ef-
fective with large keys. For example, in the case of 16
threads, the throughput of CoCuckoo is 6.43 million requests
per second with 8-byte keys, which is 135% higher than 4-
way libcuckoo. The throughput of CoCuckoo is only 95%
higher than 4-way libcuckoo with 64-byte keys. Similarly,
hyperthreading also becomes much less effective with larger
keys. For example, with 64-byte keys, the 4-thread through-

put of CoCuckoo is 2.09 million requests per second, 8-
thread throughput is more than 57% higher than 4-thread
throughput, but 16-thread throughput is only 50% higher
than 8-thread throughput. In order to support large-size keys,
the full keys and values can be stored outside the table and
referenced by a pointer, which possibly damages lookup per-
formance. A null pointer indicates that the bucket is unoccu-
pied.

338 2019 USENIX Annual Technical Conference USENIX Association

4.2.5 Extra Space Overhead and Impact
Extra space overhead comes from the auxiliary structure of
CoCuckoo, which includes two parts. One is the UF Array
to maintain the relationship among subgraphs. The other is
the sub id (subgraph number) stored in each bucket of the
cuckoo hash table. Specifically, the UF Array length is the
number of subgraphs, and the indexes of the array indicate
the subgraph numbers. The maximum number of subgraphs
is equal to that of buckets in hash tables. The subgraph num-
ber is an Int type data in our implementation, which is usu-
ally 4 bytes in currently compilers (e.g., GCC). For subgraph
numbers, the sub id is stored in each bucket as metadata.

The default cuckoo hash table has 221 slots. Therefore,
the extra space overhead is totally 221 ∗ (4+ 4)B = 16MB,
which is deterministic and very small, compared with current
memory capacity. Moreover, the pseudoforest is the theoret-
ical transformation form of the cuckoo hash table, which is
not stored in memory. In essence, we leverage acceptable
space overhead to obtain significant performance improve-
ments, which is a suitable trade-off. Moreover, in order to
examine its impact upon system performance, we evaluate
the throughput with the extra space through the Insert-only
workload. To facilitate fair comparisons, we define the iden-
tical space available for both libcuckoo and CoCuckoo. As
shown in Figure 9, we observe that CoCuckoo increases the
throughput over 2-way libcuckoo by 73% to 159%, which is
comparable to 75%-150% in Figure 7a in Section 4.2.2, thus
exhibiting little impact.

We also evaluate the average execution time per request.
As shown in Figure 10, the average time per request in 16-
thread CoCuckoo is 1.66µs, which is much shorter than
16.37µs in libcuckoo. Frequent rehash operations occur dur-
ing the item insertion of 1-way libcuckoo, resulting in longer
insertion time.

0.38 0.47 0.50
0.45 0.41 0.86

2.93

5.61
6.47

7.64

0

5

10

15

20

25

1 4 8 12 16

T
h

ro
u

g
h

p
u

t

(m
il

li
o

n
 r

e
q

s
p

e
r

se
c
)

Number of threads

1-way libcuckoo 2-way libcuckoo

4-way libcuckoo 8-way libcuckoo

16-way libcuckoo CoCuckoo

Figure 9: The average throughput with the same space over-
head at the load factor of 0.8.

4.2.6 Deletion Latency
The re edge information in metadata per bucket is included
for supporting deletion. We evaluate the impact of deletion
on performance by measuring request latency. The latency
is defined as the time required to be executed in the concur-
rent program operation per request except the time in a serial
program operation. Specifically, for a request, the latency is

2.62

7.92

13.68

25.58

37.11

1.16 1.30 1.36 1.64 2.03

0

10

20

30

40

1 4 8 12 16

A
v

er
a
g

e
ti

m
e
 p

e
r

re
q

(u
s)

Number of threads

1-way libcuckoo 2-way libcuckoo
4-way libcuckoo 8-way libcuckoo
16-way libcuckoo CoCuckoo

Figure 10: The average time per request with the same space
overhead.

equal to the execution time of a thread in a concurrent pro-
gram minus the time it consumes in a serial program. We
use the YCSB benchmark to generate two workloads: (1)
5% Delete: 95% Insert and 5% Delete requests; (2) 10%
Delete: 90% Insert and 10% Delete requests, each with one
million key-value pairs with deletion.

Figure 11 shows the average request latency of CoCuckoo
with six workloads containing Insert and Delete operations.
With the increasing number of threads, the average latency
increases due to more intense lock contentions. The time
waiting for locks increases with the increasing number of
threads. For example, with Insert-only workload, the single-
thread latency is 1.16µs per request, 8-thread latency is 2.6%
longer than single-thread latency, and 16-thread latency is
50.0% longer than 8-thread latency. However, with the same
number of threads, the average latency of different work-
loads incurs slight changes. Deletions are generally executed
within locks, which exacerbates lock contentions. The la-
tency of Delete is similar to that of Insert and larger than
that of Lookup.

1.16

0.90

0.60

0.29

1.17 1.16

1.79

1.36

0.90

0.44

1.72 1.70

0

0.5

1

1.5

2

INS IH ILB LH 5% Delete 10% Delete

L
a

te
n

c
y

 (
u

s)

Workloads

1 thread 4 threads 8 threads 12 threads 16 threads

Figure 11: Average latency in different workloads.

Figure 12 illustrates the impact of load factors on latency
performance of CoCuckoo with 5% Delete. As the load fac-
tor increases, there is a slight decrease in latency. Due to our
optimization in Section 3.2.2, the average latency of Case
OneEmpty is smaller than that of Case TwoEmpty. The pro-
portion of Case OneEmpty increases while the proportion
of Case TwoEmpty significantly decreases as the load factor
increases. Hence, the overall latency decreases. In the mean-
time, due to appropriate load factors, the decrease of request
latency is slow. For example, 16-thread latency is 1.73µs at

USENIX Association 2019 USENIX Annual Technical Conference 339

a load factor of 0.10 for the hash table, and 1.68µs at a load
factor of nearly 0.50, which is only 2.9% smaller than that at
a load factor of 0.10.

���

���

���

���

�
�
��
�
��
�	

��

���	
��
 ����	
��
� ���	
��
� ����	
��
� ����	
��
�

�

���

���

���

���

����� ����� ����� ����� ����� ����� ����� ����� �����

�
�
��
�
��
�	

��

����������	

���	
��
 ����	
��
� ���	
��
� ����	
��
� ����	
��
�

Figure 12: The latency at different table occupancies with
5% Delete.

5 Related Work
Performance-constrained single-thread hash tables. The
Google’s dense hash map, which is available in the Google
SparseHash [1] library, supports fast lookup services. The
dense hash uses open addressing with internal quadratic
probing and achieves space efficiency for extremely high
speeds. Moreover, this table stores items in a single large
array and maintains a maximum 0.5 load factor by default.

Horton table [11] is an enhanced bucketized cuckoo hash
table for reducing the number of CPU cache lines that are
accessed in each lookup, thus achieving higher throughput.
Most items are hashed by only a single function and there-
fore are retrieved by accessing a single bucket, namely, a
single cache line. For negative lookups, item remapping en-
ables low access costs to access one cache line.

SmartCuckoo [45] is a cost-efficient cuckoo hash table for
accurately predetermining the status of cuckoo operations
and the occurrence of endless loops. A directed pseudoforest
representing the hashing relationship is utilized to track item
placements in the hash table, and further avoid walking into
an endless loop.

However, the performance of these hash tables does not
scale with the number of cores in the processor, due to only
a single thread permitted in execution, which suffer from the
performance bottleneck of slow writes in storage systems.
Unlike them, the design goal of our CoCuckoo is to effi-
ciently support concurrent operations and deliver high per-
formance in storage systems via concurrency-friendly hash
tables.

High-performance concurrent hash tables. Relativistic
hash table [46] is the data structure that supports shrinking
and expanding while allowing concurrent, wait-free and lin-
early scalable lookups. The proposed resize algorithms re-
claim memory as the number of items decreases, and enable
Read-Copy Update (RCU) [34–36, 46] hash tables to main-
tain constant-scale performance as the number of item in-
creases, without delaying or disrupting readers.

MemC3 [19] is designed to provide caching for read-
mostly workloads and leverages the optimistic cuckoo hash-
ing, which supports multiple readers without locks and a
single writer. Instead of moving “items” forward along the
cuckoo path, the cuckoo hashing used in MemC3 moves “va-
cancies” backwards along the cuckoo path. The backward
method ensures that an item can always be found by a reader.

The libcuckoo [32] redesigns MemC3 to minimize the
size of the hash table’s critical sections and allow for sig-
nificantly increased parallelism, which supports two con-
currency control mechanisms, i.e., fine-grained locking and
hardware transactional memory.

These schemes are dedicated to improve lookup perfor-
mance and however fail to work well for tables with more
insertion than lookup operations due to the occurrence of
hash collisions and endless loops. Our proposed CoCuckoo
focuses on write-heavy workloads for supporting concurrent
insertions and lookups.

Moreover, CoCuckoo currently addresses the performance
bottleneck for cuckoo hashing with two hash functions. The
setting of more than two hash functions would significantly
increase operation complexity [16,52], which can be reduced
to two using techniques such as double hashing [27].

6 Conclusion
Most existing concurrent cuckoo hash tables are used for
read-intensive workloads and fail to address the potential
problem of endless loops during item insertion. We pro-
posed CoCuckoo, an optimized concurrent cuckoo hashing
scheme, which represents cuckoo paths as a directed pseudo-
forest containing multiple subgraphs to indicate items’ hash-
ing relationship. Insertion operations sharing the same
cuckoo path need to access the same subgraph, and hence
a lock is needed for ensuring the correctness of concur-
rent operations. Insertion operations accessing different sub-
graphs enable simultaneous execution. CoCuckoo classi-
fies item insertions into three cases and leverages a graph-
grained locking mechanism to support concurrent insertions
and lookups. We further optimize the mechanism and release
locks as soon as possible to mitigate the contention for pur-
suing low lock overheads. Extensive experiments using the
YCSB benchmark demonstrate that the proposed CoCuckoo
achieves higher throughput performance than state-of-the-
work scheme, i.e., libcuckoo.

7 Acknowledgments
This work was supported by National Key Research
and Development Program of China under Grant
2016YFB1000202, and National Natural Science Foun-
dation of China (NSFC) under Grant No. 61772212.
The authors are grateful to anonymous reviewers and our
shepherd, Haris Volos, for their constructive feedbacks and
suggestions.

340 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Google SparseHash. https://github.com/

sparsehash/sparsehash.

[2] Intel Threading Building Block. https://www.

threadingbuildingblocks.org/.

[3] Libcuckoo library. https://github.com/

efficient/libcuckoo.

[4] Memcached. A distributed memory object caching sys-
tem. http://memcached.org/, 2011.

[5] The Top 20 Valuable Facebook Statis-
tics. https://zephoria.com/

top-15-valuable-facebook-statistics/,
Updated March 2019.

[6] ALSTRUP, S., GØRTZ, I. L., RAUHE, T., THO-
RUP, M., AND ZWICK, U. Union-Find with Con-
stant Time Deletions. In International Colloquium
on Automata, Languages, and Programming (2005),
Springer, pp. 78–89.

[7] ÀLVAREZ, C., BLESA, M., AND SERNA, M. Univer-
sal Stability of Undirected Graphs in the Adversarial
Queueing Model. In Proceedings of the fourteenth an-
nual ACM symposium on Parallel algorithms and ar-
chitectures (SPAA) (2002), ACM, pp. 183–197.

[8] ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH,
A. D., KATZ, R., KONWINSKI, A., LEE, G., PAT-
TERSON, D., RABKIN, A., STOICA, I., AND ZA-
HARIA, M. A View of Cloud Computing. Commu-
nications of the ACM 53, 4 (April 2010), 50–58.

[9] AYERS, G., AHN, J. H., KOZYRAKIS, C., AND RAN-
GANATHAN, P. Memory Hierarchy for Web Search.
In Proceedings of 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA)
(2018), IEEE, pp. 643–656.

[10] BRESLOW, A. D., AND JAYASENA, N. S. Morton Fil-
ters: Faster, Space-Efficient Cuckoo Filters via Biasing,
Compression, and Decoupled Logical Sparsity. Pro-
ceedings of the VLDB Endowment 11, 9 (2018), 1041–
1055.

[11] BRESLOW, A. D., ZHANG, D. P., GREATHOUSE,
J. L., JAYASENA, N., AND TULLSEN, D. M. Hor-
ton Tables: Fast Hash Tables for In-Memory Data-
Intensive Computing. In Proceedings of 2016 USENIX
Annual Technical Conference (USENIX ATC) (2016),
USENIX Association, pp. 281–294.

[12] BYKOV, S., GELLER, A., KLIOT, G., LARUS, J. R.,
PANDYA, R., AND THELIN, J. Orleans: Cloud

Computing for Everyone. In Proceedings of the 2nd
ACM Symposium on Cloud Computing (SoCC) (2011),
ACM.

[13] CALCIU, I., SEN, S., BALAKRISHNAN, M., AND
AGUILERA, M. K. Black-box Concurrent Data Struc-
tures for NUMA Architectures. In Proc. ASPLOS
(2017), ACM, pp. 207–221.

[14] COOPER, B. F., SILBERSTEIN, A., TAM, E., RA-
MAKRISHNAN, R., AND SEARS, R. Benchmarking
Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing (SoCC)
(2010), ACM, pp. 143–154.

[15] DAVID, T., DRAGOJEVIC, A., GUERRAOUI, R., AND
ZABLOTCHI, I. Log-free concurrent data structures. In
Proceedings of 2018 USENIX Annual Technical Con-
ference (USENIX ATC) (2018), USENIX Association,
pp. 373–386.

[16] DEBNATH, B. K., SENGUPTA, S., AND LI, J.
ChunkStash: Speeding Up Inline Storage Deduplica-
tion Using Flash Memory. In Proceedings of 2010
USENIX Annual Technical Conference (USENIX ATC)
(2010), pp. 1–16.

[17] DEVROYE, L., AND MORIN, P. Cuckoo hashing: Fur-
ther analysis. Information Processing Letters 86, 4
(2003), 215–219.

[18] EPPSTEIN, D., GOODRICH, M. T., MITZENMACHER,
M., AND TORRES, M. R. 2-3 Cuckoo Filters for Faster
Triangle Listing and Set Intersection. In Proceedings of
the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems (PODS) (2017), ACM,
pp. 247–260.

[19] FAN, B., ANDERSEN, D. G., AND KAMINSKY, M.
MemC3: Compact and Concurrent MemCache with
Dumber Caching and Smarter Hashing. In Proceed-
ings of the Symposium on Network System Design and
Implementation (NSDI) (2013), vol. 13, pp. 385–398.

[20] FAN, B., ANDERSEN, D. G., KAMINSKY, M., AND
MITZENMACHER, M. D. Cuckoo Filter: Practically
Better Than Bloom. In Proceedings of the 10th ACM
International on Conference on emerging Networking
Experiments and Technologies (2014), ACM, pp. 75–
88.

[21] FATOUROU, P., KALLIMANIS, N. D., AND ROPARS,
T. An Efficient Wait-free Resizable Hash Table. In
Proc. SPAA (2018), ACM.

[22] FRIEDMAN, M., HERLIHY, M., MARATHE, V., AND
PETRANK, E. A Persistent Lock-Free Queue for Non-
Volatile Memory. In Proc. PPoPP (2018), ACM,
pp. 28–40.

USENIX Association 2019 USENIX Annual Technical Conference 341

https://github.com/sparsehash/sparsehash
https://github.com/sparsehash/sparsehash
https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
https://github.com/efficient/libcuckoo
https://github.com/efficient/libcuckoo
http://memcached.org/
https://zephoria.com/top-15-valuable-facebook-statistics/
https://zephoria.com/top-15-valuable-facebook-statistics/

[23] GABOW, H. N., AND WESTERMANN, H. H. Forests,
Frames, and Games: Algorithms for Matroid Sums and
Applications. Algorithmica 7, 1 (1992), 465–497.

[24] GALLER, B. A., AND FISHER, M. J. An Improved
Equivalence Algorithm. Communications of the ACM
7, 5 (1964), 301–303.

[25] HUA, Y., XIAO, B., AND LIU, X. Nest: Locality-
aware Approximate Query Service for Cloud Comput-
ing. In Proc. INFOCOM (2013), IEEE, pp. 1303–1311.

[26] KIRSCH, A., MITZENMACHER, M., AND WIEDER,
U. More Robust Hashing: Cuckoo Hashing with a
Stash. SIAM Journal on Computing 39, 4 (2009),
1543–1561.

[27] KNUTH, D. E. The Art of Computer Programming:
Sorting and Searching, vol. 3. Pearson Education,
1997.

[28] KRUSKAL, C. P., RUDOLPH, L., AND SNIR, M. Ef-
ficient Parallel Algorithms for Graph Problems. Algo-
rithmica 5, 1 (1990), 43–64.

[29] KUTZELNIGG, R. Bipartite Random Graphs and
Cuckoo Hashing. In Discrete Mathematics and The-
oretical Computer Science (2006), Discrete Mathemat-
ics and Theoretical Computer Science, pp. 403–406.

[30] LEUNG, A. W., SHAO, M., BISSON, T., PASUPA-
THY, S., AND MILLER, E. L. Spyglass: Fast, Scalable
Metadata Search for Large-Scale Storage Systems. In
Proceedings of the 7th USENIX Conference on File and
Storage Technologies (FAST) (2009), vol. 9, pp. 153–
166.

[31] LI, Q., HUA, Y., HE, W., FENG, D., NIE, Z., AND
SUN, Y. Necklace: An Efficient Cuckoo Hashing
Scheme for Cloud Storage Services. In Proceedings
of the 22nd International Symposium of Quality of Ser-
vice (IWQoS) (2014), IEEE, pp. 153–158.

[32] LI, X., ANDERSEN, D. G., KAMINSKY, M., AND
FREEDMAN, M. J. Algorithmic Improvements for Fast
Concurrent Cuckoo Hashing. In Proceedings of the
Ninth European Conference on Computer Systems (Eu-
roSys) (2014), ACM, p. 27.

[33] LILLIBRIDGE, M., ESHGHI, K., BHAGWAT, D., DE-
OLALIKAR, V., TREZIS, G., AND CAMBLE, P. Sparse
Indexing: Large Scale, Inline Deduplication Using
Sampling and Locality. In Proceedings of the 7th
USENIX Conference on File and Storage Technologies
(FAST) (2009), vol. 9, pp. 111–123.

[34] MCKENNEY, P. E. RCU vs. Locking Performance on
Different CPUs. In linux.conf.au (2004).

[35] MCKENNEY, P. E., APPAVOO, J., KLEEN, A.,
KRIEGER, O., RUSSELL, R., SARMA, D., AND SONI,
M. Read-Copy Update. In Ottawa Linux Symposium
(2002), pp. 338–367.

[36] MCKENNEY, P. E., AND SLINGWINE, J. D. Read-
Copy Update: Using Execution History to Solve Con-
currency Problems. In Parallel and Distributed Com-
puting and Systems (1998), pp. 509–518.

[37] MITZENMACHER, M. The Power of Two Choices in
Randomized Load Balancing. IEEE Transactions on
Parallel and Distributed Systems 12, 10 (2001), 1094–
1104.

[38] PAGH, R., AND RODLER, F. F. Cuckoo hashing. Jour-
nal of Algorithms 51, 2 (2004), 122–144.

[39] POLYCHRONIOU, O., RAGHAVAN, A., AND ROSS,
K. A. Rethinking SIMD Vectorization for In-Memory
Databases. In Proc. SIGMOD (2015), ACM, pp. 1493–
1508.

[40] RICHA, A. W., MITZENMACHER, M., AND SITARA-
MAN, R. The Power of Two Random Choices: A Sur-
vey of Techniques and Results. Combinatorial Opti-
mization 9 (2001), 255–304.

[41] ROSS, K. A. Efficient Hash Probes on Modern Proces-
sors. In IEEE 23rd International Conference on Data
Engineering (ICDE) (2007), IEEE, pp. 1297–1301.

[42] SCHLAIPFER, M., RAJAN, K., LAL, A., AND
SAMAK, M. Optimizing Big-Data Queries Using Pro-
gram Synthesis. In Proceedings of the 26th Symposium
on Operating Systems Principles (SOSP) (2017), ACM,
pp. 631–646.

[43] SHAVIT, N. Data Structures in the Multicore Age.
Communications of the ACM 54, 3 (2011), 76–84.

[44] SUN, Y., HUA, Y., FENG, D., YANG, L., ZUO, P.,
AND CAO, S. MinCounter: An Efficient Cuckoo Hash-
ing Scheme for Cloud Storage Systems. In Proceedings
of the 31st Symposium on Mass Storage Systems and
Technologies (MSST) (2015), IEEE, pp. 1–7.

[45] SUN, Y., HUA, Y., JIANG, S., LI, Q., CAO, S., AND
ZUO, P. SmartCuckoo: A Fast and Cost-Efficient
Hashing Index Scheme for Cloud Storage Systems. In
Proceedings of 2017 USENIX Annual Technical Con-
ference (USENIX ATC) (2017), USENIX Association,
pp. 553–565.

[46] TRIPLETT, J., MCKENNEY, P. E., AND WALPOLE, J.
Resizable, Scalable, Concurrent Hash Tables via Rela-
tivistic Programming. In Proceedings of 2011 USENIX
Annual Technical Conference (USENIX ATC) (2011),
USENIX, pp. 145–158.

342 2019 USENIX Annual Technical Conference USENIX Association

[47] WANG, F., YUN, C., GOLDWASSER, S., VAIKUN-
TANATHAN, V., AND ZAHARIA, M. Splinter: Prac-
tical Private Queries on Public Data. In Proc. NSDI
(2017), pp. 299–313.

[48] WINBLAD, K., SAGONAS, K., AND JONSSON, B.
Lock-free Contention Adapting Search Trees. In Proc.
SPAA (2018), ACM, pp. 121–132.

[49] WU, S., LI, F., MEHROTRA, S., AND OOI, B. C.
Query Optimization for Massively Parallel Data Pro-
cessing. In Proceedings of the 2nd ACM Symposium
on Cloud Computing (SoCC) (2011), ACM.

[50] WU, Y., AND TAN, K.-L. Scalable In-Memory Trans-
action Processing with HTM. In Proceedings of 2016
USENIX Annual Technical Conference (USENIX ATC)
(2016), pp. 365–377.

[51] ZHANG, K., WANG, K., YUAN, Y., GUO, L., LEE,
R., AND ZHANG, X. Mega-KV: A Case for GPUs
to Maximize the Throughput of In-Memory Key-Value
Stores. Proceedings of the VLDB Endowment 8, 11
(2015), 1226–1237.

[52] ZUO, P., AND HUA, Y. A Write-friendly Hashing
Scheme for Non-volatile Memory Systems. In Proc.
MSST (2017).

USENIX Association 2019 USENIX Annual Technical Conference 343

NICA: An Infrastructure for Inline Acceleration of Network Applications

Haggai Eran1,2, Lior Zeno1, Maroun Tork1, Gabi Malka1, and Mark Silberstein1

1Technion – Israel Institute of Technology 2Mellanox Technologies

Abstract
With rising network rates, cloud vendors increasingly deploy
FPGA-based SmartNICs (F-NICs), leveraging their inline pro-
cessing capabilities to offload hypervisor networking infras-
tructure. However, the use of F-NICs for accelerating general-
purpose server applications in clouds has been limited.

NICA is a hardware-software co-designed framework for
inline acceleration of the application data plane on F-NICs in
multi-tenant systems. A new ikernel programming abstraction,
tightly integrated with the network stack, enables application
control of F-NIC computations that process application net-
work traffic, with minimal code changes. In addition, NICA’s
virtualization architecture supports fine-grain time-sharing of
F-NIC logic and provides I/O path virtualization. Together
these features enable cost-effective sharing of F-NICs across
virtual machines with strict performance guarantees.

We prototype NICA on Mellanox F-NICs and integrate
ikernels with the high-performance VMA network stack and
the KVM hypervisor. We demonstrate significant acceleration
of real-world applications in both bare-metal and virtualized
environments, while requiring only minor code modifications
to accelerate them on F-NICs. For example, a transparent
key-value store cache ikernel added to the stock memcached
server reaches 40 Gbps server throughput (99% line-rate) at
6 µs 99th-percentile latency for 16-byte key-value pairs, which
is 21× the throughput of a 6-core CPU with a kernel-bypass
network stack. The throughput scales linearly for up to 6 VMs
running independent instances of memcached.

1 Introduction

SmartNICs with integrated FPGAs (F-NICs) [19, 68, 89, 119]
are an appealing platform for accelerating I/O intensive net-
work applications. They have been increasingly deployed in
data centers and public clouds [33, 66], e.g., in each MS Azure
server, enabling line-rate throughput and low, predictable la-
tency at high power efficiency [33]. Many hardware vendors,
including Intel, have already announced F-NICs in their future
offerings [98].

Data-center F-NICs are used mainly to accelerate infras-
tructure tasks, such as network functions [61, 72, 80, 119]
and software-defined networking [33, 66]. These tasks lever-
age the F-NIC’s inline processing capabilities, where data
is processed while being transferred between the host and
the network, without CPU involvement. In addition, F-NICs
are often repurposed as standalone FPGAs running complete
applications, e.g., search or deep learning [20, 24, 60, 86].

This paper explores new acceleration opportunities emerg-
ing from the growing deployment of F-NICs in clouds, be-
yond infrastructure tasks and monolithic applications. We
seek to leverage F-NICs for inline acceleration of data plane
processing in network-intensive applications. For example,
F-NICs may run datacenter tax tasks, such as deserialization,
hashing, and authentication, which reportedly consume over
a quarter of the CPU cycles in data centers [48]. An F-NIC
may serve as an extra caching layer for key-value stores, re-
sponding directly in case of a hit and eliminating the CPU
involvement. We show, for example, that this architecture
achieves near line-rate throughput (40 Gbps) for stock mem-
cached (§6.2.1). Promising results for application-specific
traffic steering, packet transformation, and network stack of-
floading have been reported in prior work [50, 83]. We discuss
these and other applications in §3.

Unfortunately, building such F-NIC-accelerated applica-
tions today is hard. First, there are no adequate operat-
ing system abstractions for inline acceleration of general-
purpose applications on F-NICs. Such abstractions should
associate F-NIC tasks with the application process, and they
should provide well-defined execution boundaries and iso-
lated per-task state while supporting easy integration of F-NIC
functionality with the application logic. OpenCL and CUDA
provide general lookaside acceleration support, but they are a
poor match for F-NICs because they require explicit kernel
invocation and data transfers that are irrelevant for the in-
line processing scenario. Floem [83] provides language-level
constructs to accelerate applications on SmartNICs, but it
targets CPU-based rather than FPGA-based SmartNIC archi-
tectures, and requires application refactoring to use its data

USENIX Association 2019 USENIX Annual Technical Conference 345

flow model, complicating acceleration of legacy workloads.
SmartNIC-accelerated networking frameworks such as Ac-
celNet, eBPF-XDP, and DPDK rte_security [33, 39, 84] are
domain specific and lack application-level abstractions. Sys-
tems for data plane acceleration, e.g. P4 and FlexNIC [13, 50],
expose packet-level match-action rules for F-NIC manage-
ment, but lack abstractions for application-level semantics.

Second, F-NICs provide no virtualization support, pre-
venting their sharing among cloud tenants. Existing virtual-
ization mechanisms for FPGAs [18, 23, 34, 51, 101, 118] and
GPUs [49, 73] rely on space partitioning or coarse-grain time
sharing of the compute fabric. The former, however, results in
hardware underutilization [51, 112, 116], whereas the latter
may affect processing latency due to slow context switching
and FPGA reconfiguration times [49, 51, 73, 91], making it
unsuitable for latency-sensitive tasks. More fundamentally,
F-NICs lack I/O path virtualization to isolate and protect
per-application I/O across shared buses between the network,
the FPGA and the host CPU. Thus, current F-NICs cannot
guarantee performance isolation for co-located applications.

We introduce NICA, a system for FPGA-based NIC Server
Acceleration. NICA introduces new software abstractions and
co-designed F-NIC hardware runtime for application acceler-
ation in cloud systems. NICA manages one or more Accelera-
tor Functional Units (AFUs) [42, 101] – application-specific
hardware accelerators hosted on an F-NIC. Such AFUs can
be developed by users, or provided by cloud vendors and
deployed on-demand.
OS abstraction. We introduce a novel ikernel (inline kernel)
abstraction, which represents an AFU in a user program. An
application dynamically attaches the ikernel to one or more
transport layer sockets, activating the respective AFU. Sub-
sequently, all traffic sent and received via these sockets is
processed by the AFU without CPU invocation. To communi-
cate via the sockets, the CPU may use standard POSIX sock-
ets API calls, or a high-performance zero-copy interface for
application-level messages. The ikernel abstraction is private
to a process and provides protection for the AFU applica-
tion and network state. We discuss the ikernel abstraction, its
network stack integration, and FPGA runtime support in §4.1.
AFU virtualization. NICA supports sharing of AFUs among
multiple virtual machines (VMs) while guaranteeing state pro-
tection and quality of service (QoS). We address two primary
requirements: (1) AFU I/O channel virtualization, including
host and network traffic, by adding anti-spoofing, classifica-
tion, and packet schedulers for the I/O sent and received by
AFUs; and (2) fine-grain AFU time-sharing, which uses a
hardware task scheduler that switches contexts at a fine gran-
ularity, thus allowing better hardware utilization for latency-
sensitive applications. We describe AFU virtualization in §4.2
and show how it enables performance isolation in §6.

NICA provides necessary on-FPGA services for accelerat-
ing applications on F-NICs in a multi-tenant setting, including
an FPGA-resident network transport layer, compute and I/O

scheduling blocks, and AFU state isolation. However, the
development of high-throughput network-focused AFUs on
FPGAs is beyond the scope of this paper. Fortunately, some
promising solutions are emerging, such as template libraries
with optimized building blocks for network processing [32].
In addition, we believe that cloud providers will increasingly
offer AFUs using an “app marketplace” deployment model [4,
17, 40], with a variety of AFUs ready to be used on their
infrastructure (see §3).

We prototype NICA1 on Mellanox Innova F-NICs [68]
with a Xilinx FPGA and 2GB of onboard memory. We imple-
ment the ikernel API, integrate it with the VMA kernel-bypass
network stack [69], and implement the AFU virtualization
support in the KVM hypervisor. We also co-design the FPGA
hardware support for the software abstractions and AFU vir-
tualization, and we integrate full UDP and partial TCP layer
implementation in FPGA.

We evaluate the system with microbenchmarks and accel-
erate two real-world applications: a memcached server and a
Node.js-based IoT monitoring server, by implementing the
respective AFUs on the F-NIC. Enabling F-NIC acceleration
required minimal software changes: 107 additional lines of C
and 20 additional lines of JavaScript respectively.

A transparent hot-item cache AFU integrated with
memcached serves GET hits at 6 µs 99th-percentile latency
and 40.3 Mtps throughput for 16B keys/values, 99% of the
40 Gbps line rate and 21.6× faster than the 6-core CPU base-
line. For a Zipf(0.99)-distributed workload with 0.2% SETs,
NICA acceleration results in a 4.6× speedup.

NICA allows sharing of an F-NIC among multiple VMs
while providing significant performance gains. It introduces
negligible throughput and latency overheads while maintain-
ing a fair bandwidth allocation, controllable by the hypervisor.

In summary, we make the following contributions:
• We introduce an ikernel OS abstraction for inline accelera-

tion of applications on F-NICs.
• We design an F-NIC virtualization framework that supports

I/O QoS and low-latency time sharing of compute resources.
• We implement NICA for Mellanox F-NICs, analyze its per-

formance, and demonstrate the development simplicity and
performance benefits for accelerating memcached and a
Node.js-based IoT server.

2 Background

We describe the F-NIC architecture and survey FPGA pro-
gramming principles and sharing mechanisms.

2.1 F-NIC architecture
We describe bump-in-the-wire F-NICs, focusing on Mellanox
Innova, but others [19, 80, 89] are similar.

1https://github.com/acsl-technion/nica

346 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/acsl-technion/nica

Figure 1: A bump-in-the-wire F-NIC

Bump-in-the-wire. A typical F-NIC (Figure 1) combines a
commodity network ASIC (e.g., ConnectX-4 Lx NIC) with
an FPGA and local DRAM. The FPGA is located between the
ASIC and the network port, interposing on all Ethernet traffic
in and out of the NIC. The FPGA and the ASIC communicate
directly via an internal bus (e.g., 40 Gbps Ethernet), and a
PCIe bus connects the ASIC to the host.

The bump-in-the-wire design reuses the existing data and
control planes between the CPU and the NIC ASIC, with
its QoS management, and virtualization support (SR-IOV),
mature DMA engines, and software stack.
F-NIC programming. The development of an F-NIC-
accelerated application involves both hardware logic on
FPGA and associated software on the CPU. F-NIC vendors
provide a lightweight shell IP: a set of low-level hardware
interfaces for basic operations, including link-layer packet
exchange with the network and the host, onboard DRAM ac-
cess, and control register access. However, the vendor SDK
leaves it to customers to implement higher level features such
as FPGA network stack processing or virtualization support.

2.2 FPGA concepts
Field Programmable Gate Arrays (FPGAs) are “a sea” of
logic, arithmetic, and memory elements, which users can con-
figure to implement custom compute circuits. FPGA compute
capacity is determined by the area available for the circuits.
FPGA development. FPGAs can be seen as “software-
defined” hardware. The software definition, a design, is im-
plemented using register transfer languages (RTL) such as
Verilog. Additionally, designers can use high-level synthesis
(HLS) tools to generate RTL, e.g., from a restricted version
of C++ [67]. However, HLS C++ programs are different from
CPU programs, and must follow certain rules, including ex-
plicit exposure of fine-grain pipeline- and task- parallelism to
achieve high performance. Implementation tools then compile
the design into an FPGA image targeting specific hardware.

Finally, users can load the image onto an FPGA (slow, up to
a few seconds), entirely replacing the previous design. Some
FPGAs support partial reconfiguration to replace only a sub-
set of the entire FPGA, a much faster process (milliseconds),
which unfortunately incurs significant area overheads [51].
FPGA sharing. There are three ways to share an FPGA:
space partitioning, coarse-grain, and fine-grain time sharing.

Space partitioning divides FPGA resources into disjoint
sets used by different AFUs [18, 20, 51]. If shared I/O in-
terfaces (memory, PCIe bus) are securely isolated and mul-
tiplexed, this method enables low-overhead FPGA sharing
among mutually distrustful AFUs but requires larger FP-
GAs to fit them all. Coarse-grain time sharing dynami-

cally switches AFUs via full or partial reconfiguration [20,
51]. It incurs high switching latency and thus is not suitable
for F-NICs’ latency-sensitive applications. Fine-grain time
sharing allows multiple CPU applications to use the same
AFU [44]. The AFU implements the context switch inter-
nally, in hardware. Packet processing applications such as
AccelNet [33] use this approach to process each packet in the
context of its associated flow. Such AFUs oversee switching
between the contexts; therefore this type of sharing requires
AFUs to be trusted to ensure fair use and state isolation be-
tween their users.

NICA combines both space sharing for untrusted AFUs,
and fine-grain time sharing for trusted AFUs, to achieve max-
imum utilization under area constraints of F-NICs.

3 Motivation

We consider emerging opportunities for application accelera-
tion by using F-NICs in clouds.

3.1 F-NICs in data centers

Microsoft has been among the first to deploy F-NICs at large
scale, having installed the Catapult F-NICs in over a mil-
lion Azure servers. Their recent work [33] analyzes the cost,
power, and performance trade-offs of F-NICs in data cen-
ters and decisively shows their benefits. Following Azure,
other data centers, such as China Mobile [115], Tencent [66],
Huawei [88], and Selectel [94], are deploying F-NICs, and
leading hardware vendors are adding F-NICs to their offer-
ings [98]. These technology trends suggest that F-NICs will
become a commodity, motivating our goal to broaden the
scope of their applications.

3.2 Use cases for F-NIC acceleration

What sets F-NICs apart from stand-alone FPGAs is their
ability to interpose and process the network traffic to and from
the host with low overhead. For application acceleration, the
application data plane can be partitioned between the F-NIC
and the CPU, even for latency-sensitive fine-grain tasks.

We identify several common task categories in the server
data plane that benefit from F-NIC acceleration.
Filtering. F-NICs may execute compute-intensive process-
ing, such as per-message stateless authentication (e.g., JSON
web token validation [47]), and filter invalid requests before
reaching the CPU. We evaluate this example in §6.2.2.

Such filtering patterns arise in many server applications.
For example, F-NICs may implement high-performance, sim-
plified versions of popular services to accelerate common
behavior (fast path), falling back to the CPU for corner cases
(slow path). We show in §6.2.1 how an F-NIC-hosted key-
value store cache reduces server load.

USENIX Association 2019 USENIX Annual Technical Conference 347

Transformation. F-NICs may convert data formats, perform
(de)serialization, compression, encryption, or similar datacen-
ter tax tasks [48]. They can change data layout, e.g., transpose
matrices [35], sample, or realign data [2, 38] for efficient
CPU/GPU processing or storage. As F-NICs may run a (po-
tentially limited) network transport layer, they may speed up
CPU transport layer processing [50], as we show in §6.

Transformation is often combined with filtering. For exam-
ple, to accelerate the log-structured merge (LSM)-trees [22,
79], the F-NIC may store the tree’s first level in its local mem-
ory, executing updates without interrupting the CPU, batching
and sorting them before sending them to the host.
Steering. F-NICs may improve server performance using
application-specific packet steering and inter-core load balanc-
ing [50, 89], processing complex steering policies at line-rate,
e.g., using heavy-hitter approximation sketches [62].
Generation. Applications may offload the transmission of
outgoing messages to multiple destinations. Examples include
data replication and erasure coding in storage systems [38,
53, 77], and the shuffle stage in distributed analytics engines.

3.3 AFUs in the cloud
AFUs are custom accelerators that can be instantiated on
any compatible FPGA and used via a companion software
library. There are two deployment models for cloud AFUs: in
the FPGA-as-a-Service (FaaS) model, tenants use their own
AFUs on cloud infrastructure [3, 5, 41], whereas with the app
marketplace model, cloud providers offer common AFUs for
on-demand deployment [40].

For example, while Amazon provides FaaS, its Marketplace
offers third-party AFUs [4]. Similarly, Microsoft deploys its
own cloud hardware microservices [17, 24, 33]. The market-
place model opens more opportunities for better F-NIC uti-
lization. As cloud providers develop or audit these AFUs, they
can trust them to allow fine-grain sharing. By co-locating ten-
ants that request the same AFU, cloud providers may increase
their infrastructure utilization, thereby increasing power effi-
ciency [108] and reducing costs. Pre-designed AFUs are less
flexible than customer-provided AFUs, but vendors can offer
them at a lower cost due to the more aggressive sharing.

NICA’s design supports both deployment models.

4 Design

NICA overview. Figure 2 shows the main NICA components
with a single physical AFU. NICA comprises three layers:
application-visible OS abstractions and services inside a VM
integrated with the network stack (§4.1); the hypervisor layer
for managing F-NIC resources and QoS (§4.2); the hardware
layer which includes the support for OS abstractions, physical
AFU logic (pAFU), a virtualization framework exposing vir-
tual AFUs (vAFUs), and a hardware runtime with network I/O
services for application-level message processing on AFUs.

VM1

NICA driver

vAFU

NICA manager

Application logic

ASIC
NIC

libnica

Application

Hypervisor

ikernel

Network
stack

vAFU

pAFU

vAFU
FPGA

H
a
rdw

are
S
o
ftw

are

NICA hardware
runtimeNetwork

Figure 2: NICA overview. Light blue shapes are NICA com-
ponents. Blue and brown lines are the data and control path
respectively. vAFU: virtual AFU, pAFU: physical AFU.

4.1 Abstractions for inline acceleration

Among our primary goals is to simplify the use of inline
accelerators in existing applications with minimal changes.
Our abstractions thus provide a general interface for AFU
management, which is compatible with standard network I/O
interfaces. They allow application control of AFU execution
and efficient communication between the host and the AFU.

4.1.1 The ikernel abstraction

An ikernel is an OS object that represents an AFU in a user
program. An owner process creates an ikernel and controls
it exclusively. Essentially, the ikernel extends the process
abstraction into the AFU, and NICA protects the ikernel state
from other CPU processes and ikernels.

To invoke an AFU, it must be associated with an active net-
work flow. Thus, applications activate the AFU by attaching
one or more sockets to its ikernel, thereby rerouting the asso-
ciated traffic through the AFU. The ikernel stops processing
the socket’s traffic when the application detaches or closes
the socket, keeping the AFU state intact for later invocations.
Dynamic attachment adds flexibility by enabling software
involvement in connection establishment and session prepara-
tion, thereby allowing applications to activate an ikernel only
for specific clients or request types, for example.

The attachment semantics depends on the protocol. For a
UDP socket, the ikernel receives all incoming packets des-
tined to the socket’s listening port. For TCP sockets, the effect
of attachment depends on the socket state. Attaching a con-
nected TCP socket migrates its state to the AFU hardware
network layer. After a process attaches a listening TCP socket
to an ikernel, the AFU handles new connection requests, as
applications with a high connection rate may benefit from ac-
celerating the connection establishment process. Nevertheless,
NICA notifies the host network stack about new connections,
off the critical path, to provide application control over these
connections from the host.

A process may create several shared-nothing ikernels of
the same AFU, e.g., to keep different cryptographic contexts
for a crypto-AFU, but our intended usage is one ikernel per
AFU per process. Multiple threads of a process may attach

348 2019 USENIX Annual Technical Conference USENIX Association

Function Purpose

ikernel∗ ik_create(uuid_t, int dram_size) Allocate an ikernel
void ik_destroy(ikernel∗) Deallocate an ikernel
int ik_attach(ikernel∗, int sock) Attach ikernel and socket
int ik_detach(ikernel∗, int sock) Detach ikernel and socket
int ik_command(ikernel∗, cmd∗ desc) Invoke RPC command

cr∗ ik_create_cr(ikernel∗) Allocate a ring
void ik_destroy_cr(cr∗) Deallocate a ring
int cr_post_recv/send(cr∗, buf∗) Pass buffers to the ikernel
int cr_poll(cr∗, wc∗, int n) Poll ring for completion

Table 1: Control (top) and data plane (bottom) ikernel API.

their sockets to the same ikernel, thereby sharing the AFU
state among them.

For now, a socket can be attached only to a single ikernel,
but we plan to enable ikernel chaining in the future (§4.4).
Alternatives. We choose the ikernel abstraction because it
captures the intuitive application-level semantics of inline
network processing. We also considered using match-action
rules, as in FlexNIC [50] and DPDK [84]. These are not asso-
ciated with sockets, but rather with packet header rules, e.g.,
selecting packets of a specific five-tuple. Such an interface
suits packet processing but is too low-level for application
logic offloading. The ikernel socket-level abstraction hides
the details of the hardware-resident network stack and allows
simpler integration with existing applications.

4.1.2 Control plane

The control APIs (Table 1) allow initialization, teardown, and
access to the AFU-resident application state. Under the hood,
they interact with the network stack on the host and on the
F-NIC to coordinate resource allocation and AFU processing.
Initialization and attachment. An ik_create call initial-
izes an ikernel given an AFU’s UUID. When the ikernel
attaches to a socket it updates the F-NIC network stack. Once
the ikernel is attached, the NICA driver tracks the socket state,
detaching the flow when the socket is closed. The application
may also detach an ikernel before the connection terminates.

The ik_create call may initialize a pre-loaded AFU or
load it at runtime using partial reconfiguration. The ikernel
abstraction hides the AFU hardware initialization details from
the user, leaving the OS in charge of manipulating the FPGA-
AFU allocation, similarly to AmorphOS [51].
Application state. Applications may access the ikernel state
in the AFU. The hardware could expose the state in two ways:
(1) as shared memory between the host and the F-NIC; or
(2) using remote procedure calls (RPC) from the CPU to the
AFU that retrieve/set the state. Shared memory might not
be efficient, however. First, FPGA logic can keep frequently-
accessed data in private memory, such as registers or block
RAM, for efficiency. This memory is not exposed to the CPU.
Further, access to the shared state requires explicit synchro-
nization, which is costly over PCIe. Therefore, we chose the
RPC model, which allows the AFU to implement arbitrary

atomic transactions, including e.g., getting a snapshot of its
state. Internally, NICA also uses the same mechanism to con-
trol transport layer and QoS parameters.
Error handling. An AFU that encounters an error exposes it
to an ikernel runtime which periodically checks for errors via
the RPC mechanism. In addition, the ikernel may abort the
connection or detach itself from the respective sockets and
forward packets without offloading.

4.1.3 Data plane

NICA provides two ways to perform network I/O with inline
acceleration: POSIX API and custom rings.
POSIX networking API. After attaching an ikernel to a
socket, the application may use standard I/O calls, e.g., send,
recv, and epoll_wait, while the AFU transparently pro-
cesses the data in-flight. We currently support the POSIX
APIs only for UDP sockets.
Custom rings. POSIX I/O interfaces incur the overhead of
extra data copies into user buffers [81] and host-side network
stack processing. On the other hand, an AFU may need to ex-
change application-level messages with the host application.
For example, a deserialization AFU may send ready-to-use
data objects to the application. Furthermore, an AFU may
need to steer the processed messages to different CPU cores,
i.e., for application-aware load balancing.

NICA introduces a custom ring2 (CR) abstraction that pro-
vides a zero-copy API for sending/receiving application mes-
sages, bypassing the host network stack. Each ikernel may
create multiple associated CRs to enable message steering for
multi-core systems.

The CR interfaces are similar to VIA/RDMA verbs [30]
(Table 1). Specifically, each CR comprises a queue pair (QP)
and a completion queue (CQ). The application allocates its
communication memory buffers and registers them with the
CR. It then posts the send/receive requests to the respective
queue in the QP. The request completions show up in the CQ.
Custom rings vs. random access. FPGA acceleration frame-
works [37, 43, 101] and some I/O intensive AFUs [29, 38, 60]
allow random access to CPU memory from the AFU, which
is useful for fine-grain sharing of data-structures between
the CPU and the AFU. NICA currently focuses on the AFU
tasks that communicate with the CPU via a streaming I/O
pattern, which is much easier to implement using a producer-
consumer CR interface. We leave support for random host
memory access for future work.
Synchronization. In the most common application scenarios,
networking or custom ring operations implicitly synchronize
the CPU application and the AFU processing. In more com-
plex cases, when the AFU accumulates the application state
(e.g., for network I/O monitoring or consensus), the ikernel

2The hardware uses a descriptor ring buffer just like a regular NIC, but
the buffer contents are application messages rather than raw packets.

USENIX Association 2019 USENIX Annual Technical Conference 349

RPC interface allows AFU developers to provide application-
specific mechanisms to safely access ikernel state.

4.1.4 Usability

We expect adding ikernels to existing applications to require
relatively small design or code changes. In case of filtering
(see §3.2), an application may still use POSIX sockets as
before, while receiving only the filtered data. For example,
memcached requires no changes to its data processing to use
the KVS cache AFU (§6). Data transformation tasks, such as
deserialization, may use custom rings to obtain or send back
the data in an application-friendly form. Steering applications
may use per-core custom rings to get the contents directly
to the correct application thread or a GPU. A generation
application, e.g., replication, may send only one data copy
via the custom ring, while the AFU will distribute it to pre-
configured destinations.

4.2 Virtualization
To support fine-grain sharing of AFUs, as required for low
latency applications, we introduce the notion of a virtual AFU,
vAFU, which represents a single isolated hardware entity on
the F-NIC. Each vAFU provides state protection and perfor-
mance isolation across all the shared resources on the F-NIC.
To clarify, a vAFU is a hardware entity, whereas an ikernel is
an OS object that belongs to a process. Connecting multiple
ikernels to the same vAFU might be possible, i.e., allowing
in-VM resource allocation policy enforcement, yet we do not
support it in our prototype.

One F-NIC may host multiple physical AFUs via space
sharing, whereas each such AFU may support multiple vAFUs
via fine-grain time sharing, as explained below. For example,
our key-value-store cache AFU supports 64 vAFUs, allow-
ing concurrent acceleration of up to 64 different memcached
servers on the same F-NIC (§6).
Fine-grain AFU sharing. Supporting multiple vAFUs on a
single physical AFU requires low-overhead hardware context
switching mechanism. The vAFU context includes the ikernel
state in DRAM and registers and the contexts of the sockets
connected via that vAFU. Each received packet may belong
to a different vAFU so slow context switch would not only
increase application latency but also increase the required
NICA internal buffer space.

To support fine-grain sharing, we store the vAFU context by
reserving fast memory for each vAFU rather than evict/reload
it to/from slow DRAM memory. Specifically, the AFU reg-
isters are replicated to store data for all concurrently active
vAFU contexts. Each vAFU is associated with a hypervisor-
chosen tag. The AFU switches to the context requested by the
scheduler by updating the active tag register. Such a context
switch can be extremely fast, e.g., up to 3 clock cycles in our
prototype.

However, the number of vAFUs that can be supported is
constrained due to the limited size of fast memory on the
FPGA. For more vAFUs, AFUs may use DRAM to store
the contexts and use latency hiding techniques, i.e., increased
concurrency. Our current prototype uses fast memory, yet it is
enough to host up to 64 vAFUs for the evaluated applications.

4.2.1 State protection

NICA protects the vAFU state in DRAM, fast memory, and
hardware registers. For the DRAM, we use a segment-based
MMU for simplicity. Similarly, we protect the control regis-
ters of the RPC interface by including a vAFU tag.

Additionally, NICA ensures correct steering of network traf-
fic to and from the vAFU via its on-NIC network stack (§5.3).
In particular, it guarantees that a vAFU will not perform net-
work spoofing attacks toward the host and will receive only
the packets destined to that vAFU. These two aspects are
essential for supporting untrusted AFUs in NICA.

4.2.2 Performance isolation

NICA supports isolation of I/O channels and compute re-
sources. The compute scheduling is necessary only among
the vAFUs of the same physical AFU. The FPGA loads dif-
ferent physical AFUs into different partitions, and thus they
do not share FPGA compute resources. DRAM bandwidth
partitioning is left for future work.
I/O bandwidth sharing. The bandwidth allocation between
tenants is often implemented inside a virtual switch or in the
NIC internal switch. However, in a bump-in-the-wire archi-
tecture the F-NIC sends vAFU-generated messages directly
to the network, bypassing these policies. Therefore, NICA
provides its own bandwidth allocation mechanisms, similar
to the traffic class (TC) mechanisms used in NICs [10].

To control the vAFU egress bandwidth, both towards the
CPU and towards the network, we add a set of TC queues (see
Figure 3). Packets are classified to these queues and sched-
uled. We use a work-conserving deficit round robin (DRR)
scheduler [95] to allocate bandwidth, but more complex poli-
cies can be used. NICA’s bandwidth scheduler is trusted and
used by all the vAFUs on the F-NIC.

The vAFU recognizes when the TC queues are full and
may drop the packets or propagate the contention if possible.
For example, it may slow down the host by using custom
ring flow control or slow down the sender through explicit
congestion notification (ECN).

NICA does not manage the ingress bandwidth into the
vAFU from the network or the host, as the sender (TOR or
host virtual switch) already shapes ingress traffic.
AFU compute sharing. An AFU must determine which
vAFU to activate at any given time, and which packets to
serve first. We considered two design options: a general com-
pute scheduler for all AFUs (similar to the I/O scheduler)

350 2019 USENIX Annual Technical Conference USENIX Association

or an internal AFU-specific scheduler for each AFU. These
two options represent an inherent trade-off between FPGA
resource consumption and design generality.

A generic scheduler in front of the vAFUs could reorder
packets according to a global policy, simplifying the AFU
design. However, such a scheduler requires deep input queues,
therefore increasing consumption of F-NIC fast memory. Fur-
ther, the need for queuing is protocol-dependent. For example,
TCP has its own input queues to receive out-of-order pack-
ets, so extra scheduling queues would be wasteful. Moreover,
AFUs may customize queue contents to save resources, e.g.
by keeping parsed requests instead of full packets.

We thus decided to implement a custom, application-
specific scheduler in each AFU.

4.3 AFU development
AFUs implement hardware interfaces to receive/transmit
transport layer and custom ring data, configuration and control
interfaces for RPC, and, optionally, provide vAFU scheduling
and virtualization.

All the packets passing through an AFU are tagged with
metadata that identifies the associated ikernel and flow, which
can be used by the AFU for ikernel state isolation. The AFU
receives per-TC usage levels and CR flow control (see §5.2).

While designing such FPGA hardware can be difficult, we
try to simplify the development by using high-level synthesis
to design our AFUs in C++, and use the ntl class library [32]
to implement common modules such as AFU schedulers and
control-plane interfaces. In addition, the NICA hardware run-
time handles some common tasks such as transport processing
and egress scheduling, thus simplifying AFU development.

4.4 Discussion

F-NIC transport layer. An inline AFU requires transport
layer services to process data at the application layer; it may
terminate flows or generate and send new messages. Our
current design uses a full implementation of UDP and TCP
logic in hardware. With this solution, the F-NIC effectively
runs its own complete network stack.

A complete TCP/IP stack in hardware simplifies AFU de-
velopment but increases F-NIC resource consumption and
maintenance difficulty [75]. To eliminate NIC transmission
buffers, an AFU could generate retransmissions on-demand
or use host memory [85, 97]. If packet reordering is rare,
an AFU may process received data only in-order, deferring
out-of-order packets to the CPU [85]. A resource-efficient
TCP design for inline AFUs warrants further research, so we
choose a simple solution to evaluate the ikernel abstraction
compatibility with TCP.
Virtual switch offloading. F-NICs intercept the inbound net-
work traffic before it reaches the CPU. As a result, it becomes
difficult to handle hypervisor policy and virtual networking

rules, e.g., as in Open vSwitch, because they are typically
handled by the hypervisor’s virtual switch software running
on CPU. This issue is not unique to NICA and exists with
standard SR-IOV NICs [33]. Typical solutions pass the first
packet to software and offload per-flow policy to hardware
match-action rules [33, 59, 78]. While this may take signif-
icant area of the F-NIC’s FPGA [33], future F-NIC designs
may be able to harden this functionality [20, 31].
Multi-AFU support and services. Our design provides all
the necessary mechanisms to run multiple AFUs on the
F-NIC: packet schedulers, steering, RPC and MMU isola-
tion modules. Currently, a single socket may only be attached
to a single AFU. However, there are use cases for chaining
several AFUs in a single application to accelerate various
aspects of the server’s traffic [16, 56, 117]. Multi-AFU chain-
ing requires extensions to resource isolation mechanisms and
software interfaces, which we plan to explore in the future.

5 Implementation

We implement NICA for the Mellanox Innova F-NIC and
integrate it with the KVM/QEMU hypervisor and VMA user-
space networking library [69].

5.1 AFU virtualization

NICA implements hardware virtualization of the physical
AFUs, exposing virtual AFUs (vAFUs in Figure 2) to VMs.
Currently, the hypervisor allocates one vAFU for each re-
quested ikernel. NICA isolates the vAFU I/O channels in
hardware and requires no software mediation.

We utilize the NIC’s SR-IOV functionality to virtualize
the data path (both POSIX and custom rings). SR-IOV en-
ables unmediated overhead-free access from the guest to the
NIC hardware. In general, implementing SR-IOV in custom
accelerators is quite challenging, but the bump-in-the-wire
architecture of our F-NIC allows reusing the existing NIC
hardware SR-IOV mechanism. For the control plane, which is
less sensitive to performance, NICA uses para-virtualization.

5.2 Software

We implement the NICA API in the libnica library. It inte-
grates with the VMA user-space networking library, providing
the POSIX socket API with kernel bypass and direct hardware
access. We modify VMA to support the ikernel abstraction.

The NICA VM driver mediates between libnica and the
hypervisor’s NICA manager daemon, using a para-virtual de-
vice (virtio-serial). The NICA manager runs in the hypervisor
and controls AFU hardware through the F-NIC kernel driver.
NICA software stack is about 2,200 LOC.
Custom ring using RoCE. We use the F-NIC’s RoCE sup-
port [105] to implement the CR, employing the ASIC NIC

USENIX Association 2019 USENIX Annual Technical Conference 351

FPGA - vendor shell
H

os
t

N
et

. P
ar

se
r

S
te

er
in

g
Flow
table

AFU

S
ch

ed
.

T
ra

ns
po

rt

P
kt

. S
ch

ed
.

TCs

T
ra

ns
po

rt
C

R

MMU

DRAM
NICA runtime services RPC

H
os

t
N

et
.

Figure 3: NICA hardware runtime (only ingress is shown,
1 AFU). Isolation modules are green. Each AFU supports
multiple vAFUs. Sched.=Scheduler.

hardware and software layers using the bump-in-the-wire ar-
chitecture. The implementation associates CRs with RoCE
unreliable connected (UC) queue pairs (QPs). To send to a spe-
cific CR, NICA’s transport layer generates RoCE packets to
the host, targeting the appropriate QP. The ASIC RoCE engine
writes the data directly to the application buffers, providing
address translation, DMA, and completion notifications.

In our bump-in-the-wire F-NIC, the FPGA logic does not
have a direct end-to-end flow control mechanism with the host,
and UC does not provide such a mechanism either. Therefore,
NICA adds a credit-based flow control mechanism between
the AFU and the CPU application. The custom ring APIs
transparently invoke this mechanism.

5.3 Hardware runtime

Figure 3 shows our FPGA processing pipeline. For clarity, we
describe ingress (from network to host) only. The FPGA run-
time provides the hardware support for inline programming
abstractions and the essential services for inline acceleration.
These include: (1) the custom rings and RPC mechanism to
support efficient data and control plane primitives for ikernels;
(2) a memory management unit (MMU) for memory isolation;
(3) a network processing stack to support application-level
processing in the AFU, which includes the parser, flow steer-
ing, and the transport layer; and (4) a virtualization layer,
implementing AFU and packet schedulers.

We develop NICA and the evaluated AFUs in HLS [114]
and Verilog. Table 2 shows the FPGA resources and number
of code lines. NICA operates the FPGA at 216.25 MHz.

TCP/IP implementation. Our prototype includes full sup-
port for UDP and partial support for TCP. The UDP/IP ser-
vice splits/combines the header and the payload. As the CR
utilizes RoCE over UDP, it also uses the UDP/IP service.

The TCP implementation builds on an existing 10 Gbps
FPGA TCP/IP stack [96]. Its integration with NICA is incom-
plete, as it lacks virtualization and socket migration support
(though existing techniques apply [8, 27]). It is included pri-
marily to validate how NICA abstractions hold with TCP.

Table 2: FPGA utilization and lines of code. LUTs: lookup
tables, FFs: flip-flops, RAMB18: block RAM units.

Area (% of total) LOC
Module LUTs FFs RAMB18 HLS Verilog

Sy
st

em

NICA 13% 9% 13% 6643 1736
TCP stack 6% 4% 13% 15303 1110
Vendor shell 51% 32% 7%

A
pp

s NICA-KVcache 5% 2% 2% 975
IoT server 10% 7% 8% 646 1627

5.4 Limitations

Our prototype may run only two physical AFUs, where one is
a minimal AFU that passes through unmodified traffic. This
is not a design limitation but stems from the FPGA area con-
straints (see Table 2). Further, NICA does not yet support
virtual switch offloading, and our current CR implementation
does not transmit, only receives. In addition, our F-NIC does
not support partial reconfiguration. We hope the next gen-
eration of the F-NIC [31] will resolve these limitations, as
it is expected to have a larger FPGA with more space and
hardened network virtualization support.

NICA performance drops dramatically when crossing
NUMA links. We are investigating a potential hardware bug.

6 Evaluation

Hardware setup. We use four machines with Intel® Xeon®

E5-2620 v2 2.1 GHz CPUs, connected via a Mellanox
SN2100 40 Gbps switch. Three (clients) use Mellanox
ConnectX®-4 Lx EN NIC, and one (server) uses a 40 Gbps
Mellanox® Innova™ Flex 4 Lx EN (1st gen.) F-NIC, equipped
with a Xilinx XCKU060 FPGA. The server is a dual socket
NUMA machine with 64 GB RAM. Hyper-threading and
power saving settings are disabled.

CPU baseline. We use VMA [69] user-level network stack
with kernel bypass, optimized by Mellanox and broadly used
for high-performance networking [33]. We use commodity
NICs with the same ASIC as our F-NIC but without the FPGA.
Due to the NUMA performance issue of the current prototype
(§5.4), to allow a fair comparison, we constrain our experi-
ments to the NUMA node closer to the NIC.

F-NIC maximum power consumption. The F-NIC con-
sumes up to 30 W [68] vs. 14.2 W [70] for the client NICs.

Performance measurement. We use sockperf [71], a
benchmarking tool optimized for VMA. To reliably measure
performance, we use performance counters on NICA’s FPGA
runtime, the NIC, and the switch. We run each experiment 5
times, each 60 second long.

NICA configuration. We set a max. of 4 TCs, 64 ikernels,
VMs, and custom rings, 1K UDP ports, and 10K TCP flows.

352 2019 USENIX Annual Technical Conference USENIX Association

1 4 16
 throughput [Gbps]

2
4
6
8

10
12

la
te

nc
y

[
se

c]

CPU VM CPU NICA VM NICA

(a) Throughput vs. latency (99th-
percentile) for echo. Vertical arrow:
line rate, CPU: kernel-bypass.

16 128 256 512 1024
payload [bytes]

0

20

40

th
ro

ug
hp

ut
 [G

bp
s]

UDP/6 CR/1 CR/6 line rate

(b) UDP on AFU. UDP: CPU
baseline (POSIX + kernel-bypass),
CR: custom ring/number of cores.

Figure 4: Microbenchmarks

6.1 Microbenchmarks

We use several microbenchmarks to evaluate the benefits
of NICA acceleration through filtering and transport layer
acceleration and to estimate virtualization overheads.
Experiment 1: Virtualization performance. Figure 4a
shows the throughput-latency comparison of bare-metal and
virtualized echo server AFU vs. the CPU baseline for 64-byte
packets. We measure no overheads of the AFU virtualization.

At 5 Gbps, the latency of the virtualized AFU is 2×/2.8×
lower than bare-metal/in-VM CPU server respectively. At
6.7 Gbps, the baseline latency spikes to 38 µs, while the AFU
achieves up to 27.6 Gbps at 4 µs latency, above which we see
packet drops. The stable low latency at high throughput is a
valuable property of F-NIC accelerators.
Experiment 2: UDP performance. We run a pass-through
AFU that receives UDP packets and transfers them to the host
via CRs, saving the host UDP processing. The CPU baseline
uses VMA for POSIX API kernel bypass, with 6 CPU cores.
Figure 4b shows the throughput for different packet sizes.
Offloading UDP processing to the AFU boosts the throughput
from 2.9× and 1.7× for small and large packets respectively.
For larger packets, a single-core CR outperforms 6-core UDP.
Experiment 3: TCP performance. We evaluate NICA’s
preliminary TCP support by accelerating a monitoring server
microbenchmark. The server receives integers as 18-byte
messages (4-byte integers with a 14-byte sockperf header) and
computes their average, alerting the user when the received
values are above a given threshold. With NICA, the AFU
maintains the average and sends only the messages above the
threshold via the custom ring (bypassing the host TCP stack).

For 6 flows from 6 clients, the AFU consumes 34.8M mes-
sages/sec, 3× faster than the baseline’s 11.5M messages/sec
(single core). The AFU benefits diminish as the portion of
the messages sent to the host increases, down to a modest
11% throughput improvement. This indicates that the F-NIC
transport layer processing contributes much less than filtering
to the overall performance benefits.
Experiment 4: I/O isolation overheads. We evaluate the
egress scheduler when using two AFUs: a traffic generator
AFU and a pass-through AFU. The former generates mes-

sages to the network at maximum throughput. The latter trans-
fers messages between the host and the network. These AFUs
share the network egress I/O channel and are assigned to sep-
arate traffic classes. We set the scheduler quantum to 1 KB.

We measure the latency of a few 64-byte packets sent via
the pass-through AFU while the generator AFU sends 1514-
byte packets. At 38.4 Gbps load, the low-latency pass-through
packets suffer a 1 µs overhead to 99th-percentile latency com-
pared to an empty system. This result demonstrates that the
I/O isolation mechanism achieves low overhead even under
heavy contention.

6.2 Application benchmarks
We accelerate two large applications: memcached and a
Node.js-based IoT server. We build a transparent cache AFU
for the former and an authentication AFU for the latter, inte-
grating both into the CPU software.

6.2.1 Transparent memcached cache

We prototype a transparent look-through cache for mem-
cached, called NICA-KVcache. The AFU parses mem-
cached’s ASCII UDP protocol and serves GETs directly
from its F-NIC DRAM-resident cache. The AFU passes GET
misses and other update requests to the host. Upon update,
the AFU invalidates the respective cache entry. The AFU
populates the cache by intercepting GET responses from the
host, ensuring coherence even if the host drops the updates
due to overload. The AFU caches keys/values of up to 16-byte
and uses a direct-mapped cache for simplicity.

We implement two designs: one with POSIX API and an-
other with CRs. The former requires changing memcached
to instantiate the ikernel and attach sockets. The latter intro-
duces CR polling to the memcached worker thread event loop.
Adding the F-NIC acceleration support required 107 and 135
LOC for the POSIX API and CR versions respectively.
Workload. We initialize the CPU server with 32 M 16-byte
keys and values (4 GB with overheads) and set the AFU
cache to store 2 M keys per-ikernel (128 MB RAM). The
CPU baseline uses an unmodified memcached with the VMA
network stack. Clients generate a YCSB-like [25] workload
with varying skew using sockperf.
Bare-metal performance. Figure 5a shows that for lower
skews (high miss rate), the CPU (6 cores) is the bottleneck.
With Zipf(0.99) distribution (YCSB’s default), NICA+CR
achieves 9× speedup. For 100% hit-rate, the AFU becomes
network-bound (99% of 40 Gbps line-rate), resulting in 21×
higher throughput than the baseline.

The cache hit-rate also dictates the latency distribution (not
shown). We observe a mixture of two distributions: cache hits
and cache misses. With Zipf(0.99) distribution and 1 Mtps
load, the F-NIC serves cache hits at a stable 2.1 µs. Misses,
served by the host, are 6 µs at the 99th-percentile, versus

USENIX Association 2019 USENIX Annual Technical Conference 353

0.1 0.4 0.7 0.9 1.1 1.4
 skew

0
10
20
30
40

th
ro

ug
hp

ut
 [M

tp
s]

CPU-only NICA NICA+CR

(a) Bare-metal throughput, varying
Zipf skew.

1 2 3 4 5 6
#VM

0
2
4
6
8

th
ro

ug
hp

ut
 [M

tp
s]

CPU-only VMs NICA+CR VMs

(b) Multi-VM scaling, Zipf(0.9) dis-
tribution.

1 10 100
Latency [log, sec]

0%
25%
50%
75%

100%
1 VM 6 VMs

(c) Latency CDF with virt., Zipf(0.9)
distribution.

Figure 5: NICA-KVcache results, CPU+VMA (kernel-bypass) vs. NICA with/without a custom ring (CR).

Table 3: NICA-KVcache throughput [Mtps] with 0.2% SETs.

Skew 0.90 0.95 0.99 1.10

Baseline (CPU-only with kernel-bypass) 1.55 1.55 1.55 1.55
NICA with custom ring 5.98 6.51 7.10 8.28

10.5 µs in the baseline. The latency improvement is due to
the reduced CPU load as a result of filtering.

Table 3 shows the throughput with 0.2% SETs (common
in Facebook [15]). At Zipf(0.99), NICA is 4.6× faster than
the baseline. With 10% SETs (not shown), CPU throughput
dominates, thus NICA shows no performance improvement.

Other KVS implementations. NICA-KVcache offers sig-
nificant advantages even when used with highly optimized
CPU-only KVS implementations, such as MICA [63], which
achieve line-rate throughput using CPU cores alone. In this
case, NICA-KVcache reduces the required number of CPU
cores by filtering all the cache hits and leaving only the
misses to the CPU, thereby improving the overall system
efficiency. More specifically, for a given hit rate in the NICA-
KVcache, achieving line-rate requires the CPU throughput to
be line_rate · (1−hit_rate) transactions per second.

For example, MICA [63] reaches 5 Mtps on a single CPU
core with 100% GETs for 32 M 16-byte keys and values (1GB
of data) with a Zipf(0.99) distribution. Optimistically assum-
ing perfect scaling, MICA would reach line-rate (59.5 Mtps)
with 12 cores, without NICA-KVcache acceleration. In con-
trast, with NICA-KVcache of size 128MB, running the same
Zipf(0.99) key distribution results in 75% hit-rate, thus the
CPU only handles 14.9 Mtps, utilizing just 3 CPU cores.

This result demonstrates that the use of NICA for accelerat-
ing key-value stores is cost-effective, considering that a single
CPU core is reportedly more expensive than a SmartNIC [33].

Accelerated KVS. Floem [83] implemented a similar key-
value store cache on a Cavium SmartNIC and reported a 3.6×
performance improvement with 100% hit-rate with write-
back, and no benefits for 10% SETs write-through, as in
NICA. Rather than memcached, Floem required a custom
KVS server, however. KV-Direct [60] with small requests
achieves comparable performance to NICA (with 100% hits)
but reaches 180 Mtps using client-side batching. Unlike

NICA-KVcache, its data-plane is fully implemented in hard-
ware, and it only uses the host for slab allocation.
Contribution of network-stack processing. Figure 5a
shows that using CR for low cache hit rates results in 2.2×
speedup over the CPU baseline. In this case, the use of CR
eliminates the network stack processing on the host but keeps
the application processing on the CPU. Naturally, higher hit
rates result in a higher portion of the requests handled by the
AFU, and much higher speedups. This experiment suggests
that the network stack offloading alone is not enough to reach
the full performance potential of the F-NIC acceleration.
Virtualization performance. We evaluate the performance
with a varying number of VMs. Each VM uses 5 GB of
server RAM, 1 dedicated CPU core, a vAFU, and 2 M keys
worth of vAFU cache. For Zipf(0.9), Figure 5b shows near-
linear scaling, consistently achieving a 5.6× speedup over the
CPU. Further, we observe no measurable negative impact of
virtualization on vAFU latency. The system achieves similar
results with 64 M keys per VM, utilizing most of the 64 GB
RAM of our machine.

Figure 5c shows the latency distribution of a single VM
and 6 VMs executions under 1.3 Mtps load, for a Zipf(0.90)
workload. The latency increases for the top 40% of the re-
quests, which matches the expected hit-rate. We observe that
the VM CPU latency is much higher than the bare-metal la-
tency reported above, but cache hits are served at the same
latency with and without virtualization.

This experiment confirms that AFU fine-grain sharing is
feasible and effective.
Network bandwidth isolation. We use 3 VMs, associated
with 3 TCs, and initially configure them to share the egress
bandwidth equally. We use a Zipf(1.4) distribution (99.9% hit-
rate), and a 20 Mtps load on each VM, to stress the scheduler.

Figure 6a shows the throughput of each VM over time.
At first, only VM 1 is active, using the whole AFU. When
VM 2’s clients start, the combined egress throughput is barely
above the AFU’s maximum (39 Mtps), and the clients pro-
cess 19 Mtps each. When VM 3’s clients start, the combined
throughput surpasses the maximum, and the scheduler divides
the bandwidth equally (13 Mtps per VM). At t3, we change the
bandwidth allocation to 40%/40%/20% and observe an asym-

354 2019 USENIX Annual Technical Conference USENIX Association

t1 t2 t3 t4 t5
 time

0

5

10

15

20

th
ro

ug
hp

ut
 [M

tp
s]

vm 1 vm 2 vm 3

(a) NICA-KVcache w. egress band-
width management.

t1 t2 t3
time

0

1

2

3

th
ro

ug
hp

ut
 [M

tp
s]

vm 1 vm 2

(b) IoT authentication throughput
w. internal scheduler.

Figure 6: QoS experiments

Table 4: Node.js goodput (valid req. received) under DoS.

Valid packet ratio 40% 60% 80% 100%

Baseline (req/sec) 1489 2294 3131 3960
NICA (req/sec) 5165 (3.4×) 5165 (2.3×) 5231 (1.6×) 5181 (1.3×)

metric allocation. This confirms the NICA egress isolation is
successful in allocating bandwidth among the tenants.

6.2.2 IoT authentication

We prototype an IoT monitoring server using Node.js
with JSON web token (JWT) stateless authentication. The
JavaScript-based server exposes an endpoint to which IoT
devices publish their measurement using the CoAP proto-
col [12], similarly to the SAMSUNG Artik IoT cloud API [92].
The payload of each request contains an authentication token,
which includes the device ID and a timestamp, and signed
using HMAC-SHA256. Invalid requests are discarded.

Our prototype authentication AFU parses received packets,
extracts the token, verifies the signatures (using a SHA-256
accelerator [99]) and drops requests with invalid tokens. Valid
requests are passed to the CPU and only undergo token expi-
ration check there.

We evaluate our IoT authentication accelerator against a
software-only Node.js server. Adding NICA support using
POSIX APIs required 20 JavaScript LOC and 34 lines for the
libnica generic Node.js module, demonstrating the simplicity
of integrating the ikernel abstraction with complex software.

In this experiment, we simulate a Denial of Service (DoS)
attack by sending a varying number of invalid tokens with
incorrect signatures in the input stream. Table 4 shows the
goodput, in requests/sec, as a function of the valid packet
ratio. While the baseline degrades linearly, NICA maintains a
constant goodput by filtering the invalid packets.

One may wonder whether optimizing the Node.js server
(e.g., rewriting it in C) would diminish the AFU acceleration
benefits. We argue that this is not the case. The AFU hardware
achieves the throughput of 3.5 Mtps, about 3 orders of magni-
tude higher than the software throughput. As long as the rest
of the CPU processing pipeline remains the bottleneck, the

AFU remains effective. Additionally, compute acceleration
alone results in only 30% speedup. The remaining speedup is
due to filtering invalid packets, which would be helpful in the
CPU-optimized version too.
AFU compute sharing. The AFU’s throughput can be
bounded by its SHA-256 hashing units and depends on the in-
put JWT token sizes. To fairly share the hashing units among
vAFUs, we introduce a custom DRR scheduler (§4.2.2)) that
controls the per-VM utilization of the AFU hashing units.

We use 2 VMs to demonstrate the performance isolation.
Clients send 10 Mtps of invalid requests to each VM, but
VM 2 receives requests with 40% larger tokens. We start the
experiment with the scheduler disabled and enable it mid-run.

Figure 6b shows the throughput of each VM over time.
At first, only VM 1 clients are active, allowing the AFU to
process at max speed (3.5 Mtps). When VM 2 begins receiv-
ing at t1, VM 1 processes only 28% of the requests, which is
below its fair share. With the scheduler enabled, at t2, both
VMs receive half of their respective maximum throughput.
We observe that NICA’s compute performance isolation is
essential to allow sharing of compute-bound AFUs.

7 Related work

NIC-based acceleration. Commodity NICs have been of-
fering network stack offloads ranging from checksum cal-
culations, segmentation, and receive-side-scaling (RSS) to
RDMA [9, 82, 87, 105, 110] and TCP offload engines [75].
Such offloads are limited to network and transport layer pro-
cessing, while NICA focuses on the application layer.

Our work builds upon previous attempts to accelerate gen-
eral purpose applications through inline processing in Smart-
NICs. Early work on Network Processing Units (NPUs) [1,
113] programming abstractions [16, 56] has shown the po-
tential of customizing the I/O path for applications. More
recently, FlexNIC [50] has proposed an RMT-based [14] NIC
for inline acceleration of application packet processing, show-
ing how to leverage RMT hardware for application accelera-
tion. Floem [83] aids design of NPU accelerated applications.
sPIN [38] offers inline acceleration of high-performance com-
puting (HPC) tasks such as tag-matching, data transformation,
or replication, but the Portals 4 host abstraction is unsuitable
for socket applications.

While we also consider inline acceleration, our goals, de-
sign, platform, and evaluation methodology are different.
FlexNIC focuses on applications of SmartNIC RMT accelera-
tion, whereas NICA offers convenient OS abstractions for inte-
grating inline accelerators into user applications. FlexNIC tar-
gets RMT SmartNICs with constrained functionality, whereas
NICA targets more flexible bump-in-the-wire FPGAs. These
may run large parts of application logic, necessitating more
expressive interfaces for state and execution management,
such as host-NIC network stack interaction. As RMT devices

USENIX Association 2019 USENIX Annual Technical Conference 355

are designed to work at line-rate, performance isolation of
concurrent application pipelines is unnecessary; conversely,
we show that QoS support is essential to expose F-NICs in
cloud systems.

Packet processing frameworks such as DPDK and eBPF-
XDP [39] include inline acceleration mechanisms, e.g., for
cryptographic protocols such as IPSec [84] or offloading eBPF
programs to SmartNICs [52]. However, these target system-
wide packet processing tasks, so they lack a transport layer,
network stack integration, and multiple application support.

Linux also supports attaching eBPF programs to sock-
ets [26], similarly to ikernels, to perform inline packet pro-
cessing. However, such programs cannot process transmitted
packets or generate new ones, and use a POSIX API data-path,
whereas ikernels enable zero-copy application messaging.

C-CORE [56] proposes the stream handlers abstraction for
inline processing, but unlike ikernels, they provide no virtu-
alization mechanisms. Streamline [16] is an OS subsystem
for tailoring application I/O path that uses UNIX pipes as
an abstraction, but it does not allow dynamic attachment and
configuration of filters.

Some F-NIC vendors have proprietary APIs for inline ap-
plication development. Solarflare AOE allows low latency
TCP transmission [97] from an F-NIC. Unlike NICA, it only
offloads transmissions. Maxeler MPC-N supports inline UDP/
TCP application acceleration [7]. All the above lack virtual-
ization support, and their proprietary host application abstrac-
tions are too hardware specific.
SmartNIC applications. Eden [6] and AccelNet [33] accel-
erate network functions on data-center end-nodes with Smart-
NICs. However, these are loosely coupled with host applica-
tions, whereas NICA’s model couples the AFU logic with the
host server logic.

Hardware accelerators for Network Function Virtualiza-
tion (NFV) [18, 34, 117] target the NFV domain and hence
do not provide abstractions for general purpose applications,
lack host-accelerator network stack integration provided by
ikernels, and provide no I/O path virtualization to/from the
accelerator.

Several works have accelerated specific applications on
F-NICs [24, 57, 60, 64, 106, 107]. NICA provides an infras-
tructure for building such AFUs in the clouds.
Languages for SmartNIC AFU development. P4 [13] is a
DSL for implementing network functions with implementa-
tions for FPGAs [100, 111]. The Click [55] router has been
ported to F-NICs [61, 90]. Emu [102] enables the develop-
ment of network functions on NetFPGA using HLS. These
can be used to simplify AFU development for NICA, but do
not provide application-level abstractions.

Floem [83] is a DSL for NPU-accelerated applications.
However, it requires refactoring applications to its DSL, while
ikernel abstraction is less intrusive.
FPGA virtualization and sharing. AmorphOS [51] im-
proves FPGA utilization by sharing an FPGA among multiple

AFUs, and dynamically switching AFUs. Its hull isolates
different AFUs used by different applications. We apply sim-
ilar mechanisms to F-NIC. However, AmorphOS does not
isolate FPGA network interfaces, and its context switching
mechanism is not suitable for latency-sensitive networking
applications.

Multes [44] shares an FPGA among tenants using a sin-
gle pipeline. AccelNet [33] allows flow-context switching on
a packet-by-packet basis. NICA’s fine-grained time-sharing
design is similar, but its goal is to virtualize inline acceler-
ators for application layer, rather than a standalone FPGA
application or cloud network/transport layers.

Remote/distributed FPGA frameworks [7, 19, 104] share
FPGAs over the network with a remote CPU. Other have
virtualized local look-aside accelerators [23, 36, 101, 118]. In
contrast, NICA virtualizes local inline networking AFUs.
Standalone FPGAs, GPUs, or switches. Our choice of
FPGA-based SmartNICs has been motivated by prior works
on accelerating networking applications [11, 21, 45, 76, 103,
109]. Unlike NICA, they focus on standalone FPGAs.

Other inline acceleration techniques let GPU kernels con-
trol communication using GPU-centric networking abstrac-
tions [28, 54, 58, 74], or process data in transit on program-
mable switches or network accelerators [46, 62, 65, 93]. Con-
versely, NICA provides tighter integration of server software
and AFUs. This simplifies integration with legacy programs
and makes acceleration transparent for clients.

8 Conclusion and future work

As F-NICs are becoming common in data centers, new use
cases for application layer inline acceleration are starting to
emerge. NICA provides the ikernel OS abstraction to easily
integrate F-NIC-based accelerators into applications and in-
troduces virtualization mechanisms to share them securely
and fairly in cloud systems. NICA’s real-world prototype
demonstrates the significant performance potential for inline
acceleration of virtualized server systems, with minimal soft-
ware development effort.

We believe NICA’s inline abstractions are suitable beyond
F-NICs and plan to investigate their use in CPU-FPGA sys-
tems and non-FPGA SmartNICs. NICA raises a range of
research topics, such as distributed heterogeneous architec-
tures, accelerator chaining, and reliable transport offloading,
which we will explore in the future.

Acknowledgments

We thank Chris Rossbach, Michael Swift, Ada Gavrilovska,
Aleksandar Dragojevic, and our shepherd Scott Rixner for
their valuable feedback. We also gratefully acknowledge the
support of the Israel Science Foundation (grant No. 1027/18),
the Israeli Innovation Authority Hiper Consortium, the Tech-
nion Hiroshi Fujiwara Cybersecurity center, as well as Mel-
lanox hardware donations and technical support.

356 2019 USENIX Annual Technical Conference USENIX Association

References

[1] M. Adiletta, M. Rosenbluth, D. Bernstein, G. Wolrich,
and H. Wilkinson. The next generation of Intel IXP
network processors. Intel Technology Journal, 6(3):6–
18, 2002.

[2] S. R. Agrawal, V. Pistol, J. Pang, J. Tran, D. Tarjan,
and A. R. Lebeck. Rhythm: harnessing data parallel
hardware for server workloads. In ASPLOS ’14. ACM,
2014, pp. 19–34.

[3] Alibaba Cloud. Instance type families: f1, compute
optimized type family with FPGA. (Accessed: Jan.
2019). URL: https://www.alibabacloud.com/help/doc-
detail/25378.htm%5C#f1.

[4] Amazon. AWS Marketplace – F1 search results. (Ac-
cessed: Dec. 2018). URL: https : / / aws . amazon .
com / marketplace / search / results ? x = 0 & y = 0 &
searchTerms=F1&page=1&ref_=nav_search_box.

[5] Amazon Web Services. Amazon EC2 F1 instances.
(Accessed: Jan. 2019). 2016. URL: https://aws.amazo
n.com/ec2/instance-types/f1/.

[6] H. Ballani, P. Costa, C. Gkantsidis, M. P. Grosvenor, T.
Karagiannis, L. Koromilas, and G. O’Shea. Enabling
end-host network functions. In SIGCOMM ’15. ACM,
2015, pp. 493–507.

[7] T. Becker, O. Mencer, S. Weston, and G. Gaydad-
jiev. Maxeler data-flow in computational finance. In,
FPGA Based Accelerators for Financial Applications,
pp. 243–266. Springer, 2015.

[8] M. Bernaschi, F. Casadei, and P. Tassotti. SockMi: a
solution for migrating TCP/IP connections. In PDP
2007, Feb. 2007, pp. 221–228.

[9] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz,
T. Lovett, T. Rimmer, K. D. Underwood, and R. C.
Zak. Intel® Omni-Path Architecture: enabling scal-
able, high performance fabrics. In HOTI 2015, Aug.
2015, pp. 1–9.

[10] D. L. Black, Z. Wang, M. A. Carlson, W. Weiss, E. B.
Davies, and S. L. Blake. An Architecture for Differ-
entiated Services. RFC 2475. Dec. 1998. URL: https:
//rfc-editor.org/rfc/rfc2475.txt.

[11] M. Blott, K. Karras, L. Liu, K. Vissers, J. Bär, and Z.
István. Achieving 10Gbps line-rate key-value stores
with FPGAs. In HotCloud’13. USENIX, 2013.

[12] C. Bormann, A. P. Castellani, and Z. Shelby. CoAP:
an application protocol for billions of tiny internet
nodes. IEEE Internet Computing, 16(2):62–67, Mar.
2012.

[13] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, A. Vah-
dat, G. Varghese, and D. Walker. P4: programming
protocol-independent packet processors. ACM SIG-
COMM Comput. Commun. Rev., 44(3):87–95, July
2014.

[14] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N.
McKeown, M. Izzard, F. Mujica, and M. Horowitz.
Forwarding metamorphosis: fast programmable
match-action processing in hardware for SDN. In
SIGCOMM ’13. ACM, 2013, pp. 99–110.

[15] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P.
Dimov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni,
H. Li, M. Marchukov, D. Petrov, L. Puzar, Y. J. Song,
and V. Venkataramani. TAO: Facebook’s distributed
data store for the social graph. In USENIX ATC 2013.
USENIX, 2013, pp. 49–60.

[16] W. d. Bruijn, H. Bos, and H. Bal. Application-tailored
I/O with Streamline. ACM Trans. Comput. Syst.,
29(2):6:1–6:33, May 2011.

[17] D. Burger. Microsoft unveils Project Brainwave for
real-time AI. (Accessed: Sep. 2018). 2017. URL: h
ttps: / /www.microsoft .com/en- us/research/blog/
microsoft-unveils-project-brainwave/.

[18] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia,
and P. Chow. FPGAs in the cloud: booting virtual-
ized hardware accelerators with OpenStack. In FCCM
2014, May 2014, pp. 109–116.

[19] A. Caulfield, E. Chung, A. Putnam, H. Angepat, J.
Fowers, M. Haselman, S. Heil, M. Humphrey, P. Kaur,
J.-Y. Kim, D. Lo, T. Massengill, K. Ovtcharov, M.
Papamichael, L. Woods, S. Lanka, D. Chiou, and D.
Burger. A cloud-scale acceleration architecture. In
MICRO-49. IEEE Computer Society, Oct. 2016.

[20] A. Caulfield, P. Costa, and M. Ghobadi. Beyond
SmartNICs: towards a fully programmable cloud. In
HPSR 2018, June 2018.

[21] S. R. Chalamalasetti, K. Lim, M. Wright, A. AuY-
oung, P. Ranganathan, and M. Margala. An FPGA
memcached appliance. In FPGA ’13. ACM, 2013,
pp. 245–254.

[22] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: a distributed storage system for
structured data. ACM Trans. Comput. Syst., 26(2):4,
2008.

[23] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X.
Chang, and K. Wang. Enabling FPGAs in the cloud.
In CF ’14. ACM, 2014, 3:1–3:10.

USENIX Association 2019 USENIX Annual Technical Conference 357

https://www.alibabacloud.com/help/doc-detail/25378.htm%5C#f1
https://www.alibabacloud.com/help/doc-detail/25378.htm%5C#f1
https://aws.amazon.com/marketplace/search/results?x=0&y=0&searchTerms=F1&page=1&ref_=nav_search_box
https://aws.amazon.com/marketplace/search/results?x=0&y=0&searchTerms=F1&page=1&ref_=nav_search_box
https://aws.amazon.com/marketplace/search/results?x=0&y=0&searchTerms=F1&page=1&ref_=nav_search_box
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://rfc-editor.org/rfc/rfc2475.txt
https://rfc-editor.org/rfc/rfc2475.txt
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/

[24] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael,
A. Caulfield, T. Massengill, M. Liu, D. Lo, S. Al-
kalay, M. Haselman, M. Abeydeera, L. Adams, H.
Angepat, C. Boehn, D. Chiou, O. Firestein, A. Forin,
K. S. Gatlin, M. Ghandi, S. Heil, K. Holohan, A. E.
Husseini, T. Juhasz, K. Kagi, R. Kovvuri, S. Lanka,
F. v. Megen, D. Mukhortov, P. Patel, B. Perez, A. Rap-
sang, S. Reinhardt, B. Rouhani, A. Sapek, R. Seera, S.
Shekar, B. Sridharan, G. Weisz, L. Woods, P. Y. Xiao,
D. Zhang, R. Zhao, and D. Burger. Serving DNNs in
real time at datacenter scale with project Brainwave.
IEEE Micro, 38(2):8–20, Mar. 2018.

[25] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrish-
nan, and R. Sears. Benchmarking cloud serving sys-
tems with YCSB. In SoCC ’10. ACM, 2010, pp. 143–
154.

[26] J. Corbet. Attaching eBPF programs to sockets. (Ac-
cessed: Jan. 2019). 2014. URL: https : / / lwn . net /
Articles/625224/.

[27] J. Corbet. TCP connection repair. (Accessed: Jan.
2019). 2012. URL: https://lwn.net/Articles/495304/.

[28] F. Daoud, A. Watad, and M. Silberstein. GPUrdma:
GPU-side library for high performance networking
from GPU kernels. In ROSS ’16. ACM, 2016, 6:1–
6:8.

[29] A. Dragojević. The configurable cloud: accelerat-
ing hyperscale datacenter services with FPGAs. Pre-
sented at MARS’17. (Accessed: Jan. 2019). 2017.
URL: https://sites.google.com/site/mars2017eurosys/
Program/keynotes/MARS%20alekd%20shared.pdf.

[30] D. Dunning, G. Regnier, G. McAlpine, D. Cameron,
B. Shubert, F. Berry, A. M. Merritt, E. Gronke, and C.
Dodd. The virtual interface architecture. IEEE Micro,
18(2):66–76, Mar. 1998.

[31] H. Eran, D. Levi, L. Liss, and M. Silberstein. NFV
acceleration: the role of the NIC. In SFMA’18, 2018.

[32] H. Eran, L. Zeno, Z. István, and M. Silberstein. De-
sign patterns for code reuse in HLS packet processing
pipelines. In FCCM ’19. IEEE Computer Society,
2019.

[33] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A.
Dabagh, M. Andrewartha, H. Angepat, V. Bhanu, A.
Caulfield, E. Chung, H. K. Chandrappa, S. Chatur-
mohta, M. Humphrey, J. Lavier, N. Lam, F. Liu, K.
Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre,
M. Shaw, G. Silva, M. Sivakumar, N. Srivastava, A.
Verma, Q. Zuhair, D. Bansal, D. Burger, K. Vaid, D. A.
Maltz, and A. Greenberg. Azure accelerated network-
ing: SmartNICs in the public cloud. In NSDI ’18.
USENIX Association, 2018, pp. 51–66.

[34] X. Ge, Y. Liu, D. H. Du, L. Zhang, H. Guan, J. Chen, Y.
Zhao, and X. Hu. OpenANFV: accelerating network
function virtualization with a consolidated framework
in openstack. ACM SIGCOMM Comput. Commun.
Rev., 44(4):353–354, Aug. 2014.

[35] J. Gomez-Luna, I.-J. Sung, L.-W. Chang, J. M.
González-Linares, N. Guil, and W.-M. W. Hwu. In-
place matrix transposition on GPUs. IEEE Trans. Par-
allel Distrib. Syst., 27(3):776–788, 2016.

[36] L. Gong and X. Zeng. Virtio-crypto: a new frame-
work of cryptography virtio device. KVM Forum.
(Accessed: Jan. 2019). 2017. URL: http://events17.
linuxfoundation . org / sites / events / files / slides /
Introduction%20of%20virtio%20crypto%20device.
pdf.

[37] G. Guidi, E. Reggiani, L. D. Tucci, G. Durelli, M.
Blott, and M. D. Santambrogio. On how to improve
FPGA-based systems design productivity via SDAc-
cel. In IPDPS Workshops 2016, May 2016, pp. 247–
252.

[38] T. Hoefler, S. D. Girolamo, K. Taranov, R. E. Grant,
and R. Brightwell. sPIN: High-performance stream-
ing Processing in the Network. In SC 2017, Nov.
2017.

[39] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J.
Fastabend, T. Herbert, D. Ahern, and D. Miller. The
eXpress Data Path: fast programmable packet pro-
cessing in the operating system kernel. In CoNEXT

’18. ACM, 2018, pp. 54–66.

[40] M. Huang, D. Wu, C. H. Yu, Z. Fang, M. Interlandi,
T. Condie, and J. Cong. Programming and runtime
support to blaze fpga accelerator deployment at data-
center scale. In SoCC ’16. ACM, 2016, pp. 456–469.

[41] Huawei Cloud. FPGA-accelerated cloud server. (Ac-
cessed: Jan. 2019). URL: https://www.huaweicloud.
com/en-us/product/fcs.html.

[42] Intel. Accelerator functional unit (AFU) developer’s
guide. (Accessed: Sep. 2018). 2018. URL: https:/ /
www.intel.com/content/dam/www/programmable/
us/en/pdfs/literature/ug/ug-afu-dev-v1-1.pdf.

[43] Intel. Intel FPGA SDK for OpenCL programming
guide. (Accessed: Sep. 2018). 2018. URL: https:/ /
www.intel.com/content/www/us/en/programmable/
documentation/mwh1391807965224.html.

[44] Z. István, G. Alonso, and A. Singla. Providing multi-
tenant services with FPGAs: case study on a key-
value store. In FPL 2018, Aug. 2018, pp. 119–1195.

[45] Z. István, D. Sidler, G. Alonso, and M. Vukolic. Con-
sensus in a box: inexpensive coordination in hardware.
In NSDI ’16. USENIX Association, 2016, pp. 425–
438.

358 2019 USENIX Annual Technical Conference USENIX Association

https://lwn.net/Articles/625224/
https://lwn.net/Articles/625224/
https://lwn.net/Articles/495304/
https://sites.google.com/site/mars2017eurosys/Program/keynotes/MARS%20alekd%20shared.pdf
https://sites.google.com/site/mars2017eurosys/Program/keynotes/MARS%20alekd%20shared.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/Introduction%20of%20virtio%20crypto%20device.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/Introduction%20of%20virtio%20crypto%20device.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/Introduction%20of%20virtio%20crypto%20device.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/Introduction%20of%20virtio%20crypto%20device.pdf
https://www.huaweicloud.com/en-us/product/fcs.html
https://www.huaweicloud.com/en-us/product/fcs.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-afu-dev-v1-1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-afu-dev-v1-1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-afu-dev-v1-1.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807965224.html
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807965224.html
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807965224.html

[46] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster,
C. Kim, and I. Stoica. Netcache: balancing key-value
stores with fast in-network caching. In SOSP ’17.
ACM, 2017, pp. 121–136.

[47] M. Jones, J. Bradley, and N. Sakimura. JSON Web
Token (JWT). RFC 7519. May 2015. URL: https://rfc-
editor.org/rfc/rfc7519.txt.

[48] S. Kanev, J. P. Darago, K. Hazelwood, P. Ran-
ganathan, T. Moseley, G.-Y. Wei, and D. Brooks.
Profiling a warehouse-scale computer. In ISCA ’15.
ACM, 2015, pp. 158–169.

[49] S. Kato, K. Lakshmanan, R. Rajkumar, and Y.
Ishikawa. TimeGraph: GPU scheduling for real-time
multi-tasking environments. In USENIX ATC 2011.
USENIX Association, 2011, pp. 2–2.

[50] A. Kaufmann, S. Peter, N. K. Sharma, T. Anderson,
and A. Krishnamurthy. High performance packet pro-
cessing with FlexNIC. In ASPLOS ’16. ACM, 2016,
pp. 67–81.

[51] A. Khawaja, J. Landgraf, R. Prakash, M. Wei, E.
Schkufza, and C. J. Rossbach. Sharing, protection,
and compatibility for reconfigurable fabric with
AmorphOS. In OSDI 2018. USENIX Association,
Oct. 2018.

[52] J. Kicinski and N. Viljoen. eBPF hardware offload to
SmartNICs: cls_bpf and XDP. In Netdev 1.2, 2016.

[53] D. Kim, A. Memaripour, A. Badam, Y. Zhu, H. H.
Liu, J. Padhye, S. Raindel, S. Swanson, V. Sekar, and
S. Seshan. Hyperloop: group-based NIC-offloading to
accelerate replicated transactions in multi-tenant stor-
age systems. In SIGCOMM ’18. ACM, 2018, pp. 297–
312.

[54] S. Kim, S. Huh, X. Zhang, Y. Hu, A. Wated, E.
Witchel, and M. Silberstein. GPUnet: networking
abstractions for GPU programs. In OSDI 2014.
USENIX Association, Oct. 2014, pp. 201–216.

[55] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router. ACM Trans.
Comput. Syst., 18(3):263–297, Aug. 2000.

[56] S. Kumar, A. Gavrilovska, K. Schwan, and S. Sun-
daragopalan. C-CORE: using communication cores
for high performance network services. In NCA 2005,
July 2005, pp. 171–178.

[57] M. Lavasani, H. Angepat, and D. Chiou. An FPGA-
based in-line accelerator for memcached. IEEE Com-
put. Archit. Lett., 13(2):57–60, July 2014.

[58] M. LeBeane, K. Hamidouche, B. Benton, M. Breter-
nitz, S. K. Reinhardt, and L. K. John. GPU triggered
networking for intra-kernel communications. In SC

’17. ACM, 2017, 22:1–22:12.

[59] I. Lesokhin, H. Eran, and O. Gerlitz. Flow-based tun-
neling for SR-IOV using switchdev API. In Netdev
1.1, Feb. 2016.

[60] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam,
E. Chen, and L. Zhang. KV-Direct: high-performance
in-memory key-value store with programmable NIC.
In SOSP ’17. ACM, 2017, pp. 137–152.

[61] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y.
Xiong, P. Cheng, and E. Chen. ClickNP: highly flex-
ible and high performance network processing with
reconfigurable hardware. In SIGCOMM ’16. ACM,
2016, pp. 1–14.

[62] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and
M. J. Freedman. Be fast, cheap and in control with
SwitchKV. In NSDI ’16. USENIX Association, 2016,
pp. 31–44.

[63] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky.
MICA: a holistic approach to fast in-memory key-
value storage. In NSDI ’14. USENIX Association,
2014, pp. 429–444.

[64] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan,
and T. F. Wenisch. Thin servers with smart pipes:
designing SoC accelerators for memcached. In ISCA

’13. ACM, 2013, pp. 36–47.

[65] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy,
and K. Atreya. IncBricks: toward in-network com-
putation with an in-network cache. In ASPLOS ’17.
ACM, 2017, pp. 795–809.

[66] L. L. Luo. Towards converged SmartNIC architecture
for bare metal & public clouds. APNet 2018 (Ac-
cessed: Jan. 2019). 2018. URL: https://conferences.
sigcomm.org/events/apnet2018/slides/larry.pdf.

[67] G. Martin and G. Smith. High-level synthesis:
past, present, and future. IEEE Des. Test. Comput.,
26(4):18–25, 2009.

[68] Mellanox Technologies. Innova Flex 4 Lx EN adapter
card product brief. (Accessed: Jan. 2019). 2017. URL:
https : / /www.mellanox . com/ related - docs /prod_
adapter_cards/PB_Innova_Flex4_Lx_EN.pdf.

[69] Mellanox Technologies. libvma: Linux user-space
library for network socket acceleration based on
RDMA compatible network adaptors. (Accessed: Jan.
2019). 2018. URL: https : / /github.com/Mellanox/
libvma.

[70] Mellanox Technologies. Mellanox Technologies
ConnectX®-4 Lx single 40/50 Gb/s Ethernet QSFP28
port adapter card user manual. (Accessed: Jan. 2019).
URL: https : / / www . mellanox . com / related - docs /
user_manuals /ConnectX- 4_Lx_Single_40_50_
Gbs_Ethernet_QSFP28_Port_Adapter_Card_User_
Manual.pdf.

USENIX Association 2019 USENIX Annual Technical Conference 359

https://rfc-editor.org/rfc/rfc7519.txt
https://rfc-editor.org/rfc/rfc7519.txt
https://conferences.sigcomm.org/events/apnet2018/slides/larry.pdf
https://conferences.sigcomm.org/events/apnet2018/slides/larry.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova_Flex4_Lx_EN.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova_Flex4_Lx_EN.pdf
https://github.com/Mellanox/libvma
https://github.com/Mellanox/libvma
https://www.mellanox.com/related-docs/user_manuals/ConnectX-4_Lx_Single_40_50_Gbs_Ethernet_QSFP28_Port_Adapter_Card_User_Manual.pdf
https://www.mellanox.com/related-docs/user_manuals/ConnectX-4_Lx_Single_40_50_Gbs_Ethernet_QSFP28_Port_Adapter_Card_User_Manual.pdf
https://www.mellanox.com/related-docs/user_manuals/ConnectX-4_Lx_Single_40_50_Gbs_Ethernet_QSFP28_Port_Adapter_Card_User_Manual.pdf
https://www.mellanox.com/related-docs/user_manuals/ConnectX-4_Lx_Single_40_50_Gbs_Ethernet_QSFP28_Port_Adapter_Card_User_Manual.pdf

[71] Mellanox Technologies. sockperf: network bench-
marking utility. (Accessed: Jan. 2019). 2018. URL:
https://github.com/Mellanox/sockperf.

[72] Mellanox Technologies. Whitepaper: Mellanox In-
nova IPSec: achieve groundbreaking security for
VPN, data privacy & data-in-motion, while reducing
total cost of ownership (TCO). (Accessed: Jan. 2019).
2018. URL: https : / /www.mellanox . com / related -
docs/whitepapers/WP_Innova_IPsec.pdf.

[73] K. Menychtas, K. Shen, and M. L. Scott. Disengaged
scheduling for fair, protected access to fast compu-
tational accelerators. In ASPLOS ’14. ACM, 2014,
pp. 301–316.

[74] C. Min, W. Kang, M. Kumar, S. Kashyap, S. Maass,
H. Jo, and T. Kim. Solros: a data-centric operating
system architecture for heterogeneous computing. In
EuroSys ’18. ACM, 2018, 36:1–36:15.

[75] J. C. Mogul. TCP offload is a dumb idea whose time
has come. In HOTOS’03. USENIX Association, 2003,
pp. 5–5.

[76] R. Müller and K. Eguro. FPGA-accelerated deserial-
ization of object structures. Tech. rep. MSR-TR-2009-
126. Microsoft Research Redmond, 2009.

[77] R. Nakhjavani and J. Zhu. A case for common-case:
on FPGA acceleration of erasure coding. In FCCM
2017, Apr. 2017, pp. 81–81.

[78] Netronome. Agilio OVS firewall software. (Accessed:
Jan. 2019). 2017. URL: https://www.netronome.com/
media/documents/PB_Agilio_OVS_FW_SW.pdf.

[79] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (LSM-tree). Acta Informat-
ica, 33(4):351–385, 1996.

[80] A. Pant, K. Siva, and N. Tan. IPSec Acceleration:
securing your data across the data center. Oracle Open
World (Accessed: Jan. 2019). 2017. URL: https://sta
tic.rainfocus.com/oracle/oow17/sess/15023186731
68001SKY0/PF/OOW%20Technical%20Session%
20Final%20100217_1507049724149001WUcf.pdf.

[81] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A.
Krishnamurthy, T. Anderson, and T. Roscoe. Arrakis:
the operating system is the control plane. In OSDI
2014. https://www.usenix.org/system/files/conferen
ce/osdi14/osdi14-paper-peter_simon.pdf, Oct. 2014,
pp. 1–16.

[82] G. F. Pfister. An introduction to the InfiniBand™ ar-
chitecture. In, High Performance Mass Storage and
Parallel I/O: Technologies and Applications, part 42.
John Wiley & Sons, Inc., 1st ed., 2001.

[83] P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Pe-
ter, R. Bodik, and T. Anderson. Floem: a program-
ming system for NIC-accelerated network applica-
tions. In OSDI 2018. USENIX Association, Oct.
2018, pp. 663–679.

[84] B. Pismenny, D. Doherty, and H. Agrawal.
rte_security: enabling hardware acceleration of secu-
rity protocols. DPDK Summit Userspace. (Accessed:
Jan. 2019). 2017. URL: https: / /dpdksummit .com/
Archive/pdf/2017Userspace/DPDK-Userspace2017-
Day1-9-security-presentation.pdf.

[85] B. Pismenny, I. Lesokhin, L. Liss, and H. Eran. TLS
offload to network devices. In Netdev 1.2, 2016.

[86] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou,
K. Constantinides, J. Demme, H. Esmaeilzadeh, J.
Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck,
S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus,
E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao,
and D. Burger. A reconfigurable fabric for accelerat-
ing large-scale datacenter services. Commun. ACM,
59(11):114–122, Oct. 2016.

[87] R. J. Recio, P. R. Culley, D. Garcia, B. Metzler, and J.
Hilland. A Remote Direct Memory Access Protocol
Specification. RFC 5040. Oct. 2007. URL: https://rfc-
editor.org/rfc/rfc5040.txt.

[88] Y. Ren. High performance cloud with hardware accel-
eration. APNet 2018 (Accessed: Sep. 2018). 2018.
URL: https : / / conferences . sigcomm . org / events /
apnet2018/slides/yong.pdf.

[89] D. Riddoch and S. Pope. FPGA augmented ASICs:
the time has come. In HCS, Aug. 2012, pp. 1–44.

[90] T. Rinta-aho, M. Karlstedt, and M. P. Desai. The
Click2NetFPGA toolchain. In USENIX ATC 2012.
USENIX, 2012, pp. 77–88.

[91] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray,
and E. Witchel. PTask: operating system abstractions
to manage GPUs as compute devices. In SOSP ’11.
ACM, 2011, pp. 233–248.

[92] SAMSUNG. Samsung ARTIK cloud developer –
CoAP. (Accessed: Sep. 2018). 2018. URL: https :
/ / developer . artik . cloud / documentation / data -
management/coap.html.

[93] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and
P. Kalnis. In-network computation is a dumb idea
whose time has come. In HotNets-XVI. ACM, 2017,
pp. 150–156.

[94] Selectel. FPGA-accelerators go into the clouds [rus-
sian]. (Accessed: Jan. 2019). 2018. URL: https://blog.
selectel.ru/fpga-uskoriteli-uxodyat-v-oblaka/.

360 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/Mellanox/sockperf
https://www.mellanox.com/related-docs/whitepapers/WP_Innova_IPsec.pdf
https://www.mellanox.com/related-docs/whitepapers/WP_Innova_IPsec.pdf
https://www.netronome.com/media/documents/PB_Agilio_OVS_FW_SW.pdf
https://www.netronome.com/media/documents/PB_Agilio_OVS_FW_SW.pdf
https://static.rainfocus.com/oracle/oow17/sess/1502318673168001SKY0/PF/OOW%20Technical%20Session%20Final%20100217_1507049724149001WUcf.pdf
https://static.rainfocus.com/oracle/oow17/sess/1502318673168001SKY0/PF/OOW%20Technical%20Session%20Final%20100217_1507049724149001WUcf.pdf
https://static.rainfocus.com/oracle/oow17/sess/1502318673168001SKY0/PF/OOW%20Technical%20Session%20Final%20100217_1507049724149001WUcf.pdf
https://static.rainfocus.com/oracle/oow17/sess/1502318673168001SKY0/PF/OOW%20Technical%20Session%20Final%20100217_1507049724149001WUcf.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-peter_simon.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-peter_simon.pdf
https://dpdksummit.com/Archive/pdf/2017Userspace/DPDK-Userspace2017-Day1-9-security-presentation.pdf
https://dpdksummit.com/Archive/pdf/2017Userspace/DPDK-Userspace2017-Day1-9-security-presentation.pdf
https://dpdksummit.com/Archive/pdf/2017Userspace/DPDK-Userspace2017-Day1-9-security-presentation.pdf
https://rfc-editor.org/rfc/rfc5040.txt
https://rfc-editor.org/rfc/rfc5040.txt
https://conferences.sigcomm.org/events/apnet2018/slides/yong.pdf
https://conferences.sigcomm.org/events/apnet2018/slides/yong.pdf
https://developer.artik.cloud/documentation/data-management/coap.html
https://developer.artik.cloud/documentation/data-management/coap.html
https://developer.artik.cloud/documentation/data-management/coap.html
https://blog.selectel.ru/fpga-uskoriteli-uxodyat-v-oblaka/
https://blog.selectel.ru/fpga-uskoriteli-uxodyat-v-oblaka/

[95] M. Shreedhar and G. Varghese. Efficient fair queuing
using deficit round-robin. IEEE/ACM Trans. Netw.,
4(3):375–385, June 1996.

[96] D. Sidler, Z. István, and G. Alonso. Low-latency
TCP/IP stack for data center applications. In FPL
2016, Aug. 2016, pp. 1–4.

[97] Solarflare Communications, Inc. Application
nanosecond TCP send (ANTS): from request to
response in less than 250ns. (Accessed: Jan. 2019).
2015. URL: https : / / www . solarflare . com / Media /
Default/PDFs/SF-114903-CD-LATEST-Solarflare_
Application_Nanosecond_TCP_Send_Paper.pdf.

[98] S. Stanley. Ubiquitous SDN acceleration is coming.
(Accessed: Jan. 2019). 2017. URL: https : / / www .
lightreading.com/carrier-sdn/ubiquitous-sdn-acceler
ation-is-coming/a/d-id/738209.

[99] J. Strömbergson. Secworks/sha256: hardware imple-
mentation of the SHA-256 cryptographic hash func-
tion. (Accessed: Jan. 2019). 2018. URL: https://github.
com/secworks/sha256.

[100] H. Stubbe. P4 compiler & interpreter: a survey. Fu-
ture Internet (FI) and Innovative Internet Technolo-
gies and Mobile Communication (IITM), 47, 2017.

[101] J. Stuecheli, B. Blaner, C. R. Johns, and M. S. Siegel.
CAPI: a coherent accelerator processor interface. IBM
Journal of Research and Development, 59(1):7:1–7:7,
Jan. 2015.

[102] N. Sultana, S. Galea, D. Greaves, M. Wojcik, J. Ship-
ton, R. Clegg, L. Mai, P. Bressana, R. Soulé, R.
Mortier, P. Costa, P. Pietzuch, J. Crowcroft, A. W.
Moore, and N. Zilberman. Emu: rapid prototyping of
networking services. In USENIX ATC 2017. USENIX
Association, 2017, pp. 459–471.

[103] S. Tanaka and C. Kozyrakis. High performance
hardware-accelerated flash key-value store. In NVMW
2014, 2014.

[104] N. Tarafdar, N. Eskandari, V. Sharma, C. Lo, and P.
Chow. Galapagos: a full stack approach to FPGA
integration in the cloud. IEEE Micro, 38(6):18–24,
Nov. 2018.

[105] The RoCE Initiative. RoCE introduction. (Accessed:
Jan. 2019). 2016. URL: http://www.roceinitiative.org/
roce-introduction/.

[106] Y. Tokusashi and H. Matsutani. A multilevel NOSQL
cache design combining in-NIC and in-kernel caches.
In HOTI 2016, Aug. 2016, pp. 60–67.

[107] Y. Tokusashi, H. Matsutani, and N. Zilberman. LaKe:
the power of in-network computing. In ReConFig’18,
Dec. 2018, pp. 1–8.

[108] Y. Tokusashi, H. T. Dang, F. Pedone, R. Soulé, and
N. Zilberman. The case for in-network computing on
demand. In EuroSys ’19. ACM, 2019, 21:1–21:16.

[109] D. Tong and V. Prasanna. High throughput sketch
based online heavy hitter detection on FPGA.
SIGARCH Comput. Archit. News, 43(4):70–75, Apr.
2016.

[110] A. Trivedi. Remote Direct Memory Access (RDMA)
101 – quick history lesson and introduction. (Ac-
cessed: Sep. 2018). 2011. URL: http : / / 0x8086 .
blogspot . com / 2011 / 11 / remote - direct - memory -
access-rdma-101.html.

[111] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shri-
vastav, N. Foster, and H. Weatherspoon. P4FPGA: a
rapid prototyping framework for P4. In SOSR 2017.
ACM, 2017, pp. 122–135.

[112] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang,
and M. Guo. Quality of service support for fine-
grained sharing on GPUs. In ISCA ’17. ACM, 2017,
pp. 269–281.

[113] P. Willmann, H.-y. Kim, S. Rixner, and V. S. Pai. An
efficient programmable 10 gigabit Ethernet network
interface card. In HPCA-11, Feb. 2005, pp. 96–107.

[114] Xilinx Inc. Vivado high-level synthesis. (Accessed:
Jan. 2019). 2018. URL: https : / /www.xilinx.com/
products/design-tools/vivado/integration/esl-design.
html.

[115] W. Xu. Hardware acceleration over NFV in China
Mobile. OPNFV Plugfest. (Accessed: Jan. 2019).
June 2018. URL: https://wiki.opnfv.org/download/
attachments/20745096/opnfv_Acc.pdf.

[116] T. T. Yeh, A. Sabne, P. Sakdhnagool, R. Eigenmann,
and T. G. Rogers. Pagoda: fine-grained GPU resource
virtualization for narrow tasks. In PPoPP ’17. ACM,
2017, pp. 221–234.

[117] K. Zhang, B. He, J. Hu, Z. Wang, B. Hua, J. Meng,
and L. Yang. G-NET: effective GPU sharing in NFV
systems. In NSDI ’18. USENIX Association, 2018,
pp. 187–200.

[118] Q. Zhao, M. Iida, and T. Sueyoshi. A study of
FPGA virtualization and accelerator scheduling. In
ETCD’17. ACM, 2017, 3:1–3:4.

[119] N. Zilberman, Y. Audzevich, G. A. Covington, and
A. W. Moore. NetFPGA SUME: toward 100 Gbps as
research commodity. IEEE Micro, 34(5):32–41, Sept.
2014.

USENIX Association 2019 USENIX Annual Technical Conference 361

https://www.solarflare.com/Media/Default/PDFs/SF-114903-CD-LATEST-Solarflare_Application_Nanosecond_TCP_Send_Paper.pdf
https://www.solarflare.com/Media/Default/PDFs/SF-114903-CD-LATEST-Solarflare_Application_Nanosecond_TCP_Send_Paper.pdf
https://www.solarflare.com/Media/Default/PDFs/SF-114903-CD-LATEST-Solarflare_Application_Nanosecond_TCP_Send_Paper.pdf
https://www.lightreading.com/carrier-sdn/ubiquitous-sdn-acceleration-is-coming/a/d-id/738209
https://www.lightreading.com/carrier-sdn/ubiquitous-sdn-acceleration-is-coming/a/d-id/738209
https://www.lightreading.com/carrier-sdn/ubiquitous-sdn-acceleration-is-coming/a/d-id/738209
https://github.com/secworks/sha256
https://github.com/secworks/sha256
http://www.roceinitiative.org/roce-introduction/
http://www.roceinitiative.org/roce-introduction/
http://0x8086.blogspot.com/2011/11/remote-direct-memory-access-rdma-101.html
http://0x8086.blogspot.com/2011/11/remote-direct-memory-access-rdma-101.html
http://0x8086.blogspot.com/2011/11/remote-direct-memory-access-rdma-101.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://wiki.opnfv.org/download/attachments/20745096/opnfv_Acc.pdf
https://wiki.opnfv.org/download/attachments/20745096/opnfv_Acc.pdf

E3: Energy-Efficient Microservices on SmartNIC-Accelerated Servers

Ming Liu
University of Washington

Simon Peter
The University of Texas at Austin

Arvind Krishnamurthy
University of Washington

Phitchaya Mangpo Phothilimthana∗

University of California, Berkeley

Abstract
We investigate the use of SmartNIC-accelerated servers to
execute microservice-based applications in the data center.
By offloading suitable microservices to the SmartNIC’s low-
power processor, we can improve server energy-efficiency
without latency loss. However, as a heterogeneous computing
substrate in the data path of the host, SmartNICs bring several
challenges to a microservice platform: network traffic routing
and load balancing, microservice placement on heterogeneous
hardware, and contention on shared SmartNIC resources.

We present E3, a microservice execution platform for
SmartNIC-accelerated servers. E3 follows the design philoso-
phies of the Azure Service Fabric microservice platform and
extends key system components to a SmartNIC to address
the above-mentioned challenges. E3 employs three key tech-
niques: ECMP-based load balancing via SmartNICs to the
host, network topology-aware microservice placement, and
a data-plane orchestrator that can detect SmartNIC overload.
Our E3 prototype using Cavium LiquidIO SmartNICs shows
that SmartNIC offload can improve cluster energy-efficiency
up to 3× and cost efficiency up to 1.9× at up to 4% latency
cost for common microservices, including real-time analytics,
an IoT hub, and virtual network functions.

1 Introduction

Energy-efficiency has become a major factor in data cen-
ter design [80]. U.S. data centers consume an estimated 70
billion kilowatt-hours of energy per year (about 2% of to-
tal U.S. energy consumption) and as much as 57% of this
energy is used by servers [22, 74]. Improving server energy-
efficiency is thus imperative [17]. A recent option is the inte-
gration of low-power processors in server network interface
cards (NICs). Examples are the Netronome Agilio-CX [59],
Mellanox BlueField [51], Broadcom Stingray [13], and Cav-
ium LiquidIO [15], which rely on ARM/MIPS-based proces-
sors and on-board memory. These SmartNICs can process

∗The author is now at Google.

microsecond-scale client requests but consume much less en-
ergy than server CPUs. By sharing idle power and the chassis
with host servers, SmartNICs also promise to be more energy
and cost efficient than other heterogeneous or low-power clus-
ters. However, SmartNICs are not powerful enough to run
large, monolithic cloud applications, preventing their offload.

Today, cloud applications are increasingly built as mi-
croservices, prompting us to revisit SmartNIC offload in the
cloud. A microservice-based workload comprises loosely cou-
pled processes, whose interaction is described via a dataflow
graph. Microservices often have a small enough memory foot-
print for SmartNIC offload and their programming model
efficiently supports transparent execution on heterogeneous
platforms. Microservices are deployed via a microservice
platform [3–5, 40] on shared datacenter infrastructure. These
platforms abstract and allocate physical datacenter computing
nodes, provide a reliable and available execution environment,
and interact with deployed microservices through a set of
common runtime APIs. Large-scale web services already use
microservices on hundreds of thousands of servers [40, 41].

In this paper, we investigate efficient microservice execu-
tion on SmartNIC-accelerated servers. Specifically, we are
exploring how to integrate multiple SmartNICs per server
into a microservice platform with the goal of achieving better
energy efficiency at minimum latency cost. However, trans-
parently integrating SmartNICs into microservice platforms is
non-trivial. Unlike traditional heterogeneous clusters, Smart-
NICs are collocated with their host servers, raising a number
of issues. First, SmartNICs and hosts share the same MAC
address. We require an efficient mechanism to route and
load-balance traffic to hosts and SmartNICs. Second, Smart-
NICs sit in the host’s data path and microservices running
on a SmartNIC can interfere with microservices on the host.
Microservices need to be appropriately placed to balance
network-to-compute bandwidth. Finally, microservices can
contend on shared SmartNIC resources, causing overload. We
need to efficiently detect and prevent such situations.

We present E3, a microservice execution platform for
SmartNIC-accelerated servers that addresses these issues. E3

USENIX Association 2019 USENIX Annual Technical Conference 363

follows the design philosophies of the Azure Service Fabric
microservice platform [40] and extends key system compo-
nents to allow transparent offload of microservices to a Smart-
NIC. To balance network request traffic among SmartNICs
and the host, E3 employs equal-cost multipath (ECMP) load
balancing at the top-of-rack (ToR) switch and provides high-
performance PCIe communication mechanisms between host
and SmartNICs. To balance computation demands, we intro-
duce HCM, a hierarchical, communication-aware microser-
vice placement algorithm, combined with a data-plane orches-
trator that can detect and eliminate SmartNIC overload via
microservice migration. This allows E3 to optimize server en-
ergy efficiency with minimal impact on client request latency.

We make the following contributions:
• We show why SmartNICs can improve energy efficiency

over other forms of heterogeneous computation and how
they should be integrated with data center servers and mi-
croservice platforms to provide efficient and transparent
microservice execution (§2).

• We present the design of E3 (§3), a microservice runtime
on SmartNIC-accelerated server systems. We present its
implementation within a cluster of Xeon-based servers with
up to 4 Cavium LiquidIO-based SmartNICs per server (§4).

• We evaluate energy and cost-efficiency, as well as client-
observed request latency and throughput for common mi-
croservices, such as a real-time analytics framework, an
IoT hub, and various virtual network functions, across var-
ious homogeneous and heterogeneous cluster configura-
tions (§5). Our results show that offload of microservices
to multiple SmartNICs per server with E3 improves cluster
energy-efficiency up to 3× and cost efficiency up to 1.9×
at up to 4% client-observed latency cost versus all other
cluster configurations.

2 Background

Microservices simplify distributed application development
and are a good match for low-power SmartNIC offload. To-
gether, they are a promising avenue for improving server
energy efficiency. We discuss this rationale, quantify the po-
tential benefits, and outline the challenges of microservice
offload to SmartNICs in this section.

2.1 Microservices
Microservices have become a critical component of today’s
data center infrastructure with a considerable and diverse
workload footprint. Microsoft reports running microservices
24/7 on over 160K machines across the globe, including
Azure SQL DB, Skype, Cortana, and IoT suite [40]. Google
reports that Google Search, Ads, Gmail, video processing,
flight search, and more, are deployed as microservices [41].
These microservices include large and small data and code
footprints, long and short running times, billed by run-time

Spike

Server

API Gateway SQL store
Recommend

Sensor logging Data analytics

Microservice platform (Service Fabric, E3, …)

Authentication

Server

EMA

Spike
API Gateway SQL store

Recommend

EMA

………

Figure 1: Thermostat analytics as DAG of microservices. The
platform maps each DAG node to a physical computing node.

and by remote procedure call (RPC) [28]. What unifies these
services is their software engineering philosophy.

Microservices use a modular design pattern, which simpli-
fies distributed application design and deployment. Microser-
vices are loosely-coupled, communicating through a set of
common APIs, invoked via RPCs [86], and maintain state
via reliable collections [40]. As a result, developers can take
advantage of languages and libraries of their choice, while
not having to worry about microservice placement, communi-
cation mechanisms, fault tolerance, or availability.

Microservices are also attractive to datacenter operators as
they provide a way to improve server utilization. Microser-
vices execute as light-weight processes that are easier to scale
and migrate compared with a monolithic development ap-
proach. They can be activated upon incoming client requests,
execute to request completion, and then swapped out.

A microservice platform, such as Azure Service Fabric
[40], Amazon Lambda [3], Google Application Engine [4], or
Nirmata [5], is a distributed system manager that enables iso-
lated microservice execution on shared datacenter infrastruc-
ture. To do so, microservice platforms include the following
components (cf. [40]): 1. federation subsystem, abstracting
and grouping servers into a unified cluster that holds deployed
applications; 2. resource manager, allocating computation re-
sources to individual microservices based on their execution
requirements; 3. orchestrator, dynamically scheduling and mi-
grating microservices within the cluster based on node health
information, microservice execution statistics, and service-
level agreements (SLAs); 4. transport subsystem, providing
(secure) point-to-point communication among various mi-
croservices; 5. failover manager, guaranteeing high availabil-
ity/reliability through replication; 6. troubleshooting utilities,
which assist developers with performance profiling/debugging
and understanding microservice co-execution interference.

A microservice platform usually provides a number of
programming models [10] that developers adhere to, like
dataflow and actor-based. The models capture the execution
requirements and describe the communication relationship
among microservices. For example, the data-flow model (e.g.
Amazon Datapipe [6], Google Cloudflow [29], Azure Data

364 2019 USENIX Annual Technical Conference USENIX Association

Factory [55]) requires programmers to assemble microser-
vices into a directed acyclic graph (DAG): nodes contain mi-
croservices that are interconnected via flow-controlled, loss-
less dataflow channels. These models bring attractive benefits
for a heterogeneous platform since they explicitly express con-
currency and communication, enabling the platform to trans-
parently map it to the available hardware [68, 70]. Figure 1
shows an IoT thermostat analytics application [54] consisting
of microservices arranged in 3 stages: 1. Thermostat sensor
updates are authenticated by the API gateway; 2. Updates are
logged into a SQL store sharded by a thermostat identifier;
3. SQL store updates trigger data analytic tasks (e.g, spike
detection, moving average, and recommendation) based on
thresholds. The dataflow programming model allows the SQL
store sharding factor to be dynamically adjusted to scale the
application with the number of thermostats reporting. Reli-
able collections ensure state consistency when re-sharding
and the microservice platform automatically migrates and
deploys DAG nodes to available hardware resources.

A microservice can be stateful or stateless. Stateless mi-
croservices have no persistent storage and only keep state
within request context. They are easy to scale, migrate, and
replicate, and they usually rely on other microservices for
stateful tasks (e.g., a database engine). Stateful microservices
use platform APIs to access durable state, allowing the plat-
form full control over data placement. For example, Service
Fabric provides reliable collections [40], a collection of data
structures that automatically persist mutations. Durable stor-
age is typically disaggregated for microservices and accessed
over the network. The use of platform APIs to maintain state
allows for fast service migration compared with traditional
virtual machine migration [19], as the stateful working set
is directly observed by the platform. All microservices in
Figure 1 are stateful. We describe further microservices in §4.

2.2 SmartNICs

SmartNICs have appeared on the market [15, 51, 59] and
in the datacenter [25]. SmartNICs include computing units,
memory, traffic managers, DMA engines, TX/RX ports, and
several hardware accelerators for packet processing, such as
cryptography and pattern matching engines. Unlike traditional
accelerators, SmartNICs integrate the accelerator with the
NIC. This allows them to process network requests in-line, at
much lower latency than other types of accelerators.

Two kinds of SmartNIC exist: (1) general-purpose, which
allows transparent microservice offload and is the architecture
we consider. For example, Mellanox BlueField [51] has 16
ARMv8 A72 cores with 2×100GE ports and Cavium Liq-
uidIO [15] has 12 cnMIPS cores with 2×10GE ports. These
SmartNICs are able to run full operating systems, but also
ship with lightweight runtime systems that can provide kernel-
bypass access to the NIC’s IO engines. (2) FPGA and ASIC
based SmartNICs target highly specialized applications. Ex-

amples include match-and-action processing [25, 43] for net-
work dataplanes, NPUs [26], and TPUs [39] for deep neural
network inference acceleration. FPGAs and ASICs do not
support transparent microservice offload. However, they can
be combined with general-purpose SmartNICs.

A SmartNIC-accelerated server is a commodity server with
one or more SmartNICs. Host and SmartNIC processors do
not share thermal, memory, or cache coherence domains, and
communicate via DMA engines over PCIe. This allows them
to operate as independent, heterogeneous computers, while
sharing a power domain and its idle power.

SmartNICs hold promise for improving server energy-
efficiency when compared to other heterogeneous computing
approaches. For example, racks populated with low-power
servers [8] or a heterogeneous mix of servers, suffer from
high idle energy draw, as each server requires energy to
power its chassis, including fans and devices, and its own ToR
switch port. System-on-chip designs with asymmetric perfor-
mance, such as ARM’s big.LITTLE [38] and DynamIQ [2]
architectures, and AMD’s heterogeneous system architecture
(HSA) [7], which combines a GPU with a CPU on the same
die, have scalability limits due to the shared thermal design
point (TDP). These architectures presently scale to a max-
imum of 8 cores, making them more applicable to mobile
than to server applications. GPGPUs and single instruction
multiple threads (SIMT) architectures, such as Intel’s Xeon
Phi [36] and HP Moonshot [34], are optimized for compu-
tational throughput and the extra interconnect hop prevents
these accelerators from running latency-sensitive microser-
vices efficiently [57]. SmartNICs are not encumbered by these
problems and can thus be used to balance the power draw of
latency-sensitive services efficiently.

2.3 Benefits of SmartNIC Offload

We quantify the potential benefit of using SmartNICs for mi-
croservices on energy efficiency and request latency. To do
so, we choose two identical commodity servers and equip one
with a traditional 10GbE Intel X710 NIC and the other with a
10GbE Cavium LiquidIO SmartNIC. Then we evaluate 16 dif-
ferent microservices (detailed in §4) on these two servers with
synthetic benchmarks of random 512B requests. We measure
request throughput, wall power consumed at peak throughput
(defined as the knee of the latency-throughput graph, where
queueing delay is minimal) and when idle, as well as client-
observed, average/tail request latency in a closed loop. We use
host cores on the traditional server and SmartNIC cores on the
SmartNIC server for microservice execution. We use as many
identical microservice instances, CPUs, and client machines
as necessary to attain peak throughput and put unused CPUs
to their deepest sleep state. The SmartNIC does not support
per-core low power states and always keeps all 12 cores active,
diminishing SmartNIC energy efficiency results somewhat.
The SmartNIC microservice runtime system uses a kernel-

USENIX Association 2019 USENIX Annual Technical Conference 365

Microservice Host (Linux) Host (DPDK) SmartNIC
RPS W C L 99% RPJ RPS W C L 99% RPJ % RPS W L 99% RPJ ×

IPsec 821.3K 117.0 12 1.8 6.6 7.0K 911.9K 112.1 12 1.7 5.2 8.1K 15.9 1851.1K 23.4 0.2 0.8 79.0K 9.7
BM25 91.9K 116.4 12 40.3 205.8 0.8K 99.5K 110.0 12 30.7 155.6 0.9K 14.5 394.1K 19.2 4.1 12.4 20.6K 22.8
NIDS 1781.1K 111.0 12 0.06 0.2 16.1K 1841.1K 106.8 12 0.05 0.15 17.2K 7.4 1988.8K 23.4 0.03 0.1 84.8K 4.9
Recommend 3.6K 109.4 12 86.6 477.0 0.03K 4.1K 111.7 12 78.7 358.6 0.04K 11.6 12.8K 18.9 21.3 123.6 0.7K 18.4
NATv4 1889.6K 72.1 8 0.04 0.1 26.2K 1917.5K 52.1 4 0.04 0.1 36.8K 40.4 2053.1K 23.6 0.03 0.09 86.9K 2.4
Count 1960.8K 68.1 6 0.07 0.1 28.8K 1960.0K 48.6 4 0.03 0.1 40.3K 40.0 2016.8K 21.0 0.03 0.09 96.1K 2.4
EMA 1966.1K 72.7 8 0.04 0.2 27.0K 2009.2K 52.1 4 0.03 0.09 38.6K 42.8 2052.0K 22.0 0.03 0.08 93.5K 2.4
KVS 1946.2K 48.6 8 0.04 0.1 40.0K 2005.0K 33.6 2 0.04 0.1 59.6K 49.0 2033.4K 21.6 0.03 0.1 97.1K 1.6
Flow mon. 1944.1K 70.9 8 0.04 0.1 27.4K 2014.4K 49.8 4 0.03 0.09 40.4K 47.4 2032.6K 24.3 0.03 0.08 83.6K 2.1
DDoS 1989.5K 111.2 12 0.05 0.2 17.9K 1844.8K 105.7 12 0.05 0.2 17.4K -3.0 1952.5K 24.3 0.03 0.1 80.4K 4.6
KNN 42.2K 118.3 12 53.7 163.4 0.4K 42.4K 110.4 12 45.8 161.3 0.4K 7.5 29.9K 20.0 20.6 80.3 1.5K 3.9
Spike 91.9K 112.5 12 29.3 94.5 0.8K 104.3K 112.3 12 25.7 83.0 0.9K 13.7 73.8K 23.5 9.0 50.3 3.1K 3.4
Bayes 12.1K 113.9 12 82.0 406.5 0.1K 13.7K 112.0 12 80.6 400.5 0.1K 14.8 1.6K 19.5 41.9 164.7 0.08K 0.7
API gw 1537.6K 108.5 12 0.9 3.2 14.2K 1584.3K 110.6 12 0.8 2.7 14.3K 1.1 124.5K 24.7 8.5 403.6 5.0K 0.4
Top ranker 711.9K 119.7 12 4.0 15.0 5.9K 771.9K 109.2 12 3.5 12.3 7.1K 18.9 14.8K 20.3 31.1 154.9 0.7K 0.1
SQL 463.3K 114.7 12 6.9 31.1 4.0K 528.0K 113.0 12 6.7 29.5 4.7K 15.7 39.5K 18.8 29.5 104.2 2.1K 0.4

Table 1: Microservice comparison among host (Linux and DPDK) and SmartNIC. RPS = Throughput (requests/s), W = Active power
(W), C = Number of active cores, L = Average latency (ms), 99% = 99th percentile latency, RPJ = Energy efficiency (requests/Joule).

 0

 2

 4

 6

 8

 10

 12

 14

64 128 256 512 1024 1500

S
m

a
rt

N
IC

:H
o

s
t

(D
P

D
K

)
R

P
J

Request Size [B]

Flow monitor
DDoS

IPv4

NIDS
IPsec

Figure 2: Request size impact on SmartNIC RPJ benefits.

bypass network stack (cf. §4). To break out kernel overheads
from the host experiments, we run all microservices on the
host in two configurations: 1. Linux kernel network stack; 2.
kernel-bypass network stack [63], based on Intel’s DPDK [1].

Table 1 presents measured peak request throughput, active
power (wall power at peak throughput minus idle wall power),
number of active cores, (tail-)latency, and energy efficiency,
averaged over 3 runs. Active power allows a direct comparison
of host to SmartNIC processor power draw. Energy efficiency
equals throughput divided by active power.

Kernel overhead. We first analyze the overhead of in-
kernel networking on the host (Linux versus DPDK). As
expected, the kernel-bypass networking stack performs bet-
ter than the in-kernel one. On average, it improves energy
efficiency by 21% (% column in Table 1) and reduces tail la-
tency by 16%. Energy efficiency improves because (1) DPDK
achieves similar throughput with fewer cores; (2) at peak
server CPU utilization, DPDK delivers higher throughput.

SmartNIC performance. SmartNIC execution improves
the energy efficiency of 12 of the measured microservices
by a geometric mean of 6.5× compared with host execution
using kernel bypass (× column in Table 1). The SmartNIC
consumes at most 24.7W active power to execute these mi-
croservices while the host processor consumes up to 113W.
IPSec, BM25, Recommend, and NIDS particularly benefit

from various SmartNIC hardware accelerators (crypto copro-
cessor, fetch-and-add atomic units, floating point engines, and
pattern matching units). NATv4, Count, EMA, KVS, Flow
monitor, and DDoS can take advantage of the computational
bandwidth and fast memory interconnect of the SmartNIC.
In these cases, the energy efficiency comes not just from the
lower power consumed by the SmartNIC, but also from peak
throughput improvements versus the host processor. KNN
and Spike attain lower throughput on the SmartNIC. How-
ever, since the SmartNIC consumes less power, the overall
energy efficiency is still better than the host. For all of these
microservices, the SmartNIC also improves client-observed
latency. This is due to the hardware accelerated packet buffers
and the elimination of PCIe bus traversals. SmartNICs can
reduce average and tail latency by a geometric mean of 45.3%
and 45.4% versus host execution, respectively.

The host outperforms the SmartNIC for Top ranker, Bayes
classifier, SQL, and API gateway by a geometric mean of 4.1×
in energy efficiency, 41.2% and 30.0% in average and tail la-
tency reduction. These microservices are branch-heavy with
large working sets that are not handled well by the simpler
cache hierarchy of the SmartNIC. Moreover, the API gate-
way uses double floating point numbers for the rate limiter
implementation, which the SmartNIC emulates in software.

Request size impact. SmartNIC performance depends also
on request size. To demonstrate this, we vary the request size
of our synthetic workload and evaluate SmartNIC energy ef-
ficiency benefits of 5 microservices versus host execution.
Figure 2 shows that with small (≤128B) requests, SmartNIC
benefit of IPSec, NIDS, and DDoS is smaller. Small requests
are more computation intensive and we are limited by the
SmartNIC’s wimpy cores. SmartNIC offload hits a sweet-spot
at 256–512B request size, where the benefit almost doubles.
Here, network and compute bandwidth utilization are bal-
anced for the SmartNIC. At larger request sizes, we are net-
work bandwidth limited, allowing us to put host CPUs to sleep
and SmartNIC benefits again diminish. This can be seen in
particular for IPsec, which outperforms on the SmartNIC due

366 2019 USENIX Annual Technical Conference USENIX Association

 0

 10

 20

 30

 40

 50

 60

 70

4 8 16 32 64 128 256 512 1024

R
T

T
 (

u
s
)

Payload size (B)

Host-Host-Linux
Host-Host-DPDK

SmartNIC-SmartNIC
SmartNIC-Host

Figure 3: Average RTT (3 runs) of different communication
mechanisms in a SmartNIC-accelerated server.

to hardware cryptography acceleration, but still diminishes
with larger request sizes. We conclude that request size has a
major impact on the benefit of SmartNIC offload. Measuring
it is necessary to make good offload choices.

We conclude that SmartNIC offload can provide large en-
ergy efficiency and latency benefits for many microservices.
However, it is not a panacea. Computation and memory in-
tensive microservices are more suitable to run on the host
processor. We need an efficient method to define and monitor
critical SmartNIC offload criteria for microservices.

2.4 Challenges of SmartNIC Offload

While there are quantifiable benefits, offloading microservices
to SmartNICs brings a number of additional challenges:
• SmartNICs share the same Ethernet MAC address with the

host server. Layer 2 switching is not enough to route traffic
between SmartNICs and host servers. We require a different
switching scheme that can balance traffic and provide fault
tolerance when a server equips multiple SmartNICs.

• Microservice platforms assume uniform communication
performance among all computing nodes. However, Fig-
ure 3 shows that SmartNIC-Host (via PCIe) and SmartNIC-
SmartNIC (via ToR switch) communication round-trip-
time (RTT) is up to 83.3% and 86.2% lower than host-host
(via ToR switch) kernel-bypass communication. We have to
consider this topology effect to achieve good performance.

• Microservices share SmartNIC resources and contend with
SmartNIC firmware for cache and memory bandwidth. This
can create a head-of-line blocking problem for network
packet exchange with both SmartNIC and host. Prolonged
head-of-line blocking can result in denial of service to un-
related microservices and is more severe than transient
sources of interference, such as network congestion. We
need to sufficiently isolate SmartNIC-offloaded microser-
vices from firmware to guarantee quality of service.

3 E3 Microservice Platform

We present the E3 microservice platform for SmartNIC-
accelerated servers. Our goal is to maximize microservice
energy efficiency at scale. Energy efficiency is the ratio of

Host
processor (s)SmartNIC

TO
R

(a). SmartNIC-accelerated server

PCIe

SmartNIC

Host server

SmartNIC Host
processor (s)

QPI

NIC processor cores
…

Microservices

Traffic
manager

TX
RX

(b). SmartNIC block diagram

Orchestrator
agent

To/From
 PC

Ie
Figure 4: Hardware and software architecture of E3.

microservice throughput and cluster power draw. Power draw
is determined by our choice of SmartNIC-acceleration, while
E3 focuses on maximizing microservice throughput on this
heterogeneous architecture. We describe how we support mi-
croservice offload to a SmartNIC and address the request
routing, microservice placement, and scheduling challenges.

E3 overview. E3 is a distributed microservice execution
platform. We follow the design philosophies of Azure Service
Fabric [40] but add energy efficiency as a design requirement.
Figure 4 shows the hardware and software architecture of E3.
E3 runs in a typical datacenter, where servers are grouped into
racks, with a ToR switch per rack. Each server is equipped
with one or more SmartNICs, and each SmartNIC is con-
nected to the ToR. This creates a new topology where host
processors are reachable via any of the SmartNICs (Figure 4-
a). SmartNICs within the same server also have multiple
communication options—via the ToR or PCIe (§3.1).

Programming model. E3 uses a dataflow programming
model. Programmers assemble microservices into a DAG of
microservice nodes interconnected via channels in the direc-
tion of RPC flow (cf. Figure 1). A channel provides lossless
data communication between nodes. A DAG in E3 describes
all RPC and execution paths of a single microservice applica-
tion, but multiple DAGs may coexist and execute concurrently.
E3 is responsible for mapping DAGs to computational nodes.

Software stack. E3 employs a central, replicated cluster re-
source controller [40] and a microservice runtime on each host
and SmartNIC. The resource controller includes four compo-
nents: (1) traffic control, responsible for routing and load bal-
ancing requests between different microservices; (2) control-
plane manager, placing microservice instances on cluster
nodes; (3) data-plane orchestrator, dynamically migrates mi-
croservices across cluster nodes; (4) failover/replication man-
ager, providing failover and node membership management
using consistent hashing [75]. The microservice runtime in-
cludes an execution engine, an orchestrator agent, and a com-
munication subsystem, described next.

Execution engine. E3 executes each microservice as a
multi-threaded process, either on the SmartNIC or on the
host. The host runs Linux. The SmartNIC runs a lightweight
firmware. Microservices interact only via microservice APIs,

USENIX Association 2019 USENIX Annual Technical Conference 367

allowing E3 to abstract from the OS. SmartNIC and host sup-
port hardware virtual memory for microservice confinement.
E3 is work-conserving and runs requests to completion. It
leverages a round-robin policy for steering incoming requests
to cores, context switching cores if needed.

Orchestrator agent. Each node runs an orchestrator agent
to periodically monitor and report runtime execution charac-
teristics to the resource controller. The information is used by
(1) the failover manager to determine cluster health and (2) the
data-plane orchestrator to monitor the execution performance
of each microservice and make migration decisions. On the
host, the agent runs as a separate process. On the SmartNIC,
the agent runs on dedicated cores (blue in Figure 4-b) and a
traffic manager hardware block exchanges packets between
the NIC MAC ports and the agent. For each packet, the agent
determines the destination (network, host, or SmartNIC core).

3.1 Communication Subsystem
E3 leverages various communication mechanisms, depending
on where communicating microservices are located.

Remote communication. When communicating among
host cores across different servers, E3 uses the Linux network
stack. SmartNIC remote communication uses a user-level
network stack [63].

Local SmartNIC-host communication. SmartNIC and
host cores on the same server communicate via PCIe. Prior
work has extensively explored communication channels via
PCIe [47,48,60], and we adopt their design. High-throughput
messaging for PCIe interconnects requires leveraging multi-
ple DMA engines in parallel. E3 takes advantage of the eight
DMA engines on the LiquidIO, which can concurrently issue
scatter/gather requests.

Local SmartNIC-SmartNIC communication. Smart-
NICs in the same host can use three methods for commu-
nication. 1. Using the host to relay requests, involving two
data transfers over PCIe and pointer manipulation on the
host, increasing latency. 2. PCIe peer-to-peer [23], which
is supported on most SmartNICs [15, 51, 59]. However, the
bandwidth of peer-to-peer PCIe communication is capped in
a NUMA system when the communication passes between
sockets [57]. 3. ToR switch. We take the third approach and
our experiments show that this approach incurs lower latency
and achieves higher bandwidth than the first two.

3.2 Addressing and Routing
Since SmartNICs and their host servers share Ethernet MAC
addresses, we have to use an addressing/routing scheme to dis-
tinguish between these entities and load balance across them.

For illustration, assume we have a server with two SmartNICs;
each NIC has one MAC port. If remote microservices com-
municate with this server, there will be two possible paths
and each might be congested.

We use equal-cost multi-path (ECMP) [84] routing on the
ToR switch to route and balance load among these ports.
We assign each SmartNIC and the host its own IP. We then
configure the ToR switch to route to SmartNICs directly via
the attached ToR switch port and an ECMP route to the host
IP via any of the ports. The E3 communication subsystem
on each SmartNIC differentiates by destination IP address
whether an incoming packet is for the SmartNIC or the host.
On the host, we take advantage of NIC teaming [56] (also
know as port trunking) to bond all related SmartNIC ports
into a single logical interface, and then apply the dynamic
link aggregation policy (supporting IEEE 802.3ad protocol).
ECMP automatically balances connections to the host over
all available ports. If a link or SmartNIC fails, ECMP will
automatically rebalance new connections via the remaining
links, improving host availability.

3.3 Control-plane Manager

The control-plane manager is responsible for energy-efficient
microservice placement. This is a computing intensive oper-
ation due to the large search space with myriad constraints.
Hence, it is done on the control plane. Service Fabric uses
simulated annealing, a well-known approximate algorithm,
to solve microservice placement. It considers three types of
constraints: (1) currently available resources of each com-
puting node (memory, disk, CPU, network bandwidth); (2)
computing node runtime statistics (aggregate outstanding mi-
croservice requests); (3) individual microservice execution
behavior (average request size, request execution time and
frequency, diurnal variation, etc.). Service Fabric ignores net-
work topology and favors spreading load over multiple nodes.

E3 extends this algorithm to support bump-in-the-wire
SmartNICs, considering network topology. We categorize
computing nodes (host or SmartNIC processors) into different
levels of communication distance and perform a search from
the closest to the furthest. We present the HCM algorithm (Al-
gorithm 1). HCM takes as input the microservice DAG G and
source nodes Vsrc, as well as the cluster topology T , includ-
ing runtime statistics for each computing node (as collected).
HCM performs a breadth-first traversal of G to map microser-
vices to cluster computing nodes (MS_DAG_TRAVERSE).

If not already deployed (get_deployed_node), HCM (via
MS_DAG_TRAVERSE) assigns a microservice V to a com-
puting node N via the find_first_fit function (lines 9-11) and
deploys it via set_deployed_node. find_first_fit is a greedy
algorithm that returns the first computing node that satis-
fies the microservice constraints (via its resource and runtime
statistics) without considering communication cost. If no such
node is found, it returns a node closest to the constraints. Next,

368 2019 USENIX Annual Technical Conference USENIX Association

Algorithm 1 HCM microservice placement algorithm
1: G : microservice DAG graph
2: Vsrc : source microservice node(s) o f the DAG
3: T : server cluster topology graph
4: procedure MS_DAG_TRAVERSE(G,Vsrc,T)
5: Q.enqueue(Vsrc) . Let Q be a queue
6: while Q is not empty do
7: V ← Q.dequeue()
8: N← get_deployed_node(V)
9: if N is NULL then

10: N← f ind_ f irst_ f it(V,T)
11: set_deployed_node(V,N)

12: for W in all direct descendants o f V in G do
13: NW ←MS_PLACE(W,N,T)
14: set_deployed_node(W,NW)
15: Q.enqueue(W)

16:
17: V : microservice to place
18: N : computational node o f V ′s ancestor
19: T : server cluster topology graph
20: procedure MS_PLACE(V,N,T)
21: Topo← get_hierarchical_topo(N,T)
22: for L in all Topo.Levels do
23: N← f ind_best_ f it(V,Topo.node_list(L))
24: if N is not NULL then
25: return N
26: return f ind_ f irst_ f it(V,T) . Ignore topology

for the descendant microservices of a node V (lines 12-15),
HCM assigns them to computing nodes based on their com-
munication distance to V (MS_PLACE). To do so, HCM first
computes the hierarchical topology representation of com-
puting node N via get_hierarchical_topo. Each level in the
hierarchical topology includes computing nodes that require a
similar communication mechanism, starting with the closest.
For example, in a single rack there are four levels in this order:
1. The same computing node as V ; 2. An adjacent computing
node on the same server; 3. A SmartNIC computing node on
an adjacent server; 4. A host computing node on an adjacent
server. If there are multiple nodes in the same level, HCM
uses find_best_fit to find the best fit, according to resource
constraints. If no node in the hierarchical topology fits the
constraints, we fall back to find_first_fit.

3.4 Data-plane Orchestrator
The data-plane orchestrator is responsible for detecting load
changes and migrating microservices in response to these
changes among computational nodes at run-time. To do so,
we piggypack several measurements onto the periodic node
health reports made by orchestrator agents to the resource
controller: This approach is lightweight and integrates well
with runtime execution. We believe that our proposed methods
can also be used in other microservice schedulers [33, 62, 66].

In this section, we introduce the additional techniques im-
plemented in our data-plane orchestrator to mitigate issues of

SmartNIC overload caused by compute-intensive microser-
vices. These can interfere with the SmartNIC’s traffic man-
ager, starving the host of network packets. They can also
simply execute too slowly on the SmartNIC to be able to
catch up with the incoming request rate.

Host starvation. This issue is caused by head-of-line block-
ing of network traffic due to microservice interference with
firmware on SmartNIC memory/cache. It is typically caused
by a single compute-intensive microservice overloading the
SmartNIC. To alleviate this problem, we monitor the incom-
ing/outgoing network throughput and packet queue depth at
the traffic manager. If network bandwidth is under-utilized,
but there is a standing queue at the traffic manager, the Smart-
NIC is overloaded, and we need to migrate microservices.

Microservice overload. This issue is caused by microser-
vices in aggregate requiring more computational bandwidth
than the SmartNIC can offer, typically because too many mi-
croservices are placed on the same SmartNIC. To detect this
problem, we periodically monitor the execution time of each
microservice and compare to its exponential moving aver-
age. When the difference is negative and larger than 20%,
we assume a microservice overload and trigger microservice
migration. The threshold was determined empirically.

Microservice migration. For either issue, the orchestrator
will migrate the microservice with the highest CPU utilization
to the host. To do so, it uses a cold migration approach, sim-
ilar to other microservice platforms. Specifically, when the
orchestrator makes a migration decision, it will first push the
microservice binary to the new destination, and then notify
the runtime of the old node to (1) remove the microservice
instance from the execution engine; (2) clean up and free any
local resources; (3) migrate the working state, as represented
by reliable collections [40], to the destination. After the or-
chestrator receives a confirmation from the original node, it
will update connections and restart the microservice execution
on the new node.

3.5 Failover/Replication Manager

Since SmartNICs share the same power supply as their host
server, our failover manager treats all SmartNICs and the
host to be in the same fault domain [40], avoiding replica
placement within the same. Replication for fault tolerance is
typically done across different racks of the same datacenter
or across datacenters, and there is no impact from placing
SmartNICs in the same failure domain as hosts.

USENIX Association 2019 USENIX Annual Technical Conference 369

Microservice S Description
IPsec Authenticates (SHA-1) & encrypts (AES-CBC-128) NATv4 [42]
BM25 Search engine ranking function [85], e.g., ElasticSearch
NATv4 IPv4 network address translation using DIR-24-8-BASIC [32]
NIDS Network intrusion detection w/ aho-corasick parallel match [81]
Count X Item frequency counting based on a bitmap [42]
EMA X Exponential moving average (EMA) for data streams [83]
KVS X Hashtable-based in-memory key-value store [24]
Flow mon. X Flow monitoring system using count-min sketch [42]
DDoS X Entropy-based DDoS detection [58]
Recommend X Recommendation system using collaborative filtering [82]
KNN Classifier using the K-nearest neighbours algorithm [87]
Spike X Spike detector from a data stream using Z-score [72]
Bayes Naive Bayes classifier based on maximum a posteriori [49]
API gw X API rate limiter and authentication gateway [9]
Top Ranker X Top-K ranker using quicksort [78]
SQL X In-memory SQL database [52]

Table 2: 16 microservices implemented on E3. S = Stateful.
Application Description N Microservices
NFV-FIN Flow monitoring [42, 64] 72 Flow mon., IPsec, NIDS
NFV-DIN Intrusion detection [64, 88] 60 DDoS, NATv4, NIDS
NFV-IFID IPsec gateway [42, 88] 84 NATv4, Flow mon., IPsec, DDoS
RTA-PTC Twitter analytics [78] 60 Count, Top Ranker, KNN
RTA-SF Spam filter [35] 96 Spike, Count, KVS, Bayes
RTA-SHM Server health mon. [37] 84 Count, EMA, SQL, BM25
IOT-DH IoT data hub [77] 108 API gw, Count, KNN, KVS, SQL
IOT-TS Thermostat [54] 108 API,EMA,Spike,Recommend,SQL

Table 3: 8 microservice applications. N = # of DAG nodes.

4 Implementation

Host software stack. The E3 resource controller and host
runtime are implemented in 1,287 and 3,617 lines of C (LOC),
respectively, on Ubuntu 16.04. Communication among co-
located microservices uses per-core, multi-producer, single-
consumer FIFO queues in shared memory. Our prototype uses
UDP for all network communication.

SmartNIC runtime. The E3 SmartNIC runtime is built in
3,885 LOC on top of the Cavium CDK [16], with a user-
level network stack. Each microservice runs on a set of non-
preemptive hardware threads. Our implementation takes ad-
vantage of a number of hardware accelerator libraries. We use
(1) a hardware managed memory manager to store the state of
each microsevice, (2) the hardware traffic controller for Ether-
net MAC packet management, and (3) atomic fetch-and-add
units to gather performance statistics. We use page protection
of the cnMIPS architecture to confine microservices.

Microservices. We implemented 16 popular microservices
on E3, as shown in Table 2, in an aggregate 6,966 LOC. Six of
the services are stateless or use read-only state that is modified
only via the cluster control plane. The remaining services are
stateful and use reliable collections to maintain their state.
When running on the SmartNIC, IPsec and API gateway can
use the crypto coprocessor (105 LOC), while Recommend and
NIDS can take advantage of the deterministic finite automata
unit (65 LOC). For Count, EMA, KVS, and Flow monitor,
our compiler automatically uses the dedicated atomic fetch-
and-add units on the SmartNIC. When performing single-
precision floating-point computations (EMA, KNN, Spike,

System/Cluster Cost [$] BC WC Mem Idle Peak Bw
Beefy 4,500 12 0 64 83 201 20
Wimpy 2,209 0 32 2 79 95 20
Type1-SmartNIC 4,650 12 12 68 98 222 20
Type2-SmartNIC 6,750 16 48 144 145 252 40
SuperBeefy 12,550 24 0 192 77 256 80
4×Beefy 18,000 48 0 256 332 804 80
4×Wimpy 8,836 0 128 8 316 380 80
2×B.+2×W. 13,018 24 64 132 324 592 80
2×Type2-SmartNIC 13,500 32 96 288 290 504 80
1×SuperBeefy 12,550 24 0 192 77 256 80

Table 4: Evaluated systems and clusters. BC = Beefy cores, WC
= Wimpy cores, Mem = Memory (GB), Idle and Peak power
(W), Bw = Network bandwidth (Gb/s).

Bayes), our compiler generates FPU code on the SmartNIC.
Double-precision floating-point calculations (API gateway)
are software emulated. E3 reliable collections currently only
support hashtables and arrays, preventing us from migrating
the SQL engine. We thus constrain the control-plane manager
to pin SQL instances to host processors.

Applications. Based on these microservices, we develop
eight applications across three application domains: (1) Dis-
tributed real-time analytics (RTA), such as Apache Storm [78],
implemented as a dataflow processing graph of workers that
pass data tuples in real time to trigger computations; (2) Net-
work function (NF) virtualization (NFV) [61], which is used
to build cloud-scale network middleboxes, software switches,
and enterprise IT networks, by chaining NFs; (3) An IoT hub
(IOT) [53], which gathers sensor data from edge devices and
generates events for further processing (e.g., spike detection,
classifier) [?, 77]. To maximize throughput, applications may
shard and replicate microservices, resulting in a DAG node
count larger than the involved microservice types. Table 3
presents the microservice types involved in each application,
the deployed DAG node count, and references the workloads
used for evaluation. The workloads are trace-based and syn-
thetic benchmarks, validated against realistic scenarios. The
average and maximum node fanouts among our applications
are 6 and 12, respectively. Figure1 shows IOT-TS as an ex-
ample. IOT-TS is sharded into 6×API, 12×SQL, 12×EMA,
12×Spike, and 12×recommend and each microservice has
one backup replica.

5 Evaluation

Our evaluation aims to answer the following questions:
1. What is the energy efficiency benefit of microservice

SmartNIC-offload? Is it proportional to client load?
What is the latency cost? (§5.1)

2. Does E3 overcome the challenges of SmartNIC-offload?
(§5.2, §5.3, §5.4)

3. Do SmartNIC-accelerated servers provide better total
cost of ownership than other cluster architectures? (§5.5)

4. How does E3 perform at scale? (§5.6)

370 2019 USENIX Annual Technical Conference USENIX Association

Experimental setup. Our experiments run on a set of clus-
ters (Table 4 presents the server and cluster configurations),
attached to an Arista DCS-7050S ToR switch. Beefy is a
Supermicro 1U server, with a 12-core E5-2680 v3 processor
at 2.5GHz, and a dual-port 10Gbps Intel X710 NIC. Wimpy
is ThunderX-like, with a CN6880 processor (32 cnMIPS64
cores running at 1.2GHz), and a dual-port 10Gbps NIC. Su-
perBeefy is a Supermicro 2U machine, with a 24-core Xeon
Platinum 8160 CPU at 2.1GHz, and a dual-port 40Gbps Intel
XL710 NIC. Our SmartNIC is the Cavium LiquidIOII [15],
with one OCTEON processor with 12 cnMIPS64 cores at
1.2GHz, 4GB memory, and two 10Gbps ports. Based on this,
we build two SmartNIC servers: Type1 is Beefy, but swaps
the X710 10Gbps NIC with the Cavium LiquidIOII; Type2
is a 2U server with two 8-core Intel E5-2620 processors at
2.1GHz, 128GB memory, and 4 SmartNICs. All servers have
a Seagate HDD. We build the clusters such that each has the
same amount of aggregate network bandwidth. This allows
us to compare energy efficiency based on the compute band-
width of the clusters, without varying network bandwidth. We
also exclude the switch from our cost and energy evaluations,
as each cluster uses an identical number of switch ports.

We measure server power consumption using the servers’
IPMI data center management interface (DCMI), cross-
checked by a Watts Up wall power meter. Throughput and
average/tail latency across 3 runs are measured from clients
(Beefy machines), of which we provide as many as necessary.
We enable hyper-threading and use the Intel_pstate gover-
nor for power management. All benchmarks in this section
report energy efficiency as throughput over server/cluster wall
power (not just active power).

5.1 Benefit and Cost of SmartNIC-Offload

Peak utilization. We evaluate the latency and energy ef-
ficiency of using SmartNICs for microservice applications,
compared to homogeneous clusters. We compare 3×Beefy to
3×Type1-SmartNIC, to ensure that microservices also com-
municate remotely. We focus first on peak utilization, which is
desirable for energy efficiency, as it amortizes idle power draw.
To do so, we deploy as many instances of each application and
apply as much client load as necessary to maximize request
throughput without overloading the cluster, as determined by
the knee of the latency-throughput curve.

Figure 5 shows that Type1-SmartNIC achieves an average
2.5×, 1.3×, and 1.3× better energy efficiency across the NFV,
RTA, and IOT application classes, respectively. This goes
along with 43.3%, 92.3%, and 80.4% average latency savings
and 35.5%, 90.4%, 88.6% 99th percentile latency savings,
respectively. NFV-FIN gains the most—3× better energy
efficiency—because E3 is able to run all microservices on
the SmartNICs. RTA-PTC benefits the least—12% energy
efficiency improvement at 4% average and tail latency cost—
as E3 only places the Count microservice on the SmartNIC

and migrates the rest to the host.

Power proportionality. This experiment evaluates the
power proportionality of E3 (energy efficiency at lower than
peak utilization). Using 3×Type1-SmartNIC, we choose an
application from each class (NFV-FIN, RTA-SHM, and IOT-
TS) and vary the offered request load between idle and peak
via a client side request limiter. Figure 8 shows that RTA-
SHM and IOT-TS are power proportional. NFV-FIN is not
power proportional but also draws negligible power. NFV-
FIN runs all microservices on the SmartNICs, which have low
active power, but the cnMIPS architecture has no per-core
sleep states.

We conclude that applications can benefit from E3’s mi-
croservice offload to SmartNICs, in particular at peak cluster
utilization. Peak cluster utilization is desirable for energy
efficiency and microservices make it more common due to
light-weight migration. However, transient periods of low
load can occur and E3 draws power proportional to request
load. We can apply insights from Prekas, et al. [65] to reduce
polling overheads and improve power proportionality further.

5.2 Avoiding Host Starvation
We show that E3’s data-plane orchestrator prevents host star-
vation by identifying head-of-line blocking of network traffic.
To do so, we use 3×Type1-SmartNIC and place as many
microservices on the SmartNIC as fit in memory. E3 iden-
tifies the microservices that cause interference (Top Ranker
in RTA-PTC, Spike in RTA-SF, API gateway in IOT-DH and
IOT-TS) and migrates them to the host. As shown in Figure 7,
our approach achieves up to 29× better energy efficiency and
up to 89% latency reduction across RTA-PTC, RTS-SF, IOT-
DH, and IOT-TS. For the other applications, our traffic engine
has little effect because the initial microservice assignment
already put the memory intensive microservices on the host.

5.3 Sharing SmartNIC and Host Bandwidth
This experiment evaluates the benefits of sharing SmartNIC
network bandwidth with the host. We compare two Type2-
SmartNIC configurations: 1. Sharing aggregate network band-
width among host and SmartNICs, using ECMP to balance
host traffic over SmartNIC ports; 2. Replacing one SmartNIC
with an Intel X710 NIC used exclusively to route traffic to
the host. To emphasize the load balancing benefits, we al-
ways place the client-facing microservices on the host server.
Note that SmartNIC-offloaded microservices still exchange
network traffic (when communicating remotely or among
SmartNICs) and interfere with host traffic.

Figure 9 shows that load balancing improves application
throughput up to 2.9× and cluster energy efficiency up to
2.7× (NFV-FIN). Available host network bandwidth when
sharing SmartNICs can be up to 4× that of the dedicated

USENIX Association 2019 USENIX Annual Technical Conference 371

 0

 5

 10

 15

 20

NFV-FIN

NFV-D
IN

NFV-IF
ID

RTA-P
TC

RTA-S
F

RTA-S
HM

IO
T-D

H

IO
T-TS

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 (

K
R

P
J
)

Type1-SmartNIC Beefy

(a) Energy-efficiency

 0

 2

 4

 6

 8

 10

NFV-FIN

NFV-D
IN

NFV-IF
ID

RTA-P
TC

RTA-S
F

RTA-S
HM

IO
T-D

H

IO
T-TS

A
v
g

.
L

a
te

n
c
y
 (

m
s
)

Type1-SmartNIC Beefy

(b) Average latency

 0

 10

 20

 30

 40

 50

 60

NFV-FIN

NFV-D
IN

NFV-IF
ID

RTA-P
TC

RTA-S
F

RTA-S
HM

IO
T-D

H

IO
T-TS

T
a

il
L

a
te

n
c
y
 (

m
s
)

Type1-SmartNIC Beefy

(c) 99th-percentile latency

Figure 5: Energy-efficiency, average/tail latency comparison between Type1-SmartNIC and Beefy at peak utilization.

Cluster NFV-FIN RTA-SHM IOT-TS
4×Beefy 5.1 1.9 2.7
4×Wimpy 29.9 0.4 0.1
2×B.+2×W. 8.2 1.4 1.9
2×Type2-SmartNIC 29.0 4.5 6.1
1×SuperBeefy 8.8 2.9 5.0

Table 5: Energy efficiency across five clusters (KRPJ).

NIC, which balances better with the host compute bandwidth.
With a dedicated NIC, host processors can starve for network
bandwidth. IOT-TS is compute-bound and thus benefits the
least from sharing. In terms of latency, all cases behave the
same since the request execution flows are the same.

5.4 Communication-aware Placement

To show the effectiveness of communication-aware microser-
vice placement, we evaluate HCM on E3 without data-plane
orchestrator. In this case, all microservices are stationary after
placement. We avoid host starvation and microservice over-
load by constraining problematic microservices to the host.

Using 3×Type1-SmartNIC and all placement constraints
of Service Fabric [40] (described in §3.3), we compare HCM
with both simulated annealing and an integer linear program
(ILP). HCM places the highest importance on minimizing mi-
croservice communication latency. Simulated annealing and
ILP use a cost function with the highest weight on minimizing
co-execution interference. Hence, HCM tries to co-schedule
communicating microservices on proximate resources, while
the others will spread them out. ILP attempts to find the best
configuration, while simulated annealing approximates. Fig-
ure 6 shows that compared to simulated annealing and ILP,
HCM improves energy efficiency by up to 35.2% and 22.0%,
and reduces latency by up to 24.0% and 18.6%, respectively.
HCM’s short communication latency benefits outweigh inter-
ference from co-execution.

5.5 Energy Efficiency = Cost Efficiency

While SmartNICs benefit energy efficiency and thus poten-
tially bring cost savings, can they compete with other forms
of heterogeneous clusters, especially when factoring in the
capital expense to acquire the hardware? In this experiment,
we evaluate the cost efficiency, in terms of request throughput

over total cost and time of ownership, of using SmartNICs
for microservices, compared with four other clusters (see Ta-
ble 4). Assuming that clusters are usually at peak utilization,
we use the cost efficiency metric T hroughput×T

CAPEX+(Power×T×Electricity) ,
where T hroughput is the measured average throughput at
peak utilization for each application, as executed by E3 on
each cluster, T is elapsed time, CAPEX is the capital expense
to purchase the cluster including all hardware components ($),
Power is the elapsed peak power draw of the cluster (Watts),
and Electricity is the price of electricity ($/Watts). The clus-
ter cost and power data is shown in Table 4 and we use the
average U.S. electricity price [31] of $0.0733/kWh. Figure 10
reports results for three applications of very different points
in the workload space, extrapolated over time of ownership
by our cost efficiency metric.

We make three observations. First, in the long term (>1
year of ownership), cost efficiency is increasingly dominated
by energy efficiency. This highlights the importance of energy
efficiency for data center design, where servers are typically
replaced after several years to balance CAPEX [12]. Second,
when all microservices are able to run on a low power plat-
form (NFV-FIN), both 4×Wimpy and 2×Type2-SmartNIC
clusters are the most cost efficient. After 5 years, 4×Wimpy is
14.1% more cost efficient than 2×Type2-SmartNIC because
of the lower power draw. Third, when a microservice applica-
tion contains both compute and IO-intensive microservices
(RTA-SHM, IOT-TS), the 2×Type2-SmartNIC cluster is up
to 1.9× more cost efficient after 5 years of ownership than
the next best cluster configuration (4×Beefy in both cases).

Table 5 presents the measured energy-efficiency, which
shows cost efficiency in the limit (over very long time of own-
ership). We can see that 4×Wimpy is only 3% more energy
efficient (but has lower CAPEX) than 2×Type2-SmartNIC
for NFV-FIN. 2×Type2-SmartNIC is on average 2.37× more
energy-efficient (but has higher CAPEX) than 1×SuperBeefy,
which is the second-best cluster in terms of energy-efficiency.

5.6 Performance at Scale

We evaluate and discuss the scalability of E3 along three
axes: 1. Mechanism performance scalability; 2. Tail-latency;
3. Energy-efficiency.

372 2019 USENIX Annual Technical Conference USENIX Association

 0

 5

 10

 15

 20

NFV-FIN

NFV-D
IN

NFV-IF
ID

RTA-P
TC

RTA-S
F

RTA-S
HM

IO
T-D

H

IO
T-TS

 0

 5

 10

 15

 20
E

n
e
rg

y
 e

ff
ic

ie
n
c
y
 (

K
R

P
J
)

L
a
te

n
c
y
 (

m
s
)

EE w/ HCM
EE w/ annealing

EE w/ ILP
Lat. w/ HCM

Lat. w/ annealing
Lat. w/ ILP

Figure 6: Communication-aware microservice placement.

 0

 5

 10

 15

 20

NFV-FIN

NFV-D
IN

NFV-IF
ID

RTA-P
TC

RTA-S
F

RTA-S
HM

IO
T-D

H

IO
T-TS

 0

 10

 20

 30

 40

 50

E
n
e
rg

y
 e

ff
ic

ie
n
c
y
 (

K
R

P
J
)

L
a
te

n
c
y
 (

m
s
)

EE w/o HS
EE w HS

Lat. w/o HS
Lat. w HS

Figure 7: Avoiding host starvation (HS).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2 2.5 3N
o
rm

a
liz

e
d
 I
d
le

 P
o
w

e
r

Throughput (Mop/s)

NFV-FIN
RTA-SHM

IOT-TS

Figure 8: Power draw of 3 applications normalized to idle
power of 3×Type1-SmartNIC, varying request load.

 0.1

 1

 10

 100

NFV-FIN RTA-SF IOT-TS
 10

 100

 1000

 10000

E
n

e
rg

y
 e

ff
ic

ie
n

c
y
 (

K
R

P
J
)

T
h
ro

u
g
h
p
u
t
(K

R
P

S
)EE w/ ECMP

EE w/o ECMP
Th. w/ ECMP

Th. w/o ECMP

Figure 9: ECMP-based SmartNIC sharing (log y scale).

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10

C
o

s
t

e
ff

ic
ie

n
c
y
 (

B
o

p
s
/$

)

Time of ownership (years)

(a) NFV-FIN

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

C
o

s
t

e
ff

ic
ie

n
c
y
 (

B
o

p
s
/$

)

Time of ownership (years)

4xBeefy
4xWimpy

2xB.+2xW.
2xType2-SmartNIC

1xSuperBeefy

(b) RTA-SHM

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10

C
o

s
t

e
ff

ic
ie

n
c
y
 (

B
o

p
s
/$

)

Time of ownership (years)

(c) IOT-TS

Figure 10: Cost efficiency of 3 applications across the cluster configurations from Table 4.
Servers→ 100 200 400 600 800 1,000
HCM 4.85 8.31 19.83 34.32 74.39 263.46
Annealing 3.15 4.73 7.43 15.64 23.50 61.42
ILP 7.64 19.43 84.83 361.85 � 1s � 1s

Table 6: Per-microservice deployment time (ms) scalability.

Mechanism scalability. At scale, pressure on the control-
plane manager and data-plane orchestrator increases. We eval-
uate the performance scalability of both mechanisms with an
increasing number of Type2-SmartNIC servers in a simulated
FatTree [30] topology with 40 servers per rack. To avoid host
starvation and microservice overload, E3’s data-plane orches-
trator receives one heartbeat message (16B) every 50ms from
each SmartNIC that reports the queue length of the traffic
manager and the SmartNIC’s microservice execution times.
The orchestrator parses the heartbeat message and makes a mi-
gration decision (§3.4). Figure 11 shows that the time taken
to transmit the message and make a decision with a large
number of servers stays well below the time taken to migrate
the service (on the order of 10s-100s of ms) and is negligi-
bly impacted by the number of deployed microservices. This
is because the heartbeat message contributes only 1Kbps of

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.1K 1K 10K 20K 30K 40K 50KT
im

e
 t

o
 m

ig
ra

te
 (

m
s
)

Number of servers

1K services
10K services
50K services

100K services

Figure 11: Orchestrator migration decision time scalability.

traffic, even with 50K servers.
E3 uses HCM in the control-plane manager. We compare it

to simulated annealing and ILP, deploying 10K microservices
on an increasing number of servers. Table 6 shows that while
HCM does not scale as well as simulated annealing, it can
deploy new microservices in a reasonable time span (<<1s)
at scale. ILP fails to deliver acceptable performance.

Tail latencies. At scale, tail latencies dominate [20]. While
SmartNICs can introduce high tail latency for some microser-
vices (§2.3), E3 places these microservices on the host to en-
sure that application-level tail-latency inflation is minimized

USENIX Association 2019 USENIX Annual Technical Conference 373

(§5.1). The tail-latency impact of SmartNIC offload is reduced
at scale, as baseline communication latency increases with
increasing inter-rack distance.

Energy-efficiency and power budgets. E3’s energy effi-
ciency benefits are constant regardless of deployment size
and power budgets. At scale, there is additional energy cost
for core and spine switches, but these are negligible compared
to racks (ToRs and servers). Within a rack, ToR switch en-
ergy consumption stays constant, as all compared systems use
the same number of switch ports. Our results show that E3
achieves up to 1.9x more throughput under the same power
budget. Conversely, operators can save 48% of power, offering
the same bandwidth.

6 Related Work

Architecture studies for microservices. Prior work has
explored the architectural implications of running microser-
vices [21, 27, 79]. It shows that wimpy servers hold potential
for microservices under low loads, as they have less cache
utilization and network virtualization overhead compared
with traditional monolithic cloud workloads. FAWN [8] ex-
plored using only low-power processor architecture for data-
intensive workloads as an energy and cost-effective alternative
to server multiprocessors. However, FAWN assumed that I/O
speeds are much lower than CPU speeds and so CPUs would
be left idle for data-intensive applications. With the advent
of fast network technologies, server CPUs are still required.
Motivated by these studies, we focus on using SmartNIC-
accelerated servers for energy efficiency.

Heterogeneous scheduling. A set of schedulers for
performance-asymmetric architectures have been proposed.
For example, Kumar et al. [44, 45] use instructions per cycle
to determine relative speedup of each thread on different types
of cores. HASS [73] introduces the architectural signature
concept as a scheduling indicator, which contains informa-
tion about memory-boundedness, available instruction-level
parallelism, etc. CAMP [71] combines both efficiency and
thread-level parallelism specialization and proposes a light-
weight technique to discover which threads could use fast
cores more efficiently. PTask [69] provides a data-flow pro-
gramming model for programmers to manage computation
for GPUs. It enables sharing GPUs among multiple processes,
parallelizes multiple tasks, and eliminates unnecessary data
movements. These approaches target long-running compu-
tations, mostly on cache coherent architectures, rather than
microsecond-scale, request-based workloads over compute
nodes that do not share memory and are hence not applicable.

Microservice scheduling. Wisp [76] enforces end-to-end
performance objectives by globally adapting rate limiters and

request schedulers based on operator policies under varying
system conditions. This work is not concerned with Smart-
NIC heterogeneity. UNO [46] is an NFV framework that can
systematically place NFs across SmartNIC and host with a
resource-aware algorithm on the control plane. E3 is a mi-
croservice platform and thus goes several steps further: (1)
E3 uses a data-plane orchestrator to detect node load and
migrates microservices if necessary; (2) HCM considers com-
munication distance during the placement. With the advent
of SmartNICs and programmable switches, researchers have
identified the potential performance benefits of applying re-
quest processing across the communication path [14]. E3 is
such a system designed for the programmable cloud and ex-
plores the energy efficiency benefits of running microservices.

Power proportionality. Power proportional systems can
vary energy use with the presented workload [50]. For exam-
ple, Prekas, et al. propose an energy-proportional system man-
agement policy for memcached [65]. While E3 can provide
energy proportionality, we are primarily interested in energy-
efficiency. Geoffrey et al. [18] propose a heterogeneous power-
proportional system. By carefully selecting component ensem-
bles, it can provide an energy-efficient solution for a particular
task. However, due to the high cost of ensemble transitions,
we believe that this architecture is not fit for high bandwidth
I/O systems. Rivoire, et al. propose a more balanced system
design (for example, a low-power, mobile processor with nu-
merous laptop disks connected via PCIe) and show that it
achieves better energy efficiency for sorting large data vol-
umes [67]. Pelican [11] presents a software storage stack on
under-provisioned hardware targeted at cold storage work-
loads. Our proposal could be viewed as a balanced-energy
approach for low-latency query-intensive server applications,
rather than cold, throughput intensive ones.

7 Conclusion

We present E3, a microservice execution platform on
SmartNIC-accelerated servers. E3 extends key system com-
ponents (programming model, execution engine, communi-
cation subsystem, scheduling) of the Azure Service Fabric
microservice platform to a SmartNIC. E3 demonstrates that
SmartNIC offload can improve cluster energy-efficiency up
to 3× and cost efficiency up to 1.9× at up to 4% latency cost
for common microservices.

Acknowledgments

This work is supported in part by NSF grants CNS-1616774,
CNS-1714508, CNS-1751231 and the Texas Systems Re-
search Consortium. We would like to thank the anonymous
reviewers and our shepherd, Ada Gavrilovska, for their com-
ments and feedback.

374 2019 USENIX Annual Technical Conference USENIX Association

References

[1] DPDK. https://www.dpdk.org/.

[2] DynamIQ. https://developer.arm.com/techno
logies/dynamiq.

[3] Amazon Lambda Serverless Computing Platform. ht
tps://aws.amazon.com/lambda/, 2018.

[4] Google App Engine. https://cloud.google.com
/appengine/, 2018.

[5] Nirmata Platform. https://www.nirmata.com/,
2018.

[6] Amazon. Amazon Data Pipeline. https://aws.am
azon.com/datapipeline/, 2018.

[7] AMD. AMD HSA. https://www.amd.com/en-us/
innovations/software-technologies/hsa, 2018.

[8] David G. Andersen, Jason Franklin, Michael Kaminsky,
Amar Phanishayee, Lawrence Tan, and Vijay Vasudevan.
FAWN: A Fast Array of Wimpy Nodes. In Proceedings
of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, 2009.

[9] Microservice Architecture. Api gateway. http://
microservices.io/patterns/apigateway.html,
2018.

[10] Microsoft Azure. Programming Model in the Azure
Service Fabric. https://docs.microsoft.com/e
n-us/azure/service-fabric/service-fabric-c
hoose-framework, 2018.

[11] Shobana Balakrishnan, Richard Black, Austin Don-
nelly, Paul England, Adam Glass, Dave Harper, Sergey
Legtchenko, Aaron Ogus, Eric Peterson, and Antony
Rowstron. Pelican: A Building Block for Exascale Cold
Data Storage. In Proceedings of the 11th USENIX Con-
ference on Operating Systems Design and Implementa-
tion, 2014.

[12] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ran-
ganathan. The Datacenter as a Computer: Designing
Warehouse-Scale Machines. Synthesis Lectures on Com-
puter Architecture, 2018.

[13] Broadcom. Broadcom Stingray SmartNICs.
https://www.broadcom.com/products/ethernet
-connectivity/smartnic/ps225, 2018.

[14] Adrian Caulfield, Paolo Costa, and Monia Ghobadi. Be-
yond SmartNICs: Towards a fully programmable cloud.
In IEEE International Conference on High Performance
Switching and Routing, ser. HPSR, volume 18, 2018.

[15] Cavium. Cavium LiquidIO SmartNICs.
https://cavium.com/pdfFiles/LiquidIO_II_
CN78XX_Product_Brief-Rev1.pdf, 2018.

[16] Cavium. Cavium OCTEON Development Kits.
https://cavium.com/octeon-software-develop
-kit.html, 2018.

[17] Luis Ceze, Mark D Hill, and Thomas F Wenisch.
Arch2030: A vision of computer architecture research
over the next 15 years. arXiv preprint arXiv:1612.03182,
2016.

[18] Geoffrey Challen and Mark Hempstead. The Case for
Power-agile Computing. In Proceedings of the 13th
USENIX Conference on Hot Topics in Operating Sys-
tems, 2011.

[19] Christopher Clark, Keir Fraser, Steven Hand, Ja-
cob Gorm Hansen, Eric Jul, Christian Limpach, Ian Pratt,
and Andrew Warfield. Live migration of virtual ma-
chines. In Proceedings of the 2nd Conference on Sympo-
sium on Networked Systems Design & Implementation-
Volume 2, 2005.

[20] Jeffrey Dean and Luiz André Barroso. The Tail at Scale.
Commun. ACM, 56(2):74–80, 2013.

[21] Christina Delimitrou. The Hardware-Software Impli-
cations of Microservices and How Big Data Can Help.
2018.

[22] A. Shehabi et al. United States Data Center Energy
Usage Report. Technical report, Lawrence Berkeley
National Laboratory, 2016.

[23] Dolphin Express. Remote Peer to Peer made easy.
https://www.dolphinics.com/download/WHITEP
APERS/Dolphin_Express_IX_Peer_to_Peer_whit
epaper.pdf, 2018.

[24] Bin Fan, David G. Andersen, and Michael Kaminsky.
MemC3: Compact and Concurrent MemCache with
Dumber Caching and Smarter Hashing. In 10th USENIX
Symposium on Networked Systems Design and Imple-
mentation, 2013.

[25] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmo-
hta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva,
Madhan Sivakumar, Nisheeth Srivastava, Anshuman
Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,
Kushagra Vaid, David A. Maltz, and Albert Greenberg.

USENIX Association 2019 USENIX Annual Technical Conference 375

https://www.dpdk.org/
https://developer.arm.com/technologies/dynamiq
https://developer.arm.com/technologies/dynamiq
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://cloud.google.com/appengine/
https://cloud.google.com/appengine/
https://www.nirmata.com/
https://aws.amazon.com/datapipeline/
https://aws.amazon.com/datapipeline/
https://www.amd.com/en-us/innovations/software-technologies/hsa
https://www.amd.com/en-us/innovations/software-technologies/hsa
http://microservices.io/patterns/apigateway.html
http://microservices.io/patterns/apigateway.html
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-choose-framework
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-choose-framework
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-choose-framework
https://www.broadcom.com/products/ethernet-connectivity/smartnic/ps225
https://www.broadcom.com/products/ethernet-connectivity/smartnic/ps225
https://www.broadcom.com/products/ethernet-connectivity/smartnic/ps225
https://cavium.com/pdfFiles/LiquidIO_II_CN78XX_Product_Brief-Rev1.pdf
https://cavium.com/pdfFiles/LiquidIO_II_CN78XX_Product_Brief-Rev1.pdf
https://cavium.com/pdfFiles/LiquidIO_II_CN78XX_Product_Brief-Rev1.pdf
https://cavium.com/octeon-software-develop-kit.html
https://cavium.com/octeon-software-develop-kit.html
https://cavium.com/octeon-software-develop-kit.html
https://www.dolphinics.com/download/WHITEPAPERS/Dolphin_Express_IX_Peer_to_Peer_whitepaper.pdf
https://www.dolphinics.com/download/WHITEPAPERS/Dolphin_Express_IX_Peer_to_Peer_whitepaper.pdf
https://www.dolphinics.com/download/WHITEPAPERS/Dolphin_Express_IX_Peer_to_Peer_whitepaper.pdf
https://www.dolphinics.com/download/WHITEPAPERS/Dolphin_Express_IX_Peer_to_Peer_whitepaper.pdf

Azure Accelerated Networking: SmartNICs in the Pub-
lic Cloud. In 15th USENIX Symposium on Networked
Systems Design and Implementation, 2018.

[26] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massen-
gill, M. Liu, D. Lo, S. Alkalay, M. Haselman, L. Adams,
M. Ghandi, S. Heil, P. Patel, A. Sapek, G. Weisz,
L. Woods, S. Lanka, S. K. Reinhardt, A. M. Caulfield,
E. S. Chung, and D. Burger. A Configurable Cloud-
Scale DNN Processor for Real-Time AI. In 2018
ACM/IEEE 45th Annual International Symposium on
Computer Architecture, 2018.

[27] Y. Gan and C. Delimitrou. The Architectural Implica-
tions of Cloud Microservices. IEEE Computer Architec-
ture Letters, 17(2):155–158, 2018.

[28] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang
Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla,
and Christina Delimitrou. An Open-Source Benchmark
Suite for Microservices and Their Hardware-Software
Implications for Cloud & Edge Systems. In Pro-
ceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages
and Operating Systems, 2019.

[29] Google. Google Cloud Dataflow. https://cloud.go
ogle.com/dataflow/, 2018.

[30] Albert Greenberg, James R Hamilton, Navendu Jain,
Srikanth Kandula, Changhoon Kim, Parantap Lahiri,
David A Maltz, Parveen Patel, and Sudipta Sengupta.
VL2: a scalable and flexible data center network. In
ACM SIGCOMM computer communication review, vol-
ume 54, pages 95–104, 2009.

[31] Site Selection Group. Power in the Data Center and
its Cost Across the U.S. https://info.sitesel
ectiongroup.com/blog/power-in-the-data-cen
ter-and-its-costs-across-the-united-states,
2017.

[32] Pankaj Gupta, Steven Lin, and Nick McKeown. Rout-
ing lookups in hardware at memory access speeds. In
INFOCOM’98. Seventeenth Annual Joint Conference
of the IEEE Computer and Communications Societies.
Proceedings. IEEE, 1998.

[33] Md E. Haque, Yuxiong He, Sameh Elnikety, Thu D.
Nguyen, Ricardo Bianchini, and Kathryn S. McKin-
ley. Exploiting Heterogeneity for Tail Latency and En-
ergy Efficiency. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitec-
ture, 2017.

[34] HP. HPE ProLiant m800 Server Cartridge. https:
//support.hpe.com/hpsc/doc/public/display?
docId=emr_na-c04500667&sp4ts.oid=6532018,
2018.

[35] Thomas Hunter II. Advanced Microservices: A Hands-
on Approach to Microservice Infrastructure and Tooling.
2017.

[36] Intel. Intel Xeon Phi Coprocessor 7120A. https://
ark.intel.com/products/80555/Intel-Xeon-P
hi-Coprocessor-7120A-16GB-1238-GHz-61-core,
2018.

[37] Rajkumar Jalan, Swaminathan Sankar, and Gurudeep
Kamat. Distributed system to determine a server’s
health, 2018. US Patent 9,906,422.

[38] Brian Jeff. Ten Things to Know About big. LITTLE.
ARM Holdings, 2013.

[39] Norman P Jouppi, Cliff Young, Nishant Patil, David Pat-
terson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates,
Suresh Bhatia, Nan Boden, Al Borchers, et al. In-
datacenter performance analysis of a tensor processing
unit. In Proceedings of the 44th Annual International
Symposium on Computer Architecture, 2017.

[40] Gopal Kakivaya, Lu Xun, Richard Hasha,
Shegufta Bakht Ahsan, Todd Pfleiger, Rishi Sinha,
Anurag Gupta, Mihail Tarta, Mark Fussell, Vipul Modi,
et al. Service fabric: a distributed platform for building
microservices in the cloud. In Proceedings of the
Thirteenth EuroSys Conference, 2018.

[41] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood,
Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon
Wei, and David Brooks. Profiling a Warehouse-scale
Computer. In Proceedings of the 42Nd Annual Interna-
tional Symposium on Computer Architecture, 2015.

[42] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Re-
becca Steinert, and Gerald Q. Maguire Jr. Metron: NFV
Service Chains at the True Speed of the Underlying
Hardware. In 15th USENIX Symposium on Networked
Systems Design and Implementation, 2018.

[43] Antoine Kaufmann, SImon Peter, Naveen Kr. Sharma,
Thomas Anderson, and Arvind Krishnamurthy. High
Performance Packet Processing with FlexNIC. In Pro-
ceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages
and Operating Systems, 2016.

[44] Rakesh Kumar, Keith I Farkas, Norman P Jouppi,
Parthasarathy Ranganathan, and Dean M Tullsen.
Single-ISA heterogeneous multi-core architectures: The

376 2019 USENIX Annual Technical Conference USENIX Association

https://cloud.google.com/dataflow/
https://cloud.google.com/dataflow/
https://info.siteselectiongroup.com/blog/power-in-the-data-center-and-its-costs-across-the-united-states
https://info.siteselectiongroup.com/blog/power-in-the-data-center-and-its-costs-across-the-united-states
https://info.siteselectiongroup.com/blog/power-in-the-data-center-and-its-costs-across-the-united-states
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c04500667&sp4ts.oid=6532018
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c04500667&sp4ts.oid=6532018
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c04500667&sp4ts.oid=6532018
https://ark.intel.com/products/80555/Intel-Xeon-Phi-Coprocessor-7120A-16GB-1238-GHz-61-core
https://ark.intel.com/products/80555/Intel-Xeon-Phi-Coprocessor-7120A-16GB-1238-GHz-61-core
https://ark.intel.com/products/80555/Intel-Xeon-Phi-Coprocessor-7120A-16GB-1238-GHz-61-core

potential for processor power reduction. In Microar-
chitecture, 2003. MICRO-36. Proceedings. 36th Annual
IEEE/ACM International Symposium on, 2003.

[45] Rakesh Kumar, Dean M Tullsen, Parthasarathy Ran-
ganathan, Norman P Jouppi, and Keith I Farkas. Single-
ISA heterogeneous multi-core architectures for multi-
threaded workload performance. In Computer Archi-
tecture, 2004. Proceedings. 31st Annual International
Symposium on, 2004.

[46] Yanfang Le, Hyunseok Chang, Sarit Mukherjee, Limin
Wang, Aditya Akella, Michael M Swift, and TV Laksh-
man. UNO: uniflying host and smart NIC offload for
flexible packet processing. In Proceedings of the 2017
Symposium on Cloud Computing, 2017.

[47] Bojie Li, Kun Tan, Layong Larry Luo, Yanqing Peng,
Renqian Luo, Ningyi Xu, Yongqiang Xiong, Peng
Cheng, and Enhong Chen. Clicknp: Highly flexible
and high performance network processing with recon-
figurable hardware. In Proceedings of the 2016 ACM
SIGCOMM Conference, 2016.

[48] Felix Xiaozhu Lin and Xu Liu. Memif: Towards Pro-
gramming Heterogeneous Memory Asynchronously. In
Proceedings of the Twenty-First International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, 2016.

[49] Jianxiao Liu, Zonglin Tian, Panbiao Liu, Jiawei Jiang,
and Zhao Li. An approach of semantic web service clas-
sification based on Naive Bayes. In Services Computing,
2016 IEEE International Conference on, 2016.

[50] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André
Barroso, and Christos Kozyrakis. Towards energy pro-
portionality for large-scale latency-critical workloads.
In Computer Architecture, 2014 ACM/IEEE 41st Inter-
national Symposium on, 2014.

[51] Mellanox. Mellanox BlueField Platforms. http://ww
w.mellanox.com/related-docs/npu-multicore
-processors/PB_BlueField_Ref_Platform.pdf,
2018.

[52] MemSQL. In-memory SQL database. https://www.
memsql.com, 2018.

[53] Microsoft. Azure IoT hub. https://azure.micros
oft.com/en-us/services/iot-hub/, 2018.

[54] Microsoft. Honeywell Case Study. https:
//blogs.msdn.microsoft.com/azureservicefab
ric/2018/03/20/service-fabric-customer-pro
file-honeywell/, 2018.

[55] Microsoft. Microsoft Data Factory. https://azure.
microsoft.com/en-us/services/data-factory/,
2018.

[56] Microsoft. NIC Teaming. https://docs.microso
ft.com/en-us/windows-server/networking/tec
hnologies/nic-teaming/nic-teaming, 2018.

[57] Changwoo Min, Woonhak Kang, Mohan Kumar, Sanid-
hya Kashyap, Steffen Maass, Heeseung Jo, and Taesoo
Kim. Solros: A Data-centric Operating System Archi-
tecture for Heterogeneous Computing. In Proceedings
of the Thirteenth EuroSys Conference, 2018.

[58] Jelena Mirkovic and Peter Reiher. A taxonomy of
DDoS attack and DDoS defense mechanisms. ACM SIG-
COMM Computer Communication Review, 34(2):39–53,
2004.

[59] Netronome. Netronome Agilio SmartNIC. https://
www.netronome.com/products/agilio-cx/, 2018.

[60] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio López-Buedo, and Andrew W.
Moore. Understanding pcie performance for end host
networking. In Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communica-
tion, 2018.

[61] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang,
Aurojit Panda, Sylvia Ratnasamy, Luigi Rizzo, and Scott
Shenker. E2: A Framework for NFV Applications. In
Proceedings of the 25th Symposium on Operating Sys-
tems Principles, 2015.

[62] Jun Woo Park, Alexey Tumanov, Angela Jiang,
Michael A. Kozuch, and Gregory R. Ganger. 3Sigma:
Distribution-based Cluster Scheduling for Runtime Un-
certainty. In Proceedings of the Thirteenth EuroSys
Conference, 2018.

[63] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,
Doug Woos, Arvind Krishnamurthy, Thomas Anderson,
and Timothy Roscoe. Arrakis: The Operating System is
the Control Plane. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Imple-
mentation, 2014.

[64] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and
Sylvia Ratnasamy. SafeBricks: Shielding Network Func-
tions in the Cloud. In 15th USENIX Symposium on
Networked Systems Design and Implementation, 2018.

[65] George Prekas, Mia Primorac, Adam Belay, Christos
Kozyrakis, and Edouard Bugnion. Energy Proportion-
ality and Workload Consolidation for Latency-critical
Applications. In Proceedings of the Sixth ACM Sympo-
sium on Cloud Computing, 2015.

USENIX Association 2019 USENIX Annual Technical Conference 377

http://www.mellanox.com/related-docs/npu-multicore-processors/PB_BlueField_Ref_Platform.pdf
http://www.mellanox.com/related-docs/npu-multicore-processors/PB_BlueField_Ref_Platform.pdf
http://www.mellanox.com/related-docs/npu-multicore-processors/PB_BlueField_Ref_Platform.pdf
https://www.memsql.com
https://www.memsql.com
https://azure.microsoft.com/en-us/services/iot-hub/
https://azure.microsoft.com/en-us/services/iot-hub/
https://blogs.msdn.microsoft.com/azureservicefabric/2018/03/20/service-fabric-customer-profile-honeywell/
https://blogs.msdn.microsoft.com/azureservicefabric/2018/03/20/service-fabric-customer-profile-honeywell/
https://blogs.msdn.microsoft.com/azureservicefabric/2018/03/20/service-fabric-customer-profile-honeywell/
https://blogs.msdn.microsoft.com/azureservicefabric/2018/03/20/service-fabric-customer-profile-honeywell/
https://azure.microsoft.com/en-us/services/data-factory/
https://azure.microsoft.com/en-us/services/data-factory/
https://docs.microsoft.com/en-us/windows-server/networking/technologies/nic-teaming/nic-teaming
https://docs.microsoft.com/en-us/windows-server/networking/technologies/nic-teaming/nic-teaming
https://docs.microsoft.com/en-us/windows-server/networking/technologies/nic-teaming/nic-teaming
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/

[66] Hang Qu, Omid Mashayekhi, Chinmayee Shah, and
Philip Levis. Decoupling the Control Plane from Pro-
gram Control Flow for Flexibility and Performance in
Cloud Computing. In Proceedings of the Thirteenth
EuroSys Conference, 2018.

[67] Suzanne Rivoire, Mehul A. Shah, Parthasarathy Ran-
ganathan, and Christos Kozyrakis. JouleSort: A Bal-
anced Energy-efficiency Benchmark. In Proceedings of
the 2007 ACM SIGMOD International Conference on
Management of Data, 2007.

[68] Christopher J Rossbach, Jon Currey, Mark Silberstein,
Baishakhi Ray, and Emmett Witchel. PTask: operat-
ing system abstractions to manage GPUs as compute
devices. In Proceedings of the Twenty-Third ACM Sym-
posium on Operating Systems Principles, 2011.

[69] Christopher J. Rossbach, Jon Currey, Mark Silberstein,
Baishakhi Ray, and Emmett Witchel. PTask: Operat-
ing System Abstractions to Manage GPUs As Compute
Devices. In Proceedings of the Twenty-Third ACM Sym-
posium on Operating Systems Principles, 2011.

[70] Christopher J Rossbach, Yuan Yu, Jon Currey, Jean-
Philippe Martin, and Dennis Fetterly. Dandelion: a
compiler and runtime for heterogeneous systems. In
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, 2013.

[71] Juan Carlos Saez, Manuel Prieto, Alexandra Fedorova,
and Sergey Blagodurov. A comprehensive scheduler for
asymmetric multicore systems. In Proceedings of the
5th European conference on Computer systems, 2010.

[72] Felix Scholkmann, Jens Boss, and Martin Wolf. An effi-
cient algorithm for automatic peak detection in noisy pe-
riodic and quasi-periodic signals. Algorithms, 5(4):588–
603, 2012.

[73] Daniel Shelepov, Juan Carlos Saez Alcaide, Stacey
Jeffery, Alexandra Fedorova, Nestor Perez, Zhi Feng
Huang, Sergey Blagodurov, and Viren Kumar. HASS: a
scheduler for heterogeneous multicore systems. ACM
SIGOPS Operating Systems Review, 43(2):66–75, 2009.

[74] SPEC. Trends in Server Efficiency and Power Usage
in Data Centers. https://www.spec.org/event
s/beijing2016/slides/015-Trends_in_Server_
Efficiency_and_Power_Usage_in_Data_Centers
%20-%20Sanjay%20Sharma.pdf, 2016.

[75] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications.
In Proceedings of the 2001 Conference on Applications,

Technologies, Architectures, and Protocols for Computer
Communications, 2001.

[76] Lalith Suresh, Peter Bodik, Ishai Menache, Marco
Canini, and Florin Ciucu. Distributed resource man-
agement across process boundaries. In Proceedings of
the 2017 Symposium on Cloud Computing, 2017.

[77] Mesh Systems. Mesh Systems. http://www.mesh-s
ystems.com, 2018.

[78] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik
Ramasamy, Jignesh M Patel, Sanjeev Kulkarni, Jason
Jackson, Krishna Gade, Maosong Fu, Jake Donham, et al.
Storm@ twitter. In Proceedings of the 2014 ACM SIG-
MOD international conference on Management of data,
2014.

[79] Takanori Ueda, Takuya Nakaike, and Moriyoshi Ohara.
Workload characterization for microservices. In 2016
IEEE international symposium on workload characteri-
zation (IISWC), 2016.

[80] Leendert van Doorn. Microsoft’s datacenters. In Pro-
ceedings of the 1st Workshop on Hot Topics in Data
Centers, 2016.

[81] Wikipedia. Aho-Corasick Algorithm.
https://en.wikipedia.org/wiki/Aho%E2%80%
93Corasick_algorithm, 2018.

[82] Wikipedia. Collaborative filtering. https://en.w
ikipedia.org/wiki/Collaborative_filtering,
2018.

[83] Wikipedia. Ema. https://en.wikipedia.org/wik
i/Moving_average, 2018.

[84] Wikipedia. Equal-cost multi-path routing.
https://en.wikipedia.org/wiki/Equal-cos
t_multi-path_routing, 2018.

[85] Wikipedia. Okapi BM25. https://en.wikipedia
.org/wiki/Okapi_BM25, 2018.

[86] Wikipedia. Representational State Transfer Architec-
ture. https://en.wikipedia.org/wiki/Represen
tational_state_transfer, 2018.

[87] Wikipedia. k-nearest neighbors algorithm.
https://en.wikipedia.org/wiki/K-nearest_n
eighbors_algorithm, 2019.

[88] Kai Zhang, Bingsheng He, Jiayu Hu, Zeke Wang, Bei
Hua, Jiayi Meng, and Lishan Yang. G-NET: Effective
GPU Sharing in NFV Systems. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation,
2018.

378 2019 USENIX Annual Technical Conference USENIX Association

https://www.spec.org/events/beijing2016/slides/015-Trends_in_Server_Efficiency_and_Power_Usage_in_Data_Centers%20-%20Sanjay%20Sharma.pdf
https://www.spec.org/events/beijing2016/slides/015-Trends_in_Server_Efficiency_and_Power_Usage_in_Data_Centers%20-%20Sanjay%20Sharma.pdf
https://www.spec.org/events/beijing2016/slides/015-Trends_in_Server_Efficiency_and_Power_Usage_in_Data_Centers%20-%20Sanjay%20Sharma.pdf
https://www.spec.org/events/beijing2016/slides/015-Trends_in_Server_Efficiency_and_Power_Usage_in_Data_Centers%20-%20Sanjay%20Sharma.pdf
http://www.mesh-systems.com
http://www.mesh-systems.com
https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm
https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm
https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm
https://en.wikipedia.org/wiki/Collaborative_filtering
https://en.wikipedia.org/wiki/Collaborative_filtering
https://en.wikipedia.org/wiki/Moving_average
https://en.wikipedia.org/wiki/Moving_average
https://en.wikipedia.org/wiki/Equal-cost_multi-path_routing
https://en.wikipedia.org/wiki/Equal-cost_multi-path_routing
https://en.wikipedia.org/wiki/Equal-cost_multi-path_routing
https://en.wikipedia.org/wiki/Okapi_BM25
https://en.wikipedia.org/wiki/Okapi_BM25
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

INSIDER: Designing In-Storage Computing System for Emerging
High-Performance Drive

Zhenyuan Ruan∗ Tong He Jason Cong
University of California, Los Angeles

Abstract
We present INSIDER, a full-stack redesigned storage sys-

tem to help users fully utilize the performance of emerging
storage drives with moderate programming efforts. On the
hardware side, INSIDER introduces an FPGA-based recon-
figurable drive controller as the in-storage computing (ISC)
unit; it is able to saturate the high drive performance while
retaining enough programmability. On the software side, IN-
SIDER integrates with the existing system stack and provides
effective abstractions. For the host programmer, we introduce
virtual file abstraction to abstract ISC as file operations; this
hides the existence of the drive processing unit and minimizes
the host code modification to leverage the drive computing
capability. By separating out the drive processing unit to the
data plane, we expose a clear drive-side interface so that drive
programmers can focus on describing the computation logic;
the details of data movement between different system com-
ponents are hidden. With the software/hardware co-design,
INSIDER runtime provides crucial system support. It not only
transparently enforces the isolation and scheduling among
offloaded programs, but it also protects the drive data from
being accessed by unwarranted programs.

We build an INSIDER drive prototype and implement its
corresponding software stack. The evaluation shows that IN-
SIDER achieves an average 12X performance improvement
and 31X accelerator cost efficiency when compared to the ex-
isting ARM-based ISC system. Additionally, it requires much
less effort when implementing applications. INSIDER is open-
sourced [5], and we have adapted it to the AWS F1 instance
for public access.

1 Introduction
In the era of big data, computer systems are experiencing an
unprecedented scale of data volume. Large corporations like
Facebook have stored over 300 PB of data at their warehouse,
with an incoming daily data rate of 600 TB [62] in 2014. A
recent warehouse-scale profiling [42] shows that data analytics
has become a major workload in the datacenter. Operating
on such a data scale is a huge challenge for system designers.
Thus, designing an efficient system for massive data analytics
has increasingly become a topic of major importance [23, 27].

The drive I/O speed plays an important role in the overall
data processing efficiency—even for the in-memory comput-
ing framework [68]. Meanwhile, for decades the improve-

∗Corresponding author.

ment of storage technology has been continuously pushing
forward the drive speed. The two-level hierarchy (i.e., chan-
nel and bank) of the modern storage drive provides a scal-
able way to increase the drive bandwidth [41]. Recently, we
witnessed great progress in emerging byte-addressable non-
volatile memory technologies which have the potential to
achieve near-memory performance. However, along with the
advancements in storage technologies, the system bottleneck
is shifting from the storage drive to the host/drive intercon-
nection [34] and host I/O stacks [31, 32]. The advent of such
a "data movement wall" prevents the high performance of the
emerging storage from being delivered to end users—which
puts forward a new challenge to system designers.

Rather than moving data from drive to host, one natural
idea is to move computation from host to drive, thereby avoid-
ing the aforementioned bottlenecks. Guided by this, existing
work tries to leverage drive-embedded ARM cores [33,57,63]
or ASIC [38, 40, 47] for task offloading. However, these ap-
proaches face several system challenges which make them
less usable: 1) Limited performance or flexibility. Drive-
embedded cores are originally designed to execute the drive
firmware; they are generally too weak for in-storage comput-
ing (ISC). ASIC, brings high performance due to hardware
customization; however, it only targets the specific workload.
Thus, it is not flexible enough for general ISC. 2) High pro-
gramming efforts. First, on the host side, existing systems
develop their own customized API for ISC, which is not com-
patible with an existing system interface like POSIX. This
requires considerable host code modification to leverage the
drive ISC capability. Second, on the drive side, in order to
access the drive file data, the offloaded drive program has to
understand the in-drive file system metadata. Even worse, the
developer has to explicitly maintain the metadata consistency
between host and drive. This approach requires a significant
programming effort and is not portable across different file
systems. 3) Lack of crucial system support. In practice, the
drive is shared among multiple processes. Unfortunately, ex-
isting work assumes a monopolized scenario; the isolation
and resource scheduling between different ISC tasks are not
explored. Additionally, data protection is an important con-
cern; without it, offloaded programs can issue arbitrary R/W
requests to operate on unwarranted data.

To overcome these problems, we present INSIDER, a full-
stack redesigned storage system which achieves the following
design goals.

USENIX Association 2019 USENIX Annual Technical Conference 379

Saturate high drive rate. INSIDER introduces the FPGA-
based reconfigurable controller as the ISC unit which is able
to process the drive data at the line speed while retaining pro-
grammability (§3.1). The data reduction or the amplification
pattern from the legacy code are extracted into a drive program
which could be dynamically loaded into the drive controller on
demand (§3.2.2). To increase the end-to-end throughput, IN-
SIDER transparently constructs a system-level pipeline which
overlaps drive access time, drive computing time, bus data
transferring time and host computing time (§3.5).

Provide effective abstractions. INSIDER aims to provide
effective abstractions to lower the barrier for users to leverage
the benefits of ISC. On the host side, we provide virtual file
abstraction which abstracts ISC as file operations to hide the
existence of the underlying ISC unit (§3.3). On the drive
side, we provide a compute-only abstraction for the offloaded
task so that drive programmers can focus on describing the
computation logic; the details of underlying data movement
between different system components are hidden (§3.4).

Provide necessary system support. INSIDER separates
the control and data planes (§3.2.1). The control plane is
trusted and not user-programmable. It takes the responsibili-
ties of issuing drive access requests. By performing the safety
check in the control plane, we protect the data from being
accessed by unwarranted drive programs. The ISC unit, which
sits on the data plane, only intercepts and processes the data
between the drive DMA unit and storage chips. This compute-
only interface provides an isolated environment for drive pro-
grams whose execution will not harm other system compo-
nents in the control plane. The execution of different drive
programs is hardware-isolated into different portions of FPGA
resources. INSIDER provides an adaptive drive bandwidth
scheduler which monitors the data processing rates of differ-
ent programs and provides this feedback to the control plane
to adjust the issuing rates of drive requests accordingly (§3.6).

High cost efficiency. We define cost efficiency as the ef-
fective data processing rate per dollar. INSIDER introduces a
new hardware component into the drive. Thus, it is critical to
validate the motivation by showing that INSIDER can achieve
not only better performance, but also better cost efficiency
when compared to the existing work.

We build an INSIDER drive prototype (§4.1), and imple-
ment its corresponding software stack, including compiler,
host-side runtime library and Linux kernel drivers (§4.2). We
could mount the PCIe-based INSIDER drive as a normal stor-
age device in Linux and install any file system upon it. We
use a set of widely used workloads in the end-to-end sys-
tem evaluation. The experiment results can be highlighted
as follows: 1) INSIDER greatly alleviates the system inter-
connection bottleneck. It achieves 7X∼11X performance
compared with the host-only traditional system (§5.2.1). In
most cases, it achieves the optimal performance (§5.2.2). 2)
INSIDER achieves 1X∼58X (12X on average) performance
and 2X∼150X (31X on average) cost efficiency compared

to the ARM-based ISC system (§5.5). 3) INSIDER only re-
quires moderate programming efforts to implement applica-
tions (§5.2.3). 4) INSIDER simultaneously supports multiple
offloaded tasks, and it can enforce resource scheduling adap-
tively and transparently (§5.3).

2 Background and Related Work
2.1 Emerging Storage Devices: Opportunities

and Challenges
Traditionally, drives are regarded as a slow device for the sec-
ondary persistent storage, which has the significantly higher
access latency (in ms scale) and lower bandwidth (in hundreds
of MB per second) compared to DRAM. Based on this, the
classical architecture for storage data processing presented in
Fig. 3a has met users’ performance requirements for decades.
The underlying assumptions of this architecture are: 1) The
interconnection performance is higher than the drive perfor-
mance. 2) The execution speeds of host-side I/O stacks, includ-
ing the block device driver, I/O scheduler, generic block layer
and file system, are much faster than the drive access. While
these were true in the era of the hard-disk drive, the landscape
has totally changed in recent years. The bandwidth and la-
tency of storage drives have improved significantly within the
past decade (see Fig. 1 and Fig. 2). However, meanwhile, the
evolution of the interconnection bus remains stagnant: there
have been only two updates between 2007 and 2017.1

For the state-of-the-art platform, PCIe Gen3 is adopted
as the interconnection [66], which is at 1 GB/s bidirectional
transmission speed per link. Due to the storage density2 and
due to cost constraints, the four-lane link is most commonly
used (e.g., commercial drive products from Intel [7] and Sam-
sung [14]), which implies the 4 GB/s duplex interconnec-
tion bandwidth. However, this could be easily transcended
by the internal bandwidth of the modern drive [24, 33, 34].
Their internal storage units are composed of multiple chan-
nels, and each channel equips multiple banks. Different from
the serial external interconnection, this two-level architec-
ture is able to provide scalable internal drive bandwidth—a
sixteen-channel, single-bank SSD (which is fairly common
now) can easily reach 6.4 GB/s bandwidth [46]. The grow-
ing mismatch between the internal and external bandwidth
prevents us from fully utilizing the drive performance. The
mismatch gets worse with the advent of 3D-stacked NVM-
based storage which can deliver comparable bandwidth with
DRAM [35, 54]. On the other hand, the end of Dennard scal-
ing slows down the performance improvement of CPU, mak-
ing it unable to catch the ever-increasing drive speed. The
long-established block layer is now reported to be a major

1Although the specification of PCIe Gen 4 was finalized at the end of 2017,
there is usually a two-year waiting period for the corresponding motherboard
to be available in the market. Currently there is no motherboard supporting
PCIe 4.0, and we do not include it in the figure.

2CPU has limited PCIe slots (e.g., 40 lanes for an Xeon CPU) exposed
due to the pin constraint. Using more lanes per drive leads to low storage
density. In practice, a data center node equips 10 or even more storage drives.

380 2019 USENIX Annual Technical Conference USENIX Association

Figure 1: The bandwidth evolution of storage drives. Data are taken from
[18] [4] [1] [8] [13] [16] in chronological order. This figure also presents the
bandwidth evolution of PCIe (in 4 lanes and 8 lanes).

Figure 2: The latency evolution of storage drives. Data are taken from [15]
[3] [9] [8] [10] [11] in chronological order. Meanwhile the latency of the
host storage stack is about 20 µs [32], and the PCIe RTT (which includes the
latency of bus and controller) is about 1 µs [50].

bottleneck of the storage system [28], and less than half raw
drive speed is delivered to the end user [31, 56].

On the latency side, the state-of-the-art SSD delivers R/W
latency below 10 µs [14], and the future NVM-based storage
can potentially deliver sub-microsecond latency [30]. Mean-
while, the round-trip latency of PCIe still remains at about 1
µs [50], and the host-side I/O stack latency is even more than
20 µs [31, 32]. This implies that the latencies of host-side I/O
stack are going to dominate the end-to-end latency.

In summary, the emerging storage devices bring hope—
along with great challenges—to system designers. Unless the
“data movement wall” is surpassed, high storage performance
will not be delivered to end users.

2.2 Review of In-Storage Computing
In order to address the above system bottlenecks, the in-
storage computing (ISC) architecture is proposed [48, 61],
shown in Fig. 3b. In ISC, the host partially offloads tasks into
the in-storage accelerator which can take advantage of the
higher internal drive performance but is relatively less pow-
erful compared to the full-fledged host CPU. For tasks that
contain computation patterns like filtering or reduction, the
output data volume of the accelerator, which will be trans-
ferred back to host via interconnection, is greatly reduced so
that bottlenecks of interconnection and host I/O stacks are
alleviated [33, 57, 63]. With customized IO stacks, the system
bypasses the traditional OS storage stacks to achieve lower
latency. With ISC, considerable performance and energy gains
are achieved [25].

Historically, the idea of ISC was proposed two decades

Host

Drive
Firmware

Storage Chips

User Application
File System
Block Layer

Driver

Interconnection

(a) Classical.

Host

Interconnection
Drive

Firmware
Storage Chips

Accelerator

User Application

Driver

Customized
IO Stack

(b) In-storage computing.

Figure 3: Drive data processing architecture.

ago [43, 59], but did not become popular at that time. The
reasons are twofold: 1) For the technology at that time, it
was too expensive to integrate computing unit with storage
drive; 2) More importantly, the drive performance was much
lower than the performance of the host/drive bus, so in-storage
computing could only bring limited performance benefits.

However, with the great improvement of VLSI technology
in the past two decades, integration expense is greatly reduced.
In fact, currently, every high-end SSD equips one or even
multiple embedded CPUs. Meanwhile, the drive performance
consistently increases, and goes beyond the performance of
host/drive interconnection (see Fig. 1 and Fig. 2). This gap
validates the motivation of ISC. Therefore, in recent years,
we witness the revival of in-storage computing [49]. Most
of the recent work focuses on offloading user-defined tasks
to drive-embedded CPUs, which are originally designed to
execute the firmware code, e.g., flash translation layer (FTL).
However, this approach faces the following limitations.

Limited computing capability. Drive-embedded CPUs
are usually fairly weak ARM cores which can be up to 100X
slower compared to the host-side CPU (Table 3 in [63]). Based
on this, offloading tasks to drive may lead to a decreased data
processing speed by a factor of tens [33]. A recent work [48]
proposes a dynamic workload scheduler to partition tasks be-
tween host and drive ARM processor. However, the optimal
point they found is very close to the case in which all the tasks
are executed at the host; this emphasizes that embedded cores
are too feeble to provide a distinguishable speedup.

No effective programming abstractions. Existing work
does not provide effective abstractions for programmers. On
the host side, they develop their own customized API for ISC
which is not compatible with an existing system interface like
POSIX. This requires considerable host code modification to
leverage the drive ISC capability. On the drive side, the drive
program either manages the drive as a bare block device with-
out a file system (FS), e.g., [48], or has to carefully cooperate
with the host FS to access the correct file data, e.g., [32]. This
distracts drive programmers from describing the computing
logic and may not be portable across different FSes. It is im-
portant to provide effective abstractions to lower the barrier
for users to leverage the benefits of ISC [26].

Lack of crucial system support. Naturally, the drive is
shared among multiple processes, which implies the scenario
of concurrently executing multiple ISC applications. This is

USENIX Association 2019 USENIX Annual Technical Conference 381

CPU DriveMem
PCIe

User Application

File System

Block Layer

Driver

ISC
runtime
library

Kernel Space

User Space

ISC Driver

ISC HW Runtime (outer)
Programmable
Region (inner)

App
Slot Data

Mux

Data Demux

Storage Unit

DMA

Controller
Firmware

Accelerator
Cluster

Data path
Ctrl path

App
Slot
App
Slot

App
Slot

Data plane
Ctrl plane

Figure 4: System architecture of INSIDER. INSIDER separates the control plane and the data plane; accelerator cluster sits on the data plane (black box) while
the host-side library and drive-side firmware sit on the control plane (gray box).

especially important for the emerging storage drive since a
single application may not fully saturate the high drive speed.
It is crucial to provide support for protection, isolation and
bandwidth scheduling. Without data protection, the malicious
or erroneous ISC task may operate on unwarranted data; with-
out isolation, the execution of one ISC task may harm the
execution of other ISC tasks, or even the firmware execution;
without bandwidth scheduling, some ISC tasks may forcibly
occupy the drive, hampering fairness and liveness. However,
existing work, e.g., [33, 34, 48], does not respond to these
issues by assuming a monopolized execution environment.

Finally, another line of research equips the drive with an
ASIC, which is the customized hardware chip designed for spe-
cific workloads. For instance, YourSQL [40] and Biscuit [38]
equip a hardware IP with a key-based pattern matcher; work
in [47] adopts a special hardware for database join and scan
operations, etc. While ASIC-based solutions can achieve even
much better performance compared to the high-end host CPU
in their targeting applications, they are too specific to support
other tasks. It requires the design of N chips to support N
different applications; this introduces N times manufactur-
ing, area size and energy cost. Thus, ASIC solutions are too
inflexible to support general ISC.

3 INSIDER System Design
To overcome the problems above, we redesign the storage sys-
tem across all layers, from the user layer down to the hardware
layer. The design of INSIDER is introduced below.

3.1 FPGA-Based ISC Unit
The scenario of ISC puts forth several requirements to the
in-drive processing unit.

High reconfigurability. As mentioned earlier, ASIC-based
solutions can only target specific workloads. We wish the
processing unit to be flexible enough to support general ISC.

Support massive parallelism. We analyze the computa-
tion patterns of data analytic workloads (§5.2) that are suitable
for ISC. These applications expose abundant pipeline-level
and data-level parallelism. The processing unit should have a
proper architecture to capture those inherent parallelisms.

High energy efficiency. The storage drive is an energy-
efficient device whose power consumption is just about 10 W

GPU ARM X86 ASIC FPGA
Programmability Good Good Good No Good
Data-level
parallelism Good Poor Fair Best Good

Pipeline-level
parallelism No No No Best Good

Energy efficiency Fair Fair Poor Best Good

Table 1: Evaluating five candidates of ISC unit.

[14]. The processing unit should not significantly compromise
the energy efficiency of the drive.

Given those requirements, we evaluate several candidates
of ISC unit (see Table 1). FPGA comes out to be the best fit
in our scenario. First, FPGA is generally reconfigurable and
can form customized architectures for the targeted workloads.
Second, through customization, FPGA can efficiently capture
the inherent parallelism of applications. The data-level paral-
lelism can be seized by replicating the processing elements to
construct SIMD units [69]; the pipeline-level parallelism can
be leveraged by constructing a deep hardware pipeline [60].
Finally, FPGA could achieve high energy efficiency between
microprocessors and ASICs [58].

3.2 Drive Architecture
Fig. 4 presents the system architecture of INSIDER. We focus
on introducing the drive-side design in this subsection.
3.2.1 Separating Control and Data Planes
The INSIDER drive controller consists of two decoupled com-
ponents: the firmware logic and the accelerator cluster (i.e.,
the FPGA-based ISC unit). The firmware cooperates with the
host-side ISC runtime and the ISC driver to enforce the control
plane execution (marked in Fig. 4). It receives the incoming
drive access requests from host, converts their logical block
addresses into physical block addresses, and finally issues the
requests to the storage unit. The accelerator cluster is sepa-
rated out into the data plane. It does not worry about where
to read (write) data from (to) the storage chip. Instead, it in-
tercepts and processes the data between the DMA controller
and the storage chip.

By separating control and data plane, we expose a compute-
only abstraction for the in-drive accelerator. It does not proac-
tively initiate the drive accessing request. Instead, it only pas-
sively processes the intercepted data from other components.
The control plane takes the responsibilities of conducting file
permission check at host and issuing drive accessing requests;

382 2019 USENIX Annual Technical Conference USENIX Association

it prevents the drive data from being accessed by unwarranted
drive programs. In addition, the compute-only abstraction
brings an isolated environment for the accelerator cluster; its
execution will not harm the execution of other system compo-
nents in the control plane. The execution of different offloaded
tasks in the accelerator cluster is further hardware-isolated
into different portions of FPGA resources.
3.2.2 Accelerator Cluster
As shown in the rightmost portion of Fig. 4, the accelerator
cluster is divided into two layers. The inner layer is a pro-
grammable region which consists of multiple application slots.
Each slot can accommodate a user-defined application accel-
erator. Different than the multi-threading in CPU, which is
time multiplexing, different slots occupy different portions of
hardware resources simultaneously, thus sharing FPGA in spa-
tial multiplexing. By leveraging partial reconfiguration [44],
host users can dynamically load a new accelerator to the spec-
ified slot. The number of slots and slot sizes are chosen by
the administrator to meet the application requirements, i.e.,
number of applications executing simultaneously and the re-
source consumption of applications. The outer layer is the
hardware runtime which is responsible for performing flow
control (§3.5) and dispatching data to the corresponding slots
(§3.6). The outer layer is set to be user-unprogrammable to
avoid safety issues.

3.3 The Host-Side Programming Model
In this section we introduce virtual file abstraction which is
the host-side programming model of INSIDER. A virtual file
is fictitious, but pretends to be a real file from the perspective
of the host programmer—it can be accessed via a subset of
the POSIX-like file I/O APIs shown in Table 2. The access
to virtual file will transparently trigger the underlying system
data movement and the corresponding ISC, creating an illu-
sion that this file does really exist. By exposing the familiar
file interface, the effort of rewriting the traditional code into
the INSIDER host code is negligible.

We would like to point out that INSIDER neither imple-
ments the full set of POSIX IO operations nor provides the
full POSIX semantics, e.g., crash consistency. The argument
here is similar to the GFS [37] and Chubby [29] papers: files
provide a familiar interface for host programmers, and ex-
posing a file-based interface for ISC can greatly alleviate the
programming overheads. Being fully POSIX-compliant is not
only expensive but also unnecessary in most use cases.
3.3.1 Virtual File Read
Listing 1 shows a snippet of the host code that performs virtual
file read. We will introduce the design of virtual file read based
on the code order. Fig. 5 shows the corresponding diagram.

System startup During the system startup stage, IN-
SIDER creates a hidden mapping file .USERNAME.insider
in the host file system for every user. The file is used to store
the virtual file mappings (which will be discussed soon). For
security concerns, INSIDER sets the owner of the mapping file
to the corresponding user and sets the file permission to 0640.

// register a virtual file
string virt = reg_virt_file(real_path ,acc_id);
// open the virtual file
int fd = vopen(virt.c_str(),O_RDONLY);
if (fd != -1) {

// send drive program parameters (if there are any)
send_params(fd, param_buf , param_buf_len);
int rd_bytes = 0;
// read virtual file
while (rd_bytes = vread(fd, buf, buf_size)) {

// user processes the read data
process(buf, rd_bytes);

}
// close virtual file, release resources
vclose(fd);

}

Listing 1: Host-side code of performing virtual file read.

1). int vopen(const char *path, int flags)

2). ssize_t vread(int fd, void *buf, size_t count)

3). ssize_t vwrite(int fd, void *buf, size_t count)

4). int vsync(int fd)

5). int vclose(int fd)

6). int vclose(int fd, size_t *rfile_written_bytes)

7). string reg_virt_file(string file_path, string acc_id)

8). string reg_virt_file(tuple<string, uint, uint> file_sg_list, string acc_id)

9). bool send_params(int fd, void *buf, size_t count)

Table 2: INSIDER host-side APIs. vwrite, vsync will be discussed in §3.3.2
while others will be discussed in §3.3.1.

Registration. The host program determines the file data
to be read by the in-drive accelerator by invoking reg_virt_file
(method 7 in Table 2); it takes the path of a real file plus an
application accelerator ID, and then maps them into a virtual
file. Alternatively, reg_virt_file (method 8) accepts a vector
of <file name, offset, length> tuples to support the gather-
read pattern.3 This allows us to create the virtual file based
on discrete data from multiple real files. During the registra-
tion phase, the mapping information will be recorded into
the corresponding mapping file, and the specified accelerator
will be programmed into an available slot of the in-drive re-
configurable controller. INSIDER currently enforces a simple
scheduling policy: it blocks when all current slots are busy.

File open. After registration, the virtual file can be opened
via vopen. The INSIDER runtime will first read the mapping
file to know the positions of the mapped real file(s). Next, the
runtime issues the query to the host file system to retrieve
the accessing permission(s) and the ownership(s) of the real
file(s). Then, the runtime performs the file-level permission
check to find out whether the vopen caller has the correct ac-
cess permission(s); in INSIDER, we regard the host file system
and INSIDER runtime as trusted components, while the user
programs are treated as non-trusted components. If it is an
unauthorized access, vopen will return an invalid file descrip-
tor. Otherwise, the correct descriptor will be returned, and the
corresponding accelerator slot index (used in §3.6) will be

3Currently INSIDER operates drive data at the granularity of 64 B, there-
fore the offset and length fields have to be multiples of 64 B. It is a limitation
of our current implementation rather than the design.

USENIX Association 2019 USENIX Annual Technical Conference 383

1) System
startup

File system

.USERNAME.
Insider

cr
ea

te

2) Registration

File system

.USERNAME.
Insider

Real
File

Drive

2.
1

up
da

te

2.2 program
 slot

3) File open

File system

.USERNAME.
Insider

Real
File

3.
1

re
al

 fi
le

 in
fo

<name, off, len> 3.
4

ex
ten

ts
in

fo
fro

m
 fi

lef
ra

g3.2 check

perm
ission

3.3 set append-
only attribute

Drive

Drive
Program

3.5 runtim
e

param
s

Firm-
ware

5) File close

5.1 unset
append-only

Host
Resource

fd, buffers, ...

5.2 release

5.3 reset

4) File read

Real file

Virt file Drive
Prog.

4.
1

vr
ea

d

4.2 intercepts

4.3 output DM
A

DriveFile system

.USERNAME.
Insider

Figure 5: The system diagram of performing virtual file read. Only major steps are shown in this figure, see the text description in §3.3.1 for details.

sent to the INSIDER drive. After that, the INSIDER runtime
asks the INSIDER kernel module to set the append-only at-
tribute (if it is not already set by users before) on the mapped
real file(s); this is used to guarantee that the current blocks
of the real file(s) will not be released or replaced during the
virtual file read.4 Later on, INSIDER retrieves the locations of
real file extents via the filefrag tool and transfers them to the
drive. Finally, the host program sends runtime parameters of
the accelerator program (discussed in §3.4), if there are any,
via send_params to the drive.

File read. Now the host program can sequentially read
the virtual file via vread. It first triggers the INSIDER drive
to read the corresponding real file extents. The accelerator
intercepts the results from the storage chips and invokes the
corresponding data processing. Its output will be transferred
back to the host via DMA, creating an illusion that the host is
reading a normal file (which actually turns out to be a virtual
file). The whole process is deeply pipelined without stalling.
The detailed design of pipelining is discussed in §3.5. It seems
to be meaningless to read the ISC results randomly, thus we
do not implement a vseek interface.

File close. Finally, the virtual file is closed via vclose. In
this step, the INSIDER runtime will contact the INSIDER kernel
module to clear the append-only attribute if it was previously
set in vopen. The host-side resource (e.g., file descriptor, the
host-side buffer for DMA, etc.) will be released. Finally, the
runtime sends the command to the INSIDER drive to reset the
application accelerator to its initial state.

Virtual file read helps us to alleviate the bandwidth bot-
tleneck in the drive → host direction. For example, for the
feature selection application [64], the user registers a virtual
file based on the preselected training data and the correspond-
ing accelerator. The postselected result could be automatically
read via vread without transferring the large preselected file
from drive to host. Thus, the host program can simply use the
virtual file as the input file to run the ML training algorithm.

3.3.2 Virtual File Write
Virtual file write works mostly in the same way but reverses
the data path direction. We focus on describing the difference.

Registration. Virtual write requires users to preallocate
enough space for the real file(s) to store the write output. If
users leverage the fallocate system call to preallocate the file,
they have to make sure to clear the unwritten flag on the file

4With the append-only attribute, ftruncate will fail to release blocks, and
the file defragmentation tool, e.g., xfs_fsr will ignore these blocks [21].

extents.5 Otherwise, later updates on the real file may only be
perceived via the INSIDER interface but not the OS interface.

File open. Besides the steps in §3.3.1, INSIDER runtime
invokes f sync to flush dirty pages of the real file(s) to drive
if there are any. This guarantees the correct order between
previous host-initiated write requests and the upcoming IN-
SIDER drive-initiated write requests.

File write. In the file write stage, users invoke vwrite to
write data to the virtual file. The written data is transferred
to INSIDER drive through DMA, and then will be intercepted
and processed by the accelerator. The output data will be
written into the corresponding real file blocks. INSIDER also
provides vsync (method 4 in Table 2), which can be used by
users to flush in-core vwrite data to the INSIDER drive.

File close. Besides the steps in §3.3.1, INSIDER runtime
will drop the read cache of the real file(s), if there are any, to
guarantee that the newly drive-written data can be perceived
by the host. This is conducted via calling posix_fadvise with
POSIX_FADV_DONTNEED. Via invoking a variant of vclose
(method 6 in Table 2), users can know the number of bytes
written to the real file(s) by the underlying INSIDER drive.
Based on the returned value, users may further invoke ftrun-
cate to truncate the real file(s).

Virtual file write helps us alleviate the bandwidth bottle-
neck in the host→ drive direction, since less data needs to
be transferred through the bus (they then gets amplified in
drive). For example, the user can register a virtual file based
on a compressed real file and a decompression drive program.
In this scenario, only compressed data needs to be transferred
through the bus, and the drive performs in-storage decompres-
sion to materialize the decompressed file.

Since the virtual file write is mostly symmetric to the virtual
file read, in the following we will introduce other system
designs based on the direction of read to save space.
3.3.3 Concurrency Control
In INSIDER, a race condition might happen in the following
cases: 1) Simultaneously a single real file is being vwrite
and vread; 2) Simultaneously a real file is being vwrite by
different processes; 3) A single real file is being vread, and
meanwhile it is being written by a host program. In these
cases, the users may encounter non-determinate results.

5In Linux, some file systems, e.g., ext4, will put the unwritten flag over
the file extents preallocated by fallocate. Any following read over the extents
will simply return zero(s) without actually querying the underlying drive;
this is designed for security considerations since the preallocated blocks may
contain the data from other users.

384 2019 USENIX Annual Technical Conference USENIX Association

Figure 6: A simple example of the INSIDER drive accelerator code.

The problem also applies to Linux file systems: for example,
different host processes may write to a same file. Linux file
systems do not automatically enforce the user-level file concur-
rency control and leave the options to users. INSIDER makes
the same decision here. When it is necessary, users can reuse
the Linux file lock API to enforce the concurrency control by
putting the R/W lock to the mapped real file.

3.4 The Drive-Side Programming Model
In this section we introduce the drive-side programming
model. INSIDER defines a clear interface to hide all details of
data movements between the accelerator program and other
system components so that the device programmer only needs
to focus on describing the computation logic. INSIDER pro-
vides a drive-side compiler which allows users to program
in-drive accelerators with C++ (see Fig. 6 for a sample pro-
gram). Additionally, the INSIDER compiler also supports the
traditional RTL (e.g., Verilog) for experienced FPGA pro-
grammers. As we will see in §5.2, only C++ is used in the
evaluation, and it can already achieve near-optimal perfor-
mance in our scenario (§5.2.2).

Drive program interface consists of three FIFOs—data in-
put FIFO, data output FIFO and parameter FIFO, as shown
in the sample code. Input FIFO stores the intercepted data
which is used for the accelerator processing. The output data
of the accelerator, which will be sent back to host and acquired
by vread, is stored into output FIFO. The host-sent runtime
parameters are stored in parameter FIFO. The input and the
output data are wrapped into a sequence of flits, i.e., struct
APP_Data (see Fig. 6). The concept of flit is similar to the
"word size" in host programs. Each flit contains a 64-byte
payload, and the eop bit is used for marking the end of the
input/output data. The length of data may not be multiples of
64 bytes, the len field is used to indicate the length of the last
flit. For example, 130-byte data is composed by three flits; the
last flit has eop = true and len = 2.

The sample program first reads two parameters, upper
bound and lower bound, from the parameter FIFO. After that,
in each iteration, the program reads the input record from the
input FIFO. Then the program checks the filtering condition
and writes the matched record into the output FIFO. Users
can define stateful variables which are alive across iterations,
e.g., line 11 - line 13 in Fig. 6, and stateless variables as well,
e.g., line 22. These variables will be matched into FPGA reg-

isters or block RAMs (BRAMs) according to their sizes. The
current implementation does not allow placing variables into
FPGA DRAM, but it is trivial to extend.

INSIDER supports modularity. The user can define mul-
tiple sub-programs chained together with FIFOs to form a
complete program, as long as it exposes the same drive accel-
erator interface shown above. Chained sub-programs will be
compiled as separate hardware modules by the INSIDER com-
piler, and they will be executed in parallel. This is very similar
to the dataflow architecture in the streaming system, and we
can build a map-reduce pipeline in drive with chained sub-
programs. In fact, most applications evaluated in §5.2 are im-
plemented in this way. Stateful variables across sub-programs
could also be passed through the FIFO interface.

3.5 System-Level Pipelining
Logically, in INSIDER, vread triggers the drive controller to
fetch storage data, perform data processing, and transfer the
output back to host. After that, the host program can finally
start the host-side computation to consume the data. A naive
design leads to the execution time t = tdrive_read +tdrive_comp.+
tout put_trans.+ thost_comp. As we will see in §5.2, this leads to a
limited performance.

INSIDER constructs a deep system-level pipeline which in-
cludes all system components involved in the end-to-end pro-
cessing. It happens transparently for users; they simply use
the programming interface introduced in §3.3 and §3.4. With
pipelining, the execution time is decreased to max(tdrive_read ,
tdrive_comp., tout put_trans., thost_comp).

Overlap tdrive_read with tdrive_comp. We carefully design
the INSIDER hardware logic to ensure that it is fully pipelined,
so that the storage read stage, computation stage and output
DMA stage overlap one another.

Overlap drive, bus and host time We achieve this by 1
Pre-issuing the file access requests during vopen which would
trigger the drive to perform the precomputation; 2 Allocat-
ing the host memory in the INSIDER runtime to buffer the
drive precomputed results. With 1 , the drive has all the posi-
tion information of the mapped real file, and it can perform
computation at its own pace. Thus, the host-side operation
is decoupled from the drive-side computation. 2 further de-
couples the bus data transferring from the drive-side compu-
tation. Now, each time that the host invokes vread, it simply
pops the precomputed result from host buffers. To prevent the

USENIX Association 2019 USENIX Annual Technical Conference 385

Firmware

Original

ISC

Mux

Accelerator
Cluster

dispa-
tcher

Slot 0

SIF

req

(req, slot #)

normal
 IO data

ISC data

ISC data

Drive Data

Slot 1

Slot 2

Credits

Figure 7: The drive architecture for supporting simultaneous multiple tasks.

drive from overflowing host buffers when host lags behind,
INSIDER enforces credit-based flow control for each opened
virtual file.

3.6 Adaptive Bandwidth Scheduler
Naturally, the drive is shared among multiple processes, which
implies the scenario of parallel execution of multiple appli-
cations. For example, a single application may not fully satu-
rate the high internal drive bandwidth so that the remaining
bandwidth can be leveraged by others to improve the drive
utilization. There are two concerns that should be addressed
to support simultaneous multiple applications: 1) Given the
fact that the drive is multiplexed among accelerators, we need
a mechanism to dispatch drive data to the corresponding ac-
celerator correctly. 2) Different accelerators have different
data processing rates which can change dynamically. We need
to implement a dynamic weighted fair queueing policy to
schedule the drive bandwidth among accelerators adaptively.

Multiplexing. We develop a moderate extension to the
original drive firmware (i.e., the one that does not support
simultaneous multiple applications) to support multiplexing:
we add an ISC unit and a multiplexer, see Fig. 7. The original
firmware is used for handling the normal drive I/O requests as
usual, while the ISC unit is used for handling the ISC-related
drive requests. The ISC unit receives the file logical block
addresses and the accelerator slot index from the INSIDER host
runtime. The multiplexer will receive the request from both the
ISC unit and the original firmware. The received request will
be forwarded to the storage unit (not drawn in the figure), and
its slot index will be pushed into the Slots Index FIFO (SIF).
The slot 0 is always locked for the pass-through logic, which
is used for the normal drive read request since it does not
need any in-storage processing. Thus, for the request issued
by the original firmware, the MUX will push number 0 into
SIF. After receiving the drive read data, the dispatcher of
the accelerator cluster will pop a slot index from SIF and
dispatch the data to the application FIFO connected to the
corresponding application slot.

Adaptive Scheduling. The ISC unit maintains a set of
credit registers (initialized to R) for all offloaded applications.
The ISC unit will check registers of applications that have
pending drive access requests, in a round-robin fashion. If the
register of an application is greater than 0, the ISC unit will
issue a drive access request in size C with its slot index, and
then decrement its credit register. For the application with a
higher data processing rate, its available FIFO size is going to

FPGA

Drive ControllerStorage Chip
Controller

DRAM
16 GiB

DRAM
16 GiB

DRAM
16 GiB

DRAM
16 GiB

Delay
Unit

Throttle
Unit

Mem
Ctrl

Mem
Ctrl

Mem
Ctrl

Mem
Ctrl

DDR4

DMA Controller

Delay
Unit

Throttle
Unit

Accelerator
Cluster

Firmware

Orig. ISC

Request Queue

DDR4

DDR4

DDR4

Figure 8: The diagram of the INSIDER drive prototype.

be decreased more quickly, which brings us feedback informa-
tion for performing the adaptive drive bandwidth scheduling.
Each time data is dispatched to the application FIFO, the dis-
patcher will check the available space of that FIFO. If it is
greater than C, the dispatcher will release one credit to the
corresponding credit register in the ISC unit.

In practice, we choose the drive access request size C to
be the minimal burst size that is able to saturate the drive
bandwidth, and choose R to be large enough to hide the drive
access latency. Ideally, we could solve an optimization prob-
lem to minimize the FPGA buffer size which equals to R ·C.
We leave out the details here.

4 Implementation
The implementation of INSIDER contains 10K lines of C/C++
code (including the traditional host code and the FPGA HLS
code), 2K lines of Verilog code and 2K lines of script code.
The FPGA-side implementation is done based on the ST-
Accel framework [60]. We have already adapted both the
drive prototype and the software stack to the AWS F1 (FPGA)
instance for public access, see [5].

4.1 The INSIDER Drive Prototype
So far there is no such a drive device on the market yet. We
build an INSIDER drive prototype ourselves based on an FPGA
board, see Fig. 8. The drive is PCIe-based and its implemen-
tation contains three parts: storage chip controller, drive con-
troller and DMA controller. We implement a simple firmware
logic in the drive controller; it is responsible for handling
host-sent drive access commands, and the functionalities of
performing wear-leveling and garbage collection have not
been implemented yet. The remaining FPGA resource is used
to accommodate the logics of drive programs. To emulate
the performance of an emerging storage drive, our prototype
should connect to multiple flash chips. However, there is no
FPGA board in the market that has enough U.2 or M.2 flash
connectors to meet our requirements. Therefore, in our proto-
type, we use four DRAM chips to emulate the storage chips.
We add a set of delay and throttle units into the storage chip
controller and DMA controller; they are configurable via our
host-side API, therefore we could dynamically configure them
to change the performance metrics (i.e., bandwidth and la-
tency) of our emulated storage chips and interconnection bus.

386 2019 USENIX Annual Technical Conference USENIX Association

Application Description Comment Data Size
(GiB) Parameter Devel.Time

(Person-Day)
LoC6

Host Drive

Grep [38] String matching. Fully offloaded. Virtual file read. 60 983040 rows, 65536-byte row.
32-byte search string. 3 51 193

KNN [59] K-nearest neighbors.
Offload the distance calculation into
drive, and put K-partial sort in host.
Virtual file read.

56.875 K = 32, 14680064 training
cases, 4096 dims, 1-byte weight. 2 77 72

Bitmap file
decompression

Decompress the
bitmap file.

Offload run-length decoding into
drive. Other preparation steps like
header parsing and format checking
are put in host. Virtual file write.

3.3
Compression ratio is about 7,
width = 187577, height = 129000,
planes = 1, depth = 8.

4 94 145

Statistics [55, 63] Statistical calculation
per input row.

Offload the row-level data reduction
operations into drive, and put the
computation over the reduced row
data in host. Virtual file read.

48 65536 rows, 196608 numbers
per row, 4-byte number. 3 65 170

SQL query [40, 65]
A query consists of
select, sum, where,
group by, and order by.

Offload data filtering into drive,
and put sorting and grouping in host.
Virtual file read.

60 2013265920 records
32-byte record. 5 97 256

Integration [48] Combine data from
different sources. Fully offloaded. Virtual file read. 61 1006632960 records, 64-byte

record, 32-byte query. 5 41 307

Feature Selection [64] Relief algorithm to
prune features. Fully offloaded. Virtual file read. 61 15728640 hit records,

15728640 miss records, 256 dims. 9 50 632

Table 3: A descriptions of applications used in the evaluation. We present the experimental data sizes and application parameters. Additionally, we show the
developing effort by listing the lines of code and the development time.

4.2 The INSIDER Software Stack
This section briefly introduces the software stack of INSIDER.
We have omitted the details due to space constraints.

Compiler. INSIDER provides compilers for both host and
drive. The host-side compiler is simply a standard g++ which,
by default, links to the INSIDER runtime. The front-end of
the drive-side compiler is implemented on LLVM, while its
back-end is implemented on Xilinx Vivado HLS [22] and a
self-built RTL code transformer.

Software Simulator. FPGA program compilation takes
hours, which greatly limits the iteration speed of the pro-
gram development. INSIDER provides a system-level sim-
ulator which supports both the C++-level and RTL-level sim-
ulation. The simulator reduces the iteration time from hours
into (tens of) minutes.

Host-side runtime library. The runtime library bypasses
the OS storage stack and is at the user space. When necessary,
it will use the POSIX I/O interface to interact with the host
file system. Its implementation contains the drive parameter
configuring API plus all methods in Table 2. Additionally, the
runtime library cooperates with the drive hardware to support
the system-level pipelining and the credit-based flow control.

Linux kernel drivers. INSIDER implements two kernel
drivers. The first driver registers the INSIDER drive as a block
device in Linux so that it could be accessed as a normal stor-
age drive. The second driver is ISC related: it manages the
DMA buffer for virtual file operations and is responsible for
setting/unsetting the append-only attribute to the real file(s)
in vopen/vclose.

5 Evaluation
5.1 Experiment Setup
We refer to the performance metrics of the current high-end
SSDs to determine the drive performance used in our evalua-
tion. On the latency side, the current 3D XPoint SSD already
achieves latency less than 10 µs [6, 39]. On the throughput
side, the high-end SSD announced in 2017 [17] could achieve

Host

Operating System Linux LTS 4.4.169
RAM 128 GB
CPU 2*Intel Xeon E5-2686 v4

File System XFS

Drive

FPGA Xilinx Virtex XCVU9P
Capacity 64 GB
Latency 5 µs

Sequential R/W 16 GB/s (i.e., 14.9 GiB/s)
Random 4K R/W 1200 KOPS

Host/Drive Int. Speed PCIe Gen3 x8 or x16
Number of Slots 3

Table 4: Experiment setup.

13.0 / 9.0 GB/s sequential R/W performance. We project these
numbers (according to the trend in Fig. 1, 2) to represent the
performance of the next-generation high-performance drive.
Table 4 provides details of our experiment setup. We use 32
CPU cores in the evaluation.

5.2 Applications
We choose applications used in the existing work to evaluate
the INSIDER system (see Table 3). We implement them by
ourselves. All drive programs are implemented in C++.

5.2.1 Speedup and Its Breakdown
See Fig. 9 for the performance comparison of seven appli-
cations. We choose the traditional host-only implementa-
tion which uses the POSIX interface as the baseline. It uses
OpenMP to parallelize the computation to take advantage of
32 CPU cores. The first optimization is to replace the POSIX
interface with the ISC interface to bypass overheads of the
host I/O stack. This is conducted by registering the virtual file
based on the real file and the pass-through (PT) program. The
PT program simply returns all the inputs it receives as outputs.
Thus, by invoking vread over the virtual file, we acquire the
data of the real file. In Fig. 9, Host-bypass is the abbreviation
for this version, while the suffix x8 and x16 stand for using
PCIe Gen3 x8 and x16 as the interconnection, respectively.
With the host-side code refactoring, we can conduct pipelin-
ing to overlap the computation time and the file access time;

6It does not include empty lines, comments, logging, timer, etc.

USENIX Association 2019 USENIX Annual Technical Conference 387

 0

 2

 4

 6

 8

 10

 12

Grep KNN Statistics SQL Integration Feature selection Bitmap

S
pe

ed
up

Host-bypass/x8
Host-bypass/x16

Host-bypass-pipeline/x8
Host-bypass-pipeline/x16

INSIDER/x8
INSIDER/x16

Figure 9: Speedup of optimized host-only versions and INSIDER version compared to the host-only baseline (§5.2.1).

 0

 2

 4

 6

 8

 10

 12

Grep KNN
Statistics SQL

Intergration

Feature Sel.
Bitmap

S
pe

ed
up

customized IO stack pipeline & offload data reduction

(a) INSIDER/x8 (i.e, the bus-limited case).

 0

 2

 4

 6

 8

 10

 12

Grep KNN
Statistics SQL

Integration

Feature Sel.
Bitmap

S
pe

ed
up

customized IO stack pipeline & offload data reduction

(b) INSIDER/x16 (i.e, the bus-ample case).

Figure 10: The breakdown of the speedup achieved by INSIDER compared with the host-only baseline (§5.2.1).

this corresponds to Host-bypass-pipeline in Fig. 9. Finally,
we leverage the ISC capability to offload computing tasks
to the drive. For this version we largely reuse code from the
baseline version since the virtual file abstraction allows us
to stay at the traditional file accessing interface (§3.3) and
INSIDER transparently constructs the system-level pipeline
(§3.5). This corresponds to INSIDER in Fig. 9.

Note that the end-to-end execution time here includes the
overheads of INSIDER APIs like vopen, vclose, but it does
not include the overhead of reconfiguring FPGA, which is in
the order of hundreds of milliseconds and is proportional to
the region size [67]. We envision that in practice the appli-
cation execution has time locality so that the overheads of
reconfiguring will be amortized by multiple following calls.

The speedup of version INSIDER is derived from three as-
pects: 1) customized I/O stack (§4.2), 2) task offloading (§3.4)
and system-level pipelining (§3.5), and 3) reduced data vol-
ume (which leads to lower bus time). See Fig. 10 for the
speedup breakdown in these three parts. In the x8 setting,
which has lower bus bandwidth, data reduction is the major
source of the overall speedup. By switching from x8 to x16,
the benefit of data reduction decreases, which makes sense
since now we use a faster interconnection bus. Nevertheless, it
still accounts for a considerable speedup. Meanwhile, pipelin-
ing and offloading contribute to a major part of the speedup.

As we discussed in §2.1, four-lane (the most common)
and eight-lane links are used in real life because of storage
density and cost constraints. INSIDER/x16 does not represent
a practical scenario at this point. The motivation for showing
both the results of x8 and x16 is to compare the benefits of
data reduction in both bus-limited and bus-ample cases.
5.2.2 Optimality and Bottleneck Analysis
Table 5 shows the performance bottleneck of different exe-
cution schemes for seven applications. For Host-bypass, lim-

Host-
bypass/x8

Host-
bypass/x16

INSIDER/x8 INSIDER/x16

Grep PCIe PCIe Drive Drive
KNN PCIe Comp. Drive Drive
Statistics PCIe PCIe Drive Drive
SQL query PCIe Comp. Comp. Comp.
Integration PCIe PCIe Drive Drive
Feature selec-
tion

Comp. Comp. PCIe Drive

Bitmap de-
compression

PCIe PCIe Drive Drive

Table 5: The end-to-end performance bottleneck of different executing
schemes over seven different applications. Here PCIe, Drive and Comp.
indicate that the bottleneck is PCIe performance, drive chip performance and
the host-side computation performance, respectively (§5.2.2).

ited PCIe bandwidth is the major bottleneck for the overall
performance. In contrast, after enabling the in-storage pro-
cessing, even in the PCIe x8 setting, there is only one case
in which PCIe becomes the bottleneck (see INSIDER/x8). For
most cases in INSIDER, the overall performance is bounded
by the internal drive speed, which indicates that the optimal
performance has been achieved. For some cases, like KNN
and feature selection, host-side computation is the perfor-
mance bottleneck for Host-bypass. This is alleviated in IN-
SIDER since FPGA has better computing capabilities for the
offloaded tasks. For INSIDER, SQL query is still bottlenecked
by the host-side computation of the non-offloaded part.

5.2.3 Development Efforts
Table 3 also presents the developing efforts of implementing
these applications in terms of lines of code (column LoC) and
the developing time (column Devel. Time). With virtual file
abstraction, all host programs here only require less than half
an hour to be ported to the INSIDER; The main development
time is spent on implementing the drive accelerator which
requires drive programmers to tune the performance. This
time is expected to be reduced in the future with continuous
improvements on the FPGA programming toolchain. Addi-

388 2019 USENIX Annual Technical Conference USENIX Association

 0
 2
 4
 6
 8

 10
 12
 14
 16

0.5 1 1.5 2 2.5

B
an

dw
id

th
 (

G
B

/s
)

Time (s)

statistics SQL pass-through

Figure 11: Data rates of accelerators that are executed simultaneously in
drive. The drive bandwidth is 16 GB/s, and the bandwidth requested by statis-
tics, SQL and pass-through are 12 GB/s, 6.4 GB/s and 8 GB/s, respectively.
statistics starts before time 0 s and ends at about time 1.5 s. SQL starts at
about time 0.4 s and ends at about time 2.4 s. Pass-through starts at about
time 0.8 s and ends at about time 2.6 s.

LUT FF BRAM DSP
Grep 34416 24108 1 0
KNN 9534 11975 0.5 0
Statistics 14698 15966 0 0
SQL query 9684 14044 1 0
Integration 40112 6497 14 0
Feature selection 41322 44981 24 48
Bitmap decompression 60837 13676 0 0
INSIDER framework 68981 120451 309 0
DRAM and DMA IP cores 210819 245067 345.5 12

XCVU9P [19] 1181768 2363536 2160 6840
XC7A200T [2] 215360 269200 365 740

Table 6: The top half shows the FPGA resource consumption in our experi-
ments. Generally, an FPGA chip contains four types of resources: look-up
tables (LUTs), flip-flops (FFs), block RAMs (BRAMs, which are SRAM-
based), digital signal processors (DSPs). The bottom half shows the initial
available resource in FPGA XCVU9P and XC7A200T.

tionally, since INSIDER provides a clear interface to separate
the responsibilities between host and drive, drive programs
could be implemented as a library by experienced FPGA de-
velopers. This can greatly lower the barrier for host users
when it comes to realizing the benefits of the INSIDER drive.

Still, the end-to-end developing time is much less compared
to an existing work. Table 1 in work [61] shows that WILLOW
requires thousands of LoC and one-month development time
to implement some basic drive applications like simple drive
I/O (1500 LoC, 1 month) and file appending (1588 LoC, 1
month). WILLOW is definitely an excellent work, and here
the main reason is that WILLOW was designed at a lower
layer to extend the semantics of the storage drive, while IN-
SIDER focuses on supporting ISC by exposing a compute-only
interface at drive and file APIs at host.

5.3 Simultaneous Multiprocessing
In this section we focus on evaluating the effectiveness of
the design in §3.6. We choose statistics, SQL query, and
pass-through as our offloaded applications. On the drive
accelerator side, we throttle their computing speeds below
the drive internal bandwidth so that each of them cannot
fully saturate the high drive rate: BWdrive = 16 GB/s,BWstat =
12 GB/s,BWSQL = 6.4 GB/s,BWPT = 8 GB/s. The host-side
task scheduling has already been enforced by the host OS, and
our goal here is to evaluate the effectiveness of the drive-side
bandwidth scheduling. Hence, we modify the host programs
so that they only invoke INSIDER APIs without doing the

host-side computation. In this case, the application execution
time is a close approximation of the drive-side accelerator
execution time. Therefore, the data processing rate for each
accelerator can be calculated as rate = ∆size(data)/∆time.

Fig. 11 presents the runtime data rate of three accelera-
tors that execute simultaneously in drive. As we can see, IN-
SIDER will try best to accommodate the bandwidth requests
of offloaded applications. When it is not possible to do so, i.e.,
the sum of total requested bandwidth is higher than the drive
bandwidth, INSIDER will schedule bandwidth for applications
in a fair fashion.

5.4 Analysis of the Resource Utilization
Table 6 presents the FPGA resource consumption in our ex-
periments. The end-to-end resource usage consists of three
parts: 1 User application logic. Row Grep to row Bitmap de-
compression correspond to this part. 2 INSIDER framework.
Row INSIDER framework corresponds to this part. 3 I/O IP
cores. This part mainly comprises the resource for the DRAM
controller and the DMA controller. Row DRAM and DMA IP
cores correspond to this part.

We note that 3 takes the major part of the overall resource
consumption. However, these components actually already ex-
ist (in the form of ASIC hard IP) in modern storage drives [33],
which also have a built-in DRAM controller and need to inter-
act with host via DMA. Thus, 3 only reflects the resource use
that would only occur in our prototype due to our limited eval-
uation environment. The final resource consumption should be
measured as 1 + 2 . Row XCVU9P [19] and row XC7A200T
show the available resource of a high-end FPGA (which is
used in our evaluation) and a low-end FPGA 7, respectively.
We notice that in the best case, the low-end FPGA is able to
simultaneously accommodate five resource-light applications
(grep, KNN, statistics, SQL, integration). The key insight here
is that, for the ISC purpose, we only need to offload code snip-
pet involving data reduction (related to the virtual file read) or
data amplification (related to the virtual file write), therefore
the drive programs are frugal in the resource usage.

5.5 Comparing with the ARM-Based System
Methodology. We assume that only the FPGA-based ISC unit
is replaced by the ARM CPU, and all other designs remain
unchanged. We extract the computing programs from the
traditional host-only implementation used in §5.2. Since we
assume the system-level pipelining (§3.5) is also deployed
here, the final end-to-end time of the ARM-based platform
could be calculated as Te2e = max(Thost ,Ttrans,TARM), where
Thost denotes the host-side processing time and Ttrans denotes
the host/drive data transferring time. Here, Thost and Ttrans
are taken from the measured data of INSIDER at §5.2. We
target Cortex-A72 (using parameters in [12]), which is a high-
end quad-core three-way superscalar ARM processor. We
conduct runtime profilings over an ARM machine to extract

7We do not directly use XC7A200T in the evaluation since we cannot find
a low-end FPGA board with large DRAM, which forces us to use XCVU9P.

USENIX Association 2019 USENIX Annual Technical Conference 389

101

102

103

104

Grep KNN
Statistics SQL

Integration

Feature Sel.
Bitmap

T
hr

ou
gh

pu
t (

M
iB

/s
)

ARM-1C ARM-2C ARM-3C ARM-4C INSIDER

Figure 12: End-to-end data processing rates of INSIDER and the ARM-based
platforms. ARM-NC means to use N core(s).

 0

 100

 200

 300

 400

Grep KNN
Statistics SQL

Feature Sel.

Integration
Bitmap

C
os

t E
ffi

ci
en

cy
 (

M
iB

/$
)

ARM INSIDER

Figure 13: Cost efficiency (defined as data processing rates per dollar) of
INSIDER and the ARM-based platforms. We do not include the cost of storage
drive, whose price varies significantly across configurations.

the number of program instructions. The program execution
time is then calculated optimistically by assuming that it has
perfect IPC and perfect parallelism over multiple cores.

Fig. 12 (in log scale) shows the end-to-end data processing
rates of INSIDER and the ARM-based platform. The speedup
of INSIDER is highly related to the computation intensity of
examined applications, but on average, INSIDER could achieve
12X speedup. For KNN, which is the most compute-intensive
case, INSIDER could achieve 58X speedup; while for SQL
query, which has the least computation intensity, the ARM-
based platform could achieve the same performance.

We further present the cost efficiency of the ARM and
INSIDER platforms, which is defined as the data processing
rate per dollar. As discussed in §5.4, FPGA XC7A200T is
already able to meet our resource demand; thus we use it in
this evaluation. The wholesale price of FPGA is much less
compared to its retail price according to the experience of
Microsoft [36]. For a fair comparison, we use the wholesale
prices of FPGA XC7A200T ($37 [20]) and ARM cortex-A72
($95 [12]). We did not include the cost of storage drive in
this comparison. Fig. 13 shows the cost efficiency results.
Compared with the ARM-based platform, INSIDER achieves
31X cost efficiency on average. Specifically, it ranges from
2X (in SQL query) to 150X (in KNN).

6 Future Work
In-storage computing is still in its infancy. INSIDER is our
initial effort to marry this architectural concept with a practical
system design. There is a rich set of interesting future work,
as we summarize in the following.

Extending INSIDER for a broader scenario. First, from
the workload perspective, an extended programming model is

desired to better support the data-dependent applications like
key-value store. The current programming model forces host
to initiate the drive access request, thus it cannot bypass the
interconnection latency.

Second, from the system perspective, it would be useful to
integrate INSIDER with other networked systems to reduce the
data movement overheads. Compared to PCIe, performance of
the network is further constrained, which creates yet another
scenario for INSIDER [45]. The design of INSIDER is mostly
agnostic to the underlying interconnection. By changing the
DMA part into RDMA (or Ethernet), INSIDER can support the
storage disaggregation case, helping cloud users to cross the
“network wall” and take advantage of the fast remote drive.
Other interesting use cases include offloading computation to
HDFS servers and NFS servers.

Data-centric system architecture. Traditionally, the com-
puter system is designed to be computing-centric, in which
the data from IO devices are transferred and then processed by
CPU. However, the traditional system is facing two main chal-
lenges. First, the data movement between IO devices and CPU
has proved to be very expensive [53], which can no longer be
ignored in the big data era. Second, due to the end of Den-
nard Scaling, general CPUs can no longer catch up with the
ever-increasing speed of IO devices. Our long-term vision is
to refactor the computer system into being data-centric. In the
new architecture, CPU is only responsible for control plane
processing, and it offloads data plane processing directly into
the customized accelerator inside of IO devices, including
storage drives, NICs [50, 52], memory [51], etc.

7 Conclusion
To unleash the performance of emerging storage drives, we
present INSIDER, a full-stack redesigned storage system. On
the performance side, INSIDER successfully crosses the “data
movement wall” and fully utilizes the high drive performance.
On the programming side, INSIDER provides simple but effec-
tive abstractions for programmers and offers necessary system
support which enables a shared executing environment.

Acknowledgements

We would like to thank our shepherd, Keith Smith, and other
anonymous reviewers for their insightful feedback and com-
ments. We thank Wencong Xiao and Bojie Li for all technical
discussions and valuable comments. We thank the Amazon F1
team for AWS credits donation. We thank Janice Wheeler for
helping us edit the paper draft. This work was supported in
part by CRISP, one of six centers in JUMP, a Semiconductor
Research Corporation (SRC) program sponsored by DARPA,
the NSF NeuroNex award #DBI-1707408, and the funding
from Huawei, Mentor Graphics, NEC and Samsung under the
Center for Domain-Specific Computing (CDSC) Industrial
Partnership Program. Zhenyuan Ruan is also supported by a
UCLA Computer Science Departmental Fellowship.

390 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Anobit Announces Best-in-Class Flash
Drives for Enterprise and Cloud Applications.
https://www.businesswire.com/news/
home/20110914005522/en/Anobit-
Announces-Best-in-Class-Flash-
Drives-Enterprise-Cloud.

[2] Artix-7 FPGA Product Table. https://www.
xilinx.com/products/silicon-devices/
fpga/artix-7.html#productTable.

[3] CES 2009: pureSilicon 1TB Nitro SSD.
https://www.slashgear.com/ces-2009-
puresilicon-1tb-nitro-ssd-1230084/.

[4] DTS. http://www.storagesearch.com/dts.
html.

[5] INSIDER Github Repository. https://github.
com/zainryan/INSIDER-System.

[6] Intel Optane SDD 900P Series. https:
//www.intel.com/content/www/us/
en/products/memory-storage/solid-
state-drives/gaming-enthusiast-
ssds/optane-900p-series/900p-280gb-
aic-20nm.html.

[7] Intel Optane SSD DC P4800X. https://www.
intel.com/content/www/us/en/solid-
state-drives/optane-ssd-dc-p4800x-
brief.html.

[8] Intel Solid-State Drive 910 Series Product Specifica-
tion. https://ark.intel.com/products/
67009/Intel-SSD-910-Series-800GB-12-
Height-PCIe-2_0-25nm-MLC.

[9] Intel X25-M 80GB SSD Drive Review. http://www.
the-other-view.com/intel-x25.html.

[10] Lite-On SSD News. http://www.liteonssd.
com/m/Company/news_content.php?
id=LITE-ON-INTRODUCES-THE-NEXT-
GENERATION-EP2-WITH-NVME-PROTOCOL-
AT-DELL-WORLD-2015.html.

[11] Memory and Storage / Solid State Drives / Intel
Enthusiast SSDs / Intel Optane SSD 900P Series.
https://www.intel.com/content/www/
us/en/products/memory-storage/solid-
state-drives/gaming-enthusiast-
ssds/optane-900p-series/900p-280gb-
2-5-inch-20nm.html.

[12] Microprocessors - MPU QorIQ Layerscape. https:
//www.mouser.com/ProductDetail/
NXP-Freescale/LS1046ASN8T1A?
qs=sGAEpiMZZMup8ZLti7BNCxtNz7%
252BF43hzZlkvLaqOJ8c%3D.

[13] Samsung Demos Crazy-Fast PCIe NVMe SSD
At 5.6 GB Per Second At Dell World. https:
//hothardware.com/news/samsung-
demos-crazy-fast-pcie-nvme-ssd-at-
56-gb-per-second-showcases-16tb-ssd-
at-dell-world.

[14] Samsung NVMe SSD 960 Pro. https://www.
samsung.com/us/computing/memory-
storage/solid-state-drives/ssd-960-
pro-m-2-512gb-mz-v6p512bw/.

[15] SanDisk:Solid State Disk Drive. https://www.
anandtech.com/show/2151/4.

[16] Seagate announces 64TB NVMe SSD, Updated Nytro
NVMe and SAS Lineup at FMS 2017. https://
www.custompcreview.com/news/seagate-
announces-64tb-nvme-ssd-updated-
nytro-nvme-sas-lineup-fms-2017/.

[17] Seagate Nytro 5910 NVMe SSD. https:
//www.seagate.com/files/www-content/
datasheets/pdfs/nytro-5910-nvme-
ssdDS1953-4-1804US-en_US.pdf.

[18] Storage news - 2007, October week 3. http://www.
storagesearch.com/news2007-oct3.html.

[19] UltraScale+ FPGAs Product Tables and Prod-
uct Selection Guide. https://www.xilinx.
com/support/documentation/selection-
guides/ultrascale-plus-fpga-product-
selection-guide.pdf.

[20] XC7A200T-1FFG1156C(IC Embedded FPGA Field
Programmable Gate Array 500 I/O 1156FCBGA).
https://www.alibaba.com/product-
detail/XC7A200T-1FFG1156C-IC-
Embedded-FPGA-Field_60730073325.html.

[21] XFS defragmentation tool will ignore the file
which has append-only or immutable attribute set.
https://kernel.googlesource.com/pub/
scm/fs/xfs/xfsprogs-dev/+/v4.3.0/
fsr/xfs_fsr.c#968.

[22] Xilinx Vivado HLS. https://www.xilinx.
com/products/design-tools/vivado/
integration/esl-design.html.

USENIX Association 2019 USENIX Annual Technical Conference 391

https://www.businesswire.com/news/home/20110914005522/en/Anobit-Announces-Best-in-Class-Flash-Drives-Enterprise-Cloud
https://www.businesswire.com/news/home/20110914005522/en/Anobit-Announces-Best-in-Class-Flash-Drives-Enterprise-Cloud
https://www.businesswire.com/news/home/20110914005522/en/Anobit-Announces-Best-in-Class-Flash-Drives-Enterprise-Cloud
https://www.businesswire.com/news/home/20110914005522/en/Anobit-Announces-Best-in-Class-Flash-Drives-Enterprise-Cloud
https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html#productTable
https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html#productTable
https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html#productTable
https://www.slashgear.com/ces-2009-puresilicon-1tb-nitro-ssd-1230084/
https://www.slashgear.com/ces-2009-puresilicon-1tb-nitro-ssd-1230084/
http://www.storagesearch.com/dts.html
http://www.storagesearch.com/dts.html
https://github.com/zainryan/INSIDER-System
https://github.com/zainryan/INSIDER-System
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series/900p-280gb-aic-20nm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series/900p-280gb-aic-20nm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series/900p-280gb-aic-20nm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series/900p-280gb-aic-20nm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series/900p-280gb-aic-20nm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series/900p-280gb-aic-20nm.html
https://www.intel.com/content/www/us/en/solid-state-drives/optane-ssd-dc-p4800x-brief.html
https://www.intel.com/content/www/us/en/solid-state-drives/optane-ssd-dc-p4800x-brief.html
https://www.intel.com/content/www/us/en/solid-state-drives/optane-ssd-dc-p4800x-brief.html
https://www.intel.com/content/www/us/en/solid-state-drives/optane-ssd-dc-p4800x-brief.html
https://ark.intel.com/products/67009/Intel-SSD-910-Series-800GB-12-Height-PCIe-2_0-25nm-MLC
https://ark.intel.com/products/67009/Intel-SSD-910-Series-800GB-12-Height-PCIe-2_0-25nm-MLC
https://ark.intel.com/products/67009/Intel-SSD-910-Series-800GB-12-Height-PCIe-2_0-25nm-MLC
http://www.the-other-view.com/intel-x25.html
http://www.the-other-view.com/intel-x25.html
http://www.liteonssd.com/m/Company/news_content.php?id=LITE-ON-INTRODUCES-THE-NEXT-GENERATION-EP2-WITH-NVME-PROTOCOL-AT-DELL-WORLD-2015.html
http://www.liteonssd.com/m/Company/news_content.php?id=LITE-ON-INTRODUCES-THE-NEXT-GENERATION-EP2-WITH-NVME-PROTOCOL-AT-DELL-WORLD-2015.html
http://www.liteonssd.com/m/Company/news_content.php?id=LITE-ON-INTRODUCES-THE-NEXT-GENERATION-EP2-WITH-NVME-PROTOCOL-AT-DELL-WORLD-2015.html
http://www.liteonssd.com/m/Company/news_content.php?id=LITE-ON-INTRODUCES-THE-NEXT-GENERATION-EP2-WITH-NVME-PROTOCOL-AT-DELL-WORLD-2015.html
http://www.liteonssd.com/m/Company/news_content.php?id=LITE-ON-INTRODUCES-THE-NEXT-GENERATION-EP2-WITH-NVME-PROTOCOL-AT-DELL-WORLD-2015.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series/900p-280gb-2-5-inch-20nm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series/900p-280gb-2-5-inch-20nm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series/900p-280gb-2-5-inch-20nm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series/900p-280gb-2-5-inch-20nm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series/900p-280gb-2-5-inch-20nm.html
https://www.mouser.com/ProductDetail/NXP-Freescale/LS1046ASN8T1A?qs=sGAEpiMZZMup8ZLti7BNCxtNz7%252BF43hzZlkvLaqOJ8c%3D
https://www.mouser.com/ProductDetail/NXP-Freescale/LS1046ASN8T1A?qs=sGAEpiMZZMup8ZLti7BNCxtNz7%252BF43hzZlkvLaqOJ8c%3D
https://www.mouser.com/ProductDetail/NXP-Freescale/LS1046ASN8T1A?qs=sGAEpiMZZMup8ZLti7BNCxtNz7%252BF43hzZlkvLaqOJ8c%3D
https://www.mouser.com/ProductDetail/NXP-Freescale/LS1046ASN8T1A?qs=sGAEpiMZZMup8ZLti7BNCxtNz7%252BF43hzZlkvLaqOJ8c%3D
https://www.mouser.com/ProductDetail/NXP-Freescale/LS1046ASN8T1A?qs=sGAEpiMZZMup8ZLti7BNCxtNz7%252BF43hzZlkvLaqOJ8c%3D
https://hothardware.com/news/samsung-demos-crazy-fast-pcie-nvme-ssd-at-56-gb-per-second-showcases-16tb-ssd-at-dell-world
https://hothardware.com/news/samsung-demos-crazy-fast-pcie-nvme-ssd-at-56-gb-per-second-showcases-16tb-ssd-at-dell-world
https://hothardware.com/news/samsung-demos-crazy-fast-pcie-nvme-ssd-at-56-gb-per-second-showcases-16tb-ssd-at-dell-world
https://hothardware.com/news/samsung-demos-crazy-fast-pcie-nvme-ssd-at-56-gb-per-second-showcases-16tb-ssd-at-dell-world
https://hothardware.com/news/samsung-demos-crazy-fast-pcie-nvme-ssd-at-56-gb-per-second-showcases-16tb-ssd-at-dell-world
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-960-pro-m-2-512gb-mz-v6p512bw/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-960-pro-m-2-512gb-mz-v6p512bw/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-960-pro-m-2-512gb-mz-v6p512bw/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-960-pro-m-2-512gb-mz-v6p512bw/
https://www.anandtech.com/show/2151/4
https://www.anandtech.com/show/2151/4
https://www.custompcreview.com/news/seagate-announces-64tb-nvme-ssd-updated-nytro-nvme-sas-lineup-fms-2017/
https://www.custompcreview.com/news/seagate-announces-64tb-nvme-ssd-updated-nytro-nvme-sas-lineup-fms-2017/
https://www.custompcreview.com/news/seagate-announces-64tb-nvme-ssd-updated-nytro-nvme-sas-lineup-fms-2017/
https://www.custompcreview.com/news/seagate-announces-64tb-nvme-ssd-updated-nytro-nvme-sas-lineup-fms-2017/
https://www.seagate.com/files/www-content/datasheets/pdfs/nytro-5910-nvme-ssdDS1953-4-1804US-en_US.pdf
https://www.seagate.com/files/www-content/datasheets/pdfs/nytro-5910-nvme-ssdDS1953-4-1804US-en_US.pdf
https://www.seagate.com/files/www-content/datasheets/pdfs/nytro-5910-nvme-ssdDS1953-4-1804US-en_US.pdf
https://www.seagate.com/files/www-content/datasheets/pdfs/nytro-5910-nvme-ssdDS1953-4-1804US-en_US.pdf
http://www.storagesearch.com/news2007-oct3.html
http://www.storagesearch.com/news2007-oct3.html
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.alibaba.com/product-detail/XC7A200T-1FFG1156C-IC-Embedded-FPGA-Field_60730073325.html
https://www.alibaba.com/product-detail/XC7A200T-1FFG1156C-IC-Embedded-FPGA-Field_60730073325.html
https://www.alibaba.com/product-detail/XC7A200T-1FFG1156C-IC-Embedded-FPGA-Field_60730073325.html
https://kernel.googlesource.com/pub/scm/fs/xfs/xfsprogs-dev/+/v4.3.0/fsr/xfs_fsr.c#968
https://kernel.googlesource.com/pub/scm/fs/xfs/xfsprogs-dev/+/v4.3.0/fsr/xfs_fsr.c#968
https://kernel.googlesource.com/pub/scm/fs/xfs/xfsprogs-dev/+/v4.3.0/fsr/xfs_fsr.c#968
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

[23] Nitin Agrawal and Ashish Vulimiri. Low-Latency Ana-
lytics on Colossal Data Streams with SummaryStore. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, SOSP ’17, pages 647–664, New York,
NY, USA, 2017. ACM.

[24] Duck-Ho Bae, Jin-Hyung Kim, Sang-Wook Kim,
Hyunok Oh, and Chanik Park. Intelligent SSD: a turbo
for big data mining. In Proceedings of the 22nd ACM
international conference on Conference on information
and knowledge management, CIKM ’13, pages 1573–
1576, New York, NY, USA, 2013. ACM.

[25] R. Balasubramonian and B. Grot. Near-Data Processing
[Guest editors’ introduction]. IEEE Micro, 36(1):4–5,
Jan 2016.

[26] Antonio Barbalace, Anthony Iliopoulos, Holm Rauch-
fuss, and Goetz Brasche. It’s Time to Think About an
Operating System for Near Data Processing Architec-
tures. In Proceedings of the 16th Workshop on Hot
Topics in Operating Systems, HotOS ’17, pages 56–61,
New York, NY, USA, 2017. ACM.

[27] Laurent Bindschaedler, Jasmina Malicevic, Nicolas
Schiper, Ashvin Goel, and Willy Zwaenepoel. Rock You
like a Hurricane: Taming Skew in Large Scale Analytics.
In Proceedings of the Thirteenth European Conference
on Computer Systems, EuroSys ’18, 2018.

[28] Matias Bjørling, Jens Axboe, David Nellans, and
Philippe Bonnet. Linux Block IO: Introducing Multi-
queue SSD Access on Multi-core Systems. In Proceed-
ings of the 6th International Systems and Storage Con-
ference, SYSTOR ’13, pages 22:1–22:10, New York, NY,
USA, 2013. ACM.

[29] Mike Burrows. The chubby lock service for loosely-
coupled distributed systems. In 7th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2006.

[30] Adrian M. Caulfield, Joel Coburn, Todor Mollov, Arup
De, Ameen Akel, Jiahua He, Arun Jagatheesan, Rajesh K.
Gupta, Allan Snavely, and Steven Swanson. Under-
standing the Impact of Emerging Non-Volatile Mem-
ories on High-Performance, IO-Intensive Computing. In
Proceedings of the 2010 ACM/IEEE International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, SC ’10, pages 1–11, Washington,
DC, USA, 2010. IEEE Computer Society.

[31] Adrian M. Caulfield, Arup De, Joel Coburn, Todor I.
Mollow, Rajesh K. Gupta, and Steven Swanson. Mon-
eta: A High-Performance Storage Array Architecture for
Next-Generation, Non-volatile Memories. In Proceed-
ings of the 2010 43rd Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO ’43, pages
385–395, Washington, DC, USA, 2010. IEEE Computer
Society.

[32] Adrian M. Caulfield, Todor I. Mollov, Louis Alex Eisner,
Arup De, Joel Coburn, and Steven Swanson. Providing
Safe, User Space Access to Fast, Solid State Disks. In
Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVII, pages 387–400,
New York, NY, USA, 2012. ACM.

[33] Sangyeun Cho, Chanik Park, Hyunok Oh, Sungchan
Kim, Youngmin Yi, and Gregory R. Ganger. Active
Disk Meets Flash: A Case for Intelligent SSDs. In Pro-
ceedings of the 27th International ACM Conference on
International Conference on Supercomputing, ICS ’13,
pages 91–102, New York, NY, USA, 2013. ACM.

[34] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik
Park, Kwanghyun Park, and David J. DeWitt. Query
Processing on Smart SSDs: Opportunities and Chal-
lenges. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’13, pages 1221–1230, New York, NY, USA, 2013.
ACM.

[35] P. Fernando, S. Kannan, A. Gavrilovska, and K. Schwan.
Phoenix: Memory speed hpc i/o with nvm. In 2016 IEEE
23rd International Conference on High Performance
Computing (HiPC), pages 121–131, Dec 2016.

[36] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmo-
hta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva,
Madhan Sivakumar, Nisheeth Srivastava, Anshuman
Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,
Kushagra Vaid, David A. Maltz, and Albert Greenberg.
Azure accelerated networking: Smartnics in the pub-
lic cloud. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages
51–66, Renton, WA, 2018. USENIX Association.

[37] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The google file system. In Proceedings of the
19th ACM Symposium on Operating Systems Principles,
pages 20–43, Bolton Landing, NY, 2003.

[38] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo,
Jinyoung Lee, Jonghyun Yoon, Jeong-Uk Kang, Moon-
sang Kwon, Chanho Yoon, Sangyeun Cho, Jaeheon
Jeong, and Duckhyun Chang. Biscuit: A Framework
for Near-data Processing of Big Data Workloads. In

392 2019 USENIX Annual Technical Conference USENIX Association

Proceedings of the 43rd International Symposium on
Computer Architecture, ISCA ’16, pages 153–165, Pis-
cataway, NJ, USA, 2016. IEEE Press.

[39] F. T. Hady, A. Foong, B. Veal, and D. Williams. Plat-
form Storage Performance With 3D XPoint Technology.
Proceedings of the IEEE, 105(9):1822–1833, Sep. 2017.

[40] Insoon Jo, Duck-Ho Bae, Andre S. Yoon, Jeong-Uk
Kang, Sangyeun Cho, Daniel D. G. Lee, and Jaeheon
Jeong. YourSQL: A High-performance Database System
Leveraging In-storage Computing. Proc. VLDB Endow.,
9(12):924–935, August 2016.

[41] Myoungsoo Jung and Mahmut Kandemir. Revisiting
Widely Held SSD Expectations and Rethinking System-
level Implications. In Proceedings of the ACM SIG-
METRICS/International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS ’13,
pages 203–216, New York, NY, USA, 2013. ACM.

[42] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood,
Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon
Wei, and David Brooks. Profiling a Warehouse-scale
Computer. In Proceedings of the 42Nd Annual Interna-
tional Symposium on Computer Architecture, ISCA ’15,
pages 158–169, New York, NY, USA, 2015. ACM.

[43] Kimberly Keeton, David A. Patterson, and Joseph M.
Hellerstein. A Case for Intelligent Disks (IDISKs). SIG-
MOD Rec., 27(3):42–52, September 1998.

[44] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash,
Michael Wei, Eric Schkufza, and Christopher J. Ross-
bach. Sharing, Protection, and Compatibility for Re-
configurable Fabric with AmorphOS. In 13th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI 18), pages 107–127, Carlsbad, CA, 2018.
USENIX Association.

[45] Byungseok Kim, Jaeho Kim, and Sam H. Noh. Man-
aging Array of SSDs When the Storage Device Is No
Longer the Performance Bottleneck. In 9th USENIX
Workshop on Hot Topics in Storage and File Systems
(HotStorage 17), Santa Clara, CA, 2017. USENIX Asso-
ciation.

[46] Sungchan Kim, Hyunok Oh, Chanik Park, Sangyeun
Cho, and Sang-Won Lee. Fast, energy efficient scan
inside flash memory SSDs. In Proceeedings of the Inter-
national Workshop on Accelerating Data Management
Systems (ADMS), 2011.

[47] Sungchan Kim, Hyunok Oh, Chanik Park, Sangyeun
Cho, Sang-Won Lee, and Bongki Moon. In-storage
Processing of Database Scans and Joins. Inf. Sci.,
327(C):183–200, January 2016.

[48] Gunjae Koo, Kiran Kumar Matam, Te I, H. V. Kr-
ishna Giri Narra, Jing Li, Hung-Wei Tseng, Steven Swan-
son, and Murali Annavaram. Summarizer: Trading Com-
munication with Computing Near Storage. In Proceed-
ings of the 50th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO-50 ’17, pages 219–
231, New York, NY, USA, 2017. ACM.

[49] Philip Kufeldt, Carlos Maltzahn, Tim Feldman, Chris-
tine Green, Grant Mackey, and Shingo Tanaka. Eusocial
Storage Devices: Offloading Data Management to Stor-
age Devices that Can Act Collectively. ;login:, 43(2),
2018.

[50] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei
Lu, Yongqiang Xiong, Andrew Putnam, Enhong Chen,
and Lintao Zhang. KV-Direct: High-Performance In-
Memory Key-Value Store with Programmable NIC. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, SOSP ’17, pages 137–152, New York,
NY, USA, 2017. ACM.

[51] Shuangchen Li, Dimin Niu, Krishna T. Malladi,
Hongzhong Zheng, Bob Brennan, and Yuan Xie. DRISA:
A DRAM-based Reconfigurable In-Situ Accelerator. In
Proceedings of the 50th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO-50 ’17,
pages 288–301, New York, NY, USA, 2017. ACM.

[52] Yuanwei Lu, Guo Chen, Zhenyuan Ruan, Wencong
Xiao, Bojie Li, Jiansong Zhang, Yongqiang Xiong, Peng
Cheng, and Enhong Chen. Memory efficient loss re-
covery for hardware-based transport in datacenter. In
Proceedings of the First Asia-Pacific Workshop on Net-
working, APNet 2017, Hong Kong, China, August 3-4,
2017, pages 22–28, 2017.

[53] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and
Rachata Ausavarungnirun. Processing data where it
makes sense: Enabling in-memory computation. Micro-
processors and Microsystems, 2019.

[54] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M.
Swift, Haris Volos, and Kimberly Keeton. An Analysis
of Persistent Memory Use with WHISPER. In Proceed-
ings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’17, pages 135–148, New
York, NY, USA, 2017. ACM.

[55] Jian Ouyang, Shiding Lin, Zhenyu Hou, Peng Wang,
Yong Wang, and Guangyu Sun. Active SSD Design
for Energy-efficiency Improvement of Web-scale Data
Analysis. In Proceedings of the 2013 International Sym-
posium on Low Power Electronics and Design, ISLPED
’13, pages 286–291, Piscataway, NJ, USA, 2013. IEEE
Press.

USENIX Association 2019 USENIX Annual Technical Conference 393

[56] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou,
Yong Wang, and Yuanzheng Wang. SDF: Software-
defined Flash for Web-scale Internet Storage Systems.
In Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’14, pages 471–484, New
York, NY, USA, 2014. ACM.

[57] D. Park, J. Wang, and Y. S. Kee. In-Storage Comput-
ing for Hadoop MapReduce Framework: Challenges
and Possibilities. IEEE Transactions on Computers,
PP(99):1–1, 2016.

[58] A. Putnam. (Keynote) The Configurable Cloud - Ac-
celerating Hyperscale Datacenter Services with FPGA.
In 2017 IEEE 33rd International Conference on Data
Engineering (ICDE), pages 1587–1587, April 2017.

[59] Erik Riedel, Garth A. Gibson, and Christos Faloutsos.
Active Storage for Large-Scale Data Mining and Mul-
timedia. In Proceedings of the 24rd International Con-
ference on Very Large Data Bases, VLDB ’98, pages
62–73, San Francisco, CA, USA, 1998. Morgan Kauf-
mann Publishers Inc.

[60] Z. Ruan, T. He, B. Li, P. Zhou, and J. Cong. St-accel: A
high-level programming platform for streaming applica-
tions on fpga. In 2018 IEEE 26th Annual International
Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 9–16, April 2018.

[61] Sudharsan Seshadri, Mark Gahagan, Sundaram
Bhaskaran, Trevor Bunker, Arup De, Yanqin Jin,
Yang Liu, and Steven Swanson. Willow: A User-
Programmable SSD. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
14), pages 67–80, Broomfield, CO, 2014. USENIX
Association.

[62] Cassidy R. Sugimoto, Hamid R. Ekbia, and Michael
Mattioli. Big Data Is Not a Monolith. The MIT Press,
2016.

[63] Devesh Tiwari, Simona Boboila, Sudharshan Vazhkudai,
Youngjae Kim, Xiaosong Ma, Peter Desnoyers, and Yan

Solihin. Active Flash: Towards Energy-Efficient, In-
Situ Data Analytics on Extreme-Scale Machines. In
Presented as part of the 11th USENIX Conference on
File and Storage Technologies (FAST 13), pages 119–
132, San Jose, CA, 2013. USENIX.

[64] Ryan J Urbanowicz, Melissa Meeker, William LaCava,
Randal S Olson, and Jason H Moore. Relief-based fea-
ture selection: introduction and review. arXiv preprint
arXiv:1711.08421, 2017.

[65] Louis Woods, Zsolt István, and Gustavo Alonso. Ibex
- An Intelligent Storage Engine with Support for Ad-
vanced SQL Off-loading. PVLDB, 7(11):963–974, 2014.

[66] Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh,
Tameesh Suri, Manu Awasthi, Zvika Guz, Anahita
Shayesteh, and Vijay Balakrishnan. Performance Analy-
sis of NVMe SSDs and Their Implication on Real World
Databases. In Proceedings of the 8th ACM International
Systems and Storage Conference, SYSTOR ’15, pages
6:1–6:11, New York, NY, USA, 2015. ACM.

[67] Jiansong Zhang, Yongqiang Xiong, Ningyi Xu, Ran Shu,
Bojie Li, Peng Cheng, Guo Chen, and Thomas Mosci-
broda. The feniks fpga operating system for cloud com-
puting. In Proceedings of the 8th Asia-Pacific Workshop
on Systems, APSys ’17, pages 22:1–22:7, New York, NY,
USA, 2017. ACM.

[68] Peipei Zhou, Zhenyuan Ruan, Zhenman Fang, Megan
Shand, David Roazen, and Jason Cong. Doppio: I/O-
Aware Performance Analysis, Modeling and Optimiza-
tion for In-Memory Computing Framework. In IEEE
International Symposium on Performance Analysis of
Systems and Software, ISPASS ’18, 2018.

[69] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda,
and S. Matsuoka. Evaluating and Optimizing OpenCL
Kernels for High Performance Computing with FPGAs.
In SC ’16: Proceedings of the International Conference
for High Performance Computing, Networking, Storage

and Analysis, pages 409–420, Nov 2016.

394 2019 USENIX Annual Technical Conference USENIX Association

Cognitive SSD: A Deep Learning Engine for In-Storage Data Retrieval

Shengwen Liang†,*, Ying Wang†,*,1, Youyou Lu‡, Zhe Yang‡, Huawei Li†,*,1, Xiaowei Li†,*

State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing†,

University of Chinese Academy of Sciences*, Tsinghua University‡

Abstract
Data analysis and retrieval is a widely-used component in
existing artificial intelligence systems. However, each request
has to go through each layer across the I/O stack, which
moves tremendous irrelevant data between secondary storage,
DRAM, and the on-chip cache. This leads to high response
latency and rising energy consumption. To address this is-
sue, we propose Cognitive SSD, an energy-efficient engine
for deep learning based unstructured data retrieval. In Cog-
nitive SSD, a flash-accessing accelerator named DLG-x is
placed by the side of flash memory to achieve near-data deep
learning and graph search. Such functions of in-SSD deep
learning and graph search are exposed to the users as library
APIs via NVMe command extension. Experimental results on
the FPGA-based prototype reveal that the proposed Cognitive
SSD reduces latency by 69.9% on average in comparison with
CPU based solutions on conventional SSDs, and it reduces
the overall system power consumption by up to 34.4% and
63.0% respectively when compared to CPU and GPU based
solutions that deliver comparable performance.

1 Introduction
Unstructured data, especially unlabeled videos and images,
etc., have grown explosively in recent years. It is reported
that the unstructured data occupies up to 80% of storage ca-
pacity in commercial datacenters [10]. Once being stored
and managed in the cloud machines, the massive amount of
unstructured data leads to intensive retrieval requests issued
by users, which pose significant challenge to the processing
throughput and power consumption of a datacenter [19]. Con-
sequently, it is critical to support fast and energy-efficient data
retrieval in the cloud service infrastructure to reduce the total
cost of ownership (TCO) of datacenters.

Unfortunately, conventional content-based multimedia data
retrieval systems suffer from the issues of inaccuracy, power
inefficiency, and high cost especially for large-scale unstruc-
tured data. Fig. 1(a) briefly depicts a typical content-based

1Corresponding authors are Ying Wang and Huawei Li.

DRAM

I/O Interface

(a) Traditional architecture

Hard Disk

Application

VFS/File system

Block IO layer

I/O scheduler

SCSI stack

Device Driver

Storage Device

Requests

Internet

DLG-x

L1-Cache

ALU
Registers

C
P
U

Cognitive
SSD

HOST

Requests Results

CPU

(b) Cognitive SSD

L2-Cache
L3-Cache

DRAM

Offload

Fig. 1. Traditional architecture (a) vs. Cognitive SSD (b).

data retrieval system composed of CPU/GPU and conven-
tional storage devices based on a compute-centric architec-
ture [14]. When a data retrieval request arrives from the inter-
net or the central server, the CPU has to reload massive poten-
tial data from disk into the temporary DRAM [14] and match
the features of the query with those of the loaded unstructured
data to find the relevant targets. This compute-centric archi-
tecture is confronted with several critical sources of overhead
and inefficiency. (1) The current I/O software stack signifi-
cantly burdens the data retrieval system when it simply fetches
data from the storage devices on retrieval requests [60], as
shown in Fig. 1(a). The situation is even worse since it is
reported the performance bottleneck has migrated from hard-
ware (75∼50us [11]) to software (60.8us [48]) as traditional
HDDs are replaced by non-volatile memory [41,48]. (2) Mas-
sive data movement incurs energy and latency overhead in the
conventional memory hierarchy. This issue becomes severe
as the scale of data under query increases because the relevant
data at the low-level storage must travel across a slow I/O
interface (e.g., SATA), main memory and multi-level caches
before reaching the compute units of CPU or GPUs [24],
which is depicted in Fig. 1(a).

To address these issues, as shown in Fig. 1(b), this work
aims to tailor a unified data storing and retrieval system within
the compact storage device, and eliminate the major IO and
data moving bottleneck. In this system, retrieval requests are
directly sent to the storage devices, and the target data analysis
and indexing are completely performed where the unstruc-

USENIX Association 2019 USENIX Annual Technical Conference 395

tured data resides. Building such a data retrieval system based
on the proposed Cognitive SSD bears the following design
goals: (1) providing a high accuracy, low latency, and energy
efficient query mechanism affordable in a compact SSD, (2)
exploiting the internal bandwidth of flash devices in an SSD
for energy-efficient deep learning based data processing, and
(3) enabling developers to customize the data retrieval system
for different dataset. These points are stated in detail below.

First, instead of relying on the general-purpose CPU or
GPU devices in Fig. 1(a), we must have a highly computation-
efficient yet accurate data retrieval architecture in consider-
ation of the SSD form factor and cost. A conventional data
retrieval framework is inaccurate or too computationally ex-
pensive to be implemented within a resource-constrained SSD.
In this work, we are the first to propose a holistic data retrieval
mechanism by combining the deep learning and graph search
algorithm (DLG), where the former could extract the seman-
tic features of unstructured data and the latter could improve
database search efficiency. The DLG solution achieves much
higher data retrieval accuracy and enables user-definable com-
putation complexity through deep learning model customiza-
tion, making it possible to implement a flexible and efficient
end-to-end unstructured data retrieval system in the SSD.

Second, although DLG is a simple and flexible end-to-end
data retrieval solution, embedding it into SSDs still takes con-
siderable effort. We designed a specific hardware accelerator
that supports deep hashing and graph search simultaneously,
DLG-x, to construct the target Cognitive SSD without using
power-unsustainable CPU or GPU solutions. However, the
limited DRAM inside an SSD is mostly used to cache the
metadata for flash management, leaving no free space for
the deep learning applications. Fortunately, we have proved
that the bandwidth of internal flash interface surpasses that
of external IO interface in a typical SSD, which matches the
bandwidth demand of the DLG-x with proper data layout map-
ping. By rebuilding the data path in the SSD and deliberately
optimizing the data-layout related to deep learning models
and graphs on NAND flash, the DLG-x could fully exploit
internal parallelism and directly access data from NAND flash
bypassing the on-board DRAM.

Finally, as we introduce deep learning technology into the
SSD, we must expose the software abstraction of Cognitive
SSD to users and developers to process different data struc-
tures with different deep learning models. Thus, we abstract
the underlying deep learning mechanism, feature analysis,
and data structure indexing mechanism as user-visible calls
by utilizing the NVMe protocol [6] for command extension.
Not only can users’ requests trigger the DLG-x accelerator
to search the target dataset for query-relevant structures, but
also system developers can freely configure the deep hashing
architecture with different representation power and overhead
for different dataset and performance requirement. In contrast
to conventional ad-hoc solutions, Cognitive SSD allows sys-
tem developers to adjust the retrieval accuracy as well as the

real-time performance of the data retrieval service through
provided APIs. Meanwhile, Cognitive SSD also supports the
flexible combination of special commands to achieve different
data retrieval related tasks, like in-storage data categorization
and hashing-only functions. In summary, we make the follow-
ing novel contributions:

1 We propose Cognitive SSD, to enable within-SSD deep
learning and graph search by integrating a specialized deep
learning and graph search accelerator (DLG-x). The DLG-
x directly accesses data from NAND flash without crossing
multiple memory hierarchies to decrease data movement
path and power consumption. To the best of our knowledge,
this work is the first to combine the deep learning and graph
search methods for fast and accurate data retrieval in SSD.

2 We employ Cognitive SSD to build a serverless data re-
trieval system, which completely abandons the conven-
tional data query mechanism in orthodox compute-centric
systems. It can independently respond to data retrieval re-
quests at real-time speed and low energy cost. It can also
scale to a multi-SSD system and significantly reduces the
hardware and power overhead of large-scale storage nodes
in data centers.

3 We build a prototype of Cognitive SSD on the Cosmos
plus OpenSSD platform [7] and use it to implement a data
retrieval system. Our evaluation results demonstrate that
Cognitive SSD is more energy-efficient than a multime-
dia retrieval system implemented on CPU and GPU, and
reduces latency by 69.9% on average compared to the
implementation with CPU. We also show that it outper-
forms conventional computing and storage node used in
the data center when Cognitive SSD scales out to form
smart lightweight storage nodes that include connected
Cognitive SSD array.

2 Background and Preliminaries
2.1 Unstructured Data Retrieval System

Content-based unstructured data retrieval systems aim to
search for certain data entries from the large-scale dataset by
analyzing their visual or audio content. Fig. 2 depicts a typical
content-based retrieval procedure consists of two main stages:
feature extraction, and database indexing. Feature extraction
generates the feature vector for the query data, and database
indexing searches for similar data structures in storage with
that feature vector encoded in a semantic space.
Feature Extraction and Deep Learning. The rise of deep
learning transfers the focus of researches to deep convolution
neural network (DCNN) [38] based features [61], as it pro-
vides better mid-level representations [37,40]. Fig. 2 depicts a
typical DCNN that contains four key types of network layers:
(1) convolution layer, which extracts visual feature from input
by moving and convolving multidimensional filters across
the input data organized into 3D tensors, (2) activation, the

396 2019 USENIX Annual Technical Conference USENIX Association

Content-based Unstructured Data Retrieval System

Requests
Data

Preprocessing
Results

Feature
Mapping

Feature
Matching Ranking

Convolution Pooling
Input

Fully
Connected

Hash
Layer

0
1
0
1
0
1

Layer Layer Layer

Hash
Code Graph Search

Deep Hashing -- (Hash-AlexNet) Query

Feature Extraction Database indexing

Fig. 2. Content-based multimedia data retrieval system.

nonlinear transformation that we do over the input signal, (3)
pooling layers, which down-sample the input channels for
scale and other types of invariance, and (4) fully connected
(FC) layer, which performs linear operations between the fea-
tures and the learned weights to predict the categorization
or other high level characteristics of input data. Such a neu-
ral network is flexible and can be designed to have different
hyper-parameters, like the number of the convolution and
pooling layers stacked together and the dimension and num-
ber of convolution filters. Changing these parameters will
impact the generalization ability and also computational over-
head of neural networks, which are usually customizable for
different dataset or application scenarios [47]. Some prior
work directly employs the high-dimension output vector of
the FC layer for data retrieval and is thought too expensive in
terms of memory footprint and computation complexity [39].
Thus, we adopt deep hashing [38] to achieve effective yet con-
densed data representation. Fig. 2 exemplifies a deep hashing
architecture, Hash-AlexNet, where a hash layer follows the
last layer of AlexNet [35] to project the data feature learned
from AlexNet into the hash space, and the generated hash
code can be directly used to index the relevant data structures
and get rid of the complex data preprocessing stage.

Database indexing: Graph-based approximate nearest neigh-
bor search(ANNS) methods named NSG [27], a complement
to deep hashing, achieves both accurate and fast data retrieval
results, as was proved in previous work [17, 26]. The main
idea of NSG is mapping the query hash code into a graph.
The vertex of the graph represents an instance, and the edge
stands for the similarities between entities, where the value of
the edge represents the strength of similarity. On top of that,
NSG can iteratively check neighbors’ neighbors in the graph
to find the true neighbors of the query based on the neighbor
of a neighbor is also likely to be a neighbor concept. In this
manner, the NSG could avoid unnecessary data checking to
reduce retrieval latency.

In summary, deep hashing followed by graph search can
perform low-latency and high-precision retrieval performance
compared to traditional solutions using brute-force search
or hash algorithms. Meanwhile, it also makes the retrieval
framework more compact and efficient because of the similar
compute patterns and data stream, so that they can fit into
compact and power-limited SSDs.

2.2 Near data processing & deep learning accelerator

For hardware-software co-design, there are two directions in
SSD research: open-channel SSD and near-data processing
(NDP). While open-channel SSD enables direct flash memory
access via system software [15, 42, 44, 59], near-data process-
ing (NDP) moves computation from the system’s main proces-
sors into memory or storage devices [16,18,25,46,50,51,56].

In NDP, Morpheus [52] provides a framework for moving
computation to the general-purpose embedded processors on
NVMe SSD. FAWN [13] uses low-power processors and flash
to handle data processing and focuses on a key-value storage
system. SmartSSD [34] introduces the Smart SSD model,
which pairs in-device processing with a powerful host system
capable of handling data-oriented tasks without modifying
the operating system. [53] supports fundamental database
operations including sort, scan, and list intersection by uti-
lizing Samsung SmartSSD. [23] investigates by simulation
the possibility of employing the embedded ARM processor
in SSDs to run SGDs, which is a key components of neural
network training. However, none of them can handle deep
learning processing due to the performance limit of the em-
bedded processor. Thereby, [22] presents intelligent solid-
state drives (iSSDs) that embed stream processors into the
flash memory controllers to handle linear regression and k-
means workloads. [43] integrates programmable logics into
SSDs to achieve energy-efficiency computation for web-scale
data analysis. Meanwhile, [32] also uses FPGAs to construct
BlueDBM that uses flash storage and in-store processing for
cost-effective analytics of large datasets, such as graph traver-
sal and string search. GraFBoost [33] focuses on the accelera-
tion of graph algorithms on an in-flash computing platform
instead of deep learning algorithms as this work.
Cognitive SSD Prior active disks are integrating either
general purpose processors incapable of handling high-
throughput data or specialized accelerators with only the sup-
port of simple functions like scanning and sorting. These
in-disk computation engines are unable to fulfill the require-
ment of high-throughput deep neural network (DNN) infer-
ence because computation-intensive DNNs generally rely on
power-consuming CPU or GPUs in the case of data analy-
sis and query tasks. To enable energy-efficient DNN, prior
work proposes a variety of energy-efficient deep learning
accelerators. For example, Diannao and C-Brain map large
DNNs onto a vectorized processing array and employ a data
tiling policy to exploit locality in neural parameters [20, 49].
Eyeriss applies the classic systolic array architecture to the
inference of CNN, and outperforms CPU and GPU in energy
efficiency dramatically [21]. However, these researches focus
on optimizing the internal structure of accelerator and relied
on large-capacity SRAM or DRAM instead of external non-
volatile memory. In contrast to these works and prior active
SSD designs, we propose Cognitive SSD, the first work that
enables the storage device to employ deep learning to conduct

USENIX Association 2019 USENIX Annual Technical Conference 397

Data Plane

Device Driver

Cognitive SSD
Runtime

DLG-x Accelerator
Deep Learning

Unit
NAND Flash Controller

U
se

r
S

p
ac

e
O

S
 k

er
n
el

C
o
g
n
it

iv
e

S
S

D

Cognitive SSD IO Path
Cognitive SSD Task Path
DLG-x Configure PathTask Plane

 I/O schedulerDLG task scheduler

 User Library

Graph Search
Engine

Host Server

 Basic Firmware

DLG_hashing

DLG_analysis

I/O interface

DLG-x Compiler

Caffe Users Application

NAND Flash Array

Instruction Parameter region

SSD_read
SSD_writeDLG_index

 Configuration Library

DLG Library

DLG configurator

DLG_config

Flash Translation Layer

Logical Block Mapping

Garbage

Collection

Bad Block

Management

 Basic Firmware

PHYECC Engine

NAND FLASH Controller
DRAM(meta data, cache)

NAND
FLASH

Request scheduler

Fig. 3. Overview of the Cognitive SSD system.
in-storage data query and analysis. It is designed to replace
the conventional data retrieval system and contains a flash-
accessing accelerator (DLG-x) for deep learning and graph
search. The DLG-x is deliberately reshaped to take advantage
of the large flash capacity and high internal bandwidth, and it
is also re-architected to enable graph search to target indexing.

3 Cognitive SSD System
Target Workload. As shown in Fig. 2, this work combines
the strengths of deep hashing and graph search technique
(DLG) to reduce the complexity of retrieval systems on the
premise of high accuracy, which makes it possible to offload
retrieval task from CPU/GPU into the resource-constraint
Cognitive SSD. Based on that, we build an end-to-end data
retrieval system that supports multimedia data retrieval such
as audio, video and text. For example, audio can be processed
by recurrent or convolutional neural network models on Cog-
nitive SSD to generate hash codes, which act as an index for
retrieving relevant audio data inside the SSD. In this paper,
image retrieval is used as a showcase. As shown in Fig. 3,
Cognitive SSD is designed to support the major components
in the framework of DLG, allowing developers to customize
and implement data retrieval solutions. Such a near-data re-
trieval system consists of two major components: the DLG
library running in lightweight server that manages user re-
quests, and the Cognitive SSD is plugged into the host server
via the PCIe interface. As shown in Table 1, as the interface
of Cognitive SSD system, the DLG library is established by
leveraging the Vendor Specific Commands in the I/O com-
mand set of the NVMe protocol. It contains a configuration
library and a user library. The configuration library enables
the administrator to choose and deploy different deep learning
models on the Cognitive SSD quickly according to applica-
tion demand. After the feature-extracting deep hashing model
has been deployed on the Cognitive SSD, a data processing
request arriving at the host server could send and establish a
query session to it by invoking the APIs provided by the user
library. Then, the runtime system on the embedded proces-
sor of the Cognitive SSD receives and parses the request to

activate the corresponding DLG-x module, which is associ-
ated with the user-created session. Next, we elaborate on the
software and hardware design details of Cognitive SSD.

3.1 The Cognitive SSD Software: DLG Library

3.1.1 Configuration Library
Update Deep Learning Models: Because the choice of deep
learning models significantly impacts the data retrieval sys-
tem performance, the system administrator must be able to
customize a specific deep hashing model according to the
complexity and volume of database, and the quality of service
measured by response latency or request throughput. Thereby,
the configuration library provides a DLG-x compiler compat-
ible with popular deep learning frameworks (i.e., Caffe) to
allow the administrator to train the new deep learning model
and generate corresponding DLG-x instructions offline. Then,
the administrator can update the learning model running on
the Cognitive SSD by updating the DLG-x instructions. The
updated instructions are sent to the instruction area allocated
in the NAND flash and stay there until a model change com-
mand (DLG_config in Fig. 3) is issued. Meanwhile, the DLG-
x compiler also reorganizes the data layout of the DLG algo-
rithm to fully utilize the internal flash bandwidth according
to the structures of neural network model and graph, before
the parameters of deep learning model and graphs are written
to the NAND flash. The physical address of weight and graph
structure information is recorded in the DLG-x instruction.
In this manner, the DLG-x obtains the physical address of
required data directly at runtime, instead of adopting the ad-
dress translation or look-up operations that incur additional
overhead. More details about the data reorganization scheme
are introduced in § 4.
3.1.2 User Library
Data Plane: The data plane provides SSD_read and
SSD_write APIs for users to control data transmission be-
tween the host server and the Cognitive SSD. These two
commands operate directly on the physical address bypassing
the flash translation layer. Users can invoke these APIs to
inject data sent from users to the data cache region or the
NAND flash on the Cognitive SSD based on the parameter of
data address and data size. Afterwards, users can use those
addresses to direct the operands in other APIs.
Task Plane: To improve the scalability of the DLG-x accel-
erator that supports deep hashing neural networks and graph
search algorithms, we abstract the function of the DLG-x into
three APIs in the task plane of user library: DLG_hashing,
DLG_index, and DLG_analysis. These APIs are established
using the C0h, C1h, and C2h commands of NVMe I/O proto-
col, respectively. All of them possess two basic parameters
carried by NVMe protocol DWords: the data address indicat-
ing the data location in Cognitive SSD, and the data size in
bytes.

First, the DLG_hashing API is designed to extract the con-
densed feature of input data and map it into the hash or seman-

398 2019 USENIX Annual Technical Conference USENIX Association

Table 1: DLG Library APIs for Cognitive SSD

- API NVMe command DWord10 DWord11 DWord12 Description
Configuration

Library - DLG_config 0xC3 address size Instruction/model Update instruction and model on DLG-x

User Library

Task
Plane

DLG_hashing 0xC0 data address data size Hashcode length Extract the hashing feature of input data
DLG_index 0xC1 data address data size T Fast database indexing

DLG_analysis 0xC2 data address data size User-defined Analysis of input data
Data
Plane

SSD_read 0xC4 data address data size – Physical Address Read
SSD_write 0xC5 data address data size – Physical Address Write

tic space, which is fundamental in a data retrieval system and
useful for other analysis functions like image classification or
categorization. This command contains an extended param-
eter: hashcode length, which determines the capacity of the
carried information. For example, compared to the database
with 500 objects types, the database with 1000 objects needs
a longer hash code to avoid information loss. Second, the
DLG_index API is abstracted from the graph search function
of the DLG-x. It also includes an extended parameters: T, rep-
resents the number of search results configured by users based
on the applications scenarios. Finally, the DLG_analysis API
allows users to analyze the input data using the data analysis
and processing ability of deep neural networks and it also
possesses a reserved field for user-defined functions. These
task APIs are the abstraction of the key near-data processing
kernels provided by Cognitive SSD, and they can be invoked
independently or combinedly to develop different in-SSD data
processing functions. For instance, users could combine the
DLG_hashing and DLG_index APIs to accomplish data re-
trieval on a large-scale database, where DLG_hashing maps
the features of query data to a hash code and DLG_index uses
it to search for the top-T similar instances.

3.1.3 Cognitive SSD Runtime The Cognitive SSD runtime
deployed on the embedded processor inside the Cognitive
SSD is responsible for managing the incoming extended I/O
command via PCIe interface. It also converts the API-related
commands into machine instructions for the DLG-x acceler-
ator, as well as handles basic operations for NAND flash. It
includes a request scheduler and the basic firmware. The re-
quest scheduler contains three modules: the DLG task sched-
uler, the I/O scheduler, and the DLG configurator. The DLG
configurator receives DLG_config commands from the host
and updates the instructions generated by the compiler and
parameters of the specified deep learning model for Cognitive
SSD. The DLG task scheduler responds to users requests as
supported in the task plane and initiates the corresponding
task session in Cognitive SSD. The I/O scheduler dispatches
I/O requests to the basic firmware or the DLG-x. The basic
firmware includes the flash translation layer, for logical block
mapping, garbage collection, bad block management func-
tions, and communicates with the NAND flash controller for
general I/O requests.

Note that the DLG-x accelerator occupies a noticeable por-
tion of the flash bandwidth once activated, which perhaps
degrades the performance of normal I/O requests. To alleviate

this problem, instead of letting the task or I/O scheduler wait
until the request is completed (denoted as Method A), the DLG
task scheduler receives the NVMe command sent from host
with doorbell mechanism and actively polls the completion
status of the DLG-x periodically (denoted as Method B) to de-
cide if the next request is dispatchable. We tested the normal
read/write bandwidth of Cognitive SSD prototype described
in § 5.1 with the Flexible IO Tester (fio) benchmark [4], under
the worst-case influence where the DLG-x accelerator opera-
tions occupied all the Cognitive SSD channels. Experiments
(Table 2) demonstrate that adopting Method B only causes a
drop of 27%-44% in the normal I/O bandwidth whilst using
Method A decreases almost 91% of the read/write bandwidth
averagely when the DLG-x accelerator is busy dealing with
the over-committed retrieval tasks.

Table 2: The I/O Bandwidth of Cognitive SSD.

- I/O Bandwidth (MB/s) (I/O size = 128KB)

- Write Random
Write Read Random

Read
Method-A 79.79 76.19 72.30 81.13
Method-B 524.86 421.23 654.31 698.98

Peak-Bandwidth 886.58 761.90 903.79 901.41

3.2 Hardware Architecture: Cognitive SSD

Fig. 3 depicts the hardware architecture of Cognitive SSD.
It is composed of an embedded processor running the Cog-
nitive SSD runtime, a DLG-x accelerator and NAND flash
controllers connected to flash chips. Each NAND flash con-
troller connects one channel of NAND flash module and uses
an ECC engine for error correction. When the devices in each
channel operate in lock-step and are accessed in parallel, the
internal bandwidth surpasses the I/O interface. More impor-
tantly, though SSDs often have compact DRAM to cache data
or metadata, the internal DRAM capacity can hardly satisfy
the demand of the deep learning, which is notorious for its
numerous neural network parameters. Worse still, the basic
firmware like FTL and other components also occupy major
memory resources. Therefore, the NAND flash controller is
exposed to the DLG-x accelerator, which enables the DLG-
x to read and write the related working data directly from
NAND flash, bypassing the internal DRAM.

3.3 The Procedure of data retrieval in Cognitive SSD

Fig. 3 also depicts the overall process of Cognitive SSD when
users perform unstructured data retrieval task. First, assume
that the hardware instruction and parameters of Hash-AlexNet

USENIX Association 2019 USENIX Annual Technical Conference 399

Neural Processing Engine

Control Unit

Instruction
Queue

Data path
Control path

Channel 0

Weight

Buffer 0

Vertex
Detector

Unit

Graph Search EngineCounter

Vertex
Arbitrator

Unit

Buffer
Address

Generator

InOut

Buffer-0

others

B1

B

B2 B

B

0

11

Processing Element (PE)

PE

Pooling ActivationConvolution

PE PE PE PE PEWeight

Buffer 1
InOut

Buffer-1
Channel 1

Channel 7

Flash
Controller

Flash
Controller

Flash
Controller

FLASH

FLASH

FLASH

Fig. 4. The Architecture of DLG-x accelerator.

model have been generated and written to the corresponding
region by leveraging the DLG-x compiler and the DLG_config
command shown in Fig. 3. The Hash-AlexNet is the developer
designated neural network for feature extraction of input data.
Then, when the host DLG library captures a retrieval request,
it packages and writes the user input data from the designated
host memory space to Cognitive SSD through the SSD_write
API. Meanwhile, the DLG_hashing command carrying the
address of input data is sent to Cognitive SSD for hash code
generation. Receiving the command, the request scheduler
of the cognitive runtime parses it and notifies the DLG-x ac-
celerator to start a hashing feature extraction session. Then,
the DLG-x automatically fetches input query data from the
command-specified data address and then loads deep learning
parameters from NAND flash. Meanwhile, the other com-
mand, DLG_index, is sent and queued by the task scheduler.
After the hash code is produced, the DLG_index is dispatched
to invoke the graph search function in the DLG-x and uses the
hash result to search the data graphs for relevant data entries.
In this case, the DLG-x keeps fetching graph data from the
NAND flash and sends the final retrieval results to the host
memory once the task is finished.

4 DLG-x Accelerator

4.1 Architecture: Direct Flash Accessing

In contrast to a traditional hardware accelerator [20], the DLG-
x accelerator is designed to directly obtain the majority of
the working-set data from NAND flash. Fig. 4 illustrates the
high-level diagram. The DLG-x accelerator has two activa-
tion buffers (InOut Buffer) and double-banked weight buffers.
The intermediate results of each neural network layers are
temporarily stored in the activation buffers, while the weight
buffers act as a bridge buffer between the Neural Processing
Engine (NPE) and the flash, which stream out the large quan-
tity of neural parameters to the NPE. The NPE comprises a set
of processing engines (PEs), which can perform fixed-point
convolutions, pooling, and activation function operations. The
Graph Search Engine (GSE) cooperates with the NPE and is
responsible for graph search with the hash code generated by
NPE. Both the NPE and GSE are managed by the control unit
that fetches instructions from memory. Considering the I/O
operation granularity of NAND flash, we reorganize the data
layout of neural networks including both the static parameters
and the intermediate feature data, to exploit the high internal
flash bandwidth.

4.2 I/O Path in Cognitive SSD

Bandwidth Analysis: At first, we analyze and prove that the
internal bandwidth of NAND flash can satisfy the demand
of deep neural network running on the DLG-x accelerator.
Assuming that the DLG-x and flash controller runs on the
same frequency and the NPE unit of the DLG-x comprises
NPE PEs. The single channel bandwidth of NAND flash is
BWf lash. Thereby, the bandwidth of M channels equals to:

BW m
f lash = M×BWf lash (1)

Suppose that a convolution layer convolves a Ic× Ih× Iw input
feature map (IF) with a Kc × Kh × Kw convolution kernel
to produce a Oc ×Oh ×Ow output feature map (OF). The
subscript c, h, and w correspond to the channel, height, and
width respectively. The input/weight data uses an 8-bit fixed-
point representation. It is easy to derive that the computation
latency Lcompute and the data access latency Ldata from NAND
flash to produce one channel of feature map are:

Lcompute =
OPcompute

OPPE
=

2×Kc ×Kh ×Kw ×Oh ×Ow

2×NPE
(2)

Ldata =
Sparam

BW m
f lash

=
Kc ×Kh ×Kw

BW m
f lash

(3)

Where the OPcompute and Sparam is the operation number and
the parameters volume of a convolutional layer. OPPE gauges
the performance of the DLG-x measured in operations/cycle.
To avoid NPE stalls,we must have Lcompute >= Ldata, and Ow
is usually equal to Oh, so we have

Ow >=
√

NPE/BW m
f lash (4)

The above equation indicates that if only the width and
height of the output feature map is larger than or equal
to the right side of formula 4, which is four in our proto-
type with NPE = 256 and BW m

f lash = 16bytes/cycle, the NPE
will not stall. For example, in the Hash-AlexNet mentioned
in § 2.1, the minimum width of the output feature map in
convolution layers is 7, which already satisfies in inequal-
ity 4 design. However, in the FC layers, Lcompute is smaller
than Ldata, so the data transfer time becomes the bottleneck.
Thereby, the DLG-x accelerator only uses a column of PEs
to deal with a FC layer because our prototype hardware de-
sign only supports eight channels, which does not meet in-
equality 4 with M = 128 and consequently causes PE under-
utilization. Besides, the parameter-induced flash reads will be
minimized if the size of the weight buffer meets the condition:
Sbu f f er >= Max(Kc ×Kh ×Kw). The parameters exceeding
the size of weight buffer will be repetitively fetched from the
flash. To further improve the performance, we utilize ping-
pong weight buffers to overlap the data loading latency with
computation.
Data Layout in flash devices: Owing to the bandwidth anal-
ysis on the base of multi-channels data transmission, we pro-
pose flash-aware data layout to fully exploit flash bandwidth
with the advanced NAND flash command-read page cache

400 2019 USENIX Annual Technical Conference USENIX Association

1

2

3

N

Page 0
S /M

Channel 0Convolution
Kernel

DIE 0

DIE 1

DIE 2

DIE N

Plane 0

Plane N
Block 0

Block N

Channel M-1

DIE 0

DIE 1

DIE 2

DIE N

Cache
Register

Page
Register

Page N

NFC NFC

NFC Output

k

k

Page N

v

u

Channel 0
kSKernel Size

NAND FLASH
Controller

S /Mk

Fig. 5. The Data Layout in NAND flash.

command [11]. The read page cache sequential command
provided by NAND flash manufacturer can continuously load
the next page within a block into the data register (·) while
the previous page is being read to the buffer of the DLG-x or
the cache region of the SSD from the cache register(¶). Thus,
based on the NAND flash architecture with the provided page
cache command, we choose to split the convolution kernels
and store them into flash devices for parallel fetch. As shown
in Fig. 5, assuming there are Nk convolution kernels with
Sk kernel size, and M NAND flash channels are used by the
DLG-x accelerator, each convolution kernel is divided into
SK/M sub-blocks and all such sub-blocks are interleaved to
the flash channels. The convolution kernels exceeding the
size of a page are placed into continuous address space in the
NAND flash because the cache command reads out the next
page automatically without any extra address or operation.
Data Flow: Taking the Hash-AlexNet as an example, when a
request arrives at the DLG-x accelerator, the input data and
the first kernel of the first convolution layer is transferred in
parallel to the InOut buffer-0 and the weight buffer-0. After
that, the DLG-x accelerator begins to compute the output
feature map and stores them into the InOut buffer-1. When
the first kernel is processed, the second kernel is being trans-
ferred from the NAND flash to weight buffer-1, then followed
by the third and fourth kernel in sequence. Once the hash
code is generated, it is sent to the graph search registers of
NPE to locate the data structures similar to the query data if
the DLG task scheduler decodes and dispatches a following
DLG_index command.

4.3 Fusing Deep Learning and Graph Search

For fast and accurate database indexing, the DLG-x accelera-
tor fuses the deep learning and graph search mechanism into
unified hardware, and reuses the computation and memory re-
sources for higher efficiency. Once the hash code of the query
data has been generated, the DLG-x uses it to initially index
the corresponding data graphs and searches for the closest
data entries from graphs.

The graph search method originates from Navigating
Spreading-out Graph [27] (NSG), which well fits the lim-
ited memory space of the Cognitive SSD for the large-scale
multimedia data retrieval. The NSG algorithm includes an
offline stage and an online stage. In the offline phase, the

NSG method constructs a directed Knbors −NN graph for the
storage data structures to be retrieved. In a graph, a vertex
represents a data entry by keeping its ID and hash code. The
unique ID represents a file and the hash code is the feature
vector of this file, which could be obtained by invoking the
DLG_hashing API in advance. The bit-width of ID (Wid) and
hash code (Whash_code) are user-configurable parameters in the
API. In a graph, a vertex may be connected to many vertices,
which have different distances from each other. However, only
the top-Knbors closest vertices of a vertex could be defined as
its "neighbors", where Knbors is also a reconfigurable parame-
ter and enables users to pursue the trade-off between accuracy
and retrieval speed. The DLG-x accelerator only accelerates
the online retrieval stage and the database update occurs of-
fline because the latter task is infrequent. The database update
consists of hash code extraction stage and Knbors −NN graph
construction stage, where the former is accelerated by the
DLG-x accelerator and the latter is completed with the DLG
library on CPUs. At offline graph construction, it takes about
10∼100 seconds to update the Knbors −NN graph on million-
scale data on a server CPU. The hardware architecture for
online graph search is presented in Fig. 4.

The graph search function of the DLG-x starts from evalu-
ating the distance of random initial vertices in the graph and
walks the whole graph from vertex to vertex in the neighbor-
hood to find the closest results. As shown in Fig. 4, to max-
imize the utilization of on-chip memory, the weight buffer
and InOut buffer are reused to store the neighbors of vertices
and the search results of the graph search engine respectively.
Since the Hamming distance (H-distance) is an integer value,
the InOut buffer is divided into blocks according to the range
of H-distance. For instance, the first block of the InOut buffer
B0 only stores the vertices with zero Hamming distance away
from the query vertex, and the second block B1 corresponds
to the distance of one hop. The last area Bothers stores the ver-
tices with Hamming distance larger than the final value Vf inal ,
where the Vf inal is a re-definable parameter and calculated
with formula 5.

Vf inal =

⌊
Sbu f f er

Dblock ×Wid
−1
⌋

(5)

In the above equation, Sbu f f er is the on-chip buffer size of
the DLG-x accelerator and Dblock represents the number of
vertex IDs that can be stored in each block. Wid is usually
equal to 32bits. For instance, in our design, with Sbu f f er =
256KB and Dblock = 5000, it is easy to have Vf inal = 12. Note
that the limited size of the region Bothers cannot hold all the
distant data vertices generated at runtime, and thus Bothers
is configured to a ring buffer to accommodate the incoming
vertices cyclically.

A Vertex Detector Unit (VDU) is inserted to check whether
the selected vertex has been evaluated. In VDU, the vertex
will be discarded once found to have been walked before,
otherwise it will be sent to the NPE unit to compute the
Hamming distance from the query vertex. With the distance

USENIX Association 2019 USENIX Annual Technical Conference 401

provided by the NPE, the Buffer Address Generator (BAG)
module allocates memory space in the InOut buffer for the
vertex and then puts the vertex into the assigned areas of the
InOut buffer. The unevaluated vertices will be fetched from
the InOut buffer and the neighbors of these vertices are loaded
from the weight buffer by the control unit. Meanwhile, the
control unit will finally return the top-T closest vertices when
the number of vertex in the InOut buffer reaches the threshold
configured by users, where T is also configured by users via
the DLG_index API.

Vertex 1
Vertex 1

Vertex 25

ID

1

1

Hash code
32bit 48bit

Vertex 2
Vertex 1

Vertex 25

2

2

Vertex 25
Vertex 1

Vertex 25

25

25

0

25

1

1
1

25

2

1

125

2

25
25

2 251

V0
V1

V25

Vertex the neighbors of vertex

(a) Graph (b) Data Layout

Page 0

Page N

Block 0

Block N

Plane

3 ...

Fig. 6. The data organization on one page.
Data Layout for fast In-SSD NSG search: NAND flash
read operations are performed at a page granularity (16KB),
so that every time the DLG-x accesses the neighborhoods
of one vertex (250bytes), it must read one whole page from
flash, which perhaps causes low bandwidth utilization if lo-
cality is not well preserved. In our design that Knbors = 25,
Wid = 32bits and Whash_code = 48bits. Inspired by the intu-
ition that the neighbor of a neighbor is also likely to be a
neighbor of the query data in the graph, we can infer that
the neighbors of the accessed vertex will be used soon due
to the spatial locality. Therefore, as shown in Fig. 6, V0 and
all its neighbors (V1,V2, ...,V25), are continuously aligned and
stored from the beginning of a page. As a result, such a lay-
out with redundancy is able to reduce flash access by 37x
compared to a non-optimized graph layout. However, such
a layout cause duplicates of vertices in storage and sacrifice
additional storage space for better data access performance,
which is worthwhile regarding the large capacity of SSDs.

Besides data layout transformation, the bit-width of the
hash code is also worth elaborating. Due to the limited page
size Spage, Whash_code and Knbors must conform to the resource
constraint given by:

K2
nbors × (Whash_code +Wid)< Spage (6)

Generally Spage = 16KB, and Wid is 32-bit wide and can rep-
resent 232 files. Because the parameters Whash_code and Knbors
directly impact the deep hashing performance by influenc-
ing the indexing accuracy and also the memory bandwidth
consumption during graph search, once Spage is determined,
Whash_code and Knbors must be adjusted to reach a perfect bal-
ance between accuracy and retrieval time at the offline stage.
Thus, the DLG-x must support different parameter formats in
order to achieve best-effort computing efficiency for databases
of different volume and complexity.

Note that our graph layout and the according searching
strategy are adapted to the underlying hardware for higher
energy efficiency, and they will lead to a marginal amount

Table 3: The accuracy loss.

Dataset
Accuracy(%) at T samples

200 400 600 800 1000

CIFAR-10
Original 86.65 86.58 86.56 86.51 86.54

Our 85.49 85.02 84.75 84.47 84.28
Loss 1.16 1.56 1.81 2.04 2.26

ImageNet
Original 33.78 33.77 33.48 32.89 31.83

Our 30.66 29.79 29.13 28.43 27.47
Loss 3.12 3.98 4.35 4.45 4.36

of query accuracy losses compared to the original algorithm.
Table 3 indicates the accuracy loss compared with the original
lossless DLG algorithm (denoted as Original) on the CIFAR-
10 [9] and ImageNet [45] datasets. The result shows that when
T=1000, the accuracy drops by 2.26% and 4.36%, as a side-
effect of the ∼ 37x performance boost. Fortunately, the DLG
library APIs are flexible enough to allow the developers to
trade-off between accuracy and performance by manipulating
the API arguments.
Data Flow: we show an example to brief the overall flow of
the DLG-x based data retrieval. Firstly, when a query comes,
the DLG-x fetches the input data and parameters of the deep
learning model from the NAND flash into the InOut buffer
and the weight buffer of the DLG-x respectively. Then, the
NPE unit generates the hash code for the input data and writes
it to the graph search registers of the NPE unit. After that,
the DLG-x transfers the Knbors −NN graph from the NAND
flash array to the weight buffer. At the first stage, the initial
vertices are calculated and sent into the corresponding areas
of the InOut buffer. At the second stage, the DLG-x control
unit reads the first unevaluated vertex from the InOut buffer
in ascending order of Hamming distance. Then, the graph
search engine obtains the neighbors of the unevaluated vertex
from the NAND flash and transfers the neighbors to NPE
to generate their Hamming distances from the query vertex
as well. Next, the Buffer Address Generator unit generates
the write addresses for these neighbor vertices in the InOut
buffers according to the calculated Hamming distance and
writes these vertices to the InOut buffers. Meanwhile, the
counter in the graph search engine determines whether the
termination signal should be issued by monitoring the total
number of vertices stored in the InOut buffer. Once the termi-
nation signal is generated, the Cognitive SSD runtime reads
out the vertices from the InOut buffer and then transfers the
ID-directed results stored in NAND flash to the host server
via the PCIe interface.

Zynq-7000

DRAM

PCIe

Interface

NAND

FLASH

NAND

FLASH

Fig. 7. Cognitive SSD prototype.

402 2019 USENIX Annual Technical Conference USENIX Association

5 Evaluation
5.1 Hardware Implementation

To explore the advantages of the Cognitive SSD system, we
implemented it on the Cosmos plus OpenSSD platform [7].
The Cosmos plus OpenSSD platform consists of an XC7Z045
FPGA chip, 1GB DRAM, an 8-way NAND flash interface,
an Ethernet interface, and a PCIe Gen2 8-lane interface. A
DLG-x accelerator is designed with DeepBurning [55] and
integrated to the modified NAND flash controllers, and they
are all implemented on the programmable logic of XC7Z045.
The Cognitive SSD runs its firmware on a Dual 1GHz ARM
Cortex-A9 core of XC7Z045. The Cognitive SSD is plugged
into the host server via a PCIe link. The host server manages
the high-level requests and maintains the DLG library for API
calls. Fig. 7 shows the Cognitive SSD prototype constructed
for this work.

5.2 Experimental Setup

We first selected the content-based image retrieval system
(CBIR) based on deep hashing and graph search (DLG) al-
gorithm as workload and evaluated the performance of DLG
solution compared to other conventional solution (§5.3). we
evaluated the DLG-x of the Cognitive SSD prototype in §5.4,
and deployed the Cognitive SSD prototype to a single node
and multi-node system, and evaluated them in §5.5, and §5.6,
respectively. Except for the Cognitive SSD prototype, our
experimental setup also consists of a baseline server running
Ubuntu 14.04 with two Intel Xeon E5-2630 CPU@2.20GHz,
32GB DRAM memory, four 1TB PCIe SSDs and an NVIDIA
GTX 1080Ti. Meanwhile, we implemented the CBIR system
in C++ on the baseline server, where the deep hashing is built
on top of Caffe [31]. Based on this platform, we constructed
four solutions baselines: B-CPU, B-GPU, B-FPGA, and B-
DLG-x. For B-CPU, the DLG algorithm runs on the CPU.
For B-GPU, the deep hashing runs on the GPU and graph
search runs on the CPU. For B-FPGA, we use ZC706 FPGA
board [12] to replace Cognitive SSD, and the deep hashing
runs on ZC706 FPGA board and graph search runs on the
CPU. B-DLG-x implements the DLG algorithm on ZC706
FPGA board without any near-data processing technique com-
pared to Cognitive SSD.

5.3 Evaluation of DLG algorithm

Experimental Setup. We used the precision at top T re-
turned samples (Precision@T), measuring the proportion-
ality of corrected retrieved data entries, to verify the perfor-
mance of our deep hashing method on different models and
datasets [36]. The performance is contrasted with traditional
hash methods with 512-dimensional GIST feature, including
Locality-Sensitive Hashing (LSH) [54] and Iterative Quanti-
zation (ITQ) [28]. The used datasets are listed in Table 4.
Evaluation. Fig. 8(a)-(d) shows the Precision@T on different
datasets with different deep hashing models. Due to the poor

Table 4: Datasets used in our experiments

Dataset Total Train/Validate Labels
CIFAR-10 [9] 60000 50000/10000 10

Caltech256 [29] 29780 26790/2990 256
SUN397 [57] 108754 98049/10705 397
ImageNet [45] 1331167 1281167/50000 1000

(a) CIFAR-10 (b) Caltech-256

(c) SUN397 (d) ImageNet

AlexNet(48) ITQ LSH VGG-16(48) ITQ LSH

ResNet-18(48) ITQ LSH
ResNet-50(64) ResNet-50(48)
ITQ LSH A+ITQ AC+ITQ

200 400 800 100030000.0

0.5

1.0

T

P
re

c
is

io
n

10 30 50 100 200 500
0.0

0.3

0.6

T

P
re

c
is

io
n

50 100 200 500 1000
0.0

0.3

0.6

T

P
re

c
is

io
n

200 400 600 800 1000
0.0

0.3

0.6

T

P
re

c
is

io
n

hash code
length

Fig. 8. Precision curves w.r.t top-T.
performance of LSH and ITQ [28] methods on ImageNet,
we added the AlexNet-ITQ (A+ITQ) and AlexNet-CCA-ITQ
(AC+ITQ) methods [58] that uses the output of the FC layer
on Alexnet as the feature vector for search. Our DLG solu-
tion performs better than the other approaches on different
datasets with different scales regardless of the choice of T
value, especially compared to the conventional hash method.
It also shows the robustness of the DLG solution when deploy-
ing on a real-world system. Meanwhile, Fig. 8(d) shows the
performance of our approach is significantly improved when
the code length increases to 64 bits. Thereby, the DLG-x ac-
celerator is configured to support different hash code length to
achieve the trade-off between retrieval accuracy and latency.

5.4 Evaluation of DLG-x

Experimental Setup. We implemented the deep hashing and
graph search algorithm (DLG) on the DLG-x accelerator of
Cognitive SSD and compared the latency and power of the
DLG-x to the solutions based on CPU and GPU, where we
ignore the FPGA baseline because its computational units are
the same as the DLG-x. Firstly, we only compared the latency
and power of the deep hashing unit on the DLG-x running
various deep hashing models to CPU and GPU, where GPU
only reports the total power consumed by NVIDIA GTX
1080Ti without the power of the CPU. Secondly, we only
evaluated the latency of graph search function on the DLG-
x with respect to different number (T) of top retrieved data
entries on the CIFAR-10 and ImageNet dataset.
Performance. Firstly, Table 5 shows the latency of the DLG-
x on various deep hashing schemes outperforms the solution
based on CPU. While the latency of the DLG-x is higher
than GPU because of the hardware resource and frequency
limitation, it consumes less power compared to GPU. More
importantly, the latency of the CPU and GPU on Table 5 only
contains the computation delay of neural network without
the delay of parameters transmission between storage and

USENIX Association 2019 USENIX Annual Technical Conference 403

Table 5: Deep hashing performance on different platforms.

Model - Latency (ms) Power (Watt)

Hash-AlexNet
DLG-x 38 9.1
CPU 114 186
GPU 1.83 164

Hash-ResNet-18
DLG-x 94 9.4
CPU 121 185
GPU 7.13 112

Brute-Force-Sort

Graph Search-CPU

DLG-x Brute-Force-Sort/DLG-x
Graph Search-CPU/DLG-x

(a) Latency on CIFAR-10 (b) Speedup on CIFAR-10

(c) Latency on ImageNet (d) Speedup on ImageNet

200 400 600 800 1000100
102
104
106

L
a
te

n
c
y
(u

s
)

200 400 600 800 1000
0

50

100

150

S
p

e
e
d

u
p

111.51 90.22

37.12 36.73

200 400 600 800 1000100
102
104
106

L
a
te

n
c
y
(u

s
)

200 400 600 800 1000
100

102

104

S
p

e
e
d

u
p

5334.4 498.5

12.5
3.4

of Top Retrieval # of Top Retrieval

of Top Retrieval # of Top Retrieval

Fig. 9. Graph search performance of the DLG-x.

memory. When considering the delay of parameters transmis-
sion between storage and memory, the deep hashing occupies
about 87.7% and 73.9% of the total processing time on the
DLG-x accelerator and CPU baseline, on average, respectively.
And the GPU only accounts for 3.5% of the total runtime on
average because the high-speed data processing capability of
GPU makes the data transmission becomes the bottleneck of
system. Besides, the latency of deep hashing on the GPU oc-
cupies 54.17∼26.06% without considering the delay of data
movement because the latency of graph search increases with
the increase of T value.

Secondly, in this experiment, we utilized the Hash-AlexNet
model to generate the hash code database for the construc-
tion of a Knbors −NN graph on the CIFAR-10 and ImageNet
dataset. We compared the retrieval speed of the DLG-x accel-
erator with two counterparts: the brute-force search method
that evaluates all the hash codes stored in the database, and the
CPU executed graph search algorithm. The result is depicted
in Fig. 9. For the CIFAR-10 dataset, the DLG-x accelerator is
111.51-90.22x and 37.12-36.73x faster than the brute-force
method and the CPU-run graph search algorithms respectively,
while for the ImageNet dataset it achieves a 5334.4-498.5x
and 12.5-3.4x speed up over the latter two baselines. As in-
troduced in § 4.3, the retrieval accuracy is only degraded
by 2.26% and 4.36% when T = 1000 on the CIFAR-10 and
ImageNet datasets, respectively.
Power Consumption. We measured and compared the power
consumption of Cognitive SSD system with four baselines:
B-CPU, B-GPU, B-FPGA, and B-DLG-x by using a power
meter under two different situations: (1) IDLE: No retrieval re-
quests need to respond, and (2) ACTIVE: A user continuously
accesses the Cognitive SSD system. The result is illustrated
in Table 6. When the Cognitive SSD+CPU system is IDLE,
its power consumption is slightly higher than B-CPU and
B-GPU because the Cognitive SSD prototype board IDLE

Table 6: Power consumption.

Power
(Watt)

Cognitive
SSD

Cognitive
SSD+CPU

B-
DLG-x

B-
FPGA

B-
CPU

B-
GPU

IDLE 17 98.5 89 89 80 90
ACTIVE 20 122 185.7 195.6 186 330

Table 7: The hardware utilization of Cognitive SSD.

Module # LUT FF BRAM DSP
Flash Controller 8 11031 7539 21 0
NVMe Interface 1 8586 11455 28 0

DLG-x Accelerator 1 67774 18144 137 197
In Total 1 203099 145078 354 197
Percent(%) - 92.91 33.18 64.95 21.8

power is higher than that of the PCIe SSD and GPU. For
active power, when delivering comparable data retrieval per-
formance, the Cognitive SSD system reduces the total power
consumption by up to 34.4% and 63.0% compared with B-
CPU and B-GPU. Simply replacing the GPU with the FPGA
board reduces power consumption by 40.7%. Furthermore,
putting the DLG-x on an identical FPGA board without the
NDP decrease power consumption by 43.72%, which is at-
tributed to the efficiency of hardware specialization. Placing
the DLG-x into the Cognitive SSD system further eliminates
power consumption by another 19.3%, which is the benefit of
near-data processing. In the case of the Cognitive SSD+CPU
solution, the power of CPU is low because it is only responsi-
ble for instruction dispatch without any data transfer between
storage and CPU. In other cases, the CPU is not only in charge
of data transfer management but also for instruction dispatch
or executing the graph search algorithm.
FPGA Resource Utilization. The placement and routing
were completed with Vivado 2016.2 [8]. Table 7 shows the
hardware utilization of Cognitive SSD. It only reports the
resources overhead of the flash controller, NVMe controller,
and the DLG-x accelerator module. The item of In Total
counts in all FPGA resources spent by the Cognitive SSD.

Fig. 10. A CBIR system based on Cognitive SSD.

5.5 The Single-node System Based on Cognitive SSD

Experimental Setup. We implemented the CBIR system by
using the ImageNet dataset on the Cognitive SSD with a base-
line server, where the baseline server is only responsible for
receiving and sending retrieval requests to Cognitive SSD.
The deep hashing architecture is a Hash-AlexNet network
and the hash code length is 48 bits. As shown in Fig. 10, we
built a web-accessible CBIR system based on web framework
CROW [30] to evaluate the latency and query per second
(QPS) of the system by simulating the user requests sent to

404 2019 USENIX Annual Technical Conference USENIX Association

100 200 400 600 800 10000

100

200
B-CPU B-GPU B-FPGA B-DLG-x Cognitive SSD

100 200 400 600 800 1000
0.0

0.1

0.2

of Top Images Retrieved (T)

Q
P

S
/W

a
tt

L
a
te

n
c
y
 (

m
s
)

(a) Latency

(b) QPS/Watt

Fig. 11. System performance.
the URL address via ApacheBench (ab) [1]. The latency mea-
surement indicates the time between issuing a request and the
arrival of the result. The QPS is a scalability measuring metric
characterizing the throughput of the system. The latency and
QPS are affected by the software algorithm and the hardware
performance of the system. Meanwhile, we utilized the metric
of QPS per watt (QPS/Watt) to evaluate the energy-efficiency
of the system.
Evaluation. We evaluated the performance of the Cognitive
SSD system and four baselines under the assumption that data
(weight/graph) cannot be accommodated in DRAM and must
travel across the SSD cache, I/O interface, and DRAM before
reaching a compute unit. The performance of the Cognitive
SSD system and four baselines are shown in Fig. 11. With
the increased number of top images retrieved, the retrieval
time spent on the DLG-x accelerator will rise. It leads to
increased retrieval latency and decreased QPS for the Cog-
nitive SSD. Meanwhile, we also observe the 95% requests
complete in time in experiments when write operations and
garbage collection are inactive on the Cognitive SSD. Note
that write operations and garbage collection are rare for the
Cognitive SSD compared to read operations and usually oc-
cur offline. The workloads on the Cognitive SSD are read-
only, which sustains the latency of the Cognitive SSD at a
steady level with little fluctuation. Besides, in comparison
to the B-CPU, the Cognitive SSD reduces latency by 69.9%
on average. The performance improvement stems from the
high-speed of data processing on the DLG-x accelerator com-
pared to B-CPU. Due to the overhead of data movement
caused by the bandwidth limitation of the I/O interface and
onboard memory, the latency of B-FPGA and B-DLG-x is
higher than B-GPU. Compared to the B-FPGA and B-DLG-x
baselines, the Cognitive SSD reduces latency by 63.79% and
63.02% on average, which benefits from near-data processing.
The average retrieval speed of B-GPU is 1.11x faster than
Cognitive SSD because the execution of deep hashing costs
more time on the resource-limited DLG-x compared to power-
ful GPUs. However, Cognitive SSD is more energy-efficient
(QPS/Watt) than a GPU-integrated system by 2.44x, which is
shown in Fig. 11(b). More importantly, the Cognitive SSD is
implemented with FPGA and the operating frequency is only
100MHz. The performance will be better if the Cognitive SSD

Ethernet

Worker

Server

Nginx Server

Worker

Server

Worker

Server

PCIe

Worker Server

PCIe PCIe

Ethernet

Nginx Server

Worker ServerCognitive

SSD

(a) Conventional Multi-node Cluster
(CMC)

(b) Host-Free Cluster
(HFC)

Fig. 12. The architecture of the conventional multi-node clus-
ter(CMC)(a) and host-free cluster(HFC)(b).

is implemented with ASIC or escalated operating frequency.

5.6 The Cluster of Connected Cognitive SSDs

Experimental Setup. We evaluated the performance and the
scalability of the Cognitive SSD when it scales into a multi-
node cluster system. Fig. 12(a) shows the architecture of a
conventional low-cost small-scale cluster system in a data
warehouse. The cluster system consists of 10 worker servers
and 1 Nginx [5] server. The Nginx server is responsible for
load balancing. The worker nodes connect to the Nginx server
by using TCP connections. In this case, we constructed four
cluster system baselines by extending above four baselines:
BC-CPU, BC-GPU, BC-FPGA, and BC-DLG-x. We issued
requests to measure the QPS and the latency per request of
the Cognitive SSD based cluster system when multiple users
are accessing the web service shown in Fig. 10 concurrently
via the ab tool.
Evaluation. Fig. 13(a) illustrates that when concurrent users
equal to 400, all evaluated schemes rise slowly in experi-
ments, which is limited by the thread of worker server and the
node number of clusters. Meanwhile, the variation of peak
QPS is due to the change of the performance bottleneck in
different solutions. For example, the saturation performance
of BC-GPU and CMC is constrained by the thread of the
server while that of BC-CPU, BC-FPGA, and BC-DLG-x is
determined by the latency of deep hashing inference and data
movement. Fig. 13(b) shows that the QPS and latency per re-
quest of four baselines and CMC also change with the scale of
the node cluster when the number of concurrent users reaches
400. As the number of nodes increases, the QPS gradually in-
creases to the peak value, and the latency gradually decreases
owing to improvement of service parallelism. When the nodes
increase, the load-balancing mechanism of Nginx prevents a
large hotspot formation in the cluster, which greatly increases
the waiting time of requests.

We also measured the power consumption of the CMC
system while running the CBIR service and compared it to
BC-CPU, BC-GPU, BC-FPGA, and BC-DLG-x. When the
cluster system is active, as shown in Fig. 14, the power con-
sumption of a single node in the BC-CPU and BC-GPU are
respectively 1.52x and 2.70x higher than a single node in the
CMC. Similarly, Fig. 15 indicates the power of BC-CPU and
BC-GPU is 1.45x and 2.46x than that of a CMC. Meanwhile,
we also compared the QPS/Watt of CMC with other four base-
line in Fig. 13(c). The energy-efficiency (QPS/Watt) of CMC

USENIX Association 2019 USENIX Annual Technical Conference 405

(a) QPS w.r.t Concurrency (b) QPS&Latency under different nodes (c) QPS/Watt w.r.t Concurrency

QPS:
Latency:

1 10 20 40 60 80 10
0

20
0

30
0

40
0

50
0

0

1000

2000

3000

Concurrency

Q
P

S
BC-CPU

BC-GPU

BC-FPGA

BC-DLG-x

CMC

HFC

1 2 4 6 8 10
0

1000

2000

3000

0

500

1000

1500

2000

2500

Node

Q
P

S
L

a
te

n
c

y
(m

s
)

BC-CPU BC-GPU BC-FPGA BC-DLG-x CMC HFC

BC-CPU BC-GPU BC-FPGA BC-DLG-x CMC HFC

1 10 20 40 60 80 10
0

20
0

30
0

40
0

50
0

0.0

0.5

1.0

1.5

2.0

Concurrency

Q
P

S
/W

a
tt

Fig. 13. Performance comparison.

BC-
CPU

BC-
GPU

BC-
FPGA

BC-
DLG-x

CMC HFC
0

200

400

P
o

w
e
r

(W
a
tt

s
)

Cognitive SSDIDLE ACTIVE

17.3%
16.4%

Fig. 14. Power dissipation of a single node.
is higher than the other four baselines because of short data
movement path and the energy-efficient DLG-x accelerator.
When the cluster system is IDLE, the power consumption is
slightly higher than BC-CPU and BC-GPU because of the
power consumption of the Cognitive SSD prototype is higher
than the enterprise SSD.

It is noted that Fig. 15 indicates the power consumption of
the Cognitive SSD only occupies about 15.93% (IDLE) and
14.08% (ACTIVE) of the entire system in the CMC archi-
tecture. The Cognitive SSD contains one Dual 1GHz ARM
Cortex-A9 core, which could run embedded Linux system
and has lower power consumption compared with the Intel
Xeon CPU. Thereby, as shown in Fig. 12(b), to further re-
duce power consumption, we proposed the architecture of the
host-free cluster (HFC) system, where the Cognitive SSD is
directly connected to the Ngnix server via TCP connection,
and the embedded Linux system runs a simple NAND flash
management daemon and crow web framework.

We measured the performance of the host-free cluster sys-
tem under the same experimental setup, which is illustrated
in Fig. 13, Fig. 14, and Fig. 15. Fig. 14 shows that the power
dissipation of a single node in the host-free cluster system is
reduced by up to 89.2%, 93.9%, and 83.6% compared with
that of BC-CPU, BC-GPU, and the original CMC when sys-
tem is active. Considering the host server contains two Intel
Xeon E5-2630 CPU that outperforms the dual Cortex-A9 in
the Cognitive SSD, thereby, we measured the QPS per watt
(QPS/Watt) to illustrate the energy-efficiency of the HFC
system. The result (Fig. 13(c)) shows that when system con-
currency is low, HFC delivers better energy-efficiency than
the other four baselines and even better than the CMC archi-
tecture. The reason is that using high-performance machines
to handle infrequent requests results in low energy-efficiency.
Therefore, Fig. 13(c) witnesses the energy-efficiency of HFC
relatively decreases with the increasing concurrency of the
system. The performance growth of HFC under different node
numbers also project that the level-off throughput is limited by

BC-
CPU

BC-
GPU

BC-
FPGA

BC-
DLG-x

CMC HFC
0

2000

4000

P
o

w
e
r

(W
a
tt

s
)

Cognitive SSDIDLE ACTIVE

15.93%
14.08%

Fig. 15. Power dissipation of cluster.
the embedded CPU power instead of the DLG-x. In analysis,
the HFC system will have much lower power consumption
and higher performance if the Cortex-A9 processor is replaced
by the latest Cortex-A series, e.g., a quad-core or octo-core
Cortex-A75. Therefore, connecting the Cognitive SSD di-
rectly via interconnects contributes to much higher energy
efficiency in Cognitive SSD system and guaranteed service
throughput as well.

6 Conclusion
In this paper, we have introduced the Cognitive SSD, a near-
data deep learning device that actively performs low latency,
low power and high accuracy unstructured data retrieval. We
have designed and implemented the Cognitive SSD with a
direct flash-access deep hashing and graph search accelerator,
to combat the complex software stack and inefficient mem-
ory hierarchy barriers in the conventional multimedia data
retrieval systems. Our prototype demonstrates that the Cogni-
tive SSD reduces latency by 69.9% on average compared to
CPU, and more than 34.4% and 63.0% power saving against
CPU and GPU respectively. Furthermore, the Cognitive SSD
can scale to a multi-SSD system and significantly reduces the
cost and power overhead of large-scale storage nodes in data
centers. The demo of the retrieval system based on Cognitive
SSD is available at [3] and part of the source code is available
at [2].

Acknowledgments
We thank our shepherd, Joseph Tucek, and the anonymous
ATC reviewers for their valuable and constructive suggestions.
We thank the professor Jiafeng Guo of the CAS key lab of net-
work data science and techology for his supports and sugges-
tions. This work was supported in part by the National Natural
Science Foundation of China under Grant 61874124, Grant
61876173,Grant 61432017, Grant 61532017, Grant 61772300
and YESS hip program No.YESS2016qnrc001.

406 2019 USENIX Annual Technical Conference USENIX Association

References
[1] ab - Apache HTTP server benchmarking tool - Apache

HTTP Server Version 2.4. http://httpd.apache.
org/docs/2.4/programs/ab.html.

[2] The Cognitive SSD. https://github.com/
Cognitive-SSD.

[3] The Cognitive SSD Platform. http://cognitivessd.
vicp.io:10110/.

[4] Flexible I/O tester. https://fio.readthedocs.io/
en/latest/fio_doc.html#moral-license.

[5] NGINX. https://www.nginx.com/.

[6] Nvm express. https://nvmexpress.org/.

[7] The OpenSSD Project. http://openssd.io.

[8] Vivado. https://www.xilinx.com/support/
download.html.

[9] Learning multiple layers of features from
tiny images. Technical report, 2009. http:
//citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.222.9220&rep=rep1&type=pdf.

[10] The biggest data challenges that you might
not even know you have, May 2016. https:
//www.ibm.com/blogs/watson/2016/05/
biggest-data-challenges-might-not-even-know/.

[11] Micron nand flash. page 239, 2017. https://www.
micron.com/products/nand-flash.

[12] ZC706 Evaluation Board for the Zynq-7000
XC7z045 SoC User Guide (UG954). page 115,
2018. https://www.xilinx.com/support/
documentation/boards_and_kits/zc706/
ug954-zc706-eval-board-xc7z045-ap-soc.pdf.

[13] David G. Andersen, Jason Franklin, Michael Kaminsky,
Amar Phanishayee, Lawrence Tan, and Vijay Vasudevan.
Fawn: A fast array of wimpy nodes. In Proceedings
of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, SOSP ’09, pages 1–14, New York,
NY, USA, 2009. ACM. http://doi.acm.org/10.
1145/1629575.1629577.

[14] R. Balasubramonian, J. Chang, T. Manning, J. H.
Moreno, R. Murphy, R. Nair, and S. Swanson. Near-data
processing: Insights from a micro-46 workshop. IEEE
Micro, 34(4):36–42, July 2014. https://ieeexplore.
ieee.org/document/6871738.

[15] Matias Bjørling, Javier González, and Philippe
Bonnet. Lightnvm: The linux open-channel SSD
subsystem. In 15th USENIX Conference on File and
Storage Technologies (FAST’17), pages 359–374, 2017.
https://www.usenix.org/conference/fast17/
technical-sessions/presentation/bjorling.

[16] S. Boboila, Y. Kim, S. S. Vazhkudai, P. Desnoyers, and
G. M. Shipman. Active flash: Out-of-core data analyt-
ics on flash storage. In 012 IEEE 28th Symposium on
Mass Storage Systems and Technologies (MSST), pages
1–12, April 2012. https://ieeexplore.ieee.org/
document/6232366.

[17] Deng Cai. A revisit of hashing algorithms for approxi-
mate nearest neighbor search. CoRR, abs/1612.07545,
2016. http://arxiv.org/abs/1612.07545.

[18] Adrian M. Caulfield, Arup De, Joel Coburn, Todor I.
Mollow, Rajesh K. Gupta, and Steven Swanson. Moneta:
A high-performance storage array architecture for next-
generation, non-volatile memories. In Proceedings of
the 2010 43rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO ’43, pages 385–395,
Washington, DC, USA, 2010. IEEE Computer Society.
https://doi.org/10.1109/MICRO.2010.33.

[19] Intel IT Center. Big data 101: Unstruc-
tured data analytics. page 4. https:
//www.intel.com/content/www/us/en/big-data/
unstructured-data-analytics-paper.html.

[20] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang,
Chengyong Wu, Yunji Chen, and Olivier Temam. Di-
annao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning. In Proceedings of
the 19th International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, ASPLOS ’14, pages 269–284, New York, NY,
USA, 2014. ACM. http://doi.acm.org/10.1145/
2541940.2541967.

[21] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss:
A spatial architecture for energy-efficient dataflow for
convolutional neural networks. In Proceedings of the
43rd International Symposium on Computer Architec-
ture, ISCA ’16, pages 367–379, Piscataway, NJ, USA,
2016. IEEE Press. https://doi.org/10.1109/ISCA.
2016.40.

[22] Sangyeun Cho, Chanik Park, Hyunok Oh, Sungchan
Kim, Youngmin Yi, and Gregory R. Ganger. Active
disk meets flash: A case for intelligent ssds. In Pro-
ceedings of the 27th International ACM Conference
on International Conference on Supercomputing, ICS
’13, pages 91–102, New York, NY, USA, 2013. ACM.
http://doi.acm.org/10.1145/2464996.2465003.

USENIX Association 2019 USENIX Annual Technical Conference 407

http://httpd.apache.org/docs/2.4/programs/ab.html
http://httpd.apache.org/docs/2.4/programs/ab.html
https://github.com/Cognitive-SSD
https://github.com/Cognitive-SSD
http://cognitivessd.vicp.io:10110/
http://cognitivessd.vicp.io:10110/
https://fio.readthedocs.io/en/latest/fio_doc.html#moral-license
https://fio.readthedocs.io/en/latest/fio_doc.html#moral-license
https://www.nginx.com/
https://nvmexpress.org/
http://openssd.io
https://www.xilinx.com/support/download.html
https://www.xilinx.com/support/download.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf
https://www.ibm.com/blogs/watson/2016/05/biggest-data-challenges-might-not-even-know/
https://www.ibm.com/blogs/watson/2016/05/biggest-data-challenges-might-not-even-know/
https://www.ibm.com/blogs/watson/2016/05/biggest-data-challenges-might-not-even-know/
https://www.micron.com/products/nand-flash
https://www.micron.com/products/nand-flash
https://www.xilinx.com/support/documentation/boards_and_kits/zc706/ug954-zc706-eval-board-xc7z045-ap-soc.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zc706/ug954-zc706-eval-board-xc7z045-ap-soc.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zc706/ug954-zc706-eval-board-xc7z045-ap-soc.pdf
http://doi.acm.org/10.1145/1629575.1629577
http://doi.acm.org/10.1145/1629575.1629577
https://ieeexplore.ieee.org/document/6871738
https://ieeexplore.ieee.org/document/6871738
https://www.usenix.org/conference/fast17/technical-sessions/presentation/bjorling
https://www.usenix.org/conference/fast17/technical-sessions/presentation/bjorling
https://ieeexplore.ieee.org/document/6232366
https://ieeexplore.ieee.org/document/6232366
http://arxiv.org/abs/1612.07545
https://doi.org/10.1109/MICRO.2010.33
https://www.intel.com/content/www/us/en/big-data/unstructured-data-analytics-paper.html
https://www.intel.com/content/www/us/en/big-data/unstructured-data-analytics-paper.html
https://www.intel.com/content/www/us/en/big-data/unstructured-data-analytics-paper.html
http://doi.acm.org/10.1145/2541940.2541967
http://doi.acm.org/10.1145/2541940.2541967
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
http://doi.acm.org/10.1145/2464996.2465003

[23] Hyeokjun Choe, Seil Lee, Seongsik Park, Sei Joon Kim,
Eui-Young Chung, and Sungroh Yoon. Near-data pro-
cessing for machine learning. CoRR, abs/1610.02273,
2016. http://arxiv.org/abs/1610.02273.

[24] Arup De, Maya Gokhale, Rajesh Gupta, and Steven
Swanson. Minerva: Accelerating data analysis in
next-generation ssds. In Proceedings of the 2013
IEEE 21st Annual International Symposium on Field-
Programmable Custom Computing Machines, FCCM
’13, pages 9–16, Washington, DC, USA, 2013. IEEE
Computer Society. http://dx.doi.org/10.1109/
FCCM.2013.46.

[25] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik
Park, Kwanghyun Park, and David J. DeWitt. Query
processing on smart ssds: Opportunities and challenges.
In Proceedings of the 2013 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD
’13, pages 1221–1230, New York, NY, USA, 2013. ACM.
http://doi.acm.org/10.1145/2463676.2465295.

[26] Cong Fu and Deng Cai. EFANNA : An extremely fast
approximate nearest neighbor search algorithm based
on knn graph. CoRR, abs/1609.07228, 2016. http:
//arxiv.org/abs/1609.07228.

[27] Cong Fu, Changxu Wang, and Deng Cai. Fast approxi-
mate nearest neighbor search with navigating spreading-
out graphs. CoRR, abs/1707.00143, 2017. http:
//arxiv.org/abs/1707.00143.

[28] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and
Florent Perronnin. Iterative quantization: A procrustean
approach to learning binary codes for large-scale im-
age retrieval. IEEE Trans. Pattern Anal. Mach. In-
tell., 35(12):2916–2929, December 2013. https://
doi.org/10.1109/TPAMI.2012.193.

[29] Gregory Griffin, Alex Holub, and Pietro Perona.
Caltech-256 Object Category Dataset, March 2007.
http://resolver.caltech.edu/CaltechAUTHORS:
CNS-TR-2007-001.

[30] Jaeseung Ha. crow: Crow is very fast and easy to
use C++ micro web framework, June 2018. https:
//github.com/ipkn/crow.

[31] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell. Caffe: Convolutional ar-
chitecture for fast feature embedding. In Proceed-
ings of the 22Nd ACM International Conference on
Multimedia, MM ’14, pages 675–678, New York, NY,
USA, 2014. ACM. http://doi.acm.org/10.1145/
2647868.2654889.

[32] Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks,
John Ankcorn, Myron King, Shuotao Xu, and Arvind.
Bluedbm: An appliance for big data analytics. In Pro-
ceedings of the 42Nd Annual International Symposium
on Computer Architecture, ISCA ’15, pages 1–13, New
York, NY, USA, 2015. ACM. http://doi.acm.org/
10.1145/2749469.2750412.

[33] Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao
Xu, and Arvind. Grafboost: Using accelerated flash
storage for external graph analytics. In Proceedings of
the 45th Annual International Symposium on Computer
Architecture, ISCA ’18, pages 411–424, Piscataway, NJ,
USA, 2018. IEEE Press. https://doi.org/10.1109/
ISCA.2018.00042.

[34] Yangwook Kang, Yang-Suk Kee, Ethan L. Miller, and
Chanik Park. Enabling cost-effective data processing
with smart ssd. 2013 IEEE 29th Symposium on Mass
Storage Systems and Technologies (MSST), pages 1–
12, 2013. ftp://ftp.cse.ucsc.edu/pub/darrell/
kang-msst13.pdf.

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural
networks. Commun. ACM, 60(6):84–90, May 2017.
http://doi.acm.org/10.1145/3065386.

[36] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Wenjie
Zhang, and Xuemin Lin. Approximate nearest neighbor
search on high dimensional data - experiments, analyses,
and improvement (v1.0). CoRR, abs/1610.02455, 2016.
http://arxiv.org/abs/1610.02455.

[37] Wu-Jun Li, Sheng Wang, and Wang-Cheng Kang. Fea-
ture learning based deep supervised hashing with pair-
wise labels. In Proceedings of the Twenty-Fifth Inter-
national Joint Conference on Artificial Intelligence, IJ-
CAI’16, pages 1711–1717. AAAI Press, 2016. http://
dl.acm.org/citation.cfm?id=3060832.3060860.

[38] K. Lin, H. Yang, J. Hsiao, and C. Chen. Deep learn-
ing of binary hash codes for fast image retrieval. In
2015 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 27–35, June
2015. http://ieeexplore.ieee.org/document/
7301269/.

[39] V. E. Liong, Jiwen Lu, Gang Wang, P. Moulin, and
Jie Zhou. Deep hashing for compact binary codes
learning. In 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2475–
2483, June 2015. http://ieeexplore.ieee.org/
document/7298862/.

[40] H. Liu, R. Wang, S. Shan, and X. Chen. Deep super-
vised hashing for fast image retrieval. In 2016 IEEE

408 2019 USENIX Annual Technical Conference USENIX Association

http://arxiv.org/abs/1610.02273
http://dx.doi.org/10.1109/FCCM.2013.46
http://dx.doi.org/10.1109/FCCM.2013.46
http://doi.acm.org/10.1145/2463676.2465295
http://arxiv.org/abs/1609.07228
http://arxiv.org/abs/1609.07228
http://arxiv.org/abs/1707.00143
http://arxiv.org/abs/1707.00143
https://doi.org/10.1109/TPAMI.2012.193
https://doi.org/10.1109/TPAMI.2012.193
http://resolver.caltech.edu/CaltechAUTHORS:CNS-TR-2007-001
http://resolver.caltech.edu/CaltechAUTHORS:CNS-TR-2007-001
https://github.com/ipkn/crow
https://github.com/ipkn/crow
http://doi.acm.org/10.1145/2647868.2654889
http://doi.acm.org/10.1145/2647868.2654889
http://doi.acm.org/10.1145/2749469.2750412
http://doi.acm.org/10.1145/2749469.2750412
https://doi.org/10.1109/ISCA.2018.00042
https://doi.org/10.1109/ISCA.2018.00042
ftp://ftp.cse.ucsc.edu/pub/darrell/kang-msst13.pdf
ftp://ftp.cse.ucsc.edu/pub/darrell/kang-msst13.pdf
http://doi.acm.org/10.1145/3065386
http://arxiv.org/abs/1610.02455
http://dl.acm.org/citation.cfm?id=3060832.3060860
http://dl.acm.org/citation.cfm?id=3060832.3060860
http://ieeexplore.ieee.org/document/7301269/
http://ieeexplore.ieee.org/document/7301269/
http://ieeexplore.ieee.org/document/7298862/
http://ieeexplore.ieee.org/document/7298862/

Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 2064–2072, June 2016. http:
//ieeexplore.ieee.org/document/7780596/.

[41] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Oc-
topus: an rdma-enabled distributed persistent mem-
ory file system. In 2017 USENIX Annual Tech-
nical Conference (USENIX ATC’17), pages 773–
785, 2017. https://www.usenix.org/conference/
atc17/technical-sessions/presentation/lu.

[42] Youyou Lu, Jiwu Shu, and Weimin Zheng. Extending
the lifetime of flash-based storage through reducing
write amplification from file systems. In Presented
as part of the 11th USENIX Conference on File and
Storage Technologies (FAST’13), pages 257–270, 2013.
https://www.usenix.org/conference/fast13/
technical-sessions/presentation/lu_youyou.

[43] Jian Ouyang, Shiding Lin, Zhenyu Hou, Peng Wang,
Yong Wang, and Guangyu Sun. Active ssd design
for energy-efficiency improvement of web-scale data
analysis. In Proceedings of the 2013 International
Symposium on Low Power Electronics and Design,
ISLPED ’13, pages 286–291, Piscataway, NJ, USA,
2013. IEEE Press. http://dl.acm.org/citation.
cfm?id=2648668.2648739.

[44] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou,
Yong Wang, and Yuanzheng Wang. Sdf: Software-
defined flash for web-scale internet storage systems. In
Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’14, pages 471–484, 2014.
http://doi.acm.org/10.1145/2654822.2541959.

[45] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. Imagenet large scale vi-
sual recognition challenge. Int. J. Comput. Vision,
115(3):211–252, December 2015. http://dx.doi.
org/10.1007/s11263-015-0816-y.

[46] Sudharsan Seshadri, Mark Gahagan, Sundaram
Bhaskaran, Trevor Bunker, Arup De, Yanqin Jin,
Yang Liu, and Steven Swanson. Willow: A user-
programmable ssd. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’14, pages 67–80, Berkeley, CA,
USA, 2014. USENIX Association. http://dl.acm.
org/citation.cfm?id=2685048.2685055.

[47] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-
tion. CoRR, abs/1409.1556, 2014. http://arxiv.org/
abs/1409.1556.

[48] Yongseok Son, Nae Young Song, Hyuck Han, Hyeon-
sang Eom, and Heon Young Yeom. A user-level file
system for fast storage devices. In Proceedings of the
2014 International Conference on Cloud and Autonomic
Computing, ICCAC ’14, pages 258–264, Washington,
DC, USA, 2014. IEEE Computer Society. https:
//doi.org/10.1109/ICCAC.2014.14.

[49] Lili Song, Ying Wang, Yinhe Han, Xin Zhao, Bosheng
Liu, and Xiaowei Li. C-brain: A deep learning accel-
erator that tames the diversity of cnns through adap-
tive data-level parallelization. In Proceedings of the
53rd Annual Design Automation Conference, DAC ’16,
pages 123:1–123:6, New York, NY, USA, 2016. ACM.
http://doi.acm.org/10.1145/2897937.2897995.

[50] Devesh Tiwari, Simona Boboila, Sudharshan S. Vazhku-
dai, Youngjae Kim, Xiaosong Ma, Peter J. Desnoyers,
and Yan Solihin. Active flash: Towards energy-efficient,
in-situ data analytics on extreme-scale machines. In Pro-
ceedings of the 11th USENIX Conference on File and
Storage Technologies, FAST’13, pages 119–132, Berke-
ley, CA, USA, 2013. USENIX Association. http://
dl.acm.org/citation.cfm?id=2591272.2591286.

[51] Devesh Tiwari, Sudharshan S. Vazhkudai, Youngjae
Kim, Xiaosong Ma, Simona Boboila, and Peter J.
Desnoyers. Reducing data movement costs using energy
efficient, active computation on ssd. In Proceedings of
the 2012 USENIX Conference on Power-Aware Com-
puting and Systems, HotPower’12, pages 4–4, Berkeley,
CA, USA, 2012. USENIX Association. http://dl.
acm.org/citation.cfm?id=2387869.2387873.

[52] Hung-Wei Tseng, Qianchen Zhao, Yuxiao Zhou, Mark
Gahagan, and Steven Swanson. Morpheus: Creating
application objects efficiently for heterogeneous com-
puting. SIGARCH Comput. Archit. News, 44(3):53–65,
June 2016. http://doi.acm.org/10.1145/3007787.
3001143.

[53] Jianguo Wang, Dongchul Park, Yang-Suk Kee, Yannis
Papakonstantinou, and Steven Swanson. Ssd in-storage
computing for list intersection. In Proceedings of the
12th International Workshop on Data Management on
New Hardware, DaMoN ’16, pages 4:1–4:7, 2016. http:
//doi.acm.org/10.1145/2933349.2933353.

[54] Jingdong Wang, Heng Tao Shen, Jingkuan Song, and
Jianqiu Ji. Hashing for Similarity Search: A Survey.
arXiv:1408.2927 [cs], August 2014. http://arxiv.
org/abs/1408.2927.

[55] Ying Wang, Jie Xu, Yinhe Han, Huawei Li, and Xiaowei
Li. Deepburning: Automatic generation of fpga-based
learning accelerators for the neural network family. In

USENIX Association 2019 USENIX Annual Technical Conference 409

http://ieeexplore.ieee.org/document/7780596/
http://ieeexplore.ieee.org/document/7780596/
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lu
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lu
https://www.usenix.org/conference/fast13/technical-sessions/presentation/lu_youyou
https://www.usenix.org/conference/fast13/technical-sessions/presentation/lu_youyou
http://dl.acm.org/citation.cfm?id=2648668.2648739
http://dl.acm.org/citation.cfm?id=2648668.2648739
http://doi.acm.org/10.1145/2654822.2541959
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dl.acm.org/citation.cfm?id=2685048.2685055
http://dl.acm.org/citation.cfm?id=2685048.2685055
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/ICCAC.2014.14
https://doi.org/10.1109/ICCAC.2014.14
http://doi.acm.org/10.1145/2897937.2897995
http://dl.acm.org/citation.cfm?id=2591272.2591286
http://dl.acm.org/citation.cfm?id=2591272.2591286
http://dl.acm.org/citation.cfm?id=2387869.2387873
http://dl.acm.org/citation.cfm?id=2387869.2387873
http://doi.acm.org/10.1145/3007787.3001143
http://doi.acm.org/10.1145/3007787.3001143
http://doi.acm.org/10.1145/2933349.2933353
http://doi.acm.org/10.1145/2933349.2933353
http://arxiv.org/abs/1408.2927
http://arxiv.org/abs/1408.2927

Proceedings of the 53rd Annual Design Automation Con-
ference, DAC ’16, pages 110:1–110:6, New York, NY,
USA, 2016. ACM. http://doi.acm.org/10.1145/
2897937.2898003.

[56] Louis Woods, Zsolt István, and Gustavo Alonso. Ibex:
An intelligent storage engine with support for advanced
sql offloading. Proc. VLDB Endow., 7(11):963–974,
July 2014. http://dx.doi.org/10.14778/2732967.
2732972.

[57] Jianxiong Xiao, Krista A. Ehinger, James Hays, Antonio
Torralba, and Aude Oliva. Sun database: Exploring a
large collection of scene categories. Int. J. Comput.
Vision, 119(1):3–22, August 2016. http://dx.doi.
org/10.1007/s11263-014-0748-y.

[58] Huei-Fang Yang, Kevin Lin, and Chu-Song Chen. Su-
pervised learning of semantics-preserving hash via deep
convolutional neural networks. IEEE Trans. Pattern
Anal. Mach. Intell., 40(2):437–451, February 2018.
https://doi.org/10.1109/TPAMI.2017.2666812.

[59] Jiacheng Zhang, Jiwu Shu, and Youyou Lu. Parafs: A
log-structured file system to exploit the internal paral-

lelism of flash devices. In 2016 USENIX Annual Techni-
cal Conference (USENIX ATC’16), pages 87–100, 2016.
https://www.usenix.org/conference/atc16/
technical-sessions/presentation/zhang.

[60] Jie Zhang, Miryeong Kwon, Donghyun Gouk, Sungjoon
Koh, Changlim Lee, Mohammad Alian, Myoungjun
Chun, Mahmut Taylan Kandemir, Nam Sung Kim, Ji-
hong Kim, and Myoungsoo Jung. Flashshare: Punching
through server storage stack from kernel to firmware
for ultra-low latency ssds. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’18, pages 477–492, Berkeley,
CA, USA, 2018. USENIX Association. http://dl.
acm.org/citation.cfm?id=3291168.3291203.

[61] Liang Zheng, Yi Yang, and Qi Tian. SIFT meets
CNN: A decade survey of instance retrieval. CoRR,
abs/1608.01807, 2016. http://arxiv.org/abs/
1608.01807.

410 2019 USENIX Annual Technical Conference USENIX Association

http://doi.acm.org/10.1145/2897937.2898003
http://doi.acm.org/10.1145/2897937.2898003
http://dx.doi.org/10.14778/2732967.2732972
http://dx.doi.org/10.14778/2732967.2732972
http://dx.doi.org/10.1007/s11263-014-0748-y
http://dx.doi.org/10.1007/s11263-014-0748-y
https://doi.org/10.1109/TPAMI.2017.2666812
https://www.usenix.org/conference/atc16/technical-sessions/presentation/zhang
https://www.usenix.org/conference/atc16/technical-sessions/presentation/zhang
http://dl.acm.org/citation.cfm?id=3291168.3291203
http://dl.acm.org/citation.cfm?id=3291168.3291203
http://arxiv.org/abs/1608.01807
http://arxiv.org/abs/1608.01807

SIMD-X: Programming and Processing of Graph Algorithms on GPUs

Hang Liu
University of Massachusetts Lowell

H. Howie Huang
The George Washington University

Abstract

With high computation power and memory bandwidth,
graphics processing units (GPUs) lend themselves to ac-
celerate data-intensive analytics, especially when such
applications fit the single instruction multiple data
(SIMD) model. However, graph algorithms such as
breadth-first search and k-core, often fail to take full ad-
vantage of GPUs, due to irregularity in memory access
and control flow. To address this challenge, we have
developed SIMD-X, for programming and processing
of single instruction multiple, complex, data on GPUs.
Specifically, the new Active-Compute-Combine (ACC)
model not only provides ease of programming to pro-
grammers, but more importantly creates opportunities
for system-level optimizations. To this end, SIMD-X
utilizes just-in-time task management which filters out
inactive vertices at runtime and intelligently maps var-
ious tasks to different amount of GPU cores in pursuit
of workload balancing. In addition, SIMD-X leverages
push-pull based kernel fusion that, with the help of a
new deadlock-free global barrier, reduces a large num-
ber of computation kernels to very few. Using SIMD-X,
a user can program a graph algorithm in tens of lines of
code, while achieving 3×, 6×, 24×, 3× speedup over
Gunrock, Galois, CuSha, and Ligra, respectively.

1 Introduction

The advent of big data [40, 27, 35, 36, 37, 5, 25, 26,
28, 14, 83] exacerbates the need of extracting useful
knowledge within an acceptable time envelope. For per-
formance acceleration, many applications utilize graph-
ics processing units (GPUs) whose huge success comes
from exploiting the data-level parallelism in these appli-
cations. Implicitly, the traditional single instruction
multiple data (SIMD) model of GPUs assumes regular
programming and processing, that is, not only the same
instruction is executed but also the same amount of work

is expected to perform on each piece of data. Unfortu-
nately, neither assumption holds true for many emerging
irregular applications, especially graph analytics which
is the focus of this work. That is, such applications do
not conform to the SIMD model, where different amount
of work, or worse, completely different work, need to be
performed on the data in parallel.

To enable graph computation on GPUs, this work ad-
vocates a new parallel framework, SIMD-X, for the pro-
gramming and processing of single instruction multiple,
complex, data on GPUs. At the heart of SIMD-X is
the decoupling of programming and processing, that is,
SIMD-X utilizes the data-parallel model for ease of ex-
pressing of graph applications, while enabling system-
level optimizations at run time to deal with the task-
parallel complexity on GPUs. With SIMD-X, a program-
mer simply needs to define what to do on which data,
without worrying about the issues arisen from irregular
memory access and control flow, both of which prevent
GPUs from achieve massive parallelism.

SIMD-X consists of three major components: First,
SIMD-X utilizes a new Active-Compute-Combine (ACC)
programming model that asks a program to define three
data-parallel functions: the condition for determining an
active vertex, computation to be performed on an associ-
ated edge, and combining the updates from edge compute
to vertex state. As we will show later, ACC is able to sup-
port a large variety of graph algorithms from breadth-first
search, k-core, to belief propagation. While ACC adopts
the Bulk Synchronous Parallel (BSP) model [49], it dif-
fers from traditional CPU-based graph abstractions such
as edge- or vertex-centric models in that ACC avoids
atomic operation, enables collaborative early termination
(for BFS) and fine-grained task management on GPUs.

Second, SIMD-X relies on just-in-time (JIT) task man-
agement to balance parallel workloads across different
GPU cores with minimal overhead. A good task list can
increase not only parallelism, but also sequential mem-
ory access for the computation of next iteration, both

USENIX Association 2019 USENIX Annual Technical Conference 411

0
a b c d e f g h i

Distance array
Vertex

b

f

ca

ed

g h i

1

5

1
2

1

1
2

3 4 6

b

f

ca

ed

g h i

b

f

ca

ed

g h i

0 5 6 1 3
a b c d e f g h i

b

f

ca

ed

g h i

b

f

ca

ed

g h i

0 4 6 1 3 4 6 7 9
a b c d e f g h i

0 4 5 1 3 4 6 7 9
a b c d e f g h i

b

f

ca

ed

g h i

0 4 5 1 3 4 6 7 9
a b c d e f g h i

0 5 1
a b c d e f g h i

(a) Initialization (c) Iteration 2 (d) Iteration 3 (e) Iteration 4 (f) Iteration 5(b) Iteration 1

Updated vertex

Active vertex

1

5

1
2

1

1
2

3 4 6

1

5

1
2

1

1
2

3 4 6

1

5

1
2

1

1
2

3 4 6

1

5

1
2

1

1
2

3 4 6

1

5

1
2

1

1
2

3 4 6

Figure 1: SSSP on a graph, with nine vertices {a, b, c, d, e, f, g, h, i} and ten undirected edges (with weights). SSSP iteratively
computes on the graph and generates the distance array. Particularly, heavy and light shadows represent active and most recently
updated vertices, respectively.

of which are crucial for high-performance computing on
GPUs. To this end, we have designed a set of new task
management mechanisms, that is, online and ballot fil-
ters, each of which excels at the complementary sce-
narios, i.e., the former favors a small amount of tasks
while the latter larger tasks. At runtime, SIMD-X judi-
ciously selects the more suitable filter to assemble the
active work list for the next iteration. Our JIT task man-
agement can largely reduce the memory consumption,
thereby accommodate the graphs much larger than prior
work [50, 77]. Moreover, SIMD-X delivers 16×, on av-
erage, speedup across various algorithms and graphs.

Third, SIMD-X designs a new technique of push-pull
based kernel fusion which aims to further accelerate
graph computing by reducing kernel invocation overhead
and global memory traffic. SIMD-X addresses the dead-
lock issue which occurs in existing software global bar-
rier [79] that is adopted by Gunrock [77]. Besides, in-
stead of aggressively fusing the algorithm into one gi-
ant kernel, SIMD-X fuses the kernels around the pull and
push stages within each computation to minimize both
register consumption and kernel relaunching. The evalu-
ation shows that the new fusion technique can reduce the
register consumption by half and thus double the con-
figurable thread count, leading to 42% and 25% perfor-
mance improvement over non-fused and aggressive fu-
sion, respectively.

SIMD-X is different from prior work in several aspects.
First, despite an array of graph frameworks has surged,
majority of them are for CPU systems while SIMD-X
is for GPU accelerators that come with mounting pro-
gramming challenges. In order to use GPUs efficiently,
a programmer needs to possess an in-depth knowledge
of GPU architecture [16, 1], e.g., Gunrock requires ex-
plicit management of GPU threads and memory [76],
and B40C [50] and Enterprise [41] need thousands of
lines of CUDA code for BFS specific optimizations. One
of the goals of this work is to provide a simple pro-
gramming model and delegate the responsibility of task
management to SIMD-X. Second, current systems ei-
ther ignore workload imbalance as in [33, 91], or re-
solve it reactively as in [76, 72], both of which result in
undesired system performance. Lastly, because GPUs

lack support for global synchronization, existing sys-
tems [73, 76, 41, 43, 69] either rely on the multi-kernel
design or runtime tunning, both of which come with con-
siderable overhead, especially for graph algorithms with
high iteration count. SIMD-X addresses these challenges
with new filters, and a deadlock-free software barrier.

2 SIMD-X Challenges and Architecture
2.1 Graph Computing on GPUs
Generally speaking, regular applications present uniform
workload distribution across the data set. As a result,
such applications lend themselves to the data-parallel
GPU architecture. For development and evaluation, this
work mainly uses NVIDIA GPUs, which have tens of
streaming processors and in total thousands of Compute
Unified Device Architecture (CUDA) cores [1, 56]. Typ-
ically, a warp of 32 threads execute the same instruction
in parallel on consecutive data.

On the other hand, task management for irregular ap-
plications is challenging on GPUs. In this work, we fo-
cus on a number of graph algorithms such as breadth-first
search, k-core, and belief propagation. Here we use one
algorithm – Single Source Shortest Path (SSSP) – to il-
lustrates the challenges. Simply put, a graph algorithm
computes on a graph G = (V , E, w), where V , E and w
are the sets of vertices, edges, and edge weights. The
computation updates the algorithmic metadata which are
the states of vertices or edges in an iterative manner. A
typical workflow of SSSP is shown in Figure 1. Initially,
SSSP assigns the infinite distance to each vertex in the
distance array, which is represented as blank in the fig-
ure. Assuming the source vertex is a, the algorithm as-
signs 0 as its initial distance, and now vertex a becomes
active. Next, SSSP computes on this vertex, that is, cal-
culating the updates for all the neighbors of vertex a. In
this case, vertices {b, d} have their distances updated
to 5 and 1 in the distance array. At the next iteration,
the vertices with newly updated distances become active
and perform the same computation again. This process
continues until no vertex gets updated. Different from
breadth-first search, SSSP may update the distances of
some vertices across multiple iterations, e.g., vertex b is
updated in iteration 1 and 3.

412 2019 USENIX Annual Technical Conference USENIX Association

GPU

BFS BP k-Core

ACC programming model

Deadlock-free software global barrier

JIT control

Selective
kernel
fusion

Ballot filterOnline filter

Just-In-Time task management

Push-Pull based kernel fusion

PageRank SpMV SSSP

SIMD-X

…
Graph algorithm

Figure 2: SIMD-X architecture

In this example, not every vertex is active at all time,
and vertices with different degrees (number of edges)
yield varying amounts of workloads. For instance, at it-
eration 3 of Figure 1(d), one thread working on vertex c
computes two neighbors, while another thread on vertex
e four neighbors.

2.2 Architecture

SIMD-X is motivated to achieve two goals simultane-
ously: providing ease of programming for a large vari-
ety of graph algorithms, whereas enabling fine-grained
optimization of GPU resources at the runtime. Figure 2
presents an overview of SIMD-X architecture. To achieve
the first goal, SIMD-X utilizes a simple yet powerful
Active-Compute-Combine (ACC) model. This data-
parallel API allows a programmer to implement graph
algorithms with tens of lines of code (LOC). Prior work
requires significant programming effort [50, 41, 76], or
runs the risk of poor performance [33].

In SIMD-X, high-performance graph processing on
GPUs is achieved through the development of two com-
ponents: (1) JIT task management, which is responsi-
ble for translating data-parallel code to parallel tasks on
GPUs. Essentially, SIMD-X “filters” the inactive tasks
and groups similar ones to run on the underlying SIMD
architecture. In particular, SIMD-X develops online and
ballot filters for handling different types of tasks, and dy-
namically selects the better filter during the execution of
the algorithm. And (2) Pull-push based kernel fusion.
Graph applications are iterative in nature and thus require
synchronizations. Fusing kernels across iterations would
yield indispensable benefits, because kernel launching at
each iteration incurs non-trivial overhead. In SIMD-X,
we observe that with aggressive kernel fusion, register
consumption would increase dramatically, lowering the
occupancy and thus performance. To this end, SIMD-
X deploys kernel fusion around pull and push stages of
each graph computation, seeking a sweet spot that not
only maximizes the range of each kernel fusion but also
minimizes the register consumption. It is worthy noting
that we also address the deadlock issue faced by software
global barrier in SIMD-X.

3 ACC Programming Model

The novelty of SIMD-X lies at achieving both ease of pro-
gramming and efficient workload scheduling, which is
especially hard on GPUs. When it comes to graph com-
puting, there are two main programming models: vertex-
centric vs. edge-centric. Vertex-centric model, also re-
ferred to as “Think like a vertex” [49, 90] focuses on
active vertices in a graph, whereas the latter one [61, 60]
iterates on edges and simplifies programming.

3.1 Motivation
Graph programming converges to either vertex-centric
or edge-centric models. In particular, the vertex-centric
model contains two functions: vertex scatter defines
what operations should be done on this vertex, and
vertex gather applies the updates on the vertex. This
model has been adopted by a number of existing projects,
e.g., Pregel [49], GraphLab [45], PowerGraph [18],
GraphChi [39], FlashGraph [90], Mosaic [47], and Grid-
Graph [92], as well as GPU-based implementation such
as CuSha [33] and Gunrock [76]. On the other hand,
the edge-centric model is initially introduced by the
external-memory graph engine X-stream [61] to improve
IO performance. It requires a programmer to define
two functions needed on each edge, edge scatter and
edge gather. As such, this model schedules threads by
the edge count. Particularly, one thread needs to send the
information of the source vertex and the outbound edge
to the destination vertex (edge scatter), which atomi-
cally applies the new updates in edge gather.

In this work, we believe the many-threaded nature of
GPU architecture demands a new abstraction. We in-
tend to exploit various thread scheduling options to bet-
ter tackle workload imbalance [41, 77], while minimiz-
ing the overhead with regards to atomic operations on
GPUs [46]. Table 1 summarizes the designs of recent
GPU-based graph analytics systems. To avoid wasting
the threads to compute on inactive vertices, task filter-
ing is essential in generating a list of active vertices.
Once task lists are ready, workload imbalance caused by
skewed degree distribution in many graphs becomes the
next concern. Since handling this issue in a vertex cen-
tric model involves nontrivial programming efforts [41],
edge-based computing presents a desirable alternative.
However, traditional edge-centric approach would result
in atomic updates at the destination vertex, thus a proper
schedule before applying the update is essential to avoid
atomic operation. It is also important to note that com-
pressed sparse row (CSR) is a preferable graph format
which can save around 50% of the space over edge list
format, as contemporary GPUs only feature tens of GB
memory [1]. The proposed ACC framework is designed
to address these three challenges.

USENIX Association 2019 USENIX Annual Technical Conference 413

Table 1: Comparison between ACC and relevant GPU-based programming models. denotes desirable feature.
StagesAbstraction Related Work Task filtering Workload balancing Avoid atomic operation Graph format

ICU CuSha [33], Lux [30] Init/Compute (Edge) Update Edge list
ICRU WS [32] Init/Compute (Edge) Reduce/IsUpdate CSR
AFC Gunrock [77] Advance/Filter Compute (Vertex, with atomic update) CSR
GAS GTS [34], GraphReduce [62] Gather (Edge) Apply/Scatter Edge list

ACC SIMD-X Active Compute (Edge) Combine CSR

3.2 ACC Model
The new ACC model contains three functions: Active,
Compute, and Combine. ACC supports a wide range of
graph algorithms and requires much fewer lines of code
compared to prior work. In this following, we will dis-
cuss the three functions.
Active allows a programmer to specify the condition
whether a vertex is active. Formally it can be defined:

∃v← active(Mv,v)

where v is the vertex ID and Mv represents its metadata.
Depending on the algorithm, the Active function may
vary. Belief propagation (BP) is simple which treats all
vertices as active. In comparison, SSSP, as shown in Fig-
ure 3(a), considers the vertices active when their current
metadata differs from the prior iteration.

Simply put, SIMD-X distinguishes active vertices from
inactive ones, and focuses on the calculation needed for
each vertex. This is different from the vertex-centric
model which deals with not only the active vertex but
also its neighbors. Because two vertices may have dif-
ferent numbers of neighbors, existing systems [49, 18]
likely suffer from workload imbalance. To this end,
SIMD-X leverages a classification technique, similar to
Enterprise [41], to group the active vertices depending
on the expected workload.
Compute defines the computation that happens on each
edge. In particular, it specifies the operations on the
metadata of edge (v, u) and two vertices v and u, which
can be written as follows:

updatev→u← compute(Mv,M(v,u),Mu)

where the return value of updatev→u will be used by the
Combine function. For example, SSSP can be defined as
shown in Figure 3(a).
Combine merges all the updates, once the computations
are completed. It can be represented:

updateu← ⊕
v∈Nbr[u]

updatev→u

where ⊕ must be commutative and associative, e.g., sum
and minimum, and is being applied to all the neighbors
of vertex u. Figure 3(a) presents the Combine examples
of SSSP. Particularly, BP summarizes all updates, where
SSSP combines all updates from compute by selecting
the minimum.

SIMD-X optimizes two types of combine operations,
i.e., aggregation and voting. Particularly, aggregation
cannot tolerate overwrites, that is, all updates are needed
to arrive at the correct results. PageRank, SSSP and k-
Core are representative examples of such operation. In
contrast, voting relaxes this condition, that is, the algo-
rithm is correct as long as one update is received because
all updates are identical. For instance, BFS is valid once
one parent vertex successfully visited the child vertex.
Other algorithms, such as, weakly connected component
and strongly connected component algorithms [67] also
fall into this category.

3.3 Processing with ACC
This section uses SSSP an example to illustrate how the
SIMD-X framework works. SSSP computes the short-
est paths between the source vertex and the remaining
vertices of the graph. Although similar to Breadth-First
Search (BFS), SSSP is more challenging as only one ver-
tex with the shortest distance should be computed at one
time. To improve the parallelism, we adopt the delta-
step [51] algorithm which permits us to simultaneously
compute a collection of the vertices whose distances are
relatively shorter. We assume positive edge weights.

As shown in line 12 - 21 of Figure 3(b), SIMD-X struc-
tures graph computation as a loop. Similar to popular
GPU-based frameworks [77, 33, 32], ACC follows BSP
model, that is, synchronization is required at the end of
each iteration. As we will discuss in the next section,
SIMD-X employ three kernels to balance the workload,
Thread, Warp and CTA kernels working on small list,
med list and large list, respectively. During computing,
the online filter (Section 4) attempts to track the active
vertices with the thread bins (i.e., small bin, med bin and
large bin). Note that each active vertex is stored in one of
these three bins based upon its degree. After a deadlock
free software global barrier (Section 5), SIMD-X checks
whether an overflow happens in any of the thread bins,
which leads to either a ballot filter-based active lists gen-
eration or a simple prefix-scan based concatenation of all
thread bins to produce the active lists (line 17-21).

In Figure 3(b), Line 1 - 8 exemplifies the interactions
between ACC and SIMD-X. Firstly, SIMD-X will sched-
ule a warp of threads to work on the neighbors of one
active vertex from med list. Similarly, Thread and CTA
will schedule a thread and CTA to work on each active
vertex from small list and large list, respectively. During

414 2019 USENIX Annual Technical Conference USENIX Association

Init (src){
• dist_curr [src] = 0;
• large_list.insert (src);
}
Active (v){
• return dist_curr [v] != dist_prev [v];
}
Compute (edge, weight){
• old_dist = dist_curr [edge.dest];
• new_dist = dist_curr [edge.src] + w;
• return old_dist > new_dist ? new_dist: old_dist;
}
Combine (dist[]){
• return min (dist[]);
}

Warp (med_list, Compute, Combine, Active, overflow)
• for each active vertex v in med_list: //warp in parallel

• for each neighboring edge set edge[32] to vertex v:
• res [lane_id] = Compute (edge[lane_id]);

• final = Combine (res[0 - 31]);
• if lane_id == 0:

• metadata_curr[v] = final;
• small_bin, med_bin, large_bin =

online_filter (Active, v, overflow);

//Similar to Warp
Thread(){//One thread working on one active vertex}
CTA(){//One CTA working on one active vertex}

SSSP_main{
Init (src);
while conditions:

•Thread (small_list, Compute, Combine, Active, overflow);
•Warp (med_list, Compute, Combine, Active, overflow);
•CTA (large_list, Compute, Combine, Active, overflow);
•__software_global_barrier ();

•if (overflow):
• ballot_filer (small_list, med_list, large_list, Active);
•else:

small_list, med_list, large_list = concatenate
• (small_bin, med_bin, large_bin);
•__software_global_barrier ();

}

(a) SSSP in ACC

(b) ACC in SIMD-X

1:
2:

3:
4:
5:
6:
7:
8:

10:
11:
12:

13:
14:
15:
16:

17:
18:
19:
20:

21:

1:
2:
3:

4:
5:

6:
7:
8:
9:

10:
11:

//Intra-warp parallel reduction.
//Splitting compute and combine to avoid atomic operation.

//Thread assignment (Workload balancing step II)

//Task management (Workload balancing step I)

Figure 3: (a) SSSP in ACC model and (b) ACC abstraction and
task management within SIMD-X framework.

computation, each thread will conduct a local Compute
and Combine at line 4. Once finished, a cross Warp Com-
bine happens at line 5. Eventually, the first thread from
the Warp applies the final updates (without atomic oper-
ation) and store this vertex (if active) into corresponding
thread bins.

 0.9
 1

 1.1
 1.2
 1.3
 1.4

FB ER KR LJ OR PK RD RC RM UK TW Avg.

Sp
ee

du
p

Vote
Aggregation

Figure 4: Speedup of our ACC model over Gunrock. Note vote
and aggregation operations are materialized by BFS and SSSP
algorithms, respectively, and x-axis contains the graph datasets
which are defined in Table 3.

Comparison Figure 4 studies the performance impact of
ACC vs. Gunrock. The new ACC model follows a com-
putation then combine approach which pays the extra
overhead (i.e., assembling all updates residing in shared
memory from participating threads) in order to achieve
the benefits of atomic-free updates. Gunrock, in contrast,
directly applies the update to vertex status with atomic
operations, thereby avoids inter-thread communication
but experiences heavier overhead from atomic operation.
One can see that ACC is, on average, 12% and 9% faster
on vote and aggregation operations, respectively. For
vote, the speedup comes from that ACC can schedule all
threads to collaboratively determine early termination,
which is not possible in Gunrock. Aggregation gains the
performance from the elimination of atomic updates.

4 Just-In-Time Task Management

Workload balancing is essential for graph applications.
The key is to ensure each GPU core, regardless of
from which streaming processor, accounts for a simi-
lar amount of workload, which is often achieved with
the following twin steps. Particularly, in step I: task
management, the tasks are classified into various lists,
namely small list, med list and large list. In step II:
thread assignment, various granularity of GPU threads
are scheduled to work on different worklists. That is,
a single thread per small task, a warp per medium task
and a CTA per large task. Note, Figure 3(b) presents
the pseudo code of step II and the bottom part of Fig-
ure 6 paints the corresponding workflow. We refer the
readers to Enterprise [41] for more details regarding the
landscape of this attempt.

Unlike prior work [41, 77, 50] which places particular
efforts at step II, SIMD-X focuses on step I as we find it
to be the major culprit that offsets the benefits of work-
load balancing. In the following, we will first analyze the
drawback of existing batch filter method, then describe
two new filters, and JIT selection mechanism.
Drawback of batch filter. This approach [76, 50, 11]
first loads all the edges of the active vertices to construct
an active edge list. Still using the example of SSSP in

USENIX Association 2019 USENIX Annual Technical Conference 415

1101 100001

Current active list

Neighbor list b
d
d a c e b f a e b d f g h i e c e e e

0 4 6 1 3 4 6 7 9
a b c d e f g h i

Updated metadata

e e e e e e c c
b d f g h i b fActive edge list

Next active list

Thread bin

0 4 6 1 3 4 6 7 9
a b c d e f g h i

ballotballotballot ballotballot

(a) Batch filter (b) Ballot filter

0 5 6 1 3
a b c d e f g h i

b
d
d a c e b f a e b d f g h i e c e e e

(c) Online filter
e c

b
d
d a c e b f a e b d f g h i e c e e e

c e b d

b f h f g i

b f h f g

b f g h i

b f g h i

c e e

c e

Active vert

Thread 0
Thread 1

Updated vert

Update
vertex status

Batch edges

Adjacent scan,
ballot vote
result to 1 thread

Update
vertex status

Update
vertex status

Record updated
vertex

Record updated
vertex

Record updated
vertex

a1

a2

a3

b1

b2

b3

c1

c2

Sorted

Sorted

Unsorted

Unsorted,
Redundanti

Figure 5: Three task management methods. Particularly, batch filter and ballot filter work on Figure 1(d) to produce a task list for
next iteration. Online filter does that for Figure 1(c). Note, we assume the arrow flows of red and blue indicate the execution paths
of red and blue threads.

Figure 1(c), this step loads neighbors of vertex {e, c}
and constructs the active edge list in a1 of Figure 5 (a).
Next, batch filter checks these edges and updates vertex
metadata a2 , followed by recording the updated vertices
in thread bin at step a3 . Eventually, batch filter will con-
catenate these thread bins to arrive at a potentially un-
sorted and redundant next active list – {b, f , h, f , g, i}.
Note, thread private local storage – thread bin – is used
to avoid the expensive atomic operations, because mul-
tiple threads would need atomic operation to put active
vertices directly into next active list.

We observe several drawbacks when using the batch
filter for various graph algorithms. First, the active list
can consume up to 2·|E|memory space because majority
of the vertices in a graph can become active at one iter-
ation [4, 41], which is especially true for popular social
and web graphs. Considering GPU has very limited on-
board memory (e.g., 16 GB), this restriction makes large-
scale GPU-based graph computing intractable. Second,
batch filter produces a worklist with unsorted and redun-
dant active vertices, e.g., next active list – {b, f , h, f , g,
i} of Figure 5(a), which will lead to poor memory per-
formance for next iteration computation.

Ballot filter is designed to overcome all these shortcom-
ings. It first loads the neighbors of active vertices and im-
mediately updates vertex metadata. As shown at step b1

in Figure 5(b), the neighbors of {e, c} get updated imme-
diately. Afterwards, thread 0 and 1 (red and blue lines)
will exploit ballot scan to inspect the updated metadata
and record those updated vertices in local thread bin at
step b3 . The eventual step is similar to batch filter – we
concatenate these two thread bins to get the next active
list, whereas, with sorted nonredundant active vertices.

Ballot scan is the key to comprehend why we arrive at
a better next active list. In steps b2 and b3 of Figure 5(b),
threads 0 and 1 perform coalesced scan of vertex meta-

data, and with the CUDA ballot() primitive, return a
bit variable ‘01’ to the first thread. Here 1 means ac-
tive and 0 otherwise, in this case, vertex a is not active
while b is. Through collaboratively working on the en-
tire metadata array, the first thread eventually gets the bit
value ‘0100’ for the first four vertices, while the second
thread ‘011110’ for the remaining six vertices. Conse-
quently, this approach produces a sorted active list, that
is, {b, f , g, h, i} in b3 .

We intentionally schedule thread 0 and 1 to collabo-
ratively scan the metadata in order to achieve coalesced
memory access during scan, as well as, making thread
0 and 1 account for a continuous range of vertices, that
is, vertices a - d to thread 0 and e - i to thread 1. This
achieves the dual benefits: coalesced scan and sorted ac-
tive vertices in next active list. Last but not the least, this
scheduling lends ballot filter to be many-thread safe.

We also notice an unpublished parallel efforts from
Khorasani’s dissertation [31] which is closely related to
ballot filter. However, his design relies on atomic op-
eration to compute the offsets of active vertices from
each Warp in the next active list and subsequently as-
signs merely a single thread from the Warp to enqueue all
these active vertices. This design implies twin disadvan-
tages comparing to ours. First, atomic operation-based
offset computation cannot yield sorted active lists. Sec-
ond, single thread-based active vertices recording tends
to be slower than Warp-based one which is our design.

Ballot filter is not without its own issue, especially
when the amount of active vertices is low. In that case,
scanning the metadata array would account for the ma-
jority of the runtime. For instance, in ER and RC graphs,
99.23% and 96.67% of the time is spent on scanning
metadata in ballot filter alone solution, respectively.
Online filter is designed to accommodate the issue faced
by ballot filter. In the first step, this method loads the ac-

416 2019 USENIX Annual Technical Conference USENIX Association

Large_listMed_list

Online filter

Ballot filter

Small_list

I: JIT task
management

Overflow ? Yes

Thread Warp CTA

256 threads32 threads1 thread

No

II: Thread
assignment

Iteration ++

Figure 6: Workload balancing with the essential two steps: the
novel JIT task management from SIMD-X and the thread as-
signment.

BFS

FB
ER
KR
LJ
OR
PK
RD
RC
RM
UK
TW

k-Core

FB
ER
KR
LJ
OR
PK
RD
RC
RM
UK
TW

SSSP

FB
ER
KR
LJ
OR
PK
RD
RC
RM
UK
TW

Iteration

29

21

38
25
20

68

21

34

2,578

555

5,086

675

: Online filter : Ballot filter

Figure 7: Ballot filter activation patterns.

tive neighbors, updates the destination vertex, and simul-
taneously records the active vertices in the thread bin. In
the last step, it assembles all thread bins together as the
next active list. When the number of active vertices is
small, this approach turns out to be extremely fast. Here
we use the early stage of SSSP as an example to explain
its working process. As shown in Figure 5(c), {b, d} are
active vertices, this approach loads their neighbors for
computation (c1), and immediately records the destina-
tion vertices. Eventually, it generates {e, c} as the active
list for the next iteration as shown in c2 . It is also impor-
tant to note that for online filter, the vertices in the active
list may become redundant, and out of order.

In graph computing, it is possible that one GPU thread
may encounter exceeding amount of active vertices, e.g.,
our tests on Twitter graph shows one GPU thread can
reap more than 4,096 active vertices. Clearly, one can-
not afford such a large thread bin for all threads, thus
online filter will inevitably suffer from an overflow prob-
lem. Fortunately, ballot filter largely avoids this issue be-
cause it first updates the metadata of active vertices b2 ,
which, to some extent, averages out the active vertices
across threads in step b3 .

 0

 1

 2

 3

 4

 5

 4 16 64 256 1024 4096

Predefined threshold

Re
la

tiv
e

pe
rfo

rm
an

ce

Online filter threshold

FB
UK
TW
OR
PK

 0

 1

 2

 3

 4

 5

FB ER KR LJ OR PK RD RC RM UK TW

O
ve

rh
ea

d
(%

)

(a) Relative performance. (b) JIT Overhead

Figure 8: The (a) relative performance of JIT management with
respective to various online filter overflow thresholds on BFS
and (b) the overhead of JIT on SSSP.

Just-In-Time control adaptively exploits ballot and on-
line filters to retain the best performance. As shown in
Figure 6, SIMD-X always activates the online filter first.
Once a thread bin overflows, SIMD-X will switch on bal-
lot filter to generate the correct task list for the next iter-
ation. It is also worthy of mentioning that after JIT task
management, we assign various granularity of threads to
different lists in order to balance workload.

Interestingly, we find out that various algorithms and
graph datasets present different selection patterns which
tie closely to the amount of workload, that is, the higher
volume of workload often results in the activation of bal-
lot filter. As shown in Figure 7, BFS and SSSP typically
use the ballot filter in the middle of the computation and
online filter at the beginning and end. For high-diameter
graphs, BFS and SSSP avoid the use of ballot filter. For
instance, ER and RC always use the online filter along
2,578, 555, 5,086 and 675 iterations. k-Core activates the
ballot filter at the initial iterations, i.e., typically the first
two iterations except RC which only experiences one it-
eration because all its vertices have < 16 neighbors. At
the extreme, BP and PageRank need the ballot filter at
exactly the first iteration of computation.

Overflow thresholds for online filter. Clearly, this pa-
rameter directly determines when to switch on ballot fil-
ter, thereby affects the overall performance. Figure 8(a)
presents the normalized performance with respect to var-
ious thresholds. As expected, a too low or too high
threshold limits the performance because in either case,
SIMD-X is forced to switch to ballot filter either too early
or too late, leading to performance penalty. As such, in
this work we select 64 as the predefined overflow thresh-
old for all algorithms.

Overhead of online filter. After switching to ballot fil-
ter, JIT task management also executes the online fil-
ter in case it needs to switch back. Figure 8(b) studies
the overhead of this design. On average, there is 0.02%
slowdown, with the maximum of 2.1% observed for the
OR graph. The reason for the small overhead is because
online filter only tracks upto 64 (predefined threshold)
active vertices for the next iteration and this operation is
not on the critical path of the execution.

USENIX Association 2019 USENIX Annual Technical Conference 417

R

R

Holding

Worker CTA
…

Hardware resources

Monitor CTA
…

Update
lock array

Responsible for

R
Waiting

$

$

$

C

C

C

Figure 9: Deadlock in software global barrier, where ‘C’, ’$’,
and ‘R’ represent core, L1 cache and register, respectively.

5 Push-Pull Based Kernel Fusion

Kernel fusion [73], a common optimization for a collec-
tion of iterative GPU applications, such as graph com-
puting and deep learning [2, 58, 29, 10, 8], reduces ex-
pensive overhead of kernel invocation, as well as mini-
mizes the global memory traffic as the life time of regis-
ters and shared memory is limited in each kernel. How-
ever, traditional efforts, such as Gunrock [77] and Xiao
et al [79], fail to achieve cross the global barrier kernel
fusion. This section starts with our observation and anal-
ysis of potential deadlock in the mainstream global bar-
rier design [79, 82] and subsequently introduces a light-
weighted deadlock free solution which enables the global
thread synchronization within the fused kernel. How-
ever, aggressive kernel fusion requires a large amount
of the registers and thus supports fewer parallel warps
which could hurt the overall performance. To this end,
we introduce a push-pull based kernel fusion to minimize
the kernel invocation times and register consumption.

Software global barrier is needed to enable the bal-
anced kernel fusion. Generally speaking, this approach
uses an array – lock – to synchronize all GPU threads
upon arrival and departure. During the processing, it as-
sumes the thread CTA as the monitor while the remaining
threads as workers. At arrival, each worker CTA updates
its own status in lock. Once all worker CTAs have ar-
rived, the monitor changes the statuses of all CTAs to
departure, allowing all threads to proceed forward.

This approach, unfortunately, suffers from potential
deadlock [79], as illustrated in Figure 9. Specifically,
the worker thread CTAs may hold all GPU hardware
resources, such as streaming processors, registers and
shared memory, while waiting for the monitor to update
the lock array. In the meantime, the monitor cannot up-
date the lock array, due to lack of hardware resources
(e.g., thread over subscription).
Compiler-based deadlock free barrier. SIMD-X uti-
lizes the barrier in a way to ensure that every CTA,
regardless of a work or the monitor, can obtain hard-
ware resources when needed. This is achieved through
comparing the resources needed by the kernels, against
the total available resources. Based on the GPU ar-
chitecture, we can obtain the total amount of regis-

ters (#registerPerSMX) that can be provided by each
streaming processor, e.g., 65,536 registers of NVIDIA
K40 GPUs and 32,768 from K20 GPUs. On the
other hand, we can collect the register consumption
(#registerPerT hread) of each kernel at the compilation
stage. Putting together, SIMD-X is able to calculate the
appropriate thread configuration for kernels.

The number of CTA can be computed as follows:

#CTA = f loor(
#registersPerSMX

#registersPerT hread ·#threadsPerCTA
) ·#SMX (1)

where #threadsPerCTA is configured by a user, i.e.,
128 by default. For example, when deploying a ker-
nel, each thread consumes 110 registers, and on K40
that contains 15 SMXs, each of which contains 65,536
registers. If #threadsPerCTA is set to 128, one gets
#CTA = ceil(65536

110×128)× 15 = 60. As a result, we can
configure this kernel as CTA and thread count per CTA
as 60 and 128, respectively.

Notably, portable Inter-Block Barrier [69] is closely
relevant to our effort. However, this method pro-
poses extremely complicated thread block management
mechanism that requires to distinguish whether one
thread block will execute useful workloads or not dur-
ing runtime. This requires nontrivial programmer efforts
and scheduling overhead. In comparison, our method
achieves this deadlock-free configuration before runtime
and is completely transparent to the end users.

Push-Pull based kernel fusion. As shown in Table 2,
the register consumption (using the compilation flag -
Xptxas -v) increases from average 25 to 110, that is
a 4.4× difference. Note, consuming too many regis-
ters will curb the number of active threads (according
to equation 1). Unfortunately, majority of the graph al-
gorithms are data intensive, thus prefer a higher volume
of active threads because more active threads can better
hide the frequent memory access stalls caused by data in-
tensive applications. Consequently, we need a balanced
fusion strategy that keeps both register consumption and
kernel invocation low.

To this end, SIMD-X leverages the push-pull model
used in the graph algorithms. That is, such algorithms
often use push or pull based computing in several con-
secutive iterations. Lines 12 - 21 from Figure 3(b), for
example, discuss the pull model and we can fuse these
lines into a single GPU kernel. Similarly, push model can
also be fused into a single kernel. Section 6 details how
pull/push iterations occur in various graph algorithms.

SIMD-X adopts the pull-push model as in [66, 4, 41],
by controlling where (in/out edge) Compute happens and
how to Combine the results and apply (in atomic or
atomic free manner). Particularly, in the push model,
SIMD-X conducts Compute on the out neighbors of each
active vertex, and relies on atomic operations to apply the

418 2019 USENIX Annual Technical Conference USENIX Association

Table 2: Register consumption for various kernels.

Kernel Push (no fusion) Pull (no fusion) Selective fusion All fusionThread Warp CTA Task mgt Thread Warp CTA Task mgt push pull
Register consumption 26 27 28 24 24 24 22 30 48 50 110

Kernel launching count up to 40,688 3 1

Begin

Push model: JIT task management

(a) All fusion (b) Selective fusion

End

Thread push Warp push

Pull model: JIT task management

CTA push

Thread pull Warp pull CTA pull

Multiple
iterations

Switch model

Multiple
iterations

Begin

Push model: JIT task management

End

Thread push Warp push

Pull model: JIT task management

CTA push

Thread pull Warp pull CTA pull

Multiple
iterations

Switch model

Multiple
iterations

Figure 10: Consecutive iterations from graph algorithms often
cluster to push and model computation separately: (a) all fu-
sion, (b) selective fusion.

updates to the destination vertices. In contrast, the pull
model schedules Compute on the in neighbors of active
vertices, and uses atomic-free strategy to Combine all up-
dates and apply to the destination vertices. As different
iterations favor one model over the other, we follow a
similar rule as in Ligra [66] to alternate between the push
and pull models. That is, when the workload on the push
model works on more than 30% of the edges, SIMD-X
will switch to pull model.

The idea of push-pull based kernel fusion is to fuse
kernels around the pull and push computing. In other
words, for the push-based iterations, SIMD-X fuses dif-
ferent compute kernels (for thread, warp, CTA), as well
as task management kernel, into one push kernel. The
kernel only terminates when the computation finishes or
it needs to switch to pull computing according to the cri-
terion discussed in Section 3.3. Similar optimizations are
done for the pull-based iterations.

Using the new push-pull based fusion, the register con-
sumption decreases to 48 and 55 thus increases the con-
figurable thread count by 50%. Table 2 presents the reg-
ister consumption and kernel invocation of different ker-
nel fusion techniques. By using the push-pull based ker-
nel fusion, the kernel relaunch is merely three while its
register consumption is cut by half.

6 Graph Algorithms and Datasets

In addition to SSSP that is discussed in Section 3.3, this
section further presents a variety of algorithms which are
implemented on SIMD-X to examine the expressiveness
of ACC programming model, and performance impacts
of task management and kernel fusion techniques.
BFS [41] traverses a graph level by level. At each level, it
loads all neighbors that are connected to vertices visited

Table 3: Graph Dataset.
Graph Name Abbrev. Vertex Count Edge Count
Facebook FB 16,777,215 775,824,943
Europe-osm ER 50,912,018 108,109,319
Kron24 KR 16,777,216 536,870,911
LiveJournal LJ 4,847,571 136,950,781
Orkut OR 3,072,626 234,370,165
Pokec PK 1,632,803 61,245,127
Random RD 4,000,000 511,999,999
RoadCA-net RC 1,971,281 5,533,213
R-MAT RM 3,999,983 511,999,999
UK-2002 UK 18,520,343 596,227,523
Twitter TW 25,165,811 787,169,139

in the preceding level, inspects their statuses (metadata),
and subsequently marks those unvisited neighbors as ac-
tive for the next iteration. Notably, BFS conducts syn-
chronizations at the end of each level, relies on vote to
combine the updates. During the entire process of traver-
sal, BFS typically experiences light workload at the be-
ginning and end of the computation while heavy work-
load in the middle.
Belief propagation (BP), also known as sum-product
message passing algorithm, infers the posterior probabil-
ity of each event based on the likelihoods and prior prob-
abilities of all related events. Once modeled as a graph
(Bayesian network or Markov random fields), each event
becomes a vertex with all incoming vertices and edges
as related events and corresponding likelihoods. In BP,
vertex possibility is the metadata.
k-Core (KC), which is widely used in graph visualiza-
tion application [42, 53], iteratively deletes the vertices
whose degree is less than k until all remaining vertices in
this graph possess more than k neighbors. k-Core experi-
ences large volume of workloads at initial iterations and
follows with light workloads. This work uses a default
value of k = 16.
PageRank (PR) [57] updates the rank value of one ver-
tex based on the contribution of all in-neighbors itera-
tively till all vertices have stable rank values. Because the
contributions of in neighbors are summarized to the des-
tination vertex, we start PageRank with the pull model
and agg sum as the merge operation. At the end of
PageRank, we switch to the push model because the ma-
jority of the vertices are stable [87]. The switch is de-
cided by a decision tree.
Graph Benchmarks. We evaluate on a wide range
of graphs as shown in Table 3, which falls into four
types, i.e., social networks, road maps, hyperlink web
and synthetic graphs. Particularly, Facebook [17], Live-
Journal [68], Orkut [68], Pokec [68], and Twitter [38]
are common social networks. Europe-osm [12] and

USENIX Association 2019 USENIX Annual Technical Conference 419

RoadCA-net [70] are two large roadmap graphs, and UK-
2002 [70] is a web graph. Furthermore, we use Graph500
generator to generate Kron24 [6], and GTgraph [19] for
R-MAT and random graphs. Europe-osm and RoadCA-
net are high diameter graphs, with 2570 and 555 as their
diameters, respectively. LiveJournal, Pokec, Twitter and
UK-2002 are medium diameter graphs, i.e., 10 - 30 as
their diameters. The diameters of the remaining graphs
are all smaller than 10. For graphs without edge weight,
we use a random generator to generate one weight for
each edge similar to Gunrock [76]. These graphs are
stored in compressed sparse row (CSR) format.

7 Experiments

We implement SIMD-X1 with 5,660 lines of CUDA and
C++ code. All the algorithms presented in Section 6 are
implemented with around 100 lines of C++ code. The
source code is compiled by GCC 4.8.5 and NVIDIA nvcc
7.5 with the optimization flag as O3. In this work, we
evaluate SIMD-X on a Linux workstation with two In-
tel Xeon E5-2683 CPUs (14 physical cores with 28 hy-
perthreads), and 512GB main memory. Throughout the
evaluation, we use uint32 as the vertex ID and uint64 as
index and evaluate our system on NVIDIA K40 GPUs
unless otherwise is specified. We also test SIMD-X on
earlier K20 and latest P100 GPUs. The timing is started
once the graph data is loaded in GPU global memory.
Each result is reported with an average of 64 runs.

7.1 Comparison with State-of-the-art
Table 4 summarizes the runtime of SIMD-X against Ga-
lois and Gunrock which are state-of-the-art CPU and
GPU graph processing systems, respectively, as well
as CuSha (GPU) and Ligra (CPU), two popular graph
frameworks. The take aways of this table are two folds.

First, SIMD-X is both space efficient and robust. As
one can see, since CuSha requires edge list as the in-
put for computation, it cannot accommodate large graphs
(e.g., FB and TW) across all algorithms. Besides, since
Gunrock requires large amount of space for batch filter, it
suffers out of memory (OOM) error for all larger graphs
in SSSP. Even CPU systems (Galois and Ligra) enjoys
affluent memory space (512 GB) from CPU, they can-
not converge to a result for high diameter graphs. That
is, Galois cannot converge for SSSP on ER while Ligra
fails to obtain result for BFS on UK graph.

Second, SIMD-X outperforms all graph processing
frameworks. In general, SIMD-X is 24×, 2.9×, 6.5× and
3.3× faster than CuSha, Gunrock, Galois and Ligra, re-
spectively. In BFS, SIMD-X bests CuSha, Gunrock, Ga-

1SIMD-X source https://github.com/asherliu/simd-x.

lois and Ligra by 9.6×, 4.8×, 2.1× and 2.4×, respec-
tively. We also notice that SIMD-X is slower than Ga-
lois on the RD graph because workload balancing brings
negligible benefits to uniform-degree graph (RD). Also,
SIMD-X is slightly worse than Ligra on RM graph since
this graph only has a diameter of four thus both JIT task
management and kernel fusion brings trivial benefits to
GPU based graph systems, as evident by much lower per-
formance on CuSha and Gunrock.

In PageRank, SIMD-X achieves 1.2×, 2.1×, 2.3× and
4× speedups over CuSha, Gunrock, Galois and Ligra,
respectively. Note, even CuSha cannot support all large
graphs due to large memory space consumption, it per-
forms roughly similar to SIMD-X with even outperform-
ing SIMD-X on LJ and OR. This is generally because
PageRank tends to be more computation intensive than
other graph algorithms and needs to compute all edges,
curbing the benefits of task management and kernel fu-
sion. However, edge list format (of CuSha) doubles
memory consumption, facing OOM for large graphs.

For SSSP, SIMD-X wins 21×, on average, over all four
projects. We project SIMD-X to better outperform all sys-
tems than observed for BFS algorithm because SSSP ex-
periences more iterations with larger volume of active
tasks, placing more favor towards ACC model, JIT task
management and push-pull based kernel fusion. How-
ever, because Gunrock fails to accommodate all large
graphs, our benefits cannot surface – ending with merely
1.8× speedup. Second, CuSha spends 519,674 ms on
the high diameter ER graph which is 480× slower than
SIMD-X because task management is absent from CuSha.
We also notice Galois performs better than SIMD-X in
RD, again, due to the uniform degree distribution.

For k-Core, where k = 32, SIMD-X wins Ligra by 20×.
Such a striking advantage comes from three parts. First,
as reflected by Figure 11(b), k-Core generates exten-
sive amount of workload variations thus benefits tremen-
dously from JIT task management. Second, k-Core’s
iterative nature also enjoys the benefits from push-pull
based kernel fusion, as shown in Figure 12(c). Lastly,
the flexibility of ACC allows innovative k-Core algo-
rithm designs – we will stop further subtracting the de-
gree of destination vertex once the destination vertex’s
degree goes below k – this reduces tremendous unneces-
sary updates. Note comparisons of Belief Propagation,
as well as other systems for k-Core are not included be-
cause those systems fail to support such algorithms.

7.2 Benefits of Various Techniques

This section studies the performance impacts brought by
JIT task management and push-pull based kernel fusion.
As we have presented in Section 4, JIT task manage-
ment only works for applications that experience work-

420 2019 USENIX Annual Technical Conference USENIX Association

Table 4: Runtime (ms) of SIMD-X and Gunrock, and Galois. A K40 GPU is used to test SIMD-X and Gunrock, and a CPU with 28
threads for Galois. The blank space indicates the test cannot complete for the given algorithm and graph.

Alg System FB ER KR LJ OR PK RD RC RM UK TW Avg. speedup
SIMD-X 198 400 130 59 40 20 82 15 47 308 210 -
CuSha 988 224 341 72 435 297 674 4298 9.6
Gunrock 685 849 677 71 225 44 647 146 506 312 697 4.8
Galois 482 1068 140 139 42 34 48 53 65 229 322 2.1

BFS

Ligra 1086 1426 176 89 51 31 88 48 40 496 2.4
SIMD-X 1553 346 1141 236 435 118 1105 13 800 637 1525 -
CuSha 1704 182 323 180 1402 15 886 1.2
Gunrock 3004 884 3129 275 927 166 2963 43 2208 784 3180 2.1
Galois 4552 603 3069 424 1061 218 3576 20 2067 842 4178 2.3

PR

Ligra 16780 1368 2000 1324 1786 310 809 35 1703 9360 4
SIMD-X 1816 1080 998 284 604 143 1505 223 478 703 1344 -
CuSha 519674 1663 692 1120 260 1610 438 1236 62
Gunrock 1206 1220 431 1259 336 5059 229 1.8
Galois 161596 8485 1785 1166 356 747 3440 5877 9081 1818 15

SSSP

Ligra 14067 3043 2893 1627 1567 605 3353 301 2783 1300 5217 3.7
SIMD-X 366 78 131 60 63 33 10 4 19 151 277 -k-Core Ligra 6337 1167 2813 1707 1700 654 27 36 235 6627 5783 20

 0

 0.5

 1

 1.5

 2

FB ER KR LJ OR PK RD RC RM UK TW

132 132 2.4 29 29 2.6

Sp
ee

du
p

Ballot
Online
JIT

 0

 0.5

 1

 1.5

 2

FB ER KR LJ OR PK RD RC RM UK TW

2.8 2.3 2.7 8 8 14 14 4 2.1

Sp
ee

du
p

Ballot
Online
JIT

 0

 0.5

 1

 1.5

 2

FB ER KR LJ OR PK RD RC RM UK TW

30 30 2.6 2.6

Sp
ee

du
p

Ballot
Online
JIT

(a) BFS (b) k-Core (c) SSSP

Figure 11: Benefit of just-in-time task management, normalized to the performance of the ballot filter.

load variations, that is, BFS, k-Core and SSSP. On the
other hand, push-pull based kernel fusion is applicable
for all five algorithms

On average, JIT task management presented in Fig-
ure 11, is 16×, 26× and 4.5× faster than the ballot fil-
ter for BFS, k-Core and SSSP. As expected, online fil-
ter alone cannot work for many graphs, particularly large
ones, e.g., Facebook, Twitter and UK2002 graphs in BFS
and SSSP. Without considering overflow problem (ER
and RC graphs), JIT task management adds a small 1-2%
overhead on top of the online filter on BFS and SSSP.

On k-Core, JIT task management is, on average,
28.5× and 5% faster than ballot and online filter, re-
spectively. We also observe that the ballot filter outper-
forms the online filter on ER and RC graphs by 3.4× and
1.7×, because k-Core removes a large volume of vertices
which favors the former to produce a non-redundant and
sorted work list.

Push-pull based kernel fusion brings, on average, 43%
and 25% improvement over non-fusion and all-fusion
across all algorithms and graphs. In particular, push-pull
based kernel fusion tops non-fusion by 74%, 11%, 85%,
10% and 66% on BFS, BP, k-Core, PageRank and SSSP.
BFS, k-Core and SSSP achieves more performance gains
because they are not computation intensive and tend to
run a higher number of iterations. For all fusion, our
new kernel fusion is 55%, 6%, 62%, 25% and 11% faster
on BFS, BP, k-Core, PageRank and SSSP. It is impor-
tant to note that all fusion is not always beneficial, i.e.,

all fuse option of PageRank is average 13% slower than
no fusion because all fusion limits the amount of config-
urable threads. However, for memory intensive applica-
tions, like BFS and SSSP on ER and RC, all fusion is on
average 2× better.

7.3 Performance on Different GPUs
We also evaluate SIMD-X, Gunrock and CuSha on var-
ious GPU models, such as K20 and P100 GPUs. It is
not surprising to see tht SIMD-X presents the biggest per-
formance gain on the latest GPUs. In detail, SIMD-X
on K40 and P100 performs 1.7× and 5.1× better than
K20 GPU. In contrast, Gunrock merely gets 1.1× and
1.7× performance improvement when moving from K20
to K40 and P100, respectively. Similarly for CuSha, its
performance on K40 and P100 are 1.2× and 3.5× better
than K20, respectively. The root cause of this dispar-
ity is that SIMD-X’s kernel fusion technique can dynami-
cally configure its GPU kernels to the fitting thread count
on the corresponding hardware so as to achieve the peak
performance. For instance, the thread count increases by
1.2× and 5.1× on K40 and P100 than on K20 for BFS.

8 Related Work

Recent advance in graph computing falls in algorithm in-
novation [51, 87, 15], framework developments [49, 18,
45, 39, 42, 90, 92, 22, 66, 63, 61, 23, 54, 60, 74, 7, 80, 84,
65, 88, 75, 55, 89, 86, 85, 3, 78, 52, 21, 9, 81] and accel-

USENIX Association 2019 USENIX Annual Technical Conference 421

 0

 0.5

 1

 1.5

 2

FB ER KR LJ OR PK RD RC RM UK TW

2.2 2.4 3.4 3.4 2.8
Sp

ee
du

p
Non-fusion
All-fusion
Push-pull fusion

(a) BFS

 0

 0.5

 1

 1.5

 2

FB ER KR LJ OR PK RD RC RM UK TW

Sp
ee

du
p

Non-fusion
All-fusion
Push-pull fusion

(b) BP

 0

 0.5

 1

 1.5

 2

FB ER KR LJ OR PK RD RC RM UK TW

2.7 2.9 2.7 2.2

Sp
ee

du
p

Non-fusion
All-fusion
Push-pull fusion

(c) k-Core

 0

 0.5

 1

 1.5

 2

FB ER KR LJ OR PK RD RC RM UK TW

Sp
ee

du
p

Non-fusion
All-fusion
Push-pull fusion

(d) PageRank

 0

 0.5

 1

 1.5

 2

FB ER KR LJ OR PK RD RC RM UK TW

2.9 3.7 29 29

Sp
ee

du
p

Non-fusion
All-fusion
Push-pull fusion

(e) SSSP

Figure 12: Benefit of push-pull based kernel fusion, normalized to the performance of no fusion.

erator optimizations [76, 41, 50, 33, 43, 59, 64, 13]. This
section covers relevant work from three aspects: pro-
gramming model, task management and kernel fusion.

Recently, we witness an array of graph analytical mod-
els. For instance, “think like a graph” [71] requires
each vertex to obtain the view of the entire partition on
one machine in order to minimize the communication
cost. Furthermore, domain specific programming lan-
guage systems, such as Galois [54], Green-Marl [23] and
Trinity [63], allow programmers to write single-threaded
source code while enjoying multi-threaded processing.
In comparison, SIMD-X decouples the goal of program-
ming simplicity and performance: with ACC, SIMD-X
ultimately designs a data-parallel abstraction for deploy-
ing irregular graph applications on GPU. With JIT task
management and push-pull based kernel fusion, SIMD-X
is an order of magnitude faster than state-of-the-art CPU
and GPU frameworks.

Task management is an important optimization for
GPU-based graph computing. Besides batch filter [76,
50], there also exist other task management approaches
– strided filter [41, 43] and atomic filter [46]. Particu-
larly, strided filter resembles ballot filter but the former
one experiences strided memory access when scanning
the metadata thus performs up to 16× worse than ballot
filter. Atomic filter relies is similar to online filter but
it relies on atomic operation to put active vertices into
global active list which suffers from orders of magnitude
slow down than online filter. Besides ballot and online
filter bests batch, stride and atomic filter, SIMD-X goes
further via introducing a JIT controller to adaptively use
online filter and ballot filter to further improve the per-
formance. We also find that JIT task management can be
exploited to help manage active lists for other applica-
tions such as warp segmentation [32] and CSR5 [44].

Kernel fusion affects applications far beyond graph
computations. SIMD-X is closely related to global soft-
ware barrier [79, 82]. However, previous work fails to
identify the deadlock issue in this global software bar-
rier problem, thus no solution towards this issue. In con-

trast, SIMD-X unveils, systematically analyzes, and re-
solves this problem. To avoid high register consumption,
SIMD-X further selectively fuse kernels via exploiting the
special kernel launching patterns of graph algorithms. It
is also important to mention existing work [73] that only
fuse kernels to barrier boundary. In comparison, SIMD-X
fuses kernels across barriers. Our design can also bene-
fit the popular Persistent Kernel [20] designs which have
been found suffer from deadlock issues when the occu-
pancy exceed an unknown bound [48, 24].

9 Conclusion

In this work, we propose SIMD-X, a parallel graph com-
puting framework that supports programming and pro-
cessing of single instruction multiple, complex, data
on GPUs. Specifically, the Active-Compute-Combine
(ACC) model provides ease of programming to program-
mers, while just-in-time task management and push-
pull based kernel fusion leverage the opportunities for
system-level optimization. Using SIMD-X, a user can
program a graph algorithm in tens of lines of code, while
achieving significant speedup over the state-of-the-art.

Acknowledgment

The authors would like to thank the anonymous review-
ers and Shepherd Chris Rossbach for their feedback and
suggestions. Hang Liu did part of this work at the George
Washington University. This work was partially sup-
ported by National Science Foundation CAREER award
1350766 and grants 1618706 and 1717774 at George
Washington University and CRII Award No. 1850274 at
University of Massachusetts Lowell. We also would like
to gracefully acknowledge the support from XSEDE su-
percomputers and Amazon AWS, as well as the NVIDIA
Corporation for the donation of the Titan Xp and Quadro
P6000 GPUs to the University of Massachusetts Lowell.

422 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Nvidia cuda c programming guide. NVIDIA Cor-
poration, 2011.

[2] Martı́n Abadi, Paul Barham, Jianmin Chen,
Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. TensorFlow: A System
for Large-Scale Machine Learning. In OSDI,
volume 16, pages 265–283, 2016.

[3] Zhiyuan Ai, Mingxing Zhang, Yongwei Wu, Xue-
hai Qian, Kang Chen, and Weimin Zheng. Squeez-
ing out all the value of loaded data: An out-of-
core graph processing system with reduced disk
i/o. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17), pages 125–137, 2017.

[4] S Beamer, K Asanovic, and D Patterson. Direction-
optimizing Breadth-First Search. In International
Conference for High Performance Computing, Net-
working, Storage and Analysis (SC), pages 1–10.
IEEE, 2012.

[5] Bibek Bhattarai, Hang Liu, and H Howie Huang.
CECI: Compact Embedding Cluster Index for Scal-
able Subgraph Matching. In Proceedings of the
2019 International Conference on Management of
Data, SIGMOD, volume 19, 2019.

[6] Deepayan Chakrabarti, Yiping Zhan, and Christos
Faloutsos. R-MAT: A Recursive Model for Graph
Mining. In SDM, 2004.

[7] Rong Chen, Xin Ding, Peng Wang, Haibo Chen,
Binyu Zang, and Haibing Guan. Computa-
tion and communication efficient graph process-
ing with distributed immutable view. In Proceed-
ings of the 23rd international symposium on High-
performance parallel and distributed computing,
pages 215–226. ACM, 2014.

[8] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan
Wang, Minjie Wang, Tianjun Xiao, Bing Xu,
Chiyuan Zhang, and Zheng Zhang. Mxnet: A
flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint
arXiv:1512.01274, 2015.

[9] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan
Miao, Xuetian Weng, Ming Wu, Fan Yang, Li-
dong Zhou, Feng Zhao, and Enhong Chen. Ki-
neograph: taking the pulse of a fast-changing and
connected world. In Proceedings of the 7th ACM
european conference on Computer Systems, pages
85–98. ACM, 2012.

[10] Sharan Chetlur, Cliff Woolley, Philippe Vandermer-
sch, Jonathan Cohen, John Tran, Bryan Catanzaro,
and Evan Shelhamer. cudnn: Efficient primitives
for deep learning. arXiv preprint arXiv:1410.0759,
2014.

[11] Andrew Davidson, Sean Baxter, Michael Garland,
and John D Owens. Work-efficient parallel GPU
methods for single-source shortest paths. In 28th
International Symposium on Parallel & Distributed
Processing (IPDPS), pages 349–359. IEEE, 2014.

[12] European Open Stream Map. http://download.
geofabrik.de/europe-latest.osm.bz2,.

[13] Eric Finnerty, Zachary Sherer, Hang Liu, and Yan
Luo. Dr. BFS: Data Centric Breadth-First Search
on FPGAs. In Proceedings of the 56th Annual De-
sign Automation Conference 2019, page 208. ACM,
2019.

[14] Anil Gaihre, Yan Luo, and Hang Liu. Do Bitcoin
Users Really Care About Anonymity? An Analysis
of the Bitcoin Transaction Graph. In 2018 IEEE
International Conference on Big Data (Big Data),
pages 1198–1207. IEEE, 2018.

[15] Anil Gaihre, Zhenlin Wu, Fan Yao, and Hang
Liu. XBFS: eXploring Runtime Optimizations for
Breadth-First Search on GPUs. In Proceedings of
the international symposium on High-performance
parallel and distributed computing (HPDC). ACM,
2019.

[16] Benedict R Gaster and Lee Howes. Can GPGPU
Programming Be Liberated from the Data-Parallel
Bottleneck? Computer, 2012.

[17] Minas Gjoka, Maciej Kurant, Carter T Butts, and
Athina Markopoulou. Practical Recommendations
on Crawling Online Social Networks. IEEE Jour-
nal on Selected Areas in Communications, 2011.

[18] Joseph E Gonzalez, Yucheng Low, Haijie Gu,
Danny Bickson, and Carlos Guestrin. PowerGraph:
Distributed Graph-Parallel Computation on Natural
Graphs. In OSDI, volume 12, page 2, 2012.

[19] GTgraph: A suite of synthetic random graph gen-
erators. http://www.cse.psu.edu/~madduri/
software/GTgraph/.

[20] Kshitij Gupta, Jeff A Stuart, and John D Owens.
A study of persistent threads style GPU program-
ming for GPGPU workloads. In Innovative Parallel
Computing (InPar), 2012, pages 1–14. IEEE, 2012.

USENIX Association 2019 USENIX Annual Technical Conference 423

[21] Wentao Han, Youshan Miao, Kaiwei Li, Ming
Wu, Fan Yang, Lidong Zhou, Vijayan Prabhakaran,
Wenguang Chen, and Enhong Chen. Chronos:
a graph engine for temporal graph analysis. In
Proceedings of the Ninth European Conference on
Computer Systems, page 1. ACM, 2014.

[22] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park,
Jeong-Hoon Lee, Min-Soo Kim, Jinha Kim, and
Hwanjo Yu. TurboGraph: a fast parallel graph en-
gine handling billion-scale graphs in a single PC. In
Proceedings of international conference on Knowl-
edge discovery and data mining (SIGKDD), pages
77–85, 2013.

[23] Sungpack Hong, Hassan Chafi, Edic Sedlar, and
Kunle Olukotun. Green-Marl: a DSL for easy and
efficient graph analysis. In Proceedings of the sev-
enteenth international conference on Architectural
Support for Programming Languages and Operat-
ing Systems (ASPLOS), volume 40, pages 349–362,
2012.

[24] Derek R Hower, Blake A Hechtman, Bradford M
Beckmann, Benedict R Gaster, Mark D Hill,
Steven K Reinhardt, and David A Wood.
Heterogeneous-race-free memory models.
ACM SIGARCH Computer Architecture News,
42(1):427–440, 2014.

[25] Yang Hu, Hang Liu, and H Howie Huang. High-
Performance Triangle Counting on GPUs. In 2018
IEEE High Performance extreme Computing Con-
ference (HPEC), pages 1–5. IEEE, 2018.

[26] Yang Hu, Hang Liu, and H Howie Huang. Tricore:
Parallel triangle counting on gpus. In SC18: Inter-
national Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages
171–182. IEEE, 2018.

[27] H Howie Huang and Hang Liu. Big data ma-
chine learning and graph analytics: Current state
and future challenges. In 2014 IEEE International
Conference on Big Data (Big Data), pages 16–17.
IEEE, 2014.

[28] Yuede Ji, Hang Liu, and H Howie Huang. iSpan:
Parallel Identification of Strongly Connected Com-
ponents with Spanning Trees. In SC18: Interna-
tional Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pages 731–
742. IEEE, 2018.

[29] Yangqing Jia, Evan Shelhamer, Jeff Donahue,
Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. Caffe:

Convolutional architecture for fast feature embed-
ding. In Proceedings of the 22nd ACM interna-
tional conference on Multimedia, pages 675–678.
ACM, 2014.

[30] Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat
McCormick, Mattan Erez, and Alex Aiken. A Dis-
tributed Multi-GPU System for Fast Graph Pro-
cessing. Proceedings of the VLDB Endowment,
11(3):297–310, 2017.

[31] Farzad Khorasani. High Performance Vertex-
Centric Graph Analytics on GPUs. PhD Disser-
tation: University of California, Riverside, 2016.

[32] Farzad Khorasani, Rajiv Gupta, and Laxmi N
Bhuyan. Scalable simd-efficient graph processing
on gpus. In Parallel Architecture and Compilation
(PACT), 2015 International Conference on, pages
39–50. IEEE, 2015.

[33] Farzad Khorasani, Keval Vora, Rajiv Gupta, and
Laxmi N Bhuyan. CuSha: vertex-centric graph pro-
cessing on GPUs. In Proceedings of the 23rd inter-
national symposium on High-performance parallel
and distributed computing, pages 239–252. ACM,
2014.

[34] Min-Soo Kim, Kyuhyeon An, Himchan Park,
Hyunseok Seo, and Jinwook Kim. GTS: A fast and
scalable graph processing method based on stream-
ing topology to GPUs. In Proceedings of the 2016
International Conference on Management of Data,
pages 447–461. ACM, 2016.

[35] Pradeep Kumar and H Howie Huang. G-store:
high-performance graph store for trillion-edge pro-
cessing. In Proceedings of the International Con-
ference for High Performance Computing, Net-
working, Storage and Analysis, page 71. IEEE
Press, 2016.

[36] Pradeep Kumar and H Howie Huang. Falcon: scal-
ing IO performance in multi-SSD volumes. In
Proceedings of the 2017 USENIX Conference on
Usenix Annual Technical Conference, pages 41–53.
USENIX Association, 2017.

[37] Pradeep Kumar and H Howie Huang. GraphOne:
A Data Store for Real-time Analytics on Evolving
Graphs. In 17th USENIX Conference on File and
Storage Technologies (FAST 19), pages 249–263,
2019.

[38] Haewoon Kwak, Changhyun Lee, Hosung Park,
and Sue Moon. What is Twitter, a social network
or a news media? In WWW, 2010.

424 2019 USENIX Annual Technical Conference USENIX Association

[39] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin.
GraphChi: large-scale graph computation on just a
PC. In Proceedings of the 10th USENIX conference
on Operating Systems Design and Implementation,
pages 31–46. USENIX Association, 2012.

[40] Hang Liu and H Howie Huang. Graphene: Fine-
Grained IO Management for Graph Computing.
In 15th USENIX Conference on File and Storage
Technologies (FAST 17), pages 285–300. USENIX
Association.

[41] Hang Liu and H. Howie Huang. Enterprise:
Breadth-First Graph Traversal on GPU Servers.
In International Conference for High Performance
Computing, Networking, Storage and Analysis
(SC), 2015.

[42] Hang Liu and H. Howie Huang. Graphene: Fine-
Grained IO Management for Graph Computing. In
Proceedings of the 15th USENIX Conference on
File and Storage Technologies. USENIX Associa-
tion, 2017.

[43] Hang Liu, H Howie Huang, and Yang Hu. iBFS:
Concurrent Breadth-First Search on GPUs. In Pro-
ceedings of the 2016 International Conference on
Management of Data (SIGMOD), 2016.

[44] Weifeng Liu and Brian Vinter. CSR5: An efficient
storage format for cross-platform sparse matrix-
vector multiplication. In Proceedings of the 29th
ACM on International Conference on Supercom-
puting, pages 339–350. ACM, 2015.

[45] Yucheng Low, Joseph Gonzalez, Aapo Kyrola,
Danny Bickson, Carlos Guestrin, and Joseph M
Hellerstein. Graphlab: A new framework for paral-
lel machine learning. 2010.

[46] Lijuan Luo, Martin Wong, and Wen-mei Hwu.
An effective GPU implementation of breadth-first
search. In Proceedings of the 47th design automa-
tion conference, pages 52–55. ACM, 2010.

[47] Steffen Maass, Changwoo Min, Sanidhya Kashyap,
Woonhak Kang, Mohan Kumar, and Taesoo Kim.
Mosaic: Processing a trillion-edge graph on a sin-
gle machine. In Proceedings of the Twelfth Euro-
pean Conference on Computer Systems, pages 527–
543. ACM, 2017.

[48] Sepideh Maleki, Annie Yang, and Martin
Burtscher. Higher-order and tuple-based
massively-parallel prefix sums, volume 51.
ACM, 2016.

[49] Grzegorz Malewicz, Matthew H Austern, Aart JC
Bik, James C Dehnert, Ilan Horn, Naty Leiser, and
Grzegorz Czajkowski. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Man-
agement of data, pages 135–146. ACM, 2010.

[50] Duane Merrill, Michael Garland, and Andrew
Grimshaw. Scalable GPU graph traversal. In
PPoPP, 2012.

[51] Ulrich Meyer and Peter Sanders. ∆-Stepping: A
Parallel Single Source Shortest Path Algorithm. Al-
gorithms—ESA’98, 1998.

[52] Youshan Miao, Wentao Han, Kaiwei Li, Ming Wu,
Fan Yang, Lidong Zhou, Vijayan Prabhakaran, En-
hong Chen, and Wenguang Chen. Immortalgraph:
A system for storage and analysis of temporal
graphs. ACM Transactions on Storage (TOS), 2015.

[53] Alberto Montresor, Francesco De Pellegrini, and
Daniele Miorandi. Distributed k-Core Decompo-
sition. IEEE Transactions on Parallel and Dis-
tributed Systems, 2013.

[54] Donald Nguyen, Andrew Lenharth, and Keshav
Pingali. A lightweight infrastructure for graph
analytics. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles
(SOSP), pages 456–471. ACM, 2013.

[55] Amir Hossein Nodehi Sabet, Junqiao Qiu, and Zhi-
jia Zhao. Tigr: Transforming Irregular Graphs
for GPU-Friendly Graph Processing. In Proceed-
ings of the Twenty-Third International Conference
on Architectural Support for Programming Lan-
guages and Operating Systems, pages 622–636.
ACM, 2018.

[56] Nvidia. NVIDIA Kepler GK110 Architecture
Whitepaper. 2013.

[57] Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. The PageRank Citation Ranking:
Bringing Order to the Web. Technical report, Stan-
ford InfoLab, 1999.

[58] Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. Automatic differentiation in PyTorch. 2017.

[59] Vijayan Prabhakaran, Ming Wu, Xuetian Weng,
Frank McSherry, Lidong Zhou, and Maya Hari-
dasan. Managing large graphs on multi-cores with
graph awareness. In Proceedings of USENIX con-
ference on Annual Technical Conference. USENIX
Association, 2012.

USENIX Association 2019 USENIX Annual Technical Conference 425

[60] Amitabha Roy, Laurent Bindschaedler, Jasmina
Malicevic, and Willy Zwaenepoel. Chaos: Scale-
out Graph Processing from Secondary Storage. In
Proceedings of the 25th Symposium on Operating
Systems Principles, pages 410–424. ACM, 2015.

[61] Amitabha Roy, Ivo Mihailovic, and Willy
Zwaenepoel. X-stream: Edge-centric graph pro-
cessing using streaming partitions. In Proceedings
of the Twenty-Fourth ACM Symposium on Oper-
ating Systems Principles, pages 472–488. ACM,
2013.

[62] Dipanjan Sengupta, Shuaiwen Leon Song, Kapil
Agarwal, and Karsten Schwan. GraphReduce:
processing large-scale graphs on accelerator-based
systems. In High Performance Computing,
Networking, Storage and Analysis, 2015 SC-
International Conference for, pages 1–12. IEEE,
2015.

[63] Bin Shao, Haixun Wang, and Yatao Li. Trinity: A
distributed graph engine on a memory cloud. In
Proceedings of International Conference on Man-
agement of Data (SIGMOD), pages 505–516, 2013.

[64] Zachary Sherer, Eric Finnerty, Yan Luo, and Hang
Liu. Software Hardware Co-Optimized BFS on
FPGAs. In Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable
Gate Arrays, pages 190–190. ACM, 2019.

[65] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen,
and Feifei Li. Fast and Concurrent RDF Queries
with RDMA-Based Distributed Graph Exploration.
In 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI) 16), pages
317–332.

[66] Julian Shun and Guy E Blelloch. Ligra: a
lightweight graph processing framework for shared
memory. In PPoPP, 2013.

[67] George M Slota, Sivasankaran Rajamanickam, and
Kamesh Madduri. BFS and Coloring-based Parallel
Algorithms for Strongly Connected Components
and Related Problems. In International Parallel
and Distributed Processing Symposium (IPDPS),
2014.

[68] SNAP: Stanford Large Network Dataset Collection.
http://snap.stanford.edu/data/.

[69] Tyler Sorensen, Alastair F Donaldson, Mark Batty,
Ganesh Gopalakrishnan, and Zvonimir Rakamarić.
Portable inter-workgroup barrier synchronisation
for GPUs. In ACM SIGPLAN Notices, volume 51,
pages 39–58. ACM, 2016.

[70] The University of Florida: Sparse Matrix Collec-
tion. http://www.cise.ufl.edu/research/
sparse/matrices/.

[71] Yuanyuan Tian, Andrey Balmin, Severin Andreas
Corsten, Shirish Tatikonda, and John McPherson.
From Think Like a Vertex to Think Like a Graph.
Proceedings of the VLDB Endowment, 2013.

[72] Stanley Tzeng, Anjul Patney, and John D Owens.
Task Management for Irregular-Parallel Workloads
on the GPU. In Proceedings of the Conference on
High Performance Graphics. Eurographics Associ-
ation, 2010.

[73] Mohamed Wahib and Naoya Maruyama. Scalable
Kernel Fusion for Memory-bound GPU applica-
tions. In Proceedings of the International Confer-
ence for High Performance Computing, Network-
ing, Storage and Analysis. IEEE Press, 2014.

[74] Kai Wang and Zhendong Su. GraphQ: Graph
Query Processing with Abstraction Refinement-
Scalable and Programmable Analytics over Very
Large Graphs on a Single PC.

[75] Siyuan Wang, Chang Lou Lou, Rong Chen, and
Haibo Chen. Fast and Concurrent RDF Queries
using RDMA-assisted GPU Graph Exploration.
In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), Boston, MA, 2018. USENIX
Association.

[76] Yangzihao Wang, Andrew Davidson, Yuechao Pan,
Yuduo Wu, Andy Riffel, and John D Owens. Gun-
rock: A high-performance graph processing library
on the GPU. In Proceedings of the 20th ACM
SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 265–266. ACM,
2015.

[77] Yangzihao Wang, Yuechao Pan, Andrew Davidson,
Yuduo Wu, Carl Yang, Leyuan Wang, Muhammad
Osama, Chenshan Yuan, Weitang Liu, Andy T Rif-
fel, et al. Gunrock: GPU Graph Analytics. arXiv
preprint arXiv:1701.01170, 2017.

[78] Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao,
Youshan Miao, Lan Wei, Haoxiang Lin, Yafei Dai,
and Lidong Zhou. G ra M: scaling graph compu-
tation to the trillions. In Proceedings of the Sixth
ACM Symposium on Cloud Computing, pages 408–
421. ACM, 2015.

[79] Shucai Xiao and Wu-chun Feng. Inter-block GPU
communication via fast barrier synchronization. In
International Symposium on Parallel & Distributed
Processing (IPDPS), pages 1–12, 2010.

426 2019 USENIX Annual Technical Conference USENIX Association

[80] Chenning Xie, Rong Chen, Haibing Guan, Binyu
Zang, and Haibo Chen. Sync or async: Time
to fuse for distributed graph-parallel computation.
In ACM SIGPLAN Notices (PPoPP), volume 50,
pages 194–204. ACM, 2015.

[81] Da Yan and Hang Liu. Parallel graph processing.
Encyclopedia of Big Data Technologies, pages 1–
8, 2018.

[82] Shengen Yan, Guoping Long, and Yunquan Zhang.
StreamScan: fast scan algorithms for GPUs without
global barrier synchronization. In PPoPP, 2013.

[83] Jialing Zhang, Xiaoyan Zhuo, Aekyeung Moon,
Hang Liu, and Seung Woo Son. Efficient Encod-
ing and Reconstruction of HPC Datasets for Check-
point/Restart. In IEEE Symposium on Mass Storage
Systems and Technologies, 2019.

[84] Kaiyuan Zhang, Rong Chen, and Haibo Chen.
NUMA-aware graph-structured analytics. ACM
SIGPLAN Notices (PPoPP), 50(8):183–193, 2015.

[85] Mingxing Zhang, Yongwei Wu, Kang Chen, Xue-
hai Qian, Xue Li, and Weimin Zheng. Exploring the
Hidden Dimension in Graph Processing. In OSDI,
pages 285–300, 2016.

[86] Mingxing Zhang, Yongwei Wu, Youwei Zhuo,
Xuehai Qian, Chengying Huan, and Kang Chen.
Wonderland: A Novel Abstraction-Based Out-Of-
Core Graph Processing System. In Proceedings of
the Twenty-Third International Conference on Ar-
chitectural Support for Programming Languages
and Operating Systems, pages 608–621. ACM,
2018.

[87] Yanfeng Zhang, Qixin Gao, Lixin Gao, and
Cuirong Wang. Maiter: An Asynchronous Graph
Processing Framework for Delta-based Accumula-
tive Iterative Computation. IEEE Transactions on
Parallel and Distributed Systems, 2014.

[88] Yunhao Zhang, Rong Chen, and Haibo Chen. Sub-
millisecond Stateful Stream Querying over Fast-
evolving Linked Data. In Proceedings of the
26th Symposium on Operating Systems Principles
(SOSP), pages 614–630. ACM, 2017.

[89] Yunming Zhang, Vladimir Kiriansky, Charith
Mendis, Saman Amarasinghe, and Matei Zaharia.
Making caches work for graph analytics. In 2017
IEEE International Conference on Big Data (Big
Data),, pages 293–302. IEEE, 2017.

[90] Da Zheng, Disa Mhembere, Randal Burns, Joshua
Vogelstein, Carey E Priebe, and Alexander S Sza-
lay. FlashGraph: processing billion-node graphs
on an array of commodity SSDs. In Proceedings of
the 13th USENIX Conference on File and Storage
Technologies, pages 45–58. USENIX Association,
2015.

[91] Jianlong Zhong and Bingsheng He. Medusa:
Simplified graph processing on gpus. Parallel
and Distributed Systems, IEEE Transactions on,
25(6):1543–1552, 2014.

[92] Xiaowei Zhu, Wentao Han, and Wenguang Chen.
GridGraph: Large-Scale Graph Processing on a
Single Machine Using 2-Level Hierarchical Parti-
tioning. In 2015 USENIX Annual Technical Confer-
ence (USENIX ATC 15), pages 375–386. USENIX

Association, 2015.

USENIX Association 2019 USENIX Annual Technical Conference 427

LUMOS: Dependency-Driven Disk-based Graph Processing

Keval Vora
School of Computing Science

Simon Fraser University
British Columbia, Canada

keval@cs.sfu.ca

Abstract
Out-of-core graph processing systems are well-optimized to
maintain sequential locality on disk and minimize the amount
of disk I/O per iteration. Even though the sparsity in real-
world graphs provides opportunities for out-of-order execu-
tion, these systems often process graphs iteration-by-iteration,
hence providing Bulk Synchronous Parallel (synchronous for
short) mode of processing which is also a preferred choice for
easier programmability. Since out-of-core setting limits the
view of entire graph and constrains the processing order to
maintain disk locality, exploiting out-of-order execution while
simultaneously providing synchronous processing guarantees
is challenging. In this paper we develop a generic dependency-
driven out-of-core graph processing technique, called LUMOS,
that performs out-of-order execution to proactively propagate
values across iterations while simultaneously providing syn-
chronous processing guarantees. Our cross-iteration value
propagation technique identifies future dependencies that can
be safely satisfied, and actively computes values across those
dependencies without sacrificing disk locality. This eliminates
the need to load the corresponding portions of graph in fu-
ture iterations, hence reducing disk I/O and accelerating the
overall processing.

1 Introduction
Disk-based processing of large graphs enables processing
to scale beyond the available main memory in both single
machine [1, 8, 9, 13, 14, 16, 17, 24, 34, 35, 38] and cluster
based [23] processing environments. With limited amount of
main memory available for processing, out-of-core graph sys-
tems first divide the graph into partitions that reside on disk,
and then process these partitions one-by-one by streaming
through them, i.e., by sequentially loading them in memory
and immediately processing them. As expected, such out-
of-core processing is I/O intensive and systems often spend
significant amount of time in loading the partitions from disk;
for example, GridGraph [38], a recent state-of-art out-of-core
graph processing system, spends 69-90% of time in loading
edges from disk partitions.

A common concern across graph processing systems is the
nature of consistency semantics they offer for programmers to
correctly express their graph algorithms. Consistency seman-
tics in the context of iterative graph processing fundamentally
decide when should a vertex’s value (that is computed in a
given iteration) become visible to its outgoing neighbors. The
most popular consistency semantics is offered by the Bulk
Synchronous Parallel (BSP) [27] model (hereafter called syn-
chronous processing semantics) that separates computations
across iterations such that vertex values computed in a given
iteration become visible to their outgoing neighbors in the
next iteration, i.e., values in a given iteration are computed
based on values from the previous iteration. Such clear sepa-
ration between values being generated v/s values being used
allows programmers to clearly reason about the important
convergence and correctness properties. Hence, synchronous
processing semantics often becomes a preferred choice for
large-scale graph processing [18, 24, 36, 38].

While out-of-core graph processing systems that provide
synchronous processing semantics have been well-optimized
to maintain sequential disk locality and to minimize the
amount of disk I/O per iteration, they process graphs iteration-
by-iteration such that processing for a given iteration starts
only after all the partitions have been processed for the cor-
responding previous iteration. Such synchronous processing
enforces dependencies between all values across subsequent
iterations. However, dependencies in graph computation are
determined by the structure of the input graph, and real-world
graphs are often large and sparse. This means, more often than
not, two randomly chosen vertices will not be directly con-
nected to each other, hence deeming the dependency between
their values to be unnecessary in synchronous processing.
This sparsity in edges provides an opportunity to perform
out-of-order execution such that unrelated values across mul-
tiple iterations get simultaneously computed to amortize the
disk I/O cost across multiple iterations. However, achieving
such out-of-order execution in an out-of-core setting without
sacrificing sequential disk locality, as well as simultaneously
providing synchronous processing guarantees is challenging.

USENIX Association 2019 USENIX Annual Technical Conference 429

In this paper, we develop a dependency-aware cross-
iteration value propagation technique called LUMOS to en-
able future value computations that reduce disk I/O while still
guaranteeing synchronous processing semantics. We refine
vertex computations into two key components: the first step
performs concurrent aggregation of incoming vertex values,
and the next step uses the result of concurrent aggregation
to compute the final vertex value. Upon doing so, we iden-
tify that computing aggregations requires all incoming vertex
values to be available which is a strong precondition that
limits future computations. However, values can be safely
propagated to compute partial aggregations that lifts off the
precondition of requiring all incoming vertex values. When
the partial aggregations receive all required values, they can
be used to compute the final future vertex values which can be
propagated further down across subsequent future iterations.

We enable such cross-iteration value propagation across
partitions as partition boundaries become natural points to
capture the set of value dependencies that can be safely sat-
isfied. We further increase cross-iteration propagation via
locality-aware intra-partition propagation to exploit the in-
herent locality in real-world graphs which has been identi-
fied in recent works [36]. While LUMOS can also correctly
process asynchronous algorithms (e.g., traversal algorithms
like shortest paths), we further optimize LUMOS for asyn-
chronous algorithms by exposing relaxed processing seman-
tics in its processing model. Finally, to achieve maximum
benefits we enhance LUMOS with several key out-of-core pro-
cessing strategies like selective scheduling and light-weight
partitioning that have been shown to be seminal in extracting
performance in out-of-core processing.

While our dependency aware cross-iteration propagation
model is general enough to be incorporated in any syn-
chronous out-of-core graph processing system, we develop
LUMOS by extending GridGraph which is a state-of-art out-
of-core graph processing system that guarantees synchronous
processing semantics. Our evaluation shows that LUMOS is
able to compute future values across 71-97% of edges which
eliminates the corresponding amount of disk I/O across those
iterations, and hence, LUMOS is 1.8× faster than GridGraph
while it still retains the same synchronous processing seman-
tics. To the best of our knowledge, this is the first out-of-core
graph processing technique that enables future value compu-
tation across iterations, while still retaining the synchronous
processing semantics throughout all the iterations, which is
crucial for easy programmability.

2 Background & Motivation
We first discuss about semantics of synchronous execution,
and then summarize out-of-core graph processing techniques.

2.1 Synchronous Processing Semantics
The Bulk Synchronous Parallel (BSP) model [27] is a pop-
ular processing model that provides synchronous stepwise

Algorithm 1 Synchronous PageRank
1: G = (V,E) B Input graph
2: pr = {1,1, ...,1} B Floating-point array of size |V |
3: while not converged do
4: newPr = {0,0, ...,0} B Floating-point array of size |V |
5: par-for (u,v) ∈ E do

6: ATOMICADD(&newPr[v],
pr[u]

|out_neighbors(u)|)
7: end par-for
8: par-for v ∈V do
9: newPr[v] = 0.15 + 0.85×newPr[v]

10: end par-for
11: SWAP(pr, newPr)
12: end while

execution semantics with separated computation and com-
munication/synchronization phases. Under the BSP model,
values in a given iteration are computed based on values from
the previous iteration. We illustrate the synchronous process-
ing semantics of BSP model using the PageRank algorithm as
an example 1 in Algorithm 1. The algorithm computes vertex
values (newPr) using the ones computed in previous iteration
(pr) as shown on line 6. The flow of values across iterations
is explicitly controlled via SWAP() on line 11.

Such clear separation of values being generated v/s values
being used allows programmers to clearly reason about the
important convergence and correctness properties. Hence,
synchronous processing semantics often becomes a preferred
choice for large-scale graph processing [18, 24, 36, 38].

2.2 Out-of-Core Graph Processing
Disk-based graph processing has been a challenging task due
to ever growing graph sizes. The key components in effi-
cient out-of-core graph processing systems is a disk-friendly
partition-based data-structure, and an execution engine that
processes the graph in a partition-by-partition fashion that
maximizes sequential locality. Figure 1 shows how a given
graph is represented as partitions on disk. Each partition rep-
resents incoming edges for a range of vertices (chunk-based
partitioning [38]); partition p0 holds incoming edges for ver-
tices 0 and 1, p1 holds for vertices 2 and 3, and p3 for vertices
4 and 5. The iterative engine processes the graph by going
through these partitions in a fixed order; it sequentially loads
edges from partition p0 to process them in memory, then from
partition p1, and finally from the last partition p2. Once all
the partitions are processed, the iteration ends by perform-
ing computations across vertex values, that may reside on
disk or in-memory (depending on availability of memory).
This entire process is repeated for multiple iterations until
algorithm-specific termination condition is satisfied.

Several works aim to improve out-of-core graph processing
[1, 8, 9, 13, 14, 16, 17, 24, 31, 32, 34, 35, 38] as summarized in
Table 1. Depending on the processing semantics they offer,
they fall in two categories:

1Algorithm 1 is simplified to eliminate details like selective scheduling.

430 2019 USENIX Annual Technical Conference USENIX Association

Out-of-Order
Execution

Future Value
Computation

Synchronous
Semantics

Async.
Algorithms
(e.g., SSSP)

GraphChi [13] 7 7 3 3

X-Stream [24] 7 7 3 3

GridGraph [38] 7 7 3 3

FlashGraph [35] 7 7 3 3

TurboGraph [8] 7 7 3 3

Mosaic [17] 7 7 3 3

GraFBoost [9] 7 7 3 3

Graphene [15] 7 7 3 3

Garaph [16] 7 7 3 3

DynamicShards [31] 3 7 3 3

Wonderland [34] 3 3 7 3

CLIP [1] 3 3 7 3

AsyncStripe [4] 3 3 7 3

LUMOS 3 3 3 3

Table 1: Key characteristics of existing out-of-core graph processing
systems and LUMOS.

1

0 2

5
3

4

1

0 2

5
3

4

(0,	1)
(1,	0)
(3,	1)
(4,	0)
(4,	1)

(0,	3)
(0,	2)
(1,	3)
(4,	2)
(5,	2)

(0,	5)
(1,	5)
(2,	4)
(2,	5)
(3,	5)
(5,	4)

(0,	1)
(1,	0)
(3,	1)
(4,	0)
(4,	1)

(4,	2)
(5,	2)

(5,	4)

1

0 2

5
3

4

p0 p1 p2p0 p1 p2

1

0 2

5

3

4

(a) Example graph.

1

0 2

5
3

4

1

0 2

5
3

4

(0,	1)
(1,	0)
(3,	1)
(4,	0)
(4,	1)

(0,	3)
(0,	2)
(1,	3)
(4,	2)
(5,	2)

(0,	5)
(1,	5)
(2,	4)
(2,	5)
(3,	5)
(5,	4)

(0,	1)
(1,	0)
(3,	1)
(4,	0)
(4,	1)

(4,	2)
(5,	2)

(5,	4)

1

0 2

5
3

4

p0 p1 p2p0 p1 p2

1

0 2

5

3

4

(b) Edge partitions.

Figure 1: An example graph partitioned
into three partitions (p0, p1 and p2) that

reside on disk.

(A) Synchronous Out-of-Core Graph Processing.
GraphChi [13], X-Stream [24], GridGraph [38], and others
provide synchronous processing semantics. While initial sys-
tems like GraphChi [13] and X-Stream [24] proposed efficient
processing models, their performance is limited due to man-
agement of edge-scale intermediate values in every iteration
(edge values in GraphChi and edge updates in X-Stream).

GridGraph [38] is an efficient out-of-core graph process-
ing system that eliminates edge-scale intermediate updates.
It divides vertices into subsets called chunks and partitions
edges into 2D grid based on these chunks. In Figure 1b, the
dashed-horizontal lines represent boundaries of blocks such
that the entire representation becomes a 2D grid. The 2D grid
is processed by streaming through edge-blocks. Furthermore,
GridGraph enables selective scheduling which eliminates un-
necessary edges to be loaded from disk by skipping partitions.
Since its processing model is designed to minimize disk I/O,
it is the state-of-art out-of-core graph processing system that
provides synchronous processing semantics.

(B) Asynchronous Out-of-Core Graph Processing.
Recent works like CLIP [1] and Wonderland [34] are cus-
tomized for asynchronous algorithms like path-based algo-
rithms (e.g., BFS and shortest paths). These frameworks lever-
age the algorithmic properties (e.g., monotonicity [28, 29])
to process partitions based on newly computed values, re-
sulting in faster convergence. CLIP [1] processes partitions
multiple times in memory while Wonderland [34] performs
abstraction-guided processing for faster information propa-
gation. Even though these techniques perform out-of-order
computations (see Table 1), they do not provide synchronous
processing semantics since they violate the processing order
across computed vertex values. Hence, they cannot be used
for synchronous graph algorithms.

Limitations with Out-of-Core Systems.
As shown in Table 1, none of the systems perform future
value computation (i.e., beyond a single iteration) while si-
multaneously providing synchronous processing semantics.
In synchronous out-of-core frameworks, the processing model
is tied down to strict iteration-by-iteration processing. Such
tight coupling between synchronous semantics and strict pro-
cessing order limits the performance of out-of-core graph pro-
cessing. Particularly, the sparsity in real-world graphs often
presents opportunities to proactively compute future values
based on when value dependencies get resolved; realizing
such processing across future iterations can be beneficial in
out-of-core setting since edges corresponding to values that
have already been computed for future iterations do not need
to be loaded in those iterations, hence directly reducing disk
I/O. However, such acceleration via future value computa-
tion is not achieved in out-of-core systems due to their strict
iteration-by-iteration processing.

It is crucial to note that out-of-order execution does not
necessarily result in computing across future values. Specifi-
cally, DynamicShards [31] performs out-of-order execution to
dynamically capture the set of active edges to be processed in
a given iteration. It achieves this by dropping inactive (or use-
less) edges across iterations and delaying computations that
cannot be performed due to missing edges. While the delayed
computations get periodically processed in shadow iterations
(i.e., out-of-order execution), they do not compute across fu-
ture values to leverage sparse dependencies. Asynchronous
systems [1,34], on the other hand, do compute beyond a single
iteration, but do not provide processing semantics.

This poses an important question: how to process beyond a
single iteration to reduce disk I/O in out-of-core processing
while simultaneously guaranteeing synchronous processing
semantics?

USENIX Association 2019 USENIX Annual Technical Conference 431

 0

 15

 30

 45

U
K

T
W T
T

F
T

U
K

T
W T
T

F
T

U
K

T
W T
T

F
T

16 64 256
Chunk Cyclic Random

%
 V

er
ti
ce

s

(a) Vertices for which vt+1 can be computed in
iteration t using ut ,∀(u,v) ∈ E.

 0

 1

 2

 3

 4

U
K

T
W T
T

F
T

U
K

T
W T
T

F
T

U
K

T
W T
T

F
T

16 64 256
Chunk Cyclic Random

%
 E

dg
es

(b) Incoming edges for vertices in Figure 2a that
don’t need to be loaded from disk in iteration t +1.

 0

 15

 30

 45

U
K

T
W T
T

F
T

U
K

T
W T
T

F
T

U
K

T
W T
T

F
T

16 64 256
Chunk Cyclic Random

%
 E

dg
es

(c) Edges that don’t need to be loaded from disk in
iteration t +1, when computing partial aggregation

in iteration t as shown in Eq. 2.

Figure 2: Percentage of vertex computations and edge savings across three light-weight partitioning strategies (chunking, cyclic
hashing and random partitioning) and three partition sizes (#partitions = 16, 64 and 256) on four large graphs

(UK, TW, TT and FT from Table 4).

3 LUMOS: Dependency-Driven
Cross-Iteration Value Propagation

Since our goal is to provide synchronous processing semantics
while overlapping computations across multiple iterations,
we first characterize cross-iteration dependencies to capture
synchronous semantics and then develop our out-of-core value
propagation strategy that guarantees those captured semantics.

3.1 Characterizing Synchronous Dependencies
Synchronous iterative graph algorithms compute vertex val-
ues in a given iteration based on values of their incoming
neighbors that were computed in the previous iteration. Since
computations are primarily based on graph structure, such
cross iteration dependencies can be captured via the graph
structure as follows:

∀(u,v) ∈ E, ut 7→ vt+1 (1)

where ut and vt+1 represent values of vertex u in iteration t
and vertex v in iteration t +1 respectively, and 7→ indicates
that vt+1 is value-dependent on ut . It is important to note that
there are no dependency relationships among vertices that are
not directly connected by an edge. With limited view of graph
structure available at any given time in out-of-core graph
processing, the cross-iteration dependencies get satisfied by
processing vertices and edges in a given iteration only after
processing for the previous iteration is completed.

3.2 Out-of-core Value Propagation
We ask two important questions that allow us to identify the
interplay between cross-iteration value propagations to sat-
isfy future dependencies and partition-by-partition processing
orchestrated by out-of-core graph systems.

3.2.1 When to propagate?

A straightforward way to enable processing beyond a given
single iteration t is to compute vertex values for the sub-
sequent iteration t + 1 if incoming neighbors’ values corre-
sponding to t are available at the time when those vertices

are processed. With partition-by-partition out-of-core process-
ing, we know that values for vertices belonging to a given
partition p become available when p is processed; hence, we
can allow outgoing neighbors to use these available values
and compute for subsequent iterations if their partitions get
processed after p in the same iteration. While theoretically
this appears to be a promising direction, we profile the large
graphs from Table 4 to measure the number of vertices for
which future values can be computed (shown in Figure 2a),
and the number of edges that don’t need to be loaded for
the corresponding vertices in future iterations (shown in Fig-
ure 2b). To eliminate the impact of partitioning, we profiled
across three light-weight partitioning schemes, chunk-based
partitioning (as used in [38]), cyclic partitioning (where ver-
tex ids are hashed to partitions) and random partitioning; and,
across three partition sizes corresponding to number of parti-
tions being 16, 64 and 256. Even though Figure 2a shows up
to 45% of vertices can compute values for subsequent itera-
tions, it contributes to only 1-4% of edge savings as shown in
Figure 2b. This means, future values can be computed for ver-
tices that have low in-degree and, as expected, high in-degree
vertices cannot compute future values since values for all of
their incoming neighbors do not become available in time.

To achieve high amount of cross-iteration value propaga-
tion, we want to relax the precondition such that availability of
all incoming neighbor values does not become a requirement.
We achieve this by computing only the aggregated values for
future iterations instead of computing final vertex values. Let⊕

denote the aggregation operator that computes the inter-
mediate value based on incoming neighbors and f denote
the function to compute vertex’s value based on aggregated
intermediate value. For example, in PageRank (Algorithm 1),
ATOMICADD on line 6 represents

⊕
and line 9 shows f . In a

given iteration t, we aim to compute 2:

vt = f (
⊕

∀e=(u,v)∈E

(ut−1)) and g(vt+1) =
⊕

∀e=(u,v)∈E
s.t. p(u)<p(v)

(ut) (2)

2Values residing on edges (i.e., edge weights) have been left out from
equations for simplicity as they do not impact cross-iteration dependencies.

432 2019 USENIX Annual Technical Conference USENIX Association

where g(v) represents aggregated value of v and p(v) is
the partition to which v belongs. It is important to note
that

⊕
∀e=(u,v)∈E

represents a complete aggregation while⊕
∀e=(u,v)∈E

s.t. p(u)<p(v)

represents partial aggregation as the precondi-

tion p(u) < p(v) may not be satisfied by all edges. Since
∀u ∈V,ut−1 is available in iteration t (due to barrier seman-
tics), we can perform complete aggregation and also compute
the vertex’s value using f . However, since ut becomes avail-
able as partitions get processed in the same iteration t, at a
given point in time only the available ut values can be propa-
gated to compute the partial aggregation which satisfies the
future cross-iteration dependency ut 7→ vt+1. Since typically
partitions get processed in numerical order, with P being to-
tal number of partitions, we know that ∀i, j ∈ [0,P), if i < j,
partition i gets processed before partition j. This ordering is
captured in the precondition for partial aggregation g(vt+1).
Hence, in Figure 1, as p0, p1 and p2 get processed in that or-
der, vt

0 is available for g(vt+1
2), g(vt+1

3) and g(vt+1
5) via (0,2),

(0,3) and (0,5) respectively, while vt
3 is not available for

g(vt+1
1) during iteration t.

As shown in Figure 2c, the percentage of values propagated
(via partial aggregation) increases to 40-50%; the edges cor-
responding to these propagations need not be loaded in the
subsequent iteration (i.e., directly reducing disk I/O), which
is significantly higher compared to that in Figure 2b. We
also observe that random partitioning compares well with
other techniques and enables higher cross-iteration propaga-
tion; this can be reasoned with the high chances of an edge
(u,v) being placed across partitions such that p(u)< p(v). In
Section 5.3, we will explore more light-weight partitioning
strategies that will further enable cross-iteration propagation.

Note that the above value propagation requires vertex val-
ues for the current iteration to be computed as partitions get
processed. We developed our processing model to simulta-
neously compute vertex values as corresponding partition’s
edges get processed (discussed further in Section 5.1).

3.2.2 How far (in iteration space) to propagate?
Cross-iteration dependencies are linear in iteration space and
hence, we can potentially propagate values for future itera-
tions beyond t+1. In order to guarantee synchronous process-
ing semantics, we need to ensure that vt+1 gets computed in
iteration t before it is further propagated to out-neighbors of v.
We define a value vx to be computable when all its incoming
values corresponding to iteration x−1 have been propagated
to g(vx) (i.e., a complete aggregation has occurred in g(vx)).
Since out-of-core processing propagates values to vertices
based on its partitions, values can become computable when
the corresponding vertex’s partition gets processed. Com-
putable values get computed by applying f on g(vx) to achieve
vx which can be further propagated to out-neighbors of v for
x+ 1. For example in Figure 1, vertex 3 has two incoming

UK TW TT FT
D = 2 6.8 - 49.7 39.2 - 50.1 17.4 - 49.7 35.6 - 49.8
D = 3 0.38 - 0.52 0.13 - 0.25 0.11 - 0.44 0.04 - 0.26
D = 4 < 0.01 < 0.01 < 0.01 < 0.01

Table 2: Percentage (min-max range) of edge propagations
across three partitioning strategies from Figure 2.

edges (0,3) and (1,3), both of which contribute to g(vt+1
3)

during iteration t; hence, we can compute vt+1
3 = f (g(vt+1

3))

during iteration t itself and further propagate vt+1
3 across the

outgoing edge (3,5) in the same iteration t.
For a given iteration t, we know that vt becomes com-

putable when p(v) gets processed. Hence, for any arbitrary
k, vt+k becomes computable when ∀(u,v) ∈ E, p(u) < p(v)
and ut+k−1 is computable. This is because the partial aggrega-
tion

⊕
∀e=(u,v)∈E

s.t. p(u)<p(v)

becomes equivalent to complete aggregation

⊕
∀e=(u,v)∈E

when ∀(u,v) ∈ E, p(u)< p(v). These computable

values that get further propagated lead to I/O reduction in
the corresponding future iterations. We define distance of
propagation (in iteration space) based on the difference be-
tween the current iteration number and the iteration number
for which any value propagation occurs in the current iteration.
Formally, the distance of propagation D is defined as:

D = max
∀t

(max
∀g(vt+k)

(k+1))

In traditional out-of-core graph systems, barriers across itera-
tions ensure that D= 1. Our dependency-aware cross-iteration
propagation achieves D > 1; for example, with propagation
for immediately subsequent iteration, D is 2. Table 2 summa-
rizes the percentage of edge propagations that occur across
distances 2, 3 and 4. As we can see, propagations decrease
drastically at distance 3, and are close to 0% after that. Since
achievable benefits are minor beyond propagation distance 2,
we perform cross-iteration propagation until distance 2, i.e.,
for the current iteration t and the next iteration t +1.

3.3 Graph Layout
Since cross iteration dependencies are primarily based on the
input graph structure, value propagations beyond current iter-
ation can be statically determined based on the precondition
involved in Eq. 2. In order to completely avoid reading edges
whose dependencies have been satisfied, we create separate
graph layouts for subsequent iterations. In this way, the exe-
cution switches between different graph layouts on disk. In
theory, we can create D separate graph layouts to propagate
values across D iterations; however, to simplify exposition we
discuss the layout for D= 2 since larger propagation distances
provide diminishing benefits (as discussed in Section 3.2).
With D = 2, we have two graph layouts: the primary layout
consisting of all edges, and the secondary layout containing
only subset of edges. Figure 3 shows the secondary layout and
its corresponding graph representation for the primary graph

USENIX Association 2019 USENIX Annual Technical Conference 433

1

0 2

5
3

4

1

0 2

5
3

4

(0,	1)
(1,	0)
(3,	1)
(4,	0)
(4,	1)

(0,	3)
(0,	2)
(1,	3)
(4,	2)
(5,	2)

(0,	5)
(1,	5)
(2,	4)
(2,	5)
(3,	5)
(5,	4)

(0,	1)
(1,	0)
(3,	1)
(4,	0)
(4,	1)

(4,	2)
(5,	2)

(5,	4)

1

0 2

5
3

4

p0 p1 p2p0 p1 p2

1

0 2

5

3

4

1

0 2

5
3

4

1

0 2

5
3

4

(0,	1)
(1,	0)
(3,	1)
(4,	0)
(4,	1)

(0,	3)
(0,	2)
(1,	3)
(4,	2)
(5,	2)

(0,	5)
(1,	5)
(2,	4)
(2,	5)
(3,	5)
(5,	4)

(0,	1)
(1,	0)
(3,	1)
(4,	0)
(4,	1)

(4,	2)
(5,	2)

(5,	4)

1

0 2

5
3

4

p0 p1 p2p0 p1 p2

1

0 2

5

3

4

Figure 3: Secondary layout for graph from Figure 1.

Graph
Without With

Intra-Partition Intra-Partition
Propagation Propagation

UK 6.84 - 49.69 49.76 - 92.47
TW 39.24 - 50.09 50.31 - 62.22
TT 17.43 - 49.74 43.32 - 61.87
FT 35.58 - 49.80 47.20 - 56.19

Table 3: Percentage (min-max range) of edge propagations
with and without intra-partition propagation across three

partitioning strategies from Figure 2.

layout in Figure 1. The secondary layout does not contain
8 out of 16 edges since the corresponding dependencies get
satisfied while processing primary layout.

We analyze the reduction in I/O caused by our secondary
graph layout. Since |E|>> |V |, out-of-core graph processing
systems like GridGraph achieve high performance by ensur-
ing that the edges are loaded only once in every iteration.
Hence, for each iteration, their I/O amount is |E| + k×|V |
where k ≥ 2 captures batch loading of vertices for each par-
tition. While our I/O amount for the iteration using primary
layout remains the same, it reduces significantly when sec-
ondary layout is used. Let α be the ratio of edges for which
values are propagated for subsequent iteration when primary
layout is processed. Since those edges are not present in sec-
ondary layout, the I/O amount directly reduces by α× |E|.
Hence, the total I/O amount is:

C =

{
(1−α)×|E| + k×|V | . . . secondary layout
|E| + k×|V | . . . primary layout

As we will see in Section 6, α is typically over 0.7 which
drastically reduces the I/O amount.

3.4 Intra-Partition Propagation
So far cross-iteration propagation is performed for edges
across partitions as dictated by Eq. 2. While this captures
a large subset of edges that don’t need to be loaded in the
subsequent iteration, it has been recently shown in [36] that
real-world graphs often possess natural locality such that ad-
jacent vertices are likely to be numbered close to each other
due to the traversal nature of graph collection strategies (e.g.,
crawling, anonymization, etc.). This means, chunk-based par-
titioning strategies where contiguous vertex-id ranges get
assigned to partitions have several edges such that both end-
points belong to the same partition.

In order to leverage this natural locality, in a given iteration
t, we aim to propagate value for subsequent iteration across

edge (u,v) where p(u) = p(v). However, since ut becomes
available as partition p(u) gets processed in the same iteration
t, ut can only be propagated after p(u) has been processed.
Hence, if (u,v) can be held in memory until p(u) gets fully
processed, we can propagate ut to satisfy the future cross-
iteration dependency ut 7→ vt+1. This means, intra-partition
cross-iteration propagation relaxes our precondition for partial
aggregation to become:

g(vt+1) =
⊕

∀e=(u,v)∈E
s.t. p(u)≤p(v)

(ut) (3)

Table 3 summarizes the increase in cross-iteration propagation
when intra-partition propagation is enabled. As we can see,
cross-iteration propagation increases to 43-92% with intra-
partition propagation, which further saves disk I/O.

We enable intra-partition cross-iteration value propagation
by ensuring that partition sizes remain small enough such that
they can be entirely held in memory. As shown in Section 5.1,
our processing model holds the partition in memory until it
gets processed, and then performs cross-iteration propagation
for edges whose both end-points belong in the partition.

3.5 Value Propagation v/s Partition Size
The amount of cross-iteration value propagation not only de-
pends on the partitioning strategy, but also varies based on the
size of partitions. As we can observe in Figure 2c, the same
partitioning strategy with different partition sizes enables dif-
ferent amount of cross-partition propagation. In general, since
cross-partition propagation is achieved on edges crossing
partition boundaries, smaller partitions lead to higher cross-
partition propagation compared to that by larger partitions.
As an extreme case, each vertex residing in its own partition
would result in smallest partitions, and would cause highest
amount of cross-partition value propagation.

Intra-partition propagations, on the other hand, are
amenable to large partitions as they enable propagations
across edges within the partitions. Even though smaller par-
titions allow lesser intra-partition propagations compared to
that allowed by larger partitions, the set of edges crossing
smaller partitions is larger, hence allowing cross-partition
propagations through edges that get missed by intra-partition
propagations. It is interesting to note that as partitions be-
come smaller, edges that were originally participating in intra-
partition propagation get cut across partition boundaries either
in forward direction (i.e., p(u) < p(v) for edge (u,v)) or in
backward direction. Since cross-partition value propagation
occurs on forward edges only, the overall cross-iteration value
propagation (combined cross-partition and intra-partition) re-
duces as partitions become smaller. Hence, it is preferable to
have large partitions that can fit in main memory to maximize
cross-iteration value propagation. In Section 5.3, we propose
light-weight partitioning heuristics that increase the amount
of cross-iteration value propagation, which in turn reduces
the severity of partition size’s impact.

434 2019 USENIX Annual Technical Conference USENIX Association

3.6 LUMOS with DynamicShards
LUMOS can be combined with DynamicShards [31] to per-
form cross-iteration value propagation with dynamic edge
selection. Specifically, primary layout partitions can be made
dynamic (by dropping inactive edges) while secondary layout
partitions can be left static since they are already small in size.
Furthermore, shadow iterations require the missing graph
edges to process delayed computations, and hence, shadow it-
erations must be scheduled during primary iterations in order
to amortize loading costs. It is interesting to note that even
though secondary layouts are kept static, computations from
secondary layouts can get delayed due to transitive delays
occurring from previous iterations’ primary layouts.

4 LUMOS for Asynchronous Algorithms
Several graph analytics algorithms like traversal based mono-
tonic algorithms (e.g., shortest paths, BFS, connected com-
ponents, etc.) are asynchronous, i.e., they do not require
synchronous processing semantics to guarantee correct-
ness [28, 30]. Nevertheless, having synchronous semantics
does not hurt the correctness guarantees for asynchronous
algorithms because synchronous execution is one of the le-
gal executions under the set of asynchronous executions. In
other words, the dependencies enforced by synchronous pro-
cessing semantics in Eq. 1 are only stricter (while still being
legal) than that required by asynchronous semantics. Since
LUMOS’s out-of-order value propagation technique does not
violate the dependencies defined in Eq. 1, LUMOS works cor-
rectly on asynchronous algorithms like shortest paths and
connected components as well.

Furthermore, LUMOS can be optimized to efficiently pro-
cess asynchronous algorithms by incorporating relaxed pro-
cessing semantics in its processing model. For example,
traversal based monotonic algorithms often rely on selec-
tion functions [29] like MIN() that enable vertex’s value to be
computed based on value coming from its single incoming
edge. This means, intermediate vertex values computed based
on subset of their incoming values represent a valid final value
(instead of a partial aggregation) that can be instantly prop-
agated to outgoing edges. In other words, computations in
Eq. 2 do not require separation of values across iterations t
and t +1, and g(vt) can be directly incorporated in vt . Hence,
LUMOS can enable value propagation for asynchronous algo-
rithms by maintaining a single version of vertex values and
directly propagating the updated values across edges.

Such asynchronous value propagation is achieved both
across (inter-partition) and within (intra-partition) partitions;
intra-partition propagations are achieved by recomputing over
in-memory partition as described in Section 3.4. An inter-
esting side effect of asynchronous value propagation is that
secondary graph layout is no longer necessary because any
value propagation across edges in the primary graph layout
does not violate asynchronous semantics, and hence, entire
processing can occur on the primary graph layout itself.

5 The LUMOS System
So far we discussed value propagation in a generalized out-
of-core processing context without focusing on any particular
system. This makes our proposed cross-iteration value propa-
gation techniques useful for existing out-of-core processing
systems. We now discuss the important design details in-
volved in incorporating LUMOS into GridGraph. We choose
GridGraph since its streaming-apply processing model is de-
signed to minimize I/O amount, making it state-of-art syn-
chronous out-of-core graph processing system.

5.1 Propagation based Processing Model
LUMOS’s processing model is similar to out-of-core process-
ing systems where edges are loaded from disk in batches
and processed in memory. We discuss the processing model
at partition level to showcase how cross-iteration propaga-
tions are performed. Algorithm 2 shows how primary and
secondary partitions are processed; LUMOS offers three key
programming interfaces: (a) PROCESSPRIMARY performs
standard propagation and cross-iteration propagation across
primary partitions; (b) PROCESSSECONDARY performs stan-
dard propagations across secondary partitions; and, (c) VER-
TEXMAP performs updates across vertices. PROCESSPRI-
MARY processes both, edges (lines 4, 6, 13) and vertices (line
9). PROCESSSECONDARY’s structure is kept similar to PRO-
CESSPRIMARY to enable easier programmability of graph
algorithms. The primary partitions get processed in even itera-
tions using PROCESSPRIMARY while the secondary partitions
get processed in odd iterations using PROCESSSECONDARY.
Figure 4 illustrates how partition-by-partition processing is
achieved using primary and secondary layouts across two con-
secutive iterations. Along with the traditional cross-iteration
barriers, we also have cross-partition barriers while process-
ing primary partitions to ensure that precondition in Eq. 2 gets
correctly satisfied for cross-iteration propagation; these cross-
partition barriers are not required while processing secondary
partitions. Algorithm 3 shows PageRank algorithm using
our propagation interface. Beyond the standard edge func-
tion PROPAGATE and vertex function COMPUTE, we also use
the cross-iteration edge propagation function CROSSPROP-
AGATE. While the shape of CROSSPROPAGATE is similar to
PROPAGATE, they operate on different values for the same
edge, i.e., PROPAGATE aggregates for current iteration while
CROSSPROPAGATE aggregates for subsequent iteration. The
aggregation for subsequent iteration is made available using
ADVANCE (line 13).

5.2 Selective Scheduling
One of the strengths of 2D grid layout is that it enables selec-
tive scheduling of edge computations so that edge-blocks can
be skipped to reduce unnecessary I/O [38]. LUMOS carefully
incorporates selective scheduling with cross-iteration propa-
gation to ensure that scheduling gets correctly managed for
primary and secondary partitions.

USENIX Association 2019 USENIX Annual Technical Conference 435

Algorithm 2 Propagation Interface
1: function PROCESSPRIMARY(PROPAGATE,

CROSSPROPAGATE, COMPUTE)
2: for partition ∈ primaryPartitions do
3: par-for edge ∈ partition do
4: PROPAGATE(edge)
5: if p(edge.source)< p(edge.target) then
6: CROSSPROPAGATE(edge)
7: end if
8: end par-for
9: VERTEXMAP(COMPUTE, vertex_chunk(partition))

10: if Locality-Aware Intra-Partition Propagation then
/* partition is held in memory (see Section 3.4) */

11: par-for edge ∈ partition do
12: if p(edge.source) = p(edge.target) then
13: CROSSPROPAGATE(edge)
14: end if
15: end par-for
16: end if
17: end for
18: end function
19: function PROCESSSECONDARY(PROPAGATE, COMPUTE)
20: for partition ∈ secondaryPartitions do
21: par-for edge ∈ partition do
22: PROPAGATE(edge)
23: end par-for
24: VERTEXMAP(COMPUTE, vertex_chunk(partition))
25: end for
26: end function
27: function VERTEXMAP(VFUNC, V S =V) B V is default arg.
28: sum = 0
29: par-for v ∈V S do
30: sum += VFUNC(v)
31: end par-for
32: return sum
33: end function

An active edge-block represents edges that will be loaded
from disk; otherwise, they will be skipped. When processing
primary partitions (i.e., during even iterations), depending on
the state (active/inactive) of an edge-block for primary and
secondary layouts at the time when it needs to be processed,
there can be four cases. While three of those cases can be
handled in the same way as done for primary partitions, the
case when the edge-block is inactive for primary layout but
is active for secondary layout need to be considered care-
fully. In this case, while processing secondary partitions in
the subsequent iteration, the corresponding edge-block gets
loaded from the primary layout instead of secondary layout to
ensure that all necessary edges within the edge-block partic-
ipate correctly in value propagation. LUMOS maintains this
cross-iteration selective scheduling information using 2-bits
per edge-block; first bit indicating whether the edge-block is
active or inactive, and second bit indicating whether to load
edge-block from primary layout or secondary layout.

5.3 Graph Layout & Partitioning
For a graph G = (V,E), V is divided into P disjoint subsets
of vertices (called chunks), C = {c0,c1, ...,cP−1} such that⋃
c∈C

c = V and ∀ci,c j ∈ C,ci ∩ c j = ∅. The edges are repre-

Algorithm 3 PageRank Example
1: function PROPAGATE(e)
2: ATOMICADD(&sum[e.target],

pagerank[e.source]
outdegree[e.source])

3: end function
4: function CROSSPROPAGATE(e)
5: ATOMICADD(&secondary_sum[e.target],

sum[e.source]
outdegree[e.source])

6: end function
7: function COMPUTE(v)
8: sum[v] = 0.15 + 0.85× sum[v]
9: end function

10: function ADVANCE(v)
11: di f f = |pagerank[v]− sum[v]|
12: pagerank[v] = sum[v]
13: sum[v] = secondary_sum[v]
14: secondary_sum[v] = 0
15: return di f f
16: end function
17: pagerank = [1, ...,1]
18: sum = [0, ...,0]
19: secondary_sum = [0, ...,0]
20: iteration = 0
21: converged = f alse
22: while ¬converged do
23: if iteration % 2 == 0 then
24: PROCESSPRIMARY(PROPAGATE, CROSSPROPAGATE,

COMPUTE);
25: else
26: PROCESSSECONDARY(PROPAGATE, COMPUTE);
27: end if
28: d = VERTEXMAP(ADVANCE);

29: converged =
d
|V | ≤ threshold

30: iteration = iteration+1
31: end while

sented as a 2D grid of P×P edge-blocks on disk. An edge
(u,v) is in edge-block bi j if u ∈ ci ∧ v ∈ c j. It is important
to note that a column i in the 2D grid has incoming edges
for vertices belonging to ci, and similarly a row j has outgo-
ing edges for vertices belonging to c j. Hence, each column
is a partition for LUMOS in accordance with the precondi-
tion in Eq. 2 that satisfies the dependency relation. Similarly,
each row is a partition for LUMOS when values need to be
propagated across incoming edges (i.e., a transposed view).

As discussed in Section 3.3, we create a primary layout
and a secondary layout. This means, we create two separate
2D grids on disk, one for each layout. An important issue in
creating grid layouts is partitioning V into P chunks. Out-of-
core processing systems use a simplified structure-oblivious
partitioning strategy based on vertex-id ranges, i.e., assuming
vertices are numbered between 0 to |V |, chunks are formed
as contiguous range of vertex numbers: vertices 0 to k−
1 form chunk 0, vertices k to 2k− 1 form chunk 1, and so
on. While such structure-oblivious partitioning enables good
amount of cross-iteration propagation (shown in Section 3),
we develop greedy partitioning strategies that carefully use
the vertex degree information to maximize cross-iteration
value propagation.

Let P= {p(v0), p(v1), ..., p(v|V |−1)} capture the partition-

436 2019 USENIX Annual Technical Conference USENIX Association

(0,	1)

(1,	0)

(3,	1)

(4,	0)

(4,	1)

(0,	3)

(0,	2)

(1,	3)

(4,	2)

(5,	2)

(0,	5)

(1,	5)

(2,	4)

(2,	5)

(3,	5)

(5,	4)

p0 p1 p2

Process	primary	p0

(0,	1)

(1,	0)

(3,	1)

(4,	0)

(4,	1)

(0,	3)

(0,	2)

(1,	3)

(4,	2)

(5,	2)

(0,	5)

(1,	5)

(2,	4)

(2,	5)

(3,	5)

(5,	4)

p0 p1 p2

(0,	1)

(1,	0)

(3,	1)

(4,	0)

(4,	1)

(0,	3)

(0,	2)

(1,	3)

(4,	2)

(5,	2)

(0,	5)

(1,	5)

(2,	4)

(2,	5)

(3,	5)

(5,	4)

p0 p1 p2

(0,	1)

(1,	0)

(3,	1)

(4,	0)

(4,	1)

(4,	2)

(5,	2)

(5,	4)

p0 p1 p2

Process	secondary	p0

(0,	1)

(1,	0)

(3,	1)

(4,	0)

(4,	1)

(4,	2)

(5,	2)

(5,	4)

p0 p1 p2

(0,	1)

(1,	0)

(3,	1)

(4,	0)

(4,	1)

(4,	2)

(5,	2)

(5,	4)

p0 p1 p2

Process	primary	p1 Process	primary	p2 Process	secondary	p1 Process	secondary	p2
Cross-partition	barrier Cross-iteration	barrier

Figure 4: Execution using primary and secondary layouts across two consecutive iterations.

ing information that maps vertices in V to chunks in C. We
define our partitioning objective as:

argmax
P

|{(u,v) : (u,v) ∈ E ∧ p(u), p(v) ∈P

∧ p(u)< p(v)}| (4)

Note that with intra-partition propagation, the above condition
becomes p(u)≤ p(v) and there is an additional constraint to
limit partition sizes:

∀ci ∈C, ∑
∀v∈ci ∧
∀(u,v)∈E

(u,v) < T

where T is a threshold based on available memory.
Since the condition in Eq. 4 can be directly viewed as u’s

outgoing edges contributing to cross-iteration dependencies, a
straightforward greedy heuristic can be to place vertices with
higher out-degree in earlier partitions. However, an interest-
ing dual to this reasoning can be that v’s incoming edges con-
tribute to cross-iteration dependencies and hence, the greedy
heuristic can be to place vertices with higher in-degree in
later partitions. Based on these insights, we develop three key
partitioning heuristics to assign vertices in V to chunks in C:

(A) Highest Out-Degree First: ∀u,v ∈V ,
if p(u)< p(v), then out_degree(u)≥ out_degree(v)

(B) Highest In-Degree Last: ∀u,v ∈V ,
if p(u)< p(v), then in_degree(v)≥ in_degree(u)

(C) Highest Out-Deg. to In-Deg. Ratio First: ∀u,v ∈V ,

if p(u)< p(v), then
out_degree(u)
in_degree(u) ≥

out_degree(v)
in_degree(v)

Note that the above heuristics are simpler than structure-based
partitioning since computing degrees of vertices only requires
a single pass over the edge list.

6 Evaluation
We evaluate LUMOS using billion-scale graphs and syn-
chronous graph algorithms, and compare its performance with

Graphs Disk Size |E| |V|
UKDomain (UK) [2] 6.9-20.7GB 1.0B 39.5M

Twitter (TW) [12] 11-33GB 1.5B 41.7M
TwitterMPI (TT) [3] 15-45GB 2.0B 52.6M
Friendster (FT) [5] 20-60GB 2.5B 68.3M
Yahoo (YH) [33] 50-150GB 6.6B 1.4B
RMAT29 (RM) 66-198GB 8.6B 537M

Table 4: Real world & synthetic graphs.

GridGraph [38] which is the state-of-art out-of-core graph
processing framework that provides synchronous semantics.

6.1 Experimental Setup
LUMOS’s evaluation is carried out across three different AWS
EC2 storage optimized instances. For performance experi-
ments (Section 6.2), we use h1.2xlarge with 8 vCPUs, 32GB
memory and 2TB HDD. Its disk sequential read bandwidth 3

is 278MB/sec whereas the memory subsystem read bandwidth
is 9.6GB/sec. To study the effect of I/O scaling (Section 6.3),
we use d2.4xlarge and i3.8xlarge instances. The d2.4xlarge
instance is used with 16 vCPUs, 32GB memory and 1 to
4 2TB HDDs providing disk bandwidth of 195MB/sec to
768MB/sec, whereas the i3.8xlarge instance is used with 32
vCPUs, 64GB memory and 1 to 4 1.9TB SSDs providing disk
bandwidth of 1.2GB/sec to 3.9GB/sec.

We use six synchronous graph algorithms. PageRank (PR)
[22] is an algorithm to rank web-pages while Weighted Pager-
ank (WPR) is its variant where edges have weights as ap-
plied for social network analysis. Co-Training Expectation
Maximization (CoEM) [21] is a semi-supervised learning
algorithm for named entity recognition. Belief Propagation
(BP) [10] is an inference algorithm to determine states of ver-
tices based on sum of products. Label Propagation (LP) [37]
is a learning algorithm while Dispersion (DP) [11] is a simu-
lation based information dispersion model. We run each al-
gorithm for 10 iterations; PR and DP operate on unweighted
graphs while CoEM, LP, WPR and BP require weighted
graphs. This adds 4 bytes per edge for CoEM, LP and WPR,
and 16 bytes per edge for BP; hence, increasing graph sizes
to 1.5× and 3× respectively.

We evaluate LUMOS using billion scale graphs from Ta-

3Disk sequential read bandwidth measured using hdparm.

USENIX Association 2019 USENIX Annual Technical Conference 437

Version TT FT YH

PR

GridGraph 737 1008 3223
LUMOS-BASE 563 659 2027

LUMOS 439 583 1885

× LUMOS 1.68× 1.73× 1.71×

CoEM

GridGraph 1119 1554 5082
LUMOS-BASE 861 1029 3216

LUMOS 651 914 3043

× LUMOS 1.72× 1.70× 1.67×

DP

GridGraph 846 1032 3484
LUMOS-BASE 656 675 2219

LUMOS 498 611 2111

× LUMOS 1.70× 1.69× 1.65×

BP

GridGraph 2498 3782 13769
LUMOS-BASE 1921 2456 8660

LUMOS 1487 2212 7913

× LUMOS 1.68× 1.71× 1.74×

WPR

GridGraph 984 1302 4330
LUMOS-BASE 769 874 2758

LUMOS 569 770 2547

× LUMOS 1.73× 1.69× 1.70×

LP

GridGraph 1054 1421 4583
LUMOS-BASE 805 935 2976

LUMOS 624 826 2728

× LUMOS 1.69× 1.72× 1.68×

Table 5: Execution times (in seconds) for LUMOS,
LUMOS-BASE and GridGraph. Bold numbers indicate

speedups of LUMOS over GridGraph.

 0

 50

 100

 150

 200

 250

00:00 01:30

R
ea

ds
 (

M
B

/s
)

Time

1
 2

 4
 8

16

(a) Throughput.

 0
 200
 400
 600
 800

 1000

00:00 01:30

I/
O

 W
ai

t
T

im
e

(m
s)

Time

1
 2

 4
 8

16

(b) I/O Wait.

Figure 5: I/O throughput and waiting times for PR on TT
across 1, 2, 4, 8 and 16 threads.

ble 4. For experiments on h1.2xlarge, we use TT, FT and YH
whereas RMAT29 is used for I/O scaling experiments. Since
unweighted TT fits within 32 GB (on h1.2xlarge), we limit
the memory of unweighted TT experiments to 16 GB.

We compare the following three versions:

1. GridGraph (GG): is the GridGraph system [38].

2. LUMOS-BASE (LB): is LUMOS based on Eq. 2. It per-
forms cross-iteration propagation only across partitions.

3. LUMOS (L): is LUMOS based on Eq. 3. It also performs
intra-partition cross-iteration propagation.

6.2 Performance
Table 5 shows the execution times for GridGraph, LUMOS-
BASE and LUMOS on h1.2xlarge. We use Highest Out-Degree

Version TT FT YH

LUMOS-BASE 75.6% 67.5% 88.3%
LUMOS 81.1% 72.6% 93.8%

Table 6: Percentage of cross-iteration propagations.

to In-Degree Ratio First strategy which enables high cross-
iteration propagations as shown in Table 6 (we will evaluate
different partitioning strategies in Section 6.4). As we can see,
LUMOS-BASE and LUMOS accelerate GridGraph in all cases.
LUMOS is 1.65-1.74× faster than GridGraph while LUMOS-
BASE is 1.28-1.59× faster; this is due to the reduced amount
of I/O performed which gets enabled via cross-iteration prop-
agation. Figure 6 shows the time spent in reading partitions in
each case normalized w.r.t. execution time of GridGraph. As
expected in out-of-core graph processing, the execution time
is dominated by disk reads; for HDD we observe that Grid-
Graph typically spends 74-83% of the time in performing disk
reads, while LUMOS spends only 27-41% of the time perform-
ing disk reads compared to GridGraph. This reduction in read
times results from our cross-iteration propagation technique
that eliminates repetitive I/O using secondary layouts.

To study disk utilization, we vary the number of threads and
measure the disk throughput and wait latencies for LUMOS.
Figure 5 shows the disk throughput and wait latencies for PR
on TT across 1, 2, 4, 8 and 16 threads. As we can see, the
utilization is high even when using a single thread and having
more threads only helps to maintain the high utilization (230-
240 MB/sec) whenever the utilization drops for single thread
(red trenches in Figure 5). With more threads issuing more I/O
requests and utilization remaining same, the cores essentially
wait more for I/O requests to complete as threads increase
for HDD (shown in Figure 5b). We also observe high wait
latencies as threads increase in Figure 5b due to high number
of I/O requests.

It is interesting to observe that a single thread is easily able
to keep the disk busy (wait times 150-200 ms) as its measured
sequential read bandwidth is 278 MB/sec. Furthermore, we
observe a significant dip in waiting times between ∼60-90
seconds (shown in Figure 5b) which appear while processing
secondary layout; these secondary layouts are smaller, and
hence the I/O requests get served quickly.

6.3 I/O Scalability
We study the impact of scaling I/O on LUMOS by setting up
a RAID-0 array of 2 to 4 HDDs on d2.4xlarge, and 2 to 4
SSDs on i3.8xlarge instance. The resulting read bandwidths
are shown in Table 7.

Single RAID-0 with k drives
Drive k = 2 k = 3 k = 4

d2.4xlarge (HDD) 195MB/s 368MB/s 590MB/s 768MB/s
i3.8xlarge (SSD) 1.2GB/s 3.8GB/s 4.1GB/s 3.9GB/s

Table 7: Sequential read bandwidth.

438 2019 USENIX Annual Technical Conference USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

TT FT YH
PR CoEM DP BP WPR LP PR CoEM DP BP WPR LP PR CoEM DP BP WPR LP

Read Compute
N

or
m

al
iz

ed
 T

im
e

Figure 6: Read times and computation times of LUMOS and LUMOS-BASE normalized w.r.t. GridGraph’s execution time.

0

2K

4K

6K

 1 2 3 4

E
xe

cu
ti
on

 T
im

e

Drives

 GG-HDD
Lumos-HDD

 GG-SSD
Lumos-SSD

Figure 7: Execution times (in seconds) for LUMOS and
GridGraph (GG) with varying number of drives. GG-HDD

and LUMOS-HDD use HDDs on d2.4xlarge, while GG-SSD
and LUMOS-SSD use SSDs on i3.8xlarge (see Table 7).

We ran PR on RAMT29 graph (8.6B edges) on the above
setup with 64GB main memory. Figure 7 compares the exe-
cution times of LUMOS and GridGraph as number of drives
increase from 1 to 4. LUMOS on d2.4xlarge scales gradually
as I/O scales; it performs 1.8×, 2.6× and 3.8× faster with
2, 3 and 4 drives. It is interesting to observe that benefits
of LUMOS over GridGraph diminish as number of drives in-
crease. LUMOS performs 1.8× faster than GridGraph on a
single drive and 1.3-1.4× faster on 2-4 drives. This is because
GridGraph benefits from increased I/O bandwidth, which in
turn leaves lesser room for effects of cross-iteration value
propagation to become visible.

Contrary to HDDs, performance of LUMOS and GridGraph
doesn’t vary much as SSDs increase. Going from a single
SSD to 2 SSDs reduces LUMOS’s execution time from 505
sec to 460 sec, and the benefits of LUMOS over GridGraph
also remain low with more SSDs (1.4×). This is again due
to the high bandwidth provided by SSDs on i3.8xlarge (see
Table 7) that alleviate I/O bottlenecks.

6.4 Partitioning Strategies

We evaluate our three light-weight partitioning strategies
proposed in Section 5.3: Highest Out-Degree First (HOF),
Highest In-Degree Last (HIL) and Highest Out-Degree to
In-Degree Ration First (HRF). In Figure 8, we measure the
amount of cross-iteration propagation for each of these strate-
gies with and without intra-partition propagation and study

sensitivity of these strategies to partition sizes.
While cross-iteration propagation depends on the struc-

ture of graph, HOF and HIL achieve 13-89% propagations
across partitions whereas HRF captures the best of both and
achieves significantly higher propagations (51-88%). With
intra-partition propagations, all three strategies achieve signif-
icantly higher cross-iteration propagation (up to 92% for TT,
96% for FT, and 97% for YH). It is interesting to note that
HOF slightly outperforms HRF and HIL for FT while HIL
slightly outperforms HRF and HOF for TT; nevertheless, HRF
remains useful since it achieves the middle ground between
out-degree and in-degree metrics.

Finally, we observe that cross-iteration propagations across
partitions increase as number of partitions increase and par-
titions become smaller; this is expected since edges within
the same partition become potential candidates for propaga-
tions as they move to other partitions when partitions become
smaller. Furthermore, when intra-partition propagation is en-
abled, there are fewer candidates within the same partition
as number of partitions increase and hence, we observe a de-
creasing trend of cross-propagations. However, the scale of
cross-iteration propagations remains high for HRF (70-97%)
across different partition sizes, making it effective in all cases.

6.5 Preprocessing
Figure 9a shows the preprocessing times normalized w.r.t.
GridGraph. While our light-weight partitioning strategy re-
quires an additional pass over edges to compute vertex de-
grees, the pass is lightweight since it doesn’t incur simulta-
neous writing of edges. Furthermore, edges don’t need to
be sorted and vertices are ordered across buckets that de-
termine partitions. Finally, since majority of edges enable
cross-iteration propagation, secondary layouts are smaller
and hence, writing them out on disk is less time consuming
than that for the original graph. Figure 9b shows the increase
in disk space normalized w.r.t. GridGraph; as expected, the
increase is only 12-33% for LUMOS-BASE because 67-88%
of edges participate in cross-iteration propagation and hence,
only remainder edges are present in the secondary layouts.
With intra-partition propagation, the disk space requirement
increases only by 7-26%.

USENIX Association 2019 USENIX Annual Technical Conference 439

 0

 25

 50

 75

 100
16 32 64 12
8

25
6 16 32 64 12
8

25
6 16 32 64 12
8

25
6

TT FT YH
HOF HIL HRF

%
 E

dg
es

Partitions

(a) Without locality-aware intra-partition propagation.

 0

 25

 50

 75

 100

16 32 64 12
8

25
6 16 32 64 12
8

25
6 16 32 64 12
8

25
6

TT FT YH
HOF HIL HRF

%
 E

dg
es

Partitions

(b) With locality-aware intra-partition propagation.

Figure 8: Cross-iteration propagation enabled by three partitioning strategies: Highest Out-Degree First (HOF), Highest
In-Degree Last (HIL), and Highest Out-Degree to In-Degree Ratio First (HRF).

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

TW TT FT YH
Degrees OrderLayouts

N
or

m
al

iz
ed

 T
im

e

(a) Preprocessing times.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

TW TT FT YH
Primary Secondary

N
or

m
al

iz
ed

 S
pa

ce

(b) Disk Space.

Figure 9: Preprocessing time and disk space for LUMOS and
LUMOS-BASE normalized w.r.t. GridGraph whose absolute

time/space numbers are: TW = 217s/11GB;
TT = 248s/15GB; FT = 334s/20GB; YH = 815s/50GB.

7 Related Work
We classify out-of-core graph processing systems into two
categories based on the guarantees they provide.

(A) Synchronous Out-of-Core Graph Processing.
We discussed GridGraph [38] in Section 2; here, we briefly
discuss the remaining works. GraphChi [13] pioneered single
machine based out-of-core graph processing by designing
partitions called shards, and developing a parallel sliding
window model to process shards such that random disk I/O
gets minimized. X-Stream [24] performs edge-centric pro-
cessing using scatter-gather model. To reduce random vertex
accesses, X-Stream partitions vertices and accesses edge list
and update list based on partitioned vertex sets. Chaos [23]
scales out X-Stream on multiple machines. FlashGraph [35]
is a semi-external memory graph engine that stores vertex
states in memory and edge-lists on SSDs. TurboGraph [8] is
an out-of-core computation engine for graph database based
on sparse matrix-vector multiplication model. Mosaic [17],
GraFBoost [9] and Garaph [16] perform out-of-core process-
ing on heterogeneous architecture containing high-bandwidth
NVMe SSDs, massively parallel Xeon Phi processors, FP-
GAs and GPUs. Graphene [15] uses an I/O request centric
graph processing model to simplify IO management by trans-
lating high-level data accesses to fine-grained IO requests.
DynamicShards [31] develops dynamic partitions that elimi-
nate unnecessary edges from partitions to reduce disk I/O.

Limitation: Since all of these works focus on computations
within a single iteration, none of them leverage cross-iteration
value propagation as LUMOS does. Furthermore, since these
systems effectively process in partition-by-partition fashion,
they can be further improved using LUMOS.

(B) Asynchronous Out-of-Core Graph Processing.
CLIP [1] exploits algorithmic asynchrony by making multi-
ple passes over the partitions in memory. Wonderland [34]
extracts effective graph abstractions to capture certain graph
properties, and then performs abstraction-guided processing
to infer better priority processing order and faster informa-
tion propagation across graph. While the abstraction-based
technique is powerful, its scope of applications is limited to
path-based monotonic graph algorithms beyond which its ap-
plicability remains undefined (as mentioned in [34]). Async-
Stripe [4] uses asymmetric partitioning & adaptive stripe-
based access strategy to process asynchronous algorithms.
Limitation: Since synchronous guarantees are not provided
by these works, their applicability is limited to asynchronous
path-based algorithms. LUMOS with asynchronous process-
ing semantics (Section 4) leverages relaxed dependencies for
asynchronous algorithms as well.

Beyond Out-of-Core Graph Processing.
Google’s Pregel [18], PowerGraph [6], GraphX [7], GPS [25]
and Gemini [36] provide a synchronous processing model in
a distributed environment, while Galois [20] and Ligra [26]
offer similar guarantees in a shared memory setting. Graph-
Bolt [19] provides synchronous processing semantics while
processing streaming graphs.

8 Conclusion
We developed LUMOS, a dependency-driven out-of-core
graph processing technique that performs out-of-order execu-
tion to proactively propagate values across iterations while
simultaneously providing synchronous processing guarantees.
Our evaluation showed that LUMOS computes future values
across 71-97% of edges, hence reducing disk I/O and acceler-
ating out-of-core graph processing by up to 1.8×.

440 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Z. Ai, M. Zhang, Y. Wu, X. Qian, K. Chen, and W. Zheng.
Squeezing out All the Value of Loaded Data: An Out-
of-core Graph Processing System with Reduced Disk
I/O. In USENIX ATC, pages 125–137, 2017.

[2] P. Boldi and S. Vigna. The Webgraph Framework I:
Compression Techniques. In WWW, pages 595–602.
ACM, 2004.

[3] M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gum-
madi. Measuring User Influence in Twitter: The Million
Follower Fallacy. In ICWSM, pages 10–17, 2010.

[4] S. Cheng, G. Zhang, J. Shu, and W. Zheng. AsyncStripe:
I/O Efficient Asynchronous Graph Computing on a Sin-
gle Server. In IEEE/ACM/IFIP CODES+ISSS, page 32.
ACM, 2016.

[5] Friendster network dataset. http://konect.
uni-koblenz.de/networks/friendster. KONECT,
2015.

[6] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. PowerGraph: Distributed Graph-Parallel
Computation on Natural Graphs. In USENIX OSDI,
pages 17–30, Hollywood, CA, 2012. USENIX.

[7] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica. GraphX: Graph Processing in
a Distributed Dataflow Framework. In USENIX OSDI,
pages 599–613, 2014.

[8] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim, J. Kim,
and H. Yu. TurboGraph: A Fast Parallel Graph Engine
Handling Billion-scale Graphs in a Single PC. In KDD,
pages 77–85, 2013.

[9] S.-W. Jun, A. Wright, S. Zhang, S. Xu, and Arvind.
GraFBoost: Using Accelerated Flash Storage for Ex-
ternal Graph Analytics. In ISCA. IEEE, 2018.

[10] U. Kang, D. Horng, and C. Faloutsos. Inference of
Beliefs on Billion-scale Graphs. In LDMTA, 2010.

[11] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom,
D. Williams, and P. Kalnis. Mizan: A System for Dy-
namic Load Balancing in Large-scale Graph Processing.
In EuroSys, pages 169–182. ACM, 2013.

[12] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter,
a Social Network or a News Media? In WWW, pages
591–600. ACM, 2010.

[13] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi:
Large-Scale Graph Computation on Just a PC. In
USENIX OSDI, pages 31–46, 2012.

[14] Z. Lin, M. Kahng, K. M. Sabrin, D. H. P. Chau, H. Lee,
and U. Kang. MMap: Fast Billion-Scale Graph Compu-
tation on a PC via Memory Mapping. In BigData, pages
159–164, 2014.

[15] H. Liu and H. H. Huang. Graphene: Fine-Grained IO
Management for Graph Computing. In USENIX FAST,
pages 285–300, 2017.

[16] L. Ma, Z. Yang, H. Chen, J. Xue, and Y. Dai. Garaph:
Efficient GPU-accelerated Graph Processing on a Single
Machine with Balanced Replication. USENIX ATC,
pages 195–207, 2017.

[17] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, and
T. Kim. Mosaic: Processing a Trillion-Edge Graph on
a Single Machine. In EuroSys, pages 527–543. ACM,
2017.

[18] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A System
for Large-scale Graph Processing. In ACM SIGMOD,
pages 135–146. ACM, 2010.

[19] M. Mariappan and K. Vora. GraphBolt: Dependency-
Driven Synchronous Processing of Streaming Graphs.
In EuroSys, pages 25:1–25:16. ACM, 2019.

[20] D. Nguyen, A. Lenharth, and K. Pingali. A Lightweight
Infrastructure for Graph Analytics. In USENIX SOSP,
pages 456–471, 2013.

[21] K. Nigam and R. Ghani. Analyzing the Effectiveness
and Applicability of Co-training. In ACM CIKM, pages
86–93. ACM, 2000.

[22] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank Citation Ranking: Bringing Order to the Web.
Technical report, Stanford University, 1998.

[23] A. Roy, L. Bindschaedler, J. Malicevic, and
W. Zwaenepoel. Chaos: Scale-out Graph Pro-
cessing from Secondary Storage. In USENIX SOSP,
pages 410–424, 2015.

[24] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-Stream:
Edge-centric Graph Processing Using Streaming Parti-
tions. In USENIX SOSP, pages 472–488, 2013.

[25] S. Salihoglu and J. Widom. GPS: A Graph Processing
System. In SSDBM, page 22. ACM, 2013.

[26] J. Shun and G. E. Blelloch. Ligra: A Lightweight Graph
Processing Framework for Shared Memory. In ACM
SIGPLAN PPoPP, pages 135–146, 2013.

[27] L. G. Valiant. A Bridging Model for Parallel Compu-
tation. Communications of the ACM, 33(8):103–111,
1990.

USENIX Association 2019 USENIX Annual Technical Conference 441

http://konect.uni-koblenz.de/networks/friendster
http://konect.uni-koblenz.de/networks/friendster

[28] K. Vora. Exploiting Asynchrony for Performance and
Fault Tolerance in Distributed Graph Processing. PhD
thesis, University of California, Riverside, 2017.

[29] K. Vora, R. Gupta, and G. Xu. KickStarter: Fast and Ac-
curate Computations on Streaming Graphs via Trimmed
Approximations. In ASPLOS, pages 237–251, 2017.

[30] K. Vora, S. C. Koduru, and R. Gupta. ASPIRE: Exploit-
ing Asynchronous Parallelism in Iterative Algorithms
Using a Relaxed Consistency Based DSM. In OOPSLA,
pages 861–878, 2014.

[31] K. Vora, G. H. Xu, and R. Gupta. Load the Edges
You Need: A Generic I/O Optimization for Disk-based
Graph Processing. In USENIX ATC, pages 507–522,
2016.

[32] K. Wang, G. Xu, Z. Su, and Y. D. Liu. GraphQ:
Graph Query Processing with Abstraction Refine-
ment—Programmable and Budget-Aware Analytical
Queries over Very Large Graphs on a Single PC. In
USENIX ATC, pages 387–401, 2015.

[33] Yahoo! Webscope Program. http://webscope.
sandbox.yahoo.com/.

[34] M. Zhang, Y. Wu, Y. Zhuo, X. Qian, C. Huan, and
K. Chen. Wonderland: A Novel Abstraction-Based Out-
Of-Core Graph Processing System. In ASPLOS, pages
608–621. ACM, 2018.

[35] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E.
Priebe, and A. S. Szalay. FlashGraph: Processing
Billion-Node Graphs on an Array of Commodity SSDs.
In USENIX FAST, pages 45–58, 2015.

[36] X. Zhu, W. Chen, W. Zheng, and X. Ma. Gemini: A
Computation-Centric Distributed Graph Processing Sys-
tem. In USENIX OSDI, pages 301–316, 2016.

[37] X. Zhu and Z. Ghahramani. Learning from Labeled and
Unlabeled Data with Label Propagation. 2002.

[38] X. Zhu, W. Han, and W. Chen. GridGraph: Large Scale
Graph Processing on a Single Machine Using 2-Level
Hierarchical Partitioning. In USENIX ATC, pages 375–
386, 2015.

442 2019 USENIX Annual Technical Conference USENIX Association

http://webscope.sandbox.yahoo.com/
http://webscope.sandbox.yahoo.com/

NeuGraph: Parallel Deep Neural Network Computation on Large Graphs

Lingxiao Ma†∗, Zhi Yang†∗

Peking University
Youshan Miao

Microsoft Research
Jilong Xue

Microsoft Research

Ming Wu
Microsoft Research

Lidong Zhou
Microsoft Research

Yafei Dai
Peking University

Abstract
Recent deep learning models have moved beyond low dimen-
sional regular grids such as image, video, and speech, to high-
dimensional graph-structured data, such as social networks, e-
commerce user-item graphs, and knowledge graphs. This evo-
lution has led to large graph-based neural network models that
go beyond what existing deep learning frameworks or graph
computing systems are designed for. We present NeuGraph,
a new framework that bridges the graph and dataflow mod-
els to support efficient and scalable parallel neural network
computation on graphs. NeuGraph introduces graph computa-
tion optimizations into the management of data partitioning,
scheduling, and parallelism in dataflow-based deep learning
frameworks. Our evaluation shows that, on small graphs that
can fit in a single GPU, NeuGraph outperforms state-of-the-
art implementations by a significant margin, while scaling to
large real-world graphs that none of the existing frameworks
can handle directly with GPUs.

1 Introduction

Graphs are natural representations of many real-world data;
examples include web graphs, social networks, e-commerce
user-item graphs, and knowledge graphs. With a graph repre-
sentation, graph-based learning tasks, such as vertex classifi-
cation and link prediction, can be optimized effectively. There
has been a recent surge of interest in extending neural network
models to graph data [7, 8, 13, 17–19, 23, 25, 29, 37]. These
methods, known as graph neural networks (GNNs), combine
standard neural networks with iterative graph propagation:
the property of a vertex is computed recursively (with neural
networks) from the properties of its neighbor vertices.

However, neither the existing deep learning frameworks
nor the existing graph systems could support GNN algorithms

† National Engineering Laboratory for Big Data Analysis and Applica-
tions, Center for Data Science, Peking University.
∗ Lingxiao Ma and Zhi Yang equally contributed to this work.

The work is done when Lingxiao Ma is an intern and Zhi Yang is a
visiting researcher at Microsoft Research.

sufficiently. The lack of system support has seriously limited
the ability to explore the full potentials of GNNs at scale.
Deep learning (DL) frameworks such as TensorFlow [4], Py-
Torch [2], MXNet [12], and CNTK [50] are designed to ex-
press deep neural networks (DNNs) but do not naturally ex-
press and efficiently execute graph propagation models. Deep
graph library (DGL) [1] supports programming GNNs by
wrapping DL systems with a graph-oriented message-passing
interface. While DGL addresses the expressiveness challenge,
it does not yet explore deeply the opportunities to leverage
graph-aware operations for efficient executions. Furthermore,
none of these frameworks, including DGL, offer the need-
ed scalability to handle large graphs: The highly connected
nature of graphs means that graph propagation could easily
involve a large portion of a large graph, especially for power-
law or dense graphs. Processing even a single vertex requires
that deep learning frameworks load a large amount of graph-
related data (e.g., structure and feature data) into limited GPU
memory.

With the vertex-program abstraction and graph-specific
optimizations, existing graph processing systems [10, 15, 26,
28, 47] can naturally express iterative graph algorithms like
PageRank and community detection, and scale them to graphs
with billions of vertices and edges. But graph systems can
hardly express neural networks (NNs) and lack key capabili-
ties required by efficient DNN executions, such as the tensor
abstraction, automatic differentiation and dataflow program-
ming model.

We therefore advocate bridging deep learning systems and
graph processing systems to enable a new framework for
scalable GNN training. In this paper, we explore the design
of a GNN processing framework on top of dataflow-based
DL systems. We argue that by introducing the graph mod-
el to dataflow and recasting graph-specific optimizations as
dataflow optimizations, we can enable the DL frameworks to
support efficient and scalable DNN computation on graphs.
To support this argument, we developed NeuGraph, an effi-
cient GNN processing framework built on top of an existing
dataflow engine.

USENIX Association 2019 USENIX Annual Technical Conference 443

NeuGraph combines the dataflow abstraction with the
vertex-program abstraction in a new programming model
called SAGA-NN (Scatter-ApplyEdge-Gather-ApplyVertex
with Neural Networks). SAGA can be considered as a variant
of graph-parallel abstraction (e.g., GAS [26]). Unlike a tradi-
tional system where user-defined functions (UDFs) express
vertex programs, UDFs in SAGA-NN express NN compu-
tation on tensors as vertex or edge data, e.g., vertex or edge
data. With the new programming model, NeuGraph allows
users to express a GNN algorithm without worrying about the
underlying system implementation (e.g., GPU memory man-
agement or scheduling). The graph-aware dataflow engine in
NeuGraph judiciously partitions the graph data (vertex and
edge data) into chunks (subgraphs), constructs the dataflow
that operates at the chunk granularity, and schedules parallel
executions of the dataflow on GPUs.

Naively adapting optimizations developed in the context
of graph processing systems can lead to inefficient dataflow
executions on DL frameworks. NeuGraph achieves high ef-
ficiency by introducing a range of optimizations both in the
scheduling of parallel chunk processing, as well as the ex-
ecution of core graph propagation procedures (i.e., Scatter-
ApplyEdge-Gather stages) over the often-sparse graph struc-
ture. With fine-grained graph partitioning, NeuGraph achieves
efficient selective scheduling and pipeline scheduling on top
of the dataflow, to hide data movement between GPU and
host when scaling a model out of the GPU core. To con-
tinue performance scaling, NeuGraph further adopts a new
topology-aware scheduling strategy to efficiently distribute
GNN models over modern multi-GPU systems. Finally, Neu-
Graph introduces computation-related optimizations for graph
propagation, which is often hard to accelerate using GPUs.

We implemented NeuGraph on top of TensorFlow. We
show that NeuGraph can support a variety of GNN algorithms
on large graphs with millions of vertices and hundreds of mil-
lions of edges, as well as hundreds of feature dimensions over
vertices, which existing DL frameworks cannot directly han-
dle with GPUs. Compared on large graphs that TensorFlow
can handle only with CPUs, NeuGraph achieves 16 ∼ 47×
speedups. Even on small graphs that can fit into a GPU’s
memory, NeuGraph can still achieve a up to 5× speedup over
the state-of-art implementation on TensorFlow and a up to
19× speedup over DGL [1]. Moreover, NeuGraph achieves
nearly linear scalability over multiple GPUs.

As one of our key contributions, NeuGraph bridges two
largely parallel threads of research, graph processing systems
and dataflow-based DL frameworks, in the new GNN setting.
NeuGraph significantly expands the capabilities of existing
DL frameworks to support GNNs in the following key dimen-
sions: programming model, graph partition and dataflow trans-
lation, graph propagation operations, and execution schedul-
ing. We have also demonstrated, through extensive evaluation
on real graphs with typical GNNs, significant benefits in scal-
ability and efficiency by connecting graph processing and DL

Layer 1

Layer 2

Output

VertexNN Transformation

EdgeNN Transformation

Figure 1: Feed-forward computation of a 2-layer GNN.

frameworks.
The rest of the paper is organized as follows. Section 2 in-

troduces the SAGA-NN programming abstraction. Section 3
describes the optimizations in the NeuGraph system. Sec-
tion 4 discusses the implementation and Section 5 presents
our experimental results. We discuss related work in Section 6
and conclude in Section 7.

2 NeuGraph Programming Abstraction

In this section, we first reveal the essential structure of graph
neural networks, and then propose our programming model
that combines graph-parallel and dataflow abstractions.

2.1 Graph Neural Networks

Deep learning, in the form of deep neural networks, is a class
of machine learning algorithms that use a cascade of multiple
layers of nonlinear processing units for feature extraction and
transformation. Each successive layer uses the output from the
previous layer as input. Deep learning has been gaining popu-
larity due to its success in areas such as speech, vision, and
natural language processing. In these areas, the coordinates
of the underlying data representation often have a regular
grid structure, which is friendly to hardware accelerators (e.g.,
GPU) with massive SIMD-style parallelisms.

Graph neural networks are deep learning based methods
that operate neural networks on graph data, and have been
adopted for many applications due to convincing in terms
of model accuracy. Recently, several surveys [5, 46, 52, 54]
provided a thorough review of different graph neural network
models as well as a systematic taxonomy of the applications.
A majority of GNN models can be categorized into graph
convolutional networks [7, 9, 13, 19, 23], graph recursive net-
works [25, 33], and graph attention networks [43, 51].

We discuss 3 representative categories of GNNs with 3
representative models: (1) GCN [23] is a graph convolutional
network that generalizes the notion of the convolution opera-
tion, typically for image datasets, and applies it to an arbitrary
graph (e.g., a knowledge graph). GCN has been widely used
in real-world scenarios like recommendation [6, 49]. Initially,
each vertex in the graph has a feature vector. First, each vertex
collects its neighbor vertices’ feature vectors along edges, and

444 2019 USENIX Annual Technical Conference USENIX Association

vertex feature

edge feature

edge output

accumulated

vertex output

a
cc

u
m

.

Scatter ApplyEdge Gatherv2

edge

v1

edge

v0

ApplyVertex

Neural

Network

Figure 2: SAGA-NN stages for each layer of GNN.

sums the collected vectors (weighted by edge values). Then,
a fully-connected NN is used to compute the vertex feature
vector as the output. This is a layer of GCN. Stacking multiple
GCN layers makes the vertex features representative enough
for tasks. Taking the recommendation system as an example,
a bipartite graph is constructed from the user-item ratings:
There will be an edge with the rating as the edge value be-
tween the user vertex and the item vertex if a user rates an
item. Then, the embeddings of both users and items can be
learned by the GCN from the graph and the features of users
and items. Finally, these embeddings are used to predict the
missing user-item ratings to make a recommendation. (2) GG-
NN [25] is a graph recursive network. It has an architecture
similar to GCN, but uses different parameters for different
edge types, as well as a Gated Recurrent Unit (GRU) in the
NN to process accumulated features. (3) As a graph attention
network, GAT [43] differs GCN mainly in that it computes
an attention value for each edge during transferring vertex
features.

In general, these GNN models share the same basic idea
of collectively aggregating information following the graph
structure. Specifically, each vertex or edge in the graph can be
associated with a set of tensor data (normally a vector) as its
feature or embedding. A GNN can consist of multiple layers,
with an iterative propagation procedure conducted layer-by-
layer over the same graph, as illustrated in Figure 1. At each
layer, the vertex or edge features are transformed and propa-
gated along edges, and then aggregated at the target vertices
to produce new features for the next layer. Different from tra-
ditional graph algorithms (e.g., PageRank), the transformation
on either vertices or edges can be arbitrary DNN computation.
The GNN may also contain a label for each vertex, each edge,
or the entire graph, for computing a loss function at the top
layer. A feed-forward computation is then performed from
the bottom layer to the top, with back-propagation conducted
reversely.

Comparing with DNNs, the complexity due to graphs in
GNNs creates a significant scalability challenge. First, real-
world graphs, such as social networks or e-commerce net-
works, can easily have millions of nodes and edges. Second,
vertices and edges in the graph are interconnected and need
to be modeled as a whole neural network (i.e., a large, sparse
neural network architecture defined according to a graph struc-

ture). This is particularly challenging on GPUs given the
limited GPU memory capacity. Finally, unlike image, audio,
or text that have clear grid structures, graph data are irreg-
ular, making it hard to conduct parallel GNN computation
efficiently on GPUs.

2.2 A Running Example
We take the Gated Graph ConvNet (G-GCN) algorithm [7,29]
as a concrete running example (see Example 2.1). G-GCN in-
corporates the gating mechanism into graph convolution. This
model can be used to extract vertex features for community
detection.

Example 2.1. Let h`
u denote the feature vector of a vertex u

at layer `, and W `, W `
H , and W `

C be the weight parameters to
learn. G-GCN recursively defines the feature of a vertex u as
follows:

h`+1
u = ReLU

(
W `⊗

(
∑

v→u
ηvu � h`

v

))
(1)

where ⊗ refers to matrix multiplication, � refers to element-
wise multiplication, and ηvu (for each edge v→ u) acts as
edge gate,

ηvu = sigmoid
(

W `
H ⊗h`

u + W `
C⊗h`

v

)
(2)

where ReLU and sigmoid are nonlinear activation functions
in neural networks.

G-GCN can be mapped to the pattern of computing a layer
in Figure 1: Equation 2 represents the EdgeNN to compute the
edge weight. ∑v→u ηvu � h`

v in Equation 1 collects features
from neighbors, and ReLU

(
W `⊗· · ·

)
in Equation 1 is the

VertexNN to process the accumulated features.

2.3 SAGA-NN Model
Based on the common pattern observed in GNN models, we
propose SAGA-NN (Scatter-ApplyEdge-Gather-ApplyVertex
with Neural Networks) as a new programming model for
GNNs. It combines dataflow and vertex-program to express
the recursive parallel computation at a layer of a GNN. SAGA-
NN splits the feed-forward computation into four stages: Scat-
ter, ApplyEdge, Gather, and ApplyVertex, as illustrated in Fig-
ure 2.

SAGA-NN provides two user-defined functions (UDFs)
for ApplyEdge and ApplyVertex respectively, for users to de-
clare neural network computations on edges and vertices. The
ApplyEdge function defines the computation on each edge,
which takes edge and p as input, where edge refers to the
edge data and p contains the learnable parameters of the GNN
model. Each edge is a tuple of tensors [src, dest, data]
representing the associated data of the source and destination
vertices connected by the edge, as well as the edge associated
data (e.g., edge weight). This function can be used to apply a

USENIX Association 2019 USENIX Annual Technical Conference 445

G-GCN(vertex`): // computing vertex`+1

params p = [W `
H W `

C W `]
// Passing data over edges
edge`=Scatter(vertex`)
// edge-parallel computation
acc = ApplyEdge(edge`, p):

η = sigmoid(p.W `
H ⊗edge`.dest+p.W `

C⊗edge`.src)
return η�edge`.src

set Gather.accumulator = sum
accum = Gather(acc)
// compute new vertex data
vertex`+1 = ApplyVertex(vertex`, accum , p):
return ReLU

(
p.W `⊗accum

)
return vertex`+1

Figure 3: Gated Graph ConvNet at layer ` in SAGA-NN model.

neural network model on edge and p, and outputs an interme-
diate tensor data associated with the edge. The ApplyVertex
function defines the computation on a vertex, which takes
as input a vertex tensor data vertex, the vertex aggregation
accum, and learnable parameters p, and returns the new vertex
data after applying a neural network model. The SAGA-NN
abstraction builds on a dataflow framework, so users can sym-
bolically define the dataflow graphs in UDFs by connecting
mathematical operations (e.g., add, tanh, sigmoid, matmul)
provided by the underlying framework.

The other two stages, Scatter and Gather, perform data
propagation and prepare data collections to be fed to Ap-
plyEdge and ApplyVertex as input. They are triggered and
conducted by the system implicitly. We chose not to expose
UDFs for Scatter and Gather, because these functions, if pro-
vided, are highly coupled with the propagation procedure,
whose computations flow through the irregular graph struc-
ture and are difficult to express as dataflow that NeuGraph
optimizes—users would have to implement the correspond-
ing derivative functions of the UDFs, a serious burden. Fol-
lowing the same principle, NeuGraph also avoids exposing
user-defined aggregation methods. It provides a set of default
ones instead, including sum, max (e.g., max-pooling opera-
tor [18]), and concatenation, which can be chosen by setting
Gather.accumulator.

NeuGraph models a GNN as a sequence of SAGA stages.
The Scatter passes the vertex data vertex onto its adjacent
edges to construct edge data edge, including both the source
and destination vertex data. The subsequent ApplyEdge then
invokes a parallel computation defined by the UDF on the
edge data to produce an intermediate tensor value for each
edge as its outputs. The Gather then propagates those outputs
along the edges and aggregates them at the destination vertices
through commutative and associative accumulate operations.
Finally, the ApplyVertex executes the computation defined
in UDF on all vertices to produce updated vertex data for
the next layer. The procedure in Figure 1 fits in the SAGA-
NN model: The ApplyEdge and ApplyVertex represent the
EdgeNN and VertexNN, respectively; the Scatter and Gather
perform the propagation along edges. This mapping indicates

that the GNNs following the procedure in Figure 1 could
be implemented with SAGA-NN model, hence presents the
generality of SAGA-NN.

Figure 3 illustrates the description of G-GCN (at layer l)
in the SAGA-NN model. Scatter gives each edge v→ u with
vertices data [h`

v,h`
u], and ApplyEdge computes per-edge up-

date accvu = ηvu�h`
v = sigmoid

(
W `

H ⊗h`
u +W `

C⊗h`
v
)
�h`

v.
Next, Gather performs accumu =∑v:v→u accvu, and ApplyVer-
tex computes h`+1

u = ReLU
(
W `⊗accum

)
.

The dataflow abstraction makes it easy to express neural
network architectures and leverage auto-differentiation. With
the dataflow abstraction in SAGA-NN, NeuGraph enjoys the
flexibility of executing operations on vertices or edges in
batch for increasing efficiency. The vertex-program in SAGA-
NN allows users to express computations naturally by think-
ing like a vertex, and models common patterns in GNNs as
well-defined stages, thereby enabling optimizing in both graph
computation and dataflow scheduling.

3 NeuGraph System

NeuGraph provides a combination of the dataflow and vertex-
program abstractions as the user interface. Under this abstrac-
tion, NeuGraph proposes graph-aware optimizations for GNN
processing to achieve efficiency and scalability.

At a high level, NeuGraph consists of: 1) a translation en-
gine that translates GNN expressed by the SAGA-NN model
into a dataflow graph at chunk-granularity to enable GNN
computation over large graphs in GPUs; 2) a streaming sched-
uler that minimizes data movement across the host and GPU
memory and maximizes its overlap with computation. The
scheduler also needs to be topology-aware for use of multiple
GPUs; 3) a graph propagation engine for deep learning that
employs a set of fast propagation kernels and fuses operations
to remove redundant memory copies; 4) a dataflow execu-
tion runtime. NeuGraph requires no modifications to existing
dataflow-based DL frameworks, offering a general method
to combine graph and NN computation within existing DL
frameworks. In this section, we focus on the first three design
points as they are main contributions of NeuGraph.

3.1 Graph-Aware Dataflow Translation
Just as with DNNs, efficient use of GPUs is critical to the
performance of GNNs, especially for large graphs. However,
existing DL frameworks cannot handle large graphs directly
on a GPU because graph data cannot fit into GPU memory.

To achieve scalability beyond the physical limitation of
GPU memory, NeuGraph introduces graph-specific partition-
ing on top of the dataflow abstraction. Note that both vertex
feature data and graph structure data can be large. NeuGraph
thus applies a 2D graph partitioning: As illustrated in Fig-
ure 4, it slices vertex data into P equally-sized disjoint vertex
chunks, and tiles the adjacency matrix (representing edges)

446 2019 USENIX Annual Technical Conference USENIX Association

1→3
2→1

1→2

3→0 0→1
⓿ ❸❶ ❷

Edge Chunk E0,0

⓿ ❸ ❶ ❷
Output Vertex

Feature Chunk V0’

E0,0

E0,1

E1,0

E1,1

Graph

Chunk V1

Input Vertex
Feature Chunk V0

0

3 2

10

3 2

1

Chunk E1,0

Figure 4: 2D Partitioning of a graph, here P = 2.

into P×P edge chunks. Edges in an edge chunk Ei j con-
nect vertices in two vertex chunks Vi and Vj , respectively.
By splitting graph data into chunks, NeuGraph can process
edge chunks one by one, with only the source and destination
vertex chunks needed for the edge chunk being processed.
To achieve this, NeuGraph generates a dataflow graph with
operators on data chunks, each of which fits in GPU memory,
as illustrated in Figure 5.

For the forward computation at a layer, NeuGraph trans-
lates a dataflow subgraph for each destination vertex interval
(e.g., a column in Figure 4): The Scatter operator inputs a
specific edge chunk, i.e., the edge chunk in the i-th row and
j-th column, and the associated i-th and j-th vertex chunks,
and outputs an edge data chunk containing tuples in the form
of [src, dest, data]. Each edge data chunk can be processed
by operators specified in the ApplyEdge UDF to produce an-
other edge data chunk with the result data acc (as in Figure 3).
The operators at the Gather stage accumulate each edge’s data
based on its destination vertex to generate the corresponding
vertex accumulation data chunk. After the processing of all
the edge chunks for a destination vertex interval is done, the
operators specified in the ApplyVertex UDF process the ver-
tex accumulation chunks and output new vertex data chunks
for the next layer.

For back-propagation, as the UDFs for ApplyEdge and
ApplyVertex are expressed as dataflow computations over
regular tensors, NeuGraph can leverage auto-differentiation
provided by the DL frameworks. Additionally, NeuGraph fur-
ther provides the backward-Gather operator to distribute the
accumulation gradient returned by the backward-ApplyVertex
stage across edges, and the backward-Scatter operator to ac-
cumulate all the partial gradients returned by the backward-
ApplyEdge stage for a vertex in the previous layer.

Note that it is not necessary to enforce strict global barri-
ers between stages in the SAGA-NN model. NeuGraph can
flexibly schedule the chunk-based operators simply based
on the data dependencies described in the dataflow graph.
The system maintains the working set of operators within
GPU memory by employing explicit device-to-host (D2H)
and host-to-device (H2D) operators to conduct data swapping
between the host and GPU memory. Also, during a training
process, some intermediate feature data (e.g., the result of
matrix multiplication in the ApplyEdge stage as in Figure 5)
relevant to vertex chunks or edge chunks will be used in back-

W

E0,0V0 V1

mat
mul

add

mat
mul

sig mul Gather

ApplyEdgeV0

E1,0

V1

WC

src

dst

V0’

SAG SAG

A0

WH

Scatter

mat
mul ReLU

ApplyVertex

E1,0

A0

weights
params.

Accum.

Figure 5: Chunk-based dataflow graph for a destination in-
terval V0 at a G-GCN layer. The backward dataflow graph
and the swapping of intermediate results to host memory for
backward are omitted for a clear visualization.

propagation. To save GPU memory, they are swapped out
to host memory during the feed-forward computation and
swapped back in during the back-propagation.
Discussion. The source vertex determines the row of the
edge chunk and the destination vertex determines the column
of the edge chunk. For every GNN layer, edge processing
can be done in either a row-oriented or a column-oriented
manner, based on the update pattern. For the forward com-
putation, data flows from the source vertex to the destination
vertex. With this pattern, row-oriented processing loses the
opportunity of reusing the accumulated vertex data chunks,
whose total size can be larger than the size of GPU memory.
NeuGraph therefore adopts a column-oriented approach as
illustrated in Figure 5, where it continuously executes oper-
ators in the Scatter-ApplyEdge-Gather (SAG) stages for V0
and V1 to produce A0, which is subsequentially consumed by
operators in the ApplyVertex stage. The destination vertex
chunk and the corresponding accumulated vertex data chunk
(e.g., A0 in the figure) can be reused in GPU memory when
NeuGraph processes edge chunks in the same column, so that
data movement can be minimized.

By contrast, for the backward computation, a vertex gra-
dient is propagated from the destination vertex to the source
vertex. In this case, row-oriented processing is preferred.
The vertex gradient data chunk can be reused from GPU
memory when NeuGraph processes edge chunks in the same
row. In the rest of this section, we focus on the discussion
of the forward-pass execution of chunk-based dataflow, the
backward-pass execution is done in a similar manner.

Besides the chunk processing order, determining the num-
ber of vertex chunks P is also important. Assuming edge
chunks are accessed in the column-oriented manner in the for-
ward pass, each edge chunk is accessed once, and each source
vertex chunk is loaded P times. Thus, a smaller P is preferred
to reduce I/O. NeuGraph selects P as the minimum integer to
fit each chunk in GPU memory. Given a chunk-size choice

USENIX Association 2019 USENIX Annual Technical Conference 447

and the scheduling plan of the dataflow graph, NeuGraph
computes the GPU memory requirement of the execution. If
this requirement is beyond GPU’s capacity, NeuGraph shrinks
the chunk size by increasing P.

3.2 Streaming Processing out of GPU Core

For each layer, NeuGraph can scale GNN computation be-
yond the GPU core by processing the dataflow subgraph for a
column of edge chunks (illustrated in Figure 5) in a column-
by-column way. As we show later in the experiments (Ta-
ble 2), the CPU-GPU data transfer has a significant impact
on the overall performance, especially for sparse graphs. Neu-
Graph introduces a streaming scheduler with two innovations:
selective scheduling that reduces data transfer on unnecessary
vertices, and pipeline scheduling that maximizes the overlap
between computation and data transfer.
Selective Scheduling. Unlike traditional graph algorithms
(e.g., PageRank), the vertex data in GNNs can be much larger
due to their high-dimensional feature vectors. To reduce the
transfer cost of vertex chunks, NeuGraph exploits sparsity
inherent in real-world graphs: To compute a specific edge
chunk, not all vertices in the corresponding vertex chunks
will be used due to the sparse graph structure (e.g., some
vertices have no edges in this chunk). So, when processing
an edge chunk E, NeuGraph applies a filter in CPU to select
the useful vertices from E’s source vertex chunk, and only
transfers the selected vertex data into GPU.

We notice that a random graph partition (e.g., a permuta-
tion of the vertices) makes selective scheduling inefficient.
Therefore, NeuGraph adopts a locality-aware graph partition-
ing algorithm (e.g., Kernighan-Lin algorithm) to condense as
many edges that are connected to the same vertex as possible
into one chunk (e.g., a diagonal one in the matrix of edge
chunks). In this way, better access locality can be achieved for
vertex data and hence more potential in selective scheduling.

Interestingly, when the majority of the vertices are useful
(e.g., in a dense subgraph), directly transferring the full vertex
chunk can be faster as it does not require additional memory
copies for filtering. So for an edge chunk, we dynamically
determine whether to apply the filtering in CPU based on the
fraction θ of useful vertices. Given the host memory copy
throughput Tcopy on the CPU side, the filtering cost is θ

Tcopy
.

Let Ttrans be the bulk transfer throughput from CPU to GPU.
For a vertex chunk, if θ <

Tcopy
Tcopy+Ttrans

, NeuGraph chooses to
apply filtering as it benefits the overall data transfer efficiency.
Otherwise, NeuGraph skips the filtering and directly loads
the entire vertex chunk into GPU.
Pipeline Scheduling. Besides the filtering optimization, Neu-
Graph further overlaps data transfer and computation through
a pipeline scheduling to hide the transfer latency. Instead of
streaming one edge chunk each time into GPU, NeuGraph
can stream multiple chunks into the GPU device memory.

1 2 3 4

1 3 2 4

Swap

Order:
1,2,3,4

Order:
1,3,2,4

Reduced
time

Chunk Loading

Chunk Computing

better
overlapped

1 2 43

1 3 2 4

Time

Figure 6: The swapping heuristic for a case of streaming two
edge sub-chunks (k = 2).

In this case, a smaller chunk size can increase overlapping
potential, which seems opposite to the requirement of a large
chunk size to reduce vertex access I/O.

To deal with this dilemma, we apply the second-level par-
titioning over the edge grid to improve streaming efficiency
without increasing the total I/O amount. Specifically, we hor-
izontally partition an edge chunk and its associated source
vertex chunk into k (k ≥ 2) fine-grained sub-chunks, which
enables parallel streaming processing of k sub-chunks. While
performing computation on an edge sub-chunk, NeuGraph
can simultaneously stream in other edge sub-chunks and their
associated source vertex sub-chunks.

Recall that different edge sub-chunks could have distinct
data transfer and computation cost due to different sparsi-
ty levels. NeuGraph carefully makes a scheduling plan for
streaming heterogeneous sub-chunks. Given a column of edge
sub-chunks, the system first generates the initial schedule plan
by assigning a random order for processing. Next, it repeat-
edly swaps the order of a pair sub-chunks such that a better
schedule plan with less time can be obtained. This process
stops when it converges or reaches maximum iterations.

Then, NeuGraph exploits the cyclic pattern inherent in
GNNs: Both the computation time and data transfer time of
each sub-chunk can be profiled in the first several iterations
and used in refining the scheduling plan for processing in the
following iterations. Specifically, the system simulates the
execution of the current schedule order based on the profiled
execution information of individual sub-chunks. As illustrated
in Figure 6, by examining the overlapping result in this simu-
lation, the system finds a sub-chunk whose data transfer time
is much shorter than the computation time, and within the
same chunk, another sub-chunk is an opposite case. By swap-
ping the order of these two heterogeneous edge sub-chunks,
the system enables a better balance between the computation
and data transfer.

3.3 Parallel Multi-GPU Processing

To improve scalability further, we can parallelize the train-
ing by partitioning the chunk-based dataflow (model paral-
lelism) over multi-GPUs. Our dataflow graph is easy to paral-
lelize due to its parallel nature, where GPUs can be assigned

448 2019 USENIX Annual Technical Conference USENIX Association

QPI

PCIe Switch

GPU

0

GPU

1

PCIe Switch

GPU

2

GPU

3

PCIe Switch

GPU

4

GPU

5

PCIe Switch

GPU

6

GPU

7

PCIe Host

Bridge

x16 x16 x16 x16 x16 x16 x16 x16x16 x16 x16 x16 x16 x16 x16 x16

x16 x16 x16 x16x16 x16 x16 x16

CPU /

DRAM

CPU /

DRAM

Ring

PCIe Host

Bridge

Figure 7: Multi-GPU architecture

dataflow subgraphs for different columns for cooperative pro-
cessing.

However, with recent advances in hardware, modern multi-
GPU systems introduce complex inter-connections among
GPUs and across GPUs and CPUs, which presents new chal-
lenges to parallelize a dataflow graph. To illustrate this issue,
Figure 7 shows the topology of a typical 8-GPU server, where
GPUs are connected to CPU/DRAM (host memory) via a
multi-level PCIe interface hierarchy. The upper level links
that are shared by multiple communication paths can easily
become a bottleneck. For example, GPUs 0 and 1 can only
reach half of their peak bandwidth when reading edge/vertex
data from host memory simultaneously, as limited by the link
from the left-most PCIe switch to DRAM. Connecting the
host to an accelerator like GPU via PCIe is the most common
channel at present. We start from a common case, which may
apply to other architectures.

To maximize the parallelism degree on multiple GPUs
and prevent shared inter-connection links from becoming
a bottleneck, NeuGraph employs a chain-based streaming
scheduling scheme. Note that a vertex chunk is required by
all the GPUs processing different columns of edge chunks.
So, our idea is to let a GPU forward the vertex chunk (once
loaded to its memory) to its neighbor GPU under the same
PCIe switch, which can eliminate the bandwidth contention
on the upper-level shared inter-connection link. NeuGraph
therefore logically considers the GPUs under the same PCIe
switch as a large virtual GPU and enables them to share data
in a chain order as illustrated by the red dotted line in Figure 7.

In chain-based scheduling, each GPU streams one column
of edge chunks and all vertex chunks to compute a destina-
tion vertex chunk. Note that the vertex data chunk for the
destination interval can be initially loaded and cached in GPU
memory. For simplicity, we assume that only the source ver-
tex data is required for the computation. In particular, a GPU
needs to take the following two operations: 1) loading an edge
chunk from the host memory, and a data chunk from the host
memory or from the device memory of its previous GPU in
the chain, and 2) performing local computations. NeuGraph
employs a coordinated scheduling to better overlap the two
operations. As illustrated in Figure 8, we group GPUs into
multiple virtual GPUs according to the inter-connection topol-
ogy; e.g., GPUs 0 and 1 constitute one virtual GPU; GPUs 2
and 3 constitute another. Initially, GPUs 0 and 2 load vertex
data chunk V0 from the host memory. After loading, GPUs 0

GPU 2 GPU 3GPU 0 GPU 1

E1,2 E1,3

E0,2 E0,3

E1,0 E1,1

E0,0 E0,1

chain-transfer

GPU 0 to 1

(same PCIe switch)
chain-transfer

GPU 2 to 3

V0

V1

GPU Processing Order

Figure 8: NeuGraph transfers vertex chunks along the chain.

and 2 start computing over chunk V0, and also begin loading
chunk V1 from the host memory. Meanwhile, GPUs 1 and
3 start fetching chunk V0 from GPUs 0 and 2, respectively.
Next, GPUs 1 and 3 drop the data chunk V0 after processing
it locally as the chunk has already been consumed by all vir-
tual GPUs. The whole process continues in such a pipelining
fashion until all vertex data chunks have been loaded and
processed.

In Section 3.2, we introduce the selective scheduling that
can help reduce data movement between the host and GPU
device memory. However, to apply selective scheduling in
chain-based streaming, we need to select the useful vertex data
required by the corresponding edge chunks in a virtual GPU;
e.g., E0,0 and E0,1 in Figure 8. In a multi-GPU execution,
we use the threshold θ =

Tcopy
Tcopy+Ttrans

to determine whether
or not to apply selective scheduling, where Tcopy and Ttrans
are aggregative memory-copy and aggregative data-transfer
throughput on both the CPU and GPU sides, respectively.
Thus, given limited CPU resources shared by a large number
of GPUs, NeuGraph applies selective scheduling on more
sparse chunks with a larger θ.

3.4 Graph Propagation Engine
Besides ensuring high streaming efficiency, NeuGraph also
introduces several important optimizations to reduce compu-
tation time in the execution of the Scatter-ApplyEdge-Gather
(SAG) stages, which are not easily amenable to efficient GPU
acceleration due to the often sparse edge structure of a graph.

First, NeuGraph incorporates a dataflow graph optimiza-
tion to remove redundant computations in the SAG stage by
considering the semantics of the SAGA-NN model. Consider
the matrix multiplication operations in the ApplyEdge stage
in Figure 5. These operations are conducted on vertex data
that are scattered to a subset of edges and the learnable param-
eters WC or WH that are shared by all edges. Because a vertex
may have multiple edges to which that the vertex data can be
scattered, such a multiplication for a vertex can be conducted
multiple times, leading to redundancies. NeuGraph therefore
moves the computations that are related only to the source or
destination vertices from the ApplyEdge stage of the current
layer to the ApplyVertex stage of the previous layer.

Second, to support the Scatter and Gather stages efficient-

USENIX Association 2019 USENIX Annual Technical Conference 449

Thread 0

Thread 1

v2 edge v1

Figure 9: Parallelism along the dimension of feature vector.

ly on GPUs, NeuGraph provides scatter/gather operation
kernels optimized for GPU executions. The design carefully
considers the data structure layout to allow the kernel to better
leverage the massive parallelism provided by GPU. In most
GNNs, the data of each vertex is a dense vector rather than a
scalar. We therefore exploit parallelism in per-vertex data ac-
cess that fits better to GPU with SIMD architectures. Figure 9
illustrates the scatter kernel passing the vertex data, from both
the source and the destination, onto an edge to form the edge
data. We assign a thread block to process incoming edges
with the same destination vertex. For vertices with a large
in-degree, we divide the incoming edges into consecutive sub-
groups to be processed by multiple thread blocks. In a thread
block, threads copy the source/destination vertex data into the
edge data in parallel along the dimension of the vertex feature
vector, ensuring good coalesced memory access. The gather
kernel reduces the partial accumulation vectors acc from a
set of edges that end at the same destination vertex accum
into an accumulated vector. We employ a similar principle
of exploiting parallelism for the scatter operator. A block of
threads first cooperatively enumerate an edge group, accumu-
late the features of every edge into a temporary vector in GPU
register, and finally write the result back to the corresponding
destination vertex.

Finally, NeuGraph supports Scatter-ApplyEdge-Gather
(SAG) stage fusion as another kernel optimization on exe-
cution of the propagation procedures. We find that, on most
GNN applications, especially after the dataflow graph opti-
mization, the ApplyEdge function only performs element-
wise operations, such as +, -, ×, ÷, tanh, sigmoid, ReLU .
In this case, we can optimize SAG stages by allowing the
vertex/edge data to be directly updated with element-wise
operations in GPU registers and then written back to their
destination vertices in a single pass, without any extra cost of
creating intermediate edge data in the GPU global memory. To
achieve that, NeuGraph automatically detects such a case and
replaces the whole SAG stages using a specially customized
operation called Fused-Gather. This operation processes each
edge chunk as follows: It first loads the inputs of Scatter;
i.e., source vertices and edge data, into GPU registers, and
then uses GPU threads to perform in-place updates directly
on elements in registers based on user-defined element-wise
operations in ApplyEdge. It finally produces the vector acc,
which is summed onto the corresponding vertex accumulation
vector accum with the user-defined Gather.accumulator.

4 Implementation

We implemented NeuGraph on top of TensorFlow (v1.7) with
about 5,000 lines of C++ code and 3,000 lines of Python code.
NeuGraph uses TensorFlow as the dataflow execution run-
time, and additionally provides three specialized modules for
GNN applications: (1) an engine translating a vertex-centric
symbolic program into dataflow; (2) a streaming scheduler im-
plementing the core scheduling logic; (3) a graph propagation
engine with optimized kernels for the proposed Gather/Scat-
ter operators. We discuss several important aspects of our
implementation next.

Dataflow Translation. NeuGraph provides a base class
GNNlayer in addition to the conventional operators; users
can easily define each layer of a GNN algorithm by providing
a symbolic vertex-program. Then NeuGraph divides vertices
and edges into chunks, and generates a chunk-based dataflow
graph by appropriately connecting GNN-layers with Gather
and Scatter according to the user program. NeuGraph prepro-
cesses the graph using the min-cut partition of METIS [21],
and organizes each edge chunk in the compressed sparse col-
umn (CSC) format for the feed-forward computation, while
using the compressed sparse row (CSR) format for back-
propagation computation.

Streaming Scheduler. To improve performance, the stream-
ing scheduler first analyzes the received dataflow graph and
incorporates the optimizations described in Section 3.2. Neu-
Graph implements a filtering operator running on the CPU
side, and determines whether to apply it before the H2D oper-
ator of each vertex chunk based on the percentage of relevant
vertices (i.e., selectivity). Also, NeuGraph profiles the trans-
fer/computation information of edge chunks and revises the
dataflow graph based on the refined scheduling plan discussed
in Section 3.2.

Multi-GPU Execution. Different devices in NeuGraph need
to communicate with one another for coordination. In existing
DL frameworks, an operator is usually dispatched to a specific
device, with its input and output tensors on the same device.
The multi-GPU communication in NeuGraph is executed
by a series of concurrent operators from different devices.
In each operator, after memory is allocated on a device for
communication, it will exchange addresses with other devices
for upcoming device-to-device data transfer. Parameters in
different GPUs also need synchronization in each iteration.
This is implemented by all-reduce.

Graph Propagation Engine. The graph engine contains
graph-specific operator kernels. NeuGraph has optimized im-
plementations for the proposed operators (gather, scatter,
fused-gather). Specifically, scatter is a map operator that turns
vertex data into edge data, and gather is a reduce operator
that accumulates edge data for each vertex. Also, NeuGraph
implements fused-gather operator described in Section 3.4 to
enable one-pass edge computation when the edge computa-

450 2019 USENIX Annual Technical Conference USENIX Association

CommNet(v`): // computing v`+1

params p = [W `
H , W `

C]
// Passing data over edges
edge` = Scatter(v`)
// no edge-parallel computation
acc = ApplyEdge(edge`):
return edge`.src

set Gather.accumulator = sum
accum = Gather(acc)
// compute new vertex data
v`+1 = ApplyVertex(v`, accum , p):
return ReLU

(
p.W `

H ⊗v`+p.W `
C⊗accum

)
return v`+1

Figure 10: CommNet in SAGA-NN

GCN(v`): // computing v`+1

params p = W `

// Passing data over edges
edge` = Scatter(v`)
// edge.data is static weight
acc = ApplyEdge(edge`):
return edge`.src × edge`.data

set Gather.accumulator = sum
accum = Gather(acc)
// compute new vertex data
v`+1 = ApplyVertex(v`,accum ,p):
return ReLU

(
p.W `⊗accum

)
return v`+1

Figure 11: GCN in SAGA-NN

GG-NN(v`): // computing v`+1

// different for each edge type
params p, A
edge` = Scatter(v`)
// edge.data is edge type
acc = ApplyEdge(edge`, A):
return A(edge`.data) ⊗ edge`.src

set Gather.accumulator = sum
accum = Gather(acc)
// compute new vertex data with GRU
v`+1 = ApplyVertex(v`, accum , p):
return GRU(vertex`, accum)

return v`+1

Figure 12: GG-NN in SAGA-NN

tion is element-wise.

5 Evaluation

In this section, we demonstrate the efficiency and scalability
of NeuGraph by evaluating it on multiple GNNs and datasets.
GNN Models. NeuGraph can support many different types
of graph-based neural networks [7,8,13,18,19,23,25,29,41].
We use the following three representative GNN models.

Communication neural network (CommNet) [41] is a model
with which cooperating agents learn to communicate among
themselves before taking actions. This network can be used
to solve multiple learning communication tasks like traffic
control. In CommNet, there is no computation on the edge, so
the ApplyEdge stage is simply a passthrough (see Figure 10).

Graph convolutional network (GCN) [19,23] applies convo-
lutional operations to an arbitrary graph, and has been used in
many semi-supervised or unsupervised graph clustering prob-
lems, such as entity classification in a knowledge graph. GCN
(see Figure 11) has a computation (without neural networks)
on the edge for weighted neighbor activation.

Gated graph sequence neural network (GG-NN) [25] ap-
plies recurrent neural networks (RNNs) to graph data and is
used for NLP tasks. GG-NN performs NN-based edge compu-
tation (see Figure 12), with different parameters for different
edge types. It also performs a heavy Gated Recurrent Unit
(GRU) computation on vertices.

We chose these GNNs as the benchmark algorithms in the
evaluation not only because of their different computation
patterns, but also for the purpose of comparing with Tensor-
Flow: the propagation stage in these cases can be treated as a
sparse matrix multiplication and therefore expressible in Ten-
sorFlow. Certain algorithms such as G-GCN in our running
example cannot be directly supported using the TensorFlow
multiplication operators.
Datasets. Table 1 lists the real-world datasets used for evalu-
ation, including the PubMed citation network (pubmed) [38],
the BlogCatalog social network (blog) [42], the Reddit on-
line discussion forum (reddit-small, reddit-full) [18], the
Wikipedia data dump (enwiki) [3], and the Amazon data dump

Dataset vertex# edge# feature label avg. degree
pubmed 19.7K 108.4K 500 3 5
blog 10.3K 668.0K 128 39 65
reddit-small 58.2K 1.4M 300 41 25
reddit-full 2.4M 705.9M 300 50 292
enwiki 3.6M 276.1M 300 12 77
amazon 8.6M 231.6M 96 22 27

Table 1: Datasets (K: thousand, M: million).

(amazon) [30]. The column feature in Table 1 reports the sizes
of the vertex feature vectors, and the label column contains
the numbers of label classes. As different GNN tasks share
the same GNN architecture and differ only on the output layer,
we tested the performance of our system on the task of vertex
classification (e.g., classifying academic papers into differ-
ent subjects in the PubMed citation dataset, which contains
sparse bag-of-words feature vectors for each document and a
list of citation links between documents) and set the number
of layers `= 2 in experiments.
Environment and Baselines. We evaluated NeuGraph on
a multi-GPU server, which is equipped with dual 2.6 GHz
Intel Xeon E5-2690v4 processors (28 cores in total), 512 GB
memory, and 8 NVIDIA Tesla P100 GPUs. The installed
operating system is Ubuntu 16.04, using the libraries CUDA
9.0 and cuDNN 7.0.

We compared NeuGraph (NG) with TensorFlow v1.7 (TF)
[4], GraphSAGE [18] (TensorFlow backend) and DGL v0.1.3
(PyTorch v1.0 [2] backend) [1]. GraphSAGE is a modeling
framework for inductive representation learning on graphs
and is widely used to generate low-dimensional vector repre-
sentations for vertices. DGL is a Python package that serves
as an interface between any existing tensor libraries and data
expressed as graphs, thereby making it easy to implement
GNNs.

We took the existing open-source implementations [1, 18,
23] i. We also implemented a basic extension, integrating
TensorFlow with the chunk-based dataflow translation (TF-
SAGA). The TF-SAGA can support larger GNN models, but

iFor fair comparison, we took minor optimizations (e.g., replacing ineffi-
cient feed_dict with preloaded data tensors in memory to avoid redundant
memory copies from python runtime to TensorFlow runtime).

USENIX Association 2019 USENIX Annual Technical Conference 451

 0

 0.02

 0.04

 0.06

 0.08

GCN
CommNet

GG-NN

T
im

e(
s)

pubmed

DGL
TF

TF-SAGA
NG

 0
 0.04
 0.08
 0.12
 0.16
 0.2

GCN
CommNet

GG-NN

T
im

e(
s)

blog

DGL
TF

TF-SAGA
NG

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

GCN
CommNet

GG-NN

T
im

e(
s)

reddit-small

DGL
TF

TF-SAGA
NG

Figure 13: End-to-end performance comparison among DGL,
TensorFlow (TF), TF-SAGA and NeuGraph (NG) on small
datasets. GraphSAGE runs OOM.

with all other optimizations described in Section 3 disabled.
The comparison with TF-SAGA can reveal how much each
optimization contributes to the overall performance.

We focused on metrics for system performance; e.g., time
to scan one epoch of data. NeuGraph produces the same
numerical results as TensorFlow and DGL, and hence has the
same per-epoch convergence. All performance numbers in
our experiments are calculated by computing the averages
over 10 epochs.

5.1 Performance on a Single GPU
First, we evaluated NeuGraph by comparing it with the state-
of-the-art frameworks TensorFlow, DGL, and GraphSAGE.
As TensorFlow and DGL can only process graphs that fit
in the device memory of a single GPU, we conducted these
experiments on the first three small graphs in Table 1.

Figure 13 shows the end-to-end comparison results among
different models and datasets. Overall, NeuGraph achieves on
average a 2.5× speedup (up to 5.0×) compared with Ten-
sorFlow, and on average an 8.1× speedup (up to 19.2×)
compared with DGL. We found that the properties of both
graphs and models impact performance. NeuGraph achieves
the largest speedup with GCN on the blog dataset. This is
mainly because the high average vertex degree of the blog
graph leads to greater graph propagation (i.e., SAG stages)
costs, which NeuGraph can optimize more effectively.

Due to lack of graph support on TensorFlow, GraphSAGE
implements GNNs through sampling neighbors and padding
to convert irregular graphs to regular tensors. It leads to out of
memory even on small graphs using the same evaluation setup
(i.e., processing the whole graph with the sampler disabled).
Moreover, it still runs about 5× slower than NeuGraph for
GCN on pubmed even if the sampler is set to sample exactly
one neighbor per vertex.

5.2 Scaling-up on a Single GPU
Since TensorFlow failed to process large graphs on GPU due
to the out of memory (OOM) exceptions, we ran TensorFlow
only on CPU. Accordingly, besides running TF-SAGA on

0

20

40

200

220

GCN
CommNet

GG-NN

T
im
e(
s)

reddit-full
TF(CPU)

TF-SAGA(CPU)
TF-SAGA

NG

0
10
20

70
80

GCN
CommNet

GG-NN

T
im
e(
s)

enwiki
TF(CPU)

TF-SAGA(CPU)
TF-SAGA

NG

0
10
20

40
50

GCN
CommNet

GG-NN

T
im
e(
s)

amazon
TF(CPU)

TF-SAGA(CPU)
TF-SAGA

NG

Figure 14: NeuGraph end-to-end performance comparisons
on different large datasets. TensorFlow uses CPU-only mode
as OOM occurs on GPU. TF-SAGA (CPU) is configured to
run on CPU only, whereas TF-SAGA is GPU-enabled.

 0
 1
 2
 3
 4
 5

reddit-full enwiki amazon
S

pe
ed

 u
p

TF-SAGA
+ NG-kernel
+ NG-selective
+ NG-pipeline
+ NG-swap

Figure 15: NeuGraph performance improvement breakdown
of end-to-end on GCN model over different large datasets.
The speedup is measured over the TF-SAGA (speedup = 1).

GPU, we also ran it on CPU. DGL also experienced OOM ex-
ceptions when directly processing large graphs on GPU, there-
fore requiring additional graph sampling to alleviate memory
pressure at the expense of model capacity and convergence
guarantee. By contrast, NeuGraph can scale GNNs beyond
GPU memory without loss on the model scale. Note that Neu-
Graph can also support the same graph sampling approaches
as DGL. In this case, the results in Section 5.1 have already
demonstrated that NeuGraph significantly outperforms DGL
for small model scales on a single GPU. Hence, we do not
compare them again here but focus instead on model scales
that cannot fit in GPU memory.
End-to-end Comparison. Figure 14 shows the end-to-end
comparison results among different models and datasets. Un-
der the same CPU-only mode, TF-SAGA can achieve on
average a 4.3× speedup over TensorFlow. That is because
TF-SAGA on CPU contains finer grained chunk-level opera-
tors, which can be processed concurrently on the CPUs and
make better use of the CPU resources. Moreover, NeuGraph
achieves 16∼ 47× speedups compared to TensorFlow-CPU,
which is the current solution for large graphs.

Compared with TF-SAGA on GPU, NeuGraph could pro-
vide even better performance with its additional optimiza-
tions. Figure 14 shows that NeuGraph achieves 2.4∼ 4.9×
speedups over the GPU-enabled TF-SAGA on different
models and datasets. Similar to those on small graphs, the
speedups on large graphs depend on the graph structure. The
average speedup across all models on the reddit-full graph
with the highest vertex degree is 4.6× over the GPU-enabled

452 2019 USENIX Annual Technical Conference USENIX Association

Time (s) TF-SAGA NeuGraph
Dataset IO Comp. Runtime IO Comp. Runtime
reddit-full 7.67 13.27 20.94 3.84 2.46 4.28
enwiki 5.93 5.13 11.07 3.24 1.77 3.63
amazon 5.11 1.44 6.55 1.56 1.18 1.82

Table 2: GCN on large graphs: TF-SAGA vs. NeuGraph.
NeuGraph overlaps I/O and computation time.

TF-SAGA, as opposed to 2.8× on the enwiki graph with mod-
erate vertex degree and 3.1× for the amazon graph with the
lowest vertex degree.

Breakdown Comparison. Both streaming and kernel opti-
mizations can play important roles in achieving good overall
performance after scaling GNN out of GPU core. To under-
stand how much each optimization contributes to the overall
performance, we disabled the graph propagation kernel op-
timization (NG-kernel) described in Section 3.4, as well as
selective scheduling (NG-selective) and pipeline scheduling
(NG-pipeline and NG-swap) described in Section 3.2. It ef-
fectively turns NeuGraph into the TF-SAGA. We then turned
on these optimizations one by one and measured the resulting
speedups they brought. To better understand the improvement,
we also profiled the GCN execution on both TF-SAGA and
NeuGraph with nvprof [32].

Figure 15 shows the improvement of each optimization
over TF-SAGA for GCN. The results under other models are
similar. We found that the graph kernel optimization works
better on dense graphs (like reddit-full), whereas selective
scheduling is more effective on sparse graphs (like ama-
zon). For example, the graph kernel optimization can achieve
a 2.8× speedup on the reddit-full graph, but only a 1.2×
speedup on the amazon graph. However, selective scheduling
can still bring an additional 2.6× speedup on the amazon
graph. That is because a high-density graph leads to a higher
computation cost on SAG stage, which is the target of the
graph kernel optimization, whereas a low-density graph with
selective scheduling can filter more unnecessary vertices. The
figure also shows that our swap-based pipeline scheduling
can bring significant improvement by effectively overlapping
data transfer and computation, especially on the reddit-full
graph where data chunks highly heterogeneous.

Table 2 shows the time of the host-device data transfer
(I/O) and computation (Comp.) for TF-SAGA and NeuGraph.
Compared to TF-SAGA, the optimizations in NeuGraph re-
duce both I/O and computation significantly and achieve good
overlapping with pipeline scheduling.

As described in Section 3.1, the processing order of chunks
may also impact performance. To examine the exact effect
of processing order, we ran NeuGraph with the streaming
processing optimizations described in Section 3.2 disabled.
Figure 16 shows that, for the forward-backward pass, the
column-row-oriented strategy is 1.4 ∼ 1.7× faster than the
row-column-oriented one.

 0
 2
 4
 6
 8

 10
 12
 14
 16

reddit-full enwiki amazon

T
im

e
(s

)

Row-Column Sched.
Column-Row (NG) Sched.

Figure 16: NeuGraph with row/column-oriented chunk
scheduling: GCN on large graphs.

5.3 Scaling-out on Multiple GPUs

As described in Section 3.3, we can easily extend TF-SAGA
from one GPU to multiple GPUs by allowing each GPU to
process a dataflow subgraph, without considering the band-
width contention. We compared it to NeuGraph with the chain-
based scheduling disabled or enabled, in order to understand
the performance of our topology-aware scheduling.

Figure 17 shows the results of the GCN model on three
large graphs; the results of other GNN models are simi-
lar. NeuGraph significantly outperforms the multi-GPU TF-
SAGA with the chain-based scheduling enabled or disabled.
The average speedup of NeuGraph is 3.6×/2.7× over multi-
GPU TF-SAGA with varying numbers of GPUs.

The benefit of the chain-based scheduling is highlighted in
the comparison between enabling and disabling this topology-
aware scheduling. For example, when scaling from 1 GPU
to 2 GPUs, the average speedup of the disabled case even
decreases, whereas the enabled one can improve from 3.8×
to 5.5× over the single GPU TF-SAGA. This is mainly be-
cause, without the chain-based scheduling, two GPUs within
the same PCIe switch need to load input edge/vertex data
through a shared link concurrently, which can easily become
the bottleneck. By contrast, the chain-based mechanism al-
lows the second GPU to load vertex data directly from the
first one, reducing the pressure on the shared PCIe link.

We observed that the chain-based scheduling achieves near-
ly linear speedup on the reddit-full and enwiki graphs, but
exhibits less optimal results on the relatively sparse amazon
graph. The reason is that NeuGraph tends to apply selective
scheduling on relatively sparse graphs. However, given the
limited CPU resources shared by an increasing number of
GPUs, NeuGraph has to decrease usage of the CPU for per-
GPU filtering. Also, the current TensorFlow implementation
cannot support NUMA-aware tensor allocation well, which
imposes a performance impact on the CPU filtering, espe-
cially on sparse graphs like the amazon where the filtering is
often used.

6 Related Work
The growing scale and importance of graph data has driv-
en the development of numerous specialized graph process-
ing systems, including Pregel [28], GraphLab [26], Power-

USENIX Association 2019 USENIX Annual Technical Conference 453

1
4

8

16

 1 2 4 8

S
pe

ed
 u

p

GPU#

reddit-full

NG-chain
NG w/o.chain

TF-SAGA

1

4

8

16

 1 2 4 8
GPU#

enwiki

NG-chain
NG w/o.chain

TF-SAGA

1

4

8

16

 1 2 4 8
GPU#

amazon

NG-chain
NG w/o.chain

TF-SAGA

Figure 17: Scaling out GCN with NeuGraph on large graphs (w/o refers to without). The speedup is measured over the single GPU
TF-SAGA (speedup = 1). Chain-base scheduling works on multi-GPU, resulting in the same 1 GPU point with it enabled/disabled.

Graph [15] and GraphX [16]. There are many other following
works with optimizations on different aspects including graph
layout, sequential data access, and secondary storage (e.g.,
GraphChi [24], Grace [34], FlashGraph [53], XStream [36]
and Chaos [35]), distributed shared memory and RDMA (e.g.,
Grappa [31] and GraM [45]), NUMA-awareness, schedul-
ing, and graph partitioning (e.g., PowerLyra [10] and Bi-
Graph [11]). All these works focus on CPU based computa-
tion.

There is another series of system works that focus on ex-
ploiting GPU for large graph processing. GraphReduce [39]
can process out-of-memory graphs on a single GPU and op-
timize memory coalescing by using two different formats.
GTS [22] can also process out-of-memory graphs on multiple
GPUs by fully exploiting the asynchronous GPU streams.
Garaph [27] exploits edge-centric parallelism and dynamic
scheduling to achieve the best performance on the CPU/GPU
hybrid platform. Lux [20] investigates the placement of graph
data over the CPU memory hierarchy on multiple nodes. All
these graph processing systems are driven by basic graph
benchmarks such as PageRank and shortest path, but lack the
support for neural network computation, such as the tensor
abstraction and auto-differentiation. To be compatible with
existing DL libraries, NeuGraph chooses to recast the graph-
specific optimizations as dataflow optimizations on top of DL
frameworks (e.g., TensorFlow). This does not limit the capa-
bility of expressing a general DL computation, and allows
users to benefit from both graph and DL optimizations.

TuX2 [47] aims to bridge the gap between graph and tra-
ditional machine learning computation, while NeuGraph tar-
gets neural network computation on graphs, which connects
graph processing and deep learning supported by the dataflow
frameworks like TensorFlow [4], PyTorch [2], MXNet [12],
and CNTK [50], etc. Most recently, Cavs [48] introduces
the vertex-centric programming model into dynamic neural
networks to address the problems that each sample has a
unique dataflow graph and the training is iterative on batch-
es of samples. NeuGraph addresses different problems and
challenges regarding scalability and performance in support-
ing GNN models on large real-world graphs. DGL [1] wraps
DL systems with a message-passing programming interface

for GNNs, while NeuGraph addresses the system challenges
(e.g., scalability and efficiency) by translating graph-aware
computation on dataflow and recasting graph optimizations.

From the modeling perspective, there are several model-
ing works (e.g., GraphSAGE [18], MPNN [14], and GN-
Block [5]) that attempt to unify existing GNNs into a sin-
gle modeling framework. These generalized modeling frame-
works can be implemented easily and executed efficiently
at scale by NeuGraph. Recently developed graph sampling
approaches (e.g., DGL [1], GraphSAGE [18], PinSAGE [49],
and FastGCN [9]) alleviate scalability challenges of GNNs
at the expense of model capacity and convergence guaran-
tee. These approaches are orthogonal to and compatible with
our work. NeuGraph frees users from choosing appropriate
sample sizes and worrying about GPU memory limitations.

7 Conclusion and Future Work

GNN is an emerging computation model that arises natural-
ly from the need to apply neural network models on graphs.
Supporting efficient and scalable parallel computation for
GNN training is demanding due to its inherent complexi-
ty. Given this new requirement, we advocate unifying graph
computation and deep learning systems for GNNs. NeuGraph
represents a critical step in this direction by showing not only
the feasibility, but also the potential of such unification. We
accomplish this by defining a new, flexible SAGA-NN model
to express GNN algorithms by fusing graph-related optimiza-
tions into the management of data partitioning, scheduling
and parallelism in deep learning frameworks.

One potential future direction is to scale GNN further to
multiple servers, by leveraging the work in distributed graph
systems [40, 44, 45].

Acknowledgments

We thank the anonymous reviewers for their valuable com-
ments and suggestions. We are particularly grateful to our
shepherd Harry Xu for his detailed guidance in the final revi-
sion process.

454 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Deep graph library. https://github.com/dmlc/dgl,
Retrieved January, 2019.

[2] PyTorch. http://pytorch.org, Retrieved January,
2019.

[3] Wikimedia downloads. https://dumps.wikimedia.
org/, Retrieved May, 2018.

[4] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tuck-
er, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. Tensorflow: A system for
large-scale machine learning. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI’16, pages 265–283. USENIX
Association, 2016.

[5] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Al-
varo Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz
Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, et al. Relational inductive bias-
es, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

[6] Rianne van den Berg, Thomas N Kipf, and Max Welling.
Graph convolutional matrix completion. arXiv preprint
arXiv:1706.02263, 2017.

[7] Xavier Bresson and Thomas Laurent. Residual gated
graph convnets. arXiv preprint arXiv:1711.07553, 2017.

[8] Thang D. Bui, Sujith Ravi, and Vivek Ramavajjala.
Neural graph learning: Training neural networks using
graphs. In Proceedings of 11th ACM International Con-
ference on Web Search and Data Mining, WSDM’18,
pages 64–71. ACM, 2018.

[9] Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: fast
learning with graph convolutional networks via impor-
tance sampling. In International Conference on Learn-
ing Representations, ICLR’18, 2018.

[10] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen.
PowerLyra: Differentiated graph computation and par-
titioning on skewed graphs. In Proceedings of the
Tenth European Conference on Computer Systems, Eu-
roSys’15, pages 1:1–1:15. ACM, 2015.

[11] Rong Chen, Jiaxin Shi, Binyu Zang, and Haibing Guan.
Bipartite-oriented distributed graph partitioning for big
learning. In Proceedings of 5th Asia-Pacific Workshop
on Systems, APSys’14, pages 14:1–14:7. ACM, 2014.

[12] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. MXNet: A flexible and efficient
machine learning library for heterogeneous distribut-
ed systems. In NIPS Workshop on Machine Learning
Systems, LearningSys’16, 2016.

[13] Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. In Advances in
Neural Information Processing Systems, NIPS’16, pages
3844–3852, 2016.

[14] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley,
Oriol Vinyals, and George E Dahl. Neural message
passing for quantum chemistry. In Proceedings of the
34th International Conference on Machine Learning-
Volume 70, ICML’17, pages 1263–1272. JMLR. org,
2017.

[15] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny
Bickson, and Carlos Guestrin. PowerGraph: Distributed
graph-parallel computation on natural graphs. In Pro-
ceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation, OSDI’12, pages
17–30. USENIX Association, 2012.

[16] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave,
Daniel Crankshaw, Michael J. Franklin, and Ion Sto-
ica. GraphX: Graph processing in a distributed dataflow
framework. In Proceedings of the 11th USENIX Sympo-
sium on Operating Systems Design and Implementation,
OSDI’14, pages 599–613. USENIX Association, 2014.

[17] Marco Gori, Gabriele Monfardini, and Franco Scarselli.
A new model for learning in graph domains. In Proceed-
ings of the 2005 IEEE International Joint Conference
on Neural Networks, IJCNN’05, pages 729–734. IEEE,
2005.

[18] William L. Hamilton, Rex Ying, and Jure Leskovec. In-
ductive representation learning on large graphs. In
Advances in neural information processing systems,
NIPS’17, pages 1024–1034, 2017.

[19] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep
convolutional networks on graph-structured data. arXiv
preprint arXiv:1506.05163, 2015.

[20] Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat Mc-
Cormick, Mattan Erez, and Alex Aiken. A distributed
multi-gpu system for fast graph processing. Proceedings
of the VLDB Endowment, 11(3):297–310, November
2017.

[21] George Karypis and Vipin Kumar. A fast and high qual-
ity multilevel scheme for partitioning irregular graphs.

USENIX Association 2019 USENIX Annual Technical Conference 455

https://github.com/dmlc/dgl
http://pytorch.org
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/

SIAM Journal on scientific Computing, 20(1):359–392,
1998.

[22] Min-Soo Kim, Kyuhyeon An, Himchan Park, Hyunseok
Seo, and Jinwook Kim. GTS: A fast and scalable graph
processing method based on streaming topology to gpus.
In Proceedings of the 2016 ACM SIGMOD Internation-
al Conference on Management of Data, SIGMOD ’16,
pages 447–461. ACM, 2016.

[23] Thomas N. Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks. In
International Conference on Learning Representations,
ICLR’17, 2017.

[24] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin.
GraphChi: Large-scale graph computation on just a PC.
In Proceedings of the 10th USENIX Symposium on Op-
erating Systems Design and Implementation, OSDI’12,
pages 31–46. USENIX Association, 2012.

[25] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and
Richard Zemel. Gated graph sequence neural networks.
In International Conference on Learning Representa-
tions, ICLR’16, 2016.

[26] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos
Guestrin, Aapo Kyrola, and Joseph M Hellerstein. Dis-
tributed GraphLab: a framework for machine learning
and data mining in the cloud. Proceedings of the VLDB
Endowment, 5(8):716–727, 2012.

[27] Lingxiao Ma, Zhi Yang, Han Chen, Jilong Xue, and
Yafei Dai. Garaph: Efficient gpu-accelerated graph
processing on a single machine with balanced replica-
tion. In Proceedings of the 2017 USENIX Annual Tech-
nical Conference, USENIX ATC’17, pages 195–207.
USENIX Association, 2017.

[28] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik,
James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz
Czajkowski. Pregel: A system for large-scale graph
processing. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD’10, pages 135–145. ACM, 2010.

[29] Diego Marcheggiani and Ivan Titov. Encoding sen-
tences with graph convolutional networks for semantic
role labeling. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing,
EMNLP’17, pages 1506–1515. Association for Compu-
tational Linguistics, 2017.

[30] Julian McAuley, Christopher Targett, Qinfeng Shi, and
Anton Van Den Hengel. Image-based recommendations
on styles and substitutes. In Proceedings of the 38th
International ACM SIGIR Conference on Research and

Development in Information Retrieval, SIGIR’15, pages
43–52. ACM, 2015.

[31] Jacob Nelson, Brandon Holt, Brandon Myers, Preston
Briggs, Luis Ceze, Simon Kahan, and Mark Oskin.
Latency-tolerant software distributed shared memory. In
Proceedings of the 2015 USENIX Annual Technical Con-
ference, USENIX ATC’15, pages 291–305. USENIX
Association, 2015.

[32] Nvidia Corporation. Profiler :: Cuda toolkit
documentation. https://docs.nvidia.com/cuda/
profiler-users-guide/index.html, Retrieved Jan-
uary, 2019.

[33] Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina
Toutanova, and Wen-tau Yih. Cross-sentence n-ary re-
lation extraction with graph lstms. Transactions of the
Association for Computational Linguistics, 5:101–115,
2017.

[34] Vijayan Prabhakaran, Ming Wu, Xuetian Weng, Frank
McSherry, Lidong Zhou, and Maya Haradasan. Manag-
ing large graphs on multi-cores with graph awareness.
In Proceedings of the 2012 USENIX Annual Technical
Conference, USENIX ATC’12, pages 41–52. USENIX
Association, 2012.

[35] Amitabha Roy, Laurent Bindschaedler, Jasmina Malice-
vic, and Willy Zwaenepoel. Chaos: Scale-out graph
processing from secondary storage. In Proceedings of
the 25th Symposium on Operating Systems Principles,
SOSP’15, pages 410–424. ACM, 2015.

[36] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel.
X-Stream: Edge-centric graph processing using stream-
ing partitions. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles,
SOSP’13, pages 472–488. ACM, 2013.

[37] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. The graph
neural network model. IEEE Transactions on Neural
Networks, 20(1):61–80, 2009.

[38] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise
Getoor, Brian Galligher, and Tina Eliassi-Rad. Col-
lective classification in network data. AI magazine,
20(1):61–80, 2008.

[39] Dipanjan Sengupta, Shuaiwen Leon Song, Kapil Agar-
wal, and Karsten Schwan. GraphReduce: Processing
large-scale graphs on accelerator-based systems. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, SC ’15, pages 28:1–28:12. ACM, 2015.

456 2019 USENIX Annual Technical Conference USENIX Association

https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html

[40] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and
Feifei Li. Fast and concurrent rdf queries with rdma-
based distributed graph exploration. In Proceedings
of the 12th USENIX Symposium on Operating Systems
Design and Implementation, OSDI’16, pages 317–332.
USENIX Association, 2016.

[41] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus.
Learning multiagent communication with backpropa-
gation. In Advances in Neural Information Processing
Systems, NIPS’16, pages 2244–2252, 2016.

[42] Lei Tang and Huan Liu. Relational learning via la-
tent social dimensions. In Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD’09, pages 817–826.
ACM, 2009.

[43] Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph
attention networks. In International Conference on
Learning Representations, ICLR’18, 2018.

[44] Siyuan Wang, Chang Lou, Rong Chen, and Haibo Chen.
Fast and concurrent rdf queries using rdma-assisted gpu
graph exploration. In Proceedings of the 2018 USENIX
Annual Technical Conference, USENIX ATC’18, pages
651–664. USENIX Association, 2018.

[45] Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao,
Youshan Miao, Lan Wei, Haoxiang Lin, Yafei Dai, and
Lidong Zhou. GraM: Scaling graph computation to the
trillions. In Proceedings of the Sixth ACM Symposium
on Cloud Computing, SoCC’15, pages 408–421. ACM,
2015.

[46] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and Philip S Yu. A comprehen-
sive survey on graph neural networks. arXiv preprint
arXiv:1901.00596, 2019.

[47] Wencong Xiao, Jilong Xue, Youshan Miao, Zhen Li,
Cheng Chen, Ming Wu, Wei Li, and Lidong Zhou. TuX2:
Distributed graph computation for machine learning. In
Proceedings of the the 14th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI’17,
pages 669–682. USENIX Association, 2017.

[48] Shizhen Xu, Hao Zhang, Wei Dai, Jin Kyu Kim, Zhijie
Deng, Qirong Ho, Guangwen Yang, and Eric P. Xing.

Cavs: An efficient runtime system for dynamic neural
networks. In Proceedings of the 2018 USENIX Annual
Technical Conference, USENIX ATC’18, pages 937–
950. USENIX Association, 2018.

[49] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombat-
chai, William L Hamilton, and Jure Leskovec. Graph
convolutional neural networks for web-scale recom-
mender systems. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD’18, pages 974–983.
ACM, 2018.

[50] Dong Yu, Adam Eversole, Mike Seltzer, Kaisheng
Yao, Oleksii Kuchaiev, Yu Zhang, Frank Seide, Zhi-
heng Huang, Brian Guenter, Huaming Wang, Jasha
Droppo, Geoffrey Zweig, Chris Rossbach, Jie Gao, An-
dreas Stolcke, Jon Currey, Malcolm Slaney, Guoguo
Chen, Amit Agarwal, Chris Basoglu, Marko Padmilac,
Alexey Kamenev, Vladimir Ivanov, Scott Cypher, Hari
Parthasarathi, Bhaskar Mitra, Baolin Peng, and Xuedong
Huang. An introduction to computational networks and
the computational network toolkit. Technical report, Mi-
crosoft Technical Report MSR-TR-2014–112, October
2014.

[51] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin
King, and Dit-Yan Yeung. GaAN: Gated attention net-
works for learning on large and spatiotemporal graphs.
arXiv preprint arXiv:1803.07294, 2018.

[52] Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning
on graphs: A survey. arXiv preprint arXiv:1812.04202,
2018.

[53] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogel-
stein, Carey E. Priebe, and Alexander S. Szalay. Flash-
Graph: Processing billion-node graphs on an array of
commodity ssds. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies, FAST’15,
pages 45–58. USENIX Association, 2015.

[54] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. Graph neural networks:
A review of methods and applications. arXiv preprint
arXiv:1812.08434, 2018.

USENIX Association 2019 USENIX Annual Technical Conference 457

Pre-Select Static Caching and Neighborhood Ordering
for BFS-like Algorithms on Disk-based Graph Engines

Eunjae Lee
UNIST

kckjn97@unist.ac.kr

Junghyun Kim∗

TmaxOS
junghyun_kim3@tmax.co.kr

Keunhak Lim∗

NEXON Korea
limkeunhak@nexon.co.kr

Sam H. Noh
UNIST

next.unist.ac.kr

Jiwon Seo†

Hanyang Univ.
seojiwon@hanyang.ac.kr

Abstract

Many important graph algorithms are based on the
breadth first search (BFS) approach, which builds it-
self on recursive vertex traversal. We classify algorithms
that share this characteristic into what we call a BFS-like
algorithm. In this work, we first analyze and study the
I/O request patterns of BFS-like algorithms executed
on disk-based graph engines. Our analysis exposes two
shortcomings in executing BFS-like algorithms. First,
we find that the use of the cache is ineffective. To make
use of the cache more effectively, we propose an in-
memory static cache, which we call BFS-Aware Static
Cache or Basc, for short. Basc is static as its contents,
which are edge lists of vertices that are pre-selected
before algorithm execution, do not change throughout
the execution of the algorithm. Second, we find that the
state-of-the-art ordering method for graphs on disks is
ineffective with BFS-like algorithms. Thus, based on an
I/O cost model that estimates the performance based
on the ordering of graphs, we develop an efficient graph
ordering called Neighborhood Ordering or Norder. We
provide extensive evaluations of Basc and Norder on
two well-known graph engines using five real-world
graphs including Twitter that has 1.9 billion edges. Our
experimental results show that Basc and Norder, collec-
tively have substantial performance impact.

1 Introduction

Algorithms such as breadth first search (BFS) [26], short-
est paths (SP) [15], all pairs shortest path (APSP) [35],
diameter computation (DIAM) [1], finding weakly con-
nected components (WCC) [15], and betweenness cen-
trality (BC) [4] are popular graph algorithms widely
used in many domains including bioinformatics, social

∗Participated in this research as graduate students at UNIST
†Corresponding author and principal investigator

science, and economics. These algorithms share a com-
monality that they start from a given set of vertices
and then recursively traverse their neighboring vertices.
Together, we call algorithms with these characteristics
BFS-like algorithms.

In BFS-like algorithms, only a subset of vertices are
active at any given time. Furthermore, which of the
vertices are to be activated among all the vertices is
difficult to predict. Due to this reason, the locality of
memory access in BFS-like algorithms is generally worse
than that of other graph algorithms such as PageRank,
where all vertices are active and regularly accessed [27].

Due to their poor locality of memory access, it is diffi-
cult to optimize the performance of BFS-like algorithms,
particularly on disk-based graph engines that store the
input graph on external storage such as SSDs. Although
several optimization techniques have been suggested
for disk-based graph systems, their impact on BFS-like
algorithms is limited. Existing optimizations such as
overlapping I/O and CPU operations [12,19] or merging
small I/O requests into a single larger request [40] do
not consider the characteristics of BFS-like algorithms
hence, have substantial room for improvement [2, 27].

The focus of this paper is on BFS-like algorithms, and
our contribution can be summarized as follows. First,
we present a thorough analysis of BFS-like algorithms
running on disk-based graph engines. We observe and
report characteristics not previously revealed such as
the fact that the number of I/O requests for each vertex
is similar among the vertices, regardless of their degrees
or relative positions in graphs.

Second, based on our observations, we propose a new
form of a cache, which we call Basc (an acronym for
BFS-Aware Static Cache). Basc has three distinct char-
acteristics as a cache: 1) it is separate space set aside
from the typical page cache1, 2) it holds edge lists of

1Without loss of generality, we will use the term ‘page cache’ to
refer to typical caches that are deployed to improve I/O performance
in graph engines or within operating systems.

USENIX Association 2019 USENIX Annual Technical Conference 459

certain pre-selected vertices, and 3) it is static, that is,
the contents of the cache do not change throughout the
execution of the algorithm. We show that by judiciously
making use of Basc, performance of BFS-like algorithms
can be substantially improved.

Finally, our observation shows that the performance
of BFS-like algorithms is highly sensitive to the layout
of the graphs. Based on this observation, we devise a
simple model that estimates the I/O costs of BFS-like
algorithms based on the layout of the graph on disk. We
experimentally validate that the model is fairly accurate
in estimating performance. Moreover, guided by the
cost model, we develop a simple, yet efficient graph
ordering scheme that we call Neighborhood Ordering
or Norder for short, which substantially improves the
performance of BFS-like algorithms, even while the time
to compute the ordering takes substantially less than
existing ordering schemes.

The methodologies that we propose are for disk-based
graph systems adopting the vertex-centric computation
model. As this model is widely adopted in large-scale
graph analytics, our work is applicable to many existing
graph processing systems [12, 21, 28, 34, 40]. For fair
comparison with previous schemes we implement our
methods in FlashGraph and Graphene, two recent graph
engines [21, 40]. Note that all discussions hereafter are
done in the context of disk-based graph systems.

The rest of the paper is organized as follows. Section 2
describes our analysis of BFS-like algorithms running
on disk-based graph systems. Section 3 introduces Basc,
our BFS-aware static cache, as well as the vertex selec-
tion algorithm that we propose. In Section 4, we develop
our I/O cost model based on graph orderings, then pro-
pose an optimized graph ordering that we call Neighbor-
hood Ordering. We evaluate our proposed techniques in
Section 5 and discuss related work in Section 6. Finally,
we end with conclusions in Section 7.

2 Characteristics of BFS-like Algorithms

In this section, we first discuss the basic workings of
disk-based graph engines and BFS-like algorithms. We
focus on semi-external graph engines that store ver-
tex attributes in memory, as main memory of commod-
ity computers today is typically large enough to hold
vertex attributes in their entirety. Then, through Sec-
tions 2.2∼2.4, we discuss the characteristics of BFS-like
algorithms that we observe in our analysis.

2.1 Basics of Disk-based Graph Engines

In vertex-centric computations, the entire set or a subset
of vertices are activated as they receive messages in each
iteration. Then the edge lists of the activated vertices

are accessed when necessary to send messages to the
neighboring vertices [25]. As they are accessed, these
edge lists are retrieved from disk to memory in page
granularity, whose size typically ranges from 1KB to a
few MBs [7, 12, 34, 40]. These pages are then stored in
the page cache, which is either controlled by the graph
engine or the file system [7, 12, 19, 40].

The edge lists are generally sorted and indexed by the
owner vertex ID and stored sequentially on disk. Some
graph engines apply optimized partitioning schemes
such as hybrid-cut partitioning, instead of the more
general vertex-cut or edge-cut partitioning, to reduce
I/O [6, 39, 43]. Also, when I/O requests are issued to
retrieve the pages, requests for adjacent pages may be
merged for higher throughput [21, 40].

Performance of graph algorithms on disk-based graph
engines depends largely on the efficiency of accessing
the input graph [7, 19]. In disk-based engines, both the
vertex attributes and input graphs are stored on disk
that are randomly accessed by the graph algorithms.
However, the overhead of accessing the input graph is
generally higher than that of accessing vertex attributes
as a large portion of vertex attributes are typically
cached in memory. In particular, as mentioned previ-
ously, semi-external graph engines store all the vertex
attributes in main memory.

Graph algorithms written in the vertex-centric model
run iteratively, with a varying subset of vertices acti-
vated per iteration depending on the algorithm type. In
BFS and BFS-like algorithms, only the “frontier” ver-
tices are activated in each iteration. Thus, only the edge
lists of these vertices are accessed in a random manner.

As the edge lists of activated vertices are accessed,
pages containing these edges are loaded into the page
cache. As page units are large, edges of unactivated
vertices may also be in the retrieved page and hence,
needlessly loaded to memory. To achieve high cache uti-
lization, and consequently, high performance, we want
the page cache to contain edges of as many activated
vertices as possible. This requires the vertices in the in-
put graph to be ordered such that the edges of activated
vertices in the same iteration are stored in proximity.

2.2 Uniform Edge List Reference

Retrieving edge lists on disk has a significant effect on
performance [19, 43]. To alleviate this burden, it would
be desirable to cache the frequently requested edge lists
of the vertices. To this end, we observe the edge list
request pattern in representative BFS-like algorithms.
Common logic tells us that for a vertex with a large
edge list, that is, a large number of neighbor vertices,
more requests will be targeted to that vertex and its
edge list. However, interestingly and contrary to this

460 2019 USENIX Annual Technical Conference USENIX Association

(a) LiveJournal (b) Wikipedia

Figure 1: Distribution of edge list reference counts: ref-
erence counts for vertices of the same in-degree are av-
eraged and plotted relative to the vertex with the largest
reference count for each algorithm. The gray line shows
the number of vertices corresponding to each in-degree.

logic, we find that there are no substantial differences
in the number of edge list accesses among the vertices,
even for vertices that have widely varying degrees.

Figure 1, which are representative results, shows the
distributions of the number of edge list requests for the
BFS, DIAM, and BC algorithms with the LiveJournal and
Wikipedia dataset 2. The graphs show the average num-
ber of requests for the vertices with the same in-degrees,
that is, having the same number of in-bound edges, nor-
malized to the maximum average request count.

Initially, our conjecture was that the number of re-
quests for a vertex (and thus, to its edge list) would be
roughly proportional to its in-degree because messages
(hence requests) are sent over edges in a vertex-centric
model. However, Figure 1 shows that there is only a
small difference in the number of edge requests between
high and low in-degree vertices. The average counts are
nearly constant and the variance (not shown) are low.

The reason for such uniform reference count is that in
the vertex computation model, the edge list of a vertex
is accessed only once per iteration as multiple requests
to a vertex are merged into a single request if they are
issued in the same iteration. Thus, for a high in-degree
vertex whose neighbor vertices are densely connected to
each other in real-world graphs [10, 20], the majority of
requests to the vertex are sent as a single request. More-
over, in some BFS-like algorithms such as BFS, each
vertex is processed only once in the entire running of
the algorithm, with the exception of unreachable ver-
tices. So the edge lists are also requested only once for
each vertex. Thus, the number of edge list references is
independent of the in-degrees and close to a constant.

The observation that there is no substantial difference
in the number of references to the edge list tells us that
strategies such as simply storing frequently accessed
edge lists in memory is not an effective approach for
improving performance. We take this observation to

2The full dataset descriptions are provided in Table 1.

Figure 2: Page cache hit ratios for BFS-like algorithms.
The page cache size is varied from 5% to 30% of the
input graph size.

propose a different method for caching the edge lists of
vertices, which we discuss in Section 3.

2.3 Ineffectiveness of the Page Cache

Locality per I/O access is known to be poor for BFS-
like algorithms running on disk-based systems. This
is because pages are brought into the page cache by
active vertices and these active vertices are determined
in a rather random manner at each iteration [23, 27].
To quantify this, we run experiments using the BFS-
like algorithms provided in FlashGraph and observe
the hit ratio of the page cache. Figure 2 depicts the
results for page cache sizes ranging from 5% to 30%
of the input graph run on the Twitter dataset. We see
that all algorithms show low hit ratios. WCC, which
shows the highest hit ratio, operates differently as the
algorithm starts out with all the vertices, and as the
component ID of each vertex converges, the number
of active vertices decreases3. However, a small number
of vertices linger around in later iterations, and those
vertices fit in the page cache resulting in the higher
hit ratio. More importantly, though, we find that for all
algorithms, increasing the page cache has little impact
on the hit ratio, improving only by 5 to 10% even with
a six factor increase in page cache size.

Our conclusion here is that the page cache in disk-
based graph engines does not play a major role in re-
gards to performance for BFS-like algorithms. Simply
increasing the page cache cannot be a solution, and
there needs to be a different approach to resolve this
ineffectiveness, for which Basc in Section 3 is proposed.

2.4 Impact of Graph Layout on Disk
Both SSDs and HDDs show faster performance with
sequential reads than random reads [31]. Thus, how a
graph is stored and accessed by the running algorithm
has substantial impact on performance. In this section,

3Section 5 describes in detail how the algorithms are implemented.

USENIX Association 2019 USENIX Annual Technical Conference 461

Figure 3: Performance of BFS, DIAM, and BC for Gorder
normalized to random ordering for three datasets.

we perform experiments to help us understand the per-
formance impact of graph layouts.

For the experiments, we restructure a graph in two
different orderings and measure the performance of
the graph algorithms. In the first, we randomly assign
the vertex IDs, and in the second, we use Gorder [38],
which was proposed to improve the locality of access
to vertices and their edge lists for main memory graph
systems. In particular, Gorder computes the ordering
of vertices and their edge lists by optimizing its local-
ity score, which is defined based on whether densely
connected vertices are ordered closely within a given
distance. Then, the graph is stored in CSR (Compressed
Sparse Row) format, where the edge lists of vertices are
ordered by their vertex IDs and stored sequentially.

Figure 3 compares the performance of three BFS-like
algorithms with Gorder and random ordering on three
datasets. We can see that the algorithms perform consis-
tently better with Gorder than with random ordering.
Clearly, ordering strongly affects the performance of
BFS-like algorithms. In Section 4, we propose a novel
ordering scheme that benefits BFS-like algorithms.

3 BFS-Aware Static Cache
In Section 2.3, we discussed how the page cache is inef-
fective and that simply growing its size does not help
BFS-like algorithms. In this section, we propose a differ-
ent caching scheme to help improve the performance of
BFS-like algorithms.

Aside from the typical cache that a graph engine or
the system software manages, we propose to have a sep-
arate static cache, which we call the BFS-Aware Static
Cache or Basc. Basc is loaded with the edge lists of some
pre-selected vertices before the algorithm starts. Hence,
there is overhead involved with the initial selection pro-
cess, which we describe later in this section. Also, un-
like a typical page cache that dynamically stores and
replaces edge lists as they are accessed, Basc is static,
that is, the cache contents do not change throughout its
execution and no replacement is involved.

As the edge list of only some selected vertices are

Figure 4: Basc and page cache interaction.

statically stored in Basc, it is important to identify the
vertices that are likely to improve performance so that
they can be stored in Basc. Note that naively storing
the edge lists of frequently accessed vertices does not
suffice. This is because, as was discussed in Section 2.2
and shown with Figure 1, the number of accesses to the
edge lists of each vertex is similar for all vertices. Thus,
our approach is to consider the interaction between
Basc and the page cache, which we elaborate below.

The key optimization point with Basc is memory uti-
lization. While Basc is separate cache space, we do not
make use of extra space, but rather take space from the
page cache, that is, reduce the page cache size, and use
this space for Basc. Thus, when selecting the vertices for
Basc, our goal is to utilize the space for Basc much more
efficiently than when used as a page cache. For example,
consider a case in Figure 4, where u’s neighbor vertices
(i.e., their edge lists) are about to be retrieved. (Note that
in real graphs, an edge list can be composed of in-bound
and/or out-bound edges. Here, we show an illustration
using out-bound edges.) Notice that while the edge lists
of u’s neighbor vertices x, y, and z are stored in page A,
the edge list of vertex v is stored in page B. Thus, while
a cached page A would be well used, page B, on the
other, would be retrieved only to access the edge list of
v with the rest of the page being brought in for naught.
In such a case, v would be pre-selected and it’s edge list
stored in Basc, so that the entire page containing the
data (page B, in this case) need not be retrieved to the
page cache during execution. Selecting vertices for Basc
in this manner to improve overall memory utilization is
formally discussed in the next section.

3.1 The Vertex Pre-Selection Problem
We formulate the problem of pre-selecting vertices for
Basc as a problem of minimizing the overall weighted
I/O requests for accessing edge lists. To define the prob-
lem, we first make the following assumptions:

Assumption 1 The neighbor vertices of each vertex are
accessed simultaneously. Thus, their edge lists are
retrieved at the same time.

462 2019 USENIX Annual Technical Conference USENIX Association

Assumption 2 The number of edge list requests for
each vertex is equivalent among all the vertices.

Assumption 3 Each edge (u,v) probabilistically issues
a request to access the edge list of target vertex v.
Due to Assumption 2, the probability of issuing the
request is inversely proportional to v’s in-degree.

We now define the problem of selecting vertices for
Basc as a problem of minimizing the overall weighted
requests:

minimize
C

F(C)=
∑
v∈V

∑
(v,u1)∈E
u1<C

(
1

r(u1)di(u1)
1∑

(v,u2)∈E
u2∈P (u1)
u2<C

do(u2)
)

subject to
∑
v∈C

deg(v) ≤M,
∑
v∈C

deg(v) ≥M − ε, where

• ε is a small positive number
• C represents the set of cached vertices
• E is the set of all edges in the given graph
• P (u) is the set of vertices whose edge lists are stored

in the same page as vertex u
• r(u) is the expected number of requests to the page

where u is stored, which we assume to be propor-
tional to the number of vertices whose edge lists are
stored in the page

• di(u), do(u) are the in- and out-degree of vertex u,
respectively

• M represents the size of available memory for Basc.

Function F represents the penalty accrued by misuse
of pages in the cache. If the cache is fully utilized, there
is no penalty. F increases as the cache is more and more
underutilized. Hence, our goal is to minimized F.

More concretely, F iterates over all the edges in a
graph; for each vertex, we take every edge ((v,u1) ∈ E)
that is not in the cache (u1 < C) and adds up the penalty,
which is represented by the terms in parenthesis. Within
the left term in the parenthesis, 1/di(u1) represents the
probability of issuing the request for a given edge. If
the page is already in the page cache, we do not need
to issue the request (realized by u1 < C). To consider
only those pages not in the cache, we include the other
term 1/r(u1), as we assume that the probability of the
page holding u1 to be in the cache is proportional to
the number of expected requests to the page. Thus, the
left term in the parenthesis represents the probability
of issuing a request over the edge (v,u1) for u1 not in
the cache. The right term in the parenthesis represents
the actual penalty incurred, which is inversely propor-
tional to the utilization of the page. Page utilization is
computed as the summation of do(u2) because under
Assumption 1, the neighbor vertices of each vertex are
accessed simultaneously. The right term, (1/

∑
do(u2)),

Algorithm 1: Greedy Vertex Selection (GVS) for Basc

Input: G = (V ,E), M: Basc size, K : iteration number
Output: A set of selected vertices C

1 Function SelectVertices (G=(V ,E), K , M)
2 C = ∅, m = 0
3 for k := 1 to K do
4 for v ∈ V do
5 T [v] = 0

6 for v ∈ V do
7 for u1 ∈ neighbor(v) \C do
8 t = 0
9 for u2 ∈ neighbor(v) ∩ P(u1) \C do

10 t← t + dego(u2)

11 T [u1]← T [u1] + 1
r(u1) ·

1
t ·

1
degi (u1)

12 while T , ∅ do
13 u← n ∈ T with minimum T [n]

dego(n)

14 if m+ dego(u) ≥ k
KM then

15 break;

16 C← C ∪ {u}, m←m+ dego(u)

17 return C

is minimized for (v,u1) if all the other neighbor vertices
(u2) of v is stored in the same page as u1 and they tightly
fit in a single page.

Our intent here is to minimize the overall weighted,
that is, penalized, requests. If we were to simply min-
imize the number of requests, we just need to cache
the vertices in descending order of their degrees. In the
evaluation, we demonstrate that our approach results
in better performance than simply caching the vertices
in degree order.

The above optimization problem is an integer pro-
gramming problem. As the objective function F(C) is
nonlinear and non-convex, the problem is NP-hard [13].
Thus, a fast algorithm that provides an optimal solution
does not exist. We propose a heuristic algorithm to solve
this problem in the next section.

3.2 Vertex Selection for Basc
We now present a heuristic algorithm for selecting ver-
tices for Basc. Our algorithm, called Greedy Vertex Se-
lection (GVS), takes a greedy approach based on the
profits per cost for the vertex. In particular, a vertex is
selected to be cached if the overhead, that is, the penalty,
of the request for a vertex is high, where the penalty
calculations are based on F(C) described in Section 3.1.

Algorithm 1 shows the overall procedure of GVS. It
takes as input G, the input graph, M, the memory size
available for Basc, and K , the number of iterations, and

USENIX Association 2019 USENIX Annual Technical Conference 463

at each iteration selects vertices for M/K amount of
memory. The outer-most Σ in F(C) is covered by lines
6–11 and the next Σ by the for loop in line 7. The
for loop in line 9 represents the Σ in the denomina-
tor of the second term within the parenthesis. Finally,
line 11 represents the calculations for the two terms in
the parenthesis for F(C). Instead of summing up the
penalties, GVS attributes the computed penalty to tar-
get vertices of individual edges – T [u1] in line 11. After
each iteration, the penalty of each vertex is normalized
by its degree (line 13). GVS selects the vertices with the
highest normalized penalty whose degrees amount to
1/K of Basc and puts them in Basc. This is repeated for
K iterations to completely fill Basc.

As K becomes larger, we select smaller number of
vertices at each iteration and more frequently compute
the changes in I/O penalty as the result of the selection.
Thus, larger K gives more fine-grained and accurate ver-
tex selection, but incurs more computational overhead.

The time complexity of GVS is O(K(|E|+ |V |)) as the
computation of the page utilizations in lines 10–11 can
be calculated once and re-used per each vertex v, and
the loop in lines 12–16 can be implemented using selec-
tion algorithms for finding the k’th smallest number.

We can further optimize the algorithm by comput-
ing the page utilization only for those vertices that are
affected by the selection in the previous iteration. The
vertices that require re-computation are those that are
stored in the same pages as the selected vertices and are
in neighbor relations. Let us now consider the complex-
ity of GVS with this optimization. The number of se-
lected vertices in an iteration is O(M/K), if the selected
ones have the same degree. The number of vertices for
re-computation is proportional to the number of disk
pages that the selected vertices are stored in. In one
extreme, all the selected vertices may be in a same disk
page, while in the other extreme, all may be in separate
pages. If the layout of the graph is carefully ordered
to improve locality, the selected vertices in an iteration
will tend to be grouped and stored in a small number
of pages. Thus, we derive the complexity assuming that
the number of pages is bounded by the square root of
the selected vertices, which is in between the two ex-
tremes. Then, the cost for the re-computation in lines 6
through 11 is O(

√
M/K). Furthermore, the sorting and

selection of the M/K vertices in lines 12 through 16 can
be done incrementally using a heap data structure, thus
its complexity isO(M/K ·log(|V |)). Thus, the complexity
of GVS is O(|E|+ |V |+

√
K ·M +M · log(|V |)), where the

first two terms are for the first iteration and the rest are
for the remaining K − 1 iterations. In Section 5, we ex-
perimentally show that our complexity analysis for GVS
is reasonable and that GVS time is roughly proportional
to
√
K and M.

4 Bringing New Order
In Section 2.4, we showed how ordering affected the per-
formance of BFS-like algorithms and presented the need
for effective graph layouts. In this section, we present an
ordering scheme that we call Neighborhood Ordering
(Norder, for short) that is tailored to BFS-like algorithms.
Before so doing, we first present the I/O cost model that
forms the basis for the development of Norder.

4.1 Modeling I/O Cost
In all BFS-like algorithms, the vertices that are activated
in a particular iteration are the neighbor vertices of the
frontiers of the previous iteration. How these activated
vertices are ordered on disk substantially affects I/O
performance. If these vertices could be stored together,
the number of I/O requests could be reduced, leading
to improved performance.

From this intuition, we empirically derive the follow-
ing cost model for BFS-like algorithms, where cost is
the edge list access cost, which we want to minimize:

Cost =
∑
v∈V

deg(v) · σ2(nbr(v)) (1)

where deg(v) is the in-degree of vertex v and σ2(nbr(v))
is the variance of v’s neighbor vertex IDs, assuming
CSR format. The first term, deg(v), which implies that
cost increases with higher in-degree, that is, with more
neighbors, comes from empirical and algorithmic analy-
sis. Consider a vertex with high in-degree. Such a vertex
is likely to be accessed in an early iteration of BFS traver-
sal. Thus, it is also likely that the majority of its neighbor
vertices have not yet been traversed, which, in turn, in-
curs access to new edge lists, and thus, increases I/O
cost. In contrast, a vertex with low in-degree is likely to
be traversed in a later iteration. At this point of traver-
sal, it is also likely that the majority of its neighbors
would have already been traversed and thus, not incur
any more I/O cost. Thus, we conclude that I/O cost is
proportional to the degree of the vertex. The second
term, σ2(nbr(v)) is the overhead of I/O based on the
neighbors’ vertex ID variance. That is, neighbors whose
vertex IDs show large variance are likely to be scattered
across the disk, in contrast to those whose IDs are close
together. Neighbors widely scattered along the disk will
naturally incur more I/Os to have them retrieved.

To assess the model’s accuracy, we compare the costs
estimated by the model and the actual execution times
for three BFS-like algorithms with the datasets YT, FL,
and LJ (which we describe in detail in Section 5). For
each algorithm and dataset, we generate 20 graph order-
ings that yield different I/O costs. This is done by, first,
applying three orderings – PageRank-sorted, Gorder,
and the original ordering, and then, incrementally and
partially shuffling the vertex IDs of each ordering.

464 2019 USENIX Annual Technical Conference USENIX Association

Figure 5: Regression of I/O cost model for three BFS-
like algorithms with three datasets YT, FL, and LJ.

Figure 5 shows the results, where each data point rep-
resents one of the 20 graph orderings with its position
determined by the cost of the model (x-axis) and the
execution time (y-axis), both normalized to the maxi-
mum value on each axis. The lines are the results of
applying linear regression on the data points, with the
r2 values of each dataset shown in parentheses. We see
that our cost model results in reasonably high r2 values,
meaning that the estimation is quite accurate.

4.2 Neighborhood Ordering
Based on the cost model in the previous section, we pro-
pose a simple, yet effective graph ordering that we call
Neighborhood Ordering or Norder. The key component
of Norder is to simply assign consecutive IDs to the
neighbors of all vertices, in particular, to the neighbors
of high in-degree vertices. This simple strategy has the
effect of decreasing the variance of the neighbor vertex
IDs of high in-degree vertices resulting in increased
locality, thus minimizing the overall cost of Equation 1.

To reorder a graph with Norder, we first arrange the
vertices in descending order of their in-degrees. Then,
starting from the vertex with the highest in-degree go-
ing downward, we perform a bounded breadth first
search and assign a vertex ID in the traversed order.
The depth bound for the traversal is set to two as we em-
pirically found it to be effective for overall performance.
Depth beyond two showed minimal performance gains,
but incurred high overhead for ordering.

This simple ordering scheme is inexpensive to com-
pute compared to other schemes such as Gorder, yet
effective for disk-based graph engines. For example, it
takes less than five minutes to compute Norder for the
Twitter graph with 1.9 billion edges, while Gorder takes
more than three hours. We quantify this and other per-
formance issues in the next section.

5 Evaluation
We evaluate the effect of Basc and Norder with six BFS-
like algorithms – breadth first search (BFS), measuring
diameter of graph (DIAM), betweenness centrality (BC),
shortest paths (SP), all-pair shortest paths (APSP), and
weakly connected components (WCC). These algorithms

Table 1: Datasets used in evaluation.
Graph V E Graph V E
Youtube (YT) 3.2M 9.4M LiveJournal (LJ) 4.8M 68M
Flickr (FL) 2.3M 33M Twitter (TW) 53M 1.9B
Wikipedia (WK) 18M 172M

represent, to the best of our knowledge, all the BFS-like
algorithms in the field, except for Influence Maximiza-
tion (IM). IM, however, is simply a repetitive execution
of BFS, hence omitted from our evaluation [16].

BFS and SP are written as described in Pregel [25].
DIAM runs BFS multiple times, first from a random
vertex and then from the vertices with the maximum
distances in previous runs. For APSP, we sample 128
source vertices and compute the distances from those
sources using a modified SP that computes the distances
from a group of source vertices, the same as it is written
in Graphene [21]. BC implements the algorithm pro-
posed by Brandes [4]. It runs SP from each source vertex
and counts the number of paths passed for each vertex.
This is repeated for all the source vertices. As compu-
tation is intense, an approximate approach is taken by
computing the centrality scores with 128 randomly sam-
pled source vertices [5]. WCC is implemented in the
typical manner of propagating component IDs for each
vertex and then computing the minimum IDs.

The experiments are conducted with five real-world
networks that are publicly available from KONECT [36]
and are shown in Table 1. The datasets include one
large network, Twitter (TW) and two relatively small
graphs, Youtube (YT) and Flickr (FL), that are used to
understand the scalability of our techniques.

We implement and evaluate our optimizations mainly
on FlashGraph, a semi-external graph engine optimized
for SSDs. We choose FlashGraph because 1) it is a rep-
resentative semi-external graph engine, 2) it is recently
developed thus, most known I/O optimizations are pro-
vided, and 3) it is actively maintained and core graph
algorithms are already implemented in the system. Of
the six algorithms, SP and APSP are our own implemen-
tations that we added, while the other four are those
provided by FlashGraph. Additionally, we test our opti-
mizations on Graphene [21], an SSD-based graph engine
optimized with fine-grained I/O management. Details
of these experiments are discussed in Section 5.4.

For all experiments, we run the algorithms with eight
computation threads and a separate single I/O thread.
We run the experiments ten times and report the aver-
age execution times as well as the standard deviation.
All the experiments are performed on a machine with
Intel Xeon E5-2683 v4 having 128GB physical memory
running Ubuntu 16.04. Of the 128GB memory the sys-
tem is configured to use only a portion of the memory
(maximum 10GB) for caching. The actual cache size

USENIX Association 2019 USENIX Annual Technical Conference 465

Figure 6: Execution times of graph algorithms on SSD
with Basc using different vertex selection schemes nor-
malized to the page cache only case. We vary the cache
size to be 10% to 40% of the input graph size.

used varies for the algorithm and dataset, hence, for
each experiment, we specify the cache size relative to
the input graph size. Note that our goal is to show the
effectiveness of our techniques on disk-based graph en-
gines. Hence, we intentionally control memory to exer-
cise the disks. The memory used is controlled by fixing
the memory size that each part of the graph system uses
and monitoring the total amount of memory used.

An Intel 400GB SSD connected via the SATA 6.0Gb/s
interface is used as external storage as this is a com-
mon setting. We also run the same experiments on a
typical HDD setting, but do not present the results in
the interest of space and as the results do not deviate
much from the results for the SSD. For each experiment,
only a single disk is used. Unless otherwise stated, we
set the page size to be 8KB, which is the typical access
unit for NAND flash-based SSDs [8]. We use the page
cache implemented in the graph system and hence, no
OS kernel modification is involved. We completely clear
the page cache for each experiment, and the OS page
cache is turned off by setting the O_DIRECT flag for
I/O operations so as to remove the system effect.

Note that, unless otherwise mentioned, we present
results only for three datasets, LJ, WK, and TW for the
BFS, DIAM, and BC algorithms only. This is done in
the interest of space and as the results for the other
datasets and algorithms show similar trend. However,
we present statistical numbers for all algorithms and
datasets and, where there are unique points of interest,
we explicitly elaborate on those points separately.

5.1 Evaluation of Basc
In this section, we evaluate Basc and the Greedy Ver-
tex Selection (GVS) algorithm in various settings. In
evaluating Basc, we compare the ‘page cache plus Basc’
setting with the ‘page cache only’ setting, where both
settings use the same amount of memory. To compare
with GVS, we test three other selection schemes for Basc:
selecting vertices with high degrees (HighD), selecting
vertices with low degrees (LowD), and selecting vertices

Figure 7: Execution times with varying Basc and page
cache size ratios normalized to the page cache only case.
The x-axis represents the Basc usage portion.

randomly (Rand), of which the last is used as the base-
line. For GVS, we set the total number of iterations (K
in Algorithm 1) to be 1,000 for YT, FL, LJ, WK, and 200
for TW. (Even though we do not show results for YT and
FL, the settings for all experiments are presented for re-
producibility.) As was previously discussed, with large
K values, a smaller number of vertices are selected per
iteration. This results in more frequent computation of
I/O penalty changes, thus increased computation over-
head. Hence, for feasibility reasons we choose a smaller
K value for the large input graph TW. For the experi-
ments in this section we do not apply any reordering
algorithm and use the input graphs as they are given
in KONECT [36]. We evaluate the combined effect of
ordering and Basc separately in Section 5.3.
Evaluation Result. Figure 6 shows the results for ex-
periments where the page cache size is set to 5% of
the graph size and an additional 10% to 40% of the
graph size is provided for Basc. As mentioned earlier,
for the ‘page cache only’ setting (denoted ‘page cache’),
the page cache size is equally set, that is, 15% to 45%
of the graph size is used. All results are shown normal-
ized to that of ‘page cache only’. The results presented
here exclude the time to load Basc, which must be done
before the algorithms are executed. We discuss this and
other forms of overhead in the last part of this section.

Overall, Basc with GVS shows substantially better
performance than the other schemes. We see that low-
degree selection generally is a sound choice performing,
in most cases, better than page cache, though, we do
observe cases where it does worse. Overall, for all algo-
rithms and datasets (including those not shown here),
Basc with GVS is the clear winner, being 28.87% faster
on harmonic average than page cache for all the cases.

To compare the efficiency of ‘page cache’ and Basc

with GVS, we vary the ratio of the page cache and Basc

sizes and measure their performance. Figure 7 shows
the results as the total size of the two caches is set to
20% of the graph size and as the size of Basc varies
from 0% to 90% of the total cache size. We see that
the performance consistently improves as Basc size is
increased. This is because BFS-like algorithms show

466 2019 USENIX Annual Technical Conference USENIX Association

Figure 8: Mean and standard deviation of page cache uti-
lization when executed with Basc with Random, HighD,
LowD, and GVS algorithms.

poor temporal locality and using the space as Basc is
more effective than using the space as a page cache.
Effect on page cache utilization. To verify that Basc
with GVS improves page cache utilization, we evaluate
BFS-like algorithms with Basc and measure the page
cache utilizations for the different vertex selection algo-
rithms (GVS, HighD, LowD, and Rand).

Page cache utilization is measured as follows. For
the entire execution of the algorithms, for each page re-
trieved to the page cache, individual 64 byte granularity
units of the page are monitored throughout while the
page resides in the page cache. Utilization of the page,
calculated when the page is evicted, is the fraction of
the total accessed units within the page size. Page cache
utilization that is reported is the average of all the pages
evicted as well as those still residing in the page cache
at the end of the algorithm execution. Note that the con-
tents in Basc are not considered in these calculations.
Essentially, this value tells us how efficiently contents
brought in to the page cache are being used.

Figure 8 compares the page cache utilizations for
different vertex selection algorithms when the page
cache and Basc size is 5% and 20%, respectively, of the
input graph size. For all the graphs across the three
algorithms, GVS shows highest page cache utilization
for most cases. For all algorithms and datasets experi-
mented with (for the same page cache and Basc sizes as
above), GVS shows 33.8% higher utilization than ran-
dom selection in harmonic mean, and in the best case,
is almost twice that of random selection (FL with BFS,
not shown), with the worst case, being equivalent (YT
with DIAM, also not shown). Compared to LowD, GVS
shows up to 22.5% higher utilization (FL with APSP).
However, there are also occasions where low-degree se-
lection shows slightly higher utilization (WK with BFS
and DIAM).
Vertex Selection and Loading Overhead. There are
two sources of overhead in deploying Basc. One is the
cost for running GVS to select the vertices to load and
the other is the overhead to actually load the selected

Table 2: Execution times of running GVS and loading
the selected vertices to Basc (unit: seconds).

K YT FL LJ WK TW

GVS

1 4.6 4.9 7.8 19.8 132
10 5.9 7.6 11.3 29.2 321
100 16.7 24.7 26.3 76.4 1581
1000 94.8 103 146 449 5612

Loading 2.5 3.2 4.3 6.2 44.8

Figure 9: Efficiency of Basc over a graph (LJ) that
changes 0.2% each day. Execution time of BFS with
Basc is normalized to that of page cache only each day.

vertices into Basc. Both must be executed before the
algorithm is executed. We quantify these overheads by
measuring the running time of Algorithm 1 separately
with varying K from 1 to 1000, as well as the time to
load to Basc. Table 2 shows the results when Basc size
is 20% of the dataset. We observe that vertex loading
overhead is generally lower compared to the vertex se-
lection overhead. For vertex selection, as we increase
the value of K , the execution time increases sublinearly.
The results also show that the selection time increases
proportionally to the graph size, or more accurately,
Basc size. (Refer to Table 1 for the characteristics of the
dataset and note that we are setting Basc size (M) to be
20% of input graph size, which is proportional to the
number of edges.)

Although the selection and loading times are not neg-
ligible, once loaded, the algorithm of choice is executed
100s, if not 1000s or even more times [11,42], more than
compensating for the overhead for selection and load-
ing. For example, running of DIAM a hundred times on
LJ or BC just ten times on TW with Basc improves the
overall running time even with the selection and load-
ing overhead. Furthermore, this selection process can
be run in the background independent of and without
influencing the execution of the graph algorithms.

More importantly, these actions need to run only spar-
ingly. Reports have shown that the social graph in Face-
book changes by 0.2% a day [9], which means that in a
one month period the graph would only differ by 6%.
To quantify how much effect small changes in the in-
put graph have on Basc, we conduct a series of exper-
iments where we change the graph (LJ) by 0.2% over
30 times to simulate changes in a one month period [9].

USENIX Association 2019 USENIX Annual Technical Conference 467

Figure 10: The sensitivity of GVS on iteration number K .
(a) Execution time normalized by that withK = 1, where
the dotted gray line represents 1.5 ×

√
K . (b) Speedup

over page cache only where the solid lines are for GVS
and the dotted lines are for LowD.

We randomly add or remove edges with preferential
attachment [3] where the ratio to add and remove is
8 to 2. Then, we run BFS with Basc, set to 20% of the
data size, for which the selection and loading is done
for the initial graph. Figure 9 shows the results of the
experiments where the execution times with Basc is
normalized to those of page cache only for each day. We
observe that the relative performance of Basc over page
cache only is nearly constant with only a 5% difference
– maximum 19.2% and minimum 14.1%. In addition,
the hit ratio of Basc, which is measured as the number
of edge list access in Basc over the total number of edge
list requests, declines slowly each day from 50.4% to
50.2%. This tells us that selection and loading can be
performed over long periods, for example, once every
month incurring only minimal overhead.
Sensitivity of GVS on iteration number K . As GVS
execution time and its selection outcome rely on the
iteration number K , we evaluate their sensitivity on K .
We run GVS with varying values of K , starting from
1 up to 1000, and measure the GVS execution time.
The size of Basc is set to be 20% of the input graph
size. Figure 10(a) plots the results normalized to the
execution times with K = 1. We observe that execution
time increases by less than 45×, even for K = 1000, and
that the plots for the three input graphs are all below
the 1.5×

√
K line represented by the gray dotted line.

We also measure the performance of Basc with GVS
as K is varied. Figure 10(b) shows the performance im-
provements over the page cache only settings. The solid
lines are for Basc with GVS and the dotted lines are
for Basc with LowD (low-degree vertex selection). We
observe that Basc with GVS performs consistently bet-
ter than LowD even when K = 1. Moreover, as K in-
creases, the performance improvement by GVS quickly
saturates, that is, the performance improvement with
K = 50 is almost the same as that with K = 1000. Hence,
for extremely large graphs whose GVS overhead can be

Figure 11: Mean and standard deviation of execution
times of five graph orderings normalized to that of
Gorder. The numbers in parenthesis below each algo-
rithm are the absolute execution time, in seconds, of the
reference, in this case, Gorder. (Note that we use similar
presentation format in subsequent figures.)

potentially quite high, we can reduce the value of K to
trade off the performance improvements of running the
graph algorithms and GVS running time.

5.2 Evaluation of Neighborhood Ordering
We now consider the performance impact of Norder. For
comparison, we use Gorder, the state-of-the-art graph
ordering scheme for in-memory graph analysis. Also, we
evaluate three other ordering schemes: PageRank sorted
ordering, degree sorted ordering, and random ordering.
For Gorder we set its parameter w (window size) to be
the average number of edge lists in a single page for all
the algorithms. Note that only the page cache is used
and Basc is not deployed in these experiments. The size
of the page cache is set to 25% of the input graph size.

Figure 11 shows the performance of the algorithms
on an SSD normalized to Gorder, with the absolute ex-
ecution times (in seconds) of Gorder also presented in
the parentheses below each algorithm name for refer-
ence. We use this format of presentation for subsequent
results as well. For all three algorithms, graph ordering
has strong influence, with Norder performing the best.
For all algorithms and datasets, Norder is 31.3% and
68.5% faster in harmonic mean than Gorder and PageR-
ank sorted ordering, respectively. For all algorithms and
datasets Norder showed fastest performance except for
WCC with TW and FL, for which Degree sorted order
was fastest. This is due to the characteristics of WCC.
In the later iterations of the algorithm, a small number
of vertices linger on; these vertices typically have small
in-degrees, hence storing them closely on disk improves
the performance of the page cache for WCC.
Cost of ordering: The cost of applying Norder is much
lower than that of Gorder. Table 3 compares the com-
putation times of the two ordering schemes. As Gorder
stores the input graph in main memory to compute the
ordering, all data is loaded to the 128GB memory in our

468 2019 USENIX Annual Technical Conference USENIX Association

Table 3: Computation times (unit: seconds)

YT FL LJ WK TW

Gorder 12.5 39.6 45.6 169.3 11687.1

Norder 2.0 2.7 7.2 16.9 243.5

Figure 12: Mean and standard deviation of execution
times of three caching schemes with Gorder and Norder
normalized to that of page cache with Gorder.

system for these measurements. All orderings are com-
puted using a single thread as this is how it is provided
with the open-sourced Gorder. We observe that Norder
is 6 to 14 times faster than Gorder for small graphs,
while for the large graph TW, it is close to fifty times
faster. If we consider the ordering time with the exe-
cution time of the algorithms, we can see that BFS-like
algorithms benefit even more with Norder.

5.3 Combining Basc and Norder
Now we evaluate the overall performance gain by apply-
ing the two optimizations together. For comparison we
also perform experiments with Gorder and two caching
schemes, page cache and Basc with LowD. For caching,
the default setting of 5% of the input graph size is used
for the page cache and an additional 20% is added on
as Basc or the page cache.

Figure 12 shows the performance results for all combi-
nations of ordering and caching. The two optimizations
together noticeably improve the performance of all the
algorithms. Overall, for all algorithms and datasets (in-
cluding those not shown here) Basc with Norder is 1.54
times faster than page cache with Gorder in harmonic
mean. In the best case, Basc with Norder is 2.56 times
faster for APSP with YT and in the worst case, it is 1.37
times faster for DIAM with LJ.

More importantly, however, the results demonstrate
that the two optimizations can be synergistic. For ex-
ample, low-degree vertex selection sometimes brings
about performance degradation compared to page cache
(WK with BFS and DIAM), implying that the two op-

Figure 13: Mean and standard deviation of execution
times of BFS-like algorithms in Graphene, with and
without Basc, normalized to that of page cache only
case with 8KB page size.

timizations (LowD and Norder) do not interact well.
However, GVS consistently and substantially improves
performance in all cases with the two orderings, espe-
cially with Norder.

5.4 BASC with Graphene
The problem of low page cache utilization for disk-based
graph systems was studied by Liu and Huang [21]. In
their proposed graph system, Graphene, they address
this problem by supporting finer-grained I/O. Specifi-
cally, Graphene stores input graphs in 512-byte pages
instead of 8KB and applies bitmap-based request man-
agement to reorder and merge I/Os.

In this section, we incorporate Basc on Graphene and
observe its effect. To do so, we simply modify the page
cache mechanism within Graphene to accommodate
Basc. Here we evaluate the effect of Basc with three
algorithms – BFS, APSP, and DIAM. The first two are
provided in Graphene and we implement DIAM for
our experiments. We were unable to implement BC due
to the complexity of Graphene’s interface. Note that
in Graphene, APSP is implemented to run BFS from
32 random sources and stores the result in a 4-byte at-
tribute, of which each bit indicates if the traversal from
the corresponding source vertex is reached. We com-
pare performance with and without Basc in Graphene
with the typical 8KB and the 512-byte page sizes. The
page cache is set to 30% of the input graph without Basc
and with Basc, the page cache is set to 10%, plus 20%
space set for Basc, along with the default thread setting.
Norder is not considered in these experiments as this is
an optimization independent of Graphene.

Figure 13 shows the evaluation results. The results
are normalized to the 8KB ‘page cache only’ results for
every algorithm for each dataset. For most of the results
the average performance of fine-grained management
is better than the coarse-grained 8K page size, though
for some, the variance for fine-grained management is
larger. We observe that overall, Basc provides similar

USENIX Association 2019 USENIX Annual Technical Conference 469

improvements with Graphene showing that Basc is or-
thogonal to Graphene’s fine-grained I/O optimizations.

6 Related Work
Disk-Based Graph Engines. GraphChi is the first disk-
based graph engine [19]. Its Parallel Sliding Windows
helps it run efficiently on HDDs. TurboGraph is a disk-
based graph engine for SSDs [12]. Its pin-and-slide tech-
nique overlaps random I/O with CPU computation.
TurboGraph and other graph systems such as GTS and
GraphZ [17,41] that use the page cache for random I/O
can take advantage of Basc or Norder.

While the vertex-centric computation model is widely
used, an alternative edge-centric computation model was
recently proposed for disk-based graph systems; this
model sequentially streams edges into memory to elim-
inate random disk access [24, 32, 43]. While the edge-
centric model shows good performance for algorithms
accessing the entire graph repeatedly, its performance
for BFS-like algorithms is not as efficient.

In semi-external graph engines, vertex attributes are
stored in main memory for fast updates [18, 30, 34, 40].
Pearce et al. proposed asynchronous optimization tech-
niques for graph traversal algorithms for semi-external
graph processing [30]. FlashGraph implements several
I/O optimizations for SSDs and SSD arrays such as
merging I/O requests and overlapping I/O and com-
putation [40]. Building on top of these optimizations,
our methods improve BFS-like algorithms having poor
I/O locality even with those previous optimizations.

Several other I/O optimizations have recently been
proposed. Vora et al. employs a dynamic partitioning
scheme that prevents loading unnecessary edges [37].
GridGraph supports 2D edge partitioning [43]. In
Graphene, a bitmap based I/O optimization is applied
to merge small I/O requests [21]. Our proposed opti-
mization techniques are applicable on top of these I/O
optimizations as we have shown with Graphene.
Main Memory Graph Processing. For large-scale
graph processing, the vertex-centric computation model
was first proposed in Pregel [25], a distributed in-
memory graph system. GraphLab and its successor Pow-
erGraph is a distributed machine learning and graph
analysis system with the vertex-centric model [11,22].
SociaLite is a Datalog-based query language for dis-
tributed graph analysis [33]. Green-Marl is a domain-
specific language for writing parallel graph algorithms
for shared-memory [14]. Galois supports an implicitly
parallel vertex iterator for graph processing [29].

Wei et al. studied graph ordering for main memory
graph processing [38]. They proposed Gorder that opti-
mizes the locality of accessing vertex attributes. While
Gorder is designed for main memory systems, Norder
is for disk-based graph engines. Norder is based on an

I/O cost model and its optimization that we derive for
BFS-like algorithms on disk-based graph engines.

7 Conclusion

In this paper, we conducted an analysis of BFS-like
algorithms running on disk-based graph systems. We
showed that BFS-like algorithms have poor I/O per-
formance and the page cache in existing systems is
not effective. To supplement the page cache, we pro-
posed a BFS-Aware Static Cache or Basc that stores
edge lists of a select set of vertices in memory aside
from the page cache. We formulate the problem of se-
lecting the optimal set of such vertices as a problem
of maximizing overall I/O efficiency of BFS-like algo-
rithms. As this problem is NP-hard, an approximate
algorithm, called Greedy Vertex Selection (GVS), is de-
veloped. Also, based on our analysis of BFS-like algo-
rithms, we proposed an I/O cost model upon which
we develop an efficient graph ordering scheme called
Neighborhood Ordering (abbreviated Norder) that stores
neighboring vertices closely on disk.

We implemented our methodologies in two well-
known graph engines and evaluated them using five
real-world graphs for six BFS-like algorithms. Through
a vast set of experiments, we show that the execution
of BFS-like algorithms can be improved with Basc and
GVS compared to simply using the page cache. We also
show that Norder is less costly to compute than Gorder,
yet achieves considerable performance improvements
over Gorder. Our experimental results show that the two
optimizations collectively and synergistically provide
substantial performance gains for BFS-like algorithms.

Acknowledgement

This work is supported by Basic Science Research
Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Science,
ICT & Future Planning (NRF-2016R1C1B1016114), by
Next-Generation Information Computing Develop-
ment Program through the National Research Foun-
dation of Korea (NRF) funded by the Ministry of
Science, ICT (NRF-2016M3C4A7952635), by Basic Re-
search Laboratory Program through the National Re-
search Foundation of Korea (NRF) funded by the
Ministry of Science, ICT Future Planning (MSIP) (No.
2017R1A4A1015498), and by the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MSIT) (No. 2019R1A2C2009476). The cor-
responding author is Jiwon Seo.

470 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Donald Aingworth, Chandra Chekuri, Piotr Indyk,
and Rajeev Motwani. Fast estimation of diame-
ter and shortest paths (without matrix multipli-
cation). SIAM Journal on Computing, 28(4):1167–
1181, 1999.

[2] Sam Ainsworth and Timothy M Jones. Graph
prefetching using data structure knowledge. In
Proceedings of the International Conference on Super-
computing (SC 16), pages 1–11. ACM, 2016.

[3] Albert-László Barabási and Réka Albert. Emer-
gence of scaling in random networks. Science,
286(5439):509–512, 1999.

[4] Ulrik Brandes. A faster algorithm for Betweenness
Centrality. The Journal of Mathematical Sociology,
25(2):163–177, 2001.

[5] Ulrik Brandes and Christian Pich. Centrality esti-
mation in large networks. International Journal of
Bifurcation and Chaos, 17(07):2303–2318, 2007.

[6] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo
Chen. Powerlyra: Differentiated graph computa-
tion and partitioning on skewed graphs. In Pro-
ceedings of the ACM European Conference on Com-
puter Systems (EuroSys 15), pages 1–15, 2015.

[7] Jiefeng Cheng, Qin Liu, Zhenguo Li, Wei Fan,
John C.S. Lui, and Cheng He. VENUS: Vertex-
centric streamlined graph computation on a sin-
gle PC. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE 15), pages
1131–1142, 2015.

[8] Michael Cornwell. Anatomy of a solid-state drive.
Communications of the ACM, 55(12):59–63, 2012.

[9] Minas Gjoka, Maciej Kurant, Carter T. Butts, and
Athina Markopoulou. Walking in Facebook: A case
study of unbiased sampling of OSNs. In Proceed-
ings of the IEEE Conference on Computer Communi-
cations (INFOCOM 10), pages 1–9, 2010.

[10] Debra S. Goldberg and Frederick P. Roth. Assess-
ing experimentally derived interactions in a small
world. Proceedings of the National Academy of Sci-
ences, 100(8):4372–4376, 2003.

[11] Joseph E. Gonzalez, Yucheng Low, Haijie Gu,
Danny Bickson, and Carlos Guestrin. PowerGraph:
Distributed graph-parallel computation on natural
graphs. In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 12), pages 17–30, 2012.

[12] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park,
Jeong-Hoon Lee, Min-Soo Kim, Jinha Kim, and
Hwanjo Yu. TurboGraph: A fast parallel graph
engine handling billion-scale graphs in a single
PC. In Proceedings of the ACM International Con-
ference on Knowledge Discovery and Data Mining
(KDD 13), pages 77–85, 2013.

[13] Raymond Hemmecke, Matthias Köppe, Jon Lee,
and Robert Weismantel. Nonlinear integer pro-
gramming. In 50 Years of Integer Programming
1958–2008: From the Early Years to the State-of-the-
Art, pages 561–618. Springer-Verlag, 2010.

[14] Sungpack Hong, Hassan Chafi, Edic Sedlar, and
Kunle Olukotun. Green-Marl: A DSL for easy and
efficient graph analysis. In Proceedings of the ACM
International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS 12), pages 349–362, 2012.

[15] John Hopcroft and Robert Tarjan. Algorithm 447:
Efficient algorithms for graph manipulation. Com-
munications of the ACM, 16(6):372–378, 1973.

[16] David Kempe, Jon Kleinberg, and Éva Tardos. Max-
imizing the spread of influence through a social
network. In Proceedings of the ACM International
Conference on Knowledge Discovery and Data Mining
(KDD 03), pages 137–146, 2003.

[17] Min-Soo Kim, Kyuhyeon An, Himchan Park, Hyun-
seok Seo, and Jinwook Kim. GTS: A fast and scal-
able graph processing method based on streaming
topology to GPUs. In Proceedings of the ACM In-
ternational Conference on Management of Data (SIG-
MOD 16), pages 447–461, 2016.

[18] Pradeep Kumar and H. Howie Huang. G-store:
High-performance graph store for trillion-edge
processing. In Proceedings of the International Con-
ference for High Performance Computing, Networking,
Storage and Analysis (SC 16), pages 830–841, 2016.

[19] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin.
GraphChi: Large-scale graph computation on just
a PC. In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 12), pages 31–46, 2012.

[20] David Liben-Nowell and Jon Kleinberg. The link
prediction problem for social networks. In Pro-
ceedings of the ACM International Conference on In-
formation and Knowledge Management (CIKM 03),
pages 556–559, 2003.

USENIX Association 2019 USENIX Annual Technical Conference 471

[21] Hang Liu and H. Howie Huang. Graphene: Fine-
grained IO management for graph computing. In
Proceedings of the USENIX Conference on File and
Storage Technologies (FAST 17), pages 285–300,
2017.

[22] Yucheng Low, Danny Bickson, Joseph Gonzalez,
Carlos Guestrin, Aapo Kyrola, and Joseph M Heller-
stein. Distributed GraphLab: A framework for
machine learning and data mining in the cloud.
Proceedings of the VLDB Endowment, 5(8):716–727,
2012.

[23] Andrew Lumsdaine, Douglas Gregor, Bruce Hen-
drickson, and Jonathan Berry. Challenges in par-
allel graph processing. Parallel Processing Letters,
17:5–20, 2007.

[24] Steffen Maass, Changwoo Min, Sanidhya Kashyap,
Woonhak Kang, Mohan Kumar, and Taesoo Kim.
Mosaic: Processing a trillion-edge graph on a sin-
gle machine. In Proceedings of the European Con-
ference on Computer Systems (EuroSys 17), pages
527–543, 2017.

[25] Grzegorz Malewicz, Matthew H. Austern, Aart JC
Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and
Grzegorz Czajkowski. Pregel: A system for large-
scale graph processing. In Proceedings of the ACM
International Conference on Management of Data
(SIGMOD 10), pages 135–146, 2010.

[26] Edward F. Moore. The shortest path through a
maze. In Proceedings of the International Sympo-
sium on the Switching Theory, 1959, pages 285–292,
1959.

[27] Anurag Mukkara, Nathan Beckmann, and Daniel
Sanchez. Cache-guided scheduling: Exploiting
caches to maximize locality in graph processing.
In Proceedings of the International Workshop on Ar-
chitecture for Graph Processing (AGP 17), 2017.

[28] Kamran Najeebullah, Kifayat Ullah Khan, Waqas
Nawaz, and Young-Koo Lee. Bishard parallel pro-
cessor: A disk-based processing engine for billion-
scale graphs. International Journal of Multimedia &
Ubiquitous Engineering, 9(2):199–212, 2014.

[29] Donald Nguyen, Andrew Lenharth, and Keshav
Pingali. A lightweight infrastructure for graph
analytics. In Proceedings of the ACM Symposium
on Operating Systems Principles (SOSP 13), pages
456–471, 2013.

[30] Roger Pearce, Maya Gokhale, and Nancy M. Amato.
Multithreaded asynchronous graph traversal for in-
memory and semi-external memory. In Proceedings

of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC
10), pages 1–11, 2010.

[31] Milo Polte, Jiri Simsa, and Garth Gibson. Compar-
ing performance of solid state devices and mechan-
ical disks. In Proceedings of the Annual Workshop on
Petascale Data Storage (PDSW 08), pages 1–7. IEEE,
2008.

[32] Amitabha Roy, Ivo Mihailovic, and Willy
Zwaenepoel. X-stream: Edge-centric graph pro-
cessing using streaming partitions. In Proceedings
of the ACM Symposium on Operating Systems
Principles (SOSP 13), pages 472–488, 2013.

[33] Jiwon Seo, Jongsoo Park, Jaeho Shin, and Monica S
Lam. Distributed SociaLite: A datalog-based lan-
guage for large-scale graph analysis. Proceedings
of the VLDB Endowment, 6(14):1906–1917, 2013.

[34] Zhiyuan Shao, Jian He, Huiming Lv, and Hai Jin.
Fog: A fast out-of-core graph processing frame-
work. International Journal of Parallel Programming,
pages 1–14, 2016.

[35] Alfonso Shimbel. Structural parameters of com-
munication networks. The bulletin of mathematical
biophysics, 15(4):501–507, 1953.

[36] The koblenz network collection. http://konect.uni-
koblenz.de/.

[37] Keval Vora, Guoqing (Harry) Xu, and Rajiv Gupta.
Load the edges you need: A generic I/O optimiza-
tion for disk-based graph processing. In Proceed-
ings of the USENIX Annual Technical Conference
(ATC 16), pages 507–522, 2016.

[38] Hao Wei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin.
Speedup graph processing by graph ordering. In
Proceedings of the ACM International Conference on
Management of Data (SIGMOD 16), pages 1813–
1828, 2016.

[39] Mingxing Zhang, Yongwei Wu, Kang Chen, Xue-
hai Qian, Xue Li, and Weimin Zheng. Exploring
the hidden dimension in graph processing. In
Proceedings of the USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 16),
pages 285–300, 2016.

[40] Da Zheng, Disa Mhembere, Randal Burns, Joshua
Vogelstein, Carey E. Priebe, and Alexander S. Sza-
lay. FlashGraph: Processing billion-node graphs
on an array of commodity SSDs. In Proceedings of
the USENIX Conference on File and Storage Technolo-
gies (FAST 15), pages 45–58, 2015.

472 2019 USENIX Annual Technical Conference USENIX Association

[41] Zhixuan Zhou and Henry Hoffmann. Graphz: Im-
proving the performance of large-scale graph ana-
lytics on small-scale machines. In Proceedings of the
IEEE International Conference on Data Engineering
(ICDE 18), pages 1368–1371, 2018.

[42] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and
Xiaosong Ma. Gemini: A computation-centric dis-
tributed graph processing system. In Proceedings
of the USENIX Symposium on Operating Systems De-

sign and Implementation (OSDI 16), pages 301–316,
2016.

[43] Xiaowei Zhu, Wentao Han, and Wenguang Chen.
GridGraph: Large-scale graph processing on a sin-
gle machine using 2-level hierarchical partitioning.
In Proceedings of the USENIX Annual Technical Con-
ference (ATC 15), pages 375–386, 2015.

USENIX Association 2019 USENIX Annual Technical Conference 473

From Laptop to Lambda:
Outsourcing Everyday Jobs to Thousands of Transient Functional Containers

Sadjad Fouladi Francisco Romero Dan Iter Qian Li
Shuvo Chatterjee+ Christos Kozyrakis Matei Zaharia Keith Winstein

Stanford University, +Unaffiliated

Abstract
We present gg, a framework and a set of command-line

tools that helps people execute everyday applications—e.g.,
software compilation, unit tests, video encoding, or object
recognition—using thousands of parallel threads on a cloud-
functions service to achieve near-interactive completion times.
In the future, instead of running these tasks on a laptop, or
keeping a warm cluster running in the cloud, users might
push a button that spawns 10,000 parallel cloud functions to
execute a large job in a few seconds from start. gg is designed
to make this practical and easy.

With gg, applications express a job as a composition of
lightweight OS containers that are individually transient (life-
times of 1–60 seconds) and functional (each container is her-
metically sealed and deterministic). gg takes care of instantiat-
ing these containers on cloud functions, loading dependencies,
minimizing data movement, moving data between containers,
and dealing with failure and stragglers.

We ported several latency-sensitive applications to run on
gg and evaluated its performance. In the best case, a dis-
tributed compiler built on gg outperformed a conventional
tool (icecc) by 2–5×, without requiring a warm cluster run-
ning continuously. In the worst case, gg was within 20% of
the hand-tuned performance of an existing tool for video en-
coding (ExCamera).

1 Introduction

Public cloud-computing services have steadily rented out
their resources at finer and finer granularity. Sun’s Grid utility
(2005), Amazon’s EC2 (2006), and Microsoft’s Azure virtual
machines (2012) began by renting virtual CPUs for a mini-
mum interval of one hour, with boot-up times measured in
minutes. Today, the major services will rent a virtual machine
for a minimum of one minute and can typically provision and
boot it within 45 seconds of a request.

Meanwhile, a new category of cloud-computing resources
offers even finer granularity and lower latency: cloud func-
tions, also called serverless computing. Amazon’s Lambda
service will rent a Linux container to run arbitrary x86-64 ex-
ecutables for a minimum of 100 milliseconds, with a startup
time of less than a second and no charge when it is idle.
Google, Microsoft, Alibaba, and IBM have similar offerings.

Lambda/S3 Lambda/Redis OpenWhisk EC2Google Cloud Functions Local

build system
(make, ninja)

ExCamera
(video encoder)

Google Test
(unit tests)

Scanner
(video analysis)

Lambda/S3 Lambda/Redis OpenWhisk EC2Google Cloud Functions Local

gg
front-ends

gg
back-ends

compute and storage engines

gg IR

model substitution scripting SDK C++ SDK Python SDKmodel substitution scripting SDK C++ SDK Python SDK

Figure 1: gg helps applications express their jobs as a composition
of interdependent Linux containers, and provides back-end engines
to execute the job on different cloud-computing platforms.

Cloud functions were intended for asynchronously in-
voked microservices, but their granularity and scale has al-
lowed researchers to explore a different use: as a burstable
supercomputer-on-demand. These new systems launch a
burst-parallel swarm of thousands of cloud functions, all
working on the same job. The goal is to provide results to
an interactive user—much faster than can be accomplished
on the user’s own computer or by booting a cold cluster, and
cheaper than maintaining a warm cluster for occasional tasks.

Recent work has validated this vision. ExCamera [15] and
Sprocket [3] launch thousands of cloud functions, with inter-
thread communication over TCP, to encode, search, and trans-
form video files quickly. PyWren [23] exposes a Python API
and uses AWS Lambda functions for linear algebra and ma-
chine learning. Serverless MapReduce [35] and Spark-on-
Lambda [36] demonstrate a similar approach.

Unfortunately, building applications on swarms of cloud
functions is difficult. Each application must overcome a num-
ber of challenges endemic to this environment: (1) workers
are stateless and may need to download large amounts of code
and data on startup, (2) workers have limited runtime before
they are killed, (3) on-worker storage is limited, but much
faster than off-worker storage, (4) the number of available
cloud workers depends on the provider’s overall load and
can’t be known precisely upfront, (5) worker failures occur

USENIX Association 2019 USENIX Annual Technical Conference 475

when running at large scale, (6) libraries and dependencies
differ in a cloud function compared with a local machine, and
(7) latency to the cloud makes roundtrips costly. Past appli-
cations have addressed only subsets of these challenges, in
application-specific ways.

In this paper, we present gg, a general framework for build-
ing burst-parallel cloud-functions applications, by building
them on an abstraction of transient, functional containers, or
thunks. gg helps applications express their jobs in terms of in-
terrelated thunks (hermetically sealed, short-lived containers
that may reference the output of other thunks or produce other
thunks as output), then schedules, instantiates, and executes
those thunks on a cloud-functions service.

gg can containerize and execute existing programs, e.g.,
software compilation, unit tests, video encoding, or searching
a movie with an object-recognition kernel. gg does this with
thousands-way parallelism on short-lived cloud functions. In
some cases, this yields considerable benefits in terms of per-
formance. Depending on the frequency of the task (e.g., for
compilation or unit tests every few minutes), cloud functions
are also much less expensive than keeping a comparable clus-
ter running continuously.

gg and other parallel execution systems. In its goals and
approach, gg is kin with container-orchestration systems
such as Kubernetes [5] and Docker Swarm [10], outsourcing
tools like the Utility Coprocessor [12] and icecc [20], and
cluster-computation tools such as Hadoop [38], Dryad [22],
Spark [40], and CIEL [27].

But gg also differs from these systems in its focus on a new
computing substrate (cloud functions), mode of execution
(burst-parallel, latency-sensitive programs starting from zero),
and target application domain (everyday “local” programs,
e.g. software compilation, that depend on an environment
captured from the user’s own laptop).

For example, the “stateless” nature of cloud functions (they
boot up with no dependable transient state) makes gg place
a large focus on efficient containerization and dependency
management: loading the minimal set of the right files into
each container at boot-up. Cluster-computation systems like
Dryad, Spark, and CIEL do not do this—although they can
interface with existing code and systems (e.g., a video encoder
or a database server), these components must be loaded in
advance by the user on a long-lived compute node. Container
systems like Kubernetes do this, but they are not aimed at
efficient execution of a transient interactive task—gg is more
than 45× faster than Google Kubernetes Engine at startup,
and 13× faster than Spark-on-Lambda (Figure 7). We discuss
related work more completely in Section 2.

1.1 Summary of Results
We ported four applications to express their jobs in gg’s for-
mat: a description of each container, and how it depends on
other containers, that we call the intermediate representation,

Compiling Inkscape

Tool Time Cost

single-core make 32m 34s —
icecc to a warm 48-core EC2 machine 6m 51s $2.30∕hr
icecc to a warm 384-core EC2 cluster 6m 57s $18.40∕hr
gg to AWS Lambda 1m 27s 50¢∕run

Figure 2: Compiling Inkscape using gg on AWS Lambda is almost
5× faster than outsourcing the job to a warm 384-core cluster, with-
out the costs of maintaining a warm cluster for an occasional task.

or IR (§3). One of them does it automatically, by inferring
the IR from an existing software build system (e.g., make or
ninja). The rest write out the description explicitly: a unit-
testing framework (Google Test [17]), parallel video encoding
with inter-thread communication (ExCamera [15]), and object
recognition using Scanner [30] and TensorFlow [1].

We then implemented gg back-ends, which interpret the IR
and execute the job, for five compute engines (a local machine,
a cluster of warm VMs, AWS Lambda, IBM Cloud Functions,
and Google Cloud Functions) and three storage engines (S3,
Google Cloud Storage, and Redis) (Figure 1).

For compiling large programs from a cold start, gg’s func-
tional approach and fine-grained dependency management
yield significant performance benefits. Figure 2 shows a sum-
mary of the results for compiling an open-source software,
Inkscape [21]. Running “cold” on AWS Lambda (with no pre-
provisioned compute resources), gg was almost 5× faster than
an existing system (icecc), running on a 48-core or 384-core
cluster of warm VMs (i.e., not including time to provision
and boot the VMs1).

In summary, gg is a practical tool that addresses the princi-
pal challenges faced by burst-parallel cloud-functions appli-
cations. It helps developers and users build applications that
burst from zero to thousands of parallel threads to achieve low
latency for everyday tasks. gg is open-source software and
the source code is available at https://snr.stanford.edu/gg.

2 Related Work

gg has many antecedents—cluster-computation systems such
as Hadoop [38], Spark [40], Dryad [22], and CIEL [27]; con-
tainer orchestrators like Docker Swarm and Kubernetes; out-
sourcing tools like distcc [8], icecc [20], and UCop [12];
rule-based workflow systems like make [13], CMake [7], and
Bazel [4]; and cloud-functions tools like ExCamera/mu [15],
PyWren [23], and Spark-on-Lambda [36].

Compared with these, gg differs principally in its focus
on targeting a new computing substrate (thousands of cloud
functions, working to accelerate a latency-sensitive local-

1Current cloud-computing services typically take an additional 0.5–2 min-
utes to provision and boot such a cluster.

476 2019 USENIX Annual Technical Conference USENIX Association

https://snr.stanford.edu/gg

application task). We discuss how gg fits with the prior litera-
ture in several categories:

Process migration and outsourcing. The idea of accelerat-
ing a local application’s interactive operations by using the
resources of the cloud has a long pedigree; earlier work such
as the Utility Coprocessor (UCop) also sought to “improve
performance from the coffee-break timescale of minutes to
the 15–20 second timescale of interactive performance” by
outsourcing to a cloud VM [12]. gg shares the same goal.

gg’s architectural differences from this work come from its
different needs: instead of outsourcing applications transpar-
ently to a single warm cloud VM, gg orchestrates thousands
of unreliable and stateless cloud functions from a cold start.
Unlike UCop, gg is not transparent to the application—we re-
quire applications to be ported to express jobs in gg’s format.
In return, gg provides optimized orchestration of swarms of
cloud functions and fault tolerance (failed functions are rerun
with the same inputs). Unlike UCop’s distributed caching
filesystem, gg’s IR, which is based on content-addressed im-
mutable data, allows cloud workers to be provisioned with all
necessary dependencies in a single roundtrip and to commu-
nicate intermediate values directly between each other.

Container orchestration. gg’s IR resembles container and
environment-description languages, including Docker [10]
and Vagrant [34], and container-orchestration systems such as
Docker Swarm and Kubernetes. In contrast to these systems,
gg’s thunks are designed to be efficiently instantiated within
a cloud function, expressible in terms of other thunks to form
a computation graph, and deterministic and defined by their
code and data, allowing gg to provide fault tolerance and
memoization. These systems were not designed for transient
computations, and gg has much quicker startup. For example,
starting 1,000 empty containers with gg takes about 4 seconds
on a VM cluster or on AWS Lambda. Google Kubernetes
Engine, given a warm cluster, takes more than 3 minutes
(§5.1). Recent academic work has shown how to lower this
overhead to provide faster cloud-functions services [28].

Workflow systems. Workflow systems like Dryad [22],
Spark [40], and CIEL [27] let users execute a (possibly dy-
namic) DAG of tasks on a cluster. However, gg differs from
these systems in some significant ways:

• gg is aimed at a different kind of application. For example,
while Spark is often used for data analytics tasks, it is not
commonly used for accelerating the sorts of “everyday”
local applications that gg is designed for. No prior work
has successfully accelerated something like “compiling
Chromium” using Spark, and the challenges in accom-
plishing this (capturing the user’s local environment and
the information flow of the task, exporting the job and its
dependencies efficiently to the cloud, running thousands
of copies of the C++ compiler in a fault-tolerant way) are
simply not what Spark does.

• gg uses OS abstractions: it encapsulates arbitrary code
and dependency files in lightweight containers, somewhat
similar to a tool like Docker. gg focuses on efficiently
loading code and its minimal necessary dependencies on
cloud functions that boot up with no dependable state. By
contrast, systems like Dryad and Spark principally use
language-level mechanisms. While their jobs can inter-
face with existing software (e.g., the Dryad paper [22]
describes how a node can talk to a local SQL Server
process, and Spark jobs routinely invoke system binaries
such as ffmpeg), these systems do not take care of de-
ploying the existing code, worrying about how to move
the container in a way that minimizes bytes moved across
the network, etc. The user is responsible for loading the
necessary code and dependencies beforehand on a pool
of long-lived machines.

• gg is considerably lighter weight. In practice, attempts
to port workflow systems to support execution on cloud
functions (scaling from zero) have not performed well,
partly because of these systems’ overheads. Because of
its focus on transient execution, gg carries an order-of-
magnitude less overhead. For example, gg is 13× faster
at invoking 1,000 “sleep 2” tasks than Spark-on-Lambda
(Figure 7).

• gg supports dynamic data access (a function can produce
another function that accesses arbitrary data) and non-
DAG dataflows (e.g., loops and recursion). It does this
while remaining agnostic to the application’s program-
ming language. For example, gg has no language-level
API binding to launch a new subtask. (CIEL also allows
subtasks to spawn new subtasks, but requires use of its
Skywriting programming language to do this.)

Burst-parallel cloud functions. Researchers and practition-
ers have taken advantage of cloud-functions platforms to
implement low-latency, massively parallel applications. Ex-
Camera [15] uses AWS Lambda to scale out video encoding
and processing tasks over thousands of function invocations,
and PyWren [23] exposes a MapReduce-like Python API that
executes on AWS Lambda. Spark-on-Lambda [40] is a port of
Spark that uses AWS Lambda cloud functions. In contrast, gg
helps applications use cloud-functions platforms for a broader
set of workloads, including irregular execution graphs and
ones that change as execution evolves. gg’s main contribution
is specifying an IR that permits a diverse class of applications
(written in any programming language) to be abstracted from
the compute and storage platform, and to leverage common
services for dependency management, straggler mitigation,
and scheduling.

Build tools. Several build systems (e.g., make [13], Bazel [4],
Nix [11], and Vesta [19]) and outsourcing tools (such as
distcc [8], icecc [20], and mrcc [26]) seek to incremen-
talize, parallelize, or distribute compilation to more-powerful

USENIX Association 2019 USENIX Annual Technical Conference 477

remote machines. Building on such systems, gg automati-
cally transforms existing build processes into their own IR.
The goal is to compile programs quickly—irrespective of
the software’s own build system—by making use of cloud-
functions platforms that can burst from complete dormancy
to thousands-way parallelism and back.

Existing remote compilation systems, including distcc
and icecc, send data between a master node and the workers
frequently during the build. These systems perform best on a
local network, and add substantial latency when building on
more remote servers in the cloud. In contrast, gg uploads all
the build input once and executes and exchanges data purely
within the cloud, reducing the effects of network latency.

3 Design and Implementation

gg is designed as a general system to help application devel-
opers manage the challenges of creating burst-parallel cloud-
functions applications. The expectation is that users will take
computations that might normally run locally or on small
clusters for a long time (e.g., test suites, machine learning,
data exploration and analysis, software compilation, video
encoding and processing), and outsource them to thousands
of short-lived parallel threads in the cloud, in order to achieve
near-interactive completion time.

In this section, we describe the design of gg’s intermediate
representation (§3.1), front-end code generators (§3.2), and
back-end execution engines (§3.3).

3.1 gg’s Intermediate Representation
The format that gg uses—a set of documents describing a
container and its dependency on other containers—is intended
to elicit enough information from applications about their
jobs (fine-grained dependencies and dataflow) to be able to
efficiently execute a job on constrained and stateless cloud
functions. It includes:

1. A primitive of a content-addressed cloud thunk: a
codelet or executable applied to named input data.

2. An intermediate representation (IR) that expresses jobs
as a lazily evaluated lambda expression of interdepen-
dent thunks.

3. A strategy for representing dynamic computation graphs
and data-access patterns in a language-agnostic and
memoizable way, using tail recursion.

We discuss each of these elements.

3.1.1 Thunk: A Lightweight Container

In the functional-programming literature, a thunk is a param-
eterless closure (a function) that captures a snapshot of its
arguments and environment for later evaluation. The process

of evaluating the thunk—applying the function to its argu-
ments and saving the result—is called forcing it [2].

For gg, our goal is to simplify the creation of new appli-
cations by allowing them to target the IR, which lets them
leverage the common services provided by the back-end en-
gines. Accordingly, the representation of a thunk follows from
several design goals. It should be: (1) simple enough to be
portable to different compute and storage platforms, (2) gen-
eral enough to express a variety of plausible applications, (3)
agnostic to the programming language used to implement the
function, (4) efficient enough to capture fine-grained depen-
dencies that can be materialized on stateless and space-limited
cloud functions, and (5) able to be memoized to prevent re-
dundant work.

To satisfy these requirements, gg represents a thunk with a
description of a container that identifies, in content-addressed
manner, an x86-64 Linux executable and all of its input data
objects. The container is hermetically sealed: it is not al-
lowed to use the network or access unlisted objects or files.
The thunk also describes the arguments and environment
for the executable, and a list of tagged output files that it
will generate—the results of forcing the thunk. The thunk
is represented as a Protobuf [31] structure (Figure 3 shows
three thunks for three different stages of a build process).
This container-description format is simple to implement and
reason about, and is well-matched to the statelessness and
unreliability of cloud functions.

In the content-addressing scheme, the name of an object
has four components: (1) whether the object is a primitive
value (hash starting with V) or represents the result of forcing
some other thunk (hash starting with T), (2) a SHA-256 hash,
(3) the length in bytes, and (4) an optional tag that names an
object or a thunk’s output.

Forcing a thunk means instantiating the described container
and running the code. To do this, the executor must fetch the
code and data values. Because these are content-addressed,
this can be from any mechanism capable of producing a blob
that has the correct name—durable or ephemeral storage (e.g.,
S3, Redis, or Bigtable), a network transfer from another node,
or by finding the object already available in RAM from a
previous execution. The executor then runs the executable
with the provided arguments and environment—for debug-
ging or security purposes, preferably in a mode that prevents
the executable from accessing the network or any data not
listed as a dependency. The executor collects the output blobs,
calculates their hashes, and records that the outputs can be
substituted in place of any reference to the just-forced thunk.

3.1.2 gg IR: A Lazily Evaluated Lambda Expression

The structure of interdependent thunks is what defines the gg
IR. We use a one-way IR, a document format that applications
write to express their jobs, as opposed to a two-way API (e.g.,
a function call to spawn a new task and observe its result)

478 2019 USENIX Annual Technical Conference USENIX Association

1 PREPROCESS(hello.c) → hello.i 2 COMPILE(hello.i) → hello.s 3 ASSEMBLE(hello.s) → hello.o

content hash: T0MEiRL

{ function: {
hash: 'VDSo_TM',
args: [
'gcc', -E', 'hello.c',
'-o', 'hello.i'],

envars: ['LANG=us_US'] },
objects: [
'VLb1SuN=hello.c',
'VDSo_TM=gcc',
'VAs.BnH=cpp',
'VB33fCB=/usr/stdio.h'],

outputs: ['hello.i'] }

content hash: TRFSH91

{ function: {
hash: 'VDSo_TM',
args: [
'gcc', '-x', 'cpp-output',
'-S', 'hello.i',
'-o', 'hello.s'],

envars: ['LANG=us_US'] },
objects: [
' T0MEiRL =hello.i',
'VDSo_TM=gcc',
'VMRZGH1=cc1',],

outputs: ['hello.s'] }

content hash: T42hGtG

{ function: {
hash: 'VDSo_TM',
args: [

'gcc', '-x', 'assembler',
'-c', 'hello.s',
'-o', 'hello.o'],

envars: ['LANG=us_US'] },
objects: [
' TRFSH91 =hello.s',
'VDSo_TM=gcc',
'VUn3XpT=as',],

outputs: ['hello.o'] }

Figure 3: An example of gg IR consisting of three thunks for building a “Hello, World!” program that represents the expression
ASSEMBLE(COMPILE(PREPROCESS(hello.c))) → hello.o. To produce the final output hello.o, thunks must be forced in order from
left to right. Other thunks, such as the link operation, can reference the last thunk’s output using its hash, T42hGtG. Hashes have been shortened
for display, and dependencies between thunks are shown in color.

because we expect the application will be running on the
user’s own computer, at some remote cloud-functions engine:
the intention is to avoid roundtrips over a long-latency path
by keeping the application out of the loop. We also envision
that it will be possible to better schedule and optimize a job,
and easier to maintain different interoperable back-ends, if the
application is out of the loop before execution begins.2 This
representation exposes the computation graph to the back-end,
along with the identities and sizes of objects that need to be
communicated between thunks. Based on this information,
the back-end can schedule the forcing of thunks, place thunks
with similar data-dependencies or an output-input relationship
on the same physical infrastructure, and manage the storage
or transfer of intermediate results, without roundtrips back to
the user’s own computer.

The IR allows gg to schedule jobs efficiently, mitigate the
effect of stragglers by invoking multiple concurrent thunks
on the critical path, recover from failures by forcing a thunk
a second time, and memoize thunks. This is achieved in an
application-agnostic, language-agnostic manner.

The application generally starts by forcing a single thunk
that represents the ultimate outcome of the interactive op-
eration. This thunk typically depends on other thunks that
need to be forced first, etc., leading the back-end to lazily

2Systems like the LLVM compiler suite [25] (which allows front-end
language compilers to benefit from a library of back-end optimization passes
and assemblers, interfacing through an IR) and Halide [33] (which separates
an image-processing algorithm from its schedule and execution strategy)
have demonstrated the benefits of a rigid representational abstraction in other
settings. gg’s use of an IR is not exactly the same as these, but it has a similar
value in abstracting front-ends (applications and the tools that help them
express their jobs) from back-end execution engines in a way that allows
efficient and portable execution.

force thunks recursively until obtaining the final result. Fig-
ure 3 shows an example IR for computing the expression
ASSEMBLE(COMPILE(PREPROCESS(hello.c))).

3.1.3 Tail Recursion: Supporting Dynamic Execution

The above design is sufficient to describe a directed acyclic
graph (DAG) of deterministic tasks executing in the cloud.
However, many jobs do not have a data-access pattern that is
completely known upfront. For example, in compiling soft-
ware, it is unknown a priori which header files and libraries
will need to be read by a given stage. Other applications use
loops, recursion, and other non-DAG dataflows.

An application may also have an unpredictable degree of
parallelism. For example, an application might detect objects
in a large image, and then on each subregion where an object
is detected (which may be zero regions, or might be 10,000
regions), the application searches for a target object. Here, the
computation graph is not known in advance.

Systems like PyWren [23] and CIEL’s Skywriting lan-
guage [27] handle this case by giving tasks access to an API
call to invoke a new task. For gg, we aimed to preserve the
memoizability and language-independence of the IR, which
is challenging if tasks can invoke tasks on their own and if gg
must expose a language binding. Instead, gg handles this sit-
uation through language-independent tail recursion: a thunk
can write another thunk as its output.

3.2 Front-ends
We developed four front-ends that emit gg IR: a C++ SDK,
a Python SDK, a group of command-line tools, and a series

USENIX Association 2019 USENIX Annual Technical Conference 479

of model substitution primitives that can infer gg IR from a
software build system.

The C++ and Python SDKs are straightforward. Each ex-
poses a thunk abstraction and allows the developer to describe
a parallel application in terms of codelets. These codelets are
applied to blobs of named data, which may be read-only mem-
ory regions or files in the filesystem.

The model-substitution primitives extract a gg IR descrip-
tion of an existing build system, without actually compiling
the software. Instead, we run the build system with a modi-
fied PATH so that each stage is replaced with a stub: a model
program that understands the behavior of the underlying stage
well enough so that when the model is invoked in place of the
real stage, it can write out a thunk that captures the arguments
and data that will be needed in the future, so that forcing the
thunk will produce the exact output that would have been
produced during actual execution. We used this technique to
infer gg IR from the existing build systems for several large
open-source applications (§4.1).

3.3 Back-ends
gg IR express the application against an abstract machine
that requires two components: an execution engine for forc-
ing the individual thunks, and a content-addressed storage
engine for storing the named blobs referenced or produced
by the thunks. The coordinator program brings these two
components together.

Storage engine. A storage engine provides a simple inter-
face to a content-address storage, consisted of GET and PUT
functions to retrieve and store objects. We implemented sev-
eral content-addressed storage engines, backed by S3, Redis,
and Google Cloud Storage. We also have a preliminary im-
plementation (not evaluated here) that allows cloud functions
to communicate directly among one another, avoiding the
latency and throughput limitations of using a reliable blob
storage (e.g., S3) to exchange small objects.

Execution engine. In conjunction with a storage engine,
each execution engine implements a simple abstraction: a
function that receives a thunk as the input and returns the
hashes of its output objects (which can be either values or
thunks). The engine can execute the thunk anywhere, as long
as it returns correct output hashes that are retrievable from the
storage engine. We implemented back-end execution engines
for several environments: a local multicore machine, a cluster
of remote VMs, AWS Lambda, Google Cloud Functions, and
IBM Cloud Functions (OpenWhisk).

The coordinator. The main entry-point for executing a thunk
is the coordinator program. The inputs to this program are
the target thunk, a list of available execution engines and the
storage engine. This program implements services offered by
gg, such as job scheduling, memoization, failure recovery and
straggler mitigation.

Upon start, this program materializes the target thunk’s
dependency graph, which includes all the other thunks needed
to get the output. Then, the thunks that are ready to execute are
passed to execution engines, based on their available capacity.
When the execution of a thunk is done, the program updates
the graph by replacing the references to the just-forced thunk
and adds a cache entry associating the output hash to the input
hash. The thunks that become ready to execute are placed
on a queue and passed to the execution engines when their
capacity permits. The unified interface allows the user to mix-
and-match different execution engines, as long as they share
the same storage engine.

The details of invocation, execution and placement are left
to the execution engines. For example, the default engine for
AWS Lambda/S3 invokes a new Lambda for each thunk. The
Lambda downloads all the dependencies from S3 and sets up
the environment, executes the thunk, uploads the outputs back
to S3 and shuts down. For applications with large input/output
objects, the roundtrips to S3 could affect the performance. As
an optimization for such cases, the user can decide to run
the execution engine in the “long-lived” mode, where each
Lambda worker stays up until the job finishes and seeks out
new thunks to execute. The execution engine keeps an index
of all the objects that are already present on each worker’s
local storage. When placing thunks on workers, it selects the
worker with the most data available, in order to minimize the
need to fetch dependencies from the storage back-end.

The coordinator can also apply optimizations to the depen-
dency graph. For example, multiple thunks can be bundled
as one and sent to the execution engine. This is useful when
the output of one thunk will be consumed by the next thunk,
creating a linear pipeline of work. By scheduling all of those
thunks on one worker, the system reduces the number of
roundtrips.

Failure recovery and straggler mitigation. In case of co-
ordinator failure, the job can be picked up where it was left
off, as the coordinator program uses on-disk cache entries to
avoid redoing the work that has already been done. In case of
a recoverable error in executing a thunk, the execution engine
notifies the coordinator with the failure reason, where it can
decide to retry the job or pass it to another available execution
engine for execution.

Straggler mitigation is another service managed by the
coordinator program which duplicates pending executions
in the same or a different execution engine. The program
keeps track of the execution time for each thunk, and if the
execution time exceeds a timeout (set by either the user or the
application developer) the job will be duplicated. Since the
functions don’t have any side-effects, the coordinator simply
picks the output that becomes ready first.

480 2019 USENIX Annual Technical Conference USENIX Association

hello
(stripped)

libc

hello

libhello.a

hello.c

hello.i

dirname.c

dirname.i

closeout.c

closeout.i

string.h stdio.h

1

2

3

hello.s

hello.o

closeout.o

closeout.s

dirname.o

dirname.s

Figure 4: Part of the IR of interdependent thunks inferred with
model substitution from the GNU hello build system. Each box
represents a thunk and is labeled with the name of its output. The
contents of the numbered thunks are depicted in Figure 3 (Many
header files and other dependencies omitted for simplicity).

3.4 Implementation Notes

We implemented gg in about 14,000 lines of C++. The imple-
mentation consists of five compute engines (a local machine,
a cluster of warm VMs, AWS Lambda, Google Cloud Func-
tions, and IBM Cloud Functions), three storage engines (S3,
Google Cloud Storage, and Redis), a series of command line
tools to aid generation, execution and inspection of gg IR,
a C++ and Python SDK, and several model programs for
different stages of build process.

4 Applications

We used gg to implement several applications, each emitting
jobs in the gg IR. We describe these in turn.

4.1 Software Compilation

The time required to compile software is an evergreen frustra-
tion for software developers; a popular cartoon even spoofs
the duration of this job [39]. Today’s open-source applications
have grown larger and larger. For example, the Chromium
Web browser takes more than four hours to compile on a four-
core laptop computer from a cold start. Many solutions have
been developed to leverage warm machines in a local cluster
or cloud datacenter (e.g., distcc or icecc). We developed
such an application on top of gg.

Using model substitution, we implemented models for
seven popular stages of a C or C++ software build pipeline:
the preprocessor, compiler, assembler, linker, archiver, indexer,
and strip. These allow us to automatically transform some

software build processes (e.g., a Makefile or build.ninja
file) into an expression in gg IR, which can then be exe-
cuted with thousands-way parallelism on cloud-functions plat-
forms to obtain the same results as if the build system had
been executed locally. Figure 4 illustrates the resulting IR
from an example invocation (the enumerated thunks are de-
tailed in Figure 3). These models are sufficient to capture
the build process of some major open-source applications, in-
cluding OpenSSH [29], Python interpreter [32], the Protobuf
library [31], the FFmpeg video system [14], the GIMP image
editor [16], the Inkscape vector graphics editor [21], and the
Chromium browser [6].3

Build systems often include scripts that run in addition to
these standard tools, such as a tool to generate configuration
header files, but typically such scripts run upstream of the pre-
processor, compiler, etc. Therefore, gg captures these script
outputs by a model as dependencies.

Capturing dependencies of the preprocessor. Preprocess-
ing is the most challenging stage to model. It requires not
only capturing the source file as dependencies, but also all the
header files that are both directly and indirectly included by
that source file. Capturing all header files in a container is not
feasible, because cloud functions are constrained in storage.
For example, AWS Lambda has a 500MB storage limit.

The precise header files required to preprocess a file can be
discovered at fine grain, but only by invoking the preprocessor
(i.e., gcc -M) which is an expensive operation at large scale.
Finding the dependencies for each source file in Chromium
takes nearly half an hour on a 4-core computer.

To solve this problem, the application uses gg’s capabilities
for dynamic dataflow at runtime. gg’s preprocessor model
generates thunks that do dependency inference in parallel on
cloud functions. These thunks have access only to a stripped-
down version of the user’s include directories, preserving only
lines with C preprocessor directives (such as #include and
#define). These thunks then produce further thunks that pre-
process a given source-code file by listing only the necessary
header files.

4.2 Unit Testing

Software test suites are another application that can benefit
from massive parallelism. Using gg’s C++ SDK, we imple-
mented a tool that can generate gg IR for unit tests written
with Google Test [17], a popular C++ test framework used by
projects like LLVM, OpenCV, Chromium, Protocol Buffers,
and the VPX video codec library.

3We have to emphasize that no changes were made to the underlying build
system of these programs. The main challenge here is to build correct and
complete models for programs used in the build pipeline, such as gcc and ld,
which is a one-time effort. However, an arbitrary build system may require
other programs to be modeled, or execute these programs in an aberrant way
that is outside of the scope of model substitution.

USENIX Association 2019 USENIX Annual Technical Conference 481

1.raw

1.vp8

2.raw

2-0.vp8

3.raw

3-0.vp8

4.raw

4-0.vp8

1-0.state 2-0.state

2.vp8

3-0.state

3-1.vp8 4-1.vp8

2-1.state

3.vp8

4.vp8

3-1.state

vpxenc

xcdec

xcenc

xcdec

rebase

xcdec

rebase

Figure 5: Visual representation of the gg IR for a video-processing
workflow [15].

Typically, each test is a standalone program that can be run
in parallel with other tests, with no dependency requirements
between them. No changes to the code are necessary, with
one exception: if a test case needs to access files on the file
system, then the programmer has to annotate the test case
with the list of files that it wants to access. This process can
be automated by running the tests locally and then tracing
the open system calls invoked by each test case. The tool
uses these annotations, either handcrafted or automatically
generated, to capture each test’s dependencies. A separate
thunk is created for each test case, allowing the execution
engine to exploit the available parallelism.

4.3 Video Encoding

The ExCamera system [15] uses cloud-functions infrastruc-
ture to run interdependent video-processing tasks with 4,000-
way parallelism [15]. Cloud workers exchange data through
TCP connections, brokered by a tightly coupled back-end
that was bound to AWS Lambda. To demonstrate gg’s ex-
pressive power and performance, we ported ExCamera into a
“front-end-only” version that targets gg IR.

In ExCamera, the functions necessary for parallel video
encoding are ENCODE, DECODE, ENCODE-GIVEN-STATE,
and REBASE. The algorithm first encodes each chunk in par-
allel using ENCODE and then, in a serial process, REBASEs
each output on top of the state left by the previous chunk.
Video-codec states must be communicated between workers
in order to stitch together the overall video. Figure 5 shows
the dependency graph for encoding a batch of four chunks.

The original ExCamera keeps Lambda workers warm by
keeping the raw video in RAM and communicating video-

codec states over TCP between workers. gg’s back-end for
AWS Lambda also keeps workers warm and keeps the raw
video in their local filesystem. gg routes thunks to workers
that already have the necessary data, but brokers inter-worker
communication through S3. Finally, gg provides fault toler-
ance, which ExCamera’s own back-end lacks.

4.4 Object Recognition
The increase in visual computing applications has motivated
the design of frameworks such as Scanner [30], which is a
system for productive and efficient video analysis at scale.
To use Scanner, the user feeds in a compressed video and
designates an operation to be applied on each decoded frame.
To compare Scanner’s execution engine with gg, we used the
gg C++ SDK to implement a two-step analysis pipeline. In
the first stage, the frames of a video V are decoded in batches
of m frames, using DECODE(V ,m) function. Subsequently,
an object-recognition kernel, OBJECT-REC, is applied to the
decoded frames and returns the top five recognized objects
for each frame.

We implemented the DECODE function using FFmpeg [14]
and implemented OBJECT-REC in TensorFlow’s C++ API [1]
using a pre-trained Inception-v3 model [37]. gg’s thunks were
able to bundle these pre-existing applications. We imple-
mented the same pipeline in Scanner for comparison. To do
so, we leverage Scanner’s internal video decoder and the same
TensorFlow kernel and pre-trained Inception-v3 model.

4.5 Recursive Fibonacci
To demonstrate the way that gg handles dynamic dataflows,
we used the C++ SDK to implement a classic recursive Fi-
bonacci program in the gg IR. The application is expressed
using two functions: ADD(a,b), which returns the sum of its
two input values and FIB(n) which recursively computes the
n-th Fibonacci number as ADD(FIB(n−1), FIB(n−2)) or the
base case when n ≤ 1.

Figure 6 shows the execution steps. In the beginning, there
is only one thunk, FIB(4). After execution, instead of returning
a value, it returns three thunks, replacing the target with the
sum of two preceding Fibonacci numbers. The IR expands
(for the recursive case) and contracts (for the base case), until
resolving to the final value.

In a naïve recursive implementation of the Fibonacci series,
each Fibonacci value is evaluated many times. However, in
gg, the functions are memoized and lazily-executed, resulting
in each Fibonacci value computed only once.

5 Evaluation

We evaluated gg’s performance by executing each application
in gg, compared with comparable tailor-made or native ap-
plications. Although we implemented back-end engines for

482 2019 USENIX Annual Technical Conference USENIX Association

fib(4)

→

+

fib(3)fib(2) →

+

+fib(2)

fib(1)

↓

+

++

10

←

+

++

fib(1)0

←

+

++

fib(1)fib(0)

↓

+

+1

1

→

+

21 →

3

Figure 6: Evolution of the IR for a recursive Fibonacci application.
Execution begins with a single thunk. As each thunk is forced, re-
turning a new thunk or the base case, the IR expands and contracts.
The engine lazily forces thunks until it can return the overall value.

several cloud-functions platforms (including Google Cloud
Functions and IBM Cloud Functions), we found that AWS
Lambda had the best performance and available parallelism.
As a result, we focus on evaluation results from gg’s AWS
Lambda back-end.

5.1 Startup Overhead
To motivate the importance of gg’s lightweight abstractions,
we implemented a trivial job, 1,000 parallel tasks each exe-
cuting sleep(2), using four frameworks: gg, PyWren, Spark-
on-Lambda, and Kubernetes. The first three frameworks were
executed on AWS Lambda, and the last on Google Kubernetes
Engine (GKE), which was given a warm cluster of eleven
96-core VMs (1,056 cores in total) on which to allocate con-
tainers. Figure 7 shows the results.

gg is able to quickly scale to 1,000 concurrent containers
and finish the job 7.5–9× faster when compared with other
two frameworks running on Lambda. After subtracting off
the 2-second sleep time, this translates to 11–13× less over-
head. For PyWren, on average, each worker spends 70% of
its time on setting up the Python runtime (downloading and
extracting a tarball). A large portion of this runtime consists
of packages that are not used by our sleep(2) program (cf.
gg fine-grained dependency tracking). Google Kubernetes
Engine was not designed for transient computations and was
not optimized for this use case; it is much slower to start 1,000
Docker containers.

Additionally, we measured the overheads associated with

1K trivial containers running “sleep 2”

AWS Lambda
gg-λ 06s ± 01s
PyWren 46s ± 08s
Spark-on-Lambda 54s ± 21s

Google Kubernetes Engine Kubernetes 03m 08s ± 03s

Figure 7: Comparison of completion time for running 1,000
sleep(2) tasks using four different systems. gg’s lightweight design
and implementation has less overhead than other systems.

Compiling Inkscape on AWS Lambda (total of 3602 thunks)

Initial graph construction 56ms
Mean time to read a thunk 188 µs ± 367 µs
Mean time to recompute the IR per thunk 336 µs ± 560 µs
Invocation (thunk completion to invocation of
all dependent thunks)

142ms ± 135ms

Figure 8: gg’s overheads allow for relatively fine-grained tasks.

loading thunks and recomputing the IR after a thunk is done
in Figure 8. These overheads, especially the invocation over-
head, support an intuition about the appropriate granularity of
thunks: gg works well when thunks last about 1–20 seconds
each.

5.2 Software Compilation

To evaluate gg’s application for software compilation, we
measured the start-to-finish build times under multiple sce-
narios on a set of unmodified large open-source packages.
We compared these times with existing tools under the same
scenarios. For distributed builds outsourced from a 4-core
EC2 VM, we found that gg is able to achieve significantly
shorter build times than existing approaches.

5.2.1 Evaluation Set

To benchmark gg’s performance, we picked four open-source
programs written in C or C++: FFmpeg, GIMP, Inkscape,
and Chromium. No changes were made to the code or the
underlying build system of these packages. We compiled all
packages with GCC 7.2.

All the 4-core machines used in the experiments are
EC2 m5.xlarge, and all the 48-core machines are EC2
m5.12xlarge instances. To realistically simulate users send-
ing applications to nearby datacenters, client machines reside
in the US West (N. California) region, and outsource their
jobs to machines in the US West (Oregon) region.

USENIX Association 2019 USENIX Annual Technical Conference 483

Local (make) Distributed (icecc) Distributed (gg)

Estimated SLoC 1 core 48 cores 48 cores 384 cores 384 cores AWS Lambda

FFmpeg 1,200,000 06m 19s 20s 01m 03s 39s 40s 44s ± 04s
GIMP 800,000 06m 48s 49s 02m 35s 02m 38s 01m 26s 01m 38s ± 03s
Inkscape 600,000 32m 34s 01m 40s 06m 51s 06m 57s 01m 20s 01m 27s ± 07s
Chromium 24,000,000 15h 58m 20s 38m 11s 46m 01s 42m 18s 40m 57s 18m 55s ± 10s

Figure 9: Comparison of cold-cache build times in different scenarios described in §5.2. gg on AWS Lambda is competitive with or faster than
using conventional outsourcing (icecc), and in the case of the largest programs, 2–5× faster. This includes both the time required to generate
gg IR from a given repository and then to execute the IR.

5.2.2 Baselines

For each package, we measured the start to finish build time
in four different scenarios as the baseline for local and dis-
tributed builds:

make, make (48): The package’s own build system was ex-
ecuted on a single core (make), and with up to 48-way
parallelism (make -j48). The make and make (48) tests
were done on 4-core and 48-core EC2 VMs, respectively.
No remote machines were involved in these tests.

icecc (48), icecc (384): The package was built using the
icecc distributed compiler on a 4-core client that out-
sources the job to a 48-core VM, or to eight 48-core VMs,
for a total of 384 cores.

5.2.3 gg’s Benchmarks

We conducted the following experiments for each package to
evaluate gg:

1. gg (384): The package was built with the same config-
uration as the icecc (384) experiment: a 4-core client
farming out to eight 48-core machines, using gg’s back-
end for a cluster of VMs.

2. gg-λ: The package was built on a 4-core client outsourc-
ing to AWS Lambda, using as many concurrent Lambdas
as possible (up to 8,000 in the case of Chromium).

For Chromium experiments, an additional standby EC2
VM acted as the overflow worker for thunks whose total
data size exceeded Lambda’s storage limit of 500 MB.
Throughout building Chromium, there were only 2
thunks (out of ~90,000 thunks) that did not fit on a
Lambda and had to be forced on this overflow node.

5.2.4 Discussion of Evaluation Results

Figure 9 shows the median times for the package builds. gg is
about 2–5× faster than a conventional tool (icecc) in building
medium- and large-sized software packages. For example, gg
compiles Inkscape in 87 seconds on AWS Lambda, compared

with 7 minutes when outsourced with icecc to a warm 384-
core cluster. This is a 4.8× speedup. Chromium, one of the
largest open-source projects available, compiles in under 20
minutes using gg on AWS Lambda, which is 2.2× faster than
icecc (384).

We do not think gg’s performance improvements on AWS
Lambda can be explained simply by the availability of more
cores than our 384-core cluster; icecc improved only mod-
estly between the 48-core and 384-core case and doesn’t
appear to effectively use higher degrees of parallelism. This
is largely because icecc, in order to simplify dependency
tracking, runs the preprocessor locally, which becomes a ma-
jor bottleneck. gg’s fine-grained dependency tracking allows
the system to efficiently outsource this step to the cloud and
minimize the work done on the local machine.

Figure 10 shows an execution breakdown for compiling
Inkscape. We observe two important characteristics. First,
the large spikes correspond to Lambdas that have failed or
taken longer than usual to complete. gg’s straggler mitigation
detects and relaunches these jobs to prevent an increase in
end-to-end latency. Second, the last few jobs are primarily
serial (archiving and linking), and consume almost a quarter
of the total job-completion time. These characteristics were
also observed in the other build jobs.

5.3 Unit Tests
To benchmark gg’s performance in running unit tests created
with the Google Test framework, we chose the VPX video
codec library [9], which contains ~7,000 unit tests. We anno-
tated each test with the list of required data files.

The Google Test library that is shipped with LibVPX is
only capable of running the tests serially. To establish a better
baseline, we used gtest-parallel, a program that executes
Google Test binaries in parallel on the local machine. We ran
the tests with 4- and 48-way parallelism and compared the
results with gg on AWS Lambda, with 8,000-way parallelism.
Figure 11 shows the summary of these results.

Using the massive parallelism available, gg was able to
execute all of the test cases in parallel, and 99% of the test

484 2019 USENIX Annual Technical Conference USENIX Association

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600
0

10

20

30

40

50

60

T
im

e
(s

)

Worker #

job completed 🡢Fetching the dependencies

Executing the thunk

Uploading the results

stragglers
🡦🡧

Figure 10: Breakdown of workers’ execution time when building Inkscape using gg on AWS Lambda. Serial stages (archiving and linking)
consume almost a quarter of the total job-completion time. Spikes indicate stragglers, which are mitigated by gg using standard techniques. In
this experiment, stragglers mostly consist of Lambdas that have trouble communicating with the storage back-end (S3).

gg-λ gtest (4) gtest (48)

LibVPX Test Suite 03m 25s 51m 45s 04m 40s

Figure 11: Running the LibVPX test suite using gg on AWS Lambda
outperforms running the tests with 4-way and 48-way parallelism on
a local machine. 99% of the test cases complete within 30 seconds.

gg-λ original

ExCamera 01m 30s 01m 16s

Figure 12: The gg version of ExCamera is 18% slower than the
hand-optimized original ExCamera, which was written to pipeline
I/O and computation within a Lambda worker.

cases finished within the first 30 seconds. From a developer’s
point of view, this improves turnaround time and translates
into faster discovery of bugs and regressions.

5.4 Video Encoding

We evaluated the gg implementation of ExCamera on AWS
Lambda, with the original implementation as the baseline.
The selected configuration was the same as ExCamera’s orig-
inal paper (6 frames per chunk, 16 chunks per batch). The
input video consisted of 888 chunks, and all chunks had been
uploaded to S3 in raw format prior to execution. For the origi-
nal ExCamera implementation, a 64-core VM (m4.16xlarge)
was used as the rendezvous server to broker TCP streams be-
tween Lambda workers.

Figure 12 shows the results. The original ExCamera was
hand-coded to pipeline I/O and computation to reduce end-
to-end latency. By contrast, gg’s abstract interface must force
and load all data-dependencies before running user code, and
cannot perform this optimization. ExCamera-on-gg is 18%
slower than the original, but adds memoization and fault-

Object Recognition

gg local (64 cores) 04m 30s
gg on AWS Lambda 37s

Scanner local (64 cores) 05m 39s
Scanner on cluster (140 cores) 03m 14s

Figure 13: Scanner-on-gg outperforms the original Scanner on the
same hardware, and performs even faster on AWS Lambda.

tolerance, unlike the original ExCamera.

5.5 Object Recognition
We compared the original Scanner [30] with the gg implemen-
tation using a 4K video with more than 6,000 frames. For the
baseline, we chose the most favorable execution parameters
through an exhaustive search. The optimal number of pipeline
instances and frame batches were 14 and 75, respectively.
Within each pipeline, each video chunk is first decoded into
raw images before being passed to the TensorFlow kernel ex-
ecution thread. Each execution thread only needs to load the
model once per stream of frames. Scanner local was run on a
64-core machine (m4.16xlarge). Scanner on cluster was run
with a 4-core master (m4.xlarge) and four 36-core workers
(c4.8xlarge), of which Scanner uses 35 and leaves one for
scheduling. For the gg implementation, the video was broken
up into five-second chunks and uploaded to the cloud prior to
execution. Each chunk was decoded in batches of 25 frames.
For the object recognition task, the IR was configured to the
optimal number of frame batches per task.

Figure 13 presents the summary of the results. While Scan-
ner on cluster is 39% faster than gg local, it is 5.2× slower
than gg on AWS Lambda. Scanner local is over 9× slower
than gg on AWS Lambda. gg’s lightweight scheduling and ex-
ecution engine removes several layers of abstraction present
in Scanner’s design.

USENIX Association 2019 USENIX Annual Technical Conference 485

6 Limitations and Discussion

gg has a number of important limitations and opportunities
for future work.

Direct communication between workers. Although com-
mentators have noted that “two Lambda functions can
only communicate through an autoscaling intermediary ser-
vice. . . like S3” [18], our experience differs: we have found
that on AWS Lambda, two Lambda functions can communi-
cate directly using off-the-shelf NAT-traversal techniques, at
speeds up to 600Mbps (although the performance is variable
and requires an appropriate protocol and failure-recovery strat-
egy). We thus believe that the performance of systems such as
ExCamera, PyWren, and gg is likely to improve in the future
as practitioners develop better mechanisms for harnessing this
computing substrate, including direct communication.

In follow-on work, we are developing a 3D ray-tracing
engine on gg, that will quickly render complex scenes across
thousands of nodes, where the scene geometry and textures
consume far more space than any individual node’s mem-
ory. To achieve sufficient performance, this will require low-
latency and high-speed communication between workers, mo-
tivating the use of direct network connectivity, instead of an
intermediate storage system such as S3 or Pocket [24].

Limited to CPU programs. gg specifies the format of the
code as an x86-64 Linux ELF executable. The IR has no mech-
anism to signal a need for GPUs or other accelerators, and effi-
ciently scheduling such resources poses nontrivial challenges,
because loading and unloading configuration state from a
GPU is a more expensive operation than memory-mapping a
file. We plan to investigate the appropriate mechanisms for a
gg back-end to schedule thunks onto GPUs.

A gg DSL to program for the IR. Currently, we have im-
plemented a C++ and Python SDK for users to express ap-
plications that target the gg IR. However, this requires the
user to explicitly provide an x86-64 executable and all of its
dependencies prior to thunk generation. We envision a lan-
guage in which users can write high-level code in Python or
C++, using primitives such as a parallel map, fold, and other
operations, which will be compiled into the gg IR.

Why cloud functions? Transient, burst-parallel execution
on services like AWS Lambda produces a different cost struc-
ture from a warm cluster. It takes about the same amount of
time for gg to compile Inkscape on AWS Lambda as on a
384-core cluster of warm EC2 VMs (Figure 9). The job costs
about 50 cents per run on Lambda, compared with $18.40 per
hour to keep a 384-core cluster running (Figure 2). Whether
it is financially beneficial for the gg user to run such jobs on
long-running VMs or on cloud functions depends on how
often the user has a job to run. From an economic perspec-
tive, the provider is compensating the infrequent user for their
elasticity; e.g., for having structured their workload to vacate
compute resources when no task is active, and to tolerate vari-

ations in the exact number of nodes available for a job and
the timing of when they are allocated.

In the future, we expect the performance characteristics of
VMs and Lambda-like services to move closer together. There
is no intrinsic reason for it to take more than 30 seconds to
provision and boot an infrastructure-as-a-service VM in the
public cloud. Linux itself can boot in less than a second, and
KVM and VMware can provision a VM in less than 3 seconds.
We understand the remaining time is largely “management
plane” overhead. If this can be reduced, then cloud functions
may hold no compelling advantage over virtual machines
for executing burst-parallel applications—but tools like gg
that aid efficient execution on remote compute infrastructure
(whether VM or cloud function) may remain valuable.

7 Conclusion

In this paper, we described gg, a framework that helps develop-
ers build and execute burst-parallel applications. gg presents
a portable abstraction: an intermediate representation (IR)
that captures the future execution of a job as a composition of
lightweight Linux containers. This lets gg support new and
existing applications in various languages that are abstracted
from the compute and storage platform and from runtime
features that address underlying challenges: dependency man-
agement, straggler mitigation, placement, and memoization.

As a computing substrate, we suspect cloud functions are in
a similar position to Graphics Processing Units in the 2000s.
At the time, GPUs were designed solely for 3D graphics, but
the community gradually recognized that they had become
programmable enough to execute some parallel algorithms
unrelated to graphics. Over time, this “general-purpose GPU”
(GPGPU) movement created systems-support technologies
and became a major use of GPUs, especially for physical
simulations and deep neural networks.

Cloud functions may tell a similar story. Although intended
for asynchronous microservices, we believe that with suffi-
cient effort by this community the same infrastructure is ca-
pable of broad and exciting new applications. Just as GPGPU
computing did a decade ago, nontraditional “serverless” com-
puting may have far-reaching effects.

Acknowledgments

We thank the USENIX ATC reviewers and our shepherd,
Ed Nightingale, for their helpful comments and suggestions.
We are grateful to Geoffrey Voelker, George Porter, Anirudh
Sivaraman, Zakir Durumeric, Riad S. Wahby, Liz Izhikevich,
and Deepti Raghavan for comments on versions of this paper.
We also thank Alex Ozdemir for his measurements on Lambda
networking, and Alex Poms for all his help with Scanner. This
work was supported by NSF grant CNS-1528197, DARPA
grant HR0011-15-2-0047, and by Google, Huawei, VMware,
Dropbox, Facebook, and the Stanford Platform Lab.

486 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irv-
ing, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan-
delion Mané, Rajat Monga, Sherry Moore, Derek Mur-
ray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems,
2015. Software available from http://tensorflow.org.

[2] Harold Abelson and Julie Sussman, G. J. with Suss-
man. Structure and Interpretation of Computer Pro-
grams. MIT Press/McGraw-Hill, Cambridge, 2nd editon
edition, 1996.

[3] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and
George Porter. Sprocket: A serverless video processing
framework. In ACM Symposium on Cloud Computing
(SoCC 2018), Carlsbad, CA, 2018.

[4] Bazel build system. https://bazel.build.

[5] Brendan Burns, Brian Grant, David Oppenheimer, Eric
Brewer, and John Wilkes. Borg, Omega, and Kubernetes.
Queue, 14(1):10:70–10:93, January 2016.

[6] The Chromium browser. https://www.chromium.org/
Home.

[7] CMake. https://cmake.org.

[8] distcc distributed compiler. https://github.com/distcc/
distcc.

[9] LibVPX: Vp8/vp9 codec sdk. https:
//www.webmproject.org/code/.

[10] Docker. https://www.docker.org.

[11] Eelco Dolstra. The purely functional software deploy-
ment model. Utrecht University, 2006.

[12] John R. Douceur, Jeremy Elson, Jon Howell, and Ja-
cob R. Lorch. The Utility Coprocessor: Massively paral-
lel computation from the coffee shop. In 2010 USENIX
Annual Technical Conference, Boston, MA, USA, June
23-25, 2010, 2010.

[13] Stuart I. Feldman. Make – A Program for Maintaining
Computer Programs. Software – Practice and Experi-
ence, 9(4):255–65, 1979.

[14] FFmpeg. https://github.com/FFmpeg/FFmpeg.

[15] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett,
Karthikeyan Vasuki Balasubramaniam, William Zeng,
Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. Encoding, fast and slow: Low-latency
video processing using thousands of tiny threads. In
14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 363–376, Boston,
MA, 2017. USENIX Association.

[16] GIMP. https://www.gimp.org/.

[17] Google Test — Google Testing and Mocking Frame-
work. https://github.com/google/googletest.

[18] Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gonza-
lez, Johann Schleier-Smith, Vikram Sreekanti, Alexey
Tumanov, and Chenggang Wu. Serverless computing:
One step forward, two steps back. In CIDR 2019, 9th
Biennial Conference on Innovative Data Systems Re-
search, Asilomar, CA, USA, January 13-16, 2019, Online
Proceedings, 2019.

[19] Clark Allan Heydon, Roy Levin, Timothy P. Mann, and
Yuan Yu. Software Configuration Management Us-
ing Vesta. Springer Publishing Company, Incorporated,
2011.

[20] Icecream distributed compiler. https://github.com/icecc/
icecream.

[21] Inkscape, a powerful, free design tool. https://
inkscape.org.

[22] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,
and Dennis Fetterly. Dryad: Distributed data-parallel
programs from sequential building blocks. In Proceed-
ings of the 2nd ACM SIGOPS/EuroSys European Con-
ference on Computer Systems 2007, EuroSys ’07, pages
59–72, New York, NY, USA, 2007. ACM.

[23] Eric Jonas, Shivaram Venkataraman, Ion Stoica, and
Benjamin Recht. Occupy the cloud: Distributed com-
puting for the 99%. CoRR, abs/1702.04024, 2017.

[24] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh
Trivedi, Jonas Pfefferle, and Christos Kozyrakis. Pocket:
Elastic ephemeral storage for serverless analytics. In
13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 427–444, 2018.

[25] The LLVM compiler infrastructure. http://llvm.org.

[26] Zhiqiang Ma and Lin Gu. The limitation of MapReduce:
A probing case and a lightweight solution. In Proc. of
the 1st Intl. Conf. on Cloud Computing, GRIDs, and
Virtualization, pages 68–73, 2010.

USENIX Association 2019 USENIX Annual Technical Conference 487

http://tensorflow.org
https://bazel.build
https://www.chromium.org/Home
https://www.chromium.org/Home
https://cmake.org
https://github.com/distcc/distcc
https://github.com/distcc/distcc
https://www.webmproject.org/code/
https://www.webmproject.org/code/
https://www.docker.org
https://github.com/FFmpeg/FFmpeg
https://www.gimp.org/
https://github.com/google/googletest
https://github.com/icecc/icecream
https://github.com/icecc/icecream
https://inkscape.org
https://inkscape.org
http://llvm.org

[27] Derek G. Murray, Malte Schwarzkopf, Christopher
Smowton, Steven Smith, Anil Madhavapeddy, and
Steven Hand. CIEL: A universal execution engine for
distributed data-flow computing. In Proceedings of the
8th USENIX Conference on Networked Systems Design
and Implementation, NSDI’11, pages 113–126, Berke-
ley, CA, USA, 2011. USENIX Association.

[28] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck,
Tyler Harter, Andrea Arpaci-Dusseau, and Remzi
Arpaci-Dusseau. SOCK: Rapid task provisioning with
serverless-optimized containers. In 2018 USENIX An-
nual Technical Conference (USENIX ATC 18), pages
57–70, Boston, MA, 2018. USENIX Association.

[29] OpenSSH. https://www.openssh.com.

[30] Alex Poms, Will Crichton, Pat Hanrahan, and Kayvon
Fatahalian. Scanner: Efficient video analysis at scale. In
ACM Transactions on Graphics, 2018. Software avail-
able from https://github.com/scanner-research/scanner.

[31] Protocol Buffers. https://github.com/google/protobuf.

[32] Python. https://www.python.org.

[33] Jonathan Ragan-Kelley, Connelly Barnes, Andrew
Adams, Sylvain Paris, Frédo Durand, and Saman Ama-
rasinghe. Halide: a language and compiler for opti-
mizing parallelism, locality, and recomputation in im-
age processing pipelines. ACM SIGPLAN Notices,
48(6):519–530, 2013.

[34] George Sammons. Learning Vagrant: Fast Program-
ming Guide. CreateSpace Independent Publishing Plat-
form, USA, 2016.

[35] Ad Hoc Big Data Processing Made Simple with
Serverless MapReduce. https://aws.amazon.com/blogs/
compute/ad-hoc-big-data-processing-made-simple-
with-serverless-mapreduce/.

[36] Apache Spark on AWS Lambda. https://github.com/
qubole/spark-on-lambda.

[37] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception
architecture for computer vision. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2818–2826, 2016.

[38] Tom White. Hadoop: The Definitive Guide. O’Reilly
Media, Inc., 1st edition, 2009.

[39] xkcd — Compiling. https://xkcd.com/303/.

[40] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J.

Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and
Implementation, NSDI’12, pages 2–2, Berkeley, CA,
USA, 2012. USENIX Association.

488 2019 USENIX Annual Technical Conference USENIX Association

https://www.openssh.com
https://github.com/scanner-research/scanner
https://github.com/google/protobuf
https://www.python.org
https://aws.amazon.com/blogs/compute/ad-hoc-big-data-processing-made-simple-with-serverless-mapreduce/
https://aws.amazon.com/blogs/compute/ad-hoc-big-data-processing-made-simple-with-serverless-mapreduce/
https://aws.amazon.com/blogs/compute/ad-hoc-big-data-processing-made-simple-with-serverless-mapreduce/
https://github.com/qubole/spark-on-lambda
https://github.com/qubole/spark-on-lambda
https://xkcd.com/303/

Hodor: Intra-Process Isolation for High-Throughput Data Plane Libraries

Mohammad Hedayati
University of Rochester

Spyridoula Gravani
University of Rochester

Ethan Johnson
University of Rochester

John Criswell
University of Rochester

Michael L. Scott
University of Rochester

Kai Shen
Google

Mike Marty
Google

Abstract
As network, I/O, accelerator, and NVM devices capable of

a million operations per second make their way into data cen-
ters, the software stack managing such devices has been shift-
ing from implementations within the operating system ker-
nel to more specialized kernel-bypass approaches. While the
in-kernel approach guarantees safety and provides resource
multiplexing, it imposes too much overhead on microsecond-
scale tasks. Kernel-bypass approaches improve throughput
substantially but sacrifice safety and complicate resource man-
agement: if applications are mutually distrusting, then either
each application must have exclusive access to its own device
or else the device itself must implement resource manage-
ment.

This paper shows how to attain both safety and performance
via intra-process isolation for data plane libraries. We propose
protected libraries as a new OS abstraction which provides
separate user-level protection domains for different services
(e.g., network and in-memory database), with performance
approaching that of unprotected kernel bypass. We also show
how this new feature can be utilized to enable sharing of data
plane libraries across distrusting applications. Our proposed
solution uses Intel’s memory protection keys (PKU) in a safe
way to change the permissions associated with subsets of
a single address space. In addition, it uses hardware watch-
points to delay asynchronous event delivery and to guarantee
independent failure of applications sharing a protected library.

We show that our approach can efficiently protect high-
throughput in-memory databases and user-space network
stacks. Our implementation allows up to 2.3 million library
entrances per second per core, outperforming both kernel-
level protection and two alternative implementations that use
system calls and Intel’s VMFUNC switching of user-level
address spaces, respectively.

1 Introduction
A principal task of an operating system (OS) is to multiplex
hardware resources, making them accessible to multiple user-
level applications, and to arbitrate use of those resources to

satisfy system-wide performance and fairness goals. User/
kernel isolation enables the OS to enforce its resource man-
agement decisions in the face of untrusted and potentially
malicious applications. In recent years, however, developers
have begun to move I/O management into user space for the
sake of higher performance, specialization, and rapid devel-
opment. This strategy is often referred to as kernel-bypass
I/O. DPDK [21] and mTCP [24] move packet processing and
transport layer processing into user space; SPDK [22] does
the same for direct access to fast storage devices like Optane
SSDs [19]. Accelerators like Google’s TPU [25] and Nvidia’s
GPUs [34] also rely on kernel-bypass software stacks for
low-latency hardware access and rapid evolution of drivers.

The trend toward kernel bypass has enabled significant
improvements in device throughput and latency [4, 39, 40].
These gains, however, have typically come at the cost of grant-
ing an application exclusive access to a device, trusting other
users of the device, or relying on the existence of a hardware-
level arbitrator that virtualizes or partitions the device (e.g.,
SR-IOV [23]). Unfortunately, device-level resource isolation
is not always available and typically lacks the flexibility to
implement OS-level resource management policies.

The anticipated widespread availability of byte-addressable
non-volatile memory (NVM) DIMMs [45] brings similar chal-
lenges. If NVM is mapped into a process’s address space so
that it can be accessed directly with application load/store
instructions, a memory safety error within the process could
corrupt data structures on the NVM [37]. Relying on OS
kernel mechanisms e.g., a file system interface, to protect ac-
cess to NVM would throw away the performance potential of
direct loads and stores to persistent memory.

One can, of course, implement protection domains within
an address space using a trusted compiler with static [17] or
dynamic [52] checking. The static approach requires a type-
safe language and is thus incompatible with many existing
applications. The dynamic approach incurs overhead that is
significant even in the simplest cases (e.g., when checking
pointers against a single boundary address), and rises steeply
for more complex address space layouts [44].

USENIX Association 2019 USENIX Annual Technical Conference 489

What we desire is a mechanism that allows services tra-
ditionally implemented in the kernel to be encapsulated as
protected libraries in user space. Such a mechanism should be
compatible with existing applications (i.e., via re-linking), pro-
vide fast transitions into and out of protected library routines,
impose little or no cost on ordinary code, accommodate mul-
tiple protected code and data segments in a single application,
and support independent failure to allow a protected library
to be shared across distrusting applications. Toward that end,
this paper proposes Hodor, a mechanism for low-overhead
intra-process isolation. Hodor leverages the existence of user
libraries to define protection domains for services previously
offered by the kernel (e.g., file systems, network stack, device
drivers, etc.). Relying on library boundaries, Hodor offers
practical intra-process isolation without requiring any signifi-
cant effort on the part of the application programmer. It allows
multiple mutually distrusting libraries to be loaded into the
same address space, providing each library (and the main
application) with a different “view” of code and data, and
protecting each from failures in the others. (When a failure
occurs, library calls in non-erroneous protection domains are
permitted to complete before the process terminates.) Hodor
employs the standard function call/return interface but inter-
poses a trampoline on each call to change the view of the
address space to that of the library being entered.

Hodor can be used to provide instances of a protected li-
brary in multiple applications with access to shared resources.
Instances of a network library, for example, might provide fast,
user-level access to a NIC while enforcing rate-limiting poli-
cies that require coordination among otherwise uncoordinated
and mutually distrusting applications.

We propose a concrete implementation of Hodor for recent
Intel processors that is based on Intel’s memory protection
keys, called Protection Keys for Userspace (PKU) [20]. We
introduce a novel method that uses hardware watchpoints (i.e.,
debug registers [20]) to efficiently monitor program execution
and ensure the safety of our approach without relying on
a trusted compiler, changes to application source code, or
expensive dynamic binary translation.

We also describe two alternative implementations of
Hodor’s isolation: 1) using a system call to switch between
page tables, and 2) using Intel’s Extended Page Table (EPT)
switching with VM function (VMFUNC) instructions [20].
We compare our PKU-based protection with each of the alter-
native solutions and demonstrate that the PKU approach of-
fers better performance. While none of the implementations is
fast enough to be used for fine-grained intra-process isolation
(e.g., for shadow stacks [7] or code-pointer integrity [50]),
our results show that both PKU- and VMFUNC-based ap-
proaches are able to support on the order of two million calls
per second per core into a protected library.

In summary, our contributions are as follows:
• We introduce Hodor, a mechanism that provides a new

OS abstraction to isolate fast data-plane libraries from

both the calling application and each other.
• We propose a concrete implementation of Hodor for cur-

rent Intel processors based on PKU. We present a novel
method that combines binary inspection and hardware
watchpoints to prevent bypassing of the PKU-based pro-
tection and safely isolate libraries linked in arbitrary x86
applications.

• We quantify the performance benefits of Hodor on real-
world applications with respect to both unprotected ker-
nel bypass and isolation based on kernel-mediated page
table switching and EPT switching via VMFUNC.

• We present two proof-of-concept examples of protected
libraries that share state between library instances in
separate applications (with independent failure modes),
and discuss challenges that must be addressed in such
designs.

The following section describes in more detail the prob-
lem addressed by protected libraries, including the threats
against which we protect, the assumptions we make about
library code, the capabilities we provide to libraries, and the
system components (signal interface, threading libraries, oper-
ating system kernel) that must be modified to ensure isolation.
Sec. 3 then describes our candidate implementations. We
evaluate the performance of these implementations in Sec. 4
using microbenchmarks, the Silo in-memory database [48],
the DPDK data-plane library package [21], and the Redis [42]
NoSQL server. Sec. 5 discusses related work. Sec. 6 summa-
rizes our conclusions.

2 Protected Libraries
Hodor’s protected library mechanism partitions an applica-
tion into multiple domains of executable code. Each domain
is granted access to some parts of the address space and de-
nied access to other parts. Each domain has private stacks
and possibly a private heap, but also shares access to some
pages, allowing efficient communication with other domains.
Domain transitions follow standard calling conventions, me-
diated by trampoline routines that switch to the appropriate
address space view, switch stacks, set up arguments to main-
tain calling conventions, and possibly scrub any remaining
registers to avoid information leaks. Trampolines also switch
back to the caller’s domain when a library call returns.

2.1 Threat Model
With Hodor, an untrusted application uses protected libraries
to access protected resources. A resource might comprise or-
dinary memory, non-volatile memory, or a memory-mapped
device. By default, an application shares its entire memory
space with each protected library, but the library shares only
the trampoline code needed for cross-domain calls. In addi-
tion, an application can optionally be modified to share only
buffers with the library.

Figure 1 shows an example with user-space network and
storage libraries. The storage library has default access to the

490 2019 USENIX Annual Technical Conference USENIX Association

Main Application

Protected Storage Library Protected Network Library

Heap

Heap

Heap

Thread Stacks

Thread Stacks Thread Stacks

Trampolines
Trampolines

Shared
Buffers

Domain
Status
Page

Domain
Status
Page

Domain
Status
Page

Nonvolatile Memory Memory-mapped NIC

Figure 1: Protected Library Architecture. The example appli-
cation has, by default, shared its entire memory space with
the storage library. It has opted to share only certain buffers
with the network library.

application; the network library has been given access only
to shared buffers. We assume that applications may be multi-
threaded and that library entry points may accept pointers to
callback functions. Consequently, protected libraries must be
multi-thread safe and re-entrant. When a protected library opts
to share state with instances in other applications (e.g., to track
resource usage and enforce fairness), the library is responsible
for synchronization. We accommodate independent failures
by arranging to complete the execution of any library call
whose process incurs a fault in a different domain (more on
this in Sec. 2.5).

As replacements for traditional kernel services, protected
libraries are assumed to be written with care. Among other
things, they should employ caution when dealing with po-
tentially unsafe arguments (e.g., using methods like copy-
in/copy-out) just as kernel code would. They should also en-
sure that transitions into other domains (e.g., invocation of a
callback or a third-party library function) happen in a safe con-
text. It would be incorrect, for example, to acquire a lock and
then call an outside function, since it might terminate before
returning back to the library. In our implementation, protected
libraries are statically linked with all their dependencies to
ensure that transitions into and out of the library conform to
its API. This does not prevent use of shared libraries by the
rest of the application. A more flexible implementation could
dynamically link a separate instance of shared libraries in
each protection domain that requires them.

A protected library is trusted to enforce security and man-
agement policies for its protected resources but is otherwise
untrusted. The hardware and the operating system are part of
the Trusted Computing Base (TCB), and are assumed to be
correctly implemented. The application and other untrusted
libraries are outside the TCB: they are not trusted to read or
write protected library memory.

In this work, we are primarily interested in preserving the
integrity and confidentiality of protected memory and devices
from direct memory reads and writes. While side-channel
attacks, and in particular those targeting transient execution [8,
27, 30], are out-of-scope, we explain the ramifications of our

implementations on related transient execution attacks.
We assume that an attacker controls the application and

untrusted libraries and can add arbitrary native code to the
application and to untrusted libraries. We assume that the at-
tacker cannot gain direct access to the data within a protected
library’s memory via the library’s own API. We must consider
the possibility, however, that the attacker may attempt to:

• Gain access to protected memory by changing virtual-
to-physical mappings using system calls like mmap.

• Modify, from a compromised thread, local variables or
return addresses in the stack of a thread that is running
in the library.

• Subvert the loading mechanism so that a different library
has access to protected memory.

• Install malicious signal handlers and then arrange for a
signal to be delivered while the library is running.

We consider these issues in turn in the following subsections.

2.2 Virtual Address Space Integrity
In a standard Linux system, a process can change the page
permissions of its own memory with the mprotect system
call, and change the mappings between virtual and physical
addresses with the mmap system call. For any given protected
library L, we must prevent address space changes, when re-
quested by code outside of L, from making L’s code or data
accessible to the application or to another library.

This is the easiest vulnerability to address. We assume
that the static and dynamic loaders are part of the trusted
computing base. When asked to load a protected library, they
inform the operating system of the virtual addresses used by
the protected library’s code and data. On any subsequent call
to mprotect, mmap, etc., the kernel identifies the context in
which the syscall was made (i.e., the value of pkru register for
the PKU-based implementation and the instruction pointer for
page-table switching implementations) and grants requests
to change the mappings or permissions of protected library
space only when made in an appropriate context.

2.3 Local Variables and Protected Stack
Within its protected memory, in addition to code, global vari-
ables, and heap, each protected library also maintains per-
thread private stacks on which to store return addresses and
local variables. When an application creates a new thread,
we must create a new stack for each of the domains in the
application. We embed this logic within the threading library
(e.g., pthreads) so that application developers do not need
to explicitly modify any application code.

When an application calls a function within a protected
library, trampoline code accessible to the application must
arrange for the target function to execute in the library’s pro-
tection domain, where it can access its protected code and data.
In particular, the trampoline must switch the stack pointer to
the local stack of the calling thread. Sec. 3 describes the de-
sign of our trampolines for each intra-process isolation mech-

USENIX Association 2019 USENIX Annual Technical Conference 491

anism in more detail. If a protected library invokes a callback
function within the application, it will also use trampoline
code to switch back to the application’s domain and stack.

Switching stacks can be challenging when the source or
target distrusts the other. Previous work addressed this is-
sue either by going through a trusted domain like the kernel
[31] or by not supporting mutually distrusting domains [50].
While we could employ a trusted trampoline domain, such an
implementation would double the overhead of transitions by
changing the view first to the trampoline domain and then to
the target domain. We address this challenge by first saving
the state of the source domain (rsp, fs, etc.) in a domain
status page accessible only in the source domain, then switch-
ing the address space view to the target domain, and finally
restoring the state of the target domain from a domain status
page accessible only to the target.

Like stacks, domain status pages are per-thread entities. Un-
fortunately, in the absence of trust, we need to access domain
status pages without relying on registers such as fs (used
for thread local storage). We can address this issue by ar-
ranging for the kernel to support a fast (vDSO-style) gettid
call to acquire the current thread ID. The kernel maintains
a list (readable, but not writable in user space) of currently
running thread IDs for all CPU cores. The fast gettid per-
forms a vDSO getcpu lookup and uses the result to find the
thread ID. This enables trampoline code to access thread-local
storage without relying on fs or performing a system call.

2.4 Program Loading
Hodor employs a trusted loader, running as root (to allow it
to open I/O device files) to start up any application that uses
one or more protected libraries. The trusted loader first maps
all protected libraries into the virtual address space using the
mmap system call. It then calls an initialization function within
each protected library. In this function, a library can open and
map the device files it needs so that it has direct read/write
access to a device’s memory-mapped I/O registers or to a
region of persistent or shared memory. The initialization func-
tion also allocates the first stack, initializes the heap, and calls
constructor functions (e.g., for C++ global variables) for the
protected library.

Once all protected libraries are initialized, the trusted loader
uses a system call to inform the kernel of the location of each
protected library. This allows the kernel to enforce restrictions
on system calls that configure the virtual address space (as
per Sec. 2.2). The trusted loader then loads the application
code and all other pre-loaded dynamic libraries. If inspection
is required (as in the PKU-based version of Hodor that we
introduce in Sec. 3.3), the loader performs it now; the ker-
nel arranges for similar inspection on any additional libraries
that are loaded on demand and on any other pages for which
execute permission is enabled during execution. Finally, the
trusted loader drops root privileges using the setresuid sys-
tem call, runs the constructor functions of the application, and

transfers control to the application’s main routine.

2.5 Asynchronous Events and Termination
To support unmodified applications, Hodor must address asyn-
chronous event delivery via signals—in particular, the possi-
bility that the kernel might invoke a signal handler in a thread
that was executing trampoline or protected library code. Such
a handler might then gain access to protected library state.

In a similar vein, termination of a process while a thread is
executing protected library code could leave data structures
(possibly shared with library instances in other applications)
in an inconsistent state or cause deadlock (by failing to release
a lock). To preclude protection violations in signal handlers
and to accommodate independent failures of processes whose
libraries share state, we modify the kernel so that it never de-
livers a signal or terminates the process while threads are still
running protected library or trampoline code. Instead, it places
a hardware watchpoint (using registers DR0–DR3 on an Intel
machine) in the “boundary trampoline” used to exit protected
libraries (line 37 of Listing 1), and delays signal delivery or
termination until the watchpoint has been triggered.

As noted in Sec. 2.1, we assume that protected libraries are
written with care. In particular, we assume that their opera-
tions take modest, bounded time. If a protected library does
not return in a timely fashion after we install the hardware
watchpoint on the trampoline (detected by expiration of a
timer initiated when we arm the watchpoint), we assume that
the library is defective and terminate the application (having
given any other, non-defective libraries time to finish execu-
tion). We perform a similar summary cleanup if a fatal error
(e.g., a SIGSEGV) is caused by library code.

Our design does not permit signal handlers to be registered
for execution by a protected domain. None of the privileged
library use cases we evaluated need signal handling. If they
did, the kernel’s signal handler API could, in principle, be
extended to allow a protected library to request that a handler
should execute in the library’s domain. Since the kernel knows
the locations of all protected library code segments in memory
(see Sec. 2.4), it could confirm whether a registration request
was made from trusted library code and allow or deny the
request accordingly.

3 Fast Memory Isolation
This section presents three implementations of memory iso-
lation for Hodor. The most straightforward implementation,
described in Sec. 3.1, relies on separate page tables for each
domain, and uses system calls to change the page table root
pointer. Hodor-VMFUNC, described in Sec. 3.2, also uses per-
domain page tables, and switches between them using Intel’s
VM Function (VMFUNC) mechanism. Both the syscall-based
system and Hodor-VMFUNC rely on context identifier tags
(Intel’s PCID and EP4TA, respectively) to avoid flushing the
translation lookaside buffer (TLB) when changing domains.

492 2019 USENIX Annual Technical Conference USENIX Association

Hodor-PKU, our preferred solution (described in Sec. 3.3),
uses memory protection keys to provide different access rights
in the same page table. Since the access rights for each domain
can be modified by user code, we need to prevent an appli-
cation from bypassing our PKU-based isolation mechanism.
We present a novel method in Sec. 3.3.1 that combines bi-
nary inspection and the use of hardware monitors for efficient
run-time monitoring to ensure the safety of Hodor-PKU.

In an attempt to capture intuition, we speak of the domains
of an application as having different “views” of a single
address space. That is, conceptually, the application has a
single set of virtual-to-physical mappings within which we
adjust permissions on individual pages. In actuality, Hodor-
VMFUNC and the syscall-based system use separate page
table root pointers for separate views.

3.1 Page Table Switching via Syscalls
A straightforward way to implement protected libraries is to
employ a separate page table for each domain and to use a
system call to change page tables. Executable pages appear
only in the tables of their corresponding domains. Protected
pages rely on protection bits in the page tables of each domain
to prevent undesired accesses. Unprotected application pages
and trampoline pages appear in all page tables. A new sys-
tem call serves to change the page table root pointer (register
CR3 on Intel machines), if and only if the requesting syscall
instruction lies in the appropriate (previously registered) tram-
poline.

Assuming kernel page table isolation (KPTI) [13], every
system call changes CR3 on entry to the kernel. Our new
syscall simply arranges (after appropriate checks) to restore
the target domain’s root pointer, rather than that of the calling
domain, when returning to user space. This limits the over-
head to only slightly more than that of a no-op system call.
There may also be a rise in TLB pressure for certain appli-
cations, given that some pages will appear in the TLB more
than once, with separate context tags. On hardware that has
such tags, however, there is no need to flush the TLB as part
of a domain switch. As a separate issue, syscalls like munmap,
together with the TLB shootdown mechanism, are modified
to remove a mapping under all applicable context tags.

In this approach, each domain of an application has a sep-
arate page table root pointer. Fortunately, the content of the
tables is largely overlapping (generic heap, vDSO, kernel
translations, etc.). We use a separate top-level page for each
table, but many of the lower-level pages are physically shared.
This approach simplifies entry manipulation and minimizes
memory footprint.

3.2 Hodor-VMFUNC
Beginning with its Nehalem generation of processors, Intel
has provided extended page tables (EPT) for virtualized en-
vironments. The traditional page table of a guest OS trans-
lates from “guest virtual” to “guest physical” addresses; the

extended (second-level) page table translates from guest phys-
ical to (host) physical addresses. In the subsequent Haswell
generation, Intel introduced a VM Function (VMFUNC)
mechanism for fast invocation of hypervisor functions in
a paravirtualized guest. This mechanism allows a guest to
pre-register a set of second-level page tables and provides
a (non-privileged) instruction to switch amongst them. Sev-
eral systems (e.g., SeCage [32] and MemSentry [28]) have
used VMFUNC to isolate a sensitive region within an appli-
cation, but, they require source-code analysis and non-trivial
modifications to existing applications.

Hodor-VMFUNC isolates a memory region by setting up a
degenerate traditional page table that implements the identity
function (with all types of access allowed) and employing
a separate extended page table—analogous to the ordinary
page tables of the syscall-based system—for each protection
domain. An application can then switch among views with
no kernel involvement. Compared to the approach of Sec. 3.1,
which uses trusted kernel code to check that a domain switch
is permissible, a new challenge in this approach is that we
must fold the permission check into the VMFUNC instruction
itself. We do so by placing the trampolines of a given library
in their own page(s) and making those the only pages that are
executable in the domains of both the main application and the
library. A VMFUNC instruction that attempts to switch to the
library’s domain but lies anywhere other than an appropriate
trampoline page will find the next instruction non-executable,
resulting in a fault.

While the serialization overhead of an address-space-
changing instruction appears inevitable (absent major archi-
tectural changes e.g., CODOMs [51] and CHERI [55], which
themselves impose new overheads), using VMFUNC avoids
the need for a system call when switching domains. As Sec. 4
shows, this cuts the cost of a switch by more than 50%.

Listing 1 (including the parts to the left of the vertical lines)
shows the trampoline code for Hodor-VMFUNC. Line 2 saves
the stack pointer of the source domain to the source domain’s
status page. As Sec. 2 describes, this step allows the trampo-
line to restore the stack when returning from the protected
library; it also supports callback functions (argument copying
and register scrubbing code is omitted for brevity). Line 7 sets
eax to zero, indicating that an extended page table switch is
desired. Line 8 sets ecx to the index (in a pre-approved table)
of the domain to which to switch; line 9 effects the switch
itself. Line 14 loads the stack pointer of the target domain
from the target domain’s status page into rsp; this is possible
since VMFUNC has just enabled access to the private data of the
target domain. At this point, the trampoline transfers control
to a function in the target domain. Once the function returns,
the trampoline saves the stack pointer of the target domain
in its status page (line 19); it then resets the extended page
table to the source domain (lines 25–27). Finally, it loads the
source domain stack pointer from the source’s status page
into rsp (line 32) and resumes execution (line 37).

USENIX Association 2019 USENIX Annual Technical Conference 493

Listing 1: Hodor Trampoline: VMFUNC (left), PKU (right).

1 ; Save source domain stack pointer
2 movq %rsp, source_stack
3
4 ; Enable target domain view
5 1:
6 xorl %ecx,%ecx
7 xorl %eax, %eax xorl %edx,%edx
8 movl $TGT_IDX , %ecx movl $TGT_PERM , %eax
9 vmfunc wrpkru

10 cmpl $TGT_PERM , %eax
11 jne 1b ; error
12
13 ; Switch to target domain stack
14 movq target_stack , %rsp
15
16 ; target_domain_func()
17
18 ; Save target domain stack pointer
19 movq %rsp, target_stack
20
21 ; Disable target domain view &
22 ; Enable source domain view
23 2:
24 xorl %ecx,%ecx
25 xorl %eax, %eax xorl %edx,%edx
26 movl $SRC_IDX , %ecx movl $SRC_PERM , %eax
27 vmfunc wrpkru
28 cmpl $SRC_PERM , %eax
29 jne 2b ; error
30
31 ; Switch back to source domain stack
32 movq source_stack , %rsp
33 jmp BOUNDARY_TRAMP
34
35 ; Boundary Trampoline
36 BOUNDARY_TRAMP:
37 ret

As a starting code base, our Hodor-VMFUNC implementa-
tion uses the Dune system of Belay et al. [3], with the appli-
cation running in ring 3 of VMX non-root (VM guest) mode.
Running in virtualized (VMX) mode, with 2-level address
translation, imposes additional overheads that are, in princi-
ple, unneeded. Most system calls, which must be handled by
the operating system, incur the cost of a VM exit that is signif-
icantly more expensive than a (nonvirtualized) syscall. (That
said, system calls are uncommon except during initialization
in applications that use kernel-bypass data-plane libraries.)
TLB refill costs increase as well, due to 2-level translation.

Ideally, we should like a hardware mechanism that allows
a non-privileged instruction to switch among pre-approved
page table root pointers without the need for virtualization. In
the meantime, optimizations are available to mitigate the cost.
First, we use huge pages to reduce the first-level (identity-
function) page tables from four levels to two, eliminating half
the extra cost of a VMX TLB fill. Second, it should be possible
(not yet implemented) to mix virtualized and non-virtualized
threads within a single application. Threads running in VMX
mode will experience faster protected library calls but slower

Main app

Lib 1 Lib 2

A

B C

D E

Figure 2: Address space regions in Hodor-PKU.

system calls; those running natively will have to use syscall-
based page-table switching for library calls, but will not see
additional overhead for system calls.

3.3 Hodor-PKU
In its Skylake generation of processors, Intel introduced a
mechanism it calls memory protection keys for userspace
(PKU). (Similar mechanisms have appeared in previous archi-
tectures from several other vendors.) While PKU is intended
mainly as a memory safety enhancement (e.g., as a means of
reducing vulnerability to stray-pointer bugs), we have realized
that it can, with care, be used for protected libraries as well.

PKU [20] employs previously unused bits in each page
table entry to assign a four-bit protection key to every page,
allowing that page to be associated with one of 16 potential
sets of access restrictions. A new 32-bit pkru register, writable
in user space, then specifies which rights (read and/or write)
should be restricted for each of the 16 key values. On every
user-mode data access, the processor checks access rights in
the TLB or page table as usual, then drops any rights that are
found to be restricted for the PTE’s key value. Since protec-
tion keys have no impact on instruction fetches (executabil-
ity) and make no changes to page tables or TLB entries, the
WRPKRU instruction, which changes the pkru register, does not
have to serialize the pipeline, and can execute very quickly.

Hodor-PKU is based on protection keys. If we think of a
protection domain as comprising a subset of the application’s
address space and we plot those subsets as a Venn diagram,
we can assign a protection key to each separate region of
the diagram and associate with each domain a pkru value
that disables access rights for regions outside its subset of
the address space. In Figure 2, the main application would
disable access to regions D, and E; library 1 would disable
access to regions A, C, and E; library 2 would disable access
to regions A, B, and D.

Listing 1 (including the parts to the right of the vertical
lines) shows the trampoline code for Hodor-PKU. Lines 6
and 7 set ecx and edx to zero; this is a required precondition
of the WRPKRU instruction. Line 8 initializes eax with the
appropriate set of restrictions for the domain to which the
trampoline is transitioning; line 9 sets the pkru register to the
content of eax. The latter change simultaneously disables the
view of the source domain and enables the view of the target
domain. The subsequent comparison (line 28) verifies that
the expected permissions have been set, thereby avoiding an
attack in which a domain puts overly generous permissions

494 2019 USENIX Annual Technical Conference USENIX Association

into eax and then jumps on top of the WRPKRU instruction.
Once the target function has returned and we have saved the
stack pointer of the target domain (line 19), the trampoline
resets the pkru register to the restrictions of the source domain
(lines 24–27), and returns as in Hodor-VMFUNC.

3.3.1 Safety of Hodor-PKU

Since the processor allows user-mode code to execute the
WRPKRU instruction, we must prevent a malicious application
from using the instruction to attain access to a protected li-
brary’s memory. One could think of employing static binary
rewriting [50] to replace implicit occurrences of WRPKRU with
equivalent alternatives. Unfortunately, such rewriting (includ-
ing definitive determination of instruction alignment) is unde-
cidable in the general case [41, 54], and seems inapplicable to
any program that mixes read-only data into the text segment.
Dynamic binary rewriting [6, 33] might be a viable alternative,
but would likely incur prohibitive overhead (up to 2.5× for In-
tel Pin and 5× for DynamoRIO [33]). To address the problem,
Hodor-PKU uses a trusted loader to identify all text-segment
occurrences of the WRPKRU opcode outside of trampolines,
and uses hardware watchpoints (debug registers [20]) to vet
their execution at run time.

Binary Inspection The WRPKRU instruction can occur ex-
plicitly (intended by the programmer) or implicitly (unin-
tended occurrence), as a sequence of bytes within an instruc-
tion or across the boundary between instructions. Implicit
instances pose a significant threat: an adversary that seeks to
bypass Hodor-PKU may attempt to corrupt control data and
jump to a point in the program that happens to encode the
WRPKRU instruction. By setting the contents of ecx, edx, and
eax appropriately before subverting execution, the attacker
could set the pkru register to any desired value, rendering
the isolation useless. To address this issue, the trusted loader
scans the application code and makes a list of any untrusted
instances, explicit or implicit. It passes this list to the kernel,
which in turn places the addresses of the potentially problem-
atic opcodes in the debug registers. A hardware watchpoint
will be triggered when any of these instructions is about to be
executed, allowing the kernel to vet the instruction and let the
execution proceed only if deemed safe.

Our current implementation inspects program text when-
ever a library is loaded and whenever execute permission for
a page is enabled during execution. Once a page is marked
as executable, Hodor-PKU prevents further write accesses to
the page. Hodor-PKU could easily be extended to support
JIT compilation by marking the faulting pages as writable but
not executable, allowing JIT code to be emitted. On future
attempts to execute the added code, a page fault would occur,
and Hodor-PKU would reinspect the page and continue as in
the current implementation.

Runtime Vetting Since the debug registers are limited in
number (four—DR0 through DR3—on Intel processors [20]),

we can rely on hardware to vet only a handful of WRPKRU
instances at a time on each thread. Hodor therefore uses hard-
ware watchpoints as an LRU cache for all the required watch-
points. Specifically, Hodor initially marks all executable pages
containing WRPKRU instances as non-executable. Upon first
execution, resulting in a page fault, Hodor reclaims a suffi-
cient number of hardware watchpoints, marks the pages they
formerly watched as non-executable, and uses the debug reg-
isters for the new page. If all WRPKRU instances in the page are
monitored by a hardware watchpoint, Hodor marks the page
as executable. In the extremely rare case of more WRPKRU
instructions in a single page than the number of debug reg-
isters, we resort to single-step execution [20] for that page.
We use per-thread page tables (only the root page must be
unique for each thread; most lower-level pages can be shared
between threads) so that the set of hardware watchpoints can
be different in different threads. When watchpoints have been
inserted at all appropriate locations, we rewire the page tables
leading to the page containing the watchpoint for the current
thread and mark it as executable.

Protection Overhead Under normal circumstances, no im-
plicit WRPKRU will be executed. Moreover, the processor trig-
gers a watchpoint only when a debug register points to the
first byte of the executed instruction [20], so spurious traps
will never occur when correctly aligned execution runs past
an implicit instance.

Experiments confirm that there is no measurable overhead
for this approach as long as the number of “hot” watchpoints
in each thread is smaller than the number of hardware watch-
points. To assess how often this might occur, we inspected
all packages in the Fedora 29 distribution for occurrences of
WRPKRU. Across 58,273 rpm packages, containing about 108K
executable binaries, we found only 111 binaries with a single
instance of WRPKRU, 8 with two, 2 with three, none with four,
and only 2 (less than 0.02%) with five or more. Most of the
occurrences were implicit—typically caused by an instruction
with a byte pattern ending in 0f followed by add %ebp,%edi,
which has a byte pattern of 01 ef. These occurrences could
easily be eliminated by modifying the compiler to insert a
nop before the culprit add instructions. While such a change
would not guarantee that implicit instances never occur (due
to inline assembly and code generated at run time), it would
almost certainly eliminate any practical performance impact.

4 Evaluation
We have evaluated Hodor using microbenchmarks and three
real-world applications in which we isolated a high-through-
put data-plane library or in-memory database from the rest
of the application. We also constructed two proof-of-concept
demonstrations of safe memory sharing among instances of a
protected library in otherwise distrusting applications. We ran
the microbenchmarks and in-memory database experiments
on a Dell PowerEdge R640 server with two Intel Xeon Sil-
ver 4114 (Skylake) 2.20 GHz CPUs with 10 cores each and

USENIX Association 2019 USENIX Annual Technical Conference 495

16 GB of main memory. We ran the network experiments
on Dell PowerEdge R640 servers equipped with two Intel
Xeon E5-2630 v3 (Haswell) 2.40 GHz CPUs with 8 cores
each and 64 GB of main memory. These machines were con-
nected back-to-back through dual-port Mellanox ConnectX3-
Pro 40 Gbps Host Channel Adapters (HCAs) to isolate their
connection. All servers ran Fedora Linux 4.15 with our mod-
ifications (except for baseline experiments, which used an
unmodified kernel). All machines had hyper-threading and
Turbo Boost enabled.

We emulated the overhead of PKU on Haswell machines
in a manner similar to previous work [28, 50]. We verified
the overhead of the emulation by comparing it with the PKU
transition cost on the Skylake machine.

Graphs in this section are labeled as follows:
• unprotected: baseline system without Hodor—kernel

bypass with no intra-process isolation.
• ptsw: isolation via syscall-initiated page table switching,

as described in Sec. 3.1.
• ptsw-pti: same as ptsw, except with kernel page-table

isolation enabled.
• vmfunc: Hodor-VMFUNC, as described in Sec. 3.2.
• pku: Hodor-PKU, as described in Sec. 3.3.
Unless otherwise noted (shown in legends with -pti),

experiments were conducted with kernel page-table isola-
tion [13] disabled. We ran all experiments 10 times and report
the arithmetic mean. We indicate 95% confidence intervals
in all cases, but these are often so narrow as to be illegible
in the bar graphs. The source code for Hodor is available at
http://github.com/hedayati/hodor.

4.1 Microbenchmarks
We used microbenchmarks to measure the overhead of rele-
vant instructions and basic operations as well as the latency
of different implementations of Hodor on the Skylake ma-
chine, which supports PKU. We also implemented a no-op
system call and a no-op VM call and measure their latencies.
We used rdtscp with proper serialization [38] to measure
the overhead of 1 million executions (again, computing the
arithmetic mean across 10 runs).

Table 1 shows the calculated overhead of a single instance
of each operation. The latency of writing to the CR3 register
impacts the syscall-based version of Hodor; the latency of
VMFUNC and WRPKRU impacts Hodor-VMFUNC and Hodor-
PKU, respectively. The cost of entering and leaving the kernel
also impacts the syscall-based version; this cost itself depends
on whether KPTI [13] is enabled. System calls with virtual-
ization, as used in Hodor-VMFUNC, would experience the
overhead of VM calls.

For reference—and to put the overheads in perspective with
respect to approaches like light-weight contexts (lwC) [31]
which use processes to isolate domains—we also measured
the cost of a context switch caused by a semaphore and of
a user-space context switch using POSIX getcontext and

Table 1: Latency of Basic Operations
Instruction or Operation Cycles∗

write to CR3 with CR3_NOFLUSH 186+− 9
vmfunc 109+− 1
wrpkru 26+− 2
no-op system call w/ KPTI 433+− 12
no-op system call w/o KPTI 96+− 2
no-op VM call 1694+−131
user-space context switch 748+− 8
process context switch using semaphore 4426+− 41
∗ +− half the width of the 95% confidence interval

stacksw ptsw ptsw-pti vmfunc pku
0

200

400

600

800

cy
cl
es

9

577

938

268

105

Figure 3: Transition Microbenchmarks.

setcontext.
Figure 3 compares the transition time from one domain

to another and back again using different isolation imple-
mentations. Additionally, we measured the cost of switching
stacks without providing isolation as it contributes a small
amount to all implementations of Hodor. To do this, we re-
moved the code in Listing 1 that changes domain and calls
the protected library function. Figure 3 denotes the average
stack switch time as stacksw. We also measured the cost of
page table switching with kernel page-table isolation enabled;
Figure 3 denotes this as ptsw-pti. KPTI has no impact on
Hodor-VMFUNC and Hodor-PKU.

Among the implementations of isolation, Hodor-PKU has
the lowest transition cost, followed by Hodor-VMFUNC. This
matches the results in Table 1: changing the pkru register
costs much less than using vmfunc. System calls dominate
the cost of the implementations based on ptsw. Relative to
ptsw, kernel page table isolation in ptsw-pti incurs a penalty
of 62%. Stack switching itself has an almost negligible impact.
As noted in Sec. 3.3, there is no measurable overhead to using
debug registers to vet instances of WRPKRU, so long as there
are no more than four watchpoints in each thread.

4.2 Silo
Silo [48] is a scalable in-memory database. It uses optimistic
concurrency control and periodically-updated epochs to pro-
vide the same guarantees as a serializable database without the
scalability bottlenecks. It is implemented as a library linked to
the benchmark. Each benchmark thread issues transactions (of
YCSB [10] or TPC-C [47]) in a loop. We configured the main
Silo library as a separate domain whose pages are protected
from the benchmark driver. Even in the context of a single

496 2019 USENIX Annual Technical Conference USENIX Association

http://github.com/hedayati/hodor

application, Hodor ensures that the database can be accessed
only by library code—never, for example, as the result of a
memory access bug in the main application. This protection
may be helpful even in the course of a single execution. If
the database were kept in nonvolatile memory and retained
across program runs, it might be considered essential. The
benchmark calls (trampolines of) library routines to perform
one domain transition per transaction. All data and metadata
reside in memory, and the workload is CPU intensive.

Figure 4 (i) shows the overhead of isolation for the
YCSB [10] and TPC-C [47] workloads on the Skylake ma-
chine. Both use the synchronous database API in Silo, pre-
cluding batching and necessitating a very high switching rate.
Both workloads were run with 20 threads.

YCSB [10] is a key-value benchmark with tiny transactions.
We first filled the database with 1 million records and then
ran a workload with an 80/20 read/write mix. The unmodified
Silo reaches 2.27 million transactions per second on each
core. Hodor incurs 44%, 54%, 27%, and 9.85% overhead in
the PT-Switch, PT-Switch with KPTI, VMFUNC, and PKU
implementations, respectively.

TPC-C [47] is a relational database benchmark with signifi-
cantly larger transactions [10]. As a result, the maximum num-
ber of transactions per second is reduced to around 600,000
per core on unmodified Silo. With a lower rate of library tran-
sitions, the overhead of Hodor drops to 3%, 4.66%, 13.6%,
and 1.5% for the PT-Switch, PT-Switch with KPTI, VM-
FUNC, and PKU implementations, respectively. While Hodor-
VMFUNC incurs the largest overhead in this experiment, we
discovered that 12% of that overhead is due to running inside
a VM—apparently due to frequent use of the nanosleep sys-
tem call in the benchmark’s epoch-based garbage collector.

While we have not attempted to modify applications to
remove system calls (or to replace them with equivalent func-
tionalities that don’t cause VM exits), we believe that such a
change would be straightforward in this case.

4.3 DPDK TestPMD
Intel’s Data Plane Development Kit (DPDK) [21] is a set
of data-plane libraries that implement kernel bypass, polling
drivers, and a fast packet processing framework. Packet pro-
cessing applications can link against one or more of the DPDK
libraries and use them to access network devices directly.
We evaluate Hodor with a packet-forwarding application,
testpmd, distributed for performance testing as a part of
DPDK. Running on the Haswell machines with dual-port
Mellanox ConnectX-3 HCAs, this benchmark receives raw
packets from one port of the HCA and forwards them di-
rectly to another port without accessing packet contents. We
connected two hosts back-to-back for endless forwarding of
packets in an isolated network. We used Hodor to separate
the packet-forwarding logic from the DPDK library.

Figure 4 (ii) shows the effect of Hodor on testpmd through-
put with different thread counts and batching degrees (packets

per library call / domain transition). We report throughput in
packets forwarded per second as measured by testpmd. As a
worst-case scenario for Hodor overhead, we configured the
benchmark to use only a single thread and to forward packets
one-by-one without batching. (Such a configuration would
not be common in practice.) The unmodified DPDK in this
configuration can forward more than 720,000 packets per
second, and the overhead of Hodor is less than 25% with
VMFUNC and 7% with PKU. As we increase the batch size
(Fig. 4 (ii-a) vs. (ii-b)), the number of processed packets per
transition increases and the overhead of switching becomes a
smaller part of overall run time. As we provide more threads
and therefore more CPUs ((b) vs. (c)), the performances of
all approaches improve but the gaps decrease since the abun-
dance of CPU resources makes the network line rate the new
throughput limiter.

4.4 Redis on DPDK
Redis [42] is a NoSQL store that serves read requests from
an in-memory data structure. Redis can also store data on per-
sistent secondary storage using snapshots; we disabled this
functionality in our experiments to avoid the overhead of sys-
tem calls. The Redis server uses TCP to receive requests from
clients. In our set-up, we use a user-space network stack called
F-Stack [46] on top of the DPDK packet processing frame-
work and driver to provide connections to Redis clients. We
use Hodor to isolate the network and packet processing stack
from the Redis data store logic—i.e., both F-Stack and DPDK
run within the same protection domain. We run YCSB [10]
on a remote client to benchmark the server configuration.
Both the YCSB client and the Redis server are running on
the Haswell machines, connected back-to-back via Mellanox
ConnectX-3 HCAs.

The server here is the bottleneck: Redis is single-threaded;
it runs a loop that waits for request arrival using an epoll-like
call to F-Stack, receives and processes the requests, and then
sends results back with F-Stack’s equivalent of the send sys-
tem call. As a result, there are at least two domain transitions
per transaction.

To measure the impact of Hodor, we first loaded the Re-
dis server with 1 million records each of length 1200 bytes.
We then ran a YCSB workload [10] with a 95%/5% read-
/write mix and measured how many transactions per second
the Redis server supported. Figure 4 (iii) shows the results
as measured and reported by the YCSB client. The unmodi-
fied server can support 220,000 transactions per second. The
PT-Switch, PT-Switch with KPTI, VMFUNC, and PKU im-
plementations of Hodor reduce the throughput of Redis by
12%, 35%, 5%, and 2.78%, respectively.

4.5 Discussion
The preceding subsections reveal significant performance dif-
ferences among the three implementations of Hodor: syscall-
based page table switching, Hodor-VMFUNC, and Hodor-

USENIX Association 2019 USENIX Annual Technical Conference 497

Linux (unprotected) ptsw ptsw-pti vmfunc pku

0.0

0.5

1.0

1.5

2.0

10
6

tp
s/

co
re

(a) YCSB on Silo

0

2

4

6

10
4

tp
s/

co
re

(b) TPCC on Silo

0

2

4

6

10
5

p
p

s

(a) 1 thread, 1 batch

0

1

2

3

4

5

6

10
6

p
p

s

(b) 1 thread, 32 batch

0

2

4

6

10
6

p
p

s

(c) 6 thread, 32 batch

0.0

0.5

1.0

1.5

2.0

10
5

tp
s

(i) Silo (ii) DPDK (iii) Redis

Figure 4: Hodor Overhead: (i) Silo Benchmarks, (ii) DPDK Raw Packet Forwarding Benchmarks, and (iii) Redis Benchmark.

PKU. These differences must be considered together with the
issues of generality and confidentiality when applying Hodor
in a particular environment.

The overhead of Hodor-PKU is very low, even at millions of
domain switches per second (Fig. 4 (i-a)). With a lower num-
ber of transitions per second (Figs. 4 (i-b), 4 (iii)), possibly
effected via batching or multiple worker threads (Fig. 4 (ii-
b)–(ii-c)), the advantage of PKU over VMFUNC diminishes
substantially. In any case, both Hodor-VMFUNC and Hodor-
PKU remain considerably faster than syscall-based page table
switching in most cases (Figs. 4 (ii-a)–(ii-b), 4 (iii)).

One limitation of Hodor-PKU is that current Intel hard-
ware supports only 16 distinct memory keys. The need for
a separate key for each of the regions of the “protection do-
main Venn diagram” (e.g., Fig. 2) thus limits us to no more
than 7 mutually distrusting protected libraries in any given
application—fewer if they wish to make direct calls to one
another. Hodor-VMFUNC has no similar limitations on gen-
erality. There are 512 distinct function codes on current Intel
machines, and a VM that uses some of these for its own pur-
poses is still compatible with Hodor-VMFUNC. As discussed
in Sec. 3.2, VMFUNC is only available in a virtualized mode.
Hodor-VMFUNC, like MemSentry [28], uses Dune [3] to run
applications inside a virtual machine. This restriction imposes
a significant cost on system calls in the application, which
now incur the latency of a VM exit; we see the impact of this
latency in Figure 4 (i-b). While we don’t expect frequent sys-
tem calls in a data-plane library, an alternative design [32, 35]
avoids VM exits on system calls by running the kernel, in
addition to user programs, inside the virtual machine. Such
a design has a system-wide impact on performance, since
the entire software stack is virtualized, not just the intended
application. Ideally, we should like to see support on future
hardware for a VMFUNC-like mechanism that allows a non-
privileged instruction to switch among pre-approved page
table root pointers without the need for virtualization.

Absent direct access, a malicious program may attempt
to steal information from protected libraries through a side

channel. While such attacks are out of scope, we note that
Hodor-PKU is inherently vulnerable to Meltdown-PK [8], an
attack that defeats the purpose of PKU itself: the protection
key bits are part of the TLB access permissions, which the
processor may check late in the pipeline [8, 26]. While all
Skylake processors are susceptible to this attack, the vulnera-
bility has been fixed in more recent microarchitectures [18].

4.6 Cross-Application Sharing
Because they are protected from their calling applications,
protected libraries in Hodor can, at least in principle, safely
share state among library instances in separate applications.
As proof-of-concept demonstrations, we have used Hodor
to implement sharing in Silo and resource management in
DPDK. The implementations highlight general issues that
must be considered by the library designer.

Sharing in Silo: We wrote a library that uses Silo [48] in-
ternally to implement a TPCC [47]-like database. Our library
provides two different views of the same database: one that
can do NewOrder, Payment, and OrderStatus transactions,
and another that can do Delivery and StockLevel transac-
tions. Both interfaces use the same set of tables, which Silo
maintains in physically shared pages. Silo guarantees consis-
tency of the database and serializability of the transactions,
while Hodor guarantees that the only way for an application
to modify the database is to use the provided interface. When
sharing the database between two separate applications, our
library can control which interface is available to each appli-
cation. More significantly, by preventing access of any kind
when running outside the library, Hodor can ensure that stray
memory references in a buggy application (e.g., due to out-
of-bound array indexing or uninitialized pointer dereference)
never compromise database invariants.

Resource management in shared DPDK: The DPDK En-
vironment Abstraction Layer (EAL) [21] has recently added
multi-process support so that mutually trusting processes can
share DPDK huge-pages, memory buffers, and queues. A
group of DPDK processes can then work together in a simple

498 2019 USENIX Annual Technical Conference USENIX Association

transparent manner to perform packet processing or similar
tasks. Using Hodor, we extended this mechanism to allow dis-
trusting processes to share a single NIC. We wrote a simple
library that exports several DPDK APIs (rte_eth_rx_burst,
rte_eth_tx_burst, etc.). Internally, it uses shared memory
to record the rate at which each application sends packets, to
implement proportional share. We link this library, via Hodor,
into two distrusting applications. The protected library in
each application then measures its own traffic, updates shared
statistics (under control of appropriate synchronization), and
periodically adjusts the rate that will be allowed in the next
time period.

While we were able to port the two libraries to use Hodor
for sharing in just a few hundred lines of code, the experience
highlighted several issues that need to be considered when
tying together library instances in separate applications. As a
rule of thumb, developers should think of protected libraries
as extensions to the operating system. Safety-critical argu-
ments passed by applications should be copied into library
space before applying sanity checks (to avoid modification by
other application threads). Libraries should also treat shared
regions as potential attack vectors and should employ con-
ventional defenses (e.g. retpolines to mitigate Spectre-type
attacks [8] when relevant). Significantly, Hodor does not pre-
vent a buggy application from invoking library routines in the
“wrong” sequence, or with the “wrong” arguments. It does,
however, prevent an application from undermining any invari-
ant that is carefully maintained by those routines. It is the
responsibility of the protected library to provide appropriate
synchronization, scalability, and fault tolerance. The latter
may be simplified by using nonblocking data structures, or by
depending on Hodor to execute through to the end of library
routines in the event of process failure.

5 Related Work
Hodor connects to three areas of related work: fast I/O sys-
tems that move device and resource management into user
space, methods to isolate software components sharing the
same virtual address space, and systems that impose security
policies on operating system kernels and hypervisors.

5.1 Fast I/O Systems
Existing kernel-bypass systems do not protect libraries from
untrusted applications. Arrakis [39] uses a library OS with-
out isolation in the same address space as the application
and relies on device-level SR-IOV [23] support. Device-level
resource isolation policies are often rigid—e.g., limited to
simple partitioning. Hodor protected libraries enable more
powerful protection policies like proportional bandwidth shar-
ing and even safe, concurrent accesses to the same data. IX [4]
and ZygOS [40], both of which build on Dune [3], use virtu-
alization to run their kernel-bypass stack in ring 0 of VMX
non-root mode. While this design already isolates networking
logic from the applications, it is limited to only a single trusted

domain and does not support multiple distrusting data-plane
libraries within the same application, as Hodor does.

Kernel-based high-throughput software stacks like Mega-
Pipe [14] and StackMap [57] depend on aggressive batching
to limit the frequency and cost of protection domain switch-
ing. Aggressive I/O batching, however, requires asynchronous
programming models that are generally hard to employ and
not always supported by library APIs. In Sec. 4, for example,
we were unable to batch over the Silo database API [48] or
F-Stack’s send calls [46].

5.2 Intra-Process Isolation
There has been much previous work on intra-process isolation.
The method with least overhead is to write code in a type-
safe language. Work in single address space operating systems
such as Singularity [17] and Verve [56] shows that application
and kernel code can execute safely within the same virtual
address space. The disadvantage of such systems is their
incompatibility with much existing code. Hodor, in contrast,
supports existing fast I/O applications.

For type-unsafe languages, approaches such as SFI [52]
and XFI [49] employ either source- or binary-level instru-
mentation to guarantee that code cannot read or write out-
side of designated sections of the virtual address space. Load
and store instrumentation either checks that the accessed ad-
dress is within bounds or transforms out-of-bounds pointers
to in-bounds pointers. SFI [52] incurs an average overhead
of 17.6% for read-write protection and 4.3% overhead when
only instrumenting writes. Hodor works without sophisticated
binary rewriting techniques and incurs less overhead than SFI
by leveraging newer hardware support.

Hardware mechanisms can isolate code running within the
same virtual address space. CODOMs [51] and CHERI [55]
augment instructions with capabilities. Segmentation also pro-
vides intra-process isolation [43] by requiring code to possess
a descriptor to address a particular section of memory. By
restricting which descriptors are accessible to various code
components, the OS kernel can isolate untrusted components.
Segmentation is supported in 32-bit but not 64-bit x86 sys-
tems [20]. ARM memory domains [2] are similar to Intel
PKU [20] but available only on 32-bit processors, and mem-
ory domain permissions can be modified only in supervisor
mode. Our work focuses on hardware support available in
64-bit x86 systems.

ERIM [50], developed concurrently to our work, uses pro-
tection keys like Hodor to provide an isolated domain within a
single virtual address space. We believe ERIM’s use of static
binary rewriting to eliminate occurrences of WRPKRU in the
application binary is insufficient to guarantee the safety of
protected domains: static binary rewriting is undecidable for
arbitrary x86 code [41, 54]. Dynamic binary rewriting (not
considered in ERIM) would incur prohibitive costs, negating
the performance gain of PKU.

Several OS abstractions are similar to our work. Wedge [5]

USENIX Association 2019 USENIX Annual Technical Conference 499

provides privilege separation and isolation among its sthreads.
Each sthread is a lightweight process that inherits only a sub-
set of the memory mappings and file descriptors of its parent,
as specified in a security policy. Shreds [9] use ARM memory
domains [2] to divide execution within a user-space thread.
Each shred is a thread fragment with a private memory pool
in which to store secret data and sensitive code. Light-weight
contexts (lwCs) [31] isolate units within an address space.
Each lwC has its own virtual memory mappings, file descrip-
tors, access rights and execution state. Secure Memory Views
(SMV) [15] use per-thread page tables to enforce isolation
while allowing sharing between threads. SMV does not sup-
port multiple domains within a thread. Each of these systems
requires a system call to change domains, while Hodor does
not. Hodor can also be linked to unmodified applications.

MemSentry [28] is a memory isolation framework that
provides compiler support for multiple hardware features,
including EPT-switching VMFUNC and PKU, to create a
safe region within a process. It analyzes and instruments
applications with code which, like Hodor’s trampolines, en-
ables and disables access to the protected domain using the
desired isolation mechanism. SeCage [32] uses static and dy-
namic compiler analysis to decompose a monolithic program
into different domains and uses EPT-switching VMFUNC
to prevent memory disclosure attacks even when running on
a compromised OS. Unlike SeCage and MemSentry, Hodor
relies on existing explicit library boundaries, alleviating the
need for compiler analysis to extract components. SeCage
places the entire OS and its applications in a virtual machine,
while Hodor-VMFUNC and MemSentry leverage Dune’s [3]
process-level virtualization to expose the VMFUNC EPT-
switching mechanism to individual applications. Executing
the intended application in non-root mode affects the per-
formance of that application only. SeCage [32] compensates
for the system-wide performance impact of the virtualization
layer with its additional protections against a malicious OS.

SkyBridge [35] uses VMFUNC to improve the latency
of IPCs in a micro-kernel setting. Unlike Hodor, SkyBridge
does not enforce a single way to cross protection boundaries
(Hodor ensures that only trampolines are mapped in both
source and target EPTs), which introduces the possibility for
malicious VMFUNCs. To address this, SkyBridge uses static
binary rewriting (inspired by ERIM [50]), which as discussed
earlier, is undecidable for an arbitrary x86 binary [41, 54]. Fi-
nally, EPTI [16] uses VMFUNC to provide isolation between
kernel and user-space page tables to mitigate Meltdown [8].

VMFUNC has been used for communication between com-
ponents isolated at coarse granularity. High-throughput net-
work function virtualization has used VMFUNC and EPT-
switching to provide efficient communication between VMs
hosting different network functions [36]. CrossOver [29] pro-
poses a cross-world interaction mechanism that provides com-
munication between VMs as well as different address spaces
and privilege levels in or between VMs. It uses EPT-switching

VMFUNCs to approximate the cost of cross-world interac-
tion and suggests architectural changes to VMFUNC to allow
such calls. While CrossOver can theoretically be used for
intra-process isolation, the paper focuses on providing cross-
world calls as a generic communication mechanism.

5.3 OS and Hypervisor Security
Hodor builds on previous work on security enforcement in
OS kernels and hypervisors. The design of the Hodor-PKU
trampoline is inspired by the Nested Kernel [12] trampoline
code. Both Hodor-PKU and Nested Kernel must check that
the inputs to domain switching instructions are correct be-
cause neither system enforces control flow integrity [1]. Fi-
nally, Hodor’s restrictions on mmap to enforce code segment
integrity are similar to protections in Secure Virtual Architec-
ture [11], HyperSafe [53], and Nested Kernel [12].

6 Conclusions
We have introduced Hodor, an in-process isolation system for
protection and sharing of fast data-plane libraries. Our pro-
posed solution uses Intel’s memory protection keys (PKU) to
isolate components within a single address space. We also pre-
sented two alternative implementations based on separate user-
level address spaces—one uses system calls for page-table
switching, the other Intel’s VMFUNC switching of extended
page tables. Additionally, Hodor uses asynchronous event
delivery and a novel application of hardware watchpoints to
ensure that when multiple processes share a protected library,
failure in one will not affect the others.

Our evaluation with microbenchmarks, Silo, DPDK, and
Redis confirm that Hodor can provide full isolation of pro-
tected libraries while approaching unprotected kernel bypass
performance. Hodor-PKU, in particular, provides 90–98% of
kernel-bypass throughput in all of our experiments.

Hodor could benefit from a VMFUNC-like instruction that
switches among pre-approved page table root pointers without
requiring virtualization. We encourage hardware designers to
consider such an extension. We would also welcome a vari-
ant of PKU with a larger number of keys and with coverage
of execute rights. In future work, we hope to evaluate the
cost of a Hodor implementation based on software fault isola-
tion [52] and to explore hardware-supported implementations
for additional processor architectures (e.g., ARM and Power).

Acknowledgment
We thank our shepherd, Adam Belay, and the anonymous
reviewers for their helpful feedback. This work was supported
in part by NSF grants CNS-1319417, CCF-1717712, CCF-
1422649, CNS-1618213 and CNS-1629770, and by a Google
Faculty Research award. Any opinions, findings, conclusions,
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of our
sponsors.

500 2019 USENIX Annual Technical Conference USENIX Association

References
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.

Control-flow Integrity Principles, Implementations, and
Applications. ACM Trans. on Information Systems
Security, 13:4:1–4:40, Nov. 2009.

[2] ARM Ltd. ARM Memory Domains.
http://infocenter.arm.com/help/index.jsp?topic=/com.
arm.doc.ddi0211k/Babjdffh.html.

[3] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei,
D. Mazières, and C. Kozyrakis. Dune: Safe User-level
Access to Privileged CPU Features. In 10th USENIX
Symp. on Operating Systems Design and
Implementation (OSDI), pages 335–348, Hollywood,
CA, Oct. 2012.

[4] A. Belay, G. Prekas, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion. IX: A Protected
Dataplane Operating System for High Throughput and
Low Latency. In 11th USENIX Symp. on Operating
Systems Design and Implementation (OSDI), pages
49–65, Broomfield, CO, Oct. 2014.

[5] A. Bittau, P. Marchenko, M. Handley, and B. Karp.
Wedge: Splitting Applications into Reduced-privilege
Compartments. In 5th USENIX Symp. on Networked
Systems Design and Implementation (NSDI), pages
309–322, San Francisco, CA, Apr. 2008.

[6] D. L. Bruening. Efficient, Transparent, and
Comprehensive Runtime Code Manipulation. PhD
thesis, Massachusetts Institute of Technology,
Cambridge, MA, 2004. AAI0807735.

[7] N. Burow, X. Zhang, and M. Payer. Shining Light On
Shadow Stacks. arXiv e-prints, abs/1811.03165, Nov.
2018.

[8] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von
Berg, P. Ortner, F. Piessens, D. Evtyushkin, and
D. Gruss. A Systematic Evaluation of Transient
Execution Attacks and Defenses. arXiv e-prints,
abs/1811.05441, Nov. 2018.

[9] Y. Chen, S. Reymondjohnson, Z. Sun, and L. Lu.
Shreds: Fine-grained Execution Units with Private
Memory. In 37th IEEE Symp. on Security and Privacy
(SP), pages 56–71, Oakland, CA, May 2016.

[10] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking Cloud Serving Systems
with YCSB. In 1st ACM Symp. on Cloud Computing
(SoCC), pages 143–154, Indianapolis, IN, June 2010.

[11] J. Criswell, N. Geoffray, and V. Adve. Memory Safety
for Low-level Software/Hardware Interactions. In 18th
USENIX Security Symp. (SEC), pages 83–100,
Montreal, PQ, Canada, Aug. 2009.

[12] N. Dautenhahn, T. Kasampalis, W. Dietz, J. Criswell,
and V. Adve. Nested Kernel: An Operating System
Architecture for Intra-kernel Privilege Separation. In
20th Intl. Conf. on Architectural Support for

Programming Languages and Operating Systems
(ASPLOS), pages 191–206, Istanbul, Turkey, Mar. 2015.

[13] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice,
and S. Mangard. KASLR is Dead: Long Live KASLR.
In Intl. Symp. on Engineering Secure Software and
Systems (ESSoS), pages 161–176, Bonn, Germany, July
2017.

[14] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy.
MegaPipe: A New Programming Interface for Scalable
Network I/O. In 10th USENIX Symp. on Operating
Systems Design and Implementation (OSDI), pages
135–148, Hollywood, CA, Oct. 2012.

[15] T. C.-H. Hsu, K. Hoffman, P. Eugster, and M. Payer.
Enforcing Least Privilege Memory Views for
Multithreaded Applications. In ACM SIGSAC Conf. on
Computer and Communications Security (CCS), pages
393–405, Vienna, Austria, Oct. 2016.

[16] Z. Hua, D. Du, Y. Xia, H. Chen, and B. Zang. EPTI:
Efficient defence against meltdown attack for unpatched
vms. In USENIX Annual Technical Conf. (ATC), pages
255–266, Boston, MA, 2018. USENIX Association.

[17] G. C. Hunt, J. R. Larus, M. Abadi, M. Aiken,
P. Barham, M. Fähndrich, C. H. O. Hodson, S. Levi,
N. Murphy, B. Steensgaard, D. Tarditi, T. Wobber, and
B. Zill. An Overview of the Singularity Project.
Technical Report MSR-TR-2005-135, Microsoft
Research, Oct. 2005.

[18] Intel Corp. Engineering New Protections Into
Hardware. http://www.intel.com/content/www/us/en/
architecture-and-technology/
engineering-new-protections-into-hardware.html.

[19] Intel Corp. Intel Optane SSD DC P4800X Series.
http://www.intel.com/content/www/us/en/products/
memory-storage/solid-state-drives/data-center-ssds/
optane-dc-p4800x-series/p4800x-750gb-aic.html.

[20] Intel Corp. Intel 64 and IA-32 Architectures Software
Developer’s Manual, May 2018. 325462-067US.

[21] Intel Corp. Intel DPDK: Data Plane Development Kit,
2018. http://www.dpdk.org.

[22] Intel Corp. Intel SPDK: Storage Performance
Development Kit, 2018. http://www.spdk.io.

[23] Intel Corp. PCI-SIG SR-IOV Primer: An Introduction
to SR-IOV Technology, 2018.
http://www.intel.sg/content/dam/doc/application-note/
pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf.

[24] E. Y. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm,
D. Han, and K. Park. mTCP: A Highly Scalable
User-level TCP Stack for Multicore Systems. In 11th
USENIX Conf. on Networked Systems Design and
Implementation (NSDI), pages 489–502, Seattle, WA,
Apr. 2014.

[25] N. P. Jouppi, C. Young, N. Patil, D. Patterson,
G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark,

USENIX Association 2019 USENIX Annual Technical Conference 501

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0211k/Babjdffh.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0211k/Babjdffh.html
http://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
http://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
http://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
http://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series/p4800x-750gb-aic.html
http://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series/p4800x-750gb-aic.html
http://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series/p4800x-750gb-aic.html
http://www.dpdk.org
http://www.spdk.io
http://www.intel.sg/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf
http://www.intel.sg/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf

J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland,
R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt,
D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,
H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony,
K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni,
K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter,
D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian,
H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang,
E. Wilcox, and D. H. Yoon. In-datacenter Performance
Analysis of a Tensor Processing Unit. In 44th Intl.
Symp. on Computer Architecture (ISCA), pages 1–12,
Toronto, ON, Canada, June 2017.

[26] V. Kiriansky and C. Waldspurger. Speculative Buffer
Overflows: Attacks and Defenses. ArXiv e-prints,
abs/1807.03757, July 2018.

[27] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom. Spectre
Attacks: Exploiting Speculative Execution. In 40th
IEEE Symp. on Security and Privacy (SP), May 2019.

[28] K. Koning, X. Chen, H. Bos, C. Giuffrida, and
E. Athanasopoulos. No Need to Hide: Protecting Safe
Regions on Commodity Hardware. In 12th ACM
SIGOPS European Conf. on Computer Systems
(EuroSys), pages 437–452, Belgrade, Serbia, Apr. 2017.

[29] W. Li, Y. Xia, H. Chen, B. Zang, and H. Guan.
Reducing World Switches in Virtualized Environment
with Flexible Cross-world Calls. In 42nd Intl. Symp. on
Computer Architecture (ISCA), pages 375–387,
Portland, Oregon, June 2015.

[30] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,
Y. Yarom, and M. Hamburg. Meltdown: Reading kernel
memory from user space. In 27th USENIX Security
Symp. (SEC), pages 973–990, Baltimore, MD, Aug.
2018.

[31] J. Litton, A. Vahldiek-Oberwagner, E. Elnikety,
D. Garg, B. Bhattacharjee, and P. Druschel.
Light-weight Contexts: An OS Abstraction for Safety
and Performance. In 12th USENIX Symp. on Operating
Systems Design and Implementation (OSDI), pages
49–64, Savannah, GA, Nov. 2016.

[32] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia.
Thwarting Memory Disclosure with Efficient
Hypervisor-enforced Intra-domain Isolation. In 22nd
ACM SIGSAC Conf. on Computer and Communications
Security (CCS), pages 1607–1619, Denver, CO, Oct.
2015.

[33] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,

G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In Proc. of the 2005 ACM
SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI), pages 190–200, Chicago,
IL, June 2005.

[34] K. Menychtas, K. Shen, and M. L. Scott. Disengaged
Scheduling for Fair, Protected Access to Fast
Computational Accelerators. In 19th Intl. Conf. on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 301–316, Salt
Lake City, UT, Mar. 2014.

[35] Z. Mi, D. Li, Z. Yang, X. Wang, and H. Chen.
SkyBridge: Fast and Secure Inter-process
Communication for Microkernels. In 14th EuroSys
Conf. (EuroSys), pages 9:1–9:15, Dresden, Germany,
Mar. 2019.

[36] J. Nakajima. Xen as High-performance NFV Platform,
Aug. 2018.
http://events.static.linuxfound.org/sites/events/files/
slides/XenAsHighPerformanceNFVPlatform.pdf.

[37] F. Nawab, J. Izraelevitz, T. Kelly, C. B. Morrey III,
D. R. Chakrabarti, and M. L. Scott. Dalí: A
Periodically Persistent Hash Map. In 31st Intl. Symp.
on Distributed Computing (DISC), pages 37:1–37:16,
Vienna, Austria, Sept. 2017.

[38] G. Paoloni. How to Benchmark Code Execution Times
on Intel IA-32 and IA-64 Instruction Set Architectures.
http://www.intel.com/content/dam/www/public/us/en/
documents/white-papers/
ia-32-ia-64-benchmark-code-execution-paper.pdf,
Sept. 2010.

[39] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe.
Arrakis: The Operating System is the Control Plane. In
11th USENIX Symp. on Operating Systems Design and
Implementation (OSDI), pages 1–16, Broomfield, CO,
Oct. 2014.

[40] G. Prekas, M. Kogias, and E. Bugnion. ZygOS:
Achieving Low Tail Latency for Microsecond-scale
Networked Tasks. In 26th Symp. on Operating Systems
Principles (SOSP), pages 325–341, Shanghai, China,
Oct. 2017.

[41] G. Ramalingam. The Undecidability of Aliasing. ACM
Trans. on Programming Languages and Systems
(TOPLAS), 16(5):1467–1471, Sept. 1994.

[42] Redis Labs. Redis, 2018. http://www.redis.io.
[43] J. H. Saltzer and M. D. Schroeder. The Protection of

Information in Computer Systems. Proc. of the IEEE,
63(9):1278–1308, Sept. 1975.

[44] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko,
K. Schimpf, B. Yee, and B. Chen. Adapting Software
Fault Isolation to Contemporary CPU Architectures. In

502 2019 USENIX Annual Technical Conference USENIX Association

http://events.static.linuxfound.org/sites/events/files/slides/XenAsHighPerformanceNFVPlatform.pdf
http://events.static.linuxfound.org/sites/events/files/slides/XenAsHighPerformanceNFVPlatform.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
http://www.redis.io

19th USENIX Security Symp. (SEC), pages 1:1–1:11,
Washington, DC, Aug. 2010.

[45] L. Spelman. Reimagining the Data Center Memory and
Storage Hierarchy, May 2018.
newsroom.intel.com/editorials/
re-architecting-data-center-memory-storage-hierarchy/.

[46] Tencent Corp. F-Stack, 2018. http://www.f-stack.org.
[47] Transaction Processing Council. TPC-C Benchmark,

2018. http://www.tpc.org/tpcc.
[48] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.

Speedy Transactions in Multicore In-memory
Databases. In 24th ACM Symp. on Operating Systems
Principles (SOSP), pages 18–32, Farmington, PA, Nov.
2013.

[49] Úlfar Erlingsson, M. Abadi, M. Vrable, M. Budiu, and
G. C. Necula. XFI: Software Guards for System
Address Spaces. In 7th USENIX Symp. on Operating
Systems Design and Implementation (OSDI), pages
75–88, Seattle, WA, Nov. 2006.

[50] A. Vahldiek-Oberwagner, E. Elnikety, D. Garg, and
P. Druschel. ERIM: Secure and Efficient In-process
Isolation with Memory Protection Keys. arXiv e-prints,
abs/1801.06822, Nov. 2018.

[51] L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Etsion,
and M. Valero. CODOMs: Protecting Software with
Code-centric Memory Domains. In 41st Intl. Symp. on
Computer Architecuture (ISCA), pages 469–480,
Minneapolis, MN, June 2014.

[52] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient Software-based Fault Isolation. In 14th ACM

Symp. on Operating Systems Principles (SOSP), pages
203–216, Asheville, NC, Dec. 1993.

[53] Z. Wang and X. Jiang. HyperSafe: A Lightweight
Approach to Provide Lifetime Hypervisor Control-Flow
Integrity. In 31st IEEE Symp. on Security and Privacy
(SP), pages 380–395, Oakland, CA, May 2010.

[54] R. Wartell, Y. Zhou, K. W. Hamlen, M. Kantarcioglu,
and B. Thuraisingham. Differentiating Code from Data
in x86 Binaries. In 2011 European Conf. on Machine
Learning and Knowledge Discovery in Databases
(ECML PKDD), pages III 522–536, Athens, Greece,
Sept. 2011.

[55] R. N. Watson, J. Woodruff, P. G. Neumann, S. W.
Moore, J. Anderson, D. Chisnall, N. Dave, B. Davis,
K. Gudka, B. Laurie, S. J. Murdoch, R. Norton, M. Roe,
S. Son, and M. Vadera. CHERI: A Hybrid
Capability-system Architecture for Scalable Software
Compartmentalization. In 36th IEEE Symp. on Security
and Privacy (SP), pages 20–37, San Jose, CA, May
2015.

[56] J. Yang and C. Hawblitzel. Safe to the Last Instruction:
Automated Verification of a Type-Safe Operating
System. In ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), pages
99–110, Toronto, ON, Canada, June 2010.

[57] K. Yasukata, M. Honda, D. Santry, and L. Eggert.
StackMap: Low-latency Networking with the OS Stack
and Dedicated NICs. In USENIX Annual Technical
Conf. (ATC), pages 43–56, Denver, CO, June 2016.

USENIX Association 2019 USENIX Annual Technical Conference 503

newsroom.intel.com/editorials/re-architecting-data-center-memory-storage-hierarchy/
newsroom.intel.com/editorials/re-architecting-data-center-memory-storage-hierarchy/
http://www.f-stack.org
http://www.tpc.org/tpcc

A Retargetable System-Level DBT Hypervisor

Tom Spink
University of Edinburgh

Harry Wagstaff
University of Edinburgh

Björn Franke
University of Edinburgh

Abstract
System-level Dynamic Binary Translation (DBT) provides
the capability to boot an Operating System (OS) and execute
programs compiled for an Instruction Set Architecture (ISA)
different to that of the host machine. Due to their performance-
critical nature, system-level DBT frameworks are typically
hand-coded and heavily optimized, both for their guest and
host architectures. While this results in good performance
of the DBT system, engineering costs for supporting a new,
or extending an existing architecture are high. In this paper
we develop a novel, retargetable DBT hypervisor, which in-
cludes guest specific modules generated from high-level guest
machine specifications. Our system simplifies retargeting of
the DBT, but it also delivers performance levels in excess of
existing manually created DBT solutions. We achieve this by
combining offline and online optimizations, and exploiting
the freedom of a Just-in-time (JIT) compiler operating in a
bare-metal environment provided by a Virtual Machine (VM)
hypervisor. We evaluate our DBT using both targeted micro-
benchmarks as well as standard application benchmarks, and
we demonstrate its ability to outperform the de-facto stan-
dard QEMU DBT system. Our system delivers an average
speedup of 2.21× over QEMU across SPEC CPU2006 integer
benchmarks running in a full-system Linux OS environment,
compiled for the 64-bit ARMv8-A ISA and hosted on an x86-
64 platform. For floating-point applications the speedup is
even higher, reaching 6.49× on average. We demonstrate that
our system-level DBT system significantly reduces the effort
required to support a new ISA, while delivering outstanding
performance.

1 Introduction

System-level DBT is a widely used technology that comes in
many disguises: it powers the Android Open Source Project
(AOSP) Emulator for mobile app development, provides back-
wards compatibility for games consoles [52], implements
sandbox environments for hostile program analysis [41] and

enables low-power processor implementations for popular
ISAs [17]. All these applications require a complete and faith-
ful, yet efficient implementation of a guest architecture, in-
cluding privileged instructions and implementation-defined
behaviors, architectural registers, virtual memory, memory-
mapped I/O, and accurate exception and interrupt semantics.

The broad range of applications has driven an equally broad
range of system-level DBT implementations, ranging from
manually retargetable open-source solutions such as QEMU
[4] to highly specialized and hardware supported approaches
designed for specific platforms, e.g. Transmeta Crusoe [17].
As a de-facto industry standard QEMU supports all major plat-
forms and ISAs, however, retargeting of QEMU to a new guest
architecture requires deep knowledge of its integrated Tiny
Code Generator (TCG) as it involves manual implementation
of guest instruction behaviors. Consequently, retargeting is
time-consuming and error-prone: e.g. the official QEMU com-
mit logs contain more than 90 entries to bugfixes related to
its ARM model alone.

In this paper we present Captive, our novel system-level
DBT hypervisor, where users are relieved of low-level imple-
mentation effort for retargeting. Instead users provide high-
level architecture specifications similar to those provided by
processor vendors in their ISA manuals. In an offline stage ar-
chitecture specifications are processed, before an architecture-
specific module for the online run-time is generated. Captive
applies aggressive optimizations: it combines the offline opti-
mizations of the architecture model with online optimizations
performed within the generated JIT compiler, thus reducing
the compilation overheads while providing high code quality.
Furthermore, Captive operates in a virtual bare-metal environ-
ment provided by a VM hypervisor, which enables us to fully
exploit the underlying host architecture, especially its system
related and privileged features not accessible to other DBT
systems operating as user processes.

The envisaged use of Captive is to provide software devel-
opers with early access to new platforms, possibly hosted in a
cloud environment. To facilitate this goal, ease of retargetabil-
ity is as important as delivering performance levels sufficient

USENIX Association 2019 USENIX Annual Technical Conference 505

ARMv8

x86

x86

Figure 1: High-level overview of Captive.

to drive substantial workloads, i.e. software development tool
chains and user applications. Whilst we currently focus on a
single-core implementation, the key ideas can be translated
to multi-core architectures.

We evaluate the implementation of Captive using a 64-bit
ARMv8-A guest model and an x86-64 host. From a descrip-
tion comprising just 8100 lines of code1 we generate a DBT
hypervisor outperforming QEMU by a factor of 2.21× for
SPEC CPU2006 integer applications, and up to 6.49× for
floating-point workloads. This means Captive is capable of
hosting a full and unmodified ARM Linux OS environment
while delivering around 40% of the performance of a phys-
ical system comprising a 2.0GHz server-type Cortex-A57
processor.

1.1 Overview and Motivating Example

Figure 1 shows a high-level overview of Captive: an ARMv8-
A2 architecture description is processed by an offline tool
to produce a platform-specific DBT module. Already at this
stage optimizations are applied, which aid later JIT code gen-
eration. The software stack on the x86-64 host machine com-
prises a Kernel Virtual Machine (KVM)-based DBT hypervi-
sor, operating on top of the host’s Linux OS. This provides
a virtual bare-metal x86-64 Host Virtual Machine (HVM) in
which Captive together with the previously generated DBT
module and a minimal execution engine reside to provide
the Guest Virtual Machine (GVM), which can boot and run
an unmodified ARMv8-A Linux kernel image. Since the JIT
compiler in our system-level DBT system operates in a bare-

1Compared to 17766 LoC for QEMU’s ARM model plus a further 7948
LoC in their software floating-point implementation.

2Or any other guest architecture, e.g. RISC-V.

metal HVM it has full access to the virtual host’s resources
and can generate code to exploit these resources.

For example, consider Figure 2. A conventional system-
level DBT system hosted on an x86-64 architecture, e.g.
QEMU, operates entirely as a user process in protection ring
3 on top of a host OS operating in ring 0. This means that
any code generated by QEMU’s JIT compiler, either guest
user or system code, also operates in the host’s ring 3, which
restricts access to system features such as page tables. Such
a system operating exclusively in ring 3 needs to provide
software abstractions and protection mechanisms for guest
operations, which modify guest system state. In contrast, Cap-
tive operates in VMX root mode, and provides a bare-metal
HVM with rings 0-3. Our execution engine and DBT operate
in the virtual machine’s ring 0, and track the guest system’s
mode. This enables us to generate code operating in ring 0, for
guest system code, and ring 3, for guest user code. This means
we can use the HVM’s hardware protection features to effi-
ciently implement memory protection or allow the hypervisor
to modify the HVM’s page tables in order to directly map the
GVM’s virtual address space onto host physical memory.

Porting to a different host architecture can be accomplished
by utilising similar features offered by that architecture, e.g.
Arm offers virtualization extensions that are fully supported
by KVM, and privilege levels PL0 and PL1, which are similar
to x86’s ring 3 and ring 0, respectively. These similarities also
enable our accelerated virtual memory system to work across
platforms.

1.2 Contributions

Captive shares many concepts with existing DBT systems,
but it goes beyond and introduces unique new features. We

506 2019 USENIX Annual Technical Conference USENIX Association

Ring 0

Ring 1

Ring 2

Ring 3

QEMU DBT
Hypervisor

QEMU's
Generated

Code

Host
Operating

System

Ring 1

Ring 2

Ring 3

Our
Hypervisor

Our DBT's
Generated

Code

Execution
Engine/DBT

Ring 0

Ring 1

Ring 2

Ring 3

Ring 0

KVM

VMX
Root Mode

VMX
Non-root Mode

Figure 2: x86 protection rings. Ring 0 is the most privileged (kernel mode), and ring 3 is the least privileged (user mode). QEMU
operates in ring 3, whereas Captive takes advantage of a host VM to operate in ring 0 and ring 3. The hypervisor component
operates outside the host virtual machine, in VMX root mode.

Q
E

M
U

[4
]

H
Q

E
M

U
[2

1]

PQ
E

M
U

[1
8]

W
al

ka
bo

ut
[1

2]

Y
ir

r-
M

a
[4

4]

IS
A

M
A

P
[3

8]

Tr
an

sm
et

a
C

M
S

[1
7]

H
ar

m
on

ia
[3

1]

Q
ui

ck
Tr

an
si

t[
26

]

H
yp

er
M

A
M

B
O

-x
64

[1
5]

C
ap

tiv
e

(2
01

6)
[4

0]

M
ag

iX
en

[1
0]

C
ap

tiv
e

System-Level 3 7 3 7 7 7 3 7 3 3 3 3 3

Retargetable 3 3 7 3 3 3 7 7 3 7 3 7 3

Architecture Description Language 7 7 7 3 3 3 7 7 7 7 3 7 3

Hypervisor 7 7 7 7 7 7 7 7 3 3 3 3 3

Host FP Supprt 7 3 7 N/A 7 3 3 7 3 3 3 3 3

FP bit-accurate 3 7 3 N/A N/A N/A 3 N/A N/A N/A 7 3 3

Host SIMD Support (3) (3) (3) 7 7 3 3 7 N/A N/A 7 3 3

64-bit support 3 3 7 3 3 3 7 7 N/A 7 7 7 3

Publicly Available 3 7 3 7 7 7 7 7 7 7 7 7 3

Table 1: Feature comparison of DBT systems. Brackets indicate partial support.

provide a feature comparison in Table 1, and present further
information on related work in Section 4. Among the contri-
butions of this paper are:

1. We develop a generic system-level DBT framework,
where the effort to support new guest platforms is reduced by
using high-level architecture descriptions.

2. We use split compilation in a DBT, combining offline and
online optimization to reduce pressure on the performance
critical JIT compiler while maintaining code quality.

3. We pioneer a DBT approach where the integrated JIT
compiler is part of a DBT hypervisor and can generate code
that takes full advantage of this execution context.

Captive has been released as an open-source project, to en-

able community-driven development and independent perfor-
mance evaluation.3

2 Retargetable DBT Hypervisor

2.1 Overview
In this section, we describe the key concepts of Captive, which
comprises two main components, (1) an offline generation
component, and (2) an online runtime component.

The offline phase involves describing the target machine
architecture, and is discussed in Section 2.2. In this phase,
modules for inclusion in the runtime component are generated.
Complex architectural behaviour (such as the operation of the

3See https://gensim.org/simulators/captive

USENIX Association 2019 USENIX Annual Technical Conference 507

Optimization Active in Opt. Level
Dead Code Elimination O1–4
Unreachable Block Elimination O1–4
Control Flow Simplification O1–4
Block Merging O1–4
Inlining O1–4
Dead Variable Elimination O1–4
Jump Threading O2–4
Constant Folding O3–4
Constant Propagation O3–4
Value Propagation O3–4
Load Coalescing O3–4
Dead Write Elimination O3–4
PHI Analysis O4
PHI Elimination O4

Table 2: Optimizations applied in the offline stage.

Memory Management Unit (MMU)) are described in regular
source-code files, and compiled together with the generated
source-code. The online runtime component is discussed in
Section 2.3, and comprises a further two sub-components,
(1) a user-mode application that activates and configures a
KVM Virtual Machine, and (2) a unikernel that runs inside
the KVM VM, and implements guest instruction translation
and general guest machine execution.

The DBT system itself runs inside a VM with no standard
OS support. Normally, a virtual machine provides a bare-
metal environment in which an OS is loaded, and then user
applications are executed. We instead skip the OS entirely,
and implement our DBT on the virtual bare-metal hardware.
Whilst this adds complexity to the implementation of the
DBT, it also allows the DBT to directly use host architec-
tural features, without having to negotiate with an OS. This
is in contrast to the majority of other system-level DBTs,
which typically run as user-mode applications in an OS. The
trade-off here is that Captive relies on KVM, reducing host
operating system portability.

2.2 Offline Stage

2.2.1 Architecture Description

The guest machine architecture is described using a high-
level Architecture Description Language (ADL) that defines
instruction syntax (i.e. how to decode instructions) and in-
struction semantics (i.e. how to execute instructions). The
ADL is also used to describe architectural features, such as
the register file size and layout, word sizes, endianness, etc.

The ADL is based on a modified version of ArchC [1], and
our offline generator tool processes the description into an
intermediate form, performs some optimization and analysis,
before finally producing modules for the DBT as output.

Instruction semantics (the functional behavior of guest ma-
chine instructions) are described in a high-level C-like lan-

1 execute(add) {
2 uint64 rn = read_register_bank(BANK0 , inst.a);
3 uint64 rm = read_register_bank(BANK0 , inst.b);
4 uint64 rd = rn + rm;
5 write_register_bank(BANK0 , inst.a, rd);
6 }

Figure 3: High-level C-like representation of instruction be-
havior

guage. This Domain Specific Language (DSL) allows the
behavior of instructions to be specified easily and naturally,
by, e.g. translating the pseudo-code found in architecture man-
uals into corresponding C-like code.

Figure 3 provides an example description of an add in-
struction that loads the value from two guest registers (lines
3 and 4), adds them together (line 5), then stores the result
to another guest register (line 6). This example shows how
a typical instruction might look, and how its behavior can
be naturally expressed. Of course, this is a simple example:
most ‘real-world’ instruction descriptions contain branching
paths to select specific instruction variants (e.g., flag-setting
or not), more complex calculations, and floating point and
vector operations, all of which can be handled by the ADL.

2.2.2 Intermediate SSA Form

During the offline phase, instruction behavior descriptions are
translated into a domain-specific Static Single Assignment
(SSA) form, and aggressively optimized. The optimization
passes used have been selected based on common idioms in
instruction descriptions. For example, very few loop-based
optimizations are performed, since most individual instruc-
tions do not contain loops. Optimizing the model at the offline
stage makes any simplifications utilized by the designer in the
description less of a performance factor in the resulting code.

The domain-specific SSA contains operations for reading
architectural registers, performing standard arithmetic oper-
ations on values of integral, floating-point and vector types,
memory and peripheral device access and communication,
and a variety of built-in functions for common architectural
behaviors (such as flag calculations and floating point NaN/In-
finity comparisons).

Additionally, meta-information about the SSA is held, indi-
cating whether each operation is fixed or dynamic. Fixed op-
erations are evaluated at instruction translation time, whereas
dynamic operations must be executed at instruction run-time.
For example, the calculation of a constant value, or control
flow based on instruction fields is fixed, but computations
which depend on register or memory values are dynamic [46].
Fixed operations can produce dynamic values, but dynamic
operations must be executed as part of instruction emulation.

Figure 4 shows the direct translation of the instruction
behavior (from Figure 3) into corresponding SSA form. A

508 2019 USENIX Annual Technical Conference USENIX Association

1 action void add (Instruction sym_1_3_parameter_inst) [
2 uint64 sym_14_0_rd
3 uint64 sym_5_0_rn
4 uint64 sym_9_0_rm
5] {
6 block b_0 {
7 s_b_0_0 = struct sym_1_3_parameter_inst a;
8 s_b_0_1 = bankregread 7 s_b_0_0;
9 s_b_0_2: write sym_5_0_rn s_b_0_1;
10 s_b_0_3 = struct sym_1_3_parameter_inst b;
11 s_b_0_4 = bankregread 7 s_b_0_3;
12 s_b_0_5: write sym_9_0_rm s_b_0_4;
13 s_b_0_6 = read sym_5_0_rn;
14 s_b_0_7 = read sym_9_0_rm;
15 s_b_0_8 = binary + s_b_0_6 s_b_0_7;
16 s_b_0_9: write sym_14_0_rd s_b_0_8;
17 s_b_0_10 = struct sym_1_3_parameter_inst a;
18 s_b_0_11 = read sym_14_0_rd;
19 s_b_0_12: bankregwrite 0 s_b_0_10 s_b_0_11;
20 s_b_0_13: return;
21 }
22 }

Figure 4: Unoptimized domain-specific SSA form of the add
instruction from Figure 3.

1 action void add (Instruction sym_1_3_parameter_inst) [] {
2 block b_0 {
3 s_b_0_0 = struct sym_1_3_parameter_inst a;
4 s_b_0_1 = bankregread 7 s_b_0_0;
5 s_b_0_2 = struct sym_1_3_parameter_inst b;
6 s_b_0_3 = bankregread 7 s_b_0_2;
7 s_b_0_4 = binary + s_b_0_1 s_b_0_3;
8 s_b_0_5 = struct sym_1_3_parameter_inst a;
9 s_b_0_6: bankregwrite 0 s_b_0_5 s_b_0_4;
10 s_b_0_7: return;
11 }
12 }

Figure 5: Equivalent optimized domain-specific SSA form of
the add instruction from Figure 3.

series of optimizations (given in Table 2) are then applied to
this SSA, until a fixed-point is reached. Figure 5 shows the
optimized form of the SSA.

The offline optimizations allow the user to be expressive
and verbose in their implementation of the model, whilst
retaining a concise final representation of the user’s intent.
For example, dead code elimination is necessary in the case
where helper functions have been inlined, and subsequently
subjected to constant propagation/folding, which eliminates a
particular control-flow path through the function.

2.2.3 Generator Function

The domain-specific SSA itself is not used at runtime, but
instead is used in the final offline stage to build simulator-
specific generator functions. These functions are either com-
piled in, or dynamically loaded, by the DBT, and are invoked
at JIT compilation time. The generator functions call into the
DBT backend, which produces host machine code. When an
instruction is to be translated by the DBT, the corresponding
generator function is invoked.

Figure 6 shows the corresponding generator function, pro-
duced from the optimized SSA form in Figure 5. The genera-
tor function is clearly machine generated, but host compiler
optimizations (in the offline stage) will take care of any in-
efficiencies in the output source-code. Additionally (and not
shown for brevity) the offline stage generates source-code
comments, to assist in debugging.

2.3 Online Stage

The online stage of Captive involves the actual creation and
running of the guest virtual machine. This takes the form of
a KVM-based DBT hypervisor, which instantiates an empty
host virtual machine, which then loads the execution engine
(a small, specialized unikernel) that implements the DBT. The
KVM-based portion of the hypervisor also includes software
emulations of guest architectural devices (such as the inter-
rupt controller, UARTs, etc). The DBT comprises four main
phases, as shown in Figure 7: Instruction Decoding, Trans-
lation, Register Allocation, and finally Instruction Encod-
ing.

2.3.1 Instruction Decoding

The first phase in our execution pipeline is the instruction
decoder, which will decode one guest basic block’s worth of
instructions at a time. The decoder routines are automatically
generated from the architecture description during the offline
stage, utilizing techniques such as Krishna and Austin [27],
Theiling [43].

2.3.2 Translation

During the translation phase, a generator function (that was
created in the offline stage) is invoked for each decoded in-
struction. The generator function calls into an invocation
Directed Acyclic Graph (DAG) builder, which builds a DAG
representing the data-flow and control-flow of the instruc-
tion under translation. Operations (represented by nodes in
the DAG) that have side effects result in the collapse of the
DAG at that point, and the emission of low-level Intermediate
Representation (IR) instructions representing the collapsed
nodes.

A node with side effects is one through which control-flow
cannot proceed without the state of the guest being mutated
in some way. For example, a STORE node is considered to
have side-effects, as the guest machine register file has been
changed.

During emission, the tree rooted at that node is traversed,
emitting IR for the operations required to produce the input
values for that node. This feed-forward technique removes the
need to build an entire tree then traverse it later. Collapsing
nodes immediately to IR improves the performance of the
DBT, as instructions are generated as soon as possible.

USENIX Association 2019 USENIX Annual Technical Conference 509

1 bool generator::translate_add(const test_decode_test_F1& insn , dbt_emitter& emitter) {
2 basic_block *__exit_block = emitter.create_block();
3 goto fixed_block_b_0;
4 fixed_block_b_0: {
5 auto s_b_0_1 = emitter.load_register(emitter.const_u32((uint32_t)(256 + (16 * insn.a))), dbt_types::u64);
6 auto s_b_0_3 = emitter.load_register(emitter.const_u32((uint32_t)(256 + (16 * insn.b))), dbt_types::u64);
7 auto s_b_0_4 = emitter.add(s_b_0_1 , s_b_0_3);
8 emitter.store_register(emitter.const_u32((uint32_t)(0 + (8 * insn.a))), s_b_0_4);
9 goto fixed_done;
10 }
11 fixed_done:
12 emitter.jump(__exit_block);
13 emitter.set_current_block(__exit_block);
14 if (!insn.end_of_block) emitter.inc_pc(emitter.const_u8(4));
15 return true;
16 }

Figure 6: Generator function produced from ADL code shown in Figure 3

Decoder Translator
Register
Allocator

ARM Guest
Instructions

x86 Host
InstructionsEncoder

Figure 7: Online flow including decoder, translator, register allocation and instruction encoder.

STORE

+x0

x0 #1

(a)

x0

STORE

x1 +x31

PC #4

STORE STORE

+PC

PC #12

(b) (c) (d)

ENTRY EXIT

add x0, x0, #1 mov x1, x0 bl 0x100c

Figure 8: Example ARM assembly, and the corresponding
(uncollapsed) DAG built during translation. Nodes (a), (b), (c),
and (d) have side effects, causing the emission of low-level
IR based on the tree rooted at that node.

This strategy enables high-level operations to take place
on transparent values, and implements a weak form of tree
pattern matching on demand. When a node is collapsed, spe-
cializations can be made depending on how the tree is formed
at the node. For example, the STORE node ((d) in Figure 8) that
updates the PC by incrementing its value, can be emitted as a
single x86 instruction. Instruction selection also takes place
at this level, where the generator can utilize host instructions,
such as fused-multiply-add when available.

In the case of an x86 host machine, the low-level IR is
effectively x86 machine instructions, but with virtual register
operands in place of physical registers, as shown in Figure 9.
For other host machines, the IR is similar.

2.3.3 Register Allocation

After the low-level IR has been produced by the translation
phase, the register allocator makes a forward pass over these
instructions to discover live ranges, and then a backward pass
to split live ranges into live intervals. During live-range split-

1 mov (%rbp), %VREG0 ; Load guest reg. into temporary
2 add $1, %VREG0 ; Add one.
3 mov %VREG0 , (%rbp) ; Store temporary to guest reg.
4 mov (%rbp), %VREG1 ; Load guest reg. into temporary
5 mov %VREG1 , 8(%rbp) ; Store temporary to guest reg.
6 lea 4(%r15), %VREG2 ; Load PC+4 into temporary
7 mov %VREG2 , 0xf8(%rbp) ; Store into guest reg.
8 add $12, %r15 ; Increment PC by 12

Figure 9: As each node with side-effects is inserted into the
DAG, low-level IR is emitted that implements that node. This
IR represents host instructions, but with virtual registers in-
stead of physical registers.

ting, host machine registers are allocated to virtual registers,
and conflicts are resolved. Whilst not producing an optimal
solution, the register allocator is fast. The allocator also marks
dead instructions, so that at encoding time those instructions
are ignored. Our register allocation algorithm is similar to the
simplified graph-coloring scheme from Cai et al. [9], but with
additional dead code elimination.

2.3.4 Instruction Encoding

After register allocation is complete, the low-level intermedi-
ate form of instructions can be directly lowered into machine
code. The list of instructions is traversed for a final time, and
the machine code is generated directly from the instruction’s
meta-data, into a code buffer. Any instructions that were clas-
sified as dead during register allocation are skipped.

Once machine code emission is completed, a final pass is
made to apply patches to relative jump instructions, as this
value is only known once each instruction has been emitted,
and therefore sized.

510 2019 USENIX Annual Technical Conference USENIX Association

1 fmov d0, #1.5 ; Store constant 1.5 in d0
2 fmul d0, d1, d2 ; Multiply d1 with d2, and store in d0

Figure 10: Arm floating-point input assembly

2.4 Exploiting Host Architectural Features

System-level DBT naturally involves emulating a range of
guest architectural components, most notably the MMU. Tra-
ditionally, this emulation is performed in software, where
each memory access must perform an address translation that
takes a virtual address, and translates it via the guest page
tables to a corresponding guest physical address. In QEMU, a
cache is used to accelerate this translation, but in Captive we
utilize the host MMU directly by mapping guest page table
entries to equivalent host page table entries. This reduces the
overhead of memory access instructions significantly, as we
do not need to perform cache look-ups, and can work with
the guest virtual address directly. Larger guest page sizes are
supported by the host MMU directly, as multiple host pages
can represent a single larger guest page. In the case of smaller
guest pages, we must emulate memory accesses carefully to
ensure permissions within a page are not violated. In general,
we support an n : m mapping between guest and host page
sizes, where n, m are powers of 2.

This technique is not possible with a DBT that runs in user-
mode, as the OS retains control of the host MMU page tables
(although attempts have been made to emulate this by using
the mmap system call [51]). However, with Captive, we are
operating in a bare-metal environment (see Figure 1), and are
able to configure the host architecture in any way we want.
By tracking the protection ring of the guest machine, and
executing the translated guest code in the corresponding host
protection ring, we can take advantage of the host system’s
memory protection mechanism, for efficient implementation
of guest memory protection.

We also take advantage of the x86 software interrupt mech-
anism (invoked using the int instruction), the x86 port-based
I/O instructions (in and out), and the x86 fast system call
instructions (syscall and sysret). These features are used
to accelerate implementations of instructions that require ad-
ditional non-trivial behaviors, e.g. accessing co-processors,
manipulation of page tables, flushing Translation Lookaside
Buffers (TLBs), and other operations specific to system-level
DBT.

2.5 Floating Point/SIMD Support

In order to reduce JIT complexity, QEMU uses a software
floating-point implementation, where helper methods are used
to implement floating-point operations. This results in the
emission of a function call as part of the instruction execution,
adding significant overhead to the emulation of these instruc-

1 movabs $0x3ff8000000000000 , %rbp ; Store const FP value
2 mov %rbp, 0x8c0(%r14) ; of 1.5 in guest
3 movq $0, 0x8c8(%r14) ; register file.
4 lea 0x8d0(%r14), %rbp
5 mov %rbp, %rdi
6 mov $0x3bd , %esi
7 xor %edx, %edx
8 callq 0x55d337b70220 ; call gvec_dup8 helper
9 lea 0x2b68(%r14), %rbp ; Prepare arguments for
10 mov 0x9c0(%r14), %rbx ; invocation of FP
11 mov 0xac0(%r14), %r12 ; multiply helper
12 mov %rbx, %rdi ; function.
13 mov %r12, %rsi
14 mov %rbp, %rdx
15 callq 0x55d337bd0050 ; Invoke helper
16 mov %rax, 0x8c0(%r14) ; Store result in
17 movq $0, 0x8c8(%r14) ; guest register file.

Figure 11: QEMU output assembly for the instruction se-
quence in Figure 10.

1 movabs $0x3ff8000000000000 ,%rax ; Store const FP value
2 mov %rax ,0x100(%rbp) ; of 1.5 in guest
3 movq $0x0 ,0x108(%rbp) ; register file.
4 add $0x4 ,%r15 ; Increment PC
5 movq 0x110(%rbp),%xmm0 ; Load FP multiply operand
6 mulsd 0x120(%rbp),%xmm0 ; Perform multiplication
7 movq %xmm0 ,0x100(%rbp) ; Store result
8 movq $0x0 ,0x108(%rbp)
9 add $0x4 ,%r15 ; Increment PC

Figure 12: Captive output assembly for the instruction se-
quence in Figure 10.

tions. Figure 10 gives an example of two ARM floating-point
instructions, which are translated by QEMU to the x86 code
in Figure 11, and by Captive to the code in Figure 12. Whilst
QEMU implements the fmov directly (lines 1—3), in much
the same way as Captive, QEMU issues a function call for
the floating-point multiplication (fmul). In contrast, Captive
emits a host floating-point multiplication instruction, which
operates directly on the guest register file.

Not all floating-point operations are trivial, however. No-
tably, there are significant differences with the way floating-
point flags, NaNs, rounding modes, and infinities are handled
by the underlying architecture, and in some cases this incom-
patibility between floating-point implementations needs to be
accounted for. In these cases, Captive emits fix-up code that
will ensure the guest machine state is bit-accurate with how
the guest machine would normally operate. Captive only sup-
ports situations where the host machine is at least as precise
as the guest. This is the most common scenario for our use
cases, but in the event of a precision mismatch, we can either
(a) use the x86 80-bit FPU (to access additional precision), or
(b) utilise a software floating-point library.

Like QEMU, Captive emits Single Instruction Multiple Data
(SIMD) instructions when translating a guest vector instruc-
tion, however QEMU’s support is restricted to integer and
bit-wise vector operations whereas Captive more aggressively
utilizes host SIMD support.

USENIX Association 2019 USENIX Annual Technical Conference 511

2.6 Translated Code Management

Captive employs a code cache, similar to QEMU, which main-
tains the translated code sequences. The key difference is that
we index our translations by guest physical address, while
QEMU indexes by guest virtual address. The consequence of
this is that our translations are retained and re-used for longer,
whereas QEMU must invalidate all translations when the guest
page tables are changed. In contrast, we only invalidate trans-
lations when self-modifying code is detected. We utilize our
ability to write-protect virtual pages to efficiently detect when
a guest memory write may modify translated code, and hence
invalidate translations only when necessary. A further benefit
is that translated code is re-used across different virtual map-
pings to the same physical address, e.g. when using shared
libraries.

2.7 Virtual Memory Management

To accelerate virtual memory accesses in the guest, we ded-
icate the lower half of the host VMs virtual address space
for the guest machine, and utilise the upper half for use by
Captive. The lower half of the address space is mapped by
taking corresponding guest page table entries, and turning
them into equivalent host page table entries.

To make a memory access, the guest virtual address is
masked, to keep it within the lower range, and if the address
actually came from a higher address, the host page tables are
switched to map the lower addresses to guest upper addresses.
The memory access is then performed using the masked ad-
dress directly, thus benefitting from host MMU acceleration.

3 Evaluation

Performance comparisons in the DBT space are difficult: most
of the existing systems are not publicly available, and insuf-
ficient information is provided to reconstruct these systems
from scratch. Furthermore, results published in the literature
often make use of different guest/host architecture pairs and
differ in supported features, which prohibit meaningful rela-
tive performance comparisons.4 For this reason we evaluate
Captive against the widely used QEMU DBT as a baseline,
supported by targeted micro-benchmarks and comparisons to
physical platforms.

3.1 Experimental Set-up

While we support a number of guest architectures, we choose
to evaluate Captive using an ARMv8-A guest and an x86-64

4For example, Harmonia [31] achieves a similar speedup of 2.2 over
QEMU, but this is for user-level DBT of a 32-bit guest on a 64-bit host system
whereas we achieve a speedup of 2.2 over QEMU for the harder problem of
system-level DBT of a 64-bit guest onto a 64-bit host system.

System HP z440

Architecture x86-64 Model Intel® Xeon®

E5-1620 v3
Cores/Threads 4/8 Frequency 3.5 GHz
L1 Cache I$128kB/D$128kB L2 Cache 1MB
L3 Cache 10 MB Memory 16 GB

Table 3: DBT Host System

System AMD Opteron A1170
Architecture ARMv8-A Model Cortex A57
Cores/Threads 8/8 Frequency 2.0 GHz
L1 Cache I$48kB/D$32kB L2 Cache 4×1 MB
L3 Cache 8 MB Memory 16 GB
System Raspberry Pi 3 Model B
Architecture ARMv8-A Model Cortex A53
Cores/Threads 4/4 Frequency 1.2 GHz
L1 Cache I$16kB/D$16kB L2 Cache 512kB
L3 Cache -/- Memory 1 GB

Table 4: Native Arm Host Systems

host.5 We conducted the following experiments on the host
machine described in Table 3, and performed our comparison
to native architectures on a Raspberry PI 3B, and an AMD
Opteron A1100 (Table 4). We utilized both the integer and
C++ floating-point benchmarks from SPEC CPU2006. Our
comparisons to QEMU were made with version 2.12.1.

3.2 Application Benchmarks
We have evaluated the performance of Captive and QEMU
using the standard SPEC2006 benchmark suite with the Ref-
erence data set. As can be seen in Figure 13, we obtain signif-
icant speedups in most Integer benchmarks, with a geometric
mean speedup of 2.2×. The two benchmarks where we ex-
perience a slow-down are 456.hmmer and 462.libquantum,
which can be attributed to suboptimal register allocation in hot
code. Figure 14 shows the speed up of Captive over QEMU
on the C++ Floating Point portion of the benchmark suite.6

Here we obtain a geometric mean speedup of 6.49×. This
large speedup can mainly be attributed to QEMU’s use of a
software floating point implementation, while we use the host
FPU and vector units directly.

3.3 Additional Guest Architectures
We also have descriptions in our ADL for other guest archi-
tectures, detailed in Table 5. However, with the exception of
ARMv7-A, these implementations currently lack full-system
support. For the ARMv7-A case, we have observed similar
average speed-ups of 2.5×, and up to 6× across the SPEC
CPU2006 benchmark suite using Captive.

5Additional RISC-V and x86 models will be released together with Cap-
tive.

6Missing Fortran benchmarks are due to the benchmarks not working
both natively, and in QEMU.

512 2019 USENIX Annual Technical Conference USENIX Association

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

400.perlbench
401.bzip2
403.gcc
429.m

cf
445.gobm

k
456.hm

m
er

458.sjeng
462.libquantum
464.h264ref
471.om

netpp
473.astar
483.xalancbm

k

A
b
so

lu
te

 r
u
n
ti

m
e
 (

s)

QEMU
Our DBT

(a) Absolute runtime in seconds (lower is better)

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5

400.perlbench
401.bzip2
403.gcc
429.m

cf
445.gobm

k
456.hm

m
er

458.sjeng
462.libquantum
464.h264ref
471.om

netpp
473.astar
483.xalancbm

k
G

eo. M
ean.

S
p

e
e
d

-u
p

Speed-up over QEMU

(b) Speed-up of Captive over QEMU (higher is better)

Figure 13: Application Performance: SPEC CPU2006 Integer benchmark results for Captive vs QEMU.

Architecture Challenges Solution
ARMv8-A 64-bit guest on 64-bit host emulation Additional techniques for MMU emulation
ARMv7-A If-then-else blocks, possibly spanning page boundaries Complex control-flow handling in the JIT
x86-64 Complex instruction encoding, requiring stateful decoder. Use of an external decoder library [23]
RISC-V No significiant challenges None required
TI TMS320C6x DSP VLIW instructions, nested branch delay slots Extensions to decoder generator, control-flow recovery
Arm Mali-G71 GPU Complex instruction bundle headers External “pre”-decoder for bundle headers.

Table 5: Architectures currently supported by Captive, and the architecture-specific challenges that required special attention for
implementation.

 0

 5

 10

 15

 20

 25

482.sphinx3

433.m
ilc

435.grom
acs

444.nam
d

470.lbm

G
eo. M

ean

S
p

e
e
d

-u
p

Speed-up over QEMU

Figure 14: Speed-up of Captive over QEMU on the Floating
Point portion of the SPEC2006 benchmark suite (higher is
better)

3.4 JIT Compilation Performance

Captive is on average 2.6× slower at translating guest basic
blocks than QEMU. This is due in part to the more aggressive
online optimizations we perform, but additionally QEMU’s
DBT has had years of hand-tuning, and benefits from a mono-
lithic implementation.

However, the previous results clearly indicate that our com-
pilation latency does not affect the runtime of the benchmarks.
In fact, the extra effort we put into compilation ensures that
our code quality surpasses that of QEMU’s, as will be demon-
strated in Section 3.6. Figure 15 shows that indeed, when
using the SimBench micro-benchmark suite [47], the Large-
Blocks and Small-Blocks benchmark indicate that our code
generation speed is 65% and 85% slower, respectively. These

 0

 2

 4

 6

 8

 10

M
em

-H
ot-M

M
U

M
em

-H
ot-N

oM
M

U

M
em

-C
old-M

M
U

M
em

-C
old-N

oM
M

U

U
ndef-Instruction

Syscall
D

ata-Fault
Instruction-Fault

Sm
all-B

locks
Large-B

locks
Sam

e-Page-Indirect

Inter-Page-Indirect

Sam
e-Page-D

irect

Inter-Page-D
irect

TLB
-Flush

TLB
-Evict

S
p
e
e
d
-u

p

3
2

.3
8

2
5

.8
8

Figure 15: Speed-up of Captive over QEMU on the SimBench
micro-benchmark suite

benchmarks are described in Section 3.5.
Figure 16 provides a further breakdown of the time spent

for JIT compilation: instruction translation (including invo-
cation DAG generation and instruction selection) takes up
more than 50% of the total JIT compilation time, followed by
register allocation (including liveness analysis and dead code
elimination), then host instruction encoding. Guest instruction
decoding takes up 2.75% of the compilation pipeline.

We have also collected aggregate translation size statistics
for 429.mcf. We found that Captive generates larger code
than QEMU, with Captive generating 67.53 bytes of host code
per guest instruction, compared to QEMU’s 40.26 bytes. This
is due the use of vector operations in the benchmarks: while
QEMU frequently emits (relatively small) function calls for

USENIX Association 2019 USENIX Annual Technical Conference 513

Decode
2.75%

Translate
54.54%

Register
Allocation
25.63%

Encode
17.08%

Figure 16: % time spent in each compilation phase: Decode,
Translate, Register Allocation and Encode.

these operations, Captive emits vector operations directly. In
particular, vector load and store operations require that vectors
are packed and unpacked element by element, each of which
can require 2–3 instructions.

3.5 Targeted Micro-Benchmarks

As well as using the SPEC benchmark suite, we have also
evaluated the performance of both Captive and QEMU using
SimBench[47]. This is a targeted suite of micro-benchmarks
designed to analyze the performance of full system emulation
platforms in a number of categories, such as the performance
of the memory emulation system, control flow handling, and
translation speed (in the case of DBT-based systems).

Figure 15 shows the results of running SimBench on Cap-
tive and QEMU, in terms of speedup over QEMU. Captive
outperforms QEMU in most categories, except for code gener-
ation (Large-Blocks and Small-Blocks) and Data Fault han-
dling. Captive’s use of the host memory management systems
results in large speedups on the memory benchmarks.

3.6 Code Quality

We assess code quality by measuring the individual basic
block execution time for each block executed as part of a
benchmark. For example, consider the scatter plot in Fig-
ure 17, where we show the measured aggregated block exe-
cution times across the 429.mcf benchmark for Captive and
QEMU. In order to limit the influence of infrastructure compo-
nents of both platforms we have disabled block chaining for
both platforms. Block execution times have been measured
in the same way for both systems using the host’s rdtscp
instruction, inserted around generated native code regions
representing a guest block.

A regression line and 1:1 line are also plotted in the log-
log scale plot. Most points are above the 1:1 line, indicating

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

 1x109

 1x1010

 1x1011

 100 1000 10000 100000 1x106 1x107 1x108 1x109 1x1010

3.44x speed-up

Q
e
m

u
 (

n
s)

Our DBT (ns)

Guest Basic Blocks
Regression Line

1:1

Figure 17: Measuring code quality: accumulated execution
times of guest basic blocks from 429.mcf. Blocks compiled
by Captive execute, on average, 3.44× faster than their QEMU
counterparts.

 0

 0.5

 1

 1.5

 2

 2.5

 3

QEMU Raspberry PI 3 Our DBT AMD A1100

S
p

e
e
d

-u
p

Figure 18: Comparison of Captive against native execution
on two physical ARMv8-A platforms: Raspberry Pi 3 Model
B & AMD Opteron A1170.

that the vast majority of blocks are executed more quickly on
Captive than on QEMU. In fact, we observe a code quality
related speedup of 3.44 for this benchmark, represented by
the positive shift of the regression line along the y-axis.

Further investigation reveals that Captive emits and exe-
cutes, on average, 10 host instructions per guest instruction in
addition to any block prologue and epilogue.

3.6.1 Impact of offline optimizations

Our offline generation system has four levels of optimization
(O1–O4), although in practice we only use the maximum opti-
mization level. These optimizations directly affect the amount
of source code generated in the offline phase, where lower
levels (e.g. O1) emit longer code sequences in the generator
functions. This translates to more operations to perform at
JIT compilation time, and therefore (a) larger JIT compilation
latency, and (b) poorer code quality.

At the O1 optimization level, only function inlining is
performed, and results in the ARMv8A model comprising
271,299 lines of generated code. At O4 (where a series of ag-
gressive domain specific optimizations are performed), there
is a reduction of 56%, to 120,162 lines of generated code.

514 2019 USENIX Annual Technical Conference USENIX Association

DBT System (Year) Guest ISA Host ISA Distinct Contributions

U
se

r-
L

ev
el

D
B

T

Shade [13] (1993) SPARC/MIPS SPARC DBT, code caching, tracing
DAISY [19] (1997) RS/6000 VLIW Dyn. parallel scheduling
FX!32 [11] (1998) IA-32 Alpha profiling & static BT
UQDBT [45] (2000) IA-32 SPARC Retargetability
Dynamo [2] (2000) PA-RISC, IA-32 PA-RISC, IA-32 Same ISA Optimization
Strata [34, 35] (2001) SPARC/MIPS/IA-32 SPARC/MIPS Extensibility
Vulcan [42] (2001) IA-32, IA-64, MSIL IA-32, IA-64, MSIL Het. binaries, distr. opt.
bintrans [32] (2002) PowerPC Alpha Dynamic liveness analysis

Walkabout [12] (2002) Retargetable Retargetable Arch. Descr. Lang.
(SPARC v8) (SPARC v9) Interpreter and JIT generated

DynamoRIO [7] (2003) IA-32 IA-32 Dyn. Adapt. Optimization
QuickTransit [26] (2004) MIPS, PowerPC, SPARC IA-32, IA-64, x86-64 KVM for memory translation

Yirr-Ma [44] (2005) Retargetable Retargetable Dyn. Opt., Part. Inlining
(SPARC, IA-32, ARM, PowerPC) (SPARC, IA-32, PowerPC) Gen. from Spec.

IA-32 EL [28] (2006) IA-32 IA-64 SIMD Support
StarDBT [48] (2007) IA-32, x86-64 IA-32, x86-64 Trace lengthening
N/A [6] (2008) MIPS, VLIW x86-64 LLVM JIT Compilation
EHS [24] (2008) ARC700 IA-32 Large translation regions
Strata-ARM [30] (2009) ARM ARM, IA-32 Handling of exposed PC
ISAMAP [38] (2010) PowerPC IA-32 Arch. Descr. Language
ARCSim [5] (2011) ARC700 x86-64 Parallel JIT task farm

Harmonia [31] (2011) ARM IA-32 Reg. Map., Cond. codes
Tiered compilation

HQEMU [21] (2012) ARMv7A x86-64 Multithreaded Compilation
HERMES [55] (2015) IA-32, ARM MIPS Post-Optimization
Pydgin [29] (2015) ARM/MIPS x86-64 Meta-Tracing JIT Compiler

MAMBO-X64 [16] (2017) AArch32 AArch64
Dyn. mapping of FP regs.
Overflow address calculations
Return address prediction

HyperMAMBO-X64 [15] (2017) AArch32 AArch64 Hypervisor support
Pico [14] (2017) x86-64, AArch64 x86-64, POWER8 multicore, multi-threaded DBT

Sy
st

em
-L

ev
el

D
B

T

Embra [53] (1996) MIPS MIPS Multi-core, block chaining
MMU relocation array

Transmeta CMS [17] (2003) IA-32 Custom VLIW
Aggressive speculation
Hardware support
Adaptive recompilation

QEMU [4] (2204) Retargetable Retargetable Pseudo Instructions
MagiXen [10] IA-32 IA-64 Integration with XEN
PQEMU [18] (2011) ARM x86-64 Multi-core guest platform
LIntel [37] (2012) IA-32 Elbrus Adapt. background opt.
Captive [40] ARMv7A x86-64 VT Hardware Acceleration
HybridDBT [33] (2017) RISC-V VLIW Custom DBT Hardware

Captive Retargetable Retargetable Aggressive offline optim.
(ARMv8) (x86-64 + VT) VM & bare-metal JIT

Table 6: Related Work: Feature comparison of existing DBT systems.

Reference Guest ISA Host ISA Static/Dynamic User/System Distinct Contribution
Xu et al. [54] IA-32 IA-64 Dynamic User Compiler Metadata

Bansal and Aiken [3] PowerPC IA-32 Static User Peephole translation rules
learned by superoptimizer

Kedia and Bansal [25] x86-64 x86-64 Dynamic System Kernel-level DBT
Hawkins et al. [20] x86-64 x86-64 Dynamic User Optimization of Dyn. Gen. Code
Spink et al. [39] ARMv5T x86-64 Dynamic User Support for Dual-ISA
Wang et al. [49] IA-32 x86-64 Dynamic User Persistent code caching
Shigenobu et al. [36] ARMv7A LLVM-IR Static User ARM-to-LLVM IR
Wang et al. [50] ARMv5 x86-64 Dynamic System Learning of translation rules
Hong et al. [22] ARM NEON x86 AVX2/AVX-512 Dynamic User Short-SIMD to Long-SIMD

Table 7: Related Work: Individual compilation techniques for Binary Translation systems.

USENIX Association 2019 USENIX Annual Technical Conference 515

3.6.2 Hardware Floating-point Emulation

In contrast to QEMU, Captive utilises a hardware emulated
floating-point approach, where guest floating-point instruc-
tions are directly mapped to corresponding host floating-point
instructions, if appropriate. Any fix-ups required to maintain
bit-accuracy are performed inline, rather than calling out to
helper functions. This increases the complexity of host porta-
bility, but significantly improves performance.

To determine the effect of this, we utilised a microbench-
mark that exercised a small subset of (common) floating-point
operations, and observed a speed-up of 2.17× of Captive
(with hardware floating-point emulation) over QEMU (with
software floating-point emulation). We then replaced our
DBT’s floating-point implementation with a software-based
one (taken directly from the QEMU source-code), and ob-
served a speed-up of 1.68×. This translates to a speed-up of
1.3× within Captive itself.

3.7 Comparison to Native Execution

We also compare the performance of Captive against two
ARMv8-A hardware platforms: a Raspberry Pi 3 Model B
and an AMD Opteron A1170 based server (see Table 4). The
results of this comparison can be seen in Figure 18 and en-
able us to compare absolute performance levels in relation to
physical platforms: across the entire SPEC CPU2006 suite
Captive is about twice as fast as a 1.2GHz Cortex-A53 core
of a Raspberry Pi 3, and achieves about 40% of the perfor-
mance of a 2.0GHz Cortex-A57 core of the A1170. While
outperformed by server processors it indicates that Captive
can deliver performance sufficient for complex applications.

Finally, we compare the performance of Captive against
native execution of the benchmarks compiled for and directly
executed on the x86-64 host. Across all benchmarks we ob-
serve a speedup of 7.24 of native execution over system-level
DBT, i.e. the overhead is still substantial, but Captive has
significantly narrowed the performance gap between native
execution, and system-level DBT.

4 Related Work

Due to their versatility DBT systems have found extensive
interest in the academic community, especially since the mid-
90s. In Table 6 we compare features and highlight specific
contributions of many relevant DBT systems and techniques
presented in the academic literature. The vast majority of
existing DBT systems only provide support for user-level ap-
plications, but there also exist a number of system-level DBT
approaches to which we compare Captive. In addition, numer-
ous individual compilation techniques have been developed
specifically for binary translators. Those relevant to our work
on Captive are summarized in Table 7.

Captive is inspired by existing system-level DBT sys-
tems and we have adopted proven features while developing
novel. Like Shade [13], Embra [53], and QEMU [4] Captive
is interpreter-less and uses a basic block compiler with block
chaining and trace caching. Our binary translator, however,
is not hand-coded, but generated from a machine description.
This allows for ease-of-retargeting comparable to Pydgin [29],
but at substantially higher performance levels. Unlike Walka-
bout [12], Yirr-Ma [44], or ISAMAP [38], which similarly rely
on machine descriptions, Captive employs split compilation
and applies several optimizations offline, i.e. at module gener-
ation time, rather than relying on expensive runtime optimiza-
tions only. Instead of software emulation of floating-point
(FP) arithmetic like QEMU or unsafe FP implementation like
HQEMU [21], our FP implementation is bit-accurate, but still
leverages the host system’s FP capabilities wherever possible.
Similar to IA-32 EL [28, 54] Captive translates guest SIMD
instructions to host SIMD instructions wherever possible, but
this mapping is generalized for any guest/host architecture
pair. Like QuickTransit [26] or HyperMAMBO [15] Captive
operates as a hypervisor, but provides a full-system environ-
ment rather than hosting only a single application. Captive
shares this property with MagiXen [10], but provides full sup-
port for 64-bit guests on a 64-bit host rather than only 32-bit
guests on a 64-bit host (which avoids address space mapping
challenges introduced by same word-size system-level DBT).

5 Summary & Conclusion

In this paper we developed a novel system-level DBT hyper-
visor, which can be retargeted to new guest systems using a
high-level ADL. We combine offline and online optimizations
as well as a JIT compiler operating in a virtual bare-metal
environment with full access to the virtual host processor to
deliver performance exceeding that of conventional, manually
optimized DBT systems operating as normal user processes.
We demonstrate this using an ARMv8-A guest running a
full unmodified ARM Linux environment on an x86-64 host,
where Captive outperforms the popular QEMU DBT across
SPEC CPU2006 application benchmarks while on average
reaching 2× the performance of a 1.2GHz entry-level Cortex-
A53 or 40% of a 2.0GHz server-type Cortex-A57.

5.1 Future Work
Our future work will consider support for multi- and many-
core architectures, heterogeneous platforms, and support for
various ISA extensions, e.g. for virtualization or secure en-
claves, inside the virtualized guest system. We also plan to
investigate possibilities for synthesizing guest and host archi-
tecture descriptions in the spirit of Buchwald et al. [8], or
using existing formal specifications. We are also investigating
a tiered compilation approach, to aggressively optimize hot
code, and adding support for host retargeting, by using the
same ADL as for our guest architectures.

516 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Rodolfo Azevedo, Sandro Rigo, Marcus Bartholomeu,
Guido Araujo, Cristiano Araujo, and Edna Barros. The
ArchC architecture description language and tools. In-
ternational Journal of Parallel Programming, 33(5):
453–484, Oct 2005. ISSN 1573-7640. doi: 10.
1007/s10766-005-7301-0. URL https://doi.org/
10.1007/s10766-005-7301-0.

[2] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Baner-
jia. Dynamo: A transparent dynamic optimization sys-
tem. In Proceedings of the ACM SIGPLAN 2000 Con-
ference on Programming Language Design and Im-
plementation, PLDI ’00, pages 1–12, New York, NY,
USA, 2000. ACM. ISBN 1-58113-199-2. doi: 10.
1145/349299.349303. URL http://doi.acm.org/10.
1145/349299.349303.

[3] Sorav Bansal and Alex Aiken. Binary translation using
peephole superoptimizers. In Proceedings of the 8th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’08, pages 177–192, Berkeley,
CA, USA, 2008. USENIX Association. URL http://
dl.acm.org/citation.cfm?id=1855741.1855754.

[4] Fabrice Bellard. Qemu, a fast and portable dynamic
translator. In Proceedings of the Annual Conference
on USENIX Annual Technical Conference, ATEC ’05,
pages 41–41, Berkeley, CA, USA, 2005. USENIX Asso-
ciation. URL http://dl.acm.org/citation.cfm?
id=1247360.1247401.

[5] Igor Böhm, Tobias J.K. Edler von Koch, Stephen C.
Kyle, Björn Franke, and Nigel Topham. Generalized
just-in-time trace compilation using a parallel task farm
in a dynamic binary translator. In Proceedings of the
32Nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’11, pages
74–85, New York, NY, USA, 2011. ACM. ISBN 978-
1-4503-0663-8. doi: 10.1145/1993498.1993508. URL
http://doi.acm.org/10.1145/1993498.1993508.

[6] Florian Brandner, Andreas Fellnhofer, Andreas Krall,
and David Riegler. Fast and accurate simulation using
the LLVM compiler framework. In Workshop on Rapid
Simulation and Performance Evalution: Methods and
Tools (RAPIDO), 2008.

[7] Derek Bruening, Timothy Garnett, and Saman Amaras-
inghe. An infrastructure for adaptive dynamic opti-
mization. In Proceedings of the International Sympo-
sium on Code Generation and Optimization: Feedback-
directed and Runtime Optimization, CGO ’03, pages
265–275, Washington, DC, USA, 2003. IEEE Com-
puter Society. ISBN 0-7695-1913-X. URL http:
//dl.acm.org/citation.cfm?id=776261.776290.

[8] Sebastian Buchwald, Andreas Fried, and Sebastian Hack.
Synthesizing an instruction selection rule library from
semantic specifications. In Proceedings of the 2018
International Symposium on Code Generation and Op-
timization, CGO 2018, pages 300–313, New York, NY,
USA, 2018. ACM. ISBN 978-1-4503-5617-6. doi:
10.1145/3168821. URL http://doi.acm.org/10.
1145/3168821.

[9] Z. Cai, A. Liang, Z. Qi, L. Jiang, X. Li, H. Guan, and
Y. Chen. Performance comparison of register allo-
cation algorithms in dynamic binary translation. In
2009 International Conference on Knowledge and Sys-
tems Engineering, pages 113–119, Oct 2009. doi:
10.1109/KSE.2009.16.

[10] Matthew Chapman, Daniel J. Magenheimer, and
Parthasarathy Ranganathan. Magixen: Combining bi-
nary translation and virtualization. Technical Report
HPL-2007-77, Enterprise Systems and Software Labo-
ratory, HP Laboratories Palo Alto, 2007.

[11] Anton Chernoff, Mark Herdeg, Ray Hookway, Chris
Reeve, Norman Rubin, Tony Tye, S. Bharadwaj Ya-
davalli, and John Yates. Fx!32: A profile-directed
binary translator. IEEE Micro, 18(2):56–64, March
1998. ISSN 0272-1732. doi: 10.1109/40.671403. URL
http://dx.doi.org/10.1109/40.671403.

[12] Cristina Cifuentes, Brian Lewis, and David Ung. Walk-
about: A retargetable dynamic binary translation frame-
work. Technical report, Sun Microsystems, Inc., Moun-
tain View, CA, USA, 2002.

[13] Robert F. Cmelik and David Keppel. Shade: A fast
instruction set simulator for execution profiling. Techni-
cal report, Sun Microsystems, Inc., Mountain View, CA,
USA, 1993.

[14] Emilio G. Cota, Paolo Bonzini, Alex Bennée, and Luca P.
Carloni. Cross-isa machine emulation for multicores. In
Vijay Janapa Reddi, Aaron Smith, and Lingjia Tang,
editors, Proceedings of the 2017 International Sym-
posium on Code Generation and Optimization, CGO
2017, Austin, TX, USA, February 4-8, 2017, pages 210–
220. ACM, 2017. ISBN 978-1-5090-4931-8. URL
http://dl.acm.org/citation.cfm?id=3049855.

[15] Amanieu d’Antras, Cosmin Gorgovan, Jim Garside,
John Goodacre, and Mikel Luján. Hypermambo-x64:
Using virtualization to support high-performance trans-
parent binary translation. In Proceedings of the 13th
ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, VEE ’17, pages 228–
241, New York, NY, USA, 2017. ACM. ISBN 978-1-
4503-4948-2. doi: 10.1145/3050748.3050756. URL
http://doi.acm.org/10.1145/3050748.3050756.

USENIX Association 2019 USENIX Annual Technical Conference 517

https://doi.org/10.1007/s10766-005-7301-0
https://doi.org/10.1007/s10766-005-7301-0
http://doi.acm.org/10.1145/349299.349303
http://doi.acm.org/10.1145/349299.349303
http://dl.acm.org/citation.cfm?id=1855741.1855754
http://dl.acm.org/citation.cfm?id=1855741.1855754
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://doi.acm.org/10.1145/1993498.1993508
http://dl.acm.org/citation.cfm?id=776261.776290
http://dl.acm.org/citation.cfm?id=776261.776290
http://doi.acm.org/10.1145/3168821
http://doi.acm.org/10.1145/3168821
http://dx.doi.org/10.1109/40.671403
http://dl.acm.org/citation.cfm?id=3049855
http://doi.acm.org/10.1145/3050748.3050756

[16] Amanieu D’Antras, Cosmin Gorgovan, Jim Garside, and
Mikel Luján. Low overhead dynamic binary transla-
tion on arm. In Proceedings of the 38th ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, PLDI 2017, pages 333–346, New
York, NY, USA, 2017. ACM. ISBN 978-1-4503-4988-
8. doi: 10.1145/3062341.3062371. URL http://doi.
acm.org/10.1145/3062341.3062371.

[17] James C. Dehnert, Brian K. Grant, John P. Banning,
Richard Johnson, Thomas Kistler, Alexander Klaiber,
and Jim Mattson. The transmeta code morphing™
software: Using speculation, recovery, and adaptive re-
translation to address real-life challenges. In Proceed-
ings of the International Symposium on Code Genera-
tion and Optimization: Feedback-directed and Runtime
Optimization, CGO ’03, pages 15–24, Washington, DC,
USA, 2003. IEEE Computer Society. ISBN 0-7695-
1913-X. URL http://dl.acm.org/citation.cfm?
id=776261.776263.

[18] Jiun-Hung Ding, Po-Chun Chang, Wei-Chung Hsu, and
Yeh-Ching Chung. Pqemu: A parallel system emulator
based on qemu. In Proceedings of the 2011 IEEE 17th
International Conference on Parallel and Distributed
Systems, ICPADS ’11, pages 276–283, Washington, DC,
USA, 2011. IEEE Computer Society. ISBN 978-0-7695-
4576-9. doi: 10.1109/ICPADS.2011.102. URL https:
//doi.org/10.1109/ICPADS.2011.102.

[19] Kemal Ebcioğlu and Erik R. Altman. Daisy: Dy-
namic compilation for 100 In Proceedings of the
24th Annual International Symposium on Computer
Architecture, ISCA ’97, pages 26–37, New York, NY,
USA, 1997. ACM. ISBN 0-89791-901-7. doi: 10.
1145/264107.264126. URL http://doi.acm.org/10.
1145/264107.264126.

[20] Byron Hawkins, Brian Demsky, Derek Bruening, and
Qin Zhao. Optimizing binary translation of dynam-
ically generated code. In Proceedings of the 13th
Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’15, pages 68–78,
Washington, DC, USA, 2015. IEEE Computer Society.
ISBN 978-1-4799-8161-8. URL http://dl.acm.org/
citation.cfm?id=2738600.2738610.

[21] Ding-Yong Hong, Chun-Chen Hsu, Pen-Chung Yew,
Jan-Jan Wu, Wei-Chung Hsu, Pangfeng Liu, Chien-Min
Wang, and Yeh-Ching Chung. Hqemu: A multi-threaded
and retargetable dynamic binary translator on multicores.
In Proceedings of the Tenth International Symposium
on Code Generation and Optimization, CGO ’12, pages
104–113, New York, NY, USA, 2012. ACM. ISBN 978-
1-4503-1206-6. doi: 10.1145/2259016.2259030. URL
http://doi.acm.org/10.1145/2259016.2259030.

[22] Ding-Yong Hong, Yu-Ping Liu, Sheng-Yu Fu, Jan-Jan
Wu, and Wei-Chung Hsu. Improving simd parallelism
via dynamic binary translation. ACM Trans. Embed.
Comput. Syst., 17(3):61:1–61:27, February 2018. ISSN
1539-9087. doi: 10.1145/3173456. URL http://doi.
acm.org/10.1145/3173456.

[23] Intel. Intel xed, 2018. URL https://intelxed.
github.io/. Retrieved on 01/11/2018.

[24] Daniel Jones and Nigel Topham. High speed cpu
simulation using ltu dynamic binary translation. In
Proceedings of the 4th International Conference on
High Performance Embedded Architectures and Com-
pilers, HiPEAC ’09, pages 50–64, Berlin, Heidelberg,
2009. Springer-Verlag. ISBN 978-3-540-92989-5. doi:
10.1007/978-3-540-92990-1_6. URL http://dx.doi.
org/10.1007/978-3-540-92990-1_6.

[25] Piyus Kedia and Sorav Bansal. Fast dynamic bi-
nary translation for the kernel. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 101–115, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-2388-8. doi:
10.1145/2517349.2522718. URL http://doi.acm.
org/10.1145/2517349.2522718.

[26] Paul Knowles. Transitive and QuickTransit overview,
2008.

[27] Rajeev Krishna and Todd Austin. Efficient software
decoder design. Technical Committee on Computer
Architecture (TCCA) Newsletter, October 2001.

[28] Jianhui Li, Qi Zhang, Shu Xu, and Bo Huang. Optimiz-
ing dynamic binary translation for simd instructions. In
Proceedings of the International Symposium on Code
Generation and Optimization, CGO ’06, pages 269–280,
Washington, DC, USA, 2006. IEEE Computer Society.
ISBN 0-7695-2499-0. doi: 10.1109/CGO.2006.27. URL
http://dx.doi.org/10.1109/CGO.2006.27.

[29] D. Lockhart, B. Ilbeyi, and C. Batten. Pydgin: gener-
ating fast instruction set simulators from simple archi-
tecture descriptions with meta-tracing jit compilers. In
2015 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 256–
267, March 2015. doi: 10.1109/ISPASS.2015.7095811.

[30] Ryan W. Moore, José A. Baiocchi, Bruce R. Childers,
Jack W. Davidson, and Jason D. Hiser. Addressing
the challenges of dbt for the arm architecture. In Pro-
ceedings of the 2009 ACM SIGPLAN/SIGBED Confer-
ence on Languages, Compilers, and Tools for Embedded
Systems, LCTES ’09, pages 147–156, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-356-3. doi:
10.1145/1542452.1542472. URL http://doi.acm.
org/10.1145/1542452.1542472.

518 2019 USENIX Annual Technical Conference USENIX Association

http://doi.acm.org/10.1145/3062341.3062371
http://doi.acm.org/10.1145/3062341.3062371
http://dl.acm.org/citation.cfm?id=776261.776263
http://dl.acm.org/citation.cfm?id=776261.776263
https://doi.org/10.1109/ICPADS.2011.102
https://doi.org/10.1109/ICPADS.2011.102
http://doi.acm.org/10.1145/264107.264126
http://doi.acm.org/10.1145/264107.264126
http://dl.acm.org/citation.cfm?id=2738600.2738610
http://dl.acm.org/citation.cfm?id=2738600.2738610
http://doi.acm.org/10.1145/2259016.2259030
http://doi.acm.org/10.1145/3173456
http://doi.acm.org/10.1145/3173456
https://intelxed.github.io/
https://intelxed.github.io/
http://dx.doi.org/10.1007/978-3-540-92990-1_6
http://dx.doi.org/10.1007/978-3-540-92990-1_6
http://doi.acm.org/10.1145/2517349.2522718
http://doi.acm.org/10.1145/2517349.2522718
http://dx.doi.org/10.1109/CGO.2006.27
http://doi.acm.org/10.1145/1542452.1542472
http://doi.acm.org/10.1145/1542452.1542472

[31] Guilherme Ottoni, Thomas Hartin, Christopher Weaver,
Jason Brandt, Belliappa Kuttanna, and Hong Wang. Har-
monia: A transparent, efficient, and harmonious dy-
namic binary translator targeting the intel architecture.
In Proceedings of the 8th ACM International Con-
ference on Computing Frontiers, CF ’11, pages 26:1–
26:10, New York, NY, USA, 2011. ACM. ISBN 978-
1-4503-0698-0. doi: 10.1145/2016604.2016635. URL
http://doi.acm.org/10.1145/2016604.2016635.

[32] M. Probst, A. Krall, and B. Scholz. Register live-
ness analysis for optimizing dynamic binary transla-
tion. In Ninth Working Conference on Reverse Engi-
neering, 2002. Proceedings., pages 35–44, 2002. doi:
10.1109/WCRE.2002.1173062.

[33] S. Rokicki, E. Rohou, and S. Derrien. Hardware-
accelerated dynamic binary translation. In Design, Au-
tomation Test in Europe Conference Exhibition (DATE),
2017, pages 1062–1067, March 2017. doi: 10.23919/
DATE.2017.7927147.

[34] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W.
Davidson, and M. L. Soffa. Retargetable and reconfig-
urable software dynamic translation. In Proceedings
of the International Symposium on Code Generation
and Optimization: Feedback-directed and Runtime Op-
timization, CGO ’03, pages 36–47, Washington, DC,
USA, 2003. IEEE Computer Society. ISBN 0-7695-
1913-X. URL http://dl.acm.org/citation.cfm?
id=776261.776265.

[35] Kevin Scott and Jack Davidson. Strata: A software
dynamic translation infrastructure. Technical report,
University of Virginia, Charlottesville, VA, USA, 2001.

[36] K. Shigenobu, K. Ootsu, T. Ohkawa, and T. Yokota.
A translation method of arm machine code to llvm-
ir for binary code parallelization and optimization.
In 2017 Fifth International Symposium on Comput-
ing and Networking (CANDAR), volume 00, pages
575–579, Nov. 2018. doi: 10.1109/CANDAR.2017.
75. URL doi.ieeecomputersociety.org/10.1109/
CANDAR.2017.75.

[37] R. A. Sokolov and A. V. Ermolovich. Back-
ground optimization in full system binary transla-
tion. Programming and Computer Software, 38(3):
119–126, Jun 2012. ISSN 1608-3261. doi: 10.1134/
S0361768812030073. URL https://doi.org/10.
1134/S0361768812030073.

[38] Maxwell Souza, Daniel Nic$#225;cio, and Guido
Araújo. Isamap: Instruction mapping driven by dynamic
binary translation. In Proceedings of the 2010 Interna-
tional Conference on Computer Architecture, ISCA’10,

pages 117–138, Berlin, Heidelberg, 2012. Springer-
Verlag. ISBN 978-3-642-24321-9. doi: 10.1007/
978-3-642-24322-6_11. URL http://dx.doi.org/
10.1007/978-3-642-24322-6_11.

[39] Tom Spink, Harry Wagstaff, Björn Franke, and Nigel P
Topham. Efficient dual-isa support in a retargetable,
asynchronous dynamic binary translator. In SAMOS,
pages 103–112, 2015.

[40] Tom Spink, Harry Wagstaff, and Björn Franke.
Hardware-accelerated cross-architecture full-system vir-
tualization. ACM Trans. Archit. Code Optim., 13(4):
36:1–36:25, October 2016. ISSN 1544-3566. doi:
10.1145/2996798. URL http://doi.acm.org/10.
1145/2996798.

[41] Michael Spreitzenbarth, Thomas Schreck, Florian
Echtler, Daniel Arp, and Johannes Hoffmann. Mobile-
sandbox: Combining static and dynamic analysis with
machine-learning techniques. Int. J. Inf. Secur., 14
(2):141–153, April 2015. ISSN 1615-5262. doi:
10.1007/s10207-014-0250-0. URL http://dx.doi.
org/10.1007/s10207-014-0250-0.

[42] Amitabh Srivastava, Andrew Edwards, and Hoi
Vo. Vulcan: Binary transformation in a dis-
tributed environment. Technical report, Mi-
crosoft Research, April 2001. URL https://www.
microsoft.com/en-us/research/publication/
vulcan-binary-transformation-in-a-distributed-environment/.

[43] Henrik Theiling. Generating decision trees for decod-
ing binaries. In Proceedings of the 2001 ACM SIG-
PLAN Workshop on Optimization of Middleware and
Distributed Systems, OM ’01, pages 112–120, New York,
NY, USA, 2001. ACM. ISBN 1-58113-426-6. doi:
10.1145/384198.384213. URL http://doi.acm.org/
10.1145/384198.384213.

[44] Jens Tröger. Specification-driven dynamic binary trans-
lation. PhD thesis, Queensland University of Tech-
nology, 2005. URL https://eprints.qut.edu.au/
16007/.

[45] David Ung and Cristina Cifuentes. Machine-adaptable
dynamic binary translation. In Proceedings of the
ACM SIGPLAN Workshop on Dynamic and Adaptive
Compilation and Optimization, DYNAMO ’00, pages
41–51, New York, NY, USA, 2000. ACM. ISBN 1-
58113-241-7. doi: 10.1145/351397.351414. URL
http://doi.acm.org/10.1145/351397.351414.

[46] H. Wagstaff, M. Gould, B. Franke, and N. Topham. Early
partial evaluation in a jit-compiled, retargetable instruc-
tion set simulator generated from a high-level architec-
ture description. In 2013 50th ACM/EDAC/IEEE Design

USENIX Association 2019 USENIX Annual Technical Conference 519

http://doi.acm.org/10.1145/2016604.2016635
http://dl.acm.org/citation.cfm?id=776261.776265
http://dl.acm.org/citation.cfm?id=776261.776265
doi.ieeecomputersociety.org/10.1109/CANDAR.2017.75
doi.ieeecomputersociety.org/10.1109/CANDAR.2017.75
https://doi.org/10.1134/S0361768812030073
https://doi.org/10.1134/S0361768812030073
http://dx.doi.org/10.1007/978-3-642-24322-6_11
http://dx.doi.org/10.1007/978-3-642-24322-6_11
http://doi.acm.org/10.1145/2996798
http://doi.acm.org/10.1145/2996798
http://dx.doi.org/10.1007/s10207-014-0250-0
http://dx.doi.org/10.1007/s10207-014-0250-0
https://www.microsoft.com/en-us/research/publication/vulcan-binary-transformation-in-a-distributed-environment/
https://www.microsoft.com/en-us/research/publication/vulcan-binary-transformation-in-a-distributed-environment/
https://www.microsoft.com/en-us/research/publication/vulcan-binary-transformation-in-a-distributed-environment/
http://doi.acm.org/10.1145/384198.384213
http://doi.acm.org/10.1145/384198.384213
https://eprints.qut.edu.au/16007/
https://eprints.qut.edu.au/16007/
http://doi.acm.org/10.1145/351397.351414

Automation Conference (DAC), pages 1–6, May 2013.
doi: 10.1145/2463209.2488760.

[47] H. Wagstaff, B. Bodin, T. Spink, and B. Franke. Sim-
bench: A portable benchmarking methodology for full-
system simulators. In 2017 IEEE International Sympo-
sium on Performance Analysis of Systems and Software
(ISPASS), pages 217–226, April 2017. doi: 10.1109/
ISPASS.2017.7975293.

[48] Cheng Wang, Shiliang Hu, Ho-seop Kim, Sreekumar R.
Nair, Mauricio Breternitz, Zhiwei Ying, and Youfeng
Wu. Stardbt: An efficient multi-platform dynamic bi-
nary translation system. In Proceedings of the 12th Asia-
Pacific Conference on Advances in Computer Systems
Architecture, ACSAC’07, pages 4–15, Berlin, Heidel-
berg, 2007. Springer-Verlag. ISBN 3-540-74308-1, 978-
3-540-74308-8. URL http://dl.acm.org/citation.
cfm?id=2392163.2392166.

[49] Wenwen Wang, Pen-Chung Yew, Antonia Zhai, and
Stephen McCamant. A general persistent code caching
framework for dynamic binary translation (dbt). In Pro-
ceedings of the 2016 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC ’16, pages
591–603, Berkeley, CA, USA, 2016. USENIX Associa-
tion. ISBN 978-1-931971-30-0. URL http://dl.acm.
org/citation.cfm?id=3026959.3027013.

[50] Wenwen Wang, Stephen McCamant, Antonia Zhai, and
Pen-Chung Yew. Enhancing cross-isa dbt through au-
tomatically learned translation rules. In Proceedings
of the Twenty-Third International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS ’18, pages 84–97, New
York, NY, USA, 2018. ACM. ISBN 978-1-4503-4911-
6. doi: 10.1145/3173162.3177160. URL http://doi.
acm.org/10.1145/3173162.3177160.

[51] Zhe Wang, Jianjun Li, Chenggang Wu, Dongyan Yang,
Zhenjiang Wang, Wei-Chung Hsu, Bin Li, and Yong
Guan. Hspt: Practical implementation and efficient man-
agement of embedded shadow page tables for cross-isa
system virtual machines. In ACM SIGPLAN Notices,
volume 50, pages 53–64. ACM, 2015.

[52] Tom Warren. Microsoft built an xbox 360 emulator
to make games run on the xbox one, 2015. URL
https://www.theverge.com/2015/6/15/8785955/
microsoft-xbox-one-xbox-360-emulator-software.

[53] Emmett Witchel and Mendel Rosenblum. Embra:
Fast and flexible machine simulation. In Proceedings
of the 1996 ACM SIGMETRICS International Con-
ference on Measurement and Modeling of Computer
Systems, SIGMETRICS ’96, pages 68–79, New York,
NY, USA, 1996. ACM. ISBN 0-89791-793-6. doi:
10.1145/233013.233025. URL http://doi.acm.org/
10.1145/233013.233025.

[54] Chaohao Xu, Jianhui Li, Tao Bao, Yun Wang, and
Bo Huang. Metadata driven memory optimizations
in dynamic binary translator. In Proceedings of the
3rd International Conference on Virtual Execution En-
vironments, VEE ’07, pages 148–157, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-630-1. doi:
10.1145/1254810.1254831. URL http://doi.acm.
org/10.1145/1254810.1254831.

[55] Xiaochun Zhang, Qi Guo, Yunji Chen, Tianshi Chen,
and Weiwu Hu. Hermes: A fast cross-isa binary transla-
tor with post-optimization. In Proceedings of the 13th
Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’15, pages 246–256,
Washington, DC, USA, 2015. IEEE Computer Society.
ISBN 978-1-4799-8161-8. URL http://dl.acm.org/
citation.cfm?id=2738600.2738631.

520 2019 USENIX Annual Technical Conference USENIX Association

http://dl.acm.org/citation.cfm?id=2392163.2392166
http://dl.acm.org/citation.cfm?id=2392163.2392166
http://dl.acm.org/citation.cfm?id=3026959.3027013
http://dl.acm.org/citation.cfm?id=3026959.3027013
http://doi.acm.org/10.1145/3173162.3177160
http://doi.acm.org/10.1145/3173162.3177160
https://www.theverge.com/2015/6/15/8785955/microsoft-xbox-one-xbox-360-emulator-software
https://www.theverge.com/2015/6/15/8785955/microsoft-xbox-one-xbox-360-emulator-software
http://doi.acm.org/10.1145/233013.233025
http://doi.acm.org/10.1145/233013.233025
http://doi.acm.org/10.1145/1254810.1254831
http://doi.acm.org/10.1145/1254810.1254831
http://dl.acm.org/citation.cfm?id=2738600.2738631
http://dl.acm.org/citation.cfm?id=2738600.2738631

MTS: Bringing Multi-Tenancy to Virtual Networking

Kashyap Thimmaraju1 Saad Hermak1 Gábor Rétvári2 Stefan Schmid3

1 Technische Universität Berlin 2 BME HSNLab 3 Faculty of Computer Science, University of Vienna

Abstract

Multi-tenant cloud computing provides great benefits in
terms of resource sharing, elastic pricing, and scalability,
however, it also changes the security landscape and intro-
duces the need for strong isolation between the tenants, also
inside the network. This paper is motivated by the observa-
tion that while multi-tenancy is widely used in cloud com-
puting, the virtual switch designs currently used for net-
work virtualization lack sufficient support for tenant isola-
tion. Hence, we present, implement, and evaluate a virtual
switch architecture, MTS, which brings secure design best-
practice to the context of multi-tenant virtual networking:
compartmentalization of virtual switches, least-privilege ex-
ecution, complete mediation of all network communication,
and reducing the trusted computing base shared between ten-
ants. We build MTS from commodity components, providing
an incrementally deployable and inexpensive upgrade path
to cloud operators. Our extensive experiments, extending to
both micro-benchmarks and cloud applications, show that,
depending on the way it is deployed, MTS may produce 1.5-
2x the throughput compared to state-of-the-art, with simi-
lar or better latency and modest resource overhead (1 extra
CPU). MTS is available as open source software.

1 Introduction

Security landscape of cloud virtual networking. Datacen-
ters have become a critical infrastructure of our digital so-
ciety, and with the fast growth of data centric applications
and AI/ML workloads, dependability requirements on cloud
computing will further increase [13]. At the heart of an effi-
ciently operating datacenter lies the idea of resource sharing
and multi-tenancy: independent instances (e.g., applications
or tenants) can utilize a given infrastructure concurrently, in-
cluding the compute, storage, networking, and management
resources deployed at the data center, in a physically inte-
grated but logically isolated manner [38, 23].

At the level of the data center communication network,

isolation is provided by the network virtualization architec-
ture. Key to network virtualization is the virtual switch
(vswitch), a network component located in the Host virtual-
ization layer of the (edge) servers that connects tenants’ com-
pute and storage resources (e.g., Virtual Machines (VMs),
storage volumes, etc.), provisioned at the server, to the rest
of the data center and the public Internet [38, 33, 54].

Multi-tenancy is typically provided in this design by
(i) deploying the vswitches with the server’s Host operat-
ing system/hypervisor (e.g, Open vSwitch aka OvS [56]);
(ii) using flow-table-level isolation: the vswitch’s flow ta-
bles are divided into per-tenant logical datapaths that are
populated with sufficient flow table entries to link tenants’
data-center-bound resources into a common interconnected
workspace [38, 33, 54]; and (iii) overlay networks using a
tunneling protocol, e.g., VXLAN [73], to connect tenants’
resources into a single workspace. Alternatives to this Host-
based vswitch model [56], e.g., NIC-based vswitch solu-
tions [35, 27] and FPGA-based designs [22], share the main
trait that the logical datapaths have a common networking
substrate (vswitch).

Despite the wide-scale deployment [16, 22, 35], the level
of (logical and performance) isolation provided by vswitches
is not yet well-understood. For example, Thimmaraju et
al. [69] uncovered a serious isolation problem with a popular
virtual switch (OvS). An adversary could not only break out
of the VM and attack all applications on the Host, but could
also manifest as a worm, and compromise an entire datacen-
ter in a few minutes. Csikor et al. [15] identified a severe
performance isolation vulnerability, also in OvS, which re-
sults in a low-resource cross-tenant denial-of-service attack.
Such attacks may exacerbate concerns surrounding the secu-
rity and adoption of public clouds (that is already a major
worry across cloud users [62]).

Indeed, a closer look at the cloud virtual networking best-
practice, whereby per-tenant logical datapaths are deployed
on a single Host-based vswitch using flow-table-level iso-
lation [38, 33, 54], reveals that the current state-of-the-art
violates basically all relevant secure system design princi-

USENIX Association 2019 USENIX Annual Technical Conference 521

B
ef

or
e

A
tta

ck
A

fte
r

A
tta

ck
Tr

ad
e-

of
fs

State-of-the-art
(a)

Single vswitch VM
(b)

Multiple vswitch VM
(c)

Low Low Low

Security Performance Resource

Mid Mid Mid

Security Performance Resource Security Performance Resource

VM A Host vswitch
VMVM B VM A VM B Host vswitch

VM AVM A VM B Hostvswitch
VM B

HighHigh Mid

Figure 1: A high-level view of the tradeoffs between security, performance and resources for the state-of-the-art and MTS

ples [61, 9]. First, the principle of least privilege would re-
quire that any system component should be given only the
minimum set of privileges necessary to complete its task,
yet we see that vswitch code typically executes on the Host
with administrator, or what is worse, with full kernel privi-
lege [72, 28], even though this would not be absolutely nec-
essary (see Sec. 3). Second, untrusted user code directly in-
teracts with the vswitch and hence with the Host OS, e.g.,
it may send arbitrary packets from VMs, query statistics,
or even install flow table entries through side channels [15],
which violates the secure design principle of complete medi-
ation. But most importantly, the shared vswitch design goes
directly against the principle of the least common mecha-
nism, which would minimize the amount of resources com-
mon to more than one tenant.

Secure vswitch design. The main motivation for our work is
the observation that current virtual switch architectures are
not well-suited for multi-tenancy. This observation leads us
to revisit the fundamental design of secure vswitches. Hence,
in this paper, we present, implement, and evaluate a multi-
tenant (virtual) switch architecture, MTS, which extends the
benefits of multi-tenancy to the vswitch in a secure manner,
without imposing prohibitive resource requirements or jeop-
ardizing performance.

Fig. 1 illustrates the key idea underlying the MTS de-
sign, by showing the security-performance-resource trade-
offs for different architectures. The current vswitch architec-
ture is shown in Fig. 1(a), whereby per-tenant logical data-
paths share a common (physical or software) switch com-
ponent deployed at the Host hypervisor layer (in the rest
of this paper, we shall sometimes refer to this design point
as the “Baseline”). As we argued above, this design is
fundamentally insecure [69, 15] as it violates basic secure
design principles, like least privilege, complete mediation,
or the least common mechanism. In MTS, we address the
least privilege principle by the compartmentalization of the
vswitches (Fig. 1(b)): by moving the vswitches into a ded-
icated vswitch VM, we can prevent an attacker from com-

promising the Host via the vswitch [34]. Then, we establish
a secure communication channel between the tenant VMs
and the vswitch VM via a trusted hardware technique, Sin-
gle Root Input/Output Virtualization, or SR-IOV, a com-
mon feature implemented in most modern NICs and moth-
erboards [4, 35]. Thus, all tenant-to-tenant and tenant-Host
networking is completely mediated via the SR-IOV NIC.
Adopting Google’s extra security layer design principle [1]
which requires that between any untrusted and trusted com-
ponent, there have to be at least two distinct security bound-
aries [7, 23], we introduce a second level of isolation by mov-
ing the vswitch, deployed into the vswitch VM, to the user
space. Hence, at least two independent security mechanisms
need to fail (user-kernel separation and VM-isolation) for the
untrusted tenant code to gain access to the Host.

Interestingly, we are able to show the resultant secure
vswitch design, which we call the single vswitch VM de-
sign, does not come at the cost of performance; just the con-
trary, our evaluations show that we can considerably improve
throughput and latency, for a relatively small price in re-
sources. Finally, we introduce a “hardened” MTS design that
we call the multiple vswitch VMs design (Fig. 1(c)), whereby,
in line with the principle of the least common mechanism,
we further separate the vswitch by creating multiple sepa-
rate vswitch VMs, one for each tenant (or based on security
zones/classes). This way, we can maintain full network iso-
lation for multiple tenants.
Contributions. Our main contributions in this paper are:

• We identify requirements and design principles that can
prevent the virtual switch from being a liability to vir-
tualization in the cloud, and we carefully apply these
principles to revisit multi-tenancy in virtual networking.

• We present MTS, a secure vswitch design whereby the
vswitch is moved into a separate VM that prevents ma-
licious tenants from compromising the Host via the vir-
tual switch, and we also show a “hardened” MTS design
that also prevents compromising other tenants’ virtual

522 2019 USENIX Annual Technical Conference USENIX Association

networks through the vswitch. All our designs are in-
crementally deployable, providing an inexpensive de-
ployment experience for cloud operators.

• We report on extensive experiments with our MTS pro-
totype and we find a noteworthy improvement (1.5-2x)
in throughput compared to the Baseline, with similar or
better latency for an extra CPU. We build our prototype
from off-the-shelf commodity components and existing
software; MTS and the data from this paper are available
at:

https://www.github.com/securedataplane

Organization. We dive deeper into designing a secure
vswitch in Section 2. In Section 3 we elaborate on MTS
and report on two evaluations in Sections 4 and 5. We en-
ter a discussion of MTS in Section 6, review related work in
Section 7 and finally draw conclusions in Section 8.

2 Securing Virtual Switches

As demonstrated in previous work [15, 69], the current state-
of-the-art in virtual switch design can be exploited to not
only break network isolation, but also to break out of a virtual
machine. This motivates us to identify requirements and de-
sign principles that make virtual switches a dependable com-
ponent of the data center [68].

2.1 State-of-the-Art
Virtual networks in cloud systems using virtual switches typ-
ically follow a monolithic architecture, where a single con-
troller programs a single vswitch running in the Host OS
with per-tenant logical datapaths in the vswitch. Isolation
between tenants is at the level of flow-tables [38, 33, 54]: the
controller populates the flow tables in each per-tenant logi-
cal datapath with sufficient flow rules to connect the tenant’s
Host-based VMs to the rest of the data center and the public
Internet. Those sets of flow rules are complex: with a small
error in one rule potentially having security consequences,
e.g., making intra-tenant traffic visible to other tenants.

As shown in Table 1, nearly all vswitches are monolithic
in nature. A single vswitch is installed with flow rules for
all the tenants hosted on the respective server. This increases
the trusted computing base (TCB) of the single vswitch, as it
is responsible for Layer 2-7 of the virtual networking stack.
Next, nearly 80% of the surveyed vswitches are co-located
with the Host virtualization layer. This increases the TCB
of the server since a vswitch is a complex piece of soft-
ware, consisting of tens of thousands of lines of code. The
complexity of network virtualization is further increased by
the fact that packet processing for roughly 70% of the vir-
tual switches is spread across user space and the kernel (see
last two columns in Table 1). These concerns are partially

Table 1: Design characteristics of virtual switches.

Name Ref. Year Emphasis M
on

oli
thic

Co-L
oc

ati
on

Kern
el

User

OvS [55] 2009 Flexibility
Cisco NexusV [71] 2009 Flexibility 7
VMware vSwitch [72] 2009 Centralized

control
7

Vale [59] 2012 Performance 7
Research prototype [34] 2012 Isolation 7
Hyper-Switch [57] 2013 Performance
MS HyperV-Switch [44] 2013 Centralized

control
7

NetVM [29] 2014 Performance,
NFV

7

sv3 [65] 2014 Security 7 7
fd.io [67] 2015 Performance 7
mSwitch [28] 2015 Performance 7
BESS [8] 2015 Programmability,

NFV
7

PISCES [63] 2016 Programmability
OvS with DPDK [60] 2016 Performance 7
ESwitch [46] 2016 Performance 7
MS VFP [21] 2017 Performance,

flexibility
7

Mellanox BlueField [42] 2017 CPU offload 7
Liquid IO [52] 2017 CPU offload 7
Stingray [27] 2017 CPU offload 7
GPU-based OvS [70] 2017 Acceleration
MS AccelNet [22] 2018 Performance,

flexibility
7

Google Andromeda [16] 2018 Flexibility and
performance

7

addressed by the current industry trend towards offloading
vswitches to smart NICs [35, 52, 27, 42]. Indeed consoli-
dating the vswitch into the NIC can improve the security as
it reduces the TCB of the Host. These burgeoning architec-
tures, however, share the main trait that the per-tenant logical
datapaths are monolithic, often with full privilege and direct
access to the Host OS, which when compromised can break
network isolation and be used as a stepping-stone to the Host.

2.2 Threat Model
We assume the attacker’s goal is to either escape network
virtualization by compromising the virtual switch, or to tam-
per with other tenant’s network traffic by controlling the vir-
tual switch [69]. Hence, she can affordably rent a VM in
an Infrastructure-as-a-Service (IaaS) cloud, or has somehow
managed to compromise a VM, e.g., by exploiting a web-
server vulnerability [14]. From the VM she can send arbi-
trary packets, make arbitrary computations, and store arbi-
trary data. However, she does not have direct control to con-
figure the Host OS and hardware: all configuration access
happens through a dedicated cloud management system.

The defender is a public cloud provider who wants to pre-
vent the attacker from compromising virtual network iso-
lation; in particular, the cloud provider wants to maintain
tenant-isolation even when the vswitch is compromised. We
assume that the cloud provider already supports SR-IOV at
NICs [4, 35, 22] and the underlying virtualization and net-

USENIX Association 2019 USENIX Annual Technical Conference 523

work infrastructure is trusted, including the hypervisor layer,
NICs, firmware, drivers, core switches, and so on.

2.3 Design Principles and Security Levels

Our MTS design is based on the application of the secure
system design principles, established by Saltzer et al. [61]
(see also Bishop [9] and Colp et al. [12]), to the problem
space of virtual switches.
Least privilege vswitch. The vswitch should have the min-
imal privileges sufficient to complete its task, which is to
process packets to and from the tenant VMs. Doing so limits
the damage that can result from a system compromise or mis-
configuration. Current best-practice is, however, to run the
vswitch co-located with the Host OS and with elevated privi-
leges; prior work has shown the types and severity of attacks
that can happen when this principle fails [69]. A well-known
means to the principle of least privilege is compartmental-
ization: execute the vswitch in an isolated environment with
limited privileges and minimal access to the rest of the sys-
tem. In the next section, we will show how MTS implements
compartmentalization by committing the vswitches into one
or more dedicated vswitch VMs.
Complete mediation of tenant-to-tenant and tenant-to-
host networking. This principle requires that the network
communication between the untrusted tenants and the trusted
Host is completely mediated by a trusted intermediary to
prevent undesired communication. This principle, when
systematically applied, may go a long way towards reduc-
ing the vswitch attack surface. By channeling all network
communication between untrusted and trusted components
via a trusted intermediary (a so called reference monitor),
the communication can be validated, monitored and logged
based on security policies. In the next section, we show how
complete mediation is realized in MTS using a secure SR-
IOV channel between the tenant VMs, vswitches and Host.
Extra security boundary between the tenant and the host.
This security principle, widely deployed at Google [1], re-
quires that between any untrusted and trusted component
there has to be at least two distinct security boundaries, so at
least two independent security mechanisms need to fail for
the untrusted component to gain access to the sensitive com-
ponent [7]. We establish this extra layer of security in MTS
by moving the vswitch to user space. This also contributes to
implementing the “least privilege” principle: the user-space
vswitch can drop administrator privileges after initialization.
Least common mechanisms. This principle addresses the
amount of infrastructure shared between tenants; applied to
the context of vswitches this principle requires that the net-
work resources (code paths, configuration, caches) common
to more than one tenant should be minimized. Indeed, every
shared resource may become a covert channel [9]. Corre-
spondingly, decomposing the vswitches themselves into mul-
tiple compartments could lead to hardened vswitch designs.

Security levels. From these principles, we can obtain differ-
ent levels of security:

• Baseline: The per-tenant logical datapaths are consoli-
dated into a single physical or software vswitch that is
co-located with the Host OS.

• Level-1: Placing the vswitch in a dedicated compart-
ment provides a first level of security by protecting from
malicious tenants to compromise the Host OS via the
vswitch (“single vswitch VM” in Fig. 1b).

• Level-2: Splitting the vswitches into multiple compart-
ments (based on security zones or on a per-tenant ba-
sis) adds another level of security, by isolating tenants’
vswitches from each other (“multiple vswitch VMs” in
Fig. 1c).

• Level-3: Moving the vswitches into user space, com-
bined with Baseline or Level-1 or -2, reduces the impact
of a compromise and further reduces the attack surface.

3 The MTS Architecture

We designed MTS with secure design principles from Sec-
tion 2.3. We first provide an overview and then present our
architecture in detail.

3.1 Overview

Compartmentalization. There are many ways in which iso-
lated vswitch compartments can be implemented: full-blown
VMs, OS-level sandboxes (jails, zones, containers, plain-old
user-space processes [23], and exotic combinations of these
[36, 26]), hardware-supported enclaves (Intel’s SGX) [50, 3],
or even safe programming language compilers (Rust), run-
times (eBPF), and instruction sets (Intel MPX). For flexibil-
ity, simplicity, and ease of deployment, MTS relies on con-
ventional VMs as the main unit of compartmentalization.

VMs provide a rather strong level of isolation and are
widely supported in hardware, software, and management
systems. This in no way means that VM-based vswitches are
mandatory for MTS, just that this approach offers the high-
est flexibility for prototyping. For simplicity, Fig. 2 depicts
two vswitch compartments (Red and Blue solid boxes) run-
ning independent vswitches in their isolated VMs. The mul-
tiple compartments further reduce the common mechanisms
between the vswitch and the connected tenants, achieving
security Level-2. Security Level-1, although not depicted,
would involve only a single vswitch VM.
Complete mediation. To mediate all interactions between
untrusted tenant code and the Host OS through the vswitch,
we need a secure and high-performance communication
medium between the corresponding compartments/VMs. In

524 2019 USENIX Annual Technical Conference USENIX Association

MTS we use Single Root IO Virtualization (SR-IOV) to inter-
connect the vswitch compartments (see Figure 2).

SR-IOV is a PCI-SIG standard to make a single PCIe de-
vice, e.g., a NIC, appear as multiple PCIe devices that can
then be attached to multiple VMs. An SR-IOV device has
one or more physical functions (PFs) and one or more vir-
tual functions (VFs), where the PFs are typically attached to
the Host and the VFs to the VMs. Only the Host OS driver
has privileges to configure the PFs and VFs. The NIC driver
in the VMs in turn have restricted access to VF configura-
tion. Only via the Host, VFs and PFs can be configured with
unique MAC addresses and Vlan tags. Network communi-
cation between the PFs and VFs occurs via an L2 switch
implemented in the NIC based on the IEEE Virtual Ethernet
Bridging standard [37]. This enables Ethernet communica-
tion not only from and to the respective VMs (vswitch and
tenants) based on the destination VF’s MAC address but also
to the external networks.

Sharing the NIC SR-IOV VF driver and the Layer 2 net-
work virtualization mechanism implemented by the SR-IOV
NIC is considerably simpler than including the NIC driver
and the entire network virtualization stack (Layer 2-7) in the
TCB. Tenants already share SR-IOV NIC drivers in public
clouds [4, 35, 5]. Virtual networks can be built as we will
see next, as per-tenant user-space applications implementing
Layer 3-7 of the virtual networking stack.

Thanks to the use of SR-IOV in MTS, packets to and from
tenant VMs completely bypass the Host OS; instead, all po-
tentially malicious traffic is channeled through the trusted
hardware medium (SR-IOV NIC) to the vswitch VM(s). Fur-
thermore, using SR-IOV reduces CPU overhead and im-
proves performance (see Section 4). Finally, SR-IOV pro-
vides an attractive upgrade path towards fully offloaded,
smart-NIC based virtual networking: chip [39] and OS ven-
dors [74, 66] have been supporting SR-IOV for many years
now at a reasonable price, major cloud providers already
have SR-IOV NICs deployed in their data centers [4, 35, 5],
and, perhaps most importantly, this design choice liberates us
from having to re-implement low-level and complex network
components [34]: we can simply use any desired vswitch,
deploy it into a vswitch VM, configure and attach VFs to
route tenants’ traffic through the vswitch, and start process-
ing packets right away.
User-space packet processing. As discussed previously,
we may choose to deploy the vswitches into the vswitch
VM user-space to establish an extra security boundary be-
tween the tenant and the Host OS (Level-3 design). Thanks
to the advances in kernel bypass techniques, several high-
performance and feature-rich user-space packet process-
ing frameworks are available today, such as Netmap [58],
FD.IO [67], or Intel’s DPDK [30]. Our current design of
MTS leverages OvS with the DPDK datapath for implement-
ing the vswitches [60]. DPDK is widely supported, it has al-
ready been integrated with popular virtual switch products,

Tenant
(TRed)

Host

SR-IOV NIC Switch

PF In/Out
VF

Gw
VF

Gw
VF

T
VF

Tenant
(TBlue)

In/Out
VF

T
VF

VSRed VSBlue

Figure 2: High-level overview of MTS in security Level-2.
The Red and Blue vswitch compartments (VMs) are allo-
cated dedicated virtual functions (VFs) to communicate with
external networks using the In/Out VF, their respective ten-
ants using the Gw VF and T VF. Communication between
the vswitches, tenants and the Host physical function (PF)
are mediated via the SR-IOV NIC switch.

and extensive operational experience is available regarding
the expected performance and resource footprint [40]. Note,
however, that using DPDK and OvS is not mandatory in
MTS; in fact, thanks to the flexibility provided by our VM-
compartments and SR-IOV, we can deploy essentially any
user-space vswitch to support MTS.

3.2 Detailed Architecture
For the below discussion, we consider the operation of MTS
for one vswitch compartment and its corresponding tenant
VMs from the Level-2 design shown in Fig. 2. The case
when only a single compartment (Level-1) is used is simi-
lar in vein: the flow table entries installed into the vswitch
and the VFs attached to the vswitch compartment need to be
modified somewhat; for lack of space we do not detail the
Level-1 design any further.
Connectivity. Each vswitch VM is allocated at least one
VF (In/Out VF) for external (inter-server) connectivity and
another as a gateway (Gw VF) for vswitch-VM-to-tenant-
VM connectivity as shown in Fig. 2. Isolation between the
external and the tenant network (tenant VF shown as T VF
in the Figure) is enforced at the NIC-level by configuring
the Gw VF and the tenant VFs with a Vlan tag specific to
the tenant. Different Vlan tags are used to further isolate
the multiple vswitch compartments and their resp. tenants
on that server.

The packets between VFs/PFs in the NIC are forwarded
based on the destination MAC address and securely isolated
using Vlan tags (the same security model as provided by en-
terprise Ethernet switches). For all packets to and from the
tenant VMs to pass through the vswitch-VM, the destination
MAC address of each packet entering and leaving the NIC
needs to be accurately set, otherwise packets will not reach
the correct destination. This can be addressed by introducing
minor configuration changes to the normal operation of the
tenant and the vswitches, detailed below.
Ingress chain. Fig. 3 a illustrates the process by which
packets from an external network reach the tenant VMs. In
step 1 a packet enters the server through the NIC fabric

USENIX Association 2019 USENIX Annual Technical Conference 525

VSRed
In VF
VSRed

Dmac: VSRed
Dmac: VSRed

Vlan: 0
Gw VF
VSRed

Dmac: TRed
Vlan: 0

VF
TRed

Dmac: TRed
Vlan: 1 Dmac: TRed

TRed

VF
TRed

Dmac: Gw VFRed
Dmac: Gw VFRed

Vlan: 1

Gw VF
VSRed

Dmac: Gw VFRed
Vlan: 0

Out VF
VSRed

Dmac: TExt
Vlan: 0Dmac: TExt

VSRed

1 2 3 4 5

In
gr

es
s

E
gr

es
s

10 9 8 7 6

a

b

Figure 3: A step-by-step illustration of how packets enter and leave the Red tenant from Figure 2 in MTS. a shows how ingress
packets reach TenantRed . b shows how TenantRed packets reach an external system TenantExt .

port having the Red vswitch’s In/Out VF MAC address as the
destination MAC address (Dmac). The NIC switch will de-
liver the packet to the vswitch VM untagged (Vlan 0) in 2 .
The Red vswitch then uses the destination IP address in the
packet to identify the correct tenant VM to send the packet
to, changes the destination MAC address to that of the Red
tenant’s VF (VF TRed), and emits the packet to the Gw VF in
the NIC in 3 . This ensures accurate packet delivery to and
from tenant VMs and the complete isolation of the tenant-
vswitch traffic from other traffic instances. In 4 and 5 ,
the NIC tags the packet with the Red tenant’s specific Vlan
tag (Vlan 1 in the figure), uses the built-in switch function-
ality to make a lookup in the MAC learning table for the
Vlan, pops the Vlan tag and finally forwards the packet to
the Red tenant’s VM. The NIC forwarding process is com-
pletely transparent to the vswitch and tenant VMs, the only
downside is the extra round-trip to the NIC. Later we show
that this round-trip introduces negligible latency overhead.

Egress chain. The reverse direction shown in Fig. 3 b ,
sending a packet from the tenant VM through the vswitch
to the external network goes in similar vein. In 6 the Red
tenant VM TRed sends a packet through its VF (TRed) with the
destination MAC address set to the MAC address of the Red
tenant’s Gw VF; in the next subsection we describe two ways
to achieve this. In 7 the NIC switch tags the packet (Vlan
1), looks-up the destination MAC address which results in
sending the packet to the Gw VF. At the gateway VF 8 , the
NIC switch pops the Vlan tag and delivers the packet to the
Red vswitch VM. The vswitch receives the packet, looks up
the destination IP address, rewrites the MAC address to the
actual (external) gateway’s MAC address, and then sends the
packet out to the In/Out VF in 9 . Finally in 10 , the NIC
will in turn send the packet out the physical fabric port.

Communication between the two VMs of a single tenant
inside the server goes similarly, with the additional complex-
ity that packets now take two extra round-trips to the NIC:
once on the way from the sender VM to vswitch, and once on
the way from the vswitch to the destination VM. Again, our
evaluations in the next sections will show that the induced
latency overhead for such a traffic scenario is low.

System support. Next, we detail the modifications the cloud
operator needs to apply to the conventional vswitch setup to
support MTS. The primary requirement is to modify the cen-
tralized controllers to appropriately configure tenant specific
VFs with Vlan tags and MAC addresses, and insert correct
flow rules to ensure the vswitch-tenant connectivity. Sec-
ond, advanced multi-tenant cloud systems rely on tunneling
protocols to support L2 virtual networks. This is also sup-
ported by MTS, by modifying the flow tables to pop/insert the
appropriate headers whenever packets need to be decapsu-
lated/encapsulated. Note that after decapsulation the tunnel
id can be used in conjunction with the destination IP address
to identify the appropriate tenant VM. Third, the ARP entry
for the default gateway must be appropriately set in each ten-
ant VM so that packets from the tenant VM go to the vswitch
VM. To this end, the tenant VMs can be configured with a
static ARP entry pointing to the appropriate Gw VF, or us-
ing the centralized controller and vswitch as a proxy-ARP/
ARP-responder [47]. Finally, to prevent malicious tenants
from launching an attack on the system, the cloud opera-
tor needs to deploy security filters in the NIC. In particular,
source MAC address spoofing prevention must be enabled
on all tenant VMs’ VFs. Furthermore, flow-based wildcard
filters can also be applied in the NIC for additional secu-
rity, e.g., to drop packets not destined to the vswitch com-
partment, to prevent the Host from receiving packets from
the tenant VMs, etc. Our MTS implementation, described in
Section 4, takes care of removing the manual management
burden in applying the above steps.
Resource allocation. Additional levels of security usually
come with increased resource requirement, needed to run the
security/isolation infrastructure. Below, we describe two re-
source sharing strategies and how the VFs are allocated to
the vswitch compartments. However, due to the sheer quan-
tity and diversity in cloud setups, we restrict the discussion
to plain compute and memory resources and the number of
SR-IOV VFs for the different MTS security levels.

We consider two modes for compute and memory re-
sources. A shared mode where tenants’ vswitches share a
single physical CPU core, while in the isolated mode each
tenant’s vswitch is pinned to a different core. However, we

526 2019 USENIX Annual Technical Conference USENIX Association

assume that each vswitch compartment gets an equal share
of main memory (ram) and this is inexpensive compared to
physical CPU cores. Dedicating compute and memory re-
sources for vswitching is not uncommon among cloud op-
erators [22, 16]. Note that the shared and isolated resource
allocations are merely two ends of the resource allocation
spectrum, different sets of vswitch VMs could be allocated
resources differently, e.g., based on application or customer
requirements. In the next section we will see that the re-
source requirement for multiple vswitch VM compartments,
i.e., Level-2 alone, is not resource prohibitive in the shared
mode, however, Level-2 and Level-3 can be.

Regarding the number of SR-IOV VFs needed, the cur-
rent standard allows each SR-IOV device to have up to 64
VFs per PF. For Level-1, the total number of VFs is given by
the sum of i) the number of VFs allocated for external con-
nectivity (In/Out VF); ii) the total number of tenant-specific
gateway VFs; and iii) tenant-specific VM VFs hosted on the
server. In a basic Level-1 setup hosting 1 tenant, with 1 In/
Out VF and 1 gateway VF and 1 VF for the tenant VM, the
total VFs is 3. Similarly for 4 tenants, the total VFs is 9.
For Level-2, the total number of VFs is given by the sum of
i) the tenant-specific VFs allocated for external connectivity;
ii) the tenant-specific gateway VFs; and iii) tenant-specific
VM VFs hosted on the server. For a basic Level-2 setup
hosting 2 tenants, with 1 In/Out VF, 1 gateway VF per ten-
ant vswitch and 1 VF for each tenant VM, the total VFs is 6.
Similarly for 4 tenants, the total VFs is 12.

4 Evaluating Tradeoffs

We designed a set of experiments to empirically evaluate the
security-performance-resource tradeoff of MTS. To this end,
we measure MTS’s performance for different security lev-
els under different resource allocation strategies, in canon-
ical cloud traffic scenarios [19]. The focus is on through-
put and latency performance metrics, and physical cores and
memory for resources. In particular, the experiments serve
to verify our expectation that our design does not introduce a
considerable overhead in performance. However, we do ex-
pect the amount of resources consumed to increase; our aim
is to quantify this increase in different realistic setups.
Prototype framework. We took a programmatic ap-
proach to our design and evaluation, hence, we devel-
oped a set of primitives that can be composed to config-
ure MTS to conduct all the experiments described in this
paper. Hence, as a first step we do not consider com-
plex cloud management systems (CMS) such as Open-
Stack; this way we can conduct self-contained experiments
without the possible interference cause by a CMS. Our
framework is written in Python and currently supports OvS
and ovs-DPDK as the base virtual switch, Mellanox NIC,
and the libvirt virtualization framework. Our frame-
work and data are available on-line at the following URL:

https://www.github.com/securedataplane

Methodology. We chose a set of standard cloud traffic sce-
narios (see Fig. 4) and a fixed number of tenants (4). For
each of those scenarios, we allocated the necessary resources
(Sec. 3) and then configured the vswitch either in its default
configuration (Baseline) or one of the three security levels
(Sec. 2.3). The system was then connected in a measurement
setup to measure the one-way forwarding performance. Im-
portant details on the topology, resources, security levels and
the hardware and software used are described next.
Traffic scenarios. The three scenarios evaluated are shown
in Fig. 4. Physical-to-physical (p2p): Packets are forwarded
by the vswitch from the ingress physical port to the egress.
This is meant to shed light on basic vswitch forwarding per-
formance. Physical-to-virtual (p2v): Packets are forwarded
by the vswitch from one physical port to a tenant VM, and
then back from the tenant VM to the other physical port.
Compared to the p2p, this will show the overhead to forward
to and from the tenant VM. Virtual-to-virtual (v2v): Similar
to the p2v, however, when the packets return from the ten-
ant to the vswitch, the vswitch sends the packet to another
tenant which then sends it back to the vswitch and then out
the egress port. This scenario emulates service chains in net-
work function virtualization. Since the path length increases
from p2p to p2v to v2v, we expect the latency to increase
and the throughput to decrease when going from p2p to p2v
to v2v.
Resources. We allocated compute resources in the follow-
ing two ways. Shared: All vswitch compartments share 1
physical CPU core and their associated cache levels. Iso-
lated: Each vswitch compartment is allocated 1 physical
CPU core and their associated cache levels. In case of
the Baseline, we allocated cores proportional to the number
of vswitch compartments, e.g., 2 cores to compare with 2
vswitch VMs. For main memory, each VM (vswitch and
tenant) was allocated 4 GB of which 1 GB is reserved as
one 1GB Huge page. Similarly, for the Baseline, a propor-
tional amount of Huge pages was allocated. When using
MTS, each vswitch VM was allocated 2 In/Out VFs (1 per
physical port), and 2 appropriately Vlan tagged Gw VFs per
tenant (1 per physical port). When DPDK was used in Level-
3: one physical core needs to allocated for each ovs-DPDK
compartment (including the Baseline), hence, only the iso-
lated mode was used; all In/Out, gateway and tenant ports
connected to OvS were assigned DPDK ports (in the case
of the Baseline, the tenant port type was the dpdkvhostuser-
client [18]). All the tenant VMs got two physical cores and
two VFs, 1 per port (these are VMs the tenant would use
to run her application) so that the forwarding app (l2 f wd)
could run without being a bottleneck.
Security levels and tenants. For each resource allocation
mode, we configured our setup either in Baseline or one of
the three MTS security levels (Section 2.3). In the Base-
line and Level-1, there were 4 tenant VMs connected to the

USENIX Association 2019 USENIX Annual Technical Conference 527

NICIN OUT

VM

NICIN OUT

VMVM

NICIN OUT

p2p p2v v2v

Figure 4: Traffic scenarios evaluated.

vswitch. For Level-2, we configured 2 vswitch VMs and
each vswitch had 2 tenant VMs, and then we configured 4
vswitch VMs where each vswitch VM had 1 tenant VM. We
repeated Level-3 with Baseline, Level-1 and the two Level-2
configurations.
Setup. To accurately measure the one-way forwarding
performance (throughput and latency), we used two servers
connected to each other via 10G short range optical links.
The device under test (DUT) server was an Intel(R) Xeon(R)
CPU E5-2683 v4 @ 2.10GHz with 64 GB of RAM with the
IOMMU enabled but hyper-threading and energy efficiency
disabled, and a 2x10G Mellanox ConnectX4-LN NIC with
adaptive interrupt moderation and irq balancing disabled.
The other server was the packet/load generator (LG), sink
and monitor, with an Endace Dag 10X4-P card (which gives
us accurate and precise hardware timestamps) [20]. The link
between the LG and DUT, and DUT and sink were moni-
tored via a passive optical network tap connected to the Dag
card. Each receive stream of the Dag card was allocated
4 GB to receive packets. The Host, vswitch VM and ten-
ant VMs used the Linux kernel 4.4.0-116-generic, Mellanox
OFED linux driver 4.3-1.0.1.0, OvS-2.9.0 and DPDK 17.11.
Libvirt 1.3.1 was used with QEMU 2.5.0. In the tenant VMs,
we adapted the DPDK-17.11 l2 f wd app to rewrite the cor-
rect destination MAC address when using MTS, and used the
default l2 f wd drain-interval (100 microseconds) and burst
size (32) parameters. For the Baseline, we used the default
linux bridge in the tenant VMs as using DPDK in the tenant
without being backed by QEMU and OvS (e.g., dpdkvhos-
tuserclient) is not a recommended configuration [41]. For
network performance measurements, we used Endace dag-
5.6.0 software tools (dagflood, dagbits, and dagsnap).

4.1 Throughput

Our first performance tradeoff is evaluating the forwarding
throughput. This will shed light on the packets per second
(pps) processing performance of MTS compared to the Base-
line. It also uncovers packet loss sooner than measuring the
bandwidth [32]. We measure the aggregate throughput with
a constant stream of 64 B packets replayed at line rate (14
Mpps) by the LG and collected at the sink. Since we fixed
the number of tenants to 4, the stream of packets comprises
4 flows, each to a respective tenant VM identified by the des-
tination MAC and IP address. At the monitor we collect the

packets forwarded to report the aggregate throughput. Each
experimental run lasts for 110 seconds and measurements are
made from the 10-100 second marks.
Results. The throughput measurement data for the shared
mode is shown in Fig. 5(a). In Fig. 5(d) we can see the data
for the isolated mode and in Fig. 5(g) the data for Level-
3 in the isolated mode is shown. From Figures 5(a) and
(d) we can see that nearly always MTS had either the same
or higher aggregate throughput than the Baseline. The im-
provement in throughput is most obvious in the p2v and
v2v topologies as vswitch-to-tenant communication is via
the PCIe bus and NIC switch, which turns out to be faster
than Baseline’s memory bus and software approach. Sharing
the physical core for multiple compartments (Fig. 5(a)) in the
p2v and v2v scenarios can offer 4x isolation (Level-2 with
4 compartments) and a 2x increase in throughput (nearly
.4 Mpps and .2 Mpps) compared to the Baseline (nearly .2
Mpps and .1 Mpps).

Fig. 5(d) is noteworthy as multiple cores for vswitch VMs
and the Baseline functions as a load-balancer when isolating
the CPU cores. In the p2p scenario, the aggregate throughput
increases roughly from 1 Mpps to 2 Mpps to 4 Mpps as the
number of cores increase. We observe that MTS is slightly
more than the Baseline in the p2p, however, in the p2v and
v2v scenarios MTS offers higher aggregate throughput. As
expected, using DPDK can offer an order of magnitude bet-
ter throughput (Fig. 5(g)). In the p2p topology, we were able
to nearly reach line rate (14.4 Mpps) with four DPDK com-
partments as the packets were load-balanced across the mul-
tiple vswitch VMs, while the Baseline was able to saturate
the link with 2 cores. With MTS, the throughput saturates
(at around 2.3 Mpps) in the p2v and v2v topologies because
several ports are polled using a single core and packets have
to bounce off the NIC twice as much compared to the Base-
line where we observe nearly twice the throughput for 2 and
4 cores. Nevertheless, we can see a slight increase in the
throughput of MTS as the vswitch VMs increase, because the
number of ports per vswitch VM decreases as the number of
vswitch VMs increase. Due to the limited physical cores on
the DUT, we could not evaluate 4 vswitch VMs in the v2v
topology as it required more cores and ram than available.
Key findings. The key result here is that MTS offers in-
creasing levels of security with comparable, if not increas-
ing levels of throughput in the shared and isolated resource
modes, however, the Baseline’s throughput with user-space
packet processing (DPDK) is better than MTS.

4.2 Latency

The second performance tradeoff we evaluated was the for-
warding latency, in particular, we studied the impact of
packet size on forwarding. We selected 64B (minimum IPv4
UDP packet size), 512B (average packet), 1500B (maximum
MTU) packets and 2048B packets (small jumbo frame). As

528 2019 USENIX Annual Technical Conference USENIX Association

Figure 5: The security, throughput, latency and resource tradeoff comparison of MTS. The rows indicate the resource mode.
The columns are ordered as throughput, latency and resources. The security levels used are shown in the legend. Note the
bottom row is for security Level-3 in the isolated resource mode combined with other security levels.

in the throughput experiments, we used 4 flows, one to each
tenant. For each experimental run, we continuously sent
packets from the LG to the sink via the DUT at 10 kpps
for 30 seconds. Note that is the aggregate throughput sent
to the NIC and not to the vswitch VM. To eliminate possi-
ble warm-up effects, we only evaluated the packets from the
10-20 second mark.
Results. For brevity the latency distribution only for 64
B packets is reported here. Fig. 5(b) shows the data for the
shared mode, while Fig. 5(e) is for the isolated mode. Level-
3 latency data is shown in Fig. 5(h). Although the p2p sce-
narios shows that MTS increases the latency (Fig. 5(b), (e)
and (h)), the p2v and v2v scenarios show that MTS is slightly
faster than the Baseline. This is for two reasons. First, pack-
ets between the vswitch and the tenant VMs pass through the
SR-IOV NIC (PCIe bus) rather than a software only vswitch
(memory bus). Second, when using the Baseline the tenant
uses the Linux bridge. The exception to this can be seen with
user-space packet processing (Fig. 5(h)), where the Baseline
with a single core for dpdk (2 in total) is always faster than
MTS. As mentioned in Section. 4.1, due to resource limita-
tions we could not evaluate the 4 vswitch VMs in v2v.

The variance in latency increases as more compartments
share the same physical core (Fig. 5(b)). Isolating the

vswitch VM cores leads to more predictable latency as seen
in Fig. 5(e). When using DPDK (Fig. 5(h)) we make two
observations: i) MTS takes longer to forward packets than
without using DPDK; ii) the latency for Baseline with 2
and 4 cores for dpdk (3 and 5 in total) is unexpectedly high
(around 1 ms). Regarding the former, we conclude that MTS
with OvS and DPDK requires further tuning as we used
the default OvS-DPDK parameters for the drain interval,
batch size and huge pages: There is an inherent tradeoff be-
tween high throughput and average per-packet latency when
using a shared memory model where a core is constantly
polling [17]. For the latter, we observe that the throughput of
10 kpps is too low to drain the multiple queues on the DPDK
ports. At 100 kpps and 1 Mpps, we measured an approxi-
mately 2 microsecond latency for the p2p scenario.
Key findings. We observe that for the shared mode, and 4x
compartmentalization (Level-2), the latency is comparable
to the Baseline (p2v) with a lot of variance whereas when
isolated the latency is more predictable.

4.3 Resources

In Fig. 5(c), (f) and (i) we see the total CPU and memory
consumption for Baseline and MTS. Note that across all the

USENIX Association 2019 USENIX Annual Technical Conference 529

figures, one core and at least one Huge page is always dedi-
cated for the Host OS. In the case of the (single core) Base-
line, the vswitch (OvS) runs in the Host OS and hence shares
the Host’s core and ram. However, for the single vswitch
VM in the shared, isolated and DPDK modes, the Host OS
consumes one core and the vswitch VM consumes another
core making the total CPU cores two. Similarly, the 2 and
4 vswitch VMs in the shared mode, also consume the same
number of cores as the single vswitch VM but a linear in-
crease in ram. In the isolated mode, MTS consumes only one
extra physical core relative to the Baseline, and in DPDK,
MTS and Baseline consume equal number of cores. With re-
spect to the memory consumption, we note that MTS’s and
Baseline’s memory consumption in the isolated and DPDK
modes are the same.

Hence, we conclude that for one extra physical core, MTS
offers multiple compartments, making the shared resource
allocation economically attractive. The resource cost goes
up when user-space packet processing is introduced or isolat-
ing cores, making it relatively expensive for multiple vswitch
VMs.
Key findings. (i) High levels (2x/4x) of virtual network iso-
lation per server can be achieved with an increase in aggre-
gate throughput (2x) in the shared mode; (ii) for applications
that require low and predictable latency, vswitch compart-
ments should use the isolated mode; (iii) although user-space
packet processing using DPDK offers high throughput, it is
expensive (physical CPU and energy costs).

5 Workload-based Evaluation

We also conducted experiments with real workloads, to gain
insights on how cloud applications such as web servers and
key-value stores will perform as tenant applications are the
end hosts of the virtual networks.
Methodology. For simplicity we focus our workload-
based evaluation only on TCP applications as our previous
measurements dealt with UDP. In general, we use a similar
methodology to the one described in Section 4. For all the
TCP-based measurements, we configured the tenant VMs to
run the respective TCP server and from the client (LG) we
benchmark the server to measure the throughput and/or re-
sponse time. The topologies, resources and setup used to
make these measurements are slightly nuanced which we
highlight next.
Traffic scenarios. Only the p2v and v2v patterns are eval-
uated with workloads as we want to understand the perfor-
mance of applications hosted in the server.
Resources. The ingress and egress ports for all the traf-
fic are on the same physical NIC port unlike in the previous
section where the ingress and egress ports were on separated
physical ports of the NIC. Hence, each tenant’s vswitch VM
was given 1 VF for In/Out and 1 tagged Gw VF. Each tenant
VM was given 1 VF.

Setup. The applications generating the load are standard
TCP, Apache and Memcached benchmarking tools respec-
tively Iperf3 v3.0.11 [31], ApacheBench v2.3 (ab) [2] and
libMemcached v1.0.15 (memslap) [43]. Instead of the En-
dace card we used a similar Mellanox card at the LG.

5.1 Workloads and Results

Iperf: To compare the maximum achievable TCP through-
put, we ran Iperf clients for 100 s with a single stream from
the LG to the respective Iperf servers in the DUT’s tenant
VM. The aggregate throughput was then reported as the sum
of throughput for each client-server. We collected 5 such
measurements for each experimental configuration and re-
port the mean with 95% confidence.
Webserver: To study workloads from webservers (a very
common cloud application), we consider the open-source
Apache web server. Using the ApacheBench tool from the
LG, we benchmarked the respective tenant webservers by re-
questing a static 11.3 KB web page from four clients (one
for each webserver). Each client made up to 1,000 con-
current connections for 100 s after which we collected the
throughput and latency statistics reported by ApacheBench.
In the v2v scenario, we used only two client-servers as one of
the tenant VMs simply forwarded packets using the DPDK
l2 f wd app. We collected 5 such repetitions to finally re-
port the average throughput and latency for each experimen-
tal configuration with 95% confidence.
Key-value store: Key-value stores are also commonly used
cloud applications (e.g., with with webservers). We opted
for the open-source Memcached key-value store as it also has
an open-source benchmarking tool libMemcached-memslap.
We used the default Set/Get ratio of 90/10 for the measure-
ments. The methodology and reporting of the measurements
are the same as the webserver.
Results. The data for the Iperf measurements in the shared
mode is shown Fig. 6(a). The data for the isolated mode is
shown in Fig. 6(f) and Fig. 6(k) depicts the throughput for
Level-3. As seen in Section 4.1, here too we observe that
MTS has a higher throughput (more than 2x in the shared
mode) than the Baseline except when DPDK is used in the
v2v topology. MTS saturated the 10G link in the p2v scenario
when isolated and DPDK modes were used.

The data from the throughput measurements for the
Apache webserver and Memcached key-value store are first
reported in the shared mode in Fig. 6(b) and (c) respectively.
For the isolated mode they are shown in Fig. 6(g) and (h).
Level-3 throughput is shown in Fig. 6(l) and (m). The three
main results from the throughput measurements for Apache
and Memcached are the following. MTS can offer nearly 2x
throughput and 4x isolation (Level-2) in the shared mode.
Apache’s and Memcached’s throughput saturated with MTS:
we expected the throughput to increase as the vswitch VMs
increase when the compartments have isolated cores, how-

530 2019 USENIX Annual Technical Conference USENIX Association

B MTS
p2v

B MTS
v2v

(a)

0

2

4

6

8

10

sh
ar

ed
Ip

er
f(

G
bp

s)

B MTS
p2v

B MTS
v2v

(b)

0

5

10

15

20

25

A
pc

h
(K

R
eq

s/
s)

B MTS
p2v

B MTS
v2v

(c)

0

100

200

300

M
ch

d
(K

O
ps

/s
)

B MTS
p2v

B MTS
v2v

(d)

0

50

100

150

200

250

300

A
pc

h
re

sp
.

tim
e

(m
s)

B MTS
p2v

B MTS
v2v

(e)

0

5

10

15

20

25

M
ch

d
re

sp
.

tim
e

(m
s)

B MTS
p2v

B MTS
v2v

(f)

0

2

4

6

8

10

is
ol

at
ed

Ip
er

f(
G

bp
s)

B MTS
p2v

B MTS
v2v

(g)

0

5

10

15

20

25
A

pc
h

(K
R

eq
s/

s)

B MTS
p2v

B MTS
v2v

(h)

0

100

200

300

M
ch

d
(K

O
ps

/s
)

B MTS
p2v

B MTS
v2v

(i)

0

50

100

150

200

250

300

A
pc

h
re

sp
.

tim
e

(m
s)

B MTS
p2v

B MTS
v2v

(j)

0

5

10

15

20

25

M
ch

d
re

sp
.

tim
e

(m
s)

B MTS
p2v

B MTS
v2v

(k)

0

2

4

6

8

10

dp
dk

Ip
er

f(
G

bp
s)

B MTS
p2v

B MTS
v2v

(l)

0

5

10

15

20

25

A
pc

h
(K

R
eq

s/
s)

B MTS
p2v

B MTS
v2v

(m)

0

100

200

300

M
ch

d
(K

O
ps

/s
)

B MTS
p2v

B MTS
v2v

(n)

0

50

100

150

200

250

300

A
pc

h
re

sp
.

tim
e

(m
s)

B MTS
p2v

B MTS
v2v

(o)

0

5

10

15

20

25

M
ch

d
re

sp
.

tim
e

(m
s)

Figure 6: Iperf throughput, Apache and Memcached throughput and latency (shown in the columns) comparison of MTS. The
rows indicate the resource mode where the bottom row is for security Level-3 in the isolated resource mode combined with the
other security levels. The legend is the same as in Figure 5.

ever, we do not observe that. This is further validated when
using DPDK. Apache’s and Memcached’s throughput are
highly sensitive when the Baseline uses multiple cores in
the isolated and DPDK modes which means that using 2 or
more cores requires workload specific tuning to the Host:
the DPDK parameters, e.g., drain interval, and the workload
VMs, e.g., allocating more cores, which may not always be
necessary with MTS.

The data from the response time measurements for the
Apache webserver and Memcached key-value store are first
reported in the shared mode in Fig. 6(d) and (e) respectively.
For the isolated mode they are shown in Fig. 6(i) and (j).
Level-3 throughput is shown in Fig. 6(n) and (o). Regard-
ing the latency, we again discern that MTS can offer multiple
levels of isolation and maintain a lower response time (ap-
proximately twice as fast) than the Baseline.

Key findings. Our webserver and key-value store bench-
marks reveal that application throughput and latency of real
application are improved by MTS. However, for user-space
packet processing, the resource costs go up for a fractional
benefit in throughput or latency. Hence, biting the bullet for
shared resources, offers 4x isolation and approximately 1.5-
2x application performance compared to the Baseline.

6 Discussion

Centralized control, accounting and monitoring. MTS
introduces the possibility to realize multi-tenant virtual net-
works which can expose tenant/compartment specific inter-
faces to a logically centralized control/management plane.
This opens up possibilities for full network virtualization,
how to expose the interface, and also how to integrate MTS
into existing cloud management systems in an easy and us-
able way. Furthermore, controllers may need to manage
more device, topology and forwarding information, however,
the computations (e.g., routing) should remain the same.
From an accounting and billing perspective, we strongly be-
lieve that MTS is a new way to bill and monitor virtual net-
works at granularity more than a simple flow rule [24]: CPU,
memory and I/O for virtual networking can be charged.
SR-IOV: a double-edged sword. If an attacker can com-
promise SR-IOV, she could violate isolation and in the worst
case get access to the Host OS via the PF driver. Hence, a
rigorous security analysis of the SR-IOV standard, imple-
mentations and SR-IOV-NIC drivers can reduce the chance
of a security vulnerability. Compartmentalizing the PF driver
is a promising approach [10]. Furthermore, when a vswitch
VM is shared among tenants, performance isolation issues

USENIX Association 2019 USENIX Annual Technical Conference 531

could lead to covert channels [6] or denial-of-service at-
tacks [64, 75]. Although not yet widely supported, VM mi-
gration with SR-IOV can be introduced [45]. SR-IOV NICs
have limited VFs and MAC addresses which could limit the
scaling properties of MTS, e.g., when using containers as
compartments instead of VMs.
Evaluation limitations. The results from our experiments
are from a network and application performance perspective
using a 10 Gbps NIC. For a deeper understanding of the per-
formance improvement we obtained in this paper using SR-
IOV, further measurements are necessary, e.g., using the per-
formance monitoring unit (PMU) to collect a breakdown of
the packet processing latencies. Such an understanding is
important and relevant when dealing with data center appli-
cations that require high NIC bandwidth, e.g., 40/100 Gbps.

As described by Neugebauer et al. [48], the PCIe bus can
be a bottleneck for special data center applications (e.g., ML
applications): A typical x8 PCIe 3.0 NIC (with a maximum
payload size of 256 bytes and maximum read request of 4096
bytes) has an effective (usable) bi-directional bandwidth of
approximately 50 Gbps. Hence, the usability of MTS with
PCIe 3.0 and 8 lanes can indeed be a limitation which we
did not observe in this paper. Nevertheless, increasing the
lanes to x16 is one potential workaround to double the ef-
fective bandwidth to around 100 Gbps. Furthermore, with
chip vendors initiating PCIe 4.0 devices [11], the PCIe bus
bandwidth will increase to support intense I/O applications.

7 Related Work

There has been noteworthy research and development on
isolating multi-tenant virtual networks in cloud (datacen-
ter) networks: tunneling protocols have been standard-
ized [73, 25], multi-tenant datacenter architectures have been
proposed [38], and real cloud systems have been built by
many companies [22, 16]. However, most of the previous
work still co-locates the vswitch with the Host as we dis-
cussed in Section 2.1. Hence, here we discuss previous and
existing attempts specifically addressing the security weak-
ness of vswitches.

To the best of our knowledge, in 2012 Jin et al. [34]
(see Research prototype in Table 1) were the first to point
out the security weakness of co-locating the virtual switch
with the hypervisor. However, the proposed design, while
ahead of its time, (i) lacks a principled approach which
this paper proposes; (ii) has only a single vswitch VM
whereas MTS supports multiple vswitch compartments mak-
ing it more robust; (iii) is resource (compute and memory)
intensive as the design used shared memory between the
vswitch VM and all the tenant VMs while MTS uses an inex-
pensive interrupt-based SR-IOV network card for complete
mediation of tenant-vswitch-VM and tenant-host network-
ing; (iv) requires considerable effort, expertise and tuning to
integrate into virtualization system whereas MTS can easily

be scripted into existing cloud systems.
In 2014 Stecklina [65] followed up on this work and pro-

posed sv3, a user-space switch, which can enable multi-
tenant virtual switches (see sv3 in Table 1). sv3 adopts user-
space packet processing and also supports compartmental-
ization, i.e., the Host can run multiple vswitches. However,
it is still co-located with the Host, partially adopts the secu-
rity principles outlined in this paper, lacks support for real
cloud virtual networking, and requires changes to QEMU.
Our system on the other hand moves the vswitch out of the
Host, supports production vswitches such as OvS and does
not require any changes to QEMU.

Between 2016 and 2017, Panda et al. [51] and Neves et
al. [49] took a language-centric approach to enforce data
plane isolation for virtual networks. However, language-
centric approaches require existing vswitches to be repro-
grammed/annotated which reduces adoption. Hence the so-
lution of using compartments and SR-IOV in MTS allows
existing users to easily migrate using their existing software.
Shahbaz et al. [63] reduced the attack surface of OvS by in-
troducing support for the P4 domain specific language which
reduces potentially vulnerable protocol parsing logic.

In 2018, Pettit et al. [53] proposed to isolate virtual switch
packet processing using eBPF: which is conceptually iso-
lating potentially vulnerable parsing code in a kernel-based
runtime environment. However, the design still co-locates
the virtual switch and the runtime with the Host.

8 Conclusion

This paper was motivated by the observation that while
vswitches have been designed to enable multi-tenancy, to-
day’s vswitch designs lack strong isolation between tenant
virtual networks. Accordingly, we presented a novel vswitch
architecture which extends the benefits of multi-tenancy to
the virtual switch, offering improved isolation and perfor-
mance, at a modest additional resource cost. When used in
the shared mode (only one extra core), with four vswitch
compartments the forwarding throughput (in pps) is 1.5-2
times better than the Baseline. The tenant workloads (web-
server and key-value stores) we evaluated also receive a 1.5-2
times performance (throughput and response time) improve-
ment with MTS.

We believe that MTS is a pragmatic solution that can en-
hance the security and performance of virtual networking in
the cloud. In particular, MTS introduces a way to sched-
ule an entire core for tenant-specific network virtualization
which has three benefits: (i) application and packet process-
ing performance is improved; (ii) this could be integrated
into pricing models to appropriately charge customers on-
demand and generate revenue from virtual networking for
example; (iii) virtual network and Host isolation is main-
tained even when the vswitch is compromised.

532 2019 USENIX Annual Technical Conference USENIX Association

9 Acknowledgments

We thank our shepherd Leonid Ryzhyk and our anonymous
reviewers for their valuable feedback and comments. We
thank Ben Pfaff, Justin Pettit, Marcel Winandy, Hagen Woes-
ner, Jean-Pierre Seifert and the Security in Telecommunica-
tions (SecT) team from TU Berlin for valuable discussions
at various stages of this paper. The first author (K. T.) ac-
knowledges the financial support by the Federal Ministry of
Education and Research of Germany in the framework of the
Software Campus 2.0 project nos. 01IS17052 and 01IS1705,
and the “API Assistant” activity of EIT Digital. The third
author (G. R.) is with the MTA-BME Information Systems
Research Group.

References

[1] ALLCLAIR, T. Secure Container Isola-
tion: Problem Statement & Solution Space.
https://docs.google.com/document/d/
1QQ5u1RBDLXWvC8K3pscTtTRThsOeBSts imYEoRyw8A,
2018. Accessed: 05-01-2019.

[2] APACHE. ab - Apache HTTP server benchmark-
ing tool. https://httpd.apache.org/docs/2.2/
en/programs/ab.html. Accessed: 07-01-2019.

[3] ARNAUTOV, S., TRACH, B., GREGOR, F., KNAUTH,
T., MARTIN, A., PRIEBE, C., LIND, J., MUTHUKU-
MARAN, D., O’KEEFFE, D., STILLWELL, M. L.,
GOLTZSCHE, D., EYERS, D., KAPITZA, R., PIET-
ZUCH, P., AND FETZER, C. SCONE: Secure linux
containers with intel SGX. In Proc. Usenix Operating
Systems Design Principles (OSDI) (2016).

[4] AWS. Enhanced Networking on Linux.
https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/enhanced-networking.html, 2018.
Accessed: 24-01-2018.

[5] AZURE, M. Create a Linux virtual ma-
chine with Accelerated Networking. https:

//docs.microsoft.com/en-us/azure/virtual-
network/create-vm-accelerated-networking-

cli, 2018. Accessed: 24-01-2018.

[6] BATES, A., MOOD, B., PLETCHER, J., PRUSE, H.,
VALAFAR, M., AND BUTLER, K. On detecting co-
resident cloud instances using network flow water-
marking techniques. Springer International Journal of
Information Security (2014).

[7] BEAUPRÉ, A. Updates in container isolation. https:
//lwn.net/Articles/754433, 2018. Accessed: 09-
01-2019.

[8] BESS COMITTERS. BESS (Berkeley Extensible Soft-
ware Switch). https://github.com/NetSys/bess,
2017. Accessed: 09-05-2017.

[9] BISHOP, M. A. Introduction to computer security,
vol. 50. Addison-Wesley Boston, 2005.

[10] BOYD-WICKIZER, S., AND ZELDOVICH, N. Tolerat-
ing malicious device drivers in linux. In Proc. Usenix
Annual Technical Conference (ATC) (2010).

[11] Broadcom Samples Thor, World’s First 200G Eth-
ernet Controller with 50G PAM-4 and PCIe 4.0.
https://www.broadcom.com/company/news/
product-releases/2367107. Accessed: 06-05-
2019.

[12] COLP, P., NANAVATI, M., ZHU, J., AIELLO, W.,
COKER, G., DEEGAN, T., LOSCOCCO, P., AND
WARFIELD, A. Breaking up is hard to do: Secu-
rity and Functionality in a Commodity Hypervisor. In
Proc. ACM Symposium on Operating System Principles
(SOSP) (2011).

[13] COLUMBUS, L. Roundup Of Cloud Comput-
ing Forecasts And Market Estimates. https:

//www.forbes.com/sites/louiscolumbus/
2018/09/23/roundup-of-cloud-computing-

forecasts-and-market-estimates-2018/, 2017.
Accessed: 09-01-2019.

[14] COSTIN, A. All your cluster-grids are belong to us:
Monitoring the (in)security of infrastructure monitor-
ing systems. In Proc. IEEE Communications and Net-
work Security (CNS) (Sept 2015).

[15] CSIKOR, L., ROTHENBERG, C., PEZAROS, D. P.,
SCHMID, S., TOKA, L., AND RÉTVÁRI, G. Policy
injection: A cloud dataplane dos attack. In Proc. ACM
SIGCOMM Posters and Demos (2018).

[16] DALTON, M., SCHULTZ, D., ADRIAENS, J., ARE-
FIN, A., GUPTA, A., FAHS, B., RUBINSTEIN, D.,
ZERMENO, E. C., RUBOW, E., DOCAUER, J. A.,
ALPERT, J., AI, J., OLSON, J., DECABOOTER, K.,
DE KRUIJF, M., HUA, N., LEWIS, N., KASINAD-
HUNI, N., CREPALDI, R., KRISHNAN, S., VENKATA,
S., RICHTER, Y., NAIK, U., AND VAHDAT, A. An-
dromeda: Performance, isolation, and velocity at scale
in cloud network virtualization. In Proc. Usenix Net-
worked Systems Design and Implementation (NSDI)
(2018).

[17] DPDK. Writing Efficient Code. https:

//doc.dpdk.org/guides/prog guide/

writing efficient code.html. Accessed: 06-
01-2019.

USENIX Association 2019 USENIX Annual Technical Conference 533

https://docs.google.com/document/d/1QQ5u1RBDLXWvC8K3pscTtTRThsOeBSts_imYEoRyw8A
https://docs.google.com/document/d/1QQ5u1RBDLXWvC8K3pscTtTRThsOeBSts_imYEoRyw8A
https://httpd.apache.org/docs/2.2/en/programs/ab.html
https://httpd.apache.org/docs/2.2/en/programs/ab.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-cli
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-cli
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-cli
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-cli
https://lwn.net/Articles/754433
https://lwn.net/Articles/754433
https://github.com/NetSys/bess
https://www.broadcom.com/company/news/product-releases/2367107
https://www.broadcom.com/company/news/product-releases/2367107
https://www.forbes.com/sites/louiscolumbus/2018/09/23/roundup-of-cloud-computing-forecasts-and-market-estimates-2018/
https://www.forbes.com/sites/louiscolumbus/2018/09/23/roundup-of-cloud-computing-forecasts-and-market-estimates-2018/
https://www.forbes.com/sites/louiscolumbus/2018/09/23/roundup-of-cloud-computing-forecasts-and-market-estimates-2018/
https://www.forbes.com/sites/louiscolumbus/2018/09/23/roundup-of-cloud-computing-forecasts-and-market-estimates-2018/
https://doc.dpdk.org/guides/prog_guide/writing_efficient_code.html
https://doc.dpdk.org/guides/prog_guide/writing_efficient_code.html
https://doc.dpdk.org/guides/prog_guide/writing_efficient_code.html

[18] [PATCH] netdev-dpdk: Add new ’dpdkvhostuser-
client’ port type. https://mail.openvswitch.org/
pipermail/ovs-dev/2016-August/321742.html.
Accessed: 29-04-2019.

[19] EMMERICH, P., RAUMER, D., WOHLFART, F., AND
CARLE, G. Performance characteristics of virtual
switching. In Proc. IEEE Conference on Cloud Net-
working (2014).

[20] Endace DAG 10X4-P Datasheet. https:

//www.endace.com/dag-10x4-p-datasheet.pdf.
Accessed: 07-01-2019.

[21] FIRESTONE, D. Vfp: A virtual switch platform for
host sdn in the public cloud. In Proc. Usenix Networked
Systems Design and Implementation (NSDI) (2017),
pp. 315–328.

[22] FIRESTONE, D., PUTNAM, A., MUNDKUR, S.,
CHIOU, D., DABAGH, A., ANDREWARTHA, M.,
ANGEPAT, H., BHANU, V., CAULFIELD, A., CHUNG,
E., CHANDRAPPA, H. K., CHATURMOHTA, S.,
HUMPHREY, M., LAVIER, J., LAM, N., LIU, F.,
OVTCHAROV, K., PADHYE, J., POPURI, G., RAIN-
DEL, S., SAPRE, T., SHAW, M., SILVA, G., SIVAKU-
MAR, M., SRIVASTAVA, N., VERMA, A., ZUHAIR,
Q., BANSAL, D., BURGER, D., VAID, K., MALTZ,
D. A., AND GREENBERG, A. Azure accelerated net-
working: Smartnics in the public cloud. In Proc.
Usenix Networked Systems Design and Implementation
(NSDI) (2018).

[23] FRAZELLE, J. Hard multi-tenancy in kuber-
netes. https://blog.jessfraz.com/post/hard-
multi-tenancy-in-kubernetes, 2018. Accessed:
09-01-2019.

[24] Google Compute Engine Pricing. https:

//cloud.google.com/compute/pricing#network,
2018. Accessed: 03-01-2019.

[25] Geneve: Generic Network Virtualization Encap-
sulation. https://tools.ietf.org/html/draft-
ietf-nvo3-geneve-08. Accessed: 03-01-2019.

[26] The gVisor project. https://github.com/google/
gvisor, 2018. Accessed: 09-01-2019.

[27] GOSPODAREK, A. The Rise of SmartNICs – of-
floading dataplane traffic to...software. https://

youtu.be/AGSy51VlKaM, 2017. Open vSwitch Con-
ference.

[28] HONDA, M., HUICI, F., LETTIERI, G., AND RIZZO,
L. mswitch: a highly-scalable, modular software
switch. In Proc. ACM Symposium on SDN Research
(SOSR) (2015).

[29] HWANG, J., RAMAKRISHNAN, K., AND WOOD, T.
Netvm: high performance and flexible networking us-
ing virtualization on commodity platforms. In Proc.
Usenix Networked Systems Design and Implementation
(NSDI) (2014).

[30] INTEL. Enabling NFV to deliver on its promise.
https://www-ssl.intel.com/content/www/us/
en/communications/nfv-packet-processing-

brief.html, 2015.

[31] iPerf - The ultimate speed test tool for TCP, UDP and
SCTP. https://iperf.fr/. Accessed: 07-01-2019.

[32] JACOBSON, V. Congestion avoidance and control. In
ACM Computer Communication Review (CCR) (1988).

[33] JAIN, R., AND PAUL, S. Network virtualization and
software defined networking for cloud computing: a
survey. IEEE Communication Magazine 51, 11 (2013).

[34] JIN, X., KELLER, E., AND REXFORD, J. Virtual
switching without a hypervisor for a more secure cloud.
In Proc. USENIX Workshop on Hot Topics in Manage-
ment of Internet, Cloud, and Enterprise Networks and
Services (HotICE) (2012).

[35] JING, C. Zero-Copy Optimization for Al-
ibaba Cloud Smart NIC Solution. http:

//www.alibabacloud.com/blog/zero-copy-
optimization-for-alibaba-cloud-smart-nic-

solution 593986, 2018. Accessed: 03-01-2019.

[36] The Kata Containers project. https:

//katacontainers.io, 2018. Accessed: 09-01-
2019.

[37] KO, M., AND RECIO, R. Virtual ethernet
bridging. http://www.ieee802.org/1/files/
public/docs2009/new-hudson-vepa seminar-

20090514d.pdf. Accessed: 06-01-2019.

[38] KOPONEN, T., AMIDON, K., BALLAND, P.,
CASADO, M., CHANDA, A., FULTON, B.,
GANICHEV, I., GROSS, J., INGRAM, P., JACK-
SON, E., LAMBETH, A., LENGLET, R., LI, S.-H.,
PADMANABHAN, A., PETTIT, J., PFAFF, B.,
RAMANATHAN, R., SHENKER, S., SHIEH, A.,
STRIBLING, J., THAKKAR, P., WENDLANDT, D.,
YIP, A., AND ZHANG, R. Network virtualization in
multi-tenant datacenters. In Proc. Usenix Networked
Systems Design and Implementation (NSDI) (2014).

[39] KUTCH, P. PCI-SIG SR-IOV primer: An introduction
to SR-IOV technology. Intel application note (2011),
321211–002.

534 2019 USENIX Annual Technical Conference USENIX Association

https://mail.openvswitch.org/pipermail/ovs-dev/2016-August/321742.html
https://mail.openvswitch.org/pipermail/ovs-dev/2016-August/321742.html
https://www.endace.com/dag-10x4-p-datasheet.pdf
https://www.endace.com/dag-10x4-p-datasheet.pdf
https://blog.jessfraz.com/post/hard-multi-tenancy-in-kubernetes
https://blog.jessfraz.com/post/hard-multi-tenancy-in-kubernetes
https://cloud.google.com/compute/pricing#network
https://cloud.google.com/compute/pricing#network
https://tools.ietf.org/html/draft-ietf-nvo3-geneve-08
https://tools.ietf.org/html/draft-ietf-nvo3-geneve-08
https://github.com/google/gvisor
https://github.com/google/gvisor
https://youtu.be/AGSy51VlKaM
https://youtu.be/AGSy51VlKaM
https://www-ssl.intel.com/content/www/us/en/communications/nfv-packet-processing-brief.html
https://www-ssl.intel.com/content/www/us/en/communications/nfv-packet-processing-brief.html
https://www-ssl.intel.com/content/www/us/en/communications/nfv-packet-processing-brief.html
https://iperf.fr/
http://www.alibabacloud.com/blog/zero-copy-optimization-for-alibaba-cloud-smart-nic-solution_593986
http://www.alibabacloud.com/blog/zero-copy-optimization-for-alibaba-cloud-smart-nic-solution_593986
http://www.alibabacloud.com/blog/zero-copy-optimization-for-alibaba-cloud-smart-nic-solution_593986
http://www.alibabacloud.com/blog/zero-copy-optimization-for-alibaba-cloud-smart-nic-solution_593986
https://katacontainers.io
https://katacontainers.io
http://www.ieee802.org/1/files/public/docs2009/new-hudson-vepa_seminar-20090514d.pdf
http://www.ieee802.org/1/files/public/docs2009/new-hudson-vepa_seminar-20090514d.pdf
http://www.ieee802.org/1/files/public/docs2009/new-hudson-vepa_seminar-20090514d.pdf

[40] LÉVAI, T., PONGRÁCZ, G., MEGYESI, P., VÖRÖS,
P., LAKI, S., NÉMETH, F., AND RÉTVÁRI, G. The
Price for Programmability in the Software Data Plane:
The Vendor Perspective. IEEE J. Selected Areas in
Communications (2018).

[41] HowTo Launch VM over OVS-DPDK-17.11
Using Mellanox ConnectX-4 and ConnectX-5.
https://community.mellanox.com/s/article/
howto-launch-vm-over-ovs-dpdk-17-11-

using-mellanox-connectx-4-and-connectx-5.
Accessed: 09-01-2019.

[42] MELLANOX. Mellanox BlueField SmartNIC. https:
//bit.ly/2JaMitA, 2017. Accessed: 05-06-2018.

[43] Memcached. https://libmemcached.org/
libMemcached.html. Accessed: 07-01-2019.

[44] MICROSOFT. Hyper-V Virtual Switch Overview.
https://technet.microsoft.com/en-us/
library/hh831823(v=ws.11).aspx, 2013. Ac-
cessed: 27-01-2017.

[45] MICROSOFT. SR-IOV VF Failover and Live Migration
Support. https://docs.microsoft.com/en-us/
windows-hardware/drivers/network/sr-iov-

vf-failover-and-live-migration-support,
2017. Accessed: 03-01-2019.

[46] MOLNÁR, L., PONGRÁCZ, G., ENYEDI, G., KIS,
Z. L., CSIKOR, L., JUHÁSZ, F., KŐRÖSI, A., AND
RÉTVÁRI, G. Dataplane specialization for high-
performance openflow software switching. In Proc.
ACM SIGCOMM (2016).

[47] MULLER, A. OVS ARP Responder – Theory and
Practice. https://assafmuller.com/2014/05/21/
ovs-arp-responder-theory-and-practice/.
Accessed: 06-01-2019.

[48] NEUGEBAUER, R., ANTICHI, G., ZAZO, J. F., AU-
DZEVICH, Y., LÓPEZ-BUEDO, S., AND MOORE,
A. W. Understanding pcie performance for end host
networking. In Proc. ACM SIGCOMM (2018).

[49] NEVES, M., LEVCHENKO, K., AND BARCELLOS, M.
Sandboxing data plane programs for fun and profit. In
Proc. ACM SIGCOMM Posters and Demos (2017).

[50] PALADI, N., AND GEHRMANN, C. Sdn access control
for the masses. Elsevier Computers & Security (2019).

[51] PANDA, A., HAN, S., JANG, K., WALLS, M., RAT-
NASAMY, S., AND SHENKER, S. Netbricks: Taking
the v out of nfv. In Proc. Usenix Operating Systems
Design Principles (OSDI) (2016).

[52] PANICKER, M. Enabling Hardware Offload of OVS
Control & Data plane using LiquidIO. https://

youtu.be/qjXBRCFhbqU, 2017. Open vSwitch Con-
ference.

[53] PETTIT, J., PFAFF, B., STRINGER, J., TU, C.-C.,
BLANCO, B., AND TESSMER, A. Bringing platform
harmony to vmware nsx. ACM SIGOPS Operating Sys-
tem Review (2018).

[54] PETTIT, J., PFAFF, B., WRIGHT, C., AND VENU-
GOPAL, M. OVN, Bringing Native Virtual Net-
working to OVS. https://networkheresy.com/
2015/01/13/ovn-bringing-native-virtual-

networking-to-ovs/, 2015. Accessed: 27-01-2017.

[55] PFAFF, B. Open vSwitch: Past, Present, and Future.
http://openvswitch.org/slides/ppf.pdf, 2013.
Accessed: 27-01-2017.

[56] PFAFF, B., PETTIT, J., KOPONEN, T., JACKSON,
E., ZHOU, A., RAJAHALME, J., GROSS, J., WANG,
A., STRINGER, J., SHELAR, P., AMIDON, K., AND
CASADO, M. The design and implementation of Open
vSwitch. In Proc. Usenix Networked Systems Design
and Implementation (NSDI) (2015).

[57] RAM, K. K., COX, A. L., CHADHA, M., RIXNER,
S., AND BARR, T. Hyper-switch: A scalable software
virtual switching architecture. In Proc. Usenix Annual
Technical Conference (ATC) (2013).

[58] RIZZO, L. Netmap: a novel framework for fast packet
I/O. In Proc. Usenix Annual Technical Conference
(ATC) (2012).

[59] RIZZO, L., AND LETTIERI, G. VALE, a switched
ethernet for virtual machines. In Proc. ACM CoNEXT
(2012).

[60] ROBIN G. Open vSwitch with DPDK Overview.
https://software.intel.com/en-us/articles/
open-vswitch-with-dpdk-overview, 2016.
Accessed: 27-01-2017.

[61] SALTZER, J. H., AND SCHROEDER, M. D. The pro-
tection of information in computer systems. Proceed-
ings of the IEEE 63, 9 (1975), 1278–1308.

[62] SECURITYTWEEK. CSA’s cloud adop-
tion, practices and priorities survey report.
http://www.securityweek.com/data-security-
concerns-still-challenge, 2015. Accessed:
09-01-2019.

[63] SHAHBAZ, M., CHOI, S., PFAFF, B., KIM, C.,
FEAMSTER, N., MCKEOWN, N., AND REXFORD, J.
Pisces: A programmable, protocol-independent soft-
ware switch. In Proc. ACM SIGCOMM (2016).

USENIX Association 2019 USENIX Annual Technical Conference 535

https://community.mellanox.com/s/article/howto-launch-vm-over-ovs-dpdk-17-11-using-mellanox-connectx-4-and-connectx-5
https://community.mellanox.com/s/article/howto-launch-vm-over-ovs-dpdk-17-11-using-mellanox-connectx-4-and-connectx-5
https://community.mellanox.com/s/article/howto-launch-vm-over-ovs-dpdk-17-11-using-mellanox-connectx-4-and-connectx-5
https://bit.ly/2JaMitA
https://bit.ly/2JaMitA
https://libmemcached.org/libMemcached.html
https://libmemcached.org/libMemcached.html
https://technet.microsoft.com/en-us/library/hh831823(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831823(v=ws.11).aspx
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/sr-iov-vf-failover-and-live-migration-support
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/sr-iov-vf-failover-and-live-migration-support
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/sr-iov-vf-failover-and-live-migration-support
https://assafmuller.com/2014/05/21/ovs-arp-responder-theory-and-practice/
https://assafmuller.com/2014/05/21/ovs-arp-responder-theory-and-practice/
https://youtu.be/qjXBRCFhbqU
https://youtu.be/qjXBRCFhbqU
https://networkheresy.com/2015/01/13/ovn-bringing-native-virtual-networking-to-ovs/
https://networkheresy.com/2015/01/13/ovn-bringing-native-virtual-networking-to-ovs/
https://networkheresy.com/2015/01/13/ovn-bringing-native-virtual-networking-to-ovs/
http://openvswitch.org/slides/ppf.pdf
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview
http://www.securityweek.com/data-security-concerns-still-challenge
http://www.securityweek.com/data-security-concerns-still-challenge

[64] SMOLYAR, I., BEN-YEHUDA, M., AND TSAFRIR, D.
Securing self-virtualizing ethernet devices. In Proc.
Usenix Security Symp. (2015).

[65] STECKLINA, J. Shrinking the hypervisor one subsys-
tem at a time: A userspace packet switch for virtual
machines. In Proc. ACM SIGPLAN/SIGOPS Confer-
ence on Virtual Execution Environments (VEE) (2014).

[66] STONE, R. PCI SR-IOV on FreeBSD. https://

people.freebsd.org/~rstone/BSDCan SRIOV.pdf.
Accessed: 06-01-2019.

[67] THE FAST DATA PROJECT. What is the Fast Data
Project (FD.io)? https://fd.io/about, 2017. Ac-
cessed: 05-06-2018.

[68] THIMMARAJU, K., RÉTVÁRI, G., AND SCHMID, S.
Virtual network isolation: Are we there yet? In Proc.
ACM Workshop on Security in Softwarized Networks:
Prospects and Challenges (2018).

[69] THIMMARAJU, K., SHASTRY, B., FIEBIG, T., HET-
ZELT, F., SEIFERT, J.-P., FELDMANN, A., AND
SCHMID, S. Taking control of sdn-based cloud sys-
tems via the data plane. In Proc. ACM Symposium on
SDN Research (SOSR) (2018).

[70] TSENG, J., ET AL. Accelerating open vswitch with
integrated gpu. In Proc. ACM Workshop on Kernel-
Bypass Networks (2017).

[71] VANOVER, R. Virtual switching to become enhanced
with Cisco and VMware announcement. http:

//www.techrepublic.com/blog/data-center/
virtual-switching-to-become-enhanced-

with-cisco-and-vmware-announcement, 2008.
Accessed: 27-01-2017.

[72] VMWARE. VMware ESX 4.0 Update 1 Release Notes.
https://bit.ly/2sFTuTy, 2009. Accessed: 05-06-
2018.

[73] Virtual extensible local area network (VXLAN): A
framework for overlaying virtualized layer 2 networks
over layer 3 network. https://tools.ietf.org/
html/rfc7348. Accessed: 01-06-2016.

[74] ZHAO, Y. PCI: Linux kernel SR-IOV support. https:
//lwn.net/Articles/319651/, 2009. Accessed:
06-01-2019.

[75] ZHOU, Z., LI, Z., AND ZHANG, K. All your vms are
disconnected: Attacking hardware virtualized network.
In Proc. ACM Conference on Data and Application Se-
curity and Privacy (CODASPY) (2017).

536 2019 USENIX Annual Technical Conference USENIX Association

https://people.freebsd.org/~rstone/BSDCan_SRIOV.pdf
https://people.freebsd.org/~rstone/BSDCan_SRIOV.pdf
https://fd.io/about
http://www.techrepublic.com/blog/data-center/virtual-switching-to-become-enhanced-with-cisco-and-vmware-announcement
http://www.techrepublic.com/blog/data-center/virtual-switching-to-become-enhanced-with-cisco-and-vmware-announcement
http://www.techrepublic.com/blog/data-center/virtual-switching-to-become-enhanced-with-cisco-and-vmware-announcement
http://www.techrepublic.com/blog/data-center/virtual-switching-to-become-enhanced-with-cisco-and-vmware-announcement
https://bit.ly/2sFTuTy
https://tools.ietf.org/html/rfc7348
https://tools.ietf.org/html/rfc7348
https://lwn.net/Articles/319651/
https://lwn.net/Articles/319651/

StreamBox-TZ: Secure Stream Analytics at the Edge with TrustZone

Heejin Park1, Shuang Zhai1, Long Lu2, and Felix Xiaozhu Lin1

1Purdue ECE 2Northeastern University

Abstract
While it is compelling to process large streams of IoT data on
the cloud edge, doing so exposes the data to a sophisticated,
vulnerable software stack on the edge and hence security
threats. To this end, we advocate isolating the data and its
computations in a trusted execution environment (TEE) on
the edge, shielding them from the remaining edge software
stack which we deem untrusted.

This approach faces two major challenges: (1) executing
high-throughput, low-delay stream analytics in a single TEE,
which is constrained by a low trusted computing base (TCB)
and limited physical memory; (2) verifying execution of
stream analytics as the execution involves untrusted software
components on the edge. In response, we present StreamBox-
TZ (SBT), a stream analytics engine for an edge platform that
offers strong data security, verifiable results, and good perfor-
mance. SBT contributes a data plane designed and optimized
for a TEE based on ARM TrustZone. It supports continuous
remote attestation for analytics correctness and result fresh-
ness while incurring low overhead. SBT only adds 42.5 KB
executable to the TCB (16% of the entire TCB). On an octa
core ARMv8 platform, it delivers the state-of-the-art perfor-
mance by processing input events up to 140 MB/sec (12M
events/sec) with sub-second delay. The overhead incurred by
SBT’s security mechanism is less than 25%.

1 Introduction

Many key applications of Internet of Things (IoT) process a
large influx of sensor1 data, i.e. telemetry. Smart grid aggre-
gates power telemetry to detect supply/demand imbalance and
power disturbances [76], where a power sensor is reported to
produce up to 140 million samples per day [16,17]; oil produc-
ers monitor pump pressure, tank status, and fluid temperatures
to determine if wells work at ideal operating points [55, 60],
where an oil rig is reported to produce 1–2 TB of data per

1Recognizing that IoT data sources range from small sensors to large
equipment, we refer to them all as sensors for brevity.

Edge

TrustZone
Isolation

StreamBox-TZ

Cloud

Telemetry
Data stream

Compact results
&

Audit records

Data Plane
Trusted

Control Plane
Untrusted

Commodity libs + OS

Computations

Sensors

Figure 1: An overview of StreamBox-TZ

day [43]; manufacturers continuously monitor vibration and
ultrasonic energy of industrial equipment for detecting equip-
ment anomaly and predictive maintenance [104, 120], where
a monitored machine is reported to generate PBs of data in a
few days [77].

The large telemetry data streams must be processed in
time. The high cost and long delay in transmitting data ne-
cessitate edge processing [98, 100]: sensors send the data
to nearby gateways dubbed “cloud edge”; the edge runs a
pipeline of continuous computations to cleanse and summa-
rize the telemetry data and reports the results to cloud servers
for deeper analysis. Edge hardware is often optimized for
cost and efficiency. According to a 2018 survey [45], modern
ARM machines are typical choices for edge platforms. Such
a platform often has 2–8 CPU cores and several GB DRAM.

Unfortunately, edge processing exposes IoT data to high
security threats. i) Deployed in the wild, the edge suffers
from common IoT weaknesses, including lack of professional
supervision [58, 118], weak configurations [108, 117], and
long delays in receiving security updates [58, 114]. ii) On
the edge, the IoT data flows through a set of sophisticated
components that expose a wide attack surface. These com-
ponents include a commodity OS (e.g. Linux or Windows),
a variety of user libraries, and a runtime framework called
stream analytics engine [37, 42, 83]. They reuse much code
developed for servers and workstations. Their exploitable mis-

USENIX Association 2019 USENIX Annual Technical Conference 537

configurations [121] and vulnerabilities [23, 35, 109] are not
uncommon. iii) With data aggregated from multiple sources,
the edge is a high-value target to adversaries. For these rea-
sons, edge is even more vulnerable than sensors, which run
much simpler software with narrower attack surfaces. Once
attackers compromise the edge, they not only access confi-
dential data but also may delete or fabricate data sent to the
cloud, threatening the integrity of an entire IoT deployment.

Towards secure stream analytics on an edge platform, our
goal is to safeguard IoT data confidentiality and integrity,
support verifiable results, and ensure high throughput with low
output delay. Following the principle of least privilege [95],
we protect the analytics data and computations in a trusted
execution environment (TEE) and limit their interface; we
leave out the remaining edge software stack which we deem
untrusted. By doing so, we shrink the trusted computing base
(TCB) to only the protected functionalities, the TEE, and the
hardware. We hence significantly enhance data security.

We face three challenges: i) what functionalities should
be protected in TEE and behind what interfaces? ii) how to
execute stream analytics on a TEE’s low TCB and limited
physical memory while still delivering high throughput and
low delay? iii) as both trusted and untrusted edge components
participate in stream analytics, how to verify the outcome?

Existing solutions are inadequate: pulling entire stream
analytics engines to TEE [22, 27, 112] would result in a large
TCB with a wide attack surface; the systems securing dis-
tributed operators [53,99,124] often lack stream semantics or
optimizations for efficient execution in a single TEE, which
are crucial to the edge; only attesting TEE integrity [65] or
data lineages [50, 99, 102, 124] is inadequate for verifying
stream analytics. We will show more evidences in the paper.

Our response is StreamBox-TZ (SBT), a secure engine for
analyzing telemetry data streams. As shown in Figure 1, SBT
builds on ARM TrustZone [2] on an edge platform. SBT
contributes the following notable designs:
(1) Architecting a data plane for protection SBT provides
a data plane exposing narrow, shared-nothing interfaces to
untrusted software. SBT’s data plane encloses i) all the ana-
lytics data; ii) a new library of low-level stream algorithms
called trusted primitives as the only allowed computations
on the data; iii) key runtime functions, including memory
management and cache-coherent parallel execution of trusted
primitives. SBT leaves thread scheduling and synchronization
out of TEE.
(2) Optimizing data plane performance within a TEE In
contrast to many TEE-oblivious stream engines that operate
numerous small objects, hash tables, and generic memory
allocators [32, 82, 122], SBT embraces unconventional de-
sign decisions for its data plane. i) SBT implements trusted
primitives with array-based algorithms and contributes new
optimizations with handwritten ARMv8 vector instructions.
ii) To process high-velocity data in TEE, SBT provides a new
abstraction called uArrays, which are contiguous, virtually un-

bounded buffers for encapsulating all the analytics data; SBT
backs uArrays with on-demand paging in TEE and manages
uArrays with a specialized allocator. The allocator leverages
hints from untrusted software for compacting memory lay-
out. iii) SBT exploits TrustZone’s lesser-explored hardware
features: ingesting data straightly through trusted IO with-
out a detour through the untrusted OS; avoiding relocating
streaming data by leveraging the large virtual address space
dedicated to a TEE.
(3) Verifying edge analytics execution SBT supports cloud
verifiers to attest analytics correctness, result freshness, and
the untrusted hints received during execution. SBT captures
coarse-grained dataflows and generates audit records. A cloud
verifier replays the audit records for attestation. To mini-
mize overhead in the edge-cloud uplink bandwidth, SBT com-
presses the records with domain-specific encoding.

Our implementation of SBT supports a generic stream
model [1] with a broad arsenal of stream operators. The TCB
of SBT contains as little as 267.5 KB of executable code, of
which SBT only constitutes 16%. On an octa core ARMv8
platform, SBT processes up to 12M events (144 MB) per
second at sub-second output delays. Its throughput on this
platform is an order of magnitude higher than an SGX-based
secure stream engine running on a small x86 cluster with
richer hardware resources [53]. The security mechanisms con-
tributed by SBT incur less than 25% throughput loss with
the same output delay; decrypting ingress data, when needed,
incurs 4%–35% throughput loss with the same output delay.
While sustaining high throughput, SBT uses up to 130 MB of
physical memory in most benchmarks.

The key contributions of SBT are: i) a stream engine ar-
chitecture with strongly isolated data and a lean TCB; ii) a
data plane built from the ground up with computations and
memory management optimized for a single TrustZone-based
TEE; iii) remote attestation for stream analytics on the edge
with domain-specific compression of audit records. To our
knowledge, SBT is the first system designed and optimized
for data-intensive, parallel computations inside ARM Trust-
Zone. Beyond stream analytics, the SBT architecture should
help secure other important analytics on the edge, e.g. ma-
chine learning inference. The SBT source can be found at
http://xsel.rocks/p/streambox.

2 Background & Motivation

2.1 ARM for Cloud Edge
As typical hardware for IoT gateways [45], recent ARM plat-
forms offer competitive performance at low power, suiting
edge well. Most modern ARM cores are equipped with Trust-
Zone [2], a security extension for TEE enforcement. Trust-
Zone logically partitions a platform’s hardware resources, e.g.
DRAM and IO, into a normal (insecure) and a secure world.
CPU cores independently switch between two worlds. A TEE

538 2019 USENIX Annual Technical Conference USENIX Association

Operator
0:100:20 0:20 0:10

An event A window

0:22

(a) A stream of events flowing through an operator.

Windowing AggregationGroupBy

<power,plug,
house,time>

<window,house>
:<plug,power>

<window>
:<house,power>

Ingress Egress
(b) A simple analytics pipeline that predicts power grid loads

/* 1. Declare operators */
Ingress in(/* config info */);
Window w(1 _SECOND); GroupBy <house > gb;
Aggregation <house ,win > ag; Egress out;
/* 2. Create a pipeline. Connect operators */
Pipeline p; p.apply(in);
in.connect(w).connect(gb)

.connect(ag).connect(out);
/* 3. Execute the pipeline */
Runner r(/* config */); r.run(p);

(c) Simplified pseudo code declaring the above pipeline
Figure 2: Example stream data, operators, and a pipeline

atop TrustZone owns dedicated, trusted IO, a unique feature
that other TEE technologies such as Intel SGX [81] lack.
Trusted IO is a unique feature of ARM TrustZone, imple-
mented through hardware components including TrustZone
Address Space Controller (TZASC) and TrustZone Protec-
tion Controller (TZPC). TZASC allows privilege software to
logically partition DRAM between the normal and the secure
worlds. Similarly, TZPC allows to configure IO peripherals
accessible to either world. Any peripheral owned by the se-
cure world is completely enclosed in the secure world. We
use trusted IO to support the trusted source-edge links on the
cloud edge (§3.1).

2.2 Stream Analytics

Stream Model We target stream analytics over sensor data.
A data stream consists of sensor events that carry timestamps
defined by event occurrence, as illustrated in Figure 2(a).
Programmers specify a pipeline of continuous computations
called operators, e.g. Select and GroupBy, that are extensively
used for telemetry analytics [62, 90]. As data arrives at the
edge, a stream analytics engine ingests the data at the pipeline
ingress, pushes the data through the pipeline, and externalizes
the results at the pipeline egress.

We follow a generic stream model [14, 32, 69, 85, 122].
Operators execute on event-time scopes called windows. Data
sources emit special events called watermarks. A watermark
guarantees no subsequent events in the stream will have event
times earlier than the watermark timestamp. A pipeline’s
output delay is defined as the elapsed time starting from the
moment the ingress receives the watermark signaling the
completion of the current window to the moment the egress
externalizes the window results [82]. A pipeline may maintain
its internal states organized by windows at different operators.
See prior work [20] for a formal stream model.

Analytics example: Power load prediction Figure 2(b-c)
shows an example derived from an IoT scenario [62]: it pre-
dicts future household power loads based on power loads
reported by smart power plugs. The example pipeline ingests
a stream of power samples and groups them by 1-second fixed
windows and by houses. For each house in each window, it
aggregates all the loads and predicts the next-window load
as an exponentially weighted moving average over the re-
cent windows. At the egress, the pipeline emits a stream of
per-house load prediction for each window.

Stream analytics engines Stream pipelines are executed by
a runtime framework called a stream analytics engine [37, 42,
46,82,83,90]. A stream analytics engine consists of two types
of function: data functions for data move and computations;
control functions for resource management and computation
orchestration, e.g. creating and scheduling tasks. The bound-
ary between the two is often blurry. To amortize overheads,
control functions often organize data in batches and invoke
data functions to operate on the batches.

2.3 Security Threats & Design Objectives

The edge faces common threats in IoT deployment. i) IT ex-
pertise is weak. Edge platforms are likely managed by field
experts [58, 114, 118] rather than IT experts. Such lack of
professional supervision is known to result in weak configu-
rations [108, 117]. ii) The infrastructure is weak. Deployed in
the field, the edge often sees slow uplinks [84,114] and hence
much delayed software security updates. For cost saving, edge
analytics may need to share OS and hardware with other high-
risk, untrusted software such as web browsers [114].

Besides the common threats, existing edge software stacks
entrust IoT data with commodity OSes, analytics engines,
and language runtimes (e.g. JVM). However, these com-
ponents are incapable of offering strong security guaran-
tees due to their complexity and wide interfaces. Each
of them easily contains more than several hundreds of
KSLoC [116]. Exploitable vulnerabilities are constantly dis-
covered [3, 6, 23, 35, 38], making these components untrusted
in recent research [36, 54, 79, 80]. By exploiting these vul-
nerabilities, a local adversary as an edge user program may
compromise the kernel through the wide user/kernel inter-
faces [11, 12] or attack an analytics engine through IPC [7]; a
remote adversary, through the edge’s network services, may
compromise analytics engines [4] or the OS [10]. A successful
adversary may expose IoT data, corrupt the data, or covertly
manipulate the data. Taking the application in Figure 2(b)
as an example, the adversary gains access to the smart plug
readings, which may contain residents’ private information,
and injects fabricated data.

Objectives We aim three objectives for stream analytics over
telemetry data on an edge platform: i) confidentiality and
integrity of IoT data, raw or derived; ii) verifiable correctness

USENIX Association 2019 USENIX Annual Technical Conference 539

and freshness of the analytics results; iii) modest security
overhead and good performance.

3 Security Approach Overview

3.1 Scope

IoT scenarios We target an edge platform that captures and
analyzes telemetry data. We recognize the significance of
mission-critical IoT with tight control loops, but do not target
it. Our target scenario includes source sensors, edge platforms,
and a cloud server which we dub “cloud consumer”. All the
raw IoT data and analytics results are owned by one party. The
sensors produce trusted events, e.g. by using secure sensing
techniques [49, 73, 97]. The cloud consumer is trusted; it in-
stalls analytics pipelines to the edge and consumes the results
uploaded from the edge. We consider untrusted source-edge
links (e.g. public networks) which requires data encryption
by the source, as well as trusted source-edge links (e.g. direct
IO bus or on-premise local networks), and will evaluate the
corresponding designs (§9). We assume untrusted edge-cloud
links, which require encryption of the uploaded data.

In-scope Threats We consider malicious adversaries inter-
ested in learning IoT data, tampering with edge processing
outcome, or obstructing processing progress. We assume pow-
erful adversaries: by exploiting weak configurations or bugs
in the edge software, they already control the entire OS and
all applications on the edge.

Out-of-scope Threats We do not protect the confidentiality
of stream pipelines, in the interest of including only low-level
compute primitives in a lean TCB. We do not defend the fol-
lowing attacks. i) Attacks to non-edge components assumed
trusted above, e.g. sensors [111]. ii) Exploitation of TEE
kernel bugs [8, 9, 56]. iii) Side channel attacks: by observ-
ing hardware usage outside TEE, adversaries may learn the
properties of protected data, e.g. key skew [72]. Note that
controlled-channel attack [119] cannot be applied to ARM
TrustZone as it has separate page management within a sep-
arate secure OS unlike Intel SGX. iv) Physical attacks, e.g.
sniffing TEE’s DRAM access [18, 28]. Many of these attacks
are mitigated by prior work [39, 66, 123, 124] orthogonal to
SBT.

Note that TEE code authenticity and integrity are already
ensured by the TrustZone hardware, i.e. only code trusted by
the device vendor can run in TrustZone and its integrity is
protected by TrustZone.

3.2 Approach and Security Benefits
As shown in Figure 3, SBT protects its data functions in a
trusted data plane in TEE. SBT runs its untrusted control
plane in the normal world. The control plane invokes the data
plane through narrow, shared-nothing interfaces. The engine’s

Stream data & state

Audit
Log

Trusted
Primitives

EgressIngress

Operator
Pipeline

Worker
threads

Tr
us

te
d

U
nt

ru
st

ed

St
re

am
B

ox
-T

Z

TrustZone TEE

Job dispatch; Thread scheduling;
Synchronization; Perf monitoring…

Mem
mgmt

Libs glibc libstdc++
Boost libzmq … + OS Kernel

(D
at

a
pl

an
e)

(C
on

tro
l p

la
ne

)

Figure 3: StreamBox-TZ on an edge platform with ARM
TrustZone. Bold arrows show the protected data path.

TCB thus only consists of the TEE (including the data plane)
and the hardware.

Streaming data always flows in TEE. The data plane ingests
the data through TrustZone’s trusted IO. After ingestion, it
returns opaque references of the data batches to the control
plane. In turn, the control plane requests computations on the
protected data by invoking the data plane with the opaque
references. The data plane generates opaque references as
long, random integers. It tracks all live opaque references,
validates incoming opaque references, and only accepts ones
that exist. At the pipeline egress, the data plane encrypts,
signs, and sends the result to the cloud.

The analytics execution is continuously attested. SBT cap-
tures complete and deterministic dataflows of the stream an-
alytics as well as execution timing, and periodically reports
to the cloud server. The cloud server verifies if all ingested
data is processed according to the pipeline (correctness), and
if the edge incurs low delay (freshness).

Thwarted attacks SBT defeats the following attacks. i)
Breaking IoT data confidentiality or integrity. As the raw
and derived data enters and leaves the edge TEE through
trusted IOs, adversaries on the edge cannot touch, drop, or
inject data. When the data is off the edge transmitted over un-
trusted networks, it is protected by encryption against network-
level adversaries. ii) Breaking the data plane integrity. Any
fabricated opaque reference passed to the data plane will be
rejected, since all opaque references are validated before use.
Through the data plane’s interface, an adversary may exploit
bugs in the data plane and compromise it. By minimizing the
date plane codebase and hardening its interface, SBT substan-
tially reduces the data plane’s attack surface and potential
bugs that can be exploited. iii) Breaking analytics correct-
ness. A compromised control plane may request computations
deviating from pipeline declarations or the stream model. For
instance, it may invoke trusted computations on partial data,
wrong windows, or valid but undesirable opaque references.
SBT defeats these attacks through attestation: since the cloud
verifier possesses complete knowledge on ingested data and

540 2019 USENIX Annual Technical Conference USENIX Association

OS

Libs

Engine

(a)

OS

Libs

(c)

data plane

Control
plane

OS

Control funcs
& libs

Data funcs
& libraries

(b)

Tr
us

te
d

Un
tru

st
ed

Engine and its
libs in TEE

StreamBox-TZPartitioning
as-is

Figure 4: Among alternative architectures for
secure stream analytics, StreamBox-TZ (c)
leads to the smallest TCB and the most opti-
mized data plane. Arrows indicate data flows.

System TEE Analytics SG Compute in TEE Memory Attestation
VC3 [99] SGX Batch CIVA- Mapper/reducer Heap Data lineage
Opaque [124] SGX Batch CIVAO Query plans unreported Data lineage
EnclaveDB [91] SGX Batch CI-A- Pre-compiled queries unreported TEE integrity
SafeBricks [89] SGX Pkt proc. CI-A- Net func. operators∗ unreported TEE integrity
SecureStream [53] SGX Stream CI--- Lua programs unreported TEE integrity
StreamBox-TZ TZ Stream CIV-- Vectorized primitives∗ uArray Log replay

SG: security guarantees.
C: data confidentiality; I: data integrity; V: verifiability; A: analytics confidentiality; O: obliviousness

* TEE encloses only low-level computations; otherwise TEE encloses whole analytics.
Table 1: Comparison to existing secure processing systems

Trusted Primitives Popular Spark Streaming Operators
Sort, Merge, Segment, SumCnt,

TopK, Concat, Join, Count, Sum,
Unique, FileterBand, Median, ...

GroupByKey, Windowing, AvgPerKey, Distinct, SumByKey,
AggregateByKey, SortByKey, TopKPerKey, CountByKey,

CountByWindow, Filter, MedianByKey, TempJoin, Union, ...

Table 2: Selected trusted primitives (23 in total) and operators they constitute.
These operators cover most listed in the Spark Streaming documentation [103].

pipelines, it detects such correctness violation and rejects
the edge analytics results. iv) Attacks on analytics perfor-
mance or availability. A compromised control plane may
delay or pause invoking of trusted computations, violating
the freshness guarantee. As the execution timing of trusted
computations is attested, the cloud verifier detects the attacks
and can choose to prompt further investigation. v) Attempting
to trigger data race or deadlock. By design, data race and
deadlocks will never happen inside the data plane: the trusted
computations do not share state concurrently and all locking
happens outside of the TEE.

4 Design Overview

4.1 Challenges

Our approach raises three challenges. i) Architecting the en-
gine with a proper protection boundary. This hinges on a
key trade-off among TEE functional richness, overhead of
TEE entry/exit, and TCB size. ii) Optimizing data functions
within a TEE. Processing of high-velocity data in a TEE
strongly favors simple algorithms and compact memory. Yet,
existing stream engines often operate numerous short-lived
objects indexed in hash tables or trees [32, 69, 82, 90, 122],
e.g. for grouping events by key. They manage these ob-
jects with generic memory allocators [82] or garbage collec-
tors [87,122]. Such designs poorly fit a TEE’s small TCB and
limited DRAM portion, e.g. typically tens of MB for Trust-
Zone TEE and up to 128 MB for Intel SGX enclave [31]. iii)
Verifying stream analytics results. This requires to track un-
bounded data flows in stream pipelines, validate if operators
respect the temporal properties, e.g. windows, and minimize
the resultant overhead in execution and communication.

Why are existing systems inadequate? First, many TEE-
based systems [22, 27, 112] pull entire user applications and
libraries to the TCB, as shown in Figure 4(a). However, as
we described in Section 2.2, a modern analytics engine and
its libraries are large, complex, and potentially vulnerable.
Second, partitioning applications to suit a TEE, as shown in

Figure 4(b) [71, 93, 101], is unsuitable for existing stream
engines: partitioning does not change their hash-based data
structures and algorithms, which by design mismatch a TEE.
Similarly, recent secure processing engines disfavor partition-
ing [89, 91]. Third, recent systems use TEE to protect data in
analytics or in network packet processing. As summarized in
Table 1, they lack support for stream analytics, key computa-
tion optimizations, or specialized memory allocation, which
we will demonstrate as vital to our objective.

Attesting TEE integrity [65, 91] is insufficient to assert
analytics correctness. VC3 [99] and Opaque [124] verify cor-
rectness of batch analytics by checking the history of compute
results, i.e. their data lineage [50, 102]. Without tracking data
being continuously ingested and lacking a stream model, data
lineages cannot assert whether all ingested data is processed
according to pipeline declarations, watermarks, and temporal
windows, which are critical to stream analytics.

4.2 StreamBox-TZ in a Nutshell

SBT builds on TrustZone [2] due to ARM’s popularity for the
edge and trusted IO benefiting stream analytics (§2).

Programmability Programming SBT is similar to program-
ming commodity engines such as Spark Streaming [122] and
Flink [19]. Analytics programmers assemble pipelines with
high-level, declarative operators as exemplified in Figure 2(c).
SBT provides most of the common operators offered by com-
modity engines, as summarized in Table 2. These stream oper-
ators are widely used for analytics over telemetry data [62,90].
SBT supports User Defined Functions (UDFs) that are cer-
tified by a trusted party, which is a common requirement in
TEE-based systems [91].

SBT architecture As shown in Figure 3, SBT’s data plane
incarnates as a TrustZone module. SBT runs its control plane
as a parallel runtime in the normal world. The control plane
invokes the data plane through a narrow interface (details
in Section 9). The control plane orchestrates the execution
of analytics pipelines. It creates plentiful parallelism among
and within operators. It elastically maps the parallelism to a

USENIX Association 2019 USENIX Annual Technical Conference 541

pool of threads it maintains. At a given moment, all threads
may simultaneously execute one operator as well as different
operators over different data.
Data plane & design choices SBT’s data plane consists of
only the trusted primitives and a runtime for them.

i) Trusted primitives are stateless, single-threaded func-
tions that are oblivious to synchronization. We do not enclose
whole stream pipelines in the data plane, because a stream
pipeline must be scheduled dynamically for parallelism and
handling high-velocity data. We do not enclose whole declara-
tive operators in the data plane, because one operator instance
has internal thread-level parallelism and hence requires thread
management logic. Our choice keeps the data plane lean,
leaving out all control functions including scheduling and
threading. This contrasts to many other engines pulling whole
analytics to TEE as shown in Table 1.

Although exporting low-level primitives entails more TEE
switches, the costs are lower on modern ARM [25, 56] and
can be amortized by data batching, as will be discussed soon.

ii) The data plane incorporates minimum runtime functions:
memory management and paging, which are critical to TEE
integrity; cache coherence of parallel primitives, which is
critical to parallelism. The data plane is agnostic to declarative
operators and pipelines being executed.

For attestation, the data plane generates audit records on
data ingress/egress, watermarks, and primitive executions. It
reduces overhead via data batching and record compression.
Coping with secure memory shortage When compute cost
or data ingestion rate is high, SBT may run short of secure
memory. To avoid data loss in such a situation, SBT adds
backpressure to source sensors, slowing down data ingestion.
In the current implementation, SBT triggers backpressure
when ingestion exceeds a user-defined threshold; we leave as
future work automatic flow control, i.e. tuning the threshold
online per available secure memory and backlog.

5 Trusted Primitives and Optimizations

Parallel execution inside a TEE SBT exploits task par-
allelism without bloating the TEE with a threading library.
The control plane invokes multiple primitives from multi-
ple worker threads, which then enter the TEE to execute the
primitives in parallel. All trusted primitives share one cache-
coherent memory address space in TEE, which simplifies data
sharing and avoids copy cost. This contrasts to existing secure
analytics engines that leave task parallelism untapped in a
single TEE [53, 99].
Array-based algorithms to suit TEE Unlike many pop-
ular stream engines using hash-based algorithms for lower
algorithmic complexity, we make a new design decision. We
strongly favor algorithms with simple logic and low memory
overhead, despite that they may incur higher algorithmic com-
plexity. Corresponding to contiguous arrays as the universal

data containers in TEE, most primitives use sequential-access
algorithms over contiguous arrays, e.g. executing Merge-Sort
over event arrays and scanning the resultant array to calculate
the average value per key.

Trusted primitives and vectorization SBT’s trusted primi-
tives are generic. They constitute most declarative stream op-
erators, often referred to as Select-Projection-Join-GroupBy
(SPJG) families, shown in Table 2. These operators are con-
sidered representative in prior research [44].

To speed up the array-based algorithms inside TEE without
TCB bloat, our insight is to map their internal data parallelism
to vector instructions of ARM [21]. Despite their well-known
performance benefit, vector instructions are rarely used to
accelerate data analytics within TEEs, to our knowledge. Vec-
torization incurs low code complexity as the performance
gain comes from a CPU feature that is already part of the
TCB.

Our optimization focuses on Sort and Merge, two core
primitives that dominate the execution of stream analytics
according to our observation. Inspired by vectorized sort and
merge on x86 [26,64], we build new implementations for SBT
by hand-writing ARMv8 NEON vector instructions. Our sort
outperforms the ones in the C/C++ standard libraries by more
than 2×, as will be shown in evaluation. This optimization is
crucial to the overall engine performance.

6 TEE Memory Management

Facing high-velocity streams in a TEE, SBT’s memory al-
locator addresses two challenges: space efficiency: it must
create compact memory layout and reclaim memory timely
due to limited physical memory; lightweight: the allocator
must be simple to suit a low TCB. The challenges disqualify
popular engines that organize events in hash tables (e.g. for
grouping events by key) and rely on generic memory alloca-
tors [32, 69, 82, 90, 122]. The reasons are two: a hash table’s
principle of trading space for time mismatches TEE’s lim-
ited memory; generic allocators often feature sophisticated
optimizations, adding tens of KSLoC to TCB [41, 59].

SBT specializes memory management for stream computa-
tions: it supports unbounded buffers as the universal memory
abstraction (§6.1); it places data by using (untrusted) con-
sumption hints and large virtual address space (§6.2).

6.1 Unbounded Array

We devise contiguous, virtually unbounded arrays called uAr-
rays, a new abstraction as the universal data containers used
by computations in TEE. uArrays encapsulate all the data in
a pipeline, including data flowing among trusted primitives
as well as operator states traditionally kept in hash tables.

An uArray is an append-only buffer in a contiguous mem-
ory region for same-type data objects. Their lifecycles closely

542 2019 USENIX Annual Technical Conference USENIX Association

map to the producer/consumer pattern in streaming compu-
tations. One uArray can be in three states. Open: after an
uArray is created, it dynamically grows as the producer primi-
tive appends data objects to it. Produced: the data production
completes and the end position of the uArray is finalized. uAr-
ray becomes read-only and no data can be appended. Retired:
the uArray is no longer needed and its memory is subject to
reclamation. The memory allocator places and reclaims uAr-
rays regarding their states, as will be discussed in Section 6.2.

Types uArrays fall into different types depending on their
scopes and enclosed data. A streaming uArray encapsulates
data flowing from a producer primitive to a consumer primi-
tive. A state uArray encapsulates operator state that outlives
the lifespans of individual primitives. A temporary uArray
live within a trusted primitive’s scope.

Low abstraction overhead An uArray spans a contiguous
virtual memory region and grows transparently. The growth
is backed by the data plane’s on-demand paging that com-
pletely happens in the TEE. For most of the time, growing an
uArray only requires updating an integer index. Compared to
manually managed buffers, this mechanism waives bounds
checking of uArray in computation code and hence allows the
compiler to generate more compact loops. uArrays always
grow in place. This contrasts to common sequence containers
(e.g. C++ std::vector and java.util.ArrayList) that grow
transparently but require expensive relocation. We will exper-
imentally compare uArray with std::vector in Section 9.

6.2 Placing uArrays in uGroups

Co-locating uArrays The memory allocator co-locates mul-
tiple uArrays as a uGroup in order to reclaim them con-
secutively. Spanning a contiguous virtual memory region,
a uGroup consists of multiple produced or retired uArrays
and optionally an open uArray at its end, as shown in Figure 5.
The grouping is purely physical: it is at the discretion of the
allocator, orthogonal to stream computations, and therefore
transparent to the trusted primitives and the control plane.

openproducedretired

GrowReclaim
Figure 5: The uArrays in
one uGroup

With the grouping, the alloca-
tor reclaims consumed uArrays
by always starting from the be-
ginning of an uGroup, as shown
in Figure 5. To place a new uAr-
ray, the allocator decides whether
to create a new uGroup for the uArray, or append the uArray
to an existing uGroup. In doing so, the allocator seeks to i)
ensure that each uGroup holds a sequence of uArrays to be
consumed consecutively in the future; ii) minimize the total
number of live uGroups, in order to compact TEE memory
layout and minimizes the cost in tracking uGroups. To this
end, our key is to guide placement with the control plane’s
data consumption plan, as will be presented below.

Consumption hints Upon invoking a trusted primitive T ,

the control plane may provide two optional hints concerning
the future consumption order for the output of T :
• Consumed-in-parallel (‖k): the control plane will schedule
k worker threads to consume a set of uArrays in parallel.
• Consumed-after (b1⇐b2): the control plane will schedule
worker threads for consuming uArray b2 after uArray b1. The
consumed-after relation is transitive. uArrays may form mul-
tiple consumed-after chains.

The control plane may specify these relations between new
output uArrays (yet to be created) and existing uArrays.

Hint-guided placement The hints assist the data plane to
generate compact memory layout and reclaim memory effec-
tively. Upon allocating a uArray, the allocator examines the
existing hints regarding to the uArray.
(⇐) prompts the allocator to place the uArrays on the same
consumed-after chain in the same uGroup. Starting from the
new uArray b under question, the allocator tracks back on its
consumed-after chain, and places b after the first uArray that
is both in state produced (i.e. its growth has finished) and is
located at the end of an uGroup. If no such uArray is available
on the chain, the allocator creates a new uGroup for b.
(‖k) prompts the allocator to place uArrays b1..k in separate
uGroups, so that delay in consuming any of the uArrays will
not block the allocator from reclaiming the other uArrays. Our
rationale is that despite b1..k are created at the same time, they
are often consumed at different moments in the future: i) since
SBT’s control plane threads independently fetch new uArrays
for processing as they become available (§4), the starting mo-
ments for processing b1..k may vary widely, especially when
the engine load is high; ii) even when k worker threads start
processing b1..k simultaneously, straggling workers are not
uncommon, due to non-determinism of a modern multicore’s
thread scheduling and memory hierarchy [24].

The impacts of misleading hints SBT detects misleading
hints in retrospect through remote attestation (§7). As the
hints only affect TEE memory placement policy on the edge,
misleading hints never result in data loss (§4.2) or violation
of data security and TEE integrity. Yet, such hints may slow
down analytics and therefore violate result freshness.

Managing virtual addresses All uGroups grow in place
within one virtual address space. To avoid collision and ex-
pensive relocation, the allocator places them far apart by lever-
aging the large virtual address space dedicated to a TrustZone
TEE. The space is 256TB on ARMv8, 10,000× larger than
the physical DRAM (a few GBs). Hence, the allocator simply
reserves for each uGroup a virtual address range as large as the
total TEE DRAM. We will validate this choice in Section 9.

7 Attestation for Correctness and Freshness

SBT collects evidences for cloud consumers to verify two
properties: correctness, i.e. all ingested data is processed ac-

USENIX Association 2019 USENIX Annual Technical Conference 543

Field Description Length
Ts Data plane timestamp 32 bits
Op Primitive type, including ingress/egress 16 bits
WinNo Monotonic window sequence number 16 bits
Data An uArray ID or a watermark value 32 bits
Hint An optional consumption hint 64 bits
Count Number of data/hint fields that follow 16 bits
In/Egress Op Ts Data

Op Ts Data WinNo Data

Op Ts Cnt Data… Cnt Data… Cnt Hints...

Windowing

Execution

Figure 6: Audit records: fields (top) and layout (bottom)

cording to the stream pipeline declaration; freshness, i.e. the
pipeline has low output delays.

The above objective has several notable aspects. i) We
verify the behaviors of untrusted control plane, i.e., which
primitives it invokes on what data and at what time. We do
not verify trusted primitives, e.g. if a Sort primitive indeed pro-
duces ordered data. ii) Verifying data lineages at the pipeline’s
intermediate operators or egress [50, 102] is insufficient to
guarantee correctness, i.e. all data ingested so far is processed
according to the stream pipeline. iii) The windows of stream
computations and watermarks triggering the computations
must be attested, which are keys to stream model (§2). iv) As
the volume of evidences can be substantial, evidences must
be compacted to save uplink bandwidth [84, 114].

Therefore, SBT provides the following verification mecha-
nism. Agnostic to the pipeline being executed, the data plane
monitors dataflows among primitive instances at the TEE
boundary, and then generates audit records. For low overhead,
it eschews building data lineages on-the-fly unlike much prior
work [50,74,99]. The data plane compresses audit records and
flushes to the cloud both periodically and upon externalizing
any analytics result. We describe details below.

Audit records As being invoked by the control plane, the
data plane generates audit records. As illustrated in Figure 6,
the records track i) ingested and externalized uArrays, ii)
associations between uArrays and windows, and iii) primitive
executions (with optional hints supplied by the control plane)
which establish derived-from relations among uArrays. The
records further include ingested watermark values, which are
crucial for determining output delays as will be discussed
below. The data plane timestamps all the records. It generates
monotonically increasing identifiers for recorded uArrays. We
will evaluate the overhead of audit records in Section 9.

Attesting analytics correctness The cloud verifier checks if
all ingested uArrays flow through the expected trusted primi-
tives. Such dataflows are deterministic given the arrivals of
input data (including their windows), the watermarks, and the
pipeline declaration. Hence, the verifier replays all ingestion
records on its local copy of the same pipeline. It checks if all
the records resulting from the replay match the ones reported
by the edge (except timestamps). The replay is symbolic with-
out actual computations and hence fast.

Note that the verification works for stateful operators as

well. The state of a stream operator (e.g. temporal join) is only
determined by all the inputs the operator has ever received.
Since the cloud can verify that all the ingested uArrays cor-
rectly flow through the expected trusted primitives and thus
stream operators, it knows that the operator’s current state
must be correct, and then all results derived from the operator
state must be correct.

Attesting result freshness The key for the verifier to calcu-
late the delay of an output result R is to identify the watermark
that triggers the externalization of R, according to the delay
definition in Section 2.2. From the egress record of R, the veri-
fier traces backward following the derived-from chain(s) until
it reaches an execution record indicating that a watermark W
triggers the execution. The verifier looks up the ingress record
of W . It calculates the difference between W ’s ingress time
and R’s egress time to be the delay of R.

Example In Listing 1, an uArray with identifier 0xF0 is
ingested and segmented into two uArrays (0xF1 and 0xF2) for
window 0 and 1 respectively. Sort consumes uArray 0xF1 and
produces uArray 0xF3. A watermark with value 100 arrives
and completes window 0. Triggered by the watermark, SUM
consumes uArray 0xF3 of window 0 and produces uArray
0xF5 as the result of window 0.

ts= 1 INGRESS data=0xF0
ts= 5 WND data_in =0xF0 win_no =0 data_out =0xF1
ts=10 SORT data_in =0xF1 data_out =0xF3
ts=15 INGRESS data=0xF4 (watermark =100)
ts=25 SUM data_in =0xF3 ,0xF4 data_out =0xF5
ts=28 WND data_in =0xF0 win_no =1 data_out =0xF6
ts=30 EGRESS data=0xF5

Listing 1: Sample audit records for the pipeline in Figure 2.
Format is simplified. ts means processing timestamp.

The cloud verifier replays the ingress records on its local
pipeline copy and learns that uArray 0xF1 is processed ad-
hering to the pipeline declaration while uArray 0xF2 is yet
to be processed. It will assert analytics incorrectness if 0xF2
remains unprocessed until a future watermark completes win-
dow 1 (not shown). To verify result freshness, the verifier
traces result 0xF5 backward to find its trigger watermark
0xF4 and calculates the output delay to be 15 (30−15).

Columnar compression of records The data plane com-
presses audit records by exploiting locality within one record
field and known data distribution in each field. The data plane
produces raw audit records in memory (with the format shown
in Figure 6) and in a row order, i.e. one record after the other.
Before uploading a sequence of records, it separates the record
fields (i.e. columns) and applies different encoding schemes
to individual columns: i) Huffman encoding for primitive
types and data counts, the two columns likely contain skewed
values; ii) delta encoding for timestamps, uArray identifiers,
and window numbers, which increment monotonically. Our
compression is inspired by columnar databases [107]. We will
evaluate the efficacy of compression in Section 9.

544 2019 USENIX Annual Technical Conference USENIX Association

8 Implementation

We build SBT for ARMv8 and atop OP-TEE [70] (v2.3).
SBT reuses most control functions of StreamBox [82], an
open-source research stream engine for x86 servers. Yet, as
StreamBox mismatches a TEE (§4.1), SBT contributes a new
architecture and a new data plane. SBT communicates with
source sensors and cloud consumers over ZeroMQ TCP trans-
port [57] which is known for good performance. The new
implementation of SBT includes 12.4K SLoC.
Input batch size, a key parameter of SBT, trades off between
delays in executing individual primitives, the rate of TEE
entry/exit, and attestation cost. We empirically determine it
as 100K events and will evaluate its impact (§9). Opaque
references for uArrays are 64-bit random integers generated
by the data plane. It keeps the mappings from references to
uArray addresses in a table, and validates opaque references
by table lookup. This incurs minor overhead, as live opaque
references are often no more than a few thousands.

9 Evaluation

We answer the following questions through evaluation:
• Does SBT result in a small TCB? (§9.1)
• What is SBT’s performance and how is it compared to

other engines? What is the overhead? (§9.2)
• How do our key designs impact performance (§9.3)?

9.1 TCB Analysis

TCB size Table 4 shows a breakdown of the SBT source
code. Despite a sophisticated control plane, the data plane
only adds 5K SLoC to the TCB. SBT’s memory management
is in 740 SLoC, 9× fewer than glibc’s malloc and 20× fewer
than jemalloc [41]. The size of data plane is 42.5 KB, a small
fraction (16%) of the entire OP-TEE binary.

TCB interface The SBT’s data plane exports only four entry
functions: two for data plane initialization/finalization, one
for debugging, and one shared by all 23 trusted primitives.
The last function accepts and returns opaque references (§4).
No state is shared across the protection boundary.

Comparison with alternative TCBs Compared to enclos-
ing whole applications in TCB [22, 27, 112], SBT keeps
most of the engine out, shrinking the TCB by at least one
order of magnitude. Compared to directly carving out [71,93]
the original StreamBox’s data functions for protection, SBT
completely avoids sophisticated data structures (e.g. Atom-
icHashMap [47] used by StreamBox) that mismatch TCB.
Compared to VC3 [99] that implements Map/Reduce oper-
ators in a TCB with ∼9K SLoC, SBT supports much richer
stream operators within a 2× smaller TCB.

SoC HiSilicon Kirin 620, TDP 36W CPU 8x ARM Cortex-A53@1.2 GHz

Mem 2GB LPDDR3@800 MHz OS Normal: Debian 8 (Linux 4.4)
Secure: OP-TEE 2.3

Table 3: The test platform used in experiments

Data Plane (Trusted)
Primitives* Mem Mgmt* Misc* Total

3.7K (32.5 KB) 0.7K (6 KB) 0.6K (4 KB) 5K (42.5 KB)
	

Control Plane (Untrusted)
Control Data types* Operators* Test* Misc* Total

23K 1.3K 4.1K 1K 1K 31K (348 KB)
	

Major Libraries (Untrusted)
glibc 2.19 libstdc++ 3.4.2 libzmq 2.2 boost 1.54 Total

1135K 110K 13K 37K 1.3M (3.1 MB)

* New implementations of this work. Total = 12.4K SLoC.

Table 4: A breakdown of the StreamBox-TZ source, of which
5K SLoC are in TCB. Binary code sizes shown in parentheses

9.2 Performance & Overhead

Methodology We evaluate SBT on a HiKey board as sum-
marized in Table 3. We chose HiKey for its good OP-TEE
support [70] and that it is among the few boards with Trust-
Zone programmable by third parties. We built Generator, a
program sends data streams over ZeroMQ TCP transport [57]
to SBT. We run the cloud consumer on an x86 machine. Data
streams are encrypted with 128-bit AES.

In the face of HiKey’s platform limitations, we set up the
engine ingestion as follows. i) Although Gigabit Ethernet
on edge platforms is common [5, 88], Hikey’s Ethernet in-
terface (over USB) only has 20MB/sec bandwidth. We have
verified that the interface is saturated by SBT with 4 cores.
Hence, we report performance when SBT and Generator both
run on HiKey communicating over ZeroMQ TCP, which still
fully exercise the TCP/IP stack and data copy. ii) Although
HiKey’s TEE is capable of directly operating Ethernet in-
terface as trusted IO, our OP-TEE version lacks the needed
drivers. Hence, we emulate SBT’s direct data ingestion to TEE
by running the ingestion in a privileged process in the normal
world, and bypassing data copy across the TEE boundary.
Our test harness continuously replays pre-allocated secure
memory buffers populated with events.

As summarized in Table 5, we test SBT as well as three
modified versions: SBT ClearIngress ingests data in cleart-
ext; this is allowed if source-edge links are trusted as defined
in our threat model (§3). SBT IOviaOS does not exploit Trust-
Zone’s trusted IO: the untrusted OS ingested (encrypted) data
and copies the data across TEE boundary to the data plane.
Insecure completely runs in the normal world with ingress
and egress in cleartext, showing native performance. This
is basically StreamBox [82] with SBT’s optimized stream
computations (§5). We report the engine performance as its
maximum input throughput when the pipeline output delay
(defined in §2.2) remains under a target set by us.
Benchmarks We employ six benchmarks of processing sen-
sor data streams from prior work [32, 62, 63, 67, 82]. They

USENIX Association 2019 USENIX Annual Technical Conference 545

 0

 1

 2

 3

 4

 5

2c 4c 8c
 0

 10

 20

 30

 40

 50

T
h
ro

u
g
h
p
u
t

(M
E
v
e
n
ts

/s
)

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

TopK (500ms)

64MB 64MB

80MB

 0

 2

 4

 6

 8

 10

2c 4c 8c
 0

 20

 40

 60

 80

 100

T
h
ro

u
g

h
p

u
t

(M
E
v
e
n
ts

/s
)

T
h
ro

u
g

h
p

u
t

(M
B

/s
)

Distinct (200ms)

88MB
96MB

132MB

 0

 1.5

 3

 4.5

 6

 7.5

2c 4c 8c
 0

 10

 20

 30

 40

 50

T
h
ro

u
g

h
p

u
t

(M
E
v
e
n
ts

/s
)

T
h
ro

u
g

h
p

u
t

(M
B

/s
)

Join (250 ms)

88MB

108MB

124MB

 0

 6

 12

 18

 24

 30

2c 4c 8c
 0

 60

 120

 180

 240

 300

T
h
ro

u
g

h
p

u
t

(M
E
v
e
n
ts

/s
)

T
h
ro

u
g

h
p

u
t

(M
B

/s
)

WinSum (20ms)

58MB

68MB

80MB

 0

 6

 12

 18

 24

 30

2c 4c 8c
 0

 60

 120

 180

 240

 300

T
h
ro

u
g

h
p

u
t

(M
E
v
e
n
ts

/s
)

T
h
ro

u
g

h
p

u
t

(M
B

/s
)

Filter (10ms)

54MB
58MB 58MB

 0

 2

 4

 6

 8

 10

2c 4c 8c
 0

 30

 60

 90

 120

 150

T
h
ro

u
g

h
p

u
t

(M
E
v
e
n
ts

/s
)

T
h
ro

u
g

h
p

u
t

(M
B

/s
)

Power (600ms)

22MB

40MB

64MB

Figure 7: StreamBox-TZ throughput (lines, left/right y-axes) as a function of CPU cores (x-axis) under given output delays (above
each plot). Steady consumptions of TEE memory as columns with annotated values. See Table 5 for legends and explanations.

Legend & Version Data
Plane

In/Egress
Path

Ingress
Data

Egress
Data

StreamBox-TZ in TEE Trusted IO* Encrypted Encrypted
SBT ClearIngress in TEE Trusted IO* ClearTxt Encrypted
SBT IOviaOS in TEE via OS Encrypted Encrypted
Insecure♯ out TEE in OS ClearTxt ClearTxt

* Through TrustZone Trusted IO directly to TEE
♯ Equivalent to a StreamBox invoking StreamBox-TZ’s optimized stream compute

Table 5: Engine versions for comparison (plots in Figure 7)

cover major stream operators and a variety of pipelines. We
use fixed windows, each encompassing 1M events and span-
ning 1 second of event time. Each event consists of 3 fields
(12 Bytes) unless stated otherwise. (1) Top Values Per Key
(TopK) groups events based on keys and identifies the K
largest values in each group in each window. (2) Counting
Unique Taxis (Distinct) identifies unique taxi IDs and counts
them per window. For input events, we use a dataset of taxi trip
information containing 11 K distinct taxi IDs [63]. (3) Tem-
poral Join (Join) joins events that have the same keys and fall
into same windows from two input streams. (4) Windowed
Aggregation (WinSum) aggregates input values within each
window. We use the Intel Lab Data [75] consisting of real
sensor values as input. (5) Filtering (Filter) filters out input
data, of which field falls into to a given range in each window.
We set 1% selectivity as done in prior work [67]. (6) Power
Grid (Power), derived from a public challenge [62], finds out
houses with most high-power plugs. Ingesting a stream of per-
plug power samples, it calculates the average power of each
plug in a window and the average power over all plugs in all
houses in the window. For each house, it counts the number of
plugs that have a higher load than average. It emits the houses
that have most high-power plugs in the window. The event
for this benchmark is composed of 4 fields (16 Bytes).

Benchmark 2, 4, and 6 use real-world datasets; others use
synthetic data sets of which fields are 32-bit random integers.
Note that SBT’s GroupBy operator bases on sort and merge

and is insensitive to key skewness [15].

End-to-end performance Figure 7 shows the throughputs
of all benchmarks as a function of hardware parallelism. SBT
can process up to multiple millions of events within sub-
second output delays (labeled atop each plot). For simpler
pipelines such as WinSum and Filter, SBT processes around
12M events/sec (140 MB/sec). This throughput saturates one
GbE link which is common on IoT gateways [88]. Overall,
SBT can use all 8 cores in a scalable manner.

SBT’s absolute performance is state of the art. We test
three popular, insecure stream engines: Flink [19], designed
for distributed environment and known for good single-node
performance [68]; Esper [46], designed for a single machine;
SensorBee [90], designed for sensor data processing on a
single device. As shown in Figure 8, on the same hardware
(HiKey) and the same benchmark (WinSum), we have mea-
sured that SBT’s throughput is at least one order of magnitude
higher than the others. This is because i) our Insecure baseline
has high performance for its rich task parallelism (inherited
from StreamBox [82]) and native, vectorized stream compu-
tations (new contributions); ii) SBT only imposes modest
security overhead, as will be shown later.

Comparison to secure stream engines The comparison is
challenged by that TrustZone was rarely exploited for pro-
tecting data-intensive computations. To our knowledge, i) no
analytics engines use TrustZone for data protection and ii) no
systems can partition an insecure stream engine for TrustZone.
Note that popular secure analytics engines, e.g. VC3 [99] and
Opaque [124], not only require SGX but also target batch
processing instead of stream analytics. To this end, we quali-
tatively compare SBT with SecureStreams [53], the closest
system we are aware of. Designed for an x86 cluster, Secure-
Streams uses SGX to protect stream operators and targets
strong data security. On a benchmark similar to WinSum it

546 2019 USENIX Annual Technical Conference USENIX Association

10-1 100 101 102 103

Throughput (MB/s)
(logarithmic)

SensorBee

Flink

Esper

StreamBox-TZ

Figure 8: StreamBox-TZ achieves much
higher throughput than commodity in-
secure engines [19, 46, 90] on HiKey.
Benchmark: windowed aggregation; tar-
get output delay: 50ms.

Figure 9: Run time breakdown of oper-
ator GroupBy under different input batch
sizes. The control plane runs 8 threads to
execute GroupBy in parallel. Total execu-
tion time is normalized to 100%.

 0 20 40 60 80 100
Memory usage (MB)

Filter

WinSum

TopK

 0
 2

0
 4

0
 6

0
 8

0
 1

00
Me

m
or

y
us

ag
e

(M
B)

Fil
te

r

W
in

Su
m

To
pK

w/ hint
w/o hint

Figure 10: Without consumption hints,
the allocator uses more TEE memory.
Since memory usage fluctuates at run
time, the error bars show two standard
deviations below and above the average.

was reported to achieve 10 MB/sec, one magnitude lower
than SBT on WinSum. Furthermore, SecureStreams achieved
such performance on a small x86 cluster which has much
richer resource than HiKey: the former has faster CPUs (8x
i7-6700@3.4GHz versus 8x Cortex-A53@1.2GHz), larger
DRAM (16 GB versus 2 GB), higher power (130W versus
36W), and higher cost ($600 versus $65).

SBT’s advantage comes from i) data exchange via coherent
memory inside one TEE, instead of exchanging encrypted
messages among workers; ii) memory management special-
ized for streaming, and iii) vectorized computations.

Security overhead We investigate the overhead of the new
security mechanism contributed by SBT – its isolated data
plane. We assess the overhead as the throughput loss of SBT
ClearIngress as compared to Insecure (i.e. native performance
as StreamBox [82] invoking SBT’s stream computations),
both paying same costs for data ingress. The target output
delays are the same (labeled atop each plot in Figure 7). The
security overhead is less than 25% in all benchmarks. This
is similar to or lower than the reported overhead (20–70%)
in recent TEE systems [22, 71, 112]. Overhead analysis: The
security overhead mostly comes from world switch, among
operators and inside each operator. To understand the switch
cost within an operator, we profile GroupBy, one of the most
costly operators. We test different input batch sizes, which
have a strong impact on TEE entry/exit rates and hence iso-
lation overhead (§4). Figure 9 shows a run time breakdown.
When each input batch contains 128K (close to the value we
set for SBT) or more events, more than 90% of the CPU time
is spent on actual computations in TEE. The CPU usage of
TEE memory management is as low as 1–2%. In the extreme
case where each input batch contains as few as 8K events,
the overhead of world switch starts to dominate. Most of the
world switch overhead comes from OP-TEE instead of the
CPU hardware (a few thousand cycles per switch), suggesting
room for OP-TEE optimization.

Impact of decrypting ingress data Decrypting ingress data
is needed if source-edge links are untrusted (§3) and source
must send encrypted data. It has substantial performance im-
pact. By comparing SBT to SBT ClearIngress, turning on/off

ingress decryption leads to 4% – 35% throughput difference
when all 8 cores are in use. The performance gap is more
pronounced for simple pipelines, which has higher ingestion
throughput leading to higher decryption cost.

TEE memory usage While sustaining high throughput, SBT
consumes a moderate amount of physical memory, ranging
from 20 MB to 130 MB as shown in Figure 7. The memory
usage is as low as 1–6% of the total system DRAM. The
virtual memory usage is also low, often 1–5% of the entire vir-
tual address space in OP-TEE. The memory usage increases
with the throughput, since there will be more in-flight data.
On the same platform, Flink’s memory consumption is 3×
higher, due to its hash-based data structures and the use of
JVM. This validates our choice of uArrays.

Attestation overhead Attestation incurs minor overhead to
both the edge and the cloud. We measured that SBT produces
300–400 audit records per second across all our benchmarks,
and spends a few hundred cycles on producing each record.
Compressing such record streams on HiKey consumes 0.2%
of total CPU time. Our consumer written in Python on a 4-
core i7-4790 machine replays 57K records per second with
a single core, suggesting a capability of attesting near 500
SBT instances simultaneously. We will evaluate the efficacy
of record compression in Section 9.3.

9.3 Validation of Key Design Features

Exploitation of trusted IO As shown in Figure 7, a com-
parison between SBT and SBT IOviaOS demonstrates the
advantage of directly ingesting data into TEE and bypassing
the OS: SBT outperforms the latter by up to 20% in through-
put due to reduction in moving ingested data.

Trusted primitive vectorization (§5) Our optimizations
with ARM vector instructions are crucial. To show this, we
examine GroupBy, one of the top hotspot operators. When
we replace the vectorized Sort that underpins GroupBy with
two popular implementations (qsort() from the the OP-TEE’s
libc and std::sort() from the standard C++ library), we mea-
sured the throughput of GroupBy drops by up to 7× and 2×,

USENIX Association 2019 USENIX Annual Technical Conference 547

 0

 1

 2

 3

 4

128-way merge

E
xe

cu
ti

o
n
 t

im
e
 (

se
c) std::vector

uArray

Figure 11: On-
demand growth
of uArrays vs.
std::vector

 0

 20

 40

 60

 80

WinSum Power

K
B

y
te

s/
s

Raw
Compressed

(a) 10K events/batch

 0

 2

 4

 6

 8

WinSum Power

K
B

y
te

s/
s

Raw
Compressed

(b) 100K events/batch

Figure 12: Compression of audit records
saves uplink bandwidth substantially.

respectively. We have similar observation on other operators.

Efficacy of hint-guided memory placement (§6.2) We
compare to an alternative design: the modified allocator acts
based on the heuristics that all the uArrays produced by the
same primitive belong to the same generation and are likely to
be reclaimed altogether. Accordingly, the modified allocator
places these uArrays in the same uGroup. As shown in Fig-
ure 10, in three benchmarks, the modified allocator increases
memory usage by up to 35%. This is because, without hints,
it cannot place uArrays based on future consumption.

uArray on-demand growth (§6.1) We compare uArray to
std::vector, a widely used C++ sequence container with on-
demand growth. We run a microbenchmark of N-way merge,
an intensive procedure in trusted primitives. It iteratively
merges 128 buffers (uArrays or vectors), each containing 512
KB (128K 32-bit random integers) until obtaining a mono-
lithic buffer; as merge proceeds, buffers grow dynamically.
As shown in Figure 11, uArrays is 4× faster than std::vector,
because the allocation and paging in TEE that back uArray
growth is much faster than that of a commodity OS.

Compression of audit records (§7) The compression signif-
icantly saves the uplink bandwidth. We test two benchmarks
(WinSum and Power) on two extremes of the spectrum of
computation cost, and test two very different input batch sizes.
This is because simpler computations and smaller batch sizes
generate audit records at higher rates. Figure 12 shows that
SBT compresses audit records by 5×–6.7×. In an offline test
using gzip to compress the same records, we find our com-
pression ratios are 1.9× higher than gzip. 2–40 KB/sec of
uplink bandwidth is saved, which is significant compared to
the uploaded analytics results, which are 144 bytes/sec for
WinSum and 400 bytes/sec for Power.

10 Related Work

Secure data analytics DARKLY [61] protects sensor data by
isolating computations in an OS process, resulting in a large
TCB. VC3 [99] and SecureStreams [53] use SGX to protect
the operators in distributed analytics. They lack optimizations
for parallel execution in one TEE on the edge. To process data
confidentiality, STYX [106] computes over encrypted data,

a method likely prohibitively expensive to edge platforms.
Opaque [124] protects data access patterns of distributed
operators, targeting a threat out of our scope.

TCB minimization Minimizing TCB is a proven approach
towards a trustworthy system. Flicker [80] directly exe-
cutes security-sensitive code on baremetal hardware. Trustvi-
sor [79] shrinks its TCB to a specialized hypervisor. Sharing a
similar goal, SBT addresses unique challenges in supporting
data-intensive computation on a minimal TCB.

Trusted Execution Environments Much work isolates
security-sensitive software components. Terra [48] supports
isolation with a virtual machine. Many systems used Trust-
Zone and SGX [81] for TEE. Some systems enclose in TEE
whole applications [22, 27, 51, 112], while others partition
existing programs for TEE [71, 93, 101]. These approaches
often result in larger TCBs and/or higher overhead than SBT
and are thus less desirable for SBT. TEE also sees various
novel usage, including protecting mobile app classes [96],
enforcing security policies [30], remote attestation of applica-
tion control flows [13], and controlling data access [34]. None
addresses data-intensive computation as SBT does.
Edge processing evolves from a vision [98, 100] to prac-
tice [37, 42, 83]. Most works focused on programming
paradigms [94], developing and deploying application [29,
52, 114], and resource management [86]. Complementary to
them, SBT focuses on secure analytics on the edge.
Stream processing systems, in response to big data chal-
lenges, evolve from single-threaded [33, 40, 78, 105, 110] to
massive parallel systems [14,69,85,92,92,113,122]. The exist-
ing systems focus on challenges, such as fault tolerance [122],
fast reconfiguration [115], high parallelism [32, 82], and the
use of GPUs [67]. Few systems achieve data security and
performance simultaneously as SBT does.

11 Conclusions

This paper presents StreamBox-TZ (SBT), a secure stream
analytics engine designed and optimized for a TEE on an edge
platform. SBT offers strong data security, verifiable results,
and competitive performance. On an octa core ARM machine,
SBT processes up to tens of millions of events per second; its
security mechanisms incur less than 25% overhead.

Acknowledgments

The authors thank the anonymous reviewers and our shepherd,
Eyal de Lara, for their insightful comments. For this project:
the authors affiliated with Purdue ECE were supported in part
by NSF Award #1718702, #1619075, Purdue University CP-
S/IoT Seed Grant Program, and a Google Faculty Award; the
author affiliated with Northeastern University was supported
in part by NSF Award #1748334.

548 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Apache Beam. https://beam.apache.org/.

[2] ARM TrustZone. http://www.arm.com/
products/processors/technologies/trustzone/
index.php.

[3] CVE-2010-3190: Untrusted search path vulnerability
in the microsoft foundation class (mfc) library. https:
//nvd.nist.gov/vuln/detail/CVE-2010-3190.

[4] CVE-2017-12629: Remote code execution occurs in
apache solr. https://nvd.nist.gov/vuln/detail/
CVE-2017-12629.

[5] Marvell Armada 8K family processors.
http://www.marvell.com/embedded-processors/
armada-80xx/.

[6] CVE-2008-0171: Boost.regex allows context-
dependent attackers to cause failed assertion and crash.
https://nvd.nist.gov/vuln/detail/CVE-2008-
0171s, 2008.

[7] CVE-2009-2493: Active template library does not
properly restrict use of oleloadfromstream in instan-
tiating objects from data streams, which allows re-
mote attackers to execute arbitrary code. https://
nvd.nist.gov/vuln/detail/CVE-2009-2493, 2009.

[8] CVE-2015-4421: in huawei mate7. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2015-4421, 2015.

[9] CVE-2015-4422: in huawei mate7. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2015-4422, 2015.

[10] CVE-2016-10229: udp.c in the linux kernel before
4.5 allows remote attackers to execute arbitrary
code. https://nvd.nist.gov/vuln/detail/CVE-
2016-10229, 2016.

[11] CVE-2017-11176: The mq_notify function in the
linux kernel allows attackers to cause a denial
of service or possibly have unspecified other im-
pact. https://nvd.nist.gov/vuln/detail/CVE-
2017-11176, 2017.

[12] CVE-2018-8822: Incorrect buffer length handling in
the ncp_read_kernel function could be exploited by
malicious ncpfs servers to crash the kernel or ex-
ecute code. https://nvd.nist.gov/vuln/detail/
CVE-2018-8822, 2017.

[13] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Ny-
man, A. Paverd, A.-R. Sadeghi, and G. Tsudik. C-flat:

control-flow attestation for embedded systems soft-
ware. In Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security
(CCS), 2016.

[14] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak,
R. J. Fernández-Moctezuma, R. Lax, S. McVeety,
D. Mills, F. Perry, E. Schmidt, and S. Whittle. The
dataflow model: A practical approach to balancing cor-
rectness, latency, and cost in massive-scale, unbounded,
out-of-order data processing. Proceedings of the VLDB
Endow., 8(12):1792–1803, 2015.

[15] M.-C. Albutiu, A. Kemper, and T. Neumann. Massively
parallel sort-merge joins in main memory multi-core
database systems. Proceedings of the VLDB Endow.,
5(10):1064–1075, 2012.

[16] M. P. Andersen and D. E. Culler. Btrdb: Optimizing
storage system design for timeseries processing. In
Proceedings of the 14th USENIX Conference on File
and Storage Technologies (FAST), 2016.

[17] M. P. Andersen, S. Kumar, C. Brooks, A. von Meier,
and D. E. Culler. Distil: Design and implementation of
a scalable synchrophasor data processing system. In
2015 IEEE International Conference on Smart Grid
Communications (SmartGridComm), 2015.

[18] R. Anderson and M. Kuhn. Low cost attacks on tam-
per resistant devices. In International Workshop on
Security Protocols, 1997.

[19] Apache. Apache flink: Scalable stream and batch data
processing. https://flink.apache.org/, 2017.

[20] A. Arasu, S. Babu, and J. Widom. The cql continuous
query language: Semantic foundations and query exe-
cution. Proceedings of the VLDB Journal, 15(2):121–
142, 2006.

[21] Arm. Arm neon technology. https://
developer.arm.com/technologies/neon, 2018.

[22] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin,
C. Priebe, J. Lind, D. Muthukumaran, D. O’Keeffe,
M. L. Stillwell, D. Goltzsche, D. Eyers, R. Kapitza,
P. Pietzuch, and C. Fetzer. Scone: Secure linux contain-
ers with intel sgx. In Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2016.

[23] Art Manion. CERT/CC Blog – Anatomy of Java Ex-
ploits. https://insights.sei.cmu.edu/cert/2013/
01/anatomy-of-java-exploits.html/, 2013.

[24] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient
system-enforced deterministic parallelism. Proceed-
ings of Commun. of the ACM, 55(5):111–119, 2012.

USENIX Association 2019 USENIX Annual Technical Conference 549

https://beam.apache.org/
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
https://nvd.nist.gov/vuln/detail/CVE-2010-3190
https://nvd.nist.gov/vuln/detail/CVE-2010-3190
https://nvd.nist.gov/vuln/detail/CVE-2017-12629
https://nvd.nist.gov/vuln/detail/CVE-2017-12629
http://www.marvell.com/embedded-processors/armada-80xx/
http://www.marvell.com/embedded-processors/armada-80xx/
https://nvd.nist.gov/vuln/detail/CVE-2008-0171s
https://nvd.nist.gov/vuln/detail/CVE-2008-0171s
https://nvd.nist.gov/vuln/detail/CVE-2009-2493
https://nvd.nist.gov/vuln/detail/CVE-2009-2493
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4421
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4421
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4421
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4422
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4422
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4422
https://nvd.nist.gov/vuln/detail/CVE-2016-10229
https://nvd.nist.gov/vuln/detail/CVE-2016-10229
https://nvd.nist.gov/vuln/detail/CVE-2017-11176
https://nvd.nist.gov/vuln/detail/CVE-2017-11176
https://nvd.nist.gov/vuln/detail/CVE-2018-8822
https://nvd.nist.gov/vuln/detail/CVE-2018-8822
https://flink.apache.org/
https://developer.arm.com/technologies/neon
https://developer.arm.com/technologies/neon
https://insights.sei.cmu.edu/cert/2013/01/anatomy-of-java-exploits.html/
https://insights.sei.cmu.edu/cert/2013/01/anatomy-of-java-exploits.html/

[25] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar,
G. Ganesh, J. Ma, and W. Shen. Hypervision across
worlds: Real-time kernel protection from the arm trust-
zone secure world. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communica-
tions Security (CCS), 2014.

[26] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu.
Multi-core, main-memory joins: Sort vs. hash revisited.
Proceedings of the VLDB Endow., 7(1):85–96, 2013.

[27] A. Baumann, M. Peinado, and G. Hunt. Shielding
applications from an untrusted cloud with haven. In
Proceedings of the 11th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
2014.

[28] A. Becher, Z. Benenson, and M. Dornseif. Tampering
with motes: Real-world physical attacks on wireless
sensor networks. In Proceedings of the 3rd Interna-
tional Conference on Security in Pervasive Computing,
2006.

[29] K. Bhardwaj, M. W. Shih, P. Agarwal, A. Gavrilovska,
T. Kim, and K. Schwan. Fast, scalable and secure
onloading of edge functions using airbox. In 2016
IEEE/ACM Symposium on Edge Computing (SEC),
2016.

[30] F. Brasser, D. Kim, C. Liebchen, V. Ganapathy,
L. Iftode, and A.-R. Sadeghi. Regulating arm trust-
zone devices in restricted spaces. In Proceedings of
the 14th International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2016.

[31] S. Brenner, C. Wulf, D. Goltzsche, N. Weichbrodt,
M. Lorenz, C. Fetzer, P. Pietzuch, and R. Kapitza. Se-
curekeeper: Confidential zookeeper using intel sgx. In
Proceedings of the 17th International Middleware Con-
ference, 2016.

[32] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine,
D. Fisher, J. C. Platt, J. F. Terwilliger, and J. Wernsing.
Trill: A high-performance incremental query processor
for diverse analytics. Proceedings of the VLDB Endow.,
8(4):401–412, 2014.

[33] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
S. R. Madden, F. Reiss, and M. A. Shah. Telegraphcq:
continuous dataflow processing. In Proceedings of
the 2003 ACM SIGMOD international conference on
Management of data, 2003.

[34] F. Chen. Cross-platform data integrity and confiden-
tiality with graduated access control. PhD thesis, The
University of British Columbia, 2016.

[35] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and
M. F. Kaashoek. Linux kernel vulnerabilities: State-of-
the-art defenses and open problems. In Proceedings
of the 2nd Asia-Pacific Workshop on Systems (APSys),
2011.

[36] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam,
C. A. Waldspurger, D. Boneh, J. Dwoskin, and D. R.
Ports. Overshadow: A virtualization-based approach to
retrofitting protection in commodity operating systems.
In Proceedings of the 13th International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2008.

[37] CISCO. White paper: The cisco edge analyt-
ics fabric system. http://www.cisco.com/c/
dam/en/us/products/collateral/analytics-
automation-software/edge-analytics-fabric/
eaf-whitepaper.pdf, 2016.

[38] R. Clapis. Go get my/vulnerabilities: an in-depth anal-
ysis of go language. https://www.blackhat.com/
docs/asia-17/materials/asia-17-Clapis-
Go-Get-My-Vulnerabilities-An-In-Depth-
Analysis-Of-Go-Language-Runtime-And-
The-New-Class-Of-Vulnerabilities-It-
Introduces.pdf, Blackhat Asia 2017.

[39] P. Colp, J. Zhang, J. Gleeson, S. Suneja, E. de Lara,
H. Raj, S. Saroiu, and A. Wolman. Protecting data
on smartphones and tablets from memory attacks. In
Proceedings of the 20th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2015.

[40] C. Cranor, T. Johnson, O. Spataschek, and
V. Shkapenyuk. Gigascope: a stream database
for network applications. In Proceedings of the
2003 ACM SIGMOD international conference on
Management of data, 2003.

[41] J. E. David Goldblatt, Dave Watson. Jemalloc memory
allocator. http://http://jemalloc.net/, 2017.

[42] Dell. Dell further democratizes advanced
analytics with latest release of statistica.
http://www.dell.com/learn/us/en/uscorp1/
press-releases/2016-04-14-dell-further-
democratizes-advanced-analytics, 2016.

[43] Documentation. "a new reality for oil
& gas". https://www.cisco.com/c/dam/
en_us/solutions/industries/energy/docs/
OilGasDigitalTransformationWhitePaper.pdf,
2017.

550 2019 USENIX Annual Technical Conference USENIX Association

http://www.cisco.com/c/dam/en/us/products/collateral/analytics-automation-software/edge-analytics-fabric/eaf-whitepaper.pdf
http://www.cisco.com/c/dam/en/us/products/collateral/analytics-automation-software/edge-analytics-fabric/eaf-whitepaper.pdf
http://www.cisco.com/c/dam/en/us/products/collateral/analytics-automation-software/edge-analytics-fabric/eaf-whitepaper.pdf
http://www.cisco.com/c/dam/en/us/products/collateral/analytics-automation-software/edge-analytics-fabric/eaf-whitepaper.pdf
https://www.blackhat.com/docs/asia-17/materials/asia-17-Clapis-Go-Get-My-Vulnerabilities-An-In-Depth-Analysis-Of-Go-Language-Runtime-And-The-New-Class-Of-Vulnerabilities-It-Introduces.pdf
https://www.blackhat.com/docs/asia-17/materials/asia-17-Clapis-Go-Get-My-Vulnerabilities-An-In-Depth-Analysis-Of-Go-Language-Runtime-And-The-New-Class-Of-Vulnerabilities-It-Introduces.pdf
https://www.blackhat.com/docs/asia-17/materials/asia-17-Clapis-Go-Get-My-Vulnerabilities-An-In-Depth-Analysis-Of-Go-Language-Runtime-And-The-New-Class-Of-Vulnerabilities-It-Introduces.pdf
https://www.blackhat.com/docs/asia-17/materials/asia-17-Clapis-Go-Get-My-Vulnerabilities-An-In-Depth-Analysis-Of-Go-Language-Runtime-And-The-New-Class-Of-Vulnerabilities-It-Introduces.pdf
https://www.blackhat.com/docs/asia-17/materials/asia-17-Clapis-Go-Get-My-Vulnerabilities-An-In-Depth-Analysis-Of-Go-Language-Runtime-And-The-New-Class-Of-Vulnerabilities-It-Introduces.pdf
https://www.blackhat.com/docs/asia-17/materials/asia-17-Clapis-Go-Get-My-Vulnerabilities-An-In-Depth-Analysis-Of-Go-Language-Runtime-And-The-New-Class-Of-Vulnerabilities-It-Introduces.pdf
http://http://jemalloc.net/
http://www.dell.com/learn/us/en/uscorp1/press-releases/2016-04-14-dell-further-democratizes-advanced-analytics
http://www.dell.com/learn/us/en/uscorp1/press-releases/2016-04-14-dell-further-democratizes-advanced-analytics
http://www.dell.com/learn/us/en/uscorp1/press-releases/2016-04-14-dell-further-democratizes-advanced-analytics
https://www.cisco.com/c/dam/en_us/solutions/industries/energy/docs/OilGasDigitalTransformationWhitePaper.pdf
https://www.cisco.com/c/dam/en_us/solutions/industries/energy/docs/OilGasDigitalTransformationWhitePaper.pdf
https://www.cisco.com/c/dam/en_us/solutions/industries/energy/docs/OilGasDigitalTransformationWhitePaper.pdf

[44] M. Drumond, A. Daglis, N. Mirzadeh, D. Ustiugov,
J. Picorel, B. Falsafi, B. Grot, and D. Pnevmatikatos.
The mondrian data engine. In Proceedings of the 44th
International Symposium on Computer Architecture
(ISCA), 2017.

[45] Eclipse IoT Working Group. IoT Developer Survey
2018. https://https://blogs.eclipse.org/
post/benjamin-cab%C3%A9/key-trends-iot-
developer-survey-2018, 2018.

[46] EsperTech. Esper. http://www.espertech.com/
esper/, 2017.

[47] Facebook. Folly. https://github.com/facebook/
folly#folly-facebook-open-source-library,
2017.

[48] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: A virtual machine-based platform for
trusted computing. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP),
2003.

[49] P. Gilbert, J. Jung, K. Lee, H. Qin, D. Sharkey, A. Sheth,
and L. P. Cox. Youprove: Authenticity and fidelity
in mobile sensing. In Proceedings of the 9th ACM
Conference on Embedded Networked Sensor Systems
(SenSys), 2011.

[50] B. Glavic, K. Sheykh Esmaili, P. M. Fischer, and N. Tat-
bul. Ariadne: Managing fine-grained provenance on
data streams. In Proceedings of the 7th ACM Inter-
national Conference on Distributed and Event-based
Systems (DEBS), 2013.

[51] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and
T. Jaeger. Trustshadow: Secure execution of unmodi-
fied applications with arm trustzone. In Proceedings of
the 15th International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2017.

[52] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and
M. Satyanarayanan. Towards wearable cognitive assis-
tance. In Proceedings of the 12th International Con-
ference on Mobile Systems, Applications, and Services
(MobiSys), 2014.

[53] A. Havet, R. Pires, P. Felber, M. Pasin, R. Rouvoy, and
V. Schiavoni. Securestreams: A reactive middleware
framework for secure data stream processing. In Pro-
ceedings of the 11th ACM International Conference on
Distributed and Event-based Systems (DEBS), 2017.

[54] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and
E. Witchel. Inktag: Secure applications on an untrusted

operating system. In Proceedings of the 18th Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASP-
LOS), 2013.

[55] hortonworks. "iot and predictive big data analyt-
ics for oil and gas". https://hortonworks.com/
solutions/oil-gas/, 2017.

[56] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan.
vtz: Virtualizing ARM trustzone. In Proceedings of
the 26th USENIX Conference on Security Symposium
(USENIX Security), 2017.

[57] iMatix Corporation. Zeromq. http://zeromq.org/,
2018.

[58] M. G. Institute. The internet of things: Mapping the
value beyond the hype.

[59] Intel. Intel threading building blocks. https://
software.intel.com/en-us/intel-tbb, 2017.

[60] Intel. "iot solutions for upstreamoil and gas".
https://www.intel.com/content/dam/www/
public/us/en/documents/solution-briefs/oil-
and-gas-iot-brief.pdf, 2017.

[61] S. Jana, A. Narayanan, and V. Shmatikov. A scanner
darkly: Protecting user privacy from perceptual appli-
cations. In Proceedings of the 34th IEEE Symposium
on Security and Privacy (S&P), 2013.

[62] Z. Jerzak and H. Ziekow. The debs 2014 grand chal-
lenge. In Proceedings of the 8th ACM International
Conference on Distributed and Event-Based Systems
(DEBS), 2014.

[63] Z. Jerzak and H. Ziekow. The debs 2015 grand chal-
lenge. In Proceedings of the 9th ACM International
Conference on Distributed and Event-Based Systems
(DEBS), 2015.

[64] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D.
Nguyen, N. Satish, J. Chhugani, A. Di Blas, and
P. Dubey. Sort vs. hash revisited: Fast join imple-
mentation on modern multi-core cpus. Proceedings of
the VLDB Endow., 2(2):1378–1389, 2009.

[65] S. Kim, J. Han, J. Ha, T. Kim, and D. Han. Enhancing
security and privacy of tor’s ecosystem by using trusted
execution environments. In Proceedings of the 14th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2017.

[66] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and

USENIX Association 2019 USENIX Annual Technical Conference 551

https://https://blogs.eclipse.org/post/benjamin-cab%C3%A9/key-trends-iot-developer-survey-2018
https://https://blogs.eclipse.org/post/benjamin-cab%C3%A9/key-trends-iot-developer-survey-2018
https://https://blogs.eclipse.org/post/benjamin-cab%C3%A9/key-trends-iot-developer-survey-2018
http://www.espertech.com/esper/
http://www.espertech.com/esper/
https://github.com/facebook/folly#folly-facebook-open-source-library
https://github.com/facebook/folly#folly-facebook-open-source-library
https://hortonworks.com/solutions/oil-gas/
https://hortonworks.com/solutions/oil-gas/
http://zeromq.org/
https://software.intel.com/en-us/intel-tbb
https://software.intel.com/en-us/intel-tbb
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/oil-and-gas-iot-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/oil-and-gas-iot-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/oil-and-gas-iot-brief.pdf

S. Winwood. sel4: Formal verification of an os ker-
nel. In Proceedings of the 22nd ACM Symposium on
Operating Systems Principles (SOSP), 2009.

[67] A. Koliousis, M. Weidlich, R. Castro Fernandez, A. L.
Wolf, P. Costa, and P. Pietzuch. Saber: Window-based
hybrid stream processing for heterogeneous architec-
tures. In Proceedings of the 2016 International Con-
ference on Management of Data, 2016.

[68] A. Krettek and M. Winters. "the curi-
ous case of the broken benchmark: Revisit-
ing apache flink® vs. databricks runtime".
https://data-artisans.com/blog/curious-
case-broken-benchmark-revisiting-apache-
flink-vs-databricks-runtime, 2017.

[69] W. Lin, H. Fan, Z. Qian, J. Xu, S. Yang, J. Zhou, and
L. Zhou. Streamscope: Continuous reliable distributed
processing of big data streams. In Proceedings of the
13th Usenix Conference on Networked Systems Design
and Implementation (NSDI), 2016.

[70] Linaro. Op-tee: Open portable trusted execution envi-
ronment. https://www.op-tee.org/, 2017.

[71] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P.-
L. Aublin, F. Kelbert, T. Reiher, D. Goltzsche, D. Ey-
ers, R. Kapitza, C. Fetzer, and P. Pietzuch. Glamdring:
Automatic application partitioning for intel sgx. In Pro-
ceedings of the 2017 USENIX Conference on Usenix
Annual Technical Conference (ATC), 2017.

[72] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and
S. Mangard. Armageddon: Cache attacks on mobile de-
vices. In Proceedings of the 25th USENIX Conference
on Security Symposium (USENIX Security), 2016.

[73] H. Liu, S. Saroiu, A. Wolman, and H. Raj. Software
abstractions for trusted sensors. In Proceedings of
the 10th International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2012.

[74] S. Ma, X. Zhang, and D. Xu. Protracer: Towards practi-
cal provenance tracing by alternating between logging
and tainting. In Proceedings of 23rd Network and
Distributed System Security Symposium (NDSS), 2016.

[75] S. Madden. Intel lab data. http://db.csail.mit.edu/
labdata/labdata.html, 2004.

[76] Magazine. "smart grids: Everything you need
to know". https://www.cleverism.com/smart-
grids-everything-need-know/, 2014.

[77] Magazine. "internet of things: A data-
driven future for manufacturing". https://
www.themanufacturer.com/wp-content/uploads/

2017/01/IoT_FutureofManuf_ebook_final.pdf,
2017.

[78] D. Maier, J. Li, P. Tucker, K. Tufte, and V. Papadimos.
Semantics of data streams and operators. In Proceed-
ings of the 10th International Conference on Database
Theory (ICDT), 2005.

[79] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta,
V. Gligor, and A. Perrig. Trustvisor: Efficient tcb reduc-
tion and attestation. In Proceedings of the 31st IEEE
Symposium on Security and Privacy (S&P), 2010.

[80] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter,
and H. Isozaki. Flicker: An execution infrastructure
for tcb minimization. In Proceedings of the 3rd ACM
European Conference on Computer Systems (EuroSys),
2008.

[81] F. McKeen, I. Alexandrovich, A. Berenzon, C. V.
Rozas, H. Shafi, V. Shanbhogue, and U. R. Sava-
gaonkar. Innovative instructions and software model
for isolated execution. In Proceedings of the 2Nd In-
ternational Workshop on Hardware and Architectural
Support for Security and Privacy, 2013.

[82] H. Miao, H. Park, M. Jeon, G. Pekhimenko, K. S.
McKinley, and F. X. Lin. Streambox: Modern stream
processing on a multicore machine. In Proceedings
of the 2017 USENIX Conference on Usenix Annual
Technical Conference (ATC), 2017.

[83] Microsoft. Microsoft azure iot edge– ex-
tending cloud intelligence to edge devices.
https://azure.microsoft.com/en-us/services/
iot-edge/, 2017.

[84] Mohammad Marashi, Tech Crunch. Satellites
are critical for IoT sector to reach its full poten-
tial. https://techcrunch.com/2017/06/08/
satellites-are-critical-for-iot-sector-to-
reach-its-full-potential/, 2017.

[85] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,
P. Barham, and M. Abadi. Naiad: A timely dataflow
system. In Proceedings of the 24th ACM Symposium
on Operating Systems Principles (SOSP), 2013.

[86] S. Nastic, H. L. Truong, and S. Dustdar. A middleware
infrastructure for utility-based provisioning of iot cloud
systems. In 2016 IEEE/ACM Symposium on Edge
Computing (SEC), 2016.

[87] K. Nguyen, K. Wang, Y. Bu, L. Fang, J. Hu, and G. Xu.
Facade: A compiler and runtime for (almost) object-
bounded big data applications. In Proceedings of the
20th International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS), 2015.

552 2019 USENIX Annual Technical Conference USENIX Association

https://data-artisans.com/blog/curious-case-broken-benchmark-revisiting-apache-flink-vs-databricks-runtime
https://data-artisans.com/blog/curious-case-broken-benchmark-revisiting-apache-flink-vs-databricks-runtime
https://data-artisans.com/blog/curious-case-broken-benchmark-revisiting-apache-flink-vs-databricks-runtime
https://www.op-tee.org/
http://db.csail.mit.edu/labdata/labdata.html
http://db.csail.mit.edu/labdata/labdata.html
https://www.cleverism.com/smart-grids-everything-need-know/
https://www.cleverism.com/smart-grids-everything-need-know/
https://www.themanufacturer.com/wp-content/uploads/2017/01/IoT_FutureofManuf_ebook_final.pdf
https://www.themanufacturer.com/wp-content/uploads/2017/01/IoT_FutureofManuf_ebook_final.pdf
https://www.themanufacturer.com/wp-content/uploads/2017/01/IoT_FutureofManuf_ebook_final.pdf
https://azure.microsoft.com/en-us/services/iot-edge/
https://azure.microsoft.com/en-us/services/iot-edge/
https://techcrunch.com/2017/06/08/satellites-are-critical-for-iot-sector-to-reach-its-full-potential/
https://techcrunch.com/2017/06/08/satellites-are-critical-for-iot-sector-to-reach-its-full-potential/
https://techcrunch.com/2017/06/08/satellites-are-critical-for-iot-sector-to-reach-its-full-potential/

[88] NXP Semiconductors. i.MX 7Dual Family of
Applications Processors Datasheet, howpublished
= https://www.nxp.com/docs/en/data-sheet/
imx7dcec.pdf, year = 2017.

[89] R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy.
Safebricks: Shielding network functions in the cloud.
In Proceedings of the 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI),
2018.

[90] Preferred networks. Sensorbee: Lightweight stream
processing engine for iot. http://sensorbee.io/,
2017.

[91] C. Priebe, K. Vaswani, and M. Costa. Enclavedb: A
secure database using SGX. In Proceedings of the
39th IEEE Symposium on Security and Privacy (S&P),
2018.

[92] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang,
L. Zhou, Y. Yu, and Z. Zhang. Timestream: Reliable
stream computation in the cloud. In Proceedings of the
8th ACM European Conference on Computer Systems
(EuroSys), 2013.

[93] K. Rubinov, L. Rosculete, T. Mitra, and A. Roychoud-
hury. Automated partitioning of android applications
for trusted execution environments. In Proceedings of
the 38th International Conference on Software Engi-
neering (ICSE), 2016.

[94] H. P. Sajjad, K. Danniswara, A. Al-Shishtawy, and
V. Vlassov. Spanedge: Towards unifying stream pro-
cessing over central and near-the-edge data centers.
In 2016 IEEE/ACM Symposium on Edge Computing
(SEC), 2016.

[95] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. Proceedings of the
IEEE, 63(9):1278–1308, 1975.

[96] N. Santos, H. Raj, S. Saroiu, and A. Wolman. Using
arm trustzone to build a trusted language runtime for
mobile applications. In Proceedings of the 19th In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems (AS-
PLOS), 2014.

[97] S. Saroiu and A. Wolman. I am a sensor, and i approve
this message. In Proceedings of the 11th Workshop on
Mobile Computing Systems & Applications (HotMo-
bile), 2010.

[98] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai,
Z. Chen, K. Ha, W. Hu, and B. Amos. Edge analytics in
the internet of things. Proceedings of IEEE Pervasive
Computing, 14(2):24–31, 2015.

[99] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,
M. Peinado, G. Mainar-Ruiz, and M. Russinovich. Vc3:
Trustworthy data analytics in the cloud using sgx. In
Proceedings of the 36th IEEE Symposium on Security
and Privacy (S&P), 2015.

[100] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge
computing: Vision and challenges. Proceedings of
IEEE Internet of Things Journal, 3(5):637–646, 2016.

[101] S. Shinde, D. L. Tien, S. Tople, and P. Saxena. Panoply:
Low-tcb linux applications with sgx enclaves. In Pro-
ceedings of 24th Network and Distributed System Se-
curity Symposium (NDSS), 2017.

[102] Y. L. Simmhan, B. Plale, and D. Gannon. A survey of
data provenance in e-science. Proceedings of SIGMOD
Rec., 34(3):31–36, 2005.

[103] A. Spark. "spark streaming programming
guide". https://spark.apache.org/docs/latest/
streaming-programming-guide.html, 2016.

[104] S. Sponseller. "the importance of the edge for the
industrial internet of things in the energy industry".
https://www.datascience.com/blog/predictive-
analytics-in-industrial-iot, 2017.

[105] M. C. Stanley Zdonik, Michael Stonebraker. Stream-
base systems. http://www.tibco.com/products/
tibco-streambase, 2017.

[106] J. J. Stephen, S. Savvides, V. Sundaram, M. S.
Ardekani, and P. Eugster. Styx: Stream processing
with trustworthy cloud-based execution. In Proceed-
ings of the 7th ACM Symposium on Cloud Computing
(SoCC), 2016.

[107] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik.
C-store: A column-oriented dbms. In Proceedings of
the 31st International Conference on Very Large Data
Bases (VLDB), 2005.

[108] Symantec. Internet Security Threat Report.
https://www.symantec.com/content/dam/
symantec/docs/reports/istr-22-2017-en.pdf,
2017.

[109] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai.
Bug characteristics in open source software. Proceed-
ings of Empirical Software Engineering, 19(6):1665–
1705, 2014.

[110] W. Thies, M. Karczmarek, and S. P. Amarasinghe.
Streamit: A language for streaming applications. In
Proceedings of the 11th International Conference on
Compiler Construction, 2002.

USENIX Association 2019 USENIX Annual Technical Conference 553

https://www.nxp.com/docs/en/data-sheet/imx7dcec.pdf
https://www.nxp.com/docs/en/data-sheet/imx7dcec.pdf
http://sensorbee.io/
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://www.datascience.com/blog/predictive-analytics-in-industrial-iot
https://www.datascience.com/blog/predictive-analytics-in-industrial-iot
http://www.tibco.com/products/tibco-streambase
http://www.tibco.com/products/tibco-streambase
https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf

[111] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu.
WALNUT: Waging doubt on the integrity of MEMS
accelerometers with acoustic injection attacks. In Pro-
ceedings of the 2nd Annual IEEE European Symposium
on Security and Privacy, 2017.

[112] C.-C. Tsai, D. E. Porter, and M. Vij. Graphene-sgx:
A practical library os for unmodified applications on
sgx. In Proceedings of the 2017 USENIX Conference
on Usenix Annual Technical Conference (ATC), 2017.

[113] Twitter. Heron. https://twitter.github.io/
heron/, 2017.

[114] D. Vasisht, Z. Kapetanovic, J. Won, X. Jin, R. Chandra,
S. Sinha, A. Kapoor, M. Sudarshan, and S. Stratman.
Farmbeats: An iot platform for data-driven agriculture.
In Proceedings of 14th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI),
2017.

[115] S. Venkataraman, A. Panda, K. Ousterhout, M. Arm-
brust, A. Ghodsi, M. J. Franklin, B. Recht, and I. Stoica.
Drizzle: Fast and adaptable stream processing at scale.
In Proceedings of the 26th ACM Symposium on Oper-
ating Systems Principles (SOSP), 2017.

[116] J. W. Voung, R. Jhala, and S. Lerner. Relay: Static race
detection on millions of lines of code. In Proceedings
of the the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Sym-
posium on The Foundations of Software Engineering,
2007.

[117] Wind River. SECURITY IN THE INTERNET OF
THINGS – Lessons from the Past for the Connected Fu-
ture. https://www.windriver.com/whitepapers/
security-in-the-internet-of-things/
wr_security-in-the-internet-of-things.pdf,
2017.

[118] X. Wu, R. Dunne, Q. Zhang, and W. Shi. Edge com-
puting enabled smart firefighting: Opportunities and
challenges. In Proceedings of the 5th ACM/IEEE Work-
shop on Hot Topics in Web Systems and Technologies
(HotWeb), 2017.

[119] Y. Xu, W. Cui, and M. Peinado. Controlled-channel
attacks: Deterministic side channels for untrusted op-
erating systems. In Proceedings of the 36th IEEE
Symposium on Security and Privacy (S&P), 2015.

[120] D. Yarmoluk and C. Truempi. "predic-
tive analytics in industrial iot". https:
//www.datascience.com/blog/predictive-
analytics-in-industrial-iot, 2018.

[121] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasun-
daram, and S. Pasupathy. An empirical study on config-
uration errors in commercial and open source systems.
In Proceedings of the 23rd ACM Symposium on Oper-
ating Systems Principles (SOSP), 2011.

[122] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and
I. Stoica. Discretized streams: Fault-tolerant streaming
computation at scale. In Proceedings of the 24th ACM
Symposium on Operating Systems Principles (SOSP),
2013.

[123] N. Zhang, K. Sun, W. Lou, and Y. T. Hou. Case: Cache-
assisted secure execution on arm processors. In Pro-
ceedings of the 37th IEEE Symposium on Security and
Privacy (S&P), 2016.

[124] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E.
Gonzalez, and I. Stoica. Opaque: An oblivious and en-
crypted distributed analytics platform. In Proceedings
of the 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2017.

554 2019 USENIX Annual Technical Conference USENIX Association

https://twitter.github.io/heron/
https://twitter.github.io/heron/
https://www.windriver.com/whitepapers/security-in-the-internet-of-things/wr_security-in-the-internet-of-things.pdf
https://www.windriver.com/whitepapers/security-in-the-internet-of-things/wr_security-in-the-internet-of-things.pdf
https://www.windriver.com/whitepapers/security-in-the-internet-of-things/wr_security-in-the-internet-of-things.pdf
https://www.datascience.com/blog/predictive-analytics-in-industrial-iot
https://www.datascience.com/blog/predictive-analytics-in-industrial-iot
https://www.datascience.com/blog/predictive-analytics-in-industrial-iot

CoSMIX: A Compiler-based System for Secure Memory Instrumentation and
Execution in Enclaves

Meni Orenbach
Technion

Yan Michalevsky
Anjuna Security

Christof Fetzer
TU Dresden

Mark Silberstein
Technion

Abstract

Hardware secure enclaves are increasingly used to run com-
plex applications. Unfortunately, existing and emerging en-
clave architectures do not allow secure and efficient implemen-
tation of custom page fault handlers. This limitation impedes
in-enclave use of secure memory-mapped files and prevents
extensions of the application memory layer commonly used in
untrusted systems, such as transparent memory compression
or access to remote memory.

CoSMIX is a Compiler-based system for Secure Memory
Instrumentation and eXecution of applications in secure en-
claves. A novel memory store abstraction allows implementa-
tion of application-level secure page fault handlers that are
invoked by a lightweight enclave runtime. The CoSMIX com-
piler instruments the application memory accesses to use one
or more memory stores, guided by a global instrumentation
policy or code annotations without changing application code.

The CoSMIX prototype runs on Intel SGX and is com-
patible with popular SGX execution environments, including
SCONE and Graphene. Our evaluation of several production
applications shows how CoSMIX improves their security and
performance by recompiling them with appropriate memory
stores. For example, unmodified Redis and Memcached key-
value stores achieve about 2× speedup by using a self-paging
memory store while working on datasets up to 6× larger
than the enclave’s secure memory. Similarly, annotating a
single line of code in a biometric verification server changes
it to store its sensitive data in Oblivious RAM and makes it
resilient against SGX side-channel attacks.

1 Introduction

Virtual Memory is integral to modern processor architectures.
In addition to its primary role in physical memory manage-
ment, it empowers developers to extend the standard mem-
ory layer with custom data storage mechanisms in software.
For example, the memory-mapped file abstraction, which is
broadly used, e.g., in databases [10, 5], relies on the OS’s
page fault handler to map a frame and populate it with the con-
tents of a file. Replacing accesses to physical memory with
file accesses requires no application code changes. Therefore,
the ability to override page fault behavior has been essential
for implementing a range of system services, such as memory

compression [44], disaggregation [39, 75], distributed shared
memory [36, 46] and heterogeneous memory support [37].

With the emergence of Software Guard Extensions (SGX)
for Trusted Execution in Intel CPUs [16, 55], applications
are increasingly ported to be entirely executed in hardware-
enforced enclaves [58, 45, 23, 25]. The enclave hardware pro-
tects them from attacks by a powerful privileged adversary,
such as a malicious OS or a hypervisor. A number of recent
systems facilitate the porting to SGX by shielding unmodified
applications in an enclave [21, 81, 18]. Unfortunately, these
systems do not allow secure overriding of page fault handling
in enclave applications. This drawback complicates porting a
large class of applications that use memory-mapped files to
SGX. Further, it prevents SGX applications from using secu-
rity and performance enhancements, such as efficient mem-
ory paging [61] and Oblivious RAM (ORAM) side-channel
protection [67, 11, 88] without intrusive application modifi-
cations. Our goal is to eliminate these constraints.

For example, consider the task of running an SQLite
database that uses memory-mapped files in the enclave. The
database file must be encrypted to ensure data confidentiality.
Enabling in-enclave execution of SQLite therefore requires
support for encrypted memory-mapped files, which in turn
implies that the page fault handler must be executed securely
as well. Unfortunately, hardware enclaves available today
do not support secure page faults. Instead, existing solutions
use workarounds, such as eagerly reading and decrypting the
whole mapped file region into trusted enclave memory [18].
This solution does not scale to large files and lacks the perfor-
mance benefits of on-demand data access.

We argue that the problem is rooted in the fundamental lim-
itation of SGX architecture, which does not provide the mech-
anism to define secure page fault handlers. The upcoming
SGX-V2 [54, 86, 43] will not solve this problem either. More-
over, we observe that existing and emerging secure enclave
architectures [28, 4, 34] suffer from similar limitations(§2).

In this work, we build CoSMIX, a compiler and a
lightweight enclave runtime that overcomes the SGX architec-
tural limitations and enables secure and efficient extensions
to the memory layer of unmodified applications running in
enclaves. We introduce a memory store, (mstore), a program-
ming abstraction for implementing custom memory manage-
ment extensions for enclaves. The CoSMIX compiler auto-
matically instruments application code to allocate the selected

USENIX Association 2019 USENIX Annual Technical Conference 555

variables and memory buffers in the mstore, replacing the ac-
cesses to enclave memory with the accesses to the mstore.
The mstore logic runs in the enclave as part of the application.
The CoSMIX runtime securely invokes the mstore memory
management callbacks, which include custom page fault han-
dlers. The page faults are semantically equivalent to hardware
page faults yet are triggered by the CoSMIX runtime.

An mstore can implement the missing functionalities that
require secure page fault handlers. For example, it may pro-
vide the secure mmap functionality by implementing the page
fault handler that accesses the file and decrypts it into the
application buffer. A more advanced mstore may add its own
in-memory cache analogous to an OS page cache, to avoid
costly accesses to the underlying storage layer. CoSMIX sup-
ports several types of mstores, adjusting the runtime to handle
different mstore behaviors while optimizing the performance.

CoSMIX allows the use of multiple mstores in the same
program. This can be used, for example, to leverage both
secure mmap mstore and an ORAM mstore for side-channel
protection. Additionally, CoSMIX supports stacking of mul-
tiple mstores to enable their efficient composition and reuse.
We design and prototype three sophisticated mstores in §3.2.5,
and demonstrate the benefits of stacking in §4.5.

CoSMIX’s design focuses on two primary goals: (1) mini-
mizing the application modifications to use mstores and (2)
reducing the instrumentation performance overheads. We in-
troduce the following mechanisms to achieve them:
Automatic inference of pointer types. CoSMIX does not
require annotating every access to a pointer. Instead, it uses
inter-procedural pointer analysis [17] to determine the type of
the mstore (or plain memory) to use for each pointer. When
the static analysis is inconclusive, CoSMIX uses tagged point-
ers [47, 74, 13] with the mstore type encoded in the unused
Most Significant Bits, enabling runtime detection (§3.3.1).
Locality-optimized translation caching. The mstore call-
backs interpose on memory accesses, which are part of the
performance-critical path of the application. To reduce the
associated overheads, we employ static compiler optimiza-
tions to reduce the number of runtime pointer type checks and
mstore accesses. These include loop transformations and a
software Translation Lookaside Buffer (TLB) (§3.3.4). These
mechanisms reduce the instrumentation overheads by up to
two orders of magnitude (§4.2).

Our prototype targets existing SGX hardware and is com-
patible with several frameworks for running unmodified appli-
cations in enclaves [81, 1, 18]. However, CoSMIX makes no
assumptions about enclave hardware. The CoSMIX compiler
is implemented as an extension of the LLVM framework [48].

We prototype three mstores: Secure User Virtual Memory
(SUVM) for efficient paging in memory-intensive applica-
tions [61], Oblivious RAM [78] for controlled side-channel
protection, and a secure mmap mstore that supports access
to encrypted/integrity-protected memory-mapped files. We
evaluate CoSMIX on the Phoenix benchmark suite [66], as

well as on unmodified production servers: memcached, Redis,
SQLite, and a biometric verification server [61]. The compiler
is able to correctly instrument all of these applications, some
with hundreds of thousands of lines of code (LOC), without
the need to manually change the application code.

Our microbenchmarks using Phoenix with SUVM and se-
cure mmap mstores show that CoSMIX instrumentation results
in a low geometric mean overhead of 20%.

For the end-to-end evaluation, we run memcached and Re-
dis key value stores on 600 MB datasets – each about 6×
the size of the secure physical memory available to SGX en-
claves. In this setting, SGX hardware paging significantly
affects the performance. The SUVM [61] mstore aims to opti-
mize exactly this scenario. To use it, we only annotate the item
allocator in memcached (a single line of code) and compile it
with CoSMIX. Redis is compiled without adding annotations.
The instrumented versions of both servers achieve about 2×
speedup compared to their respective vanilla SGX baselines.

In another experiment, we evaluate a biometric verification
server with a database storing 256 MB of sensitive data. We
use the ORAM mstore to protect it from SGX controlled side-
channel attacks [87] that may leak sensitive database access
statistics. We annotate the buffers containing this database
(one line of code) to use ORAM. The resulting ORAM-
enhanced application provides security guarantees similar
to other ORAM systems for SGX, such as ZeroTrace [67], yet
without modifying the application source code. ORAM sys-
tems are known to result in dramatic performance penalties of
several orders of magnitude [26]. However, our hardened ap-
plication is only 5.8× slower than the vanilla SGX thanks to
the benefits of selective instrumentation enabled by CoSMIX.
To summarize, our contributions are as follows:
• Design of a compiler and an mstore abstraction for trans-

parent secure memory instrumentation (§3.2).
• Loop transformation and loop-optimized caching tech-

niques to reduce the instrumentation overheads (§3.3.4).
• Seamless security and performance enhancement for

unmodified real-world applications running in SGX, by
enhancing them with the SUVM, ORAM and secure
mmap mstores (§4).

2 Motivation

Enabling the use of custom page fault (PF) handlers in en-
claves would not only facilitate porting of existing applica-
tions that rely on such functionality, but also enable a range
of unique application scenarios, as we discuss next.
SUVM. The authors of Eleos [61] proposed Software User-
space Virtual Memory (SUVM), which implements exit-less
memory paging in enclaves and significantly improves the
performance of memory-demanding secure applications. It
keeps the page cache in the enclave’s trusted memory, while
the storage layer resides in untrusted memory whose contents
are encrypted and integrity-protected.

556 2019 USENIX Annual Technical Conference USENIX Association

ORAM. Oblivious RAM (ORAM) obfuscates memory ac-
cess patterns by shuffling the physical data locations and re-
encrypting the contents upon every access. As a result, an ad-
versary observing the accessed locations learns nothing about
the actual access pattern to the data [38]. Multiple ORAM
schemes have been proposed over time [38, 84, 78, 88, 67, 33],
and, ORAM was recently used to manually secure applica-
tions executing in SGX enclaves against certain side-channel
attacks [88, 67, 33].

Both ORAM and SUVM are generic mechanisms that
could be useful in many applications. Unfortunately, inte-
grating them with the application logic requires intrusive
code modifications. With the support for efficient and secure
in-enclave PF handlers, we could add these mechanisms to ex-
isting unmodified programs, as we show in the current work.

Other applications include transparent compression for in-
enclave memory, mmap support for encrypted and integrity-
protected files, and inter-enclave shared memory, as well as
various memory-management mechanisms [39, 75, 37].

Unfortunately, existing enclave hardware provides no ad-
equate mechanisms to implement efficient and secure user-
defined PF handlers, as we describe next.

2.1 Background: page-faults in enclaves
There are several leading enclave architectures: Intel SGX [16,
43], Komodo for ARM Trust Zone [34, 15], Sanctum [28],
and Keystone [4]. Among these, only Intel SGX and Sanctum
published support for paging. We briefly describe them below.
Intel SGX [16, 43, 55] supports on-demand paging between
secure and untrusted memory. SGX relies on Virtual Memory
hardware in X86 CPUs. When a PF occurs, the enclave exits
to an untrusted privileged OS which invokes the SGX PF
handler. The enclave execution resumes (via ERESUME) after
the swapping is complete.

Since the PF handler is untrusted, the SGX paging is se-
cured via SGX paging instructions. Specifically, EWB encrypts
and signs the page when swapping the page out, whereas
ELDU validates the integrity and decrypts when swapping it
in. These instructions cannot be modified to perform other
operations. They cannot change the internal SGX encryption
key or modify the swapped page. In other words, they cannot
act as a general-purpose secure PF handler.
Sanctum [28] supports per-enclave page tables and secure
PF handlers. It uses a security monitor that runs at a higher
privilege level than the OS and the hypervisor. Upon a PF,
the enclave exits to the security monitor, which triggers the
in-enclave secure PF handler.

2.2 Limitations of existing enclaves

Signal handling in SGX. Page fault handlers can be cus-
tomized in userspace by registering a signal handler. SGX
supports signal handlers in enclaves and works according to

Figure 1: Execution of a signal handler in SGX

the following scheme (Figure 1): when an interrupt occurs,
the enclave exits to the OS 1 . The OS takes control and per-
forms an up-call to an untrusted user-space trampoline in the
enclave’s hosting process 2 . The trampoline re-enters the en-
clave by invoking the in-enclave signal handler 3 . After the
signal handler terminates, the enclave exits 4 and resumes
execution of the last instruction 5 via ERESUME.
SGX: No secure page fault handlers. The SGX signal han-
dling mechanism cannot guarantee secure execution of the
handler itself. When the enclave is resumed after the PF,
ERESUME replays the faulting memory access. Therefore, the
enclave cannot validate that the signal handler was indeed
executed correctly, or was executed at all. To the best of our
knowledge, this problem will not be resolved in the next ver-
sion of SGX [54, 86, 43].
SGX: Performance overheads. Even with hardware support
for the secure signal handler, SGX has inherent architectural
properties that will lead to significant performance penalties,
rendering this mechanism unsuitable for customized appli-
cation memory management. The architecture relies on the
OS to manage the enclave’s virtual memory. Furthermore,
SGX may only run userspace code. Since the OS is untrusted,
any secure page fault handling would inevitably follow the
signal handling scheme depicted in Figure 1, namely, double
enclave transition between the trusted and untrusted contexts.

We measure the latency of an empty SGX PF handler (ac-
cess to a protected page) to be 11µsec, which is more than 6×
the latency of a signal handler outside SGX. For comparison,
CoSMIX’s software page fault handler is only 0.01 µ second,
the cost of a single function call, which is three orders of
magnitude faster than in SGX.

Further analysis shows that the signal latency is dominated
by the latency of enclave transitions, which we measure to
be 5.3µsec each 1 and stems from costly validation, register
scrapping, TLB and L1 cache flushes [82, 43].
Other enclave architectures. Enclave transition overheads
are pertinent to other enclave architectures. Komodo reports
exit latency of 0.96µs [34]. Sanctum and Keystone do not
disclose their enclave transition penalties, yet they describe
similar operations performed when such transitions occur.

We conclude that secure page fault handlers are not sup-
ported in SGX, and are likely to incur high-performance costs
in other enclave architectures due to transition overheads.

1This value is almost double the one reported in prior works [61, 85]
because of the firmware update to mitigate the Foreshadow [82] bug.

USENIX Association 2019 USENIX Annual Technical Conference 557

2.3 Code instrumentation for enclaves

Instrumenting application memory accesses with the desired
software PF handling logic is a viable option to achieve the
functionality equivalent to the hardware-triggered PF handlers.
Unfortunately, existing instrumentation techniques are not
sufficient to achieve our goals, as we discuss below.

Binary instrumentation. Dynamic binary instrumentation
tools [51, 57, 24, 52, 71], such as Intel PIN [51], enable in-
strumentation of memory accesses. Unfortunately, these tools
have significant drawbacks in the context of in-enclave exe-
cution. For example, for PIN to work, all its libraries should
be included in the enclave’s Trusted Computing Base (TCB).
Moreover, PIN requires JIT-execution mode to instrument
memory accesses. Therefore, the enclave code pages should
be configured as writable, which might lead to security vulner-
abilities. Removing the write access permission from enclave
pages will be supported in SGX V2, but doing so will require
costly enclave transitions [43].

Static binary instrumentation tools do not suffer from these
shortcomings. However, compared to the compiler-based tech-
niques we propose in this work, they do not allow using com-
prehensive code analysis necessary for performance optimiza-
tions. Therefore, we decided against the binary instrumenta-
tion design.

Compiler-based instrumentation. The main advantage of
this method is the ability to aggressively reduce the instru-
mentation overheads by using advanced source code analysis.
On the other hand, the source code access requirement limits
the applicability of this method. However, this drawback is
less critical in the case of SGX enclaves because many SGX
execution frameworks, such Panoply [77] and SCONE [18],
require code recompilation anyway. Therefore, we opt for
compiler-based instrumentation in CoSMIX.

3 CoSMIX Design

CoSMIX aims to facilitate the integration of different mstores
efficiently into SGX applications. Our design goals are:

• Performance. Low overhead memory-access and soft-
ware address translation.
• Ease-of-use. Annotation-based or automatic instrumen-

tation without manual application code modification.
• General memory extension interface. Easy and mod-

ular development of application-specific memory instru-
mentation libraries.
• Security. Keep SGX security guarantees and small TCB.

Threat Model. CoSMIX is designed with the SGX threat
model, where the TCB includes the processor package and the
enclave’s code. Additionally, we assume that the code running
in an enclave does not contain memory vulnerabilities.

Figure 2: CoSMIX compilation overview. The compiler is
guided by code annotations and global instrumentation policy.

3.1 Design overview

Compiler-based instrumentation. CoSMIX enables SGX
developers to build custom memory stores, mstores that rede-
fine the memory layer functionality of an instrumented pro-
gram. To integrate one or more mstores into an application,
the CoSMIX compiler automatically instruments the program
(Figure 2). The developer may selectively annotate static vari-
ables or/and memory allocations to use different mstores, or
define a global instrumentation policy. The compiler automat-
ically instruments the necessary subset of memory accesses
with the accesses to the corresponding mstores, and statically
links mstore libraries with the code.

The CoSMIX configuration file defines the instrumentation
behavior. It specifies annotation symbols per mstore, mstore
type (§3.2) and the instrumentation policy(§3.3).

3.2 Mstore abstraction
At a high level, an mstore implements another layer of virtual
memory on top of an abstract storage layer. An mstore oper-
ates on pages, mpages, and keeps track of the mpage-to-data
mappings in its internal mpage table. When an application
accesses memory, the runtime invokes the mstore’s software
page fault handler, retrieves the contents (e.g., for the secure
mmap mstore, it would read data from a file and decrypt), and
makes it accessible to the application.

We distinguish between cached and direct-access mstores.
A cached mstore maintains its own mpage cache to reduce
accesses to the storage layer, whereas a direct-access mstore
does not cache the contents.

Figure 3 shows the execution of an access to a cached
mstore. The pointer access 1 triggers the runtime call, which
chooses the appropriate mstore 2 and checks the translation
cache 3 . If the translation is not in the cache, the runtime
invokes the mpage fault handler 4 . The mstore translates
the pointer 5 , and either fetches the referenced mpage from
the page cache 6 , or retrieves it from the storage layer and
updates the mpage and translation caches 7 .

3.2.1 Mstore callbacks

Table 1 lists the callback functions mstores must implement.
Initialization/teardown. The mstore is initialized at the be-
ginning of the program execution and torn down when the pro-

558 2019 USENIX Annual Technical Conference USENIX Association

Callback Purpose
mstore_init(params)/mstore_release() Initialize/tear down
void* alloc(size_t s, void* priv_data)/free(void* ptr) Allocate/free buffer
size_t alloc_size(void* ptr) Allocation size
size_t get_mpage_size() Get the size of the mpage

Direct-access mstore
mpf_handler_d(void* ptr, void* dst, size_t s) mpage fault on access to ptr, store the value in dst
write_back(void* ptr, void* src, size_t size) Write back value in src to ptr

Cached mstore
void* mpf_handler_c(void* ptr) mpage fault on access to ptr, return pointer to mpage
flush(void* ptr, size_t size) Write the mpages in the range ptr:ptr+size to mstore
get_mstorage_base()/get_mpage_cache_base() Gets the base address of mstorage/mpage cache
notify_tlb_cached(void* ptr) / notify_tlb_dropped(void*
ptr, bool dirty)

The runtime cached/dropped the ptr translation in its TLB

Table 1: Compulsory mstore callback functions

Figure 3: CoSMIX: code transformation and execution flow
of access to a cached mstore. See the text for explanation.

gram terminates. Importantly, the runtime flushes the mpage
cache when tear-down of cached mstores is called.
Memory allocation. The runtime delegates the memory allo-
cation calls of the original program to the mstore alloc.

3.2.2 Pointer access and mpage faults

When the instrumented code accesses the mstore, the runtime
incurs an equivalent of a page fault, and invokes the respective
callback in the mstore, as discussed below.
Cached mstores. A cached mstore translates the pointer
to the mpage inside its cache. mpf_handler_c returns the
pointer into the mpage that holds the requested data, allowing
direct access from the code. For cross-page misaligned ac-
cesses, the runtime creates a temporary buffer and populates
it by calling the mpf_handler_c for every page separately.
For store access, the updates are written to both pages.

When the runtime determines that the code is accessing the
same mpage multiple times, it may cache the pointer to that
mpage in its private TLB. This avoids the address translation
overheads for all but the first access to the page. To ensure
that the mpage is not swapped out by the mstore logic, the
runtime notifies the mstore to pin the mpage in the mpage
cache via notify_tlb_cached. The page is unpinned by
notify_tlb_dropped when its translation is evicted from

the TLB (see §3.3.4 for more details).
There can be multiple cached mstores in the same program,

each with its own mpage size. The runtime can query an
mstore page size using the get_mpage_size call, for exam-
ple, to determine accesses to the same mpage in the TLB.

A cached mstore must implement the flush() callback
to synchronize its mpage cache with the storage layer. This
callback is used, for example, to implement the msync call.
Direct-access mstores. Direct-access mstores have no cache
and thus are easier to implement. The input pointer provided
to the mpf_handler_d callback may be used without address
translation, and at finer granularity not bound to the mpage
size. The runtime provides a thread-local intermediate buffer
to store the accessed data. For loads, the program uses this
buffer. For stores, the runtime writes the updated contents
back to the mstore using the write_back callback.

3.2.3 Thread safety and memory consistency

CoSMIX allows multiple threads to access the same mstore,
as long as the mstore implementation is thread-safe.

For cached mstores, CoSMIX does not change the mstore
memory consistency model as long as the accesses are inside
the same mpage, and the mpage size is 4KB or larger. The
CoSMIX runtime does not introduce extra memory copies
for such accesses and effectively inherits the mstore memory
consistency. In addition, the mstore itself must ensure that the
storage layer is accessed only via its mpage cache, thereby
preventing different threads from seeing inconsistent data.

This guarantee does not hold for direct-access mstores and
misaligned cross-mpages. The primary implication is that
hardware atomics will not work for such accesses.

We believe that this limitation does not affect most practical
cases. The lack of cross-mpage atomics support does not
affect race-free programs synchronized via locks. This is
because the intermediate buffer is written back to the mstore
immediately after the original store operation and thus will
be protected by the original lock. We observed no cases of
cross-mpage atomics in the evaluated applications.

USENIX Association 2019 USENIX Annual Technical Conference 559

Today, the problem of misaligned cache accesses deserves
special handling in compilers. For example, LLVM translates
such accesses into the XCHG instruction [43]. CoSMIX must
rely on a software solution, e.g., using readers-write locks
per-mpage. We defer this to future work.

3.2.4 Memory vs. file-backed mstores

The mstore abstraction described so far instruments memory
accesses alone. However, it is insufficient to enable imple-
mentation of memory-mapped files. For example, consider a
program that uses mmap to access a file, and then calls fsync.
It will not work correctly because fsync is not aware of the
mstore’s internal cache. Specifically, all the I/O operations on
files managed by a file-backed mstore must interact with its
mpage cache to avoid data inconsistency.

We define a file-backed cached mstore type, which im-
plements all the callbacks of memory-backed mstores, but
additionally overrides the POSIX file API that interacts with
the page cache, e.g., open, close, read, write, msync
(§3.3). Direct-access mstores do not have internal caches;
thus they can be used with files without overriding file I/O
operations other than mmap itself.

3.2.5 Mstore examples

CoSMIX provides a set of reusable building blocks for
mstores, such as a slab memory allocator, spinlocks, a generic
mpage table, and an mpage cache, all with multi-threading
support, which we use to implement the mstores below.
SUVM mstore. SUVM allows exit-less memory paging for
enclaves by keeping a page table, page cache and a fault
handler as part of the enclave. We implement SUVM from
scratch as a cached memory-backed mstore, using CoSMIX’s
generic mpage table and mpage cache. The alloc function
returns a pointer to the storage layer in untrusted memory.
Upon mpf_handler_c, the mstore checks whether the needed
mpage is already cached in the mpage table. If not, it reads the
mpage’s contents from the storage layer, decrypts and verifies
its integrity using a signature maintained for every mpage,
and finally copies it to the mpage in the page cache. When
the mpage cache is full, the mstore evicts pages back into the
storage layer.
Secure mmap mstore. This mstore enables the use of memory-
mapped encrypted and integrity-protected files in enclaves.
We support private file mapping only and leave cross-enclave
sharing support for future work. This is a cached file-backed
mstore that maintains its own mpage table and mpage cache.

The alloc callback is invoked by the runtime upon the
mmap call in original code. alloc records the mapping start
offset in the file and the access flags in an internal table. It
then returns a pointer with the requested offset from a unique
file base address. This address is internally allocated by the
mstore and used as isolated address space for each file.

The mpf_handler_c callback translates the given pointer
to the respective file. If the contents are not available in the
mpage cache, the data is fetched from the file using a read
system call, followed by decryption and integrity check.
Oblivious RAM mstore. ORAM obfuscates memory access
patterns by shuffling and re-encrypting the data upon every
data access. The ORAM mstore streamlines the use of ORAM
in enclaves. It allows the developer to allocate and access the
buffers that store sensitive data in an ORAM, thereby protect-
ing the program against controlled side-channel attacks [87].

We implement a direct-access memory-backed ORAM
mstore. This is because if it were cached, the accesses to
the cache would be visible to the attacker, compromising the
ORAM security guarantees. Our ORAM mstore addresses a
threat-model similar to ZeroTrace [67], yet without leakage
protection in the case of enclave shutdowns. Specifically, all
the instrumented memory accesses destined to the ORAM
mstore become oblivious, such that an adversary cannot learn
the actual memory access pattern. We implement the Path
ORAM algorithm [78] and ensure oblivious accesses to its
position map and stash using the cmovz instruction.

We store the Path-ORAM tree in a contiguous buffer within
the enclave trusted memory. This eliminates the need to im-
plement block encryption and integrity checks as part of the
ORAM mstore since SGX hardware does exactly that.

The alloc function allocates the requested number of
blocks in ORAM and registers them with the ORAM module.
It returns an address from a linear range with a hard-coded
base address, which is used only to compute the block index.

The mpf_handler_d callback translates the address to the
requested block index and invokes the ORAM algorithm to
obliviously fetch the requested memory block to a tempo-
rary buffer. Loads are issued from this buffer and stores are
appended with the write_back callback.

3.2.6 Stacking mstores

The mstore abstraction makes it possible to stack different
mstores. Stacking allows one mstore to invoke another mstore
recursively. We denote by A→B an mstore A that internally
accesses its memory via mstore B.

Consider, for example, ORAM→SUVM. The motivation
to stack is when the ORAM mstore covers a region that is
larger than the enclave’s physical memory. Since SUVM opti-
mizes the SGX paging mechanism, stacking ORAM on top
of SUVM improves ORAM’s performance (§4.5).

To create a new A→B mstore, the developer simply an-
notates A’s storage layer allocations with B’s annotations.
CoSMIX instruments all these accesses appropriately.

Stacking the ORAM mstore on top of any mstore that main-
tains data confidentiality does not compromise the ORAM
access pattern obfuscation guarantees, as ORAM protocols
consider the backing store to be untrusted [78]. Therefore
ORAM→SUVM would maintain data-oblivious access.

560 2019 USENIX Annual Technical Conference USENIX Association

However, the stacking→ operator is not commutative from
the security perspective: SUVM→ORAM would result in the
SUVM mstore caching mpages fetched obliviously by the
ORAM mstore, thereby leaking the access patterns to these
mpages and compromising ORAM’s security guarantees.

3.3 CoSMIX compiler and runtime
The instrumentation compiler modifies the application to use
mstores and is guided by code annotations or/and a global
instrumentation policy. The compiler needs to instrument four
different types of code: (1) memory accesses; (2) memory
management functions; (3) file I/O operations for file-backed
mstores; (4) libc library calls.
Instrumentation policy. A developer may annotate any static
variable declaration or memory allocation function call. An-
notations allow instrumentation of a subset of the used buffers
to reduce instrumentation overheads. Alternatively, a global
instrumentation policy specifies compile-time rules applied to
the whole code base (e.g., instrument all calls to malloc), or
run-time checks injected by the compiler (e.g., using mstore
for large buffers above a certain threshold). A global policy
serves for bulk operations on large code bases, such as adding
SUVM mstore to Redis sources with over 130K LOC (§4.4).

Similarly, for file-backed mstores, a global policy may limit
the use of the mstore to specific files or directories.

3.3.1 Pointer access instrumentation

Static analysis. The compiler uses static build. Therefore, it
can conservatively determine the subset of operations that
must be replaced with mstore-related functions at compile
time and eliminate the instrumentation overhead for such
cases. Trivially, the compiler may replace an annotated call to
malloc with the alloc callback of the requested mstore. A
much more challenging task, however, is to determine the type
of the mstore (if any) to use for every pointer in the program.

For this purpose, we use Andersen’s analysis [17] to gener-
ate inter-procedural point-to information. In a nutshell, CoS-
MIX first parses all instructions and generates a graph with
pointers as nodes and their constraints (e.g., assignment or
copy) as edges. The graph is then processed by a constraint
solver which outputs the set of points-to-information.

When instrumenting memory accesses, CoSMIX can use
this information to determine whether the pointer may alias
to a specific mstore pointer.
Runtime checks and tagged pointers. CoSMIX’s pointer
analysis is sound but incomplete; therefore it requires run-
time decisions for ambivalent cases. We use tagged point-
ers [47, 13, 74, 31] to determine pointer type at runtime. Each
mstore is assigned a unique identifier, stored in unused most
significant bits of the pointer virtual address. For instrumented
allocations, the runtime adds this identifier to the returned ad-
dress from the mstore allocation. For external function calls

and memory accesses, the runtime checks the tag, strips it
from the pointer, and invokes the callback of the respective
mstore if necessary.
Tagged pointers vs. range checks. One known limitation
of tagged pointers is that the application code might reset
the higher bits of a pointer. Prior work [47] and our own
experience suggest that this is rarely the case in practice.
An alternative approach is to differentiate between mstores
by assigning a unique memory range to each. Using tagged
pointers turned out to be faster in our experience because the
range check requires additional memory accesses.

3.3.2 Memory management and file I/O calls

The compiler replaces all the memory management operations
selected by the instrumentation policy with the calls to the
runtime that invokes the appropriate mstore callbacks.

Similarly, file I/O operations are replaced with runtime
wrappers. On open, the runtime determines whether to use
an mstore with the current file and registers its file descriptor.
An I/O call using this file descriptor will be redirected to the
respective mstore.

3.3.3 libc support

Invoking an uninstrumented function on an mstore pointer
would result in undefined behavior. We assume that most
application libraries are available at compile time. However,
libc is not instrumented and we provide wrappers instead,
similarly to other works [47, 59].

There are two main reasons to not instrument libc.
First, doing so would create a bootstrapping problem since
mstores might use libc calls. Second, SGX runtimes such as
SCONE [18] use proprietary, closed-source versions of libc.
Wrapping libc functions allows CoSMIX to be portable
across multiple enclave execution frameworks.

CoSMIX provides wrappers for most popular libc func-
tions (about 80), which suffices to run the large production
applications we use in our evaluation. Adding wrappers for
more functions is an ongoing effort.

In addition to stripping the pointer tag, these wrappers must
guarantee access to virtually contiguous input/output buffers
from uninstrumented code, instead of using mstore mpages.
Thus, where necessary, the wrappers use a temporary buffer in
regular memory to stage the mstore buffer before the library
call and write it back to the mstore after the call.

3.3.4 Translation caching

Minimizing the instrumentation overhead is a fundamental
requirement for CoSMIX. The overheads are caused mainly
by runtime checks of the pointer type and invocation of the
mstore logic on memory accesses.

To reduce these overheads, CoSMIX first runs aggressive
generic code optimizations, reducing memory accesses. It

USENIX Association 2019 USENIX Annual Technical Conference 561

also avoids invoking mstore page fault handlers for recurrent
accesses to the same mpage.
Opportunistic caching. We introduce a small (one cache
line) TLB stored in the thread-local memory. This TLB is
checked upon each access to the mstore. The runtime pins the
page in the mstore while the mpage translation is cached, and
unpins when it is flushed. To support multiple threads, the
TLB notification callbacks use a reference counter for each
mpage. The mpage can be evicted if the counter drops to zero,
eliminating the need for explicit TLB invalidation. We choose
small TLB size (5) for its low lookup times. Increasing the
size did not improve performance in our workloads.
Translation caching in loops. The TLB captures the locality
of accesses quite effectively, but in loops, the performance
can be further improved by transforming the code itself to use
the mpage base address without checking the TLB.

For example, in the case of an array allocated in an mstore
and sequentially accessed in a tight loop, most accesses to
the mstore are performed within the same mpage. Therefore,
replacing the code in the loop to check the TLB only at mpage
boundaries would result in near-native access latency.

To perform this optimization, CoSMIX has to (a) determine
the iterations in which the same mpage gets accessed, and
(b) determine the pointer transformation across the iterations.
For (b), CoSMIX uses the scalar evolution analysis [83] in
the compiler to find predictable affine transformations for the
pointers used in the loop. For (a) it injects a code that deter-
mines the number of iterations where the cached translation
hits the same mpage, recomputing the new base pointer and
dropping the translation from the TLB when crossing into a
new mpage. Finally, it replaces the original accesses to the
mstore with the accesses to the mpage’s base pointer with the
offset, which is updated across the loop iterations according
to the determined transformation.

3.4 Discussion

Security guarantees. CoSMIX itself does not change the se-
curity of SGX enclaves. Its runtime neither accesses untrusted
memory nor leaks secret information from the enclave. How-
ever, the security of mstores depends on their implementation:
SUVM has the same security as SGX paging [61] and the
ORAM mstore introduces a controlled side-channel [87] pro-
tection mechanism not available in the bare-metal SGX [67].
We note, however, that CoSMIX does not guarantee that the
code using an mstore will indeed maintain that mstore’s se-
curity properties. For example, in case of the ORAM mstore,
user code must not use sensitive values read from ORAM in a
data/control dependent manner because doing so might break
the data pattern obfuscation [65].
Other mstore applications. Mstores are general and can be
used to implement many other useful extensions. For exam-
ple, implementing bounds checking for 32-bit address space
enclaves as in SGXBounds [47] becomes easy. All it takes is

adding an extra 4 bytes for each buffer allocation to store the
lower bounds of the object and tag the pointer’s highest 32
bits with its lower bounds’ address. Then, every memory ac-
cess is instrumented to check these bounds. The SGXBounds
mstore can implement this logic in its callback functions.

Another useful application is transparent inter-enclave
shared memory, which may enable execution of multi-socket
enclaves and support for secure file sharing.

Eleos vs. CoSMIX. The starting point of our design was
Eleos [61]. There, the authors introduce spointers, which are
similar to C++ smart pointers. In Eleos all necessary mem-
ory accesses are replaced with spointers and translations are
cached in the spointers themselves. On every access, spointers
perform bound checking, to make sure that pointer arithmetic
on the spointer did not cross to a new page. However, the
mpage bound check impacts performance greatly, even when
the caching is limited to the scope of a function. Second,
maintaining static translation for mstore pointers complicated
the design. For example, pointer-to-integer casts had to be
invalidated, forcing a reverse mapping in mstores.

A key lesson from CoSMIX is that caching the translations
only in cases of high access locality is enough to leverage the
performance benefits and simplify the design.

Limitations. Inline assembly snippets, while quite rare, can-
not be easily supported. CoSMIX considers them as an
opaque function call. It injects code to check whether passed
arguments are mstore pointers. If so, CoSMIX aborts the pro-
gram and notifies that manual instrumentation is necessary.

Hardware extensions. We hope that CoSMIX will motivate
hardware developers to support secure in-enclave fault han-
dling. This functionality would allow enclaves to control the
execution flow of the page faults. For example, an enclave
might refuse to resume execution after a fault unless a correct
secure fault handler has been invoked. As a result, secure page
faults would allow extending enclaves with cached mstore
functionality, such as the secured mmap provided by CoSMIX,
albeit at a significantly higher performance costs due to tran-
sitions to/from untrusted mode. Moreover, hardware support
for secure fault handlers would enable paging of code pages
not supported by CoSMIX.

However, direct mstores such as ORAM cannot be sup-
ported in the same way, since they invoke the fault handler
for every memory access. Therefore, good performance could
be achieved only by much more intrusive modifications that
would avoid enclave mode transitions. Additionally, enclave
hardware evolves slowly. For example, the SGX2 specifica-
tion was published in 2014, yet is still not publicly available
in mainstream processors [20]. CoSMIX on the other hand,
can be used to enhance enclaves’ functionality today.

562 2019 USENIX Annual Technical Conference USENIX Association

4 Evaluation

Implementation. CoSMIX implementation closely follows
its design 2. The compiler prototype is based on the LLVM
6.0 framework and is implemented as a compile-time module
pass, consisting of 1,080 LOC. We compile applications using
the Link-Time Optimization (LTO) feature of LLVM and pass
them as inputs to the compiler pass.

CoSMIX uses the SVF framework [79, 80] to perform An-
dersen’s pointer analysis with type differentiation. CoSMIX
runtime is written in C++ and consists of 1,600 LOC. CoS-
MIX’s configuration file is JSON formatted and CoSMIX uses
JsonCpp [3] to parse it. All mstores are written in C++. Their
implementation follows the design described in Section 3.
The implementations of SUVM, ORAM and mmap mstores
are 935 LOC, 551 LOC, and 1,108 LOC respectively. mmap
mstore leverages the SCONE file shields, which override the
read/write calls in libc to implement integrity checks and
encryption for file I/O operations. This is one of the examples
when our design choice to use libc wrappers rather than
libc instrumentation pays off.

Setup. Our setup comprises two machines: server and client.
The client generates the load for the server under evalua-
tion. The client and the server are connected back-to-back
via a 56Gb Connect-IB operating in IP over Infiniband [27]
(32Gbps effective throughput) to stress the application logic
and avoid network bottlenecks.

For the server, we use Dell OptiPlex 7040, with Intel Sky-
lake i7-6700 4-core CPU with 8 MB LLC, 16 GB RAM, and
256 GB SSD drive, Ubuntu Linux 16.04 64-bit, Linux 4.10.0-
42, and Intel SGX driver 2.0 [2]. We use LLVM 6.0 to compile
the source code. As recommended by Intel, we apply L1TF
microcode patches [9]. The client runs on a 6-core Intel Xeon
CPU E5-2620 v3 at 2.40GHz with 32GB of RAM, Ubuntu
16.04 64-bit, Linux 4.4.0-139.

Methodology. Unless otherwise specified, we run all the
workloads in SGX using SCONE [18]. We run each test 10
times and report the mean value, with the standard deviation
below 5%. We compile all workloads as follows: (1) compile
to LLVM IR with full optimizations (-O3) and invoke LLVM’s
IR linker to link all IR files; (2) invoke CoSMIX LLVM pass
for code instrumentation; (3) use the SCONE compiler to
generate an executable binary linked with its custom libc. We
skip step (2) when compiling the baseline.

Summary of workloads. We evaluated several production
applications and benchmarks, detailed in Table 2. CoSMIX
successfully instruments large code bases using only a few or
no code annotations, and no source code changes.

2CoSMIX source code is publicly available at https://github.com/
acsl-technion/cosmix.

Workload LOC Changed
LOC

mstore

memcached [35] 15,927 1 SUVM
Redis [8] 123,907 0 SUVM
SQLite [62] 134,835 2 secure mmap
Phoenix suite [66] 1,064 1/bench SUVM ‖ secure mmap
Face verification [61] 700 1 SUVM→ ORAM

Table 2: Summary of the evaluated workloads. ‖ - side-by-
side,→ - stacked. LOC includes all statically linked libraries.

Data size Baseline SUVM ORAM
16 MB 0.7µsec 0.9µsec (−1.28×) 32.3µsec (−46.1×)
256 MB 14.4µsec 1.5µsec (9.6×) 590.6µsec (−41×)
1GB 19.9µsec 1.6µsec (12.4×) 1.23msec (−61.8×)

Table 3: mstore latency to fetch a 4 KB page. Baseline is
native memory access.

4.1 Mstore performance
First, we measure the latency of random accesses to mstores
and compare them to native memory accesses in the enclave.
We evaluate scenarios with small and large memory usage
where the latter causes SGX page faults. We report the results
for SUVM and ORAM mstores and exclude the mmap mstore
because it is similar to SUVM. We measure the average la-
tency to access random 4 KB pages over 100k requests.

Table 3 shows the results. For small datasets, SUVM incurs
low overhead compared to regular memory accesses. How-
ever, for large data sets which involve SGX paging, it is about
10× faster. This is because SUVM optimizes the enclave
paging performance by eliminating enclave transitions [61].
As expected, ORAM mstore access is between 30× to 60×
slower than the baseline, even when covering a small range
of 16 MB. This result indicates that selective instrumentation
for ORAM is essential to achieve practically viable systems.

4.2 Instrumentation and mstore overheads
We instrument all seven benchmarks in the Phoenix suite [66]
to measure CoSMIX’s instrumentation overheads. Each
benchmark is small, making the results easier to analyze.

We evaluate 4 configurations: (1) Full automatic instrumen-
tation using SUVM and mmap mstore. Both mstores are run
side-by-side because Phoenix uses both dynamic allocations
and memory-mapped files. (2) Same but with an empty mstore.
All the pointers are instrumented, but the mstore logic is not
invoked. (3) Selective instrumentation where we manually
annotate only the inputs. (4) Same but with an empty mstore.
For benchmarks that use mmap, the baseline reads the entire
input file to memory.

Measuring an empty mstore allows us to distinguish be-
tween overheads of pointer instrumentation and mstores.

To focus solely on the CoSMIX overheads, we use the
small dataset shipped with Phoenix so no paging operation
will occur. The only exception is the histogram benchmark,
for which we synthetically resize the dataset to 25 MB. We
exclude mstore initialization and preload all the datasets into

USENIX Association 2019 USENIX Annual Technical Conference 563

https://github.com/acsl-technion/cosmix
https://github.com/acsl-technion/cosmix

hist lreg mmul pca smtch wcnt kmeans gmean0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d
ex

ec
ut

io
n

tim
e

Full instrumentation Selective instrumentation

(a) Instrumentation-only cost (empty mstores).

hist lreg mmul pca smtch wcnt kmeans gmean0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

No
rm

al
ize

d
ex

ec
ut

io
n

tim
e 26.2x

Full instrumentation Selective instrumentation
Manual
loop
unroll

(b) Full cost with mstores.

Figure 4: CoSMIX instrumentation overheads for the Phoenix
suite running in the enclave normalized to the execution of
non-instrumented binaries. Lower is better.

SGX memory, both in the baseline and in CoSMIX measure-
ments, to stress the runtime components of the system.

Often mstores can be tuned to reduce the translation over-
head, by increasing the mstore page size. As a result, the
accesses in a loop might touch fewer pages, enabling more
efficient use of CoSMIX’s TLB. Therefore, we manually tune
the page size, setting it to 256 KB for kmeans, 16 MB for
word count, 64 MB for lreg, and 4 KB for the rest of the
benchmarks, as in all the other experiments.

Figure 4 shows the results. Figure 4b shows the overhead
for both CoSMIX’s instrumentation and mstore logic. Fig-
ure 4a excludes the mstore logic. In each figure, the rightmost
bar refers to the selective instrumentation of accesses to the in-
put data alone, and the other bar refers to full instrumentation
of all dynamic allocations and mmap calls.
Instrumentation overheads. The runtime overheads exclud-
ing mstores are relatively small, with an average (geomean)
of 17% for full instrumentation and 10% for the input instru-
mentation alone, with the worst case of 50% in lreg.
Full instrumentation. With the full instrumentation, mstore
logic dominates the runtime overheads, ranging from almost
none for histogram to 26× for matrix multiplication. Such
variability stems from the different ways memory is accessed.
Specifically, if the program exhibits poor access locality, or
the CoSMIX compiler fails to capture the existing locality in
a loop, the runtime will not be able to optimize out the calls
to the mstore inside the loop, resulting in high overheads.
Selective instrumentation. Instrumenting only the input
buffers results in dramatically lower overheads, ranging from
5% to 15%. The only pathological case is kmeans, where
the CoSMIX compiler fails to optimize accesses to the multi-
dimensional input array because the inner array is too short.
Unrolling this loop reduces the overhead to about 5%. We

CoSMIX
secure
mmap

read
no
cache

read
1 MB
cache

read
16 MB-60 MB
cache

Query latency 2.4µsec 10.7µsec 4.5µsec 1.7µsec
Speedup 4.4× 1.8× −1.4×

Table 4: SQLite performance with secure mmap mstore.

plan to add automatic optimizations for this case in the future.
Contribution of CoSMIX optimizations. We measure the
performance of the selective instrumentation while disabling
the runtime TLB and compiler loop optimizations (§3.3.4).
We find that these two features are essential to make CoSMIX
practical and keep the instrumentation overheads low. The
slowdown ranges from 4× for word count and kmeans to 55×
for histogram and 197× for lreg, making the system unusable.
In comparison, the optimized version brings the overheads
down to 4% and 44% for histogram and lreg. The geomean of
the unoptimized selective instrumentation is 16.4× compared
to 20% with the optimizations enabled.
CoSMIX overheads for non-enclave execution. For com-
pleteness we perform the same experiment with Phoenix but
now outside the enclave. As expected, the relative overheads
increase as compared to the in-enclave execution, with up
to 50% geometric mean slowdown when using selective in-
strumentation with SUVM and mmap mstores and up to 25%
when using an empty mstore. We attribute this discrepancy
to SGX’s memory encryption engine [40], which provides
confidentiality and integrity to memory accesses and therefore
offsets the CoSMIX instrumentation overheads.

4.3 Secure mmap with SQLite
SQLite is a popular database, but running it in SGX with mmap
while providing encryption and integrity guarantees for the
accessed files is not possible today. To run SQLite with mmap
support, we use the secure mmap mstore. We configure the
mpage size to be 4 MB. We use SQLite v3.25.3, and evaluate
it with kvtest [10], shipped with SQLite to test read access
latency to DB BLOBs. We use a database stored in a 60 MB
file holding 1 KB BLOBs. The database is sized to fit in SGX
physical memory. This allows us to focus on the evaluation
of the file access logic rather than SGX paging (refer to §4.4
for paging evaluation).

As a baseline, we evaluate SQLite with its internal backend
that uses read/write calls instead of memory-mapped files.
In this configuration, SQLite implements its own optimized
page cache for data it reads from files. In the evaluation, we
vary the SQLite page cache size from disabled (1 KB) to
60 MB (no misses). We measure the average latency of 1 KB
random read requests over 1 million requests.
Results. CoSMIX enables execution of an unmodified SQLite
server that uses mmap to access encrypted and integrity-
protected files. Such execution was not possible without CoS-
MIX. Moreover, as we see in Table 4, the secure mstore en-
ables 4.4× faster queries compared to the SQLite without

564 2019 USENIX Annual Technical Conference USENIX Association

SGX (Anjuna)
CoSMIX SUVM (Anjuna)

SGX (SCONE)
CoSMIX SUVM (SCONE)

Eleos SUVM (SCONE)

25 50 75 100
throughput (kreq/sec)

0

2

4

la
te

nc
y

(m
se

c)

(a) Memcached. 10% SET 90%
GET for 1 KB items.

0 20 40 60
throughput (kreq/sec)

0

1

2

3

4

la
te

nc
y

(m
se

c)

(b) Redis. 100% GET for 1 KB
items.

Figure 5: Performance improvement using the SUVM mstore
in production key-value stores, each using a 600 MB database
(6× the size of SGX secure memory)

page cache. This case illustrates the CoSMIX performance
benefits for applications that do not implement their own op-
timized page cache.

On the other hand, enabling the SQLite page cache allows
us to evaluate the instrumentation overheads. This is, in fact, a
conservative estimate, because the baseline is hand-optimized
and implements the necessary functionality by itself, ver-
sus the general instrumentation and generic CoSMIX’s page
cache. Even in this worst-case scenario, CoSMIX is only
about 40% slower than SQLite.

4.4 Optimizing memory-intensive workloads
with the SUVM mstore

To demonstrate CoSMIX’s support for different SGX execu-
tion frameworks, we run the following experiments both in
SCONE [18] and Anjuna [1].

We use CoSMIX to accelerate SGX execution of applica-
tions with a large memory footprint. We choose Redis and
memcached key-value stores as representatives. Both run with
data sets of 600 MB – about 6× larger than the SGX enclave-
accessible physical memory. These applications experience
a significant slowdown due to SGX paging overheads. The
goal is to reduce these overheads using the SUVM mstore.
Memached. memcached uses a slab allocator to manage its
memory. We annotate a single line of code where the memory
is allocated, making SUVM mstore manage all items.

We evaluate memcached v1.4.25 [35] using the memaslap
load generator shipped with libmemcached v1.0.18 [6]. Our
workload consists of 10% SET and 90% GET requests for
1 KB items (key+value) as used in prior works [61], with re-
quests uniformly distributed to stress the memory subsystem.

We compare the instrumented memcached with SUVM
to native SGX execution. In addition, we run a manually
optimized version of memcached with the SUVM used in
Eleos [61]. Notably, in Eleos, the authors changed memcached
internals to create a shadow memory buffer for the slab al-

locator. This is an intrusive change that CoSMIX eliminates
completely. All runs are performed on 4 cores. Figure 5a
shows that SUVM mstore boosts the throughput by 1.9×
and 2.2× compared to native SGX execution in Anjuna and
SCONE respectively. The difference between the frameworks
correlates with the relative time each of them spends resolv-
ing page faults. Interestingly, the CoSMIX version is about
7% faster than Eleos thanks to its compiler optimizations.
Redis. Manually annotating Redis with its 130 KLOC would
be too tedious. Further, its memory management involves too
many allocations, making annotation challenging. Therefore,
we use automatic instrumentation without code changes.

To achieve high performance, we leverage CoSMIX’s abil-
ity to perform conditional instrumentation. Specifically, CoS-
MIX introduces runtime checks that determine whether to
allocate a buffer in an mstore or in regular memory based
on the requested allocation size. In Redis, we configure the
policy to redirect all allocations in the range of 1 KB-10 KB
to the SUVM mstore. The intuition is to use SUVM only for
keys and values and keep native memory accesses for the rest.

We use Redis v5.0.2 [8], and evaluate it using the memtier
v1.2.15 official RedisLab load generator [7]. We configure
memtier to generate uniformly distributed GET requests for
1 KB items as used in prior works [18].

Figure 5b shows that Redis with CoSMIX achieves about
1.6× and 2× higher throughput compared to native SGX ex-
ecution in Anjuna and SCONE respectively. These results
demonstrate the power of CoSMIX to improve the perfor-
mance of an unmodified production system.

4.5 Protecting data with the ORAM mstore
Selective instrumentation capabilities in CoSMIX are particu-
larly useful when using heavyweight mstores such as ORAM.
ORAM is known to dramatically affect performance (Table 3).

We use ORAM to protect a face verification server [61]
against controlled side-channel attacks [87] on its data store.

The server mimics the behavior of a biometric border con-
trol server. It stores a database with sensitive face images.
When a person passes through border control, the client at
the border kiosk queries the server whether the image of the
person in the database matches the one taken at the kiosk.

The implementation stores the images in an array. The
server fetches the image from the array and compares it with
the input image, using the LBP algorithm [12]. This imple-
mentation is vulnerable to controlled channel attacks which
leak the access pattern to SGX memory pages. Thus, an at-
tacker may observe page access frequency and learn when a
person passes through border control. Note that existing de-
fenses against controlled channel attacks would be ineffective
since they cannot handle legitimate demand paging [76, 60].

We use a database with 1,024 256 KB images from the
Color FERET dataset [63], totaling 256 MB of sensitive data.
We annotate the allocation of the database array to use ORAM

USENIX Association 2019 USENIX Annual Technical Conference 565

Native SGX ORAM ORAM→SUVM
Throughput(req/sec) 203.1 23.4 34.7

Slowdown 8.6× 5.8×

Table 5: Selective instrumentation of face verification server.

(1 LOC) and compile with CoSMIX. As a result, the applica-
tion accesses the sensitive data obliviously. In the experiments
we configure the server to use 1 thread and the load generator
to issue random requests, saturating the server.

We report the throughput achieved in Table 5. It shows
that the ORAM mstore introduces an 8.6× slowdown. We
note that for a dataset of 256 MB, the ORAM mstore over-
head is about 41× more than native access, as reported in
Table 3. This shows that selective instrumentation may make
ORAM an attractive solution for some systems. However,
with CoSMIX we can further reduce paging penalties.
ORAM→SUVM stacking. Although the application data is
only 256 MB, PathORAM consumes about 860 MB due to
its internal storage overheads. As a result, the SGX paging
significantly affects the performance.

To optimize, we create a new ORAM→SUVM mstore
by stacking ORAM on top of SUVM. Only 1 LOC in
the ORAM mstore is annotated. The use of the combined
ORAM→SUVM mstore improves the overall performance by
1.5× compared to the ORAM mstore alone (Table 5). Over-
all, selective instrumentation and mstore stacking result in a
relatively low, 5.8× slowdown of the oblivious system com-
pared to native SGX execution. This performance might be
acceptable for practical ORAM applications and requires no
code changes.

5 Related Work

Enclave system support. Recent works proposed systems to
protect unmodified applications using enclaves [18, 21, 77,
81]. Other works proposed enclave enhancements [72, 47, 49],
such as memory safety, ASLR, and enclave partitioning. Com-
plementary to these works, CoSMIX provides system support
for modular extensions to unmodified enclave applications.
Trusted execution environments. Previous works proposed
different systems to protect applications from a malicious
OS [30, 29, 42, 16, 15]. InkTag [42], for example, offers
secured mmap service to applications; however, it relies on a
trusted hypervisor with para-verification. CoSMIX puts its
root of trust in hardware enclaves to implement in-enclave
secure fault handlers.
Controlled side-channel mitigation. Previous works sug-
gested the use of ORAM in SGX to improve its secu-
rity [65, 67, 33, 88, 11, 50]. We believe that CoSMIX
will allow the use of ORAM in many more applications
via lightweight annotations. More efficient systems for mit-
igating the controlled side-channel attack have been pro-
posed [22, 60, 76, 30]. For example, Apparition [30] uses
Virtual Ghost [29], a compiler-based virtual machine, to re-

strict OS access to the page table. However, these systems do
not support demand paging. CoSMIX protects applications
that rely on demand paging from both a malicious OS and
physical bus snooping attacks using the ORAM mstore.
Customizing applications via paging mechanisms. Previ-
ous systems proposed using page faults to improve perfor-
mance and enable quality of service functionality in OS,
GPUs, and enclaves [41, 61, 74, 14]. CoSMIX enables using
similar enhancements in secure enclave systems.

Recent works take advantage of the RDMA infrastructure
to enable efficient and transparent access to remote memory
by customizing the OS page fault handler [39, 75, 53, 37]. For
example, LegoOS [75] uses paging to simulate an ExCache
for disaggregated memory support. CoSMIX takes a similar
approach for extending secure enclaves.

Software-based distributed shared memory systems were
proposed to customize memory access logic across remote
machines [68, 69, 70, 64, 19, 56, 32]. These systems either
use the page fault handler, runtime libraries or instrumenta-
tion of applications. CoSMIX is inspired by these systems;
however, the mstore abstraction is more general and can sup-
port different memory access semantics, mixed or stacked in
the same application.
Memory instrumentation. Much work has been done on in-
strumenting memory accesses using binary instrumentation
tools [51, 24, 57, 52, 71] and compiler-based instrumenta-
tion [73, 47, 13, 31]. CoSMIX enables low-overhead selective
memory instrumentation, specifically tailored for enclaves.

6 Conclusions

CoSMIX is a new system for modular extension of the mem-
ory layer in unmodified applications running in enclaves. It
sidesteps the lack of hardware support for efficient and secure
page fault handlers in existing architectures. CoSMIX en-
ables low-overhead and selective instrumentation of memory
accesses via a simple yet powerful mstore abstraction.

We show how compilation with CoSMIX both speeds up
execution and adds protection to production applications. We
believe that mstores may become a useful tool for facilitating
the development of new secured systems.

7 Acknowledgments

We would like to thank our shepherd John Criswell for his
valuable feedback. We also gratefully acknowledge the sup-
port of the Israel Science Foundation (grant No. 1027/18), the
Israeli Innovation Authority Hiper Consortium, the Technion
Hiroshi Fujiwara Cybersecurity center, and Intel ICRI-CI In-
stitute grant, and the feedback from the Intel SGX SEM group.
Meni Orenbach was partially supported by HPI-Technion Re-
search School.

566 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Anjuna. https://www.anjuna.io. Accessed: 2019-01-
01.

[2] Intel SGX Linux Driver. https://github.com/
intel/linux-sgx-driver. Accessed: 2018-12-06.

[3] JsonCpp. https://github.com/open-source-
parsers/jsoncpp. Accessed: 2019-01-09.

[4] Keystone: Open-source Secure Hardware Enclave.
https://keystone-enclave.org. Accessed: 2019-
01-09.

[5] Lightning Memory-Mapped Database Manager. http:
//www.lmdb.tech/doc/. Accessed: 2018-12-06.

[6] memaslap: Load Testing and Benchmarking a
Server. http://docs.libmemcached.org/bin/
memaslap.html. Accessed: 2018-12-06.

[7] memtier benchmark: A High-Throughput Bench-
marking Tool for Redis and Memcached. https:
//redislabs.com/blog/memtier_benchmark-
a-high-throughput-benchmarking-tool-for-
redis-memcached/. Accessed: 2018-12-06.

[8] Redis In-Memory Data Structure Store. https://
redis.io/. Accessed: 2018-12-06.

[9] Resources and Response to Side Channel L1 Terminal
Fault. https://www.intel.com/content/www/us/
en/architecture-and-technology/l1tf.html.
Accessed: 2018-12-31.

[10] SQLite Memory-Mapped I/O. https:
//www.sqlite.org/mmap.html. Accessed: 2018-
12-06.

[11] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee. OBLIVI-
ATE: A Data Oblivious Filesystem for Intel SGX. In
25th Annual Network and Distributed System Security
Symposium (NDSS), 2018.

[12] T. Ahonen, A. Hadid, and M. Pietikainen. Face Descrip-
tion With Local Binary Patterns: Application to Face
Recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 28(12):2037–2041, 2006.

[13] P. Akritidis, M. Costa, M. Castro, and S. Hand.
Baggy Bounds Checking: An Efficient and Backwards-
Compatible Defense against Out-of-Bounds Errors. In
USENIX Security Symposium, pages 51–66, 2009.

[14] H. Alam, T. Zhang, M. Erez, and Y. Etsion. Do-It-
Yourself Virtual Memory Translation. In 44th Annual
International Symposium on Computer Architecture
(ISCA), pages 457–468, 2017.

[15] T. Alves and D. Felton. TrustZone: Integrated Hardware
and Software Security. ARM White Paper, 3(4):18–24,
2004.

[16] I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Innova-
tive Technology for CPU Based Attestation and Sealing.
In Proceedings of the 2nd International Workshop on
Hardware and Architectural Support for Security and
Privacy (HASP), volume 13, 2013.

[17] L. O. Andersen. Program Analysis and Specialization
for The C Programming Language. PhD thesis, Univer-
sity of Copenhagen, 1994.

[18] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Mar-
tin, C. Priebe, J. Lind, D. Muthukumaran, D. O’Keeffe,
M. Stillwell, D. Goltzsche, D. M. Eyers, R. Kapitza, P. R.
Pietzuch, and C. Fetzer. SCONE: Secure Linux Con-
tainers with Intel SGX. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
pages 689–703, 2016.

[19] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum. Orca:
A Language For Parallel Programming of Distributed
Systems. IEEE Trans. Software Eng., 18(3):190–205,
1992.

[20] A. Baumann. Hardware is the new software. In Proceed-
ings of the 16th Workshop on Hot Topics in Operating
Systems (HotOS), pages 132–137. ACM, 2017.

[21] A. Baumann, M. Peinado, and G. Hunt. Shielding Ap-
plications from an Untrusted Cloud with Haven. ACM
Transactions on Computer Systems (TOCS), 33(3), 2015.

[22] F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto,
K. Kostiainen, U. Müller, and A.-R. Sadeghi. DR.
SGX: Hardening SGX Enclaves against Cache Attacks
with Data Location Randomization. arXiv preprint
arXiv:1709.09917, 2017.

[23] S. Brenner, C. Wulf, D. Goltzsche, N. Weichbrodt,
M. Lorenz, C. Fetzer, P. R. Pietzuch, and R. Kapitza. Se-
cureKeeper: Confidential ZooKeeper using Intel SGX.
In Proceedings of the 17th International Middleware
Conference, 2016.

[24] D. Bruening. Efficient, Transparent, and Comprehensive
Runtime Code Manipulation. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, 2004.

[25] L. Bryant, J. Van, B. Riedel, R. W. Gardner, J. C. Bejar,
J. Hover, B. Tovar, K. Hurtado, and D. Thain. VC3:
A Virtual Cluster Service for Community Computa-
tion. In Proceedings of the Practice and Experience on
Advanced Research Computing, (PEARC), pages 30:1–
30:8, 2018.

USENIX Association 2019 USENIX Annual Technical Conference 567

https://www.anjuna.io
https://github.com/intel/linux-sgx-driver
https://github.com/intel/linux-sgx-driver
https://github.com/open-source-parsers/jsoncpp
https://github.com/open-source-parsers/jsoncpp
 https://keystone-enclave.org
http://www.lmdb.tech/doc/
http://www.lmdb.tech/doc/
http://docs.libmemcached.org/bin/memaslap.html
http://docs.libmemcached.org/bin/memaslap.html
https://redislabs.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached/
https://redislabs.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached/
https://redislabs.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached/
https://redislabs.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached/
https://redis.io/
https://redis.io/
https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html
https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html
https://www.sqlite.org/mmap.html
https://www.sqlite.org/mmap.html

[26] Z. Chang, D. Xie, and F. Li. Oblivious RAM: A Dissec-
tion and Experimental Evaluation. Proceedings of the
VLDB Endowment (PVLDB), 9(12):1113–1124, 2016.

[27] J. Chu and V. Kashyap. Transmission of IP over Infini-
Band (IPoIB). RFC, 4391:1–21, 2006.

[28] V. Costan, I. A. Lebedev, and S. Devadas. Sanctum: Min-
imal Hardware Extensions for Strong Software Isolation.
In 25th USENIX Security Symposium, pages 857–874,
2016.

[29] J. Criswell, N. Dautenhahn, and V. Adve. Virtual Ghost:
Protecting Applications from Hostile Operating Sys-
tems. In Proceedings of the 19th International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 81–96,
2014.

[30] X. Dong, Z. Shen, J. Criswell, A. L. Cox, and
S. Dwarkadas. Shielding Software From Privileged
Side-Channel Attacks. In 27th USENIX Security Sym-
posium (USENIX Security), pages 1441–1458, 2018.

[31] G. J. Duck, R. H. C. Yap, and L. Cavallaro. Stack
Bounds Protection with Low Fat Pointers. In 24th An-
nual Network and Distributed System Security Sympo-
sium, (NDSS), 2017.

[32] S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. An In-
tegrated Compile-time/Run-time Software Distributed
Shared Memory System. In Proceedings of the Sev-
enth International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS VII, pages 186–197. ACM, 1996.

[33] S. Eskandarian and M. Zaharia. ObliDB: Oblivious
Query Processing using Hardware Enclaves. arXiv
preprint arXiv:1710.00458, 2017.

[34] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno.
Komodo: Using Verification to Disentangle Secure-
Enclave Hardware From Software. In Proceedings of
the 26th Symposium on Operating Systems Principles
(SOSP), pages 287–305, 2017.

[35] B. Fitzpatrick. Distributed Caching with Memcached.
Linux Journal, 2004(124):5, 2004.

[36] B. Fleisch and G. Popek. Mirage: A Coherent Dis-
tributed Shared Memory Design. In Proceedings of the
Twelfth ACM Symposium on Operating Systems Princi-
ples (SOSP), pages 211–223. ACM, 1989.

[37] I. Gelado, J. Cabezas, N. Navarro, J. E. Stone, S. J. Patel,
and W. mei W. Hwu. An Asymmetric Distributed Shared
Memory Model for Heterogeneous Parallel Systems. In
Proceedings of the 15th International Conference on

Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 347–358, 2010.

[38] O. Goldreich and R. Ostrovsky. Software Protection and
Simulation on Oblivious RAMs. J. ACM, 43(3):431–
473, 1996.

[39] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin.
Efficient Memory Disaggregation with Infiniswap. In
14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 649–667. USENIX
Association, 2017.

[40] S. Gueron. A Memory Encryption Engine Suitable for
General Purpose Processors. IACR Cryptology ePrint
Archive, 2016.

[41] S. M. Hand. Self-Paging in the Nemesis Operating
System. In Proceedings of the Third USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), pages 73–86, 1999.

[42] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and
E. Witchel. InkTag: Secure Applications on an Un-
trusted Operating System. In Proceedings of the Eigh-
teenth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS), pages 265–278, 2013.

[43] Intel 64 and IA-32 Architectures. Software Developer’s
Manual. Intel Corp.

[44] S. Jennings. Transparent Memory Compression in
Linux. LinuxCon, 2013.

[45] Joshua Lind and Oded Naor and Ittay Eyal and Flo-
rian Kelbert and Peter R. Pietzuch and Emin Gün Sirer.
Teechain: Reducing Storage Costs on the Blockchain
With Offline Payment Channels. In Proceedings of the
11th ACM International Systems and Storage Confer-
ence (SYSTOR), pages 125–125, 2018.

[46] P. J. Keleher, A. L. Cox, S. Dwarkadas, and
W. Zwaenepoel. TreadMarks: Distributed Shared Mem-
ory on Standard Workstations and Operating Systems.
In Proceedings of the USENIX Winter 1994 Technical
Conference, pages 115–132, 1994.

[47] D. Kuvaiskii, O. Oleksenko, S. Arnautov, B. Trach,
P. Bhatotia, P. Felber, and C. Fetzer. SGXBOUNDS:
Memory Safety for Shielded Execution. In Proceed-
ings of the Twelfth European Conference on Computer
Systems (EuroSys), pages 205–221, 2017.

[48] C. Lattner and V. Adve. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation.
In Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and
Runtime Optimization (CGO), pages 75–, 2004.

568 2019 USENIX Annual Technical Conference USENIX Association

[49] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P.-L.
Aublin, F. Kelbert, T. Reiher, D. Goltzsche, D. Eyers,
R. Kapitza, C. Fetzer, and P. Pietzuch. Glamdring: Au-
tomatic Application Partitioning for Intel SGX. In Pro-
ceedings of the USENIX Annual Technical Conference
(USENIX ATC), pages 285–298. USENIX Association,
2017.

[50] C. Liu, A. Harris, M. Maas, M. W. Hicks, M. Tiwari,
and E. Shi. GhostRider: A Hardware-Software System
for Memory Trace Oblivious Computation. In Proceed-
ings of the Twentieth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 87–101, 2015.

[51] C.-K. Luk, R. S. Cohn, R. Muth, H. Patil, A. Klauser,
P. G. Lowney, S. Wallace, V. J. Reddi, and K. M. Hazel-
wood. Pin: Building Customized Program Analysis
Tools with Dynamic Instrumentation. In Proceedings of
the ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation (PLDI), pages
190–200, 2005.

[52] J. Maebe, M. Ronsse, and K. D. Bosschere. DIOTA: Dy-
namic instrumentation, optimization and transformation
of applications. In 4th Workshop On Binary Translation
(WBT), 2002.

[53] E. P. Markatos and G. Dramitinos. Implementation of a
Reliable Remote Memory Pager. In Proceedings of the
Annual Conference on USENIX Annual Technical Con-
ference (ATEC), pages 177–190. USENIX Association,
1996.

[54] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. John-
son, R. Leslie-Hurd, and C. V. Rozas. Intel R©Software
Guard Extensions (Intel R©SGX) Support for Dynamic
Memory Management Inside an Enclave. In Proceed-
ings of the Hardware and Architectural Support for Se-
curity and Privacy (HASP), pages 10:1–10:9, 2016.

[55] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas,
H. Shafi, V. Shanbhogue, and U. R. Savagaonkar. In-
novative Instructions and Software Model for Isolated
Execution. In Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for
Security and Privacy (HASP), 2013.

[56] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Ka-
han, and M. Oskin. Latency-Tolerant Software Dis-
tributed Shared Memory. In USENIX Annual Technical
Conference (USENIX ATC), pages 291–305. USENIX
Association, 2015.

[57] N. Nethercote and J. Seward. Valgrind: A Program
Supervision Framework. Electr. Notes Theor. Comput.
Sci., 89(2):44–66, 2003.

[58] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta,
S. Nowozin, K. Vaswani, and M. Costa. Oblivious Multi-
Party Machine Learning on Trusted Processors. In 25th
USENIX Security Symposium, pages 619–636, 2016.

[59] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and
C. Fetzer. Intel MPX Explained: A Cross-layer Analysis
of the Intel MPX System Stack. Proceedings of the ACM
on Measurement and Analysis of Computing Systems,
2(2):28, 2018.

[60] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and
C. Fetzer. Varys: Protecting SGX Enclaves from Practi-
cal Side-Channel Attacks. In USENIX Annual Technical
Conference (USENIX ATC)), pages 227–240, 2018.

[61] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein.
Eleos: ExitLess OS Services for SGX Enclaves. In
Proceedings of the Twelfth European Conference on
Computer Systems (EuroSys), pages 238–253. ACM,
2017.

[62] M. Owens and G. Allen. SQLite. Springer, 2010.

[63] P. J. Phillips, H. Wechsler, J. Huang, and P. J. Rauss.
The FERET Database and Evaluation Procedure for
Face-Recognition Algorithms. Image Vision Comput.,
16(5):295–306, 1998.

[64] J. Protic, M. Tomasevic, and V. Milutinovic. Distributed
Shared Memory: Concepts and Systems. IEEE Paral-
lel & Distributed Technology: Systems & Applications,
4(2):63–71, 1996.

[65] A. Rane, C. Lin, and M. Tiwari. Raccoon: Closing Dig-
ital Side-Channels Through Obfuscated Execution. In
Proceedings of the 24th USENIX Conference on Secu-
rity Symposium, pages 431–446. USENIX Association,
2015.

[66] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski,
and C. Kozyrakis. Evaluating MapReduce for Multi-
core and Multiprocessor Systems. In 13th International
Symposium on High Performance Computer Architec-
ture (HPCA), pages 13–24. IEEE, 2007.

[67] S. Sasy, S. Gorbunov, and C. W. Fletcher. ZeroTrace
: Oblivious Memory Primitives from Intel SGX. In
25th Annual Network and Distributed System Security
Symposium (NDSS), 2018.

[68] D. J. Scales and K. Gharachorloo. Design and Perfor-
mance of the Shasta Distributed Shared Memory Proto-
col. In Proceedings of the 11th International Conference
on Supercomputing, pages 245–252. ACM, 1997.

[69] D. J. Scales, K. Gharachorloo, and A. Aggarwal. Fine-
Grain Software Distributed Shared Memory on SMP

USENIX Association 2019 USENIX Annual Technical Conference 569

Clusters. In 4th International Symposium on High-
Performance Computer Architecture (HPCA), pages
125–136. IEEE, 1998.

[70] I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt,
J. R. Larus, and D. A. Wood. Fine-Grain Access Control
for Distributed Shared Memory. In ACM SIGPLAN
Notices, volume 29, pages 297–306. ACM, 1994.

[71] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W.
Davidson, and M. L. Soffa. Retargetable and Recon-
figurable Software Dynamic Translation. In Interna-
tional Symposium on Code Generation and Optimiza-
tion (CGO), pages 36–47, 2003.

[72] J. Seo, B. Lee, S. M. Kim, M. Shih, I. Shin, D. Han, and
T. Kim. SGX-Shield: Enabling Address Space Layout
Randomization for SGX Programs. In 24th Annual
Network and Distributed System Security Symposium
(NDSS), 2017.

[73] K. Serebryany, D. Bruening, A. Potapenko, and
D. Vyukov. AddressSanitizer: A Fast Address San-
ity Checker. In USENIX Annual Technical Conference,
pages 309–318, 2012.

[74] S. Shahar, S. Bergman, and M. Silberstein. ActivePoint-
ers: A Case for Software Address Translation on GPUs.
In 43rd ACM/IEEE Annual International Symposium on
Computer Architecture (ISCA), pages 596–608, 2016.

[75] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS: A
Disseminated, Distributed OS for Hardware Resource
Disaggregation. In 13th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), pages
69–87. USENIX Association, 2018.

[76] M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-SGX:
Eradicating Controlled-Channel Attacks Against En-
clave Programs. In Proceedings of the Annual Network
and Distributed System Security Symposium (NDSS),
2017.

[77] S. Shinde, D. L. Tien, S. Tople, and P. Saxena. Panoply:
Low-TCB Linux Applications With SGX Enclaves. In
24th Annual Network and Distributed System Security
Symposium (NDSS), 2017.

[78] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren,
X. Yu, and S. Devadas. Path ORAM: an Extremely
Simple Oblivious RAM Protocol. In Proceedings of the
ACM SIGSAC Conference on Computer & Communica-
tions Security, pages 299–310. ACM, 2013.

[79] Y. Sui and J. Xue. SVF: Interprocedural Static Value-
Flow Analysis in LLVM. In Proceedings of the 25th

International Conference on Compiler Construction,
pages 265–266. ACM, 2016.

[80] Y. Sui, D. Ye, and J. Xue. Detecting Memory Leaks
Statically with Full-Sparse Value-Flow Analysis. IEEE
Transactions on Software Engineering, 40(2):107–122,
2014.

[81] C. Tsai, D. E. Porter, and M. Vij. Graphene-SGX:
A Practical Library OS for Unmodified Applications
on SGX. In USENIX Annual Technical Conference
(USENIX ATC), pages 645–658, 2017.

[82] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,
Y. Yarom, and R. Strackx. Foreshadow: Extracting the
Keys to the Intel SGX Kingdom with Transient Out-of-
Order Execution. In 27th USENIX Security Symposium
(USENIX Security), pages 991–1008, 2018.

[83] R. A. Van Engelen. Efficient Symbolic Analysis for
Optimizing Compilers. In International Conference on
Compiler Construction, pages 118–132. Springer, 2001.

[84] X. Wang, T.-H. H. Chan, and E. Shi. Circuit ORAM:
On Tightness of the Goldreich-Ostrovsky Lower Bound.
In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages 850–
861, 2015.

[85] O. Weisse, V. Bertacco, and T. Austin. Regaining lost
cycles with HotCalls: A Fast Interface for SGX Secure
Enclaves. In ACM SIGARCH Computer Architecture
News, volume 45, pages 81–93. ACM, 2017.

[86] B. C. Xing, M. Shanahan, and R. Leslie-Hurd.
Intel R©Software Guard Extensions (Intel R©SGX) Soft-
ware Support for Dynamic Memory Allocation inside
an Enclave. In Proceedings of the Hardware and Ar-
chitectural Support for Security and Privacy (HASP),
pages 11:1–11:9, 2016.

[87] Y. Xu, W. Cui, and M. Peinado. Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Op-
erating Systems. In IEEE Symposium on Security and
Privacy, pages 640–656. IEEE, 2015.

[88] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E.
Gonzalez, and I. Stoica. Opaque: An Oblivious and En-
crypted Distributed Analytics Platform. In 14th USENIX
Symposium on Networked Systems Design and Imple-

mentation (NSDI), pages 283–298, 2017.

570 2019 USENIX Annual Technical Conference USENIX Association

Secured Routines:
Language-based Construction of Trusted Execution Environments

Adrien Ghosn James R. Larus
EPFL, Switzerland

Edouard Bugnion

Abstract

Trusted Execution Environments (TEEs), such as Intel SGX
enclaves, use hardware to ensure the confidentiality and in-
tegrity of operations on sensitive data. While the technology
is available on many processors, the complexity of its pro-
gramming model and its performance overhead have limited
adoption. TEEs provide a new and valuable hardware func-
tionality that has no obvious analogue in programming lan-
guages, which means that developers must manually partition
their application into trusted and untrusted components.

This paper describes an approach that fully integrates
trusted execution into a language. We extend the Go lan-
guage to allow a programmer to execute a goroutine within
an enclave, to use low-overhead channels to communicate be-
tween the trusted and untrusted environments, and to rely on
a compiler to automatically extract the secure code and data.
Our prototype compiler and runtime, GOTEE, is a backward-
compatible fork of the Go compiler.

The evaluation shows that our compiler-driven code and
data partitioning efficiently executes both microbenchmarks
and applications. On the former, GOTEE achieves a 5.2×
throughput and a 2.3× latency improvement over the Intel
SGX SDK. Our case studies, a Go ssh server, the Go tls
package, and a secured keystore inspired by the go-ethereum
project, demonstrate that minor source-code modifications
suffice to provide confidentiality and integrity guarantees with
only moderate performance overheads.

1 Introduction

Our era is defined by the emergence of a digital society
in which established notions of privacy, confidentiality, and
trust are undercut by the shortcomings of today’s technology,
which is increasingly reliant on cloud computing. In the cloud,
developers and users implicitly trust the cloud provider but
are still susceptible to: (1) hardware and firmware flaws, such
as the recent Meltdown [41] and Spectre [36] attacks, (2) vul-
nerabilities within the hypervisor [3], (3) exploits in libraries

and Software as a Service (SaaS) infrastructures [1,2,4,5], (4)
malicious employees with physical and administrative access
to both computer and storage resources, and (5) intrusive or
extra-territorial government surveillance [10, 12, 18].

To address these concerns, processor vendors, following
ARM’s lead [9], introduced Trusted Execution Environments
(TEEs), a hardware mechanism based on memory encryption
and attestation that isolates program execution and state from
the underlying operating system, hypervisor, firmware, I/O
devices, and even people with physical access to a machine.
TEEs have been portrayed as the solution to the problem of
trust in the cloud [16, 17, 39, 51]. In particular, Intel SGX [6]
partitions hardware and software into two mutually distrustful
domains: a CPU, trusted user code, and a specified region of
memory form the trusted domain, while the remainder of the
hardware and software form the untrusted domain. SGX en-
claves execute trusted user code in a trusted domain. Entering
an enclave guarantees, through hardware, the confidentiality
and integrity of the enclave’s code, data, and execution.

Despite SGX’s availability on current-generation proces-
sors, uptake has been slow, probably due to the absence of
support on server-grade CPUs, the difficulty of programming
enclaves, their performance overhead, and the need to refactor
applications. The private messaging application Signal [43] is
one of the few applications that appears to use enclaves, and
Microsoft Azure only recently offered the first cloud solution
to expose SGX features [42,45]. A major challenge is that this
new technology lacks a clear programming model. Previous
solutions fall into two broad categories: (1) run complete user
applications in the trusted domain [16,17] and (2) separate the
portions of a program that require trusted execution [7, 8, 40].
Solutions in the first category provide an abstraction, such
as an operating system [17] or a container [16], to execute
unmodified applications in an enclave. The other alternative
requires a developer to identify and partition [7, 8, 46], or
provide annotations that a program analysis tool can use to
partition [40], an application into trusted and untrusted com-
ponents. None of these prior approaches integrates the TEE
into language-specific abstractions and semantics.

USENIX Association 2019 USENIX Annual Technical Conference 571

This paper describes an approach that fully integrates
trusted execution into a modern programming language in
an appropriate manner. We extend the Go language to allow
a programmer to execute a goroutine within an enclave,
to use low-overhead channels to communicate between the
trusted and untrusted environments, and to rely on the com-
piler to automatically extract the code and data necessary to
run the enclave. Our solution provides language support for
trusted execution that is idiomatically compatible with the Go
programming language.

We introduce secured routines, a new language-based fea-
ture that hides the hardware intricacies with little overhead. A
secured routine is a user-level thread that executes a closure,
i.e., a function call, in the enclave at the request of untrusted
code. The secured routine abstraction cleanly distinguishes
trusted and untrusted code. Communications between the two
domains are possible solely via cross-domain channels, an
extension to native Go channels that deep-copies values to
prevent cross-domain pointer references.

GOTEE extends the Go programming language with a sin-
gle keyword, gosecure, to identify secured routines. GOTEE
is an open-source fork of golang/go [15]. Starting from
gosecure calls, the compiler identifies the minimal code re-
quired within the enclave and extracts it into a statically-
linked trusted binary. Trusted and untrusted domains have
their own runtime, memory management, and scheduler. GO-
TEE coordinates interactions between trusted and untrusted
code, replaces control transfers between these domains with
inexpensive synchronized data transfers using strongly-typed
cross-domain channels.

Our contributions include:

• A language-based, expressive, strongly-typed, high-
performance, remote-execution model for TEEs that
strengthens isolation between trusted and untrusted code.

• A practical implementation of these ideas using the Go
programming language and runtime. Our evaluation using
microbenchmarks demonstrates that an enclave core serv-
ing secured routines can achieve 5.2× the throughput of
domain-crossing control transfers.

• A demonstration that secured routines provide an expres-
sive model to implement secured applications: we parti-
tioned the tls module (a built-in Go library), protected a
full ssh server, and extended the go-ethereum keystore (a
popular cryptocurrency client) to isolate all operations that
access private keys and certificates without a significant
loss of performance.

We describe the necessary background (§2), the secured
routine abstraction (§3), the implementation of GOTEE (§4),
and evaluate it using both microbenchmarks and three
security-sensitive applications (§5). Finally, we discuss possi-
ble architectural improvements in §6, related work in §7, and
conclude in §8.

OS Kernel

untrusted process

trusted enclave

syscall

eenter

AEX

eexit
AESM

secure

token

eresume

SGX driver

Figure 1: Trusted Execution Environments with Intel SGX;
the enclaves and trusted parts are colored.

2 Background

2.1 Intel Software Guard Extension

Intel Software Guard Extension (SGX) [6], introduced in
2015 with Intel’s sixth generation Skylake processor, allows
user-level creation of enclaves. These are contiguous regions
of virtual memory, protected against outside access and modi-
fication, even by software running at high privilege levels or
by I/O devices.

Figure 1 illustrates the partition of a process between se-
cure, trusted code and data and non-secure, untrusted code
and data. SGX enforces an asymmetric trust model: the en-
clave has access to the entire memory, while untrusted code
is unable to access or modify enclave memory. SGX fur-
ther ensures that control from the untrusted domain enters
the enclave only at pre-approved entry points. In SGX, Intel
provides the root of trust through the aesm module that cryp-
tographically ensures the validity of the initial state of the
enclave.

SGX reserves, at boot time, a contiguous portion of physi-
cal memory, called the Processor Reserved Memory (PRM),
with a maximal size of 128 MB. A 94 MB subset of this
region, called the Enclave Page Cache (EPC), is used to al-
locate enclave memory pages. The integrity of the EPC is
ensured through Merkle trees implemented in hardware [11].
The EPC size is a hard limitation on the amount of code
and data that can be loaded into an enclave without incur-
ring expensive page evictions to regular DRAM [17, 53]. The
CPU’s Memory Management Engine (MME) ensures confi-
dentiality by encrypting cache lines evicted to memory and by
decrypting them as they are brought into the CPU running in
enclave mode; this reduces the available memory bandwidth
by 4× [53].

Creation of an enclave requires the execution of a complex
instruction sequence using new instructions such as ecreate,
eadd, eextend, and einit that respectively create the en-
clave; define its resources together with their initial state and

572 2019 USENIX Annual Technical Conference USENIX Association

access rights; and finally initialize the enclave. The number of
concurrent threads allowed inside the enclave corresponds to
the number of eadded Thread Control Structures (TCS) and
is fixed at enclave initialization.

After enclave initialization, user-level software uses the
eenter instruction to perform an ecall, a control transfer
to a pre-defined location within the enclave (Figure 1). The
eexit instruction allows to perform ocalls, i.e., a voluntary
control transfer to untrusted code. SGX also supports asyn-
chronous enclave exits (AEX) to service interrupts and excep-
tions, which is necessary since the enclave forbids privileged
instructions. An AEX saves the current state of the enclave
within the EPC, restores the untrusted context, and transfers
control to the operating system handler. The untrusted code
resumes enclave execution by performing an eresume.

Finally, SGX provides a remote attestation mechanism that
allows developers to verify the integrity of the software in
the enclave. As part of enclave creation, developers need to
provide a measurement of the enclave, i.e., a signed hash
of the SGX instructions and arguments used to instantiate
the enclave, as well as of selected portions of the enclave’s
code and data. A remote party can compare this measurement
with its expected, precomputed value and proceed with the
enclave’s execution only if the two values match.

2.2 Building Secured Systems

One approach to utilizing SGX is to run all of an appli-
cation in the enclave. The literature contains examples of
complex abstractions—including an entire operating system,
Haven [17]; a library operating system, Graphene [23]; and
a container platform, SCONE [16]—running in SGX. While
convenient for developers and effective at reducing expensive
enclave crossings [53], this approach has significant draw-
backs: (1) it greatly expands the amount of code running
inside the enclave, which puts pressure on system resources
and incurs pervasive memory decryption overheads and (2)
it brings into the enclave code and third-party libraries—not
necessarily used, understood, or validated—which can facili-
tate attacks on the enclave (e.g., ROP [47]).

Another approach necessitates a deeper understanding of an
application, as it requires splitting the application’s code and
data into trusted and untrusted portions, following the Intel
SGX Software Development Kit (SDK) [7] model. This SDK
is a set of C/C++ libraries and tools that enable programmers
to create and deploy enclaves. The Intel SGX SDK exposes
an API similar to the SGX instructions. Trusted and untrusted
code and data reside within distinct source files. A configu-
ration file describes the required ecalls and ocalls functions.
The compilation process first invokes an IDL compiler to
generate boilerplate code and then compiles the enclave code
as a position-independent binary with all dependencies stati-
cally linked, invokes a signing tool on this .so to meter the
enclave’s code, and finally compiles the untrusted application

code as a regular executable.
SCONE [16] and Eleos [44] both rely on message pass-

ing to implement asynchronous system calls and avoid ex-
pensive enclave exits. Following the same approach, Intel
recently published switchless [14], a (under-development)
mini-framework that provides a simple C++ messaging mech-
anism on top of the SDK.

Asylo [31] is a C++ framework, compatible with
gRPC [32], that abstracts TEE technologies behind a concise
API and a set of C++ classes. From a practical point-of-view,
Asylo is an improved version of Intel’s SDK that exposes a
smaller API, requires less boilerplate code, supports different
TEE implementations, and provides transparent support to
perform system calls from the enclave.

Glamdring [40] automates code partitioning, as it only re-
quires a developer to mark data that needs to be protected. It
then relies on static analysis to determine the portion of code
that accesses this data and needs to run within the enclave.
As an optimization, Glamdring uses heuristics to enlarge the
trusted code base and limit the number of expensive enclave
crossings. This can help balance a trade-off between EPC
memory consumption and the number of domain crossings.
Glamdring provides less fine-grained control over code parti-
tioning than the Intel SGX SDK, but hides the technology’s
intricacies and exposes a very simple programming model.

2.3 SGX Limitations

The SGX technology, and its implementation on current
Skylake processors, presents major performance challenges:
while the magnitude of these overheads may change in the
future with refinement of the processor’s micro-architecture,
or by adding dedicated silicon, these overheads are, to some
extent, tied to the mechanisms providing confidentiality and
integrity in the SGX design.

The limited EPC working set and the reduced memory
bandwidth are inherent in the design. Similarly, the control-
flow transitions between the trusted and untrusted execution
(i.e., ecalls, ocalls, and AEX) are expensive because of TLB
shootdowns, CPU state changes, and cache flushes needed to
mitigate foreshadow attacks [22]. These domain crossings are
an order of magnitude more expensive than a system call [53],
between ∼2µs [53] and ∼3.5µs on our hardware. This cor-
responds to a throughput of less than 1M enclave entries
per second with four cores performing ecalls in parallel
(see §5.2). Keep in mind that system calls within an enclave
require a domain crossing, as SGX is limited to user-level
execution, and as a consequence these calls also become an
order of magnitude more expensive.

Put together, these limitations require a programmer to
worry about the size of the trusted code base and the trusted
working set, to reduce the exposed attack surface as well as the
frequency of EPC page evictions; to optimize the application
for cache locality; to understand precisely the threading model

USENIX Association 2019 USENIX Annual Technical Conference 573

of the application; and to minimize domain crossings, system
calls, interrupts, and signals.

3 Design

The secured routine extension to Go enables GOTEE to parti-
tion an application’s code, data, and execution between trusted
and untrusted domains, while cross-domain channels rein-
force memory isolation and enable cross-domain communi-
cation and cooperation. This section presents a high-level
description of the design and semantics of GOTEE’s exten-
sions.

3.1 Threat Model
We follow the threat model of other work in SGX [16, 17, 23,
40] in which an adversary tries to access confidential data
or to damage the SGX enclave’s integrity. The attacker has
administrative access to the machine and control over both
hardware and software, and may modify any code or data in
untrusted memory, including the operating system and the hy-
pervisor. We consider Iago attacks [24] for GOTEE’s runtime
and system call interposition mechanism in Section 4.3.

Denial-of-service attacks, a known limitation of SGX [26],
and hardware side channels (e.g., based on caches, page faults,
or branch shadowing) are out of scope. We assume a correct
underlying implementation of SGX that provides confiden-
tiality and integrity for enclave code and data.

3.2 Quick Overview of Golang
The Go programming language (golang) is a modern,
memory-safe, garbage-collected, structurally-typed, compiled,
systems programming language. Go supports concurrency
based on the Communicating Sequential Processes (CSP)
model [33]. The unit of execution within a Go program is
called a goroutine, a user-level thread executing a closure
that is created by prefixing a function call with the go key-
word. Goroutines are multiplexed and scheduled on a pool
of operating system threads, using a cooperative scheduling
model implemented by the Go runtime. Goroutines communi-
cate and synchronize using channels, which are synchronized,
typed message queues with copy and blocking read/write
semantics.

3.3 Secured Routines & Cross-domain Chan-
nels

From a programming point of view, a secured routine provides
a simple and familiar abstraction that allows a programmer
to execute a goroutine within an enclave and to use cross-
domain channels to communicate between the trusted and
untrusted environments.

1 var s e c r e t K e y ∗Key
2 func generateSymKey (∗ i o . Reader) ∗Key { . . . }
3

4 func Ini tSymKey (done chan boo l) {
5 fmt . P r i n t l n (‘ ‘ C r e a t i n g a new s e c r e t key ‘ ‘)
6 s e c r e t K e y = generateSymKey (r and . Reader)
7 done <− t rue
8 }
9

10 func E n c r y p t S e r v e r (r e q u e s t , r e p l y chan [] byte) {
11 f o r {
12 msg := <− r e q u e s t
13 r e p l y <− s e c r e t K e y . E n c r y p t (msg)
14 }
15 }
16

17 func T r u s t e d E n c r y p t i o n (msg [] byte) [] byte {
18 done := make (chan boo l)
19 gosecure Ini tSymKey (done)
20 _ = <− done
21 r e q u e s t := make (chan [] byte)
22 r e p l y := make (chan [] byte)
23 msg := [] byte (‘ ‘ The q u i c k brown fox . . . ‘ ‘)
24 gosecure E n c r y p t S e r v e r (r e q u e s t , r e p l y)
25 r e q u e s t <− msg
26 r e s := <− r e p l y
27 fmt . P r i n t l n (‘ ‘ E n c r y p t i o n done ‘ ‘)
28 re turn r e s
29 }

Listing 1: Using secured routines to isolate a secret key
within the TEE.

Listing 1 presents a sample program that secures a se-
cret encryption key, secretKey, within the enclave. The
TrustedEncryption function uses the gosecure keyword
to spawn a secured routine that creates the key within the
enclave. A subsequent gosecure call spawns an encryption
server, EncryptServer, within the enclave. The untrusted
code sends the message to the server (line 25) and gets back
the encrypted result (line 26).

The programmer relies on gosecure to inform the com-
piler how to partition the code between trusted and untrusted
domains. The compiler determines the functions that can
be reached by the execution within the enclave, in this ex-
ample InitSymKey, EncryptServer and their dependencies
fmt.Println, generateSymKey, *Key.Encrypt, etc. GO-
TEE compiles these functions into a statically-linked exe-
cutable.

Unlike prior work [7, 8, 40], secured routine’s code parti-
tioning does not require disjoint trusted and untrusted code.
Functions can exist in both environments, e.g., the function
fmt.Println in Listing 1.

GOTEE hardens memory isolation between trusted and un-
trusted domains, as compared with the SGX hardware model,
in three ways. First, each domain manages its own set of
symbols, data, and global variables independently, allowing
them to have distinct copies of data and globals. This also
differs from Glamdring [40], where the trusted and untrusted

574 2019 USENIX Annual Technical Conference USENIX Association

Figure 2: Channel-based cooperation between runtimes.

namespaces cannot overlap.
Second, GOTEE allows only cross-domain channels across

the trusted boundary. Cross-domain channels are an extension
to the native Go channels allowing secured communications
across domains with deep-copy semantics. Cross-domain
channels are declared and used like regular go channels. How-
ever, they provide deep-copy semantics to prevent pointers
from crossing a domain boundary. For example, in Listing 1,
the msg byte slice received at line 12 is an in-enclave copy of
the untrusted one sent at line 25.

Third, function arguments passed to secured routines, with
the exception of cross-domain channels, are deep-copied in-
side the enclave by GOTEE’s runtime. The deep-copy mech-
anism can be seen as a marshalling step similar to the one
needed to send complex objects or structures over a network.
GOTEE emits compilation warnings if a deep-copy, due to a
secured routine or a cross-domain channel, requires to deref-
erence a pointer.

While more restrictive than the original SGX model, GO-
TEE’s design ensures that enclave code cannot be subverted
or leak secrets by inadvertently dereferencing or writing to an
unsafe memory location. All data that leaves the enclave does
so by being explicitly sent over a cross-domain channel, while
all data referenced by the application’s trusted code resides in
the enclave.

3.4 Runtime Cooperation
The secured routine abstraction requires mutually distrust-
ful domains to cooperate. More specifically, it allows the
untrusted domain to trigger execution of a closure within
the trusted one. For example, when the untrusted execution
reaches line 19 in Listing 1, the trusted runtime spawns a new
routine that invokes the InitSymKey(done) closure.

Figure 2 presents the general overview of runtime coop-
eration. Both domains have their own code and data, their
own thread pools to multiplex execution, and their own man-
aged memory regions that are separately garbage collected.
Between the two domains, dedicated cross-domain channels

are used by the runtimes to trigger the execution of secured
routines and to enable enclave system calls. Specifically, and
unlike a normal go closure, a secured routine is implemented
by passing its arguments on a dedicated channel not visible to
golang programmers. The trusted runtime verifies the valid-
ity of the closure’s entry point before scheduling it within the
enclave. System call interposition operates in a similar man-
ner: the trusted runtime copies the system call’s arguments
into a dedicated, hidden channel; the untrusted runtime then
reissues the system call asynchronously and returns the result
over a private channel.

Since full copy semantics are enforced between the two
domains, each garbage collector can safely manage its own
memory space without synchronizing with the other one.

3.5 Compatibility With SGX

The secured routine abstraction and its design are compatible
with the SGX technology and its performance model:
Minimum trusted code: The code loaded into the trusted
domain is automatically extracted by the compiler and is
minimal. This is both security- and resource-efficient as it
reduces the number of EPC pages consumed by the enclave
as well as its attack surface.
Control transfers: Control transfers between the two do-
mains are replaced with inexpensive, synchronized, and typed
data transfers via cross-domain channels for both application-
level communication as well as runtime synchronization. The
expensive SGX domain crossings are only necessary in the
initialization phase, to block threads when they are idle or in
the stop-the-world GC phase, and to service an EPC miss.
Defensive programming: Cross-domain channels, used to
launch closures and to invoke system calls, perform memory
copies and sanitize arguments. Moreover, they are the single
point of interaction between mutually distrustful domains and
are therefore easy to augment with defensive programming
techniques.
Thread multiplexing: The SGX environment chooses, at en-
clave creation time, the number of threads that can execute
simultaneously within the trusted domain. The Go thread pool
size can be fixed at the beginning of the execution to match
the number of TCS in the enclave. This, however, does not
impose any limitation on the number of concurrently execut-
ing secured routines, which means that concurrency is not
bounded by this SGX limitation.
System call interposition: The use of channels to commu-
nicate and synchronize between the two runtimes simplifies
system call interposition. The runtime detects system calls
from trusted code, performs argument sanitization, copies ar-
guments to untrusted memory buffers, and sends the system
call to the untrusted runtime. Once the system call is serviced,
the enclave runtime can perform additional checks to validate
the result before delivering it to the application.

USENIX Association 2019 USENIX Annual Technical Conference 575

 GOTEE

app.go

parse

comp/link

identify

trusted

closures

runtime

gosec

untrusted

text+data

comp/link

runtime

gosec

enclave

text+data

insert as

signedELF

segment

./app

Figure 3: The GOTEE compilation pipeline.

No global variables or cross-domain references: secured
routines reinforce the isolation between the two domains by
prohibiting shared global variables and cross domain memory
references. This forces data sharing to be explicit and passed
through either typed communication channels or typed func-
tion arguments, with deep-copy semantics. This design elim-
inates implicit sharing and cross-domain references, which
pose the risk of mistakenly leaking data and violating confi-
dentiality.

Secured routines do not provide any guarantee or protection
with regards to denial of service attacks. As with previous
work [16,23,40], we consider the challenge of bringing secrets
into the enclave to be out-of-scope for this paper. These are
known, fundamental limitations of the SGX technology that
GOTEE does not ameliorate.
Compatibility with other TEE designs: The secured rou-
tine abstraction is not tied to the SGX model. From a high-
level point-of-view, secured routines and cross-domain chan-
nels allow cooperation between two (memory-isolated) peer
environments that communicate solely via specific channels.
The GOTEE compiler can be extended to support other TEE
implementations without requiring application code modifi-
cations.

4 Implementation

The GOTEE compiler and runtime extend the Go system. This
section describes the changes to the compiler, a new library
written in Go that provides SGX support, and the changes to
the runtime environment.

4.1 Compiler Support for gosecure

The GOTEE compiler is responsible for partitioning code and
data according to the design of §3.3. GOTEE is a backward-
compatible extension of the standard Go compiler with a new
keyword gosecure, and an extension to Go channels, cross-

domain channels. The changes are small, consisting of ∼400
modified lines and ∼2000 lines of new code written in pure
Go.

Figure 3 illustrates the process: GOTEE compiles each in-
stance of gosecure by type-checking and validating the clo-
sures at compile time. The generated code differs slightly
from the standard goroutine support. On the caller side, the
closure arguments are sent over a cross-domain channel. On
the callee side, within the enclave, the runtime library pulls the
in-enclave copy of the closure arguments and a function iden-
tifier from the channel, validates the target function, spawns
the corresponding routine with the arguments, and then sched-
ules it. Compared to a standard goroutine, GOTEE adds a level
of indirection, with a write to and read from a cross-domain
channel, and the deep-copy of each argument.

GOTEE records functions with the gosecure keyword as
valid targets for the secured routine abstraction within the
enclave. GOTEE then initiates a full compilation for enclave
code, using the Go compiler’s analysis to determine the mini-
mum transitive closure of code reachable from these functions,
as well as the global variables used by this code. The compiler
also creates a main function for the enclave that serves as the
eenter entry point and that initializes the runtime servers for
cross-domain cooperation. The result of this compilation step
is a statically-linked, non-relocatable binary to be loaded into
the enclave as the trusted code.

GOTEE implements restrictions on the enclave code. First,
the compiler detects channels passed via arguments to secured
routines and ensures that these are declared as cross-domain
channels. Second, the compiler inspects secured routine’s
target signatures as well as cross-domain channel types and
emits warnings if their deep-copying requires dereferencing
pointers. Third, GOTEE does not allow function pointers as
arguments to secured routines or cross-domain channels. Fi-
nally, GOTEE only allows pure Go code within the enclave
and rejects dependencies on C code and shared libraries.

GOTEE also compiles the untrusted code using the standard
Go compiler, without these restrictions. As a final step, GOTEE
packages the statically linked trusted executable into an ELF
segment of the untrusted binary.

GOTEE can optionally generate a signed measurement of
the enclave at compile time and store it within a dedicated
ELF section of the untrusted binary, so as to perform remote
attestation upon deployment. If not done by the compiler,
the measurement and signature of the trusted code can be
performed at run time.

4.2 gosec – an SGX Library in Go
The GOTEE compiler includes an SGX library, completely
implemented in Go, as a standard Go package called gosec.
It contains ∼1000 lines of code.
Loading an enclave: gosec mirrors the Intel SGX API in
that it provides functions to (1) create an enclave, (2) load

576 2019 USENIX Annual Technical Conference USENIX Association

a static binary into the enclave, (3) take a measurement of
the enclave, and (4) perform eenter and eresume to the
enclave. The gosec package communicates with the Intel
SGX Linux kernel driver via ioctl to execute the privileged
SGX instructions, i.e., ecreate, eadd, and einit. It also
communicates with the Intel aes module [26] that delivers
the token required to perform the initialization (einit, see
§2.1). The gosec package implements step (2) by parsing the
ELF binary and extracting the enclave code. At run time, the
package spawns a new, untrusted, operating system thread
to execute an eenter instruction that starts the enclave. The
number of concurrent threads allowed inside the enclave can
be selected by setting an environment variable. By default,
the loader adds only two TCS to the enclave: one to execute
the user code, the other to support garbage collection.

Measuring an enclave: Measuring an enclave is a series of
distinct steps that involve the SGX driver (to execute priv-
ileged instructions), the SGX daemon (to retrieve a crypto-
graphic token), the measurement byte array generated by the
gosec library while creating the enclave [26] (§4.1), and the
enclave binary itself. First, the enclave’s memory boundaries
are determined by reading the ELF sections of the trusted
binary. This information is used to perform the ecreate call.
Then, individual page contents are registered via the driver,
which performs the eadd and eextend accordingly. At the
same time, gosec builds the corresponding measurement byte
array, which is then used to retrieve a token from the SGX
aes module daemon. Finally, gosec issues the einit driver
call, using the token, to finalize the enclave.

AEX handler: Asynchronous exits from the enclave, e.g.,
faults and exceptions, are first passed to the operating system.
Then, a user-space AEX handler, implemented in gosec, is
called. The handler runs outside of the enclave and plays a
fundamental role in the debugging process. The gosec AEX
handler reads a shared region of memory where the GOTEE
runtime dumps information before performing a panic or
throwing an exception. This, of course, is reliable only for
debugging purposes. If no GOTEE runtime cause for the AEX
is found, the gosec AEX handler performs an eresume to
return in the enclave.

4.3 GOTEE Runtime

The third component of GOTEE is the runtime library that
is statically linked to the enclave code. It consists of the Go
runtime modified to run in an enclave, including its cooper-
ative user-level thread scheduler and garbage collector, and
extensions to allow trusted and untrusted code to cooperate.
It supports cross-domain channels as the sole means of com-
munications with untrusted code. The code patch consists of
∼760 lines of new code and ∼300 modified ones.

Enclave runtime initialization: GOTEE replaces most of
the Go runtime initialization steps. The gosec package pre-

allocates all trusted heap, thread local storage, and memory
pools during the enclave creation as part of the load and ini-
tialization sequence. This is necessary because of the SGX
metering requirements. As a result, the entry point of the en-
clave simply switches execution onto a protected stack that
is part of the enclave and skips over most of the Go run-
time memory allocation steps. After this, the enclave runtime
shares most of the Go runtime, with minor changes to avoid
enclave-disallowed instructions such as cpuid or rdtsc.

Allowing multiple trusted threads: GOTEE lazily spawns
enclave threads. During the execution, when a new thread is
required, the current enclave thread first atomically acquires
a TCS from the pool. It then performs an enclave exit and
a clone system call before resuming its enclave execution.
While exits and entries are expensive, these are bounded by
the maximal number of TCS allocated for the enclave. The
newly created thread performs an eenter and jumps to the
pre-defined enclave entry point to initialize its state before
serving secured routines.

Securing untrusted channels: The channel implementation,
as well as the goroutine structure, were extended to support
a secured communication mechanism between the trusted
and untrusted environments. To pass copies of values to and
from secured routines, GOTEE uses buffers allocated within
the unprotected memory region. Upon performing a blocking
operation, the trusted runtime allocates an unprotected buffer
that will either hold the value that it writes, thereby allowing
an untrusted routine to access it, or be used to receive the
value produced by an untrusted routine’s write to the channel.
When unblocked, the secured routine copies the content of the
buffer to the appropriate memory location within the enclave.
For complex types, the enclave performs a deep-copy. This
adds an extra step for secured routines compared to standard
Go, which allows direct read/write to the blocked goroutine’s
enqueued address, e.g., a stack, a heap, or a data variable. GO-
TEE automatically identifies and instruments cross-domain
channels at runtime, hence limiting the effort required to port
existing applications. Communications within the same do-
main are unaffected.

Cross-domain synchronization: The two runtimes, and in
particular their schedulers, must cooperate to synchronize
access to channels across domains to ensure the timely deliv-
ery of messages. In Go, a blocking operation on a channel
deschedules the routine and wraps it within a special data-
structure along with a pointer to the read (write) memory
location. In the case of a cross-domain channel, the wrapper
must be accessible from both runtimes. GOTEE’s enclave run-
time manages a private untrusted memory area from which
such wrappers are allocated. A secured routine that needs to
enqueue itself will therefore allocate a wrapper, along with
an untrusted memory buffer, and then enqueue itself in the
untrusted cross-domain channel.

The unblocking operations on cross-domain channels

USENIX Association 2019 USENIX Annual Technical Conference 577

also required changes. An untrusted routine cannot directly
reschedule a trusted routine, and vice versa. Instead, unblock-
ing a routine enqueues it in a ready queue that belongs to the
appropriate domain. These queues are polled by the corre-
sponding runtime’s scheduler. The scheduler ensures that the
address of the goroutine is valid, i.e., that it was registered
at creation and is still live, before executing it. Note that this
extra step only applies to cross-domain communications.

Memory management: The GOTEE runtime restricts the
amount of available heap memory because of SGX memory-
size limitations. The standard Go runtime assumes a 64-bit
address space with gigabytes of memory and places its run-
time heap, spans, and bitmap for memory management ac-
cordingly. During runtime initialization, and throughout code
execution, the Go runtime mmaps portions of the address space
corresponding to these regions and frequently extends them.
An enclave’s maximum memory live working-set is 94 MB,
and even less if we want to avoid page evictions. As a result,
GOTEE uses a fixed-size heap whose address and size are
computed as a fixed offset from the code and data. The heap
size can be set either at compile time if a measurement is
generated or at run time before loading the enclave.

Thread Local Storage: Go relies on thread local storage
(TLS) to quickly access runtime values such as the current
routine (G) or the current machine abstraction (M). Go nor-
mally allocates M in the heap and sets it as the TLS base.
SGX, on the other hand, requires a TCS to declare its TLS
at creation time. GOTEE circumvents the SGX limitations
by preallocating Ms into the enclave’s .bss segment. As all
.bss data structures are part of the garbage collector’s root set
(unlike an arbitrary location in memory), this approach allows
the enclave to use the unmodified Go garbage collector.

Garbage collection and Stack shrinking: Go performs
mark and sweep concurrent garbage collection. The GC re-
quires a short pause time with all threads blocked at a safe
point for mark and sweep terminations. As a result, secured
routines need a way to exit the enclave and perform a block-
ing futex sleep. Other than that, the original Go GC is un-
modified, and it executes independently from the untrusted
domain’s runtime. Untrusted memory buffers are allocated
and managed by an in-enclave allocation library and are not
traced by either GCs. The trusted runtime keeps references
to secured routines blocked on cross-domain channels, which
both allows a safety check when they are rescheduled and
keeps them in the live-set of objects during garbage collection.

Goroutine stacks can shrink and stack frames can be relo-
cated in memory when the goroutine is blocked on a channel.
In standard Go, the destination location of channel data may
be on the stack, and therefore handled as part of stack re-
location. In GOTEE, when a secured routine is blocked on
a cross-domain channel, the destination address points to a
location in untrusted memory, i.e., not on the stack, while the
stack pointer used as the final recipient of the deep-copy is

the one updated during stack shrinking.

Mitigating SGX limitations: The current version of SGX
disallows several instructions in the enclave, such as syscall,
cpuid, and rdtsc. While these have to be completely avoided
during the runtime initialization, due to the limited environ-
ment at that time (no heap or channels during the early init
phases), they can later be emulated. The system call interpo-
sition mechanism allows the enclave to forward system calls
to the untrusted runtime. The same mechanism can be used
to execute a rdtsc, with the communication overhead reduc-
ing its accuracy. For the cpuid call, most of the information
provided by the instruction is fixed at enclave creation, which
simplifies its emulation.

Go relies on futex calls to implement locking within the
runtime. These are optimistic locks, performing a limited
amount of spinning before sleeping. In an enclave, a futex
sleep would require to exit the enclave and re-enter upon a
futex wake up, with high overheads. Instead, in GOTEE, a
secured routine that needs to obtain a cross-domain channel
lock will spin until it acquires the lock. Upon an unlock, GO-
TEE checks if any unsafe thread is sleeping on the futex. If
so, it spawns a dedicated routine to use the system call interpo-
sition to perform the unblocking futex wake up system call.
This approach is similar to the one used by standard Go for
blocking system calls, except that GOTEE relies on routines
rather than operating system threads.

Network support: The Go runtime relies on epoll calls,
as part of the scheduler’s logic, for network events. GOTEE
extends the scheduler’s implementation to ensure that a single
idle thread at a time is allowed to exit the enclave and perform
the epoll call.

Iago Attacks: GOTEE’s runtime is hardened against Iago at-
tacks and only relies on 4 syscalls: mmap to allocate unsafe
memory, checked against enclave boundaries and known un-
safe areas; futex calls for idle threads, which are used to re-
duce CPU utilization, not mutual exclusion; and epoll calls
performed by idle threads as described above.

On the application side, GOTEE provides a single point of
system call interposition which relies on channels with deep-
copy semantics for memory isolation. This currently performs
system call filtering and safety checks on both arguments and
results, and could be extended, in the future, to allow user-
defined filtering policies.

Debugging: Debugging code within an enclave is challeng-
ing as the AEX user-space exception handler provides little
information to identify the cause of an asynchronous exit
from the enclave. GOTEE has an optional flag that allows a
program to run in a simulation environment with identical
memory layout and run time behavior as the SGX program,
but without the SGX protection mechanisms.

578 2019 USENIX Annual Technical Conference USENIX Association

Workload Text Data RO-data Total Main Package Dependencies Application LOC

G
O

T
E

E

runtime only 493 25 273 793 - -
hello world +72 +1 +16 +91 ++ fmt, syscall, strconv, os, io,

reflect, runtime, unicode
13

enclave-cert +174 +1 +45 +221 ++ crypto/rsa, math, bytes, hash,
unicode

75

ssh +1036 +4 +291 +1332 ++ golang.org/x/crypto/*, crypto,
gnet, encoding

71

keystore +1165 + 4 +329 +1499 ++ crypto/ecdsa, crypto/elliptic,
crypto/aes

474

SD
K runtime only 67 2 4 75 - -

hello world +49 +0 +1 +51 - 355

Table 1: Per case-study enclave TCB breakdown in KB, package dependencies, and application lines of code (LOC). + and ++
are, respectively, an increase over the baseline runtime only, and over all previous table entries.

5 Evaluation

Our experiments were performed on a Microsoft Azure Cloud
Confidential Computing server, with an Intel(R) Xeon(R) E-
2176G CPU @ 3.70GHz with 4 physical cores, configured
with Ubuntu 18.04 LTS running Linux kernel 4.15.0-1036-
azure. GOTEE operates with the standard Intel SGX 2.0 Linux
kernel driver (sgx2) and attestation daemon (aesm). All GO-
TEE experiments were run with garbage collection enabled
and a single thread servicing secured routines in the enclave.

The purpose of our evaluation is to validate: (1) the effec-
tiveness of secured routines as a way to partition code (§5.1);
(2) the performance, latency, and throughput of secured rou-
tines and their cost in comparison to the crossing-oriented
approach of the Intel SDK (§5.2); (3) with three case studies,
GOTEE’s usability and ability to hide critical secrets within the
enclave by executing a full application in the enclave(§5.3),
by performing a fine-grained partitioning of a standard Go
package(§5.4), and by extending a real-world application with
a TEE-specific implementation(§5.5).

5.1 Code Size

We first evaluate the impact of secured routines on the enclave
code size. To this end, we add a baseline hello world bench-
mark that invokes fmt.Println in the enclave, and compare
it to the Intel SDK C++ hello world code sample.

Table 1 shows, for each case study, (1) the size of the en-
clave code measured as an increase on the baseline size of
GOTEE runtime for the enclave, (2) the main Go package
dependencies, and (3) the application lines of code. Entries
in the table are sorted such that each case study only reports
extra packages imported compared to previous lines.

First, we observe that both the Go runtime and the gener-
ated code are larger than the C++. Second, the ssh-server is
responsible for the greatest increase, in TCB size, over the run-
time baseline, due to its numerous dependencies. This result

is expected as this particular case study does not leverage the
fine-grain partitioning provided by GOTEE and simply puts
the entire application code inside the enclave. The keystore
prototype only adds a few crypto subpackages to the TCB
dependencies.

On the other hand, Table 1 also shows the difference in
source-code level complexity between GOTEE and the Intel
SDK. In hello world, the lack of transparent forwarding
of system calls in the SDK requires a programmer to forgo
printf in the enclave and instead: (1) call sprintf to write
to an intermediate buffer, (2) define and ocall with the IDL
compiler, and (3) use it to issue a write system call. Addi-
tionally, programmers are still responsible for properly imple-
menting all the boilerplate code required to define, create, and
load the enclave. As a result, the C++/SDK hello world
consists of 355 LOC, 13 files, requires 85 lines of configura-
tion, and 161 lines of Makefile.

By comparison, the GOTEE 13 lines of code hello world
compiles with the gotee build command.

5.2 Microbenchmarks

This evaluation uses the following microbenchmarks:
• syscall-lat: from within a trusted closure, execute a
getuid() system call in a loop; report the mean latency.

• gosecure+block-lat: spawn a trusted closure and wait for
a response over a private cross-domain channel; report
end-to-end median latency.

• gosecure-server-lat: a single secured routine performs
blocking writes to a cross-domain channel in a loop. An
untrusted routine measures the latency of performing a
read on the same channel. The difference between this
measurement and gosecure+block-lat corresponds to the
runtime overhead required to trigger a secured routine.

• gosecure-tput: multiple untrusted goroutines concurrently
spawn a trusted closure and wait for a response over a
private cross-domain channel.

USENIX Association 2019 USENIX Annual Technical Conference 579

bench-name Go GOTEE SDK
syscall (getuid) 0.23 1.35 3.69
gosecure+block 0.30 1.5 3.50
gosecure-server 0.20 0.60 -

Table 2: Latency microbenchmarks in µs.

• gosecure-server-tput: a single trusted closure receives
requests on a public cross-domain channel from multiple
concurrent untrusted goroutines and replies individually on
private channels, effectively bypassing the runtime cooper-
ation required to spawn new secured routines.

GOTEE latencies: Table 2 compares the latencies of basic op-
erations in Go, GOTEE, and, when applicable, the equivalent
C++ implementation with the Intel SGX SDK. All experi-
ments report the median (mean for syscall-lat) over 500K
iterations.

The latency to spawn a secured routine and have it write to
a private channel is 1.5µs. The equivalent standard Go pro-
gram has a latency of 0.30µs, suggesting that GOTEE runtime
cooperation and SGX memory overheads have an impact of
∼1.2µs (5.0×). We believe that the implementation can be
optimized to reduce contention on cross domain events and
runtime cooperation overheads. Still, GOTEE shows a 2.3×
improvement over the Intel SDK latency, which requires a
full crossing (eenter followed by eexit).

For a trivial system call, that requires going through the
syscall interposition mechanism over channels, GOTEE is able
to achieve a 2.7× improvement over the Intel SDK crossing-
oriented approach.
GOTEE throughput: The throughput experiments consist of
multiple concurrent requests to the enclave. For the Intel
SDK, different threads perform ecalls in parallel, yielding a
throughput of 281 Kops for one thread and 938 Kops for all
four cores.

For GOTEE, Figure 4 presents two variants, running with
a single thread inside the enclave: (1) gosecure-tput,
the closest in behavior to the Intel SGX SDK, and (2)
gosecure-server-tput. The former shows a throughput im-
provement of 5.2× (1.46 Mops) over the SDK for a single
core running in the enclave. GOTEE can allow a single en-
clave thread to achieve 1.6× the throughput of four cores
executing the Intel SDK. GOTEE’s throughput depends on the
number of concurrent untrusted goroutines (multiplexed on
a single thread) performing gosecure calls. For fewer than
three untrusted goroutines, the runtime cooperation requiring
to reschedule the secured routines dispatcher is the main bot-
tleneck. After that, there are enough concurrent goroutines to
avoid blocking the dispatcher.

The second GOTEE experiment shows the benefit of avoid-
ing the secured routine creation overheads. Its performance
degrades, however, as contention on the cross-domain chan-
nel increases; both runtimes compete to obtain the lock and

Figure 4: Synchronous closure execution rate for secured
routine multiplexed on top of a single enclave thread.

must cooperate to reschedule unblocked routines. Vanilla Go,
which is not subjected to our cooperation overhead or SGX
performance costs, achieves over 4.1Mops.

The garbage collector’s impact on these microbenchmarks
is negligible. The Go memory statistics show that for the full
throughput experiment, 21 GC cycles were completed inside
the enclave, with a median pause time of 13µs. However, the
total GC pause time only accounts for 0.033% of the appli-
cation’s available CPU time. In the latency microbenchmark,
we measured a similar median for 2 completed cycles, which
accounts for 0.015% of the benchmarks CPU time.

5.3 A full in-enclave ssh server

GOTEE can be used to port a full application to the en-
clave. The enclave size breakdown is reported in Ta-
ble 1. The Go programming language provides, under
golang.org/x/crypto/ssh, a fully functional implementa-
tion of an ssh-server. This implementation relies on the default
net package. While none of the application logic code for the
server was changed, this port required a few modifications
to the net package, which relies on C bindings for socket
structures in order to stay compatible with the Linux kernel
headers. As GOTEE allows only pure Go code inside the en-
clave, we created gnet, a new package that redefines relevant
C structures (e.g., struct_sockaddr, struct_in_addr,
struct_addrinfo) and constants in pure Go. This package
adds 70 LOC to the native net package.

5.4 Webserver with enclave-cert

The loss or leakage of an SSL private certificate can have
serious reputational consequences. However, a private certifi-
cate must reside in the memory of the process that handles
an SSL connection. Our case study designs and implements
the enclave-cert package, which isolates within an enclave
the two operations that require access to an SSL certificate’s
private key: signing the handshake hash and decrypting the
client’s symmetric session key.

580 2019 USENIX Annual Technical Conference USENIX Association

We modified the native Go tls package to allocate the
server’s private certificate key within the enclave and to
perform these operations in the trusted environment. The
enclave-cert package uses channels to pass encryption and
decryption requests to the enclave. A single secured routine is
spawned by the user application when a certificate is loaded
or created. The secured routine then waits on the request
channel, performs the requested decryption, and notifies the
untrusted requester.

The code patch consists of 9 additional LOC that add
optional request channels to the TLS certificate structure.
The enclave code is in enclave-cert, a new package of 35
LOC that defines the operations on the private key. The http
package is unmodified. Any webserver application that uses
enclave-cert operates like a corresponding Go webserver
application.

The separation of functionality between the tls pack-
age (which does not depend on GOTEE or gosec) and
enclave-cert eliminates circular dependencies and ensures
backward compatibility when SGX is not available.

In this experiment, we have an apache-bench client con-
nect repeatedly over https://localhost to a simple web-
server and request a single page load per session. The work-
load is totally dominated by the TLS handshakes.

We compare the built-in Go http and tls packages with
the modified enclave-cert. The built-in server achieves
an average of 400 reqs/sec, while enclave-cert achieves
353 reqs/sec (i.e., 88% of native). The apache-bench output
shows they have the same mean for connection and processing
time, but enclave-cert has a higher (6×) standard devia-
tion. In fact, the run time cooperation between trusted and
untrusted domains is a source of variability that impacts the
system’s stability and tail latency. A similar experiment with
Glamdring [40] reported only 60% of native throughput due
to the cost of frequent enclave crossings.

5.5 Keystore based on go-ethereum

The go-ethereum [29] project is the official implementation
of the Ethereum protocol [13] in Go. A particular feature of
the project is the ability to manage ethereum signature keys
(ECDSA) as part of a keystore. The go-ethereum project
allows safely encrypting keys with a passphrase before stor-
ing them on disk. The keystore is responsible for loading and
decrypting the keys using the user-provided passphrase. To re-
duce the window of vulnerability, go-ethereum zeroes-out, in
memory, decrypted keys after signing a hash or a transaction.

As a proof-of-concept, we implemented a simplified ver-
sion of this keystore with GOTEE. The keystore executes in
the enclave and enables: (1) loading an encrypted private key
from the disk in the enclave, (2) decrypting the private key
using a user-provided passphrase (e.g., via a secured ssh con-
nection), and (3) signing a hash if the user validates it. Our
keystore is 500 lines of Go code. The primary benefit of this

approach is the elimination of the window of vulnerability.
The keystore can safely keep private keys cached in secure
memory. It took a single developer one day to implement this
simplified secured keystore.

The enclave size break down is reported in Table 1. The
amount of code loaded in the enclave, more than 1MB, is
large compared to other experiments. This is mostly due the
embedded ssh server, the cryptographic libraries, e.g., ellip-
tic curves and AES, and the encoding libraries, required to
unmarshal decrypted private keys.

Along the TLS benchmark, this implementation validates
that GOTEE can support popular Go cryptographic libraries
(RSA, AES, and ECDSA) without modifying these packages.

6 Discussion

GOTEE demonstrates that language support for TEEs can
alleviate SGX limitations and that the GOTEE programming
model can be used to effectively increase the integrity and
confidentiality of sensitive server-side computations. At the
same time, the viability of SGX, beyond simple use cases in
digital-rights management, as a foundational trust technology
is doubtful given the large number of SGX vulnerabilities
found to date and the complexity of the current architecture.
SGX is a complex extension to a complex instruction set with
an optimized implementation. Verifying the correctness of
this extension and of its interactions with the large number of
existing instructions is challenging [11, 26]. SGX has already
been shown to be vulnerable to side-channel attacks based
on caches [20], page faults [49], branch shadowing [38], and
processor side-channel attacks (”Foreshadow” [22], a variant
of Spectre [36] and Meltdown [41]).

GOTEE’s increased isolation and decoupling between
trusted and untrusted code, as well as the channel abstrac-
tion as the sole mean of communication, allows GOTEE ap-
plications to remain agnostic to the underlying technology’s
programming model. GOTEE seems ideally suited to provide
a programming model for more radical TEE designs, that
better protect trusted code in isolated environments compris-
ing dedicated cores, TLBs, and (larger) dedicated, encrypted
DRAM. One such TEE design could allocate processors and
memory at kernel boot time. With a reserved co-processor, its
TLB could be dedicated to an enclave and the responsibility
of managing the virtual address space could shift from the
operating system kernel to a kernel driver, with a small and
verifiable implementation. A robust solution would also par-
tition the cache hierarchy to avoid cache-based side-channel
attacks.

7 Related Work

A GOTEE-compiled program results in side-by-side execu-
tion of two peer environments that communicate over type-

USENIX Association 2019 USENIX Annual Technical Conference 581

checked, message-passing channels. Using language-based
message passing to isolate parts of a program is similar to
the Singularity operating system [35], which used strongly
typed channels as its only communication mechanism among
processes and the kernel.

Program partitioning has been used to transform programs
to run sensitive computations on isolated or secure processors.
The Jif/split [50] system used security types and information-
flow analysis to partition programs so that secure computa-
tions could be distributed and executed on trusted processors.
Swift [25] partitioned a web app to run its trusted computa-
tion on a server. Wedge [19] was a Linux extension that sup-
ported least-privileged partitioning and execution of programs.
The Crowbar tool used static program analysis to partition
programs so that operations could be performed with least
privilege. Privtrans [21] partitioned a program to enforce priv-
ilege separation. GOTEE, inspired by these systems, provides a
language-base, compiler-driven code and data partitioning for
TEEs that presents a simple programming model and which
could be extended to support other TEE hardware, as well as
secured co-processor or remote execution setups.

TrustScript [30] provides language support for running
TypeScript (JavaScript) code in an enclave. Similar to GOTEE,
it relies on keyword annotation of trusted code and uses asyn-
chronous message passing between the trusted and untrusted
runtimes. Unlike GOTEE’s automated, fine-grain partitioning,
TrustScript developers must implement all trusted code in an
annotated namespace, and the TrustScript’s security model is
unclear.

Glamdring [40] uses data-driven code partitioning between
an SGX enclave and an untrusted environment. The compiler
and toolchain try to reduce the number of enclave crossings
by bringing more code into the enclave. GOTEE takes a differ-
ent approach, as it provides programmers with fine-grained
control over the TCB, a stricter memory isolation between
the two domains, and replaces enclave crossings with channel
communications.

The debate on the relative merits of the crossing-oriented
abstractions of the Intel SDK and the communication-oriented
abstraction of GOTEE is of course a new twist on the dual-
ity of shared memory and message passing [37]. While nu-
merous systems have been built with the domain-crossing
approach embodied in the Intel SDK (§2.2) [8, 17, 40], the
current implementation of SGX favors an asynchronous,
communication-oriented model, as demonstrated by GOTEE
and Intel’s own recent switchless [14]. Other mentioned
solutions [14, 16, 23, 30, 31, 44] rely internally on message
passing to avoid enclave crossings. GOTEE, however, lever-
ages Go channels, an abstraction that is part of a language,
type-safe, and widely used. The cross-domain channels ex-
tend the general channel programming abstraction and enable
developers to use explicit cross-domain communication at the
application-level. Internally, this single point of interaction
allows to perform both static and dynamic safety checks in

concordance with the language semantics.

As a general result, GOTEE shows that programming lan-
guage support, with an appropriate abstraction and program-
ming model, combines the best of previous approaches, i.e.,
the fine-grained automatic partitioning, the message passing
model precluding enclave crossings, as well as a higher level
of isolation between the two domains, and provides an inter-
esting testbed for future extensions, such as information flow
control or user-defined system call filtering.

Microsoft used SGX in conjunction with machine-code
modification and verification to ensure a property called in-
formation release confinement that guarantees that attackers
can only see encrypted data [48]. Although their C++ pro-
gramming model is crossing oriented, GOTEE would provide
a better starting point as they impose and verify safety restric-
tion on the C++ enclave code that would be unnecessary for a
safe language such as Go. Similarly, the Microsoft VC3 [46]
map-reduce system requires and checks at run-time an even
stronger set of control-flow and memory-safety properties,
which again are easily satisfied by Go programs.

Finally, there exist software solutions which rely on layered
virtualization to remove any trust dependency from the oper-
ating system [27, 28, 34] or the cloud hypervisor [52]. GOTEE
could provide a complementary application-level isolation.

8 Conclusion

What comes first, the processor or the programming model?
Intel’s SGX made a TEE generally available, and its SDK
provides a thin veneer that exposes its hardware features as
the programming model. As systems are constructed on SGX,
it has become increasingly clear that the most effective use
of this TEE is to have it execute only trusted operations and
to run the bulk of an application outside of the enclave. This
paper explores a new programming model to support this style
of use. GOTEE provides language support for TEEs. It extends
the Go programming language and uses the Go routine mech-
anism to invoke a function within the enclave. Our compiler
uses a single annotation to distinguish trusted code and au-
tomatically partition a program and establish cross-domain
communication.

GOTEE treats the enclave as a distinct computing entity
and uses message passing to copy arguments to functions,
which then execute securely in a distinct, secure domain. This
alternative model has the advantage of not requiring expen-
sive cross-domain control transfers, resulting in significantly
higher performance than the standard option. Equally impor-
tant, it reduces the close coupling between the trusted and
untrusted domains and opens the possibility of new, more eas-
ily verified hardware implementations that can better isolate
TEE cores and run faster.

582 2019 USENIX Annual Technical Conference USENIX Association

Acknowledgments

We thank Mathias Payer, Pascal Felber, the ATC anonymous
reviewers, and our shepherd Christof Fetzer for their detailed
comments. Moreover, we would like to thank Marios Ko-
gias, George Prekas, and Jonas Fietz for the many discussions
and constant feedback that lead to this paper. This work was
funded in part by a VMware Research Grant.

References

[1] CVE-2016-5195 - write to read-only memory map-
pings. https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2016-5195.

[2] CVE-2017-1000366 - glibc vulnerability leading to
arbitrary code execution. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2017-1000366.

[3] CVE-2017-4948 - vmware out-of-bound read leads to
confidentiality violation. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2017-4948.

[4] CVE-2018-2727 - vulnerability in oracle financial
services applications. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2018-2727.

[5] CVE-2018-7160 - node.js dns rebind leads to full
code execution access. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2018-7160.

[6] Intel SGX - software guard extensions programming
references. https://software.intel.com/sites/
default/files/managed/48/88/329298-002.pdf.

[7] Intel SGX SDK - software guard extension, software
development kit. https://software.intel.com/
en-us/sgx-sdk.

[8] Rust sgx sdk. https://github.com/baidu/
rust-sgx-sdk.

[9] Trustzone - arm. https://www.arm.com/products/
security-on-arm/trustzone.

[10] The USA Patriot Act. https://www.justice.gov/
archive/ll/highlights.htm, 2001.

[11] Intel Software Guard Extension (ISCA Tutorial).
https://software.intel.com/sites/default/
files/332680-002.pdf, 2015.

[12] CLOUD Act - H. R. 4943. https://www.congress.
gov/bill/115th-congress/house-bill/4943/
text, 2019.

[13] Ethereum project. https://www.ethereum.org/,
2019.

[14] Intel SGX Switchless - set of features to avoid expensive
crossings. https://github.com/intel/linux-sgx/
blob/master/sdk/switchless/, 2019.

[15] ADRIEN GHOSN, EPFL DCSL. GOTEE – a fork of Go
with support for ’gosecure’. https://github.com/
epfl-dcsl/gotee, 2019.

[16] ARNAUTOV, S., TRACH, B., GREGOR, F., KNAUTH,
T., MARTIN, A., PRIEBE, C., LIND, J., MUTHUKU-
MARAN, D., O’KEEFFE, D., STILLWELL, M.,
GOLTZSCHE, D., EYERS, D. M., KAPITZA, R.,
PIETZUCH, P. R., AND FETZER, C. SCONE: Secure
Linux Containers with Intel SGX. In Proceedings of
the 12th Symposium on Operating System Design and
Implementation (OSDI) (2016), pp. 689–703.

[17] BAUMANN, A., PEINADO, M., AND HUNT, G. C.
Shielding Applications from an Untrusted Cloud with
Haven. ACM Trans. Comput. Syst. 33, 3 (2015), 8:1–
8:26.

[18] BERGHEL, H. Oh, What a Tangled Web: Russian Hack-
ing, Fake News, and the 2016 US Presidential Election.
IEEE Computer 50, 9 (2017), 87–91.

[19] BITTAU, A., MARCHENKO, P., HANDLEY, M., AND
KARP, B. Wedge: Splitting Applications into Reduced-
Privilege Compartments. In Proceedings of the 5th
Symposium on Networked Systems Design and Imple-
mentation (NSDI) (2008), pp. 309–322.

[20] BRASSER, F., MÜLLER, U., DMITRIENKO, A., KOSTI-
AINEN, K., CAPKUN, S., AND SADEGHI, A.-R. Soft-
ware Grand Exposure: SGX Cache Attacks Are Practi-
cal. In Proceedings of the 11th USENIX Workshop on
Offensive Technologies (WOOT) (2017).

[21] BRUMLEY, D., AND SONG, D. X. Privtrans: Automati-
cally Partitioning Programs for Privilege Separation. In
Proceedings of the 13th USENIX Security Symposium
(2004), pp. 57–72.

[22] BULCK, J. V., MINKIN, M., WEISSE, O., GENKIN,
D., KASIKCI, B., PIESSENS, F., SILBERSTEIN, M.,
WENISCH, T. F., YAROM, Y., AND STRACKX, R. Fore-
shadow: Extracting the Keys to the Intel SGX Kingdom
with Transient Out-of-Order Execution. In Proceed-
ings of the 27th USENIX Security Symposium (2018),
pp. 991–1008.

[23] CHE TSAI, C., ARORA, K. S., BANDI, N., JAIN, B.,
JANNEN, W., JOHN, J., KALODNER, H. A., KULKA-
RNI, V., DE OLIVEIRA, D. A. S., AND PORTER, D. E.
Cooperation and security isolation of library OSes for
multi-process applications. In Proceedings of the 2014
EuroSys Conference (2014), pp. 9:1–9:14.

USENIX Association 2019 USENIX Annual Technical Conference 583

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5195
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5195
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000366
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000366
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-4948
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-4948
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2727
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2727
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-7160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-7160
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/en-us/sgx-sdk
https://software.intel.com/en-us/sgx-sdk
https://github.com/baidu/rust-sgx-sdk
https://github.com/baidu/rust-sgx-sdk
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
https://www.justice.gov/archive/ll/highlights.htm
https://www.justice.gov/archive/ll/highlights.htm
https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/sites/default/files/332680-002.pdf
https://www.congress.gov/bill/115th-congress/house-bill/4943/text
https://www.congress.gov/bill/115th-congress/house-bill/4943/text
https://www.congress.gov/bill/115th-congress/house-bill/4943/text
https://www.ethereum.org/
https://github.com/intel/linux-sgx/blob/master/sdk/switchless/
https://github.com/intel/linux-sgx/blob/master/sdk/switchless/
https://github.com/epfl-dcsl/gotee
https://github.com/epfl-dcsl/gotee

[24] CHECKOWAY, S., AND SHACHAM, H. Iago attacks:
why the system call API is a bad untrusted RPC interface.
In Proceedings of the 18th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XVIII) (2013), pp. 253–
264.

[25] CHONG, S., LIU, J., MYERS, A. C., QI, X., VIKRAM,
K., ZHENG, L., AND ZHENG, X. Secure web applica-
tion via automatic partitioning. In Proceedings of the
21st ACM Symposium on Operating Systems Principles
(SOSP) (2007), pp. 31–44.

[26] COSTAN, V., AND DEVADAS, S. Intel SGX Explained.
IACR Cryptology ePrint Archive 2016 (2016), 86.

[27] CRISWELL, J., DAUTENHAHN, N., AND ADVE, V. S.
Virtual ghost: protecting applications from hostile op-
erating systems. In Proceedings of the 19th Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS-XIX)
(2014), pp. 81–96.

[28] DONG, X., SHEN, Z., CRISWELL, J., COX, A. L., AND
DWARKADAS, S. Shielding Software From Privileged
Side-Channel Attacks. In Proceedings of the 27th
USENIX Security Symposium (2018), pp. 1441–1458.

[29] ETHEREUM. Go Ethereum. https://github.com/
ethereum/go-ethereum, 2019.

[30] GOLTZSCHE, D., SIEBELS, T., AND KAPITZA,
R. Trustscript: Language support for par-
titioning trusted web applications. https:
//www.eurosys2019.org/wp-content/uploads/
2019/03/eurosys19posters-abstract100.pdf,
2019.

[31] GOOGLE LLC. Asylo. https://asylo.dev/, 2019.

[32] GOOGLE LLC. gRPC. https://grpc.io/, 2019.

[33] HOARE, C. A. R. Communicating Sequential Processes.
Commun. ACM 21, 8 (1978), 666–677.

[34] HOFMANN, O. S., KIM, S., DUNN, A. M., LEE, M. Z.,
AND WITCHEL, E. InkTag: secure applications on
an untrusted operating system. In Proceedings of the
18th International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS-XVIII) (2013), pp. 265–278.

[35] HUNT, G. C., AND LARUS, J. R. Singularity: rethink-
ing the software stack. Operating Systems Review 41, 2
(2007), 37–49.

[36] KOCHER, P., GENKIN, D., GRUSS, D., HAAS, W.,
HAMBURG, M., LIPP, M., MANGARD, S., PRESCHER,

T., SCHWARZ, M., AND YAROM, Y. Spectre At-
tacks: Exploiting Speculative Execution. CoRR
abs/1801.01203 (2018).

[37] LAUER, H. C., AND NEEDHAM, R. M. On the Duality
of Operating System Structures. Operating Systems
Review 13, 2 (1979), 3–19.

[38] LEE, S., SHIH, M.-W., GERA, P., KIM, T., KIM, H.,
AND PEINADO, M. Inferring Fine-grained Control
Flow Inside SGX Enclaves with Branch Shadowing. In
Proceedings of the 26th USENIX Security Symposium
(2017), pp. 557–574.

[39] LIANG, X., SHETTY, S., ZHANG, L., KAMHOUA,
C. A., AND KWIAT, K. A. Man in the Cloud (MITC)
Defender: SGX-Based User Credential Protection for
Synchronization Applications in Cloud Computing Plat-
form. In Proceedings of the 10th IEEE International
Conference on Cloud Computing (CLOUD) (2017),
pp. 302–309.

[40] LIND, J., PRIEBE, C., MUTHUKUMARAN, D.,
O’KEEFFE, D., AUBLIN, P.-L., KELBERT, F., REI-
HER, T., GOLTZSCHE, D., EYERS, D. M., KAPITZA,
R., FETZER, C., AND PIETZUCH, P. R. Glamdring:
Automatic Application Partitioning for Intel SGX. In
Proceedings of the 2017 USENIX Annual Technical
Conference (ATC) (2017), pp. 285–298.

[41] LIPP, M., SCHWARZ, M., GRUSS, D., PRESCHER, T.,
HAAS, W., MANGARD, S., KOCHER, P., GENKIN, D.,
YAROM, Y., AND HAMBURG, M. Meltdown. CoRR
abs/1801.01207 (2018).

[42] MACKIE, K. Azure Confidential Comput-
ing Project Getting Added Partner Support.
https://redmondmag.com/articles/2018/05/10/
azure-confidential-computing-partners.aspx,
2018.

[43] MARLINSPIKE, M. Technology preview: Private con-
tact discovery for signal. https://signal.org/blog/
private-contact-discovery/.

[44] ORENBACH, M., LIFSHITS, P., MINKIN, M., AND SIL-
BERSTEIN, M. Eleos: ExitLess OS Services for SGX
Enclaves. In Proceedings of the 2017 EuroSys Confer-
ence (2017), pp. 238–253.

[45] RUSSINOVICH, M. Introducing Azure
confidential computing. https://
azure.microsoft.com/en-us/blog/
introducing-azure-confidential-computing/,
2017.

584 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://www.eurosys2019.org/wp-content/uploads/2019/03/eurosys19posters-abstract100.pdf
https://www.eurosys2019.org/wp-content/uploads/2019/03/eurosys19posters-abstract100.pdf
https://www.eurosys2019.org/wp-content/uploads/2019/03/eurosys19posters-abstract100.pdf
https://asylo.dev/
https://grpc.io/
https://redmondmag.com/articles/2018/05/10/azure-confidential-computing-partners.aspx
https://redmondmag.com/articles/2018/05/10/azure-confidential-computing-partners.aspx
https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/

[46] SCHUSTER, F., COSTA, M., FOURNET, C., GKANT-
SIDIS, C., PEINADO, M., MAINAR-RUIZ, G., AND
RUSSINOVICH, M. VC3: Trustworthy Data Analyt-
ics in the Cloud Using SGX. In IEEE Symposium on
Security and Privacy (2015), pp. 38–54.

[47] SHACHAM, H. The geometry of innocent flesh on the
bone: return-into-libc without function calls (on the x86).
In ACM Conference on Computer and Communications
Security (2007), pp. 552–561.

[48] SINHA, R., COSTA, M., LAL, A., LOPES, N. P., RA-
JAMANI, S. K., SESHIA, S. A., AND VASWANI, K. A
design and verification methodology for secure isolated
regions. In Proceedings of the ACM SIGPLAN 2016
Conference on Programming Language Design and Im-
plementation (PLDI) (2016), pp. 665–681.

[49] XU, Y., CUI, W., AND PEINADO, M. Controlled-
Channel Attacks: Deterministic Side Channels for Un-
trusted Operating Systems. In IEEE Symposium on
Security and Privacy (2015), pp. 640–656.

[50] ZDANCEWIC, S., ZHENG, L., NYSTROM, N., AND MY-
ERS, A. C. Untrusted Hosts and Confidentiality: Secure
Program Partitioning. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP)
(2001), pp. 1–14.

[51] ZEGZHDA, D. P., USOV, E. S., NIKOL’SKII, V. A.,
AND PAVLENKO, E. Use of Intel SGX to ensure the
confidentiality of data of cloud users. Automatic Control
and Computer Sciences 51, 8 (2017), 848–854.

[52] ZHANG, F., CHEN, J., CHEN, H., AND ZANG, B.
CloudVisor: retrofitting protection of virtual machines
in multi-tenant cloud with nested virtualization. In Pro-
ceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP) (2011), pp. 203–216.

[53] ZHAO, C., SAIFUDING, D., TIAN, H., ZHANG, Y.,
AND XING, C. On the Performance of Intel SGX. In
IEEE WISA (2016), pp. 184–187.

USENIX Association 2019 USENIX Annual Technical Conference 585

Supporting Security Sensitive Tenants in a Bare-Metal Cloud∗†

Amin Mosayyebzadeh1, Apoorve Mohan4, Sahil Tikale1,
Mania Abdi4, Nabil Schear2, Charles Munson2, Trammell Hudson3

Larry Rudolph3, Gene Cooperman4, Peter Desnoyers4, Orran Krieger1

1Boston University 2MIT Lincoln Laboratory 3Two Sigma 4Northeastern University

Abstract
Bolted is a new architecture for bare-metal clouds that en-

ables tenants to control tradeoffs between security, price, and
performance. Security-sensitive tenants can minimize their
trust in the public cloud provider and achieve similar levels of
security and control that they can obtain in their own private
data centers. At the same time, Bolted neither imposes over-
head on tenants that are security insensitive nor compromises
the flexibility or operational efficiency of the provider. Our
prototype exploits a novel provisioning system and special-
ized firmware to enable elasticity similar to virtualized clouds.
Experimentally we quantify the cost of different levels of se-
curity for a variety of workloads and demonstrate the value
of giving control to the tenant.

1 Introduction
There are a number of security concerns with today’s clouds.
First, virtualized clouds collocate multiple tenants on a sin-
gle physical node, enabling malicious tenants to launch side-
channel and covert channel attacks [21, 51, 54, 55, 66, 69, 80]
or exploit vulnerabilities in the hypervisor to launch attacks
both on tenants running on the same node [49, 64] and on the
cloud provider itself [73]. Second, popular cloud management
software like OpenStack can have a trusted computing base
(TCB) with millions of lines of code and a massive attack
surface [38]. Third, for operational efficiency, cloud providers
tend to support one-size-fits-all solutions, where they apply
uniform solutions (e.g. network encryption) to all customers;
meeting the specialized requirements of highly security sen-
sitive customers may impose unacceptable costs for others.
Finally, and perhaps most concerning, existing clouds provide
tenants with very limited visibility and control over internal

∗Mosayyebzadeh, Mohan, and Tikale contributed equally.
†DISTRIBUTION STATEMENT A. Approved for public release. Distribution is

unlimited. This material is based upon work supported by the Under Secretary of De-
fense for Research and Engineering under Air Force Contract No. FA8702-15-D-0001.
Any opinions, findings, conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the Under Secretary
of Defense for Research and Engineering.

operations and implementations; the tenant needs to fully trust
the non-maliciousness and competence of the provider.

While bare-metal clouds [27, 46, 48, 63, 65] eliminate the
security concerns implicit in virtualization, they do not ad-
dress the rest of the challenges described above. For example,
OpenStack’s bare-metal service still has all of OpenStack in
the TCB. As another example, existing bare-metal clouds en-
sure that previous tenants have not compromised firmware by
adopting a one-size-fits-all approach of validation/attestation
or re-flashing firmware. The tenant has no way to program-
matically verify the firmware installed and needs to fully trust
the provider. As yet another example, existing bare-metal
clouds require the tenant to trust the provider to scrub any
persistent state on the physical machine before allocating the
machine to other tenants.1

These issues are a major concern for “security-sensitive”
organizations, which we define as entities that are both will-
ing to pay a significant price (dollars and/or performance) for
security and that have the expertise, desire, or requirement to
trust their own security arrangements over those of a cloud
provider. Many medical, financial and federal institutions fit
into this category. Recently, IARPA, who represents a num-
ber of such entities, released an RFI [12] that describes their
requirement for using future public clouds; to “replicate as
closely as possible the properties of an air-gapped private
enclave” of physical machines. More concretely2 this means
a cloud where the tenant trusts the provider to make systems
available but where confidentiality and integrity for a ten-
ant’s enclave is under the control of the tenant who is free
to implement their own specialized security processes and
procedures.

By our definition the majority of computing demands are
not highly security-sensitive, thus providing a high-security
option within a commercially-viable future cloud must not

1See, for example, IBM Cloud’s security policy for scrubbing local drives
here https://tinyurl.com/y75sakn4. Note that scrubbing local disks can require
hours of overhead on transferring computers between tenants; dramatically
impacting the elasticity of the cloud.

2Per private communications with RFI authors.

USENIX Association 2019 USENIX Annual Technical Conference 587

impact the efficiency of providing service to other tenants. Is
this possible? Can we make a cloud that is appropriate for
even the most security sensitive tenants? Can we make a cloud
where the tenant does not need to fully trust the provider?
Can we do this without performance impact on tenants who
are happy with the security levels of today’s clouds?

The Bolted architecture and prototype implementation, de-
scribed in this paper, demonstrates that the answer to these
questions is “yes.” The fundamental insight is that to imple-
ment a bare metal cloud only a minimum isolation service
need to be controlled by the provider; all other functionality
can be implemented by security-sensitive tenants on their own
behalf, with provider-maintained implementations available
to tenants with more typical security needs.

Bolted defines a set of micro-services, namely an isolation
service that uses network isolation technologies to isolate
tenants’ bare-metal servers, a provisioning service that installs
software on servers using network mounted storage, and an
attestation service that compares measurements (hashes) of
firmware/software on a server against a whitelist of allowed
software. All services can be deployed by the provider as a
one-size-fits-all solution for the tenants that are willing to
trust the provider.

Security sensitive tenants can deploy their own provision-
ing and attestation service thereby minimizing their trust in the
provider. The tenant’s own software executing on machines
(already trusted by the tenant), can validate measurements of
code to be executed on some newly allocated server against
her expectations rather than having to trust the provider. Fur-
ther, the tenant’s attestation service can securely distribute
keys to the server for network and disk encryption. Using the
default implementation of Bolted services, a tenant’s enclave
is protected from previous users of the same servers (using
hardware-based attestation), from concurrent tenants of the
cloud (using network isolation and encryption), and from fu-
ture users of the same servers (using network mounted storage,
storage encryption, and memory scrubbing). Further, a tenant
with specialized needs can modify these services to match
their requirements; the provider does not sacrifice operational
efficiency or flexibility for security-sensitive customers with
specialized needs since it is the tenant and not the provider
responsible for implementing complex policies.

Key contributions of this paper are:
An architecture for a bare-metal cloud that: 1) enables

security-sensitive tenants to control their own security while
only trusting the provider for physical security and availability
while 2) not imposing overhead on tenants that are security
insensitive and not compromising the flexibility or operational
efficiency of the provider. Key elements of the architecture
are: 1) disk-less provisioning that eliminates the need to trust
the provider for disk scrubbing (as well as the huge cost), 2)
remote attestation (versus validation or re-flashing) to pro-
vide the tenant with a proof of the firmware and software
running on their server and 3) secure deterministically built

firmware that allows the tenant to inspect the source code
used to generate the firmware.

A prototype implementation of the Bolted architecture
where all its components are made available by us open-
source, including the isolation service (Hardware Isolation
Layer [5, 36]), a deterministic Linux-based minimal firmware
(LinuxBoot [6,39], a disk-less bare-metal provisioning service
(Bare Metal Imaging [7, 57]), a remote attestation service
(Keylime [9, 72]), and scripts that interact with the various
services to elastically create secure private enclaves. As we
will discuss later, only the microservice providing isolation
(i.e., Hardware Isolation Layer) is in the TCB and we show
that this can, in fact, be quite small; just over 3K LOC in our
implementation.

A performance evaluation of the Bolted prototype that
demonstrates: 1) elasticity similar to today’s virtualized cloud
(∼3 minutes to allocate and provision a physical server), 2)
the cost of attestation has a modest impact ∼25% on the pro-
visioning time, 3) there is value for customers that trust the
provider in avoiding extra security (e.g.,∼200% for some ap-
plications), while 4) security-sensitive customers can still run
many non-IO intensive applications with negligible overhead
and even I/O intensive BigData applications with a relatively
modest (e.g., ∼30%) degradation.

2 Threat Model
We describe the threats to the victim, a tenant renting bare-
metal servers from the cloud, and describe approaches taken
by Bolted to safeguards against them. We consider external
entities (hackers), malicious insiders in the cloud provider’s
organization and all other tenants of the server—both past
and future—as potential adversaries to the victim. We assume
that the goal of the adversary is to steal data, corrupt data, or
deny services to the victim by gaining access to the victim’s
occupied servers or network. Our goal is to empower the
tenant with the ability to take control of its own security; it
is up to the tenant to make the tradeoff decision between the
degree to which it relies on the provider’s security systems
versus the harm that it may suffer from a successful attack.

The cloud provider is always trusted with the physical se-
curity of the datacenter, thus any attacks involving physical
access to the infrastructure, including power and noise analy-
sis, bus snooping, or decapping chips [33, 34, 74] are out of
scope of a tenant’s control. The provider is also trusted for the
availability of the network, node allocation services, and any
network performance guarantees. We assume that the cloud it-
self is vulnerable to exploitation by external entities (hackers)
or a malicious insider (e.g., a rogue systems administrator)
but we trust the cloud provider’s organization to have neces-
sary systems and procedures in place to detect and limit the
impact of such events. For example, the provider can enforce
sufficient technical separation of duties (e.g., two-person rule)
such that a single malicious insider or hacker cannot both re-
flash all the node firmware in a data center and change what

588 2019 USENIX Annual Technical Conference USENIX Association

hashes the provider publishes for attestation, have both physi-
cal and logical access to a node, or make unreviewed changes
to the provider’s deployed software, etc. Further, we assume
that all servers in the cloud are equipped with a Trusted Plat-
form Module (TPM) - a dedicated cryptographic coprocessor
required for hardware-based authentication [11].

We categorize the threats that the tenant faces into the
following phases:

Prior to occupancy: Malicious (or buggy) firmware can
threaten the integrity of a server, as well as that of other servers
it is able to contact. A tenant server’s firmware may be in-
fected prior to the tenant using it, either by the previous tenant
(e.g., by exploiting firmware bugs) or by the cloud provider in-
sider (e.g., by unauthorized firmware modification). If a server
is not sufficiently isolated from potential attackers there is
also a threat of infection between the time it is booted until it
is fully provisioned and all defenses are in place.

During occupancy: Although many side-channel attacks
are avoided by disallowing concurrent tenants on the same
server, if the server’s network traffic is not sufficiently iso-
lated, the provider or other concurrent tenants of the cloud
may be able to launch attacks against it or eavesdrop on its
communication with other servers in the enclave. Moreover,
if network attached storage is used (as in our implementation)
all communication that is not sufficiently secured between
server and storage may be vulnerable. Finally, there is a threat
to the tenant from denial of service attacks.

After occupancy: Once the tenant releases a server, the
confidentiality of a tenant may be compromised by any of
its state (e.g, storage or memory) being visible to subsequent
software running on the server.

3 Design Philosophy
The key goals of Bolted are: (1) to minimize the trust that a
tenant needs to place in the provider, (2) to enable tenants
with specialized security expertise to implement the function-
ality themselves, and (3) to enable tenants to make their own
cost/performance/security tradeoffs – in bare-metal clouds.
These goals have a number of implications in the design of
Bolted.

First, Bolted differs from existing bare metal offerings in
that most of the component services that make up Bolted can
be operated by a tenant rather than by the provider. A security
sensitive tenant can customize or replace these services. All
the logic that orchestrates how different services are used
to securely deploy a tenant’s software is implemented using
scripts that can be replaced or modified by the user. Most
importantly, the service that checks the integrity of a rented
server can be deployed (and potentially re-implemented) by
the tenant.

Second, while we expect a provider to secure and isolate the
network and storage of tenants, we only rely on the provider
for availability and not for the confidentiality or integrity of
the tenant’s computation. For tenants that do not trust the

provider, we assume that Bolted tenants will further encrypt
all communication between the their servers and between
those servers and storage. Bolted provides a (user-operated)
service to securely distribute keys for this purpose.

Third, we rely on attestation (measuring all firmware and
software and ensuring that it matches known good values) that
can be implemented by the tenant rather than just validation
(ensuring that software/firmware is signed by a trusted party).
This is critical for firmware which may contain bugs [24, 35,
40, 41, 70, 77] that can disrupt tenant security. Attestation
provides a time-of-use proof that the provider has kept the
firmware up to date. More generally, the whole process of
incorporating a server into an enclave can be attested to the
tenant. In addition, the tenant can continuously attest when
the server is operating, ensuring that any code loaded in any
layer of software (OS, applications and etc., and irrespective
of who signed them) can be dynamically checked against a
tenant-controlled whitelist.

Fourth, we have a strong focus on keeping our software as
small as possible and making it all available via open source.
In some cases, we have written our own highly specialized
functionality rather than relying on larger function rich gen-
eral purpose code in order to achieve this goal. For function-
ality deployed by the provider, this is critical to enable it to
be inspected by tenants to ensure that any requirements are
met. For example, previous attacks have shown that firmware
security features are difficult to implement bug-free – includ-
ing firmware measurements being insufficient [26], hardware
protections against malicious devices not being in place [59],
and dynamic root of trust (DRTM) implementation flaws [79].
Further, our firmware is deterministically built, so that the ten-
ant can not only inspect it for correct implementation but then
easily check that this is the firmware that is actually executing
on the machine assigned to the tenant. For tenant-deployed
functionality, small open source implementations are valuable
to enable user-specific customization.

Finally, servers are assumed to be stateless with all vol-
umes accessed on-demand over the network. This removes
confidentiality or denial of service attacks by the provider or
subsequent tenants of server inspecting or deleting a tenants
disk state. Bare-metal clouds that support stateful servers need
to either give the tenant the guarantee that a node will never
be preempted (problematic in a pay-for-use cloud model) or
ensure that the provider scrubs the disks (trusting the provider
and potentially requiring hours with modern disks). As we
will see, stateless servers also dramatically improve the elas-
ticity of the service.

4 Architecture
Bolted enables tenants to build a secure enclave of bare-metal
servers where the integrity of each server is verified by the ten-
ant before it is allowed to participate in the tenant’s enclave.
During the allocation process, a server transitions through
the following states: free, or not allocated, airlock, where

USENIX Association 2019 USENIX Annual Technical Conference 589

the integrity of the server is checked, after which it is either
allocated to a tenant’s secure enclave if it passes the integrity
check or rejected if it fails. In this section, we discuss the
Bolted components; their operations; the process of server al-
location, attestation, and the degrees of freedom in deploying
Bolted components to support different security requirements
and use cases.

4.1 Components

Bolted consists of four components which operate indepen-
dently and (in the highest-security and lowest-trust configura-
tions) are orchestrated by the tenant rather than the provider.

Isolation Service: The Isolation Service exposes interfaces
to (de)allocate servers and networks to tenants, and isolate
and/or group the servers by manipulating a provider’s net-
working infrastructure (switches and/or routers). Using the
exposed interfaces, the servers are moved to free or rejected
state as well – ensuring the servers are not part of any tenant-
owned network. These interfaces are also used to move the
servers to the airlock state (to verify if they have been com-
promised) or the allocated state (where they are available for
the tenant).

The Isolation Service uses network isolation techniques
instead of encryption-based logical isolation in order to en-
force guarantees of performance and to provide basic pro-
tection against traffic analysis attacks. Since the operations
performed by these interfaces (on the networking infrastruc-
ture) are privileged, the isolation service needs to be deployed
by the provider; if a tenant does not trust the provider, it can
further encrypt network traffic between their servers.

Secure Firmware: Secure firmware is crucial towards im-
proving tenant’s trust of the public cloud servers; it should
consist of following properties. First, it should be open-source,
so that it benefits from large community support in improving
its features and fixing any bugs and vulnerabilities. Second,
it should be deterministically built so that a tenant can build
the firmware from verified source code and independently
validate the provider-installed firmware. Third, it must scrub
server memory prior to launching a tenant OS – if the server
was preempted from a previous tenant, it must guarantee that
the previous tenants‘ code and data is not present in the mem-
ory. Finally, it must provide an execution environment for the
attestation agent in the airlock state.

We note that it is challenging to replace computer firmware;
even major providers are often forced to install huge binary
blobs signed by the hardware manufacturer with no access
to the source code. When firmware cannot be replaced, we
use the installed firmware for the minimum amount of time in
order to download our own secure firmware – and the servers‘
pre-installed firmware must support trusted boot [20].

While the overall Bolted architecture design supports the
attestation and security of both system firmware (e.g., BIOS or
UEFI) and peripheral firmware (e.g., GPU, network card, etc.),
there are no standardized and implemented methods to attest

those peripheral firmware to an external party. Early attempts
at standardization are underway, and we expect Bolted can
leverage them when they mature [67].

Provisioning Service: This service is broadly responsible
for three things – (1) initial provisioning of the server with
the software stack (i.e. secure firmware and attestation agent)
responsible for its attestation during the airlock state, (2)
provisioning of the server during the allocated state (i.e. the
server was successfully verified that it was not compromised)
with the intended software stack i.e. the operating system and
the relevant software packages, and (3) saving and/or deleting
the servers‘ persistent state when a server is released.

The Provisioning Service can be deployed either by the
provider or by tenants themselves. The latter option is valu-
able for security-sensitive tenants who do not want to trust
the provider with their operating system images or who want
to use their own (e.g., legacy) provisioning systems. The pro-
visioning service must provision the servers in a stateless
manner so that the tenants do not have to rely on (and trust)
the provider to remove any persistent state after the server is
released.

Attestation Service: The Attestation Service consists of
two parts: an attestation agent that executes on the server
to be attested, and an attestation server that maintains a pre-
populated database of known reliable hash measurements of
allowed firmware/software (i.e., a whitelist). This service is
used during the airlock and allocated states. The Attestation
Service can be deployed either by the provider or by the
tenant.

During the airlock state, the attestation agent (downloaded
from the Provisioning Service during initial provisioning) is
responsible for sending quotes3 of the firmware and any other
software involved during the boot sequence to the attestation
server to be matched against the whitelist. Depending on the
attestation result obtained from the attestation server, the state
of the attested server is changed to allocated or rejected. In
the case when the computer firmware cannot be replaced, the
trusted boot sequence measurement (until the secure firmware
is executed) must be supplied by the provider. Obtaining this
measurement is a one-time operation for each server, and this
whitelist can be published publicly by the provider.

In the allocated state, the attestation agent (installed on
the tenants’ OS) can continuously verify the software stack
running against the whitelist present on the attestation server
(also referred as Continuous Attestation). For continuous at-
testation to work, the software stack should be configured
such that it saves new measurements to the cryptoprocessor
upon observing any change/modification/access. The attesta-
tion agent periodically sends the new hash measurements of
software and configuration registered in the cryptoprocessor
to the attestation server; if attestation fails (i.e., when any ma-
licious activity is observed), the attestation server alerts the

3Hash measurements obtained from and signed by a secure cryptoproces-
sor such as TPM.

590 2019 USENIX Annual Technical Conference USENIX Association

Isolation
Service

Attestation
Service

Provisioning
Service

Allocate a server
and move it into
Airlock

1

If Attestation passes,
move the server to
tenant’s enclave

If Attestation fails,
moves the server
to rejected pool

5

Attest server’s
Firmware

Download firmware
and client side of
attestation service

Free Pool Rejected Pool
Tenant

Attested Pool

4

Provision the server
with Tenant’s OS
and applications

6

3

2

Airlock

Figure 1: Bolted’s Architecture: Blue arrows show state changes
and green dotted lines shows the actions during a state change.

attestation agent. Continuous attestation protects tenants both
against unauthorized execution of executables and against
malicious reboots into unauthorized firmware, bootloader, or
operating system. Note that continuous attestation is funda-
mentally more challenging in a provider-deployed attestation
service, as the runtime whitelist (e.g., hashes of approved bina-
ries allowed to be run on the node) must be tenant-generated;
we assume continuous attestation is only used by security-
sensitive tenants that deploy their own attestation service.

4.2 Life Cycle

The different Bolted components do not directly interact with
each other, but instead, are orchestrated by user-controlled
scripts. Figure 1 shows the life-cycle of a typical secure
server (in the case of security-sensitive tenant), which pro-
gresses through six steps: (1) The tenant uses the Isolation
Service to allocate a new bare metal server, create an airlock
network, and move the server to that airlock, shared with the
Attestation and the Provisioning networks; we need to isolate
servers in the airlock state from other servers in the same
state so that a compromised server cannot infect other un-
compromised servers. (2) The secure firmware is executed (if
stored in system flash) or provisioned onto the server along
with a boot-loader, attestation software agent, and any other
related software. With these in place, (3) the Attestation Ser-
vice attests the integrity of the firmware of this server. Once
initial attestation completes, (4) the tenant again employs the
Isolation Service to move the server from the airlock network.
If firmware attestation failed (5) it is moved into the Rejected
Pool, isolated from the rest of the cloud; if attestation was
successful, the server is made part of the tenant’s enclave by
connecting it to the tenant networks. In order to make use
of the server, further provisioning is required (6) so the ten-
ant again uses the Provisioning Service to install the tenant
operating system and any other required applications.

4.3 Use Cases

Figure 2 demonstrates the flexibility of Bolted using three
examples of users, namely; 1) Alice, a graduate student, who
wants to maximize performance and minimize cost and does
not care about security, 2) Bob, a professor, who does not trust
other tenants (e.g., graduate students) but is willing to trust
the provider, and 3) Charlie, a security-sensitive tenant, who
not only does not trust other tenants but wants to minimize
his trust in the provider.

Alice and Bob are willing to trust the provider’s network
isolation and storage security, and do not need to employ
runtime encryption and will not incur its performance burden;
nor will they need to expend the effort to deploy and manage
their own services4. Alice, further, uses scripts that do not
even bother using the provider’s attestation service, further
improving the speed that she can start up servers as well as
her costs if the provider charges her for all the time a server
is allocated to her.

Security-sensitive tenant Charlie deploys his own, poten-
tially modified, provisioning and attestation service. He does
not have to rely on the provider’s network isolation to protect
his confidentiality and integrity but can implement runtime
protections such as network and disk encryption. Moreover,
the attestation service can be used not only to protect him
from previous tenants, but also to maintain a whitelist of
applications and configuration, and to quickly detect any com-
promises in an ongoing fashion. The one area where Bolted
requires Charlie to trust the provider is for protecting against
denial of service attacks since only the provider can deploy the
isolation service that allocates servers and controls provider
switches. Trusting a provider, in this case, is unavoidable with
current networking technology, as the provider controls all
networking to the datacenter.

In addition to the cloud use cases, Bolted was designed to
be flexible enough to handle the use case of co-location facili-
ties [1, 4, 8] where the datacenter tenants temporarily “loan”
computers to each other to handle fluctuations in demand;
and this use case is, in fact, the primary one for which Bolted
is going into production currently. In this case, a single party
may be both provider and tenant. As an example, one party
might have a high demand on their HPC cluster, while another
party has spare capacity in their IaaS cloud; the isolation ser-
vice from the second party (the provider) could be used to
provision servers for loan to the first party, with attestation
and provisioning services (including provisioning-associated
storage) provided by the first party (the user).

Since the different Bolted services are independent, being
orchestrated by tenant scripts, it is straightforward for a tenant
to use capacity from multiple isolation services. The attes-
tation of Bolted is important to enable supporting untrusted
environments (e.g., research testbeds) alongside production
services. For tenants that use the standard Bolted provisioning

4Or mismanage, a more significant risk for less security-literate users.

USENIX Association 2019 USENIX Annual Technical Conference 591

Figure 2: Bolted deployment examples; purple boxes are provider-
deployed and greens are tenant-deployed. Alice and Bob trust the
provider-deployed infrastructure, while security-sensitive Charlie
deploys its own.

service, the use of network mounted storage by Bolted enables
them to use their own storage for persistence, making storage
encryption unnecessary. Because Bolted enables tenants to
deploy their own provisioning service, some tenants can use
custom provisioning services which install to local storage.5

When using their own infrastructure, the tenant and provider
are in the same organization. In this case, tenants trust the
provider, and hence network encryption is unnecessary. Ten-
ants are willing to make agreements with trusted partners
from whom they will be using servers; trusting the partner’s
isolation service makes network encryption unnecessary for
communication with servers obtained from it.

5 Implementation
We describe our implementation of the Isolation Service
(HIL [36]), Firmware (LinuxBoot [6]), Attestation Service
(Keylime [72]), and Provisioning Service (BMI [57]), and
explain how they work together as Bolted. All of these con-
stituent services of Bolted are open-source packages and can
be modified by tenants or providers to meet their specific
requirements.

Hardware Isolation Layer: The fundamental operations
Hardware Isolation Layer (HIL) provides are (i) allocation
of physical servers, (ii) allocation of networks, and (iii) con-
necting these servers and networks. A tenant can invoke HIL
to allocate servers to an enclave, create a management net-
work between the servers, and then connect this network to
any provisioning tool (e.g., [15, 19, 57, 62]). It can also let
tenants create networks for isolated communication between
servers and/or attach those servers to public networks made
available by the provider. HIL controls the network switches

5In this case, provisioning time is much larger and tenants are responsible
for scrubbing the local disk.

of the cloud provider and provides VLAN-based [45] network
isolation mechanism. HIL also supports a simple API for
Baseboard Management Controller (BMC) operations like
power cycling servers and console access; ensuring that users
cannot attack the BMC. HIL cannot be deployed by tenants
and must be deployed by the provider and is the only compo-
nent shared by tenants, that is not attested to. In our effort to
minimize this TCB we have worked hard to keep HIL very
simple (approximately 3000 LOC).

Because the provider is trusted for physical isolation and
security, it also acts as the source of truth for information on
servers in two ways. First, it maps each server’s HIL identity
to a TPM identity by exporting the TPM’s public Endorse-
ment Key (EK) through administrator-modifiable metadata
per server, ensuring that the tenant is able to confirm that the
tenant she received is indeed the one she reserved thus protect-
ing the tenant from any server spoofing attack. Second, HIL
exposes the provider-generated whitelist of TPM PCR mea-
surements, i.e., ones that relate to the platform components
like BIOS/UEFI firmware and firmware settings.

LinuxBoot: LinuxBoot is our firmware implementation
and bootloader replacement. It is a minimal reproducible build
of Linux that serves as an alternative to UEFI and Legacy
BIOS. LinuxBoot retains the vendor PEI (Pre-EFI environ-
ment) code as well as the signed ACM (authenticated code
modules) that Intel provides for establishing the TEE (trusted
execution environment). LinuxBoot replaces the DXE (Driver
Execution Environment) portion of UEFI with open source
wrappers, the Linux Kernel, and a flexible initrd based run-
time. Advantages over stock UEFI include: 1) LinuxBoot’s
open-source Linux devices drivers and filesystems have had
significantly more scrutiny than the UEFI implementations, 2)
its deterministic build enables easy remote attestation with a
TPM; a tenant can independently confirm that the firmware on
a server corresponds to source code that they compile them-
selves, 3) it can use any Linux-supported filesystem or device
driver, execute Linux shell scripts to perform remote attes-
tation over secure network protocols and mount encrypted
drives, simplifying integration into services like Bolted, 4) it
is significantly faster to POST than UEFI; taking 40 seconds
on our servers, compared to about 4 minutes with UEFI.

We chose LinuxBoot over alternatives like Tianocore [10]
– an open source implementation of UEFI because unlike
Tianocore it does not depend on hardware drivers provided
by motherboard vendors. In addition to the driver dependency
Tianocore also needs support of Firmware Support Package
(FSP) from processor vendors which are closed source bina-
ries or independent softwares like coreboot [2, 3] to function
as a complete bootable firmware. LinuxBoot does use FSP
however Heads which is our flavor of LinuxBoot is able to
establish root of trust prior to executing FSP thus ensuring
that FSP blob is measured into TPM PCR’s. This protects
from attacks that involve replacing a measured FSP with a
malicious FSP. Additionally, while LinuxBoot and Tianocore

592 2019 USENIX Annual Technical Conference USENIX Association

both are open source projects, LinuxBoot is based on Linux, a
much more mature and widely used system with battle tested
code.

We have modified LinuxBoot such that it scrubs memory
before a tenant can use a server; a tenant that attests that
LinuxBoot is installed is guaranteed that subsequent tenants
will not gain control until the memory has been scrubbed since
the only way for the provider, or another tenant, to gain control
(or reflash the firmware) is to power cycle the machine which
will ensure that LinuxBoot is executed. Scripts integrated with
LinuxBoot download the attestation service’s client side agent,
download and kexec a tenant’s kernel (only if attestation has
succeeded), and obtain a key from the attestation service to
access the encrypted disk and network.

Keylime: Keylime is our remote attestation and key man-
agement system. It is divided into four major components:
Registrar, Cloud Verifier, Agent, and Tenant. The registrar
stores and certifies the public Attestation Identity Keys (AIKs)
of the TPMs used by a tenant; it is only a trust root and
does not store any tenant secrets. The Cloud Verifier (CV)
maintains the whitelist of trusted code and checks server in-
tegrity. The Agent is downloaded and measured by the server
(firmware or previously measured software) and then passes
quotes (i.e., TPM-signed attestations of the integrity state of
the machine) from the server’s TPM to the verifier. The Ten-
ant starts the attestation process and asks the Verifier to verify
the server. The Registrar Verifier and Tenant can be hosted by
the tenant outside of the cloud or could be hosted on a physi-
cal system in the cloud. Keylime delivers the tenant kernel,
initrd and scripts to the server (after attestation success) using
a secure connection between the Keylime CV and Keylime
agent. The script is executed by the agent to 1) make sure
the server is on the tenant’s secure network and 2) kexec into
tenant’s kernel and boot the server.

For tenants that do not trust the provider, Keylime sup-
ports automatic configuration for Linux Unified Key Setup
(LUKS) [13] for disk encryption and IPsec for network
encryption using keys bootstrapped during attestation and
bound to the TPM hardware root-of-trust. Also, Keylime in-
tegrates with the Linux Integrity Measurement Architecture
(IMA) [71] to allow tenants to continuously attest that a server
was not compromised after boot. IMA continuously maintains
a hash chain rooted in the TPM of all programs, libraries, and
critical configuration files that have been executed or read by
the system. The CV checks the IMA hash chain regularly at
runtime to detect deviations from the whitelist of acceptable
hashes.

Bare Metal Imaging: The fundamental operations pro-
vided by the Bare Metal Imaging (BMI) are: (i) disk image
creation, (ii) image clone and snapshot, (iii) image deletion,
and (iv) server boot from a specified image. Similar to virtual-
ized cloud services, BMI serves images from remote-mounted
boot drives, with server access via an iSCSI (TGT [76]) ser-
vice managed by BMI and back-end storage in a Ceph [78]

distributed storage system. When the server network-boots,
it only fetches the parts of the image it uses (less than 1%
of the image is typically used), which significantly reduces
the provisioning time [57]. BMI allows tenants to run scripts
against a BMI-managed filesystem which we use to extract
boot information (kernel, initramfs image and kernel com-
mand lines) from images so that they could be passed to a
booting server in a secure way via Keylime.

Putting it together: The booting of a server is controlled
by a Python application that follows the sequence of steps
shown in Figure 1. For servers that support it, we burn Linux-
Boot directly into the server’s SPI flash. Figure 1 shows an-
other case where we download LinuxBoot’s runtime (Heads)
using iPXE and then continue the same sequence as if Linux-
Boot was burned into the flash. We have modified the iPXE
client code to measure the downloaded LinuxBoot runtime
image into a TPM platform configuration register (PCR) so
that all software involved in booting a server can be attested.
When servers pass attestation, the Keylime Agent downloads
an encrypted zip file containing the tenant’s kernel, initrd, and
a script from Keylime server and unzips them. The zip file
also includes the keys for decrypting the storage and network.
After a server is moved (using HIL) to the tenant’s enclave,
the Keylime Agent runs the script file. The script stores the
cryptographic keys into an initrd file to pass it to the tenant’s
kernel and then kexecs into the downloaded kernel. After it
boots, the kernel uses the keys from the initrd file to decrypt
the remote disk and encrypt the network.

Keylime [72] and LinuxBoot [6] were previously created
in part by authors of this paper, and modified as discussed
above. While previously published, HIL [36] and BMI [57]
were designed with the vision of integrating them in the larger
Bolted architecture described in this paper.

6 Addressing the Threat Model
Here we discuss how, for security-sensitive tenants, Bolted’s
architecture addresses the threats in the three phases described
in Section 2.

Prior to occupancy: We must protect a tenant’s server
against threats from previous users of the server and isolate
it from potential network-based attacks until a server is fully
provisioned. To do this, Bolted uses attestation to ensure that
the firmware of the server was not modified by previous ten-
ants, and isolates the server in the airlock state (protected from
other tenants) until this attestation is complete. The determin-
istic nature of LinuxBoot enables tenants to inspect the source
code of the firmware, and ensure that it is trusted, rather than
just trusting the provider. Further, all communication within
the networks in the enclave is encrypted, using a key provided
by the tenant’s attestation service (e.g., Keylime), ensuring
that the server will not be susceptible to attacks by other
servers as it is provisioned. Since our current implementation
is unable to attest the state of peripheral firmware, there could
be malware embedded in those devices that could compromise

USENIX Association 2019 USENIX Annual Technical Conference 593

(a) LUKS overhead on RAM disk (b) IPsec overhead (c) Network mounted storage

Figure 3: Performance Impact of Encryption

the node. Disk and network encryption securely bootstrapped
by the TPM mitigate data confidentiality and integrity attacks
from malicious peripherals with external access like network
interfaces and storage controllers. System level isolation of
device drivers, as in Qubes6, could further be used to mitigate
the impact of malicious peripherals mounting attacks against
the node [32].

During occupancy: We must ensure that the server’s net-
work traffic is isolated so that the provider or other concurrent
tenants of the cloud cannot launch attacks against it or eaves-
drop on its communication with other servers in the enclave.
HIL performs basic VLAN-based isolation to provide basic
protection from traffic analysis by other tenants. However, a
tenant can choose to both encrypt their network traffic with
IPsec and shape their traffic to resist traffic analysis from the
provider and not rely on provider’s HIL. Keylime securely
sends the keys for encrypting networking and disk traffic di-
rectly to the node. Disk encryption ensures the confidentiality
and integrity of the persistent data even if the storage is under
the control of a malicious provider.

Continuous attestation can detect changes to the runtime
state of the server (e.g., unauthorized binaries being executed
or reboot to an unauthorized kernel) and notify the tenant
to take some action to respond. Response actions include
revoking the cryptographic keys used by that server for net-
work/storage encryption, removing it from the enclave VLAN,
and immediately rebooting the system into a known good
state and scrubbing its memory. While IMA only supports
load/read-time measurement (i.e., hashing) of files on the
system as they are used, most existing runtime protection
measures like kernel integrity monitoring [56], control-flow
integrity [25], or dynamic memory layout randomization [23]
are built into either the kernel image/modules, application
binaries, or libraries themselves. Thus, TPM measurements
created by IMA at runtime will demonstrate that those protec-
tions were loaded.

After occupancy: Once a server is removed from a tenant
enclave, we must ensure that the confidentiality of a tenant
is not compromised by any of its state being visible to subse-
quent software running on the server. Stateless provisioning
of the servers protects against any persistent state remaining

6https://www.qubes-os.org/

on the server and avoids any reliance on the provider scrub-
bing the disk if it preempts the tenant. Further, the tenant
can deploy its own provisioning service and ensure that the
provider has no access to that storage. If the tenant requires
the use of the local disks for performance reasons (e.g., for
big data applications), the server can use local disk encryp-
tion with ephemeral keys stored only in memory. As long as
the tenant attests that LinuxBoot is used, it knows that this
firmware will zero the server’s memory before another tenant
will have the opportunity to execute any code.7

7 Evaluation
We first use micro-benchmarks to quantify the cost of en-
crypted storage and networking on our system, then examine
the performance and scalability of the Bolted prototype, the
cost of continuous attestation and finally the performance of
applications deployed using Bolted under different assump-
tions of trust.

7.1 Infrastructure and methodology

Single server provisioning experiments were performed on
a Dell R630 server with 256 GB RAM and 2 Xeon E5-2660
v3 2.6GHz processors with 10 (20 HT) cores, using UEFI or
LinuxBoot executing from motherboard flash. All the other
experiments were conducted on a cluster of 16 Dell M620
blade servers (64 GB memory, 2 Xeon E5-2650 v2 2.60GHz
processors with 8 cores (16 HT) per socket) and a 10Gbit
switch. The M620 servers do not have a hardware TPM, so
for functionality, we used a software emulation of a TPM [43],
and for performance evaluation, emulated the latency to access
the TPM based on numbers collected from our R630 system.

HIL, BMI, and Keylime servers were run on virtual ma-
chines with Xeon E5-2650 2.60GHz CPUs: Keylime with 16
vCPUs and 8GB memory; BMI with 2 vCPUs and 8GB, and
HIL with 8 vCPUs and 8GB RAM. The iSCSI server ran on
a virtual machine with 8 vCPUs and 32GB RAM. The Ceph
cluster (the storage backend for BMI disk images) has 3 OSD
servers (each dual Xeon E5-2603 v4 1.70GHz CPUs, 6 cores
each) and a total of 27 disk spindles across the 3 machines.
The servers were provisioned with Fedora 28 images (Linux

7Note that we are assuming here that the provider cannot re-flash the
firmware remotely over the BMC.

594 2019 USENIX Annual Technical Conference USENIX Association

https://www.qubes-os.org/

Figure 4: Provisioning time of one server.

kernel 4.17.9-200) enabled with IMA and version 5.6.3 of
Strongswan [17] for IPsec. IPsec was configured in ’Host to
Host’ and Tunnel mode. The cryptographic algorithm used
was AES-256-GCM SHA2-256 MODP2048. The authenti-
cation and encryption were done through a pre-shared key
(PSK). IMA used SHA-256 hash algorithm. Cryptsetup util-
ity version 1.7.0 was used to setup disk encryption based on
LUKS – with AES-256-XTS algorithm. Unless otherwise
stated, each experiment was executed five times.

7.2 The cost of encryption

For security-sensitive tenants that do not trust a provider, they
must encrypt the disk and network traffic. To understand the
overhead in our environment, we ran some simple micro-
benchmarks.

Disk Encryption: Figure 3a shows the overhead of LUKS
disk encryption on a Block RAM disk exercised using Linux’s
“dd” command. While LUKS introduces overhead in this
extreme case, we can see that the bandwidth that LUKS can
sustain at 1GB for reads is likely to be able to keep up with
both local disks and network mounted storage delivered over
a 10Gbit network while write performance may introduce a
modest degradation at ∼0.8GB.

Network Encryption: Figure 3b shows the overhead of
IPsec using Iperf between two servers using both hardware-
based Intel AES-NI (IPsec HW) and software-based AES
(IPsec SW) and MTU’s of 1500 and 9000. We can see that
IPsec has a much larger performance overhead than LUKS
disk encryption, with even the best case of HW accelerated
encryption and jumbo frames having almost a factor of two
degradation over the non-encrypted case (CPU usage on our
infrastructure is between 60% and 80% of one processing
core for HW accelerated encryption). Additional tuning or
specialized IPsec acceleration network interfaces could be
used to boost performance [37]. We use hardware accelerated
encryption and jumbo frames for all subsequent experiments.

Network mounted storage: In our implementation we
boot servers using iSCSI which in turn accesses data from our
Ceph cluster. In Figure 3c we show the results of exercising

the iSCSI server using “dd”. Experimentally, we found that
increasing the read ahead buffer size on Linux to 8MB was
critical for performance, and we do this on all subsequent
experiments (the default size is 128KB). Since Ceph as the
backend storage reads data in 4MB chunks, increasing the
read ahead buffer size to 8MB results in higher sequential
read performance. As expected we find that LUKS introduces
small overhead on writes and no overhead on reads, while
IPsec between the client and iSCSI server has a major impact
on performance.

7.3 Elasticity

Today’s bare-metal clouds take many tens of minutes to al-
locate and provision a server [61]. Further, scrubbing the
disk can take many hours; an operation required for stateful
bare metal clouds whenever a server is being transferred be-
tween one tenant and another. In contrast, virtualized clouds
are highly elastic; provisioning a new VM can take just a
few minutes and deleting a VM is nearly instantaneous. The
huge difference in elasticity between bare-metal clouds and
virtualized clouds has a major impact on the use cases for
which bare-metal clouds are appropriate. How close can we
approach the elasticity of today’s virtualized clouds? What
extra cost does attestation impose on that elasticity? What is
the extra cost if the tenant does not trust the provider and need
to encrypt disks and storage?

To understand the elasticity Bolted supports, we first exam-
ine its performance for provisioning servers under different
assumptions of security and then examine the concurrency
for provisioning multiple servers in parallel.

Provisioning time: Figure 4 compares the time to pro-
vision a server with Foreman (a popular provisioning sys-
tem) [30] to Bolted with both UEFI and LinuxBoot firmware
under 3 scenarios: no attestation which would be used by
clients that are insensitive to security, attestation where the
tenant trusts the provider, but uses (provider deployed) attes-
tation to ensure that previous tenants have not compromised
the server, and Full attestation, where a security-sensitive
tenant that does not trust the provider uses LUKS to encrypt

USENIX Association 2019 USENIX Annual Technical Conference 595

the disk and IPsec to encrypt the path between the client and
iSCSI server. There are a number of important high-level re-
sults from this figure. First for tenants that trust the provider,
Bolted using LinuxBoot burned in the ROM is able to pro-
vision a server in under 3 minutes in the unattested case and
under 4 minutes in the attested case; numbers that are very
competitive with virtualized clouds. Second, attestation adds
only a modest cost to provisioning a server and is likely a
reasonable step for all systems. Third, even for tenants that
do not trust the provider, (i.e. LUKS & IPsec) on servers
with UEFI, Bolted at ∼7 minutes is still 1.6x faster than Fore-
man provisioning; note that Foreman implements no security
procedures and is likely faster than existing cloud provision-
ing systems that use techniques like re-flashing firmware to
protect tenants from firmware attacks.

Examining the detailed time breakdowns in Figure 4; while
we introduced LinuxBoot to improve security, we can see
that the improved POST time (3x faster than UEFI) on these
servers has a major impact on performance. We also see that
booting from network mounted storage, introduced to avoid
trusting the provider to scrub the disk, also has a huge impact
on provisioning time. The time to install data on to the local
disk is much larger for the Foreman case, where all data needs
to be copied into the local disk. In contrast, with network
booting, only a tiny fraction of the boot disk is ever accessed.
We also see that with a stateful provisioning system like Fore-
man, it needs to reboot the server after installing the tenant’s
OS and applications on the local disk of the server; incurring
POST time twice. While not explicitly shown here, it is also
important to note that with Bolted a tenant can shutdown the
OS and release a node to another tenant and then later restart
the image on any compatible node; a key property of elas-
ticity in virtualized clouds that is not possible with stateful
provisioning systems like Foreman.

We show in Figure 4 the costs of all the different phases of
an attested boot. With UEFI, after POST, the phases are: (i)
PXE downloading iPXE, (ii) iPXE downloading LinuxBoot’s
runtime (Heads), (iii) booting LinuxBoot, (iv) downloading
the Keylime Agent (using HTTP), (v) running the Keylime
Agent, registering the server and attesting it, and then down-
loading the tenant’s kernel and initrd, (vi) moving the server
into the tenant’s network and making sure it is connected to
the BMI server and finally (vii) LinuxBoot kexec’ing into
the tenant’s kernel and booting the server. In each step, the
running software measures the next software and extends the
result into a TPM PCR. Using LinuxBoot firmware, after
POST we immediately jump to step (iv) above.

While the steps for attestation where complex to implement,
the overall performance cost is relatively modest, adding only
around 25% to the cost of provisioning a server.8 This is an

8Moreover, given that performance is sufficient, we have so far made no
effort to optimize the implementation. Obvious opportunities include better
download protocols than HTTP, porting the Keylime Agent from python to
Rust, etc.

Figure 5: Bolted Concurrency

important result given a large number of bare-metal systems
(e.g. CloudLab, Chameleon, Foreman, . . .), that take no se-
curity measure today to ensure that firmware has not been
corrupted. There is no performance justification today for
not using attestation, and our project has demonstrated that
it is possible to measure all components needed to boot a
server securely. For the full attestation scenarios (UEFI and
LinuxBoot), two more steps are added to the basic attestation
scenarios: (+i) loading the cryptographic key and decrypting
the encrypted storage with LUKS (+ii) establishing IPsec tun-
nel and connecting to the encrypted network. These two steps
are incorporated into Kernel boot time in Figure 4. We can
see that the major cost is not these extra steps but the slow
down in booting into the image that comes from the slower
disk that is accessed over IPsec.

Concurrency: Figure 5 shows (with UEFI firmware) how
Bolted performs, with and without attestation, as we increase
the number of concurrently booting servers (log scale). In both
the attested and unattested case performance stays relatively
flat until 8 nodes. In our current environment, this level of
concurrency/elasticity has been more than sufficient for the
community of researchers using Bolted. There is a substantial
degradation in both the attested and unattested case when we
go from 8 to 16 servers. In the unattested case, the degradation
is due to the small scale Ceph deployment (with only 27 disks)
available in our experimental infrastructure. For the attested
boot, the performance degradation arises from a limitation in
our current implementation where we only support a single
airlock at a time; attestation for provisioning is currently
serialized. While this scalability limitation is not a problem
for current use cases in our data center, we intend to address it
to enable future use cases of highly-elastic security-sensitive
tenants; e.g., a national emergency requiring many computers.

7.4 Continuous Attestation

Once a server has been provisioned, a security sensitive tenant
can further use IMA to continuously measure any changes
to the configuration and applications. The Keylime Agent
will include the IMA measurement list along with periodic
continuous attestation quotes. This allows the Keylime Cloud
Verifier to help ensure the integrity of the server’s runtime
state by comparing the provided measurement list with a

596 2019 USENIX Annual Technical Conference USENIX Association

Figure 6: IMA overhead on Linux Kernel Compile

whitelist of approved values provided by the tenant. In the
case of a policy violation, Keylime can then revoke any keys
used for network or disk encryption; essentially isolating the
server. To evaluate IMA performance, we measured Linux
kernel 4.16.12 compile time with and without IMA with a
different number of processing threads. We use kernel compi-
lation as a test case for IMA because it requires extensive file
I/O and execution of many binaries. The IMA policy we used
measured all files that are executed as well as all files read
by the root user. To stress IMA we ran the kernel compile as
root such that all of its activity would be measured.9 Figure 6
shows the results in log scale; even in this unrealistic stress
test IMA does not impose a noticeable overhead.

Keylime can detect policy violations from checking the
IMA measurements and TPM quotes in under one second.
To simulate a policy violation, we ran a script on the server
without having a record of it in the whitelist, resulting in
an IMA measurement different than expected. This results
in Keylime issuing a revocation notification for the key of
the affected server used for IPsec to the other servers in the
system; the entire process takes approximately 3 seconds
for a compromised server to have its IPsec connections to
other servers reset and be cryptographically banned from the
network.

7.5 Macro-Benchmarks
Security-sensitive tenants using Bolted rely on network and
disk encryption to minimize their trust in the provider. Surpris-
ingly there is little information in the literature what the cost
of such encryption is for real applications. Is the performance
good enough that we can tolerate a one-size-fits-all solution
and avoid ever trusting the provider? Is the performance so
poor that it will never make sense for security-sensitive cus-
tomers to use Bolted?

Figure 7 (MPI) shows performance degradation results for a
variety of applications from the NAS Parallel Benchmark [22]
version 3.3.1: Embarrassingly Parallel (EP), Conjugate Gra-
dient (CG), Fourier Transform (FT) and Multi Grid (MG)
applications class D running in a 16 server enclave. We see
overall that these applications only suffer significant overhead
for IPsec, ranging from ∼18% for EB, which has modest com-

9This policy and workload are very unlikely to be either useful or man-
ageable from a security perspective. We used them only as a stress test.

Figure 7: Macro-benchmarks’ performance

munication, to ∼200% for CG which is very communication
intensive. These results suggest that there are definitely work-
loads for which not trusting the provider incurs little overhead.
At the same time, a one-size-fits-all solution is inappropriate;
only tenants that are willing to trust the provider, and avoid
the cost of encryption, are likely to run highly communication
intensive applications in the cloud.

To understand the performance overhead for more cloud
relevant workloads, Figure 7 (Spark) shows the performance
of Spark [81] framework version 2.3.1 (working on Hadoop
version 2.7.7) running TeraSort on a 260GB data set. The
experiment is run in parallel in an enclave of 16 servers. Tera-
Sort is a complex application which reads data from remote
storage, shuffles temporary data between servers and writes
final results to remote storage. We can see a significant overall
degradation, of ∼30% for LUKS+IPsec. While this degrada-
tion is significant, we expect that security sensitive tenants
would be willing to incur this level of overhead. On the other
hand, this overhead is large enough that tenants willing to
trust the provider would prefer not to incur it, suggesting that
the flexibility of Bolted to provide this choice to the tenant is
important.

Our last experiment (Figure 7 (VM)) is based on virtualiza-
tion. An important application of bare metal servers is to run
virtualized software (e.g., an IaaS cloud). In this experiment,
we installed KVM QEMU version 2.11.2 on a M620 server as
the hypervisor. The virtual machine we run on the hypervisor
is CentOS 7 with Linux kernel 3.10.0. It has 8 vCPU cores
and 32 GB RAM. This is based on the observation [28] that
90% of virtual machines having ≤ 8 vCPU cores and ≤ 32
GB RAM. We run Filebench version 1.4.9.1 benchmark [75]
on 1000 files with 12MB average size on the virtual machine.
We can see that the performance of this benchmark is ∼50%
worse in the case of IPsec; a significant performance penalty.
While we would expect less of a degradation for regular VMs
(rather than ones running a file system benchmark), we can
see that a tenant deploying generic services, like virtualiza-
tion, should be very careful about the kind of workload they
expect to use the service.

8 Related Work
Our work on creating a secure bare-metal cloud was motivated
by a huge body of research demonstrating vulnerabilities due

USENIX Association 2019 USENIX Annual Technical Conference 597

to co-location in virtualized clouds including both hypervisor
attacks [21,49,64,73,80] and side-channel and cover-channel
attacks like the Meltdown and Spectre exploits [51, 54, 55, 66,
69].

There is a large body of products and research projects for
bare-metal clouds [27, 46, 48, 63, 65] and cluster deployment
systems [15, 42, 62, 68] that have many of the capabilities
of isolation and provisioning that Bolted includes. The fun-
damental difference with Bolted is that we strongly separate
isolation from provisioning and different entities (e.g. security
sensitive tenants) can control/deploy and even re-implement
the provisioning service. This structuring clearly defines the
TCB that needs to be deployed by the provider.

While it is often unclear exactly which technique each
cloud uses to protect against firmware attacks, a wide variety
of techniques have been used including specialized hardware
[16, 18], using a specialized hypervisor to prevent access to
firmware [31], and attestation to the provider [44, 47]. In
all cases, there is no way for a tenant to programmatically
verify that the firmware is up to date and not compromised by
previous tenants. Bolted is unique in enabling tenant deployed
attestation for bare-metal servers, where the measurement of
the firmware and software are provided directly to the tenant.

The static root of trust (SRTM) approach used by Bolted
requires all software to be measured in an unbroken chain of
trust. It would have been simpler for us to use dynamic root
of trust (DRTM), however, DRTM has additional chip depen-
dencies and, more importantly, been shown to be vulnerable
to attacks [79] and work of Kovah et. al has shown that it can
be used as an attack vector itself [52].

9 Concluding Remarks
We presented Bolted, an architecture for a bare metal cloud
that is appropriate for even the most security sensitive ten-
ants; allowing these customers to take control over their own
security. The only trust these tenants need to place in the
provider is for the availability of the resources and that the
physical hardware has not been compromised. At the same
time, by delegating security for security sensitive tenants to
the tenants, Bolted frees the provider from the complexity of
having to directly support these demanding customers and
avoids impact to customers that are less security sensitive.

To enable a wide community to inspect the TCB, all com-
ponents of Bolted are open source. We designed HIL, for
example, to be a simple micro-service rather than a general
purpose tool like IRONIC [62] or Emulab [19]. HIL is being
incorporated into a variety of different use cases by adding
tools and services on and around it rather than turning it into
a general purpose tool. Another key example of a small open
source component is LinuxBoot. LinuxBoot is much simpler
than UEFI. Since it is based on Linux, it has a code base
that is under constant examination by a huge community of
developers. LinuxBoot is reproducibly built, so a tenant can
examine the software to ensure that it meets their security

requirements and then ensure that the firmware deployed on
machines is the version that they require.

Bolted protects against compromise of firmware executable
by the system CPU; however modern systems may have
other processors with persistent firmware inaccessible to the
main CPU; compromise of this firmware is not addressed by
this approach. These include: Base Management Controllers
(BMCs) [58], the Intel Management Engine [29,53,60], PCIe
devices with persistent flash-based firmware, like some GPUs
and NICs, and storage devices [50]. Additional work (e.g.
IOMMU based techniques, disabling the Management En-
gine [14] and the use of specialized systems with minimum
firmware) will be needed to meet these threats.

The evaluation of our prototype has demonstrated that we
can rapidly provision secure servers with competitive per-
formance to today’s virtualized clouds; removing one of the
major barriers to bare metal clouds. We demonstrate that the
cost of not trusting the provider (network/storage encryption)
and of additional runtime security (continuous attestation)
varies enormously depending on the application. (In fact, we
are not aware of other work that has quantified the cost of net-
work encryption, disk encryption, and continuous attestation
with modern servers and implementation.) Results for HPC
applications vary from negligible overhead to three times
overhead for communication-intensive applications. Clearly
the public cloud becomes economically unattractive for ap-
plications with three times overhead unless there are no other
alternatives. However, we expect that the ∼30% degradation
we see for TeraSort is likely representative of many appli-
cations today. Such overheads suggest that the cost of secu-
rity is modest enough that security-sensitive customers will
find value in using cloud resources. At the same time, the
overhead is significant enough that the flexibility of Bolted
that enables tenants to just pay for the security they need is
justified. One surprising result is that our secure firmware,
LinuxBoot achieves dramatically better POST time than ex-
isting firmware; this is one of the few times in our experience
that additional security comes with performance advantages.

10 Acknowledgment

We would like to acknowledge the feedback of the anony-
mous reviewers and our shepherd, Dr. Nadav Amit. We would
like to thank Red Hat, Two Sigma and NetApp, the core in-
dustry partners of Mass Open Cloud (MOC) for supporting
this work. This project involved extensive efforts over many
years to integrate all the components together. We gratefully
acknowledge Jason Hennessey, Gerardo Ravago, Ali Raza,
Naved Ansari, Kyle Hogan, and Radoslav Nikiforov Milanov
for their significant contributions in development and their
assistance in the evaluations. Partial support for this work
was provided by the USAF Cloud Analysis Model Prototype
project, National Science Foundation awards CNS-1414119,
ACI-1440788 and OAC-1740218.

598 2019 USENIX Annual Technical Conference USENIX Association

References
[1] ABOUT THE MGHPCC | MGHPCC. http://

www.mghpcc.org/about/about-the-mghpcc/.

[2] coreboot - payloads. https://doc.coreboot.org/
payloads.html.

[3] Coreboot minimal firmware. https://
doc.coreboot.org/.

[4] Equinix Private Cloud Architecture. https:
//www.equinix.com/solutions/cloud-
infrastructure/private-cloud/architecture/.

[5] Hil: Hardware Isolation Layer, formerly Hardware as a
Service. https://github.com/CCI-MOC/hil.

[6] LinuxBoot. https://trmm.net/LinuxBoot_34c3.

[7] Malleable Metal as a Service (M2). https://
github.com/CCI-MOC/M2.

[8] NWRDC | The Ultimate Solution to Simplify Your Data
Center. http://www.nwrdc.fsu.edu/.

[9] python-keylime: Bootstrapping and Maintaining Trust
in the Cloud. https://github.com/mit-ll/python-
keylime.

[10] What is TianoCore? https://www.tianocore.org/.

[11] Trusted Platform Module (TPM) Summary.
https://trustedcomputinggroup.org/trusted-
platform-module-tpm-summary/, Apr. 2008.

[12] Creating a Classified Processing Enclave in the
Public Cloud |IARPA. https://www.iarpa.gov/
index.php/working-with-iarpa/requests-
for-information/creating-a-classified-
processing-enclave-in-the-public-cloud,
2017.

[13] Linux unified key setup. https://gitlab.com/
cryptsetup/cryptsetup/blob/master/README.md,
2018.

[14] me_cleaner: Tool for partial deblobbing of intel me/txe
firmware images. https://github.com/corna/
me_cleaner, 2018.

[15] Metal as a service(maas) from canonical. https://
maas.io/, 2018.

[16] Project Cerberus Architecture Overview.
https://github.com/opencomputeproject/
Project_Olympus/tree/master/
Project_Cerberus, Dec 2018.

[17] Strongswan. https://www.strongswan.org/, Oct.
2018.

[18] Titan in depth: Security in plaintext. https:
//cloud.google.com/blog/products/gcp/titan-
in-depth-security-in-plaintext/, 2019.

[19] D. S. Anderson, M. Hibler, L. Stoller, T. Stack, and
J. Lepreau. Automatic online validation of network
configuration in the emulab network testbed. In Auto-
nomic Computing, 2006. ICAC’06. IEEE International
Conference on, pages 134–142. IEEE, 2006.

[20] W. A. Arbaugh. Trusted computing. De-
partment of Computer Science, University of Mary-
land,[online][Retrieved on Feb. 22, 2007] Retrieved
from the Internet, 2007.

[21] A. O. F. Atya, Z. Qian, S. V. Krishnamurthy, T. L. Porta,
P. McDaniel, and L. Marvel. Malicious co-residency on
the cloud: Attacks and defense. In IEEE INFOCOM
2017 - IEEE Conference on Computer Communications,
pages 1–9, May 2017.

[22] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning,
R. L. Carter, L. Dagum, R. A. Fatoohi, P. O. Freder-
ickson, T. A. Lasinski, R. S. Schreiber, et al. The nas
parallel benchmarks. The International Journal of Su-
percomputing Applications, 5(3):63–73, 1991.

[23] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and
H. Okhravi. Timely rerandomization for mitigating
memory disclosures. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’15, pages 268–279, New York, NY, USA,
2015. ACM.

[24] Y. Bulygin, J. Loucaides, A. Furtak, O. Bazhaniuk, and
A. Matrosov. Summary of attacks against BIOS and
secure boot. Defcon-22, 2014.

[25] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz,
S. Brunthaler, and M. Payer. Control-flow integrity:
Precision, security, and performance. ACM Comput.
Surv., 50(1):16:1–16:33, Apr. 2017.

[26] J. Butterworth, C. Kallenberg, X. Kovah, and A. Her-
zog. BIOS Chronomancy: Fixing the core root of trust
for measurement. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’13, pages 25–36, New York, NY, USA,
2013. ACM.

[27] I. Cloud. Bare metal servers. https://www.ibm.com/
cloud/bare-metal-servers, 2018.

USENIX Association 2019 USENIX Annual Technical Conference 599

http://www.mghpcc.org/about/about-the-mghpcc/
http://www.mghpcc.org/about/about-the-mghpcc/
https://doc.coreboot.org/payloads.html
https://doc.coreboot.org/payloads.html
https://doc.coreboot.org/
https://doc.coreboot.org/
https://www.equinix.com/solutions/cloud-infrastructure/private-cloud/architecture/
https://www.equinix.com/solutions/cloud-infrastructure/private-cloud/architecture/
https://www.equinix.com/solutions/cloud-infrastructure/private-cloud/architecture/
https://github.com/CCI-MOC/hil
https://trmm.net/LinuxBoot_34c3
https://github.com/CCI-MOC/M2
https://github.com/CCI-MOC/M2
http://www.nwrdc.fsu.edu/
https://github.com/mit-ll/python-keylime
https://github.com/mit-ll/python-keylime
https://www.tianocore.org/
https://trustedcomputinggroup.org/trusted-platform-module-tpm-summary/
https://trustedcomputinggroup.org/trusted-platform-module-tpm-summary/
https://www.iarpa.gov/index.php/working-with-iarpa/requests-for-information/creating-a-classified-processing-enclave-in-the-public-cloud
https://www.iarpa.gov/index.php/working-with-iarpa/requests-for-information/creating-a-classified-processing-enclave-in-the-public-cloud
https://www.iarpa.gov/index.php/working-with-iarpa/requests-for-information/creating-a-classified-processing-enclave-in-the-public-cloud
https://www.iarpa.gov/index.php/working-with-iarpa/requests-for-information/creating-a-classified-processing-enclave-in-the-public-cloud
https://gitlab.com/cryptsetup/cryptsetup/blob/master/README.md
https://gitlab.com/cryptsetup/cryptsetup/blob/master/README.md
https://github.com/corna/me_cleaner
https://github.com/corna/me_cleaner
https://maas.io/
https://maas.io/
https://github.com/opencomputeproject/Project_Olympus/tree/master/Project_Cerberus
https://github.com/opencomputeproject/Project_Olympus/tree/master/Project_Cerberus
https://github.com/opencomputeproject/Project_Olympus/tree/master/Project_Cerberus
https://www.strongswan.org/
https://cloud.google.com/blog/products/gcp/titan-in-depth-security-in-plaintext/
https://cloud.google.com/blog/products/gcp/titan-in-depth-security-in-plaintext/
https://cloud.google.com/blog/products/gcp/titan-in-depth-security-in-plaintext/
https://www.ibm.com/cloud/bare-metal-servers
https://www.ibm.com/cloud/bare-metal-servers

[28] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fon-
toura, and R. Bianchini. Resource central: Understand-
ing and predicting workloads for improved resource
management in large cloud platforms. In Proceedings
of the 26th Symposium on Operating Systems Principles,
SOSP ’17, pages 153–167, New York, NY, USA, 2017.
ACM.

[29] M. Ermolov and M. Goryachy. How to hack a turned -
off computer, or running unsigned code in intel manage-
ment engine. https://www.blackhat.com/docs/eu-
17/materials/eu-17-Goryachy-How-To-Hack-
A-Turned-Off-Computer-Or-Running-Unsigned-
Code-In-Intel-Management-Engine.pdf, Dec
2017.

[30] Foreman. Foreman. https://www.theforeman.org/,
2019.

[31] T. Fukai, S. Takekoshi, K. Azuma, T. Shinagawa, and
K. Kato. BMCArmor: A Hardware Protection Scheme
for Bare-Metal Clouds. In 2017 IEEE International Con-
ference on Cloud Computing Technology and Science
(CloudCom), pages 322–330, Dec 2017.

[32] P. Z. Gal Beniamini. Over the air: Ex-
ploiting Broadcom’s wi-fi stack. https:
//googleprojectzero.blogspot.com/2017/04/
over-air-exploiting-broadcoms-wi-fi_4.html.

[33] M. Guri, B. Zadov, D. Bykhovsky, and Y. Elovici. Pow-
erHammer: Exfiltrating Data from Air-Gapped Comput-
ers through Power Lines. arXiv:1804.04014 [cs], Apr.
2018. arXiv: 1804.04014.

[34] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clark-
son, W. Paul, J. A. Calandrino, A. J. Feldman, J. Appel-
baum, and E. W. Felten. Lest we remember: Cold boot
attacks on encryption keys. In Proceedings of the 17th
USENIX Security Symposium, July 28-August 1, 2008,
San Jose, CA, USA, pages 45–60, 2008.

[35] J. Heasman. Rootkit threats. Network Security,
2006(1):18–19, 2006.

[36] J. Hennessey, S. Tikale, A. Turk, E. U. Kaynar, C. Hill,
P. Desnoyers, and O. Krieger. HIL: Designing an ex-
okernel for the data center. In Proceedings of the
7th ACM Symposium on Cloud Computing (SoCC’16),
Santa Clara, CA, Oct. 2016.

[37] A. Hoban. Using intel® aes new instructions and
pclmulqdq to significantly improve ipsec performance
on linux. https://www.intel.com/content/dam/
www/public/us/en/documents/white-papers/
aes-ipsec-performance-linux-paper.pdf, Au-
gust 2010.

[38] K. Hogan, H. Maleki, R. Rahaeimehr, R. Canetti, M. van
Dijk, J. Hennessey, M. Varia, and H. Zhang. On the
universally composable security of openstack. IACR
Cryptology ePrint Archive, 2018:602, 2018.

[39] T. Hudson. Linuxboot. https://github.com/
osresearch/linuxboot.

[40] T. Hudson, X. Kovah, and C. Kallenberg. ThunderStrike
2: Sith Strike. Black Hat USA Briefings, 2015.

[41] T. Hudson and L. Rudolph. Thunderstrike: EFI firmware
bootkits for Apple Macbooks. In Proceedings of the
8th ACM International Systems and Storage Conference,
page 15. ACM, 2015.

[42] IBM. Extreme Cloud Administration Toolkit —
xCAT 2.14.5 documentation. https://xcat-
docs.readthedocs.io/en/stable/index.html#,
2019.

[43] IBM. Ibm’s tpm 1.2. http://
ibmswtpm.sourceforge.net/, 2019.

[44] IBMcloud. Hardware monitoring and security con-
trols. https://console.bluemix.net/docs/bare-
metal/intel-trusted-execution-technology-
txt.html#hardware-monitoring-and-security-
controls, Apr 2018.

[45] IEEE Computer Society. IEEE standard for local and
metropolitan area networks media access control (MAC)
bridges and virtual bridged local area networks. Insti-
tute of Electrical and Electronics Engineers, New York,
2018.

[46] A. W. S. Inc. Amazon EC2 Bare Metal
Instances with Direct Access to Hardware.
https://aws.amazon.com/blogs/aws/new-amazon-
ec2-bare-metal-instances-with-direct-
access-to-hardware/, 2017.

[47] O. Inc. Oracle Cloud Infrastructure Security. Oracle
Cloud Infrastructure white papers, page 36, Nov 2018.

[48] Internap. Bare-metal AgileSERVER. http://
www.internap.com/bare-metal/, 2015.

[49] S. T. King and P. M. Chen. Subvirt: Implementing
malware with virtual machines. In Security and Privacy,
2006 IEEE Symposium on, pages 14–pp. IEEE, 2006.

[50] J. Kirk. Destroying your hard drive is the
only way to stop this super-advanced malware.
https://www.pcworld.com/article/2884952/
equation-cyberspies-use-unrivaled-nsastyle-
techniques-to-hit-iran-russia.html, Feb 2015.

600 2019 USENIX Annual Technical Conference USENIX Association

https://www.blackhat.com/docs/eu-17/materials/eu-17-Goryachy-How-To-Hack-A-Turned-Off-Computer-Or-Running-Unsigned-Code-In-Intel-Management-Engine.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Goryachy-How-To-Hack-A-Turned-Off-Computer-Or-Running-Unsigned-Code-In-Intel-Management-Engine.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Goryachy-How-To-Hack-A-Turned-Off-Computer-Or-Running-Unsigned-Code-In-Intel-Management-Engine.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Goryachy-How-To-Hack-A-Turned-Off-Computer-Or-Running-Unsigned-Code-In-Intel-Management-Engine.pdf
https://www.theforeman.org/
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/aes-ipsec-performance-linux-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/aes-ipsec-performance-linux-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/aes-ipsec-performance-linux-paper.pdf
https://github.com/osresearch/linuxboot
https://github.com/osresearch/linuxboot
https://xcat-docs.readthedocs.io/en/stable/index.html#
https://xcat-docs.readthedocs.io/en/stable/index.html#
http://ibmswtpm.sourceforge.net/
http://ibmswtpm.sourceforge.net/
https://console.bluemix.net/docs/bare-metal/intel-trusted-execution-technology-txt.html#hardware-monitoring-and-security-controls
https://console.bluemix.net/docs/bare-metal/intel-trusted-execution-technology-txt.html#hardware-monitoring-and-security-controls
https://console.bluemix.net/docs/bare-metal/intel-trusted-execution-technology-txt.html#hardware-monitoring-and-security-controls
https://console.bluemix.net/docs/bare-metal/intel-trusted-execution-technology-txt.html#hardware-monitoring-and-security-controls
https://aws.amazon.com/blogs/aws/new-amazon-ec2-bare-metal-instances-with-direct-access-to-hardware/
https://aws.amazon.com/blogs/aws/new-amazon-ec2-bare-metal-instances-with-direct-access-to-hardware/
https://aws.amazon.com/blogs/aws/new-amazon-ec2-bare-metal-instances-with-direct-access-to-hardware/
http://www.internap.com/bare-metal/
http://www.internap.com/bare-metal/
https://www.pcworld.com/article/2884952/equation-cyberspies-use-unrivaled-nsastyle-techniques-to-hit-iran-russia.html
https://www.pcworld.com/article/2884952/equation-cyberspies-use-unrivaled-nsastyle-techniques-to-hit-iran-russia.html
https://www.pcworld.com/article/2884952/equation-cyberspies-use-unrivaled-nsastyle-techniques-to-hit-iran-russia.html

[51] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom. Spectre attacks: Exploiting speculative exe-
cution. ArXiv e-prints, Jan. 2018.

[52] X. Kovah, C. Kallenberg, J. Butterworth, and S. Corn-
well. SENTER Sandman: Using Intel TXT to Attack
BIOSes. In HITB Security Conference, page 5, Amster-
dam, May 2014.

[53] A. Kroizer. Tpm and intel ® ptt overview.
http://tce.webee.eedev.technion.ac.il/wp-
content/uploads/sites/8/2016/01/AK_TPM-
overview-technion.pdf, Sep 2015.

[54] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and
M. Hamburg. Meltdown. ArXiv e-prints, Jan. 2018.

[55] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-
level cache side-channel attacks are practical. In 2015
IEEE Symposium on Security and Privacy, pages 605–
622, May 2015.

[56] P. A. Loscocco, P. W. Wilson, J. A. Pendergrass, and
C. D. McDonell. Linux kernel integrity measurement
using contextual inspection. In Proceedings of the 2007
ACM Workshop on Scalable Trusted Computing, STC
’07, pages 21–29, New York, NY, USA, 2007. ACM.

[57] A. Mohan, A. Turk, R. Gudimetla, S. Tikale, J. Hen-
nessey, U. Kaynar, G.Cooperman, P. Desnoyers, and
O. Krieger. M2: Malleable Metal as a Service. ArXiv
e-prints, 2018.

[58] H. Moore. A penetration tester’s guide to ipmi and
bmcs. https://blog.rapid7.com/2013/07/02/
a-penetration-testers-guide-to-ipmi/, Aug
2017.

[59] B. Morgan, E. Alata, V. Nicomette, and M. Kaâniche.
Bypassing IOMMU protection against I/O attacks. In
2016 Seventh Latin-American Symposium on Depend-
able Computing (LADC), pages 145–150, Oct 2016.

[60] L. H. Newman. Intel chip flaws leave millions of
devices exposed. https://www.wired.com/story/
intel-management-engine-vulnerabilities-
pcs-servers-iot/, Nov 2017.

[61] Y. Omote, T. Shinagawa, and K. Kato. Improving Agility
and Elasticity in Bare-metal Clouds. In Proceedings of
the Twentieth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’15, pages 145–159, New York, NY,
USA, 2015. ACM.

[62] Openstack. Ironic. https://docs.openstack.org/
ironic/latest/, 2018.

[63] Packet. The promise of the cloud delivered on bare
metal. https://www.packet.net, 2017.

[64] D. Perez-Botero, J. Szefer, and R. B. Lee. Characterizing
hypervisor vulnerabilities in cloud computing servers.
In Proceedings of the 2013 International Workshop on
Security in Cloud Computing, Cloud Computing ’13,
pages 3–10, New York, NY, USA, 2013. ACM.

[65] Rackspace. Rackspace Cloud Big Data OnMetal. http:
//go.rackspace.com/baremetalbigdata/, 2015.

[66] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida,
and H. Bos. Flip feng shui: Hammering a needle in the
software stack. In 25th USENIX Security Symposium
(USENIX Security 16), pages 1–18, Austin, TX, 2016.
USENIX Association.

[67] A. Regenscheid. Platform firmware resiliency guide-
lines. https://doi.org/10.6028/NIST.SP.800-193,
May 2018.

[68] R. Ricci and t. E. Team. Precursors: Emulab. In
R. McGeer, M. Berman, C. Elliott, and R. Ricci, editors,
The GENI Book, pages 19–33. Springer International
Publishing, Cham, 2016.

[69] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage.
Hey, you, get off of my cloud: exploring information
leakage in third-party compute clouds. In Proceedings
of the 16th ACM conference on Computer and commu-
nications security, pages 199–212. ACM, 2009.

[70] J. Rutkowska. Intel x86 considered harmful, 2015.
https://blog.invisiblethings.org/papers/
2015/x86_harmful.pdf.

[71] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. De-
sign and implementation of a tcg-based integrity mea-
surement architecture. In Proceedings of the 13th
Conference on USENIX Security Symposium - Volume
13, SSYM’04, pages 16–16, Berkeley, CA, USA, 2004.
USENIX Association.

[72] N. Schear, P. T. Cable, II, T. M. Moyer, B. Richard, and
R. Rudd. Bootstrapping and maintaining trust in the
cloud. In Proceedings of the 32Nd Annual Conference
on Computer Security Applications, ACSAC ’16, pages
65–77, New York, NY, USA, 2016. ACM.

[73] W. K. Sze, A. Srivastava, and R. Sekar. Hardening Open-
Stack Cloud Platforms against Compute Node Compro-
mises. In Proceedings of the 11th ACM on Asia Confer-
ence on Computer and Communications Security - ASIA
CCS ’16, pages 341–352, Xi’an, China, 2016. ACM
Press.

USENIX Association 2019 USENIX Annual Technical Conference 601

http://tce.webee.eedev.technion.ac.il/wp-content/uploads/sites/8/2016/01/AK_TPM-overview-technion.pdf
http://tce.webee.eedev.technion.ac.il/wp-content/uploads/sites/8/2016/01/AK_TPM-overview-technion.pdf
http://tce.webee.eedev.technion.ac.il/wp-content/uploads/sites/8/2016/01/AK_TPM-overview-technion.pdf
https://blog.rapid7.com/2013/07/02/a-penetration-testers-guide-to-ipmi/
https://blog.rapid7.com/2013/07/02/a-penetration-testers-guide-to-ipmi/
https://www.wired.com/story/intel-management-engine-vulnerabilities-pcs-servers-iot/
https://www.wired.com/story/intel-management-engine-vulnerabilities-pcs-servers-iot/
https://www.wired.com/story/intel-management-engine-vulnerabilities-pcs-servers-iot/
https://docs.openstack.org/ironic/latest/
https://docs.openstack.org/ironic/latest/
https://www.packet.net
http://go.rackspace.com/baremetalbigdata/
http://go.rackspace.com/baremetalbigdata/
https://doi.org/10.6028/NIST.SP.800-193
https://blog.invisiblethings.org/papers/2015/x86_harmful.pdf
https://blog.invisiblethings.org/papers/2015/x86_harmful.pdf

[74] J. Szefer, P. Jamkhedkar, D. Perez-Botero, and R. B. Lee.
Cyber defenses for physical attacks and insider threats
in cloud computing. In Proceedings of the 9th ACM
Symposium on Information, Computer and Communi-
cations Security, ASIA CCS ’14, pages 519–524, New
York, NY, USA, 2014. ACM.

[75] V. Tarasov, E. Zadok, and S. Shepler. Filebench: A flex-
ible framework for file system benchmarking. https:
//github.com/filebench/filebench/wiki, 2017.

[76] F. Tomonori and M. Christie. tgt: Framework for storage
target drivers. In Linux Symposium, 2006.

[77] H. Wagner, D.-I. M. Zach, and D.-I. F. M. A.-P. Linten-
hofer. BIOS-rootkit LightEater. 2015.

[78] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and
C. Maltzahn. Ceph: A scalable, high-performance dis-

tributed file system. In Proceedings of the 7th sympo-
sium on Operating systems design and implementation,
pages 307–320. USENIX Association, 2006.

[79] R. Wojtczuk and J. Rutkowska. Attacking intel trusted
execution technology. Black Hat DC, 2009.

[80] Y. A. Younis, K. Kifayat, and A. Hussain. Prevent-
ing and detecting cache side-channel attacks in cloud
computing. In Proceedings of the Second International
Conference on Internet of Things, Data and Cloud Com-
puting, ICC ’17, pages 83:1–83:8. ACM, 2017.

[81] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
and I. Stoica. Spark: cluster computing with working
sets. In Proceedings of the 2nd USENIX conference on
Hot topics in cloud computing, HotCloud ’10, 2010.

602 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/filebench/filebench/wiki
https://github.com/filebench/filebench/wiki

Asynchronous I/O Stack: A Low-latency Kernel I/O Stack for
Ultra-Low Latency SSDs

Gyusun Lee†, Seokha Shin∗ †, Wonsuk Song†, Tae Jun Ham§, Jae W. Lee§, Jinkyu Jeong†

†Sungkyunkwan University, §Seoul National University
{gyusun.lee, seokha.shin, wonsuk.song}@csi.skku.edu, {taejunham, jaewlee}@snu.ac.kr, jinkyu@skku.edu

Abstract
Today’s ultra-low latency SSDs can deliver an I/O latency

of sub-ten microseconds. With this dramatically shrunken
device time, operations inside the kernel I/O stack, which
were traditionally considered lightweight, are no longer a
negligible portion. This motivates us to reexamine the stor-
age I/O stack design and propose an asynchronous I/O stack
(AIOS), where synchronous operations in the I/O path are
replaced by asynchronous ones to overlap I/O-related CPU
operations with device I/O. The asynchronous I/O stack lever-
ages a lightweight block layer specialized for NVMe SSDs
using the page cache without block I/O scheduling and merg-
ing, thereby reducing the sojourn time in the block layer. We
prototype the proposed asynchronous I/O stack on the Linux
kernel and evaluate it with various workloads. Synthetic FIO
benchmarks demonstrate that the application-perceived I/O
latency falls into single-digit microseconds for 4 KB random
reads on Optane SSD, and the overall I/O latency is reduced
by 15–33% across varying block sizes. This I/O latency re-
duction leads to a significant performance improvement of
real-world applications as well: 11–44% IOPS increase on
RocksDB and 15–30% throughput improvement on Filebench
and OLTP workloads.

1 Introduction

With advances in non-volatile memory technologies, such as
flash memory and phase-change memory, ultra-low latency
solid-state drives (SSDs) have emerged to deliver extremely
low latency and high bandwidth I/O performance. The state-
of-the-art non-volatile memory express (NVMe) SSDs, such
as Samsung Z-SSD [32], Intel Optane SSD [12] and Toshiba
XL-Flash [25], provide sub-ten microseconds of I/O latency
and up to 3.0 GB/s of I/O bandwidth [12, 25, 32]. With these
ultra-low latency SSDs, the kernel I/O stack accounts for a
large fraction in total I/O latency and is becoming a bottleneck
to a greater extent in storage access.

∗Currently at Samsung Electronics

One way to alleviate the I/O stack overhead is to allow user
processes to directly access storage devices [6, 16, 27, 28, 49].
While this approach is effective in eliminating I/O stack over-
heads, it tosses many burdens to applications. For example,
applications are required to have their own block manage-
ment layers [49] or file systems [15, 43, 49] to build useful
I/O primitives on top of a simple block-level interface (e.g.,
BlobFS in SPDK). Providing protections between multiple
applications or users is also challenging [6, 16, 28, 43]. These
burdens limit the applicability of user-level direct access to
storage devices [49].

An alternative, more popular way to alleviate the I/O stack
overhead is to optimize the kernel I/O stack. Traditionally,
the operating system (OS) is in charge of managing stor-
age and providing file abstractions to applications. To make
the kernel more suitable for fast storage devices, many prior
work proposed various solutions to reduce the I/O stack over-
heads. Examples of such prior work include the use of polling
mechanism to avoid context switching overheads [5, 47], re-
moval of bottom halves in interrupt handling [24,35], proposal
of scatter/scatter I/O commands [37, 50], simple block I/O
scheduling [3,24], and so on. These proposals are effective in
reducing I/O stack overheads, and some of those are adopted
by mainstream OS (e.g., I/O stack for NVMe SSDs in Linux).

In our work, we identify new unexplored opportunities to
further optimize the I/O latency in storage access. The current
I/O stack implementation requires many operations to service
a single I/O request. For example, when an application issues
a read I/O request, a page is allocated and indexed in a page
cache [36]. Then, a DMA mapping is made and several aux-
iliary data structures (e.g., bio, request, iod in Linux) are
allocated and manipulated. The issue here is that these opera-
tions occur synchronously before an actual I/O command is
issued to the device. With ultra-low latency SSDs, the time
it takes to execute these operations is comparable to the ac-
tual I/O data transfer time. In such case, overlapping those
operations with the data transfer can substantially reduce the
end-to-end I/O latency.

To this end, this paper proposes an asynchronous I/O

USENIX Association 2019 USENIX Annual Technical Conference 603

0 10 20 30 40 50 60 70 80 90 100

Optane SSD

Z-SSD

NVMe SSD

SATA SSD

Optane SSD

Z-SSD

NVMe SSD

SATA SSD

4K
B

rn
dw

r+
fs

yn
c

4K
B

rn
dr

d

Latency (us)

User

Kernel

Device

8.15%

6.17%24.02%

37.60%

35.44%
35.54%

29.80% 1.63%

Figure 1: I/O latency and its breakdown with various storage devices. The numbers beside each bar denote the relative fraction
of kernel time in the total I/O latency.

stack (AIOS), a low-latency I/O stack for ultra-low latency
SSDs. Through a careful analysis of synchronous, hence
latency-critical, system call implementations (i.e., read() and
fsync()) in the Linux kernel, we identify I/O-related CPU
operations that can be overlapped with device I/O operations
and modify the Linux kernel to execute such CPU operations
while the I/O device is processing a request. To further reduce
the CPU overhead, we also introduce a lightweight block I/O
layer (LBIO) specialized for NVMe-based SSDs, which en-
ables the kernel to spend considerably less time in the block
I/O layer. Our evaluation demonstrates that AIOS achieves
up to 33% latency reduction for random reads and 31% la-
tency reduction for random writes on FIO benchmarks [2].
Also, AIOS enables various real-world applications (e.g., a
key-value store, database) to achieve higher throughput. Our
contributions are summarized as follows:
• We provide a detailed analysis of the Linux kernel I/O stack

operations and identify CPU operations that can overlap
with device I/O operations (Section 2).

• We propose the lightweight block I/O layer (LBIO) special-
ized for modern NVMe-based SSD devices, which offers
notably lower latency than the vanilla Linux kernel block
layer (Section 3.1).

• We propose the asynchronous I/O stack for read and fsync
paths in which CPU operations are overlapped with device
I/O operations, thereby reducing the completion time of
the read and fsync system calls (Section 3.2 and 3.3).

• We provide a detailed evaluation of the proposed schemes
to show the latency reduction of up to 33% for ran-
dom reads and 31% for random writes on FIO bench-
marks [2] and substantial throughput increase on real-world
workloads: 11–44% on RocksDB [10] and 15–30% on
Filebench [40] and OLTP [18] workloads (Section 4).

2 Background and Motivation

2.1 ULL SSDs and I/O Stack Overheads
Storage performance is important in computer systems as
data should be continuously supplied to a CPU to not stall
the pipeline. Traditionally, storage devices have been much
slower than CPUs, and this wide performance gap has existed
for decades [26]. However, the recent introduction of modern

storage devices is rapidly narrowing this gap. For example,
today’s ultra-low latency (ULL) NVMe SSDs, such as Sam-
sung’s Z-SSD [32], Intel’s Optane SSD [12], and Toshiba’s
XL-Flash [25], can achieve sub-ten microseconds of I/O la-
tency, which is orders of magnitude faster than that of tradi-
tional disks.

With such ultra-low latency SSDs, the kernel I/O stack [11,
38] no longer takes a negligible portion in the total I/O la-
tency. Figure 1 shows the I/O latency and its breakdown for
4 KB random read and random write + fsync workloads
on various SSDs1. The figure shows that ultra-low latency
SSDs achieve substantially lower I/O latency than conven-
tional SSDs. Specifically, their device I/O time is much lower
than that of the conventional SSDs. On the other hand, the
amount of time spent in the kernel does not change across
different SSDs. As a result, the fraction of the time spent in
the kernel becomes more substantial (i.e., up to 37.6% and
35.5% for the read and write workloads, respectively).

An I/O stack is composed of many layers [17]. A virtual
file system (VFS) layer provides an abstraction of underly-
ing file systems. A page cache layer provides caching of
file data. A file system layer provides file system-specific
implementations on top of the block storage. A block layer
provides OS-level block request/response management and
block I/O scheduling. Finally, a device driver handles device-
specific I/O command submission and completion. In this
paper, we target two latency-sensitive I/O paths (read() and
write()+fsync()) in the Linux kernel and Ext4 file system
with NVMe-based SSDs, since they are widely adopted sys-
tem configurations from the mobile [13] to enterprise [33,51].

2.2 Read Path
2.2.1 Vanilla Read Path Behavior

Figure 2 briefly describes the read path in the Linux kernel.
Buffered read system calls (e.g., read() and pread() with-
out O_DIRECT) fall into the VFS function (buffered_read()
in the figure), which is an entry point to the page cache layer.
Page cache. Upon a cache miss (Line 3-4), the function

1The detailed evaluation configurations can be found in Section 4.1. Note
that all the tested NVMe SSDs feature a non-volatile write cache, hence
showing low write latency.

604 2019 USENIX Annual Technical Conference USENIX Association

1 void buffered_read(file, begin, end, buf) {
2 for (idx=begin; idx<end; idx++) {
3 page = page_cache_lookup(idx)
4 if (!page) {
5 page_cache_sync_readahead(file, idx, end)
6 page = page_cache_lookup(idx)
7 } else {
8 page_cache_async_readahead(file, idx, end)
9 }
10 lock_page(page)
11 memcpy(buf, page, PAGE_SIZE)
12 buf += PAGE_SIZE
13 }
14 }
15
16 void page_cache_readahead(file, begin, end) {
17 init_list(pages)
18 for (idx=begin; idx<end; idx++) {
19 if (!page_cache_lookup(file, idx)) {
20 page = alloc_page()
21 page−>idx = idx
22 push(pages, page)
23 }
24 }
25 readpages(file, pages)
26 }
27
28 void ext4_readpages(file, pages) {
29 blk_start_plug()
30 for (page : pages) {
31 add_to_page_cache(page, page−>idx, file)
32 lba = ext4_map_blocks(file, page−>idx)
33 bio = alloc_bio(page, lba)
34 submit_bio(bio)
35 }
36 blk_finish_plug()
37 }

Figure 2: Pseudocode for Linux kernel read path.

page_cache_sync_readahead() is called, in which miss-
ing file blocks are read into the page cache. It identifies all
missing indices within the requested file range (Line 18-19),
allocates pages and associates the pages with the missing in-
dices (Line 20-21). Finally, it requests the file system to read
the missing pages (Line 25).
File system. File systems have their own implementation of
readpages(), but their behaviors are similar to each other.
In Ext4 ext4_readpages() inserts each page into the page
cache (Line 30-31), retrieves the logical block address (LBA)
of the page (Line 32) and issues a block request to the under-
lying block layer (Line 33-34).

Linux batches several block requests issued by a thread
in order to increase the efficiency of request handling in
the underlying layers (also known as queue plugging [4]).
When blk_start_plug() is called (Line 29), block requests
are collected in a plug list of the current thread. When
blk_finish_plug() (Line 36) is called or the current thread
is context-switched, the collected requests are flushed to the
block I/O scheduler.

After issuing an I/O request to a storage device, the thread
rewinds its call stack and becomes blocked at the function
lock_page() (Line 10). When the I/O request is completed,

NVMe Queue Pairs

Multi-queue Block Layer
bio: LBA, length, pages

pagepagepage

request iod: sg_list, prp_list

Per-core SW Queues…

HW Queues…

request: LBA, length, bio(s)

prp_list

submit_bio()

NVMe
CMD

Tag

Device Driver

…

nvme_queue_rq()

Figure 3: The overview of the multi-queue block layer. The
shaded rectangles are dynamically allocated objects.

the interrupt handler releases the lock of the page, which
wakes up the blocked thread. Finally, the cached data are
copied to the user buffer (Line 11-12).
Block layer. Figure 3 shows the overview of the multi-queue
block layer, which is the default block layer for NVMe SSDs
in the Linux kernel, and the device driver layer. In the block
layer, a bio object is allocated using a slab allocator and
initialized to contain the information of a single block re-
quest (i.e., LBA, I/O size and pages to copy-in) (Line 33).
Then, submit_bio() (Line 34) transforms the bio object
to a request object and inserts the request object into re-
quest queues, where I/O merging and scheduling are per-
formed [3, 8]. The request object passes through a per-core
software queue (ctx) and hardware queue (hctx) and eventu-
ally reaches the device driver layer.
Device driver. A request is dispatched to the device driver
using nvme_queue_rq(). It first allocates an iod object, a
structure having a scatter/gather list, and uses it to perform
DMA (direct memory access) mapping, hence allocating I/O
virtual addresses (or DMA addresses) to the pages in the dis-
patched request. Then, a prp_list, which contains physical
region pages (PRP) in the NVMe protocol, is allocated and
filled with the allocated DMA addresses. Finally, an NVMe
command is created using the request and the prp_list and
issued to an NVMe submission queue. Upon I/O completion,
the interrupt handler unmaps DMA addresses of the pages
and calls a completion function, which eventually wakes up
the blocked thread. While the above describes the basic op-
erations in the read path, the roles of the block and device
driver layers are identical in the write path.

2.2.2 Motivation for Asynchronous Read Path

Figure 4(a) summarizes the operations and their execution
times in the read path explained in Section 2.2.1. The main
problem is that a single read I/O path has many operations

USENIX Association 2019 USENIX Annual Technical Conference 605

CPU

Device

Cache
Lookup

Cache
Insertion BIO Submit DMA

Map

LBA Lookup 0.09μs

I/O Submit Interrupt0.30μs 0.33μs 0.72 μs 0.81μs

Page Alloc 0.19μs

Total I/O Latency (12.82μs)
7.26μs

Request
Completion

Context
Switch

Context
Switch

0.95μs

Copy-to-user 0.21μs

I/O
Submit

0.29 μs 0.37 μs

DMA Unmap 0.23μs

Device Time

(a) Vanilla read path

CPU

Device

Cache
Lookup
0.30μs

Pagepool Alloc
0.016μs

LBIO Submit
0.13μs

Device Time
7.26μs

Cache
Insertion

0.65μsDMA Map 0.29 μs

Total I/O Latency (10.10μs)

LBIO
Completion

Context
Switch

Context
Switch

0.95μs0.35μs

LBA Lookup 0.07μs Page Alloc 0.19μs Lazy DMA Unmap 0.35μs Copy-to-user 0.21μs

(b) Proposed read path

Figure 4: The operations and their execution times in the read paths during 4 KB random read on Optane SSD. (drawn to scale
in time)

that occur synchronously to an actual device I/O operation.
This synchronous design is common and intuitive and works
well with slow storage devices because in such cases, the time
spent on CPU is negligible compared to the total I/O latency.
However, with ultra-low latency SSDs, the amount of CPU
time spent on each operation becomes a significant portion of
the total I/O latency.

Table 1 summarizes the ratio of each operation to the total
kernel time. With small I/O sizes, the context switching is
the most time-consuming operation. In this case, it is possi-
ble to reduce the overhead through the use of polling [5, 47].
The copy-to-user is another costly operation but is a neces-
sary operation when file data is backed by the page cache. If
we exclude these two operations, the remaining operations
account for 45-50% of the kernel time.

Upon careful analysis of the code, we find that many of
the remaining operations do not have to be performed before
or after the device I/O time. In fact, such operations can be
performed while the device I/O operation is happening since
such operations are mostly independent of the device I/O
operation. This motivates us to overlap such operations with
the device I/O operation as sketched in Figure 4(b) (shaded
in dark gray).

2.3 Write Path

2.3.1 Vanilla Write Path Behavior

Buffered write system calls (e.g., write()) usually buffer
the modified data in the page cache in memory. When an
application calls fsync(), the kernel actually performs write
I/Os to synchronize the dirtied data with a storage device.

The buffered write path has no opportunity to overlap com-
putation with I/O because it does not perform any I/O op-
eration. On the other hand, fsync accompanies several I/O
operations due to the writeback of dirtied data as well as a
crash consistency mechanism in a file system (e.g., file system
journaling). Since fsync most heavily affects the application

Layer Action
Lines in % in
Figure 2 kernel time

Page
cache

Missing page lookup
Line 18-24 9–10.8%

Page allocation
Copy-to-user Line 11-12 4.5–12%

File
system

Page cache insertion

Line 30-35 26–28.5%
LBA retrieval
bio alloc/submit
Make request from bio

Block I/O scheduling (noop)
Line 36 10–11%

Driver
DMA mapping/unmapping
NVMe command submit

Scheduler Context switch (2 times) Line 10 25–41.5%

Table 1: Summary of operations and their fractions in kernel
time in the read path. (4–16 KB FIO rndrd on Optane SSD)

performance in the write path, we examine it in more detail.
Figure 5(a) shows the operations and their execution times

during an fsync call on Ext4 file system using ordered jour-
naling. First, an application thread issues write I/Os for dirty
file blocks and waits for them to complete. Then, the appli-
cation thread wakes up a journaling thread (jbd2 in Ext4) to
commit the file system transaction. It first prepares the write
of modified metadata (journal block in the figure) onto the
journal area and issues the write I/O. Then, it waits for the
completion of the write. Once completed, it prepares the write
of a commit block and issues the write I/O. A flush command
is enforced between the journal block write and the commit
block write to enforce the ordering of writes [45]. Hence, total
three device I/O operations occur for a single fsync call.

2.3.2 Motivation for Asynchronous Write Path

As in the case of the read path, there is also an opportunity
to overlap the device I/O operations with the computation
parts in the fsync path. As shown in Figure 5(a), the jour-
naling thread performs I/O preparation and I/O waiting syn-
chronously. Each I/O preparation includes assigning blocks
in the journal area to write on, allocating buffer pages, allo-

606 2019 USENIX Annual Technical Conference USENIX Association

Data Block I/O

Data Block Write

Data Block Submit

Journal Block
Prepare Journal Block Wait

Commit Block Prepare 2.15μs

Commit Block Wait

Data Block Wait

Journal Block Submit Flush & Commit Block Submit

5.68μs

5.55μs

jbd2 Wait

jbd2 Wakeup 0.8μs

CPU
34.89μs

jbd2

Device Journal Block I/O Commit Block I/O

12.73μs 10.72μs12.57μs

(a) Vanilla fsync path

Data Block I/O

Data Block
Write

Data Block
Submit

Journal Block
Prepare

Commit Block Prepare 1.90μs

Commit Block Wait

Data Block Wait 10.59μs

Journal Block Submit Flush & Commit Block Submit

4.18μs

5.21μs

jbd2 Wait

jbd2 Wakeup 0.78μs

CPU

11.37μs

jbd2

Device Journal Block I/O
10.44μs

Flush & Commit Block Dispatch 0.04μs

Commit Block I/O

Data Block Wait 0.88μs

10.61μs

22.48μs

Journal Block Wait

(b) Proposed fsync path

Figure 5: The operations and their execution times in the fsync paths during 4 KB random write with fsync on Optane SSD.
(drawn to scale in time)

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2

C
D

F
 (

P
(X

<
x

))

Latency (us)

lbio bio

(a) 4 KB random read

0.0

0.2

0.4

0.6

0.8

1.0

 0 1 2 3 4 5 6

C
D

F
 (

P
(X

<
x

))

Latency (us)

lbio bio

(b) 32 KB random read

Figure 6: The CDF of the block I/O submission latency in the
Linux block layer (bio) and the proposed lightweight block
layer (lbio) on Optane SSD.

cating/submitting a bio object, assigning DMA address, and
so forth. If these CPU operations are overlapped with the pre-
vious device I/O time, the total latency of the fsync system
call can be greatly reduced as shown in Figure 5(b).

2.4 Motivation for Lightweight Block Layer
The Linux kernel uses the multi-queue block layer for NVMe
SSDs by default to scale well with multiple command queues
and multi-core CPUs [3]. This block layer provides func-
tionality like block I/O submission/completion, request merg-
ing/reordering, I/O scheduling and I/O command tagging [3].
While these features are necessary for general block I/O man-
agement, they delay the submission time of an I/O command
to a storage device.

Figure 6 shows the block I/O submission latency, time from
allocating a bio object to dispatching an I/O command to a
device (denoted as bio); the figure also includes the same
measurement using the proposed lightweight block layer in
Section 3.1 (denoted as lbio). We use two I/O sizes, 4 KB
and 32 KB, to minimize and maximize the number of dy-
namic memory allocations during I/O submissions, respec-
tively. Considering that the device time for a 4 KB read is
around 7.3 µs on ultra-low latency SSDs, the amount of time
spent in the block layer is about 15% of the device time, which

is a non-negligible portion.
While block I/O submission/completion and I/O command

tagging are necessary features, request merging/reordering
and I/O scheduling are not significant. The multi-queue block
layer supports various I/O schedulers [8] but its default config-
uration is noop since many studies report that I/O scheduling
is ineffective for reducing I/O latency for latency-critical ap-
plications on fast storage devices [34, 46, 51]. I/O scheduling
can also be replaced by the device-side I/O scheduling capa-
bility [14]. The effectiveness of request merging/reordering is
also questionable in ultra-low latency SSDs because of their
high random access performance and the low probability to
find adjacent or identical block requests.

Based on these intuitions, we propose to simplify the
roles of the block layer and make it specialized for our asyn-
chronous I/O stack to minimize its I/O submission delay.

3 Asynchronous I/O Stack

The proposed asynchronous I/O stack (AIOS) consists of two
components: the lightweight block I/O layer (LBIO) and the
modified I/O stack that overlaps I/O-related computations
with the device I/O operations. This section first explains
LBIO and then explains the modified read and write paths.

3.1 Lightweight Block I/O Layer
To minimize the software overheads in the block layer, we
design a lightweight block I/O layer (or LBIO), a scalable,
lightweight alternative to the existing multi-queue block layer.
LBIO is designed for low-latency NVMe SSDs and supports
only I/O submission/completion and I/O command tagging.
Figure 7 shows the overview of our proposed LBIO.

Unlike the original multi-queue block layer, LBIO uses
a single memory object, lbio, to represent a single block
I/O request, thereby eliminating the time-consuming bio-
to-request transformation in the original block layer. Each

USENIX Association 2019 USENIX Annual Technical Conference 607

lbio object contains LBA, I/O length, pages to copy-in and
DMA addresses of the pages. Containing DMA addresses
in lbio leverages the asynchronous DMA mapping feature
explained in the following sections. An lbio only supports
4 KB-aligned DMA address with I/O length of multiple sec-
tors to simplify the codes initializing and submitting block
I/O requests. This approach is viable with the assumption of
using the page cache layer. Similar to the original block layer,
LBIO supports queue plugging to batch multiple block I/O
requests issued by a single thread.

LBIO has a global lbio two-dimensional array whose row
is dedicated to each core, and a group of rows is assigned to
each NVMe queue pair as shown in Figure 7. For example, if a
system has 8 cores and 4 NVMe queue pairs, each lbio array
row is one-to-one mapped to each core and two consecutive
rows are mapped to an NVMe queue pair. When the number
of NVMe queue pairs is equal to the number of cores, lockless
lbio object allocations and NVMe command submissions
are possible, as in the existing multi-queue block layer. The
index of an lbio object in the global array is used as a tag in
an NVMe command. This eliminates the time-consuming tag
allocation in the original block layer.

Once an lbio is submitted, the thread directly calls
nvme_queue_lbio() to dispatch an NVMe I/O command.
Note that LBIO does not perform I/O merging or I/O schedul-
ing, and thus reduces I/O submission delay significantly. With-
out the I/O merging, it is possible for two or more lbio’s to
access the same logical block. This potentially happens in
the read path and is resolved by the page cache layer (see
Section 3.2). However, this does not happen in the write path
because the page cache synchronizes writeback of dirty pages.

Figure 6 shows the reduced I/O submission latency with
LBIO. On average, a block I/O request in LBIO takes only
0.18–0.60 µs, which is 83.4%–84.4% shorter latency com-
pared to that of the original block layer.

3.2 Read Path
In addition to the introduction of LBIO, our approach reduces
the I/O latency of the read path by detaching synchronous
operations from the critical path as sketched in Figure 4(b).
The following subsections describe each relocated operation
and additional work to support the relocation.

3.2.1 Preloading Extent Tree

For a read operation, retrieving LBAs corresponding to the
missing file blocks is a necessary step to issue a block request
and thus this operation should be in the critical path. Instead
of taking this step off the critical path, our proposal focuses on
reducing its latency itself. The implementation of the Linux
Ext4 file system caches logical to physical file block mappings
in memory, and this cache is called extent status tree [19].
When a mapping can be found in the cache, obtaining an LBA
takes a relatively short time; however, when the mapping is

NVMe Queue Pairs

: LBA, length,
pages, PRP_list

: LBA, length,
pages, PRP_list

Lightweight Block I/O Layer
lbio: LBA, length,

pages, prp_list

lbio

prp_list

submit_lbio()

nvme_queue_lbio()

NVMe
CMD

Tag Device Driver

Core 0
Core 1

page
page

page

DMA-mapped
Page Pool

prp_list

…

…

Figure 7: The proposed lightweight block I/O layer (LBIO).
Shaded objects are dynamically allocated.

not found, the system has to issue an I/O request to read the
missing mapping block and thus incurs much longer delay.

To avoid this unnecessary overhead, we adopt a plane sepa-
ration approach [28]. In the control plane (e.g., file open), the
entire mapping information is preloaded in memory. By doing
so, the data plane (e.g., read and write) can avoid the latency
delay caused by a mapping cache miss. The memory costs of
caching an entire tree can be high; the worst case overhead
is 0.03% of the file size in our evaluation. However, when
there is little free memory, the extent cache evicts unlikely-
used tree nodes to secure free memory [19]. To reduce the
space overhead even further, this technique can be selectively
applied to files requiring low-latency access.

3.2.2 Asynchronous Page Allocation/DMA Mapping

Preparation of free pages is another essential operation in
the read path. In the original read path, a page allocator of
the kernel performs this task, and it consumes many CPU
cycles. For example, a single page allocation takes 0.19 µs
on average in our system as shown in Figure 4(a). Similarly,
assigning a DMA address to each page (DMA mapping) takes
a large number of CPU cycles (754 cycles or 0.29 µs). Our ap-
proach is to take these operations off from the critical path and
perform them while the device I/O operation is happening.

To this end, we maintain a small set of DMA-mapped free
pages (a linked list of 4 KB DMA-mapped pages) for each
core. With this structure, only a few memory instructions are
necessary to get free pages from the pool (Pagepool Alloc
in Figure 4(b)). The consumed pages are refilled by invok-
ing page allocation and DMA mapping while the device I/O
operation is occurring. This effectively hides the time for
both page allocation and DMA mapping from the application-
perceived I/O latency as shown in the figure. Note that, when
the number of free pages in the pool is smaller than the read
request size, page allocation and DMA mapping happens syn-
chronously as in the vanilla kernel case.

608 2019 USENIX Annual Technical Conference USENIX Association

3.2.3 Lazy Page Cache Indexing

Insertion of a page into a page cache index structure is another
source of the large kernel I/O stack latency. Our approach is
to overlap this operation with the device I/O operation while
resolving the potentially duplicated I/O submissions.

In the vanilla kernel, the page cache works as a synchro-
nization point that determines whether a block I/O request
for a file can be issued or not. File blocks whose cache pages
are successfully inserted into the page cache are allowed to
make block requests (Line 31 in Figure 2), and a spinlock
is used to protect the page cache from concurrent updates.
Consequently, no duplicated I/O submission occurs for the
same file block.

However, if we delay the page cache insertion operation
to a point after submitting an I/O command to a device, it is
possible for another thread to miss on the same file block and
to issue a duplicate block request. To be exact, this happens if
another thread accesses the page cache after the I/O request
is submitted but before the page cache entry is updated.

Our solution is to allow duplicated block requests but re-
solve them at the request completion phase. Although there
are multiple block requests associated with the same file block,
only a single page is indexed in the page cache. Then, our
scheme marks other pages as abandoned. The interrupt han-
dler frees a page associated with the completed block request
if it is marked abandoned.

3.2.4 Lazy DMA Unmapping

The last long-latency operation in the read path is DMA un-
mapping that occurs after the device I/O request is completed.
The vanilla read path handles this in the interrupt handler,
which is also in the critical path. Our scheme delays this op-
eration to when a system is idle or waiting for another I/O
request (Lazy DMA unmap in Figure 4(b)).

Note that this scheme prolongs the time window in which
the DMA buffer is accessible by the storage device. This
is essentially an extended version of the deferred protection
scheme used in Linux by default [20]. Deferring the DMA
unmapping (either in our scheme or in Linux) may potentially
create a vulnerability window from a device-side DMA attack.
However, with an assumption that the kernel and the device
are neither malicious nor vulnerable, the deferred protection
causes no problem [20]. If the assumption is not viable, users
can disable the lazy DMA unmapping.

3.3 Write and fsync Path
As explained in Section 2.3.1, an fsync system call entails
multiple I/O operations, and thus it is not possible to reuse
the same scheme we proposed for the read path. For example,
by the time fsync happens, pages are already allocated and
indexed in the page cache. Instead of overlapping the I/O-
related computation with individual device I/O operation, we

focus on applying the overlapping idea to the entire file system
journaling process.

Specifically, we overlap the computation parts in the jour-
naling thread with the previous I/O operations in the same
write path. As shown in Figure 5(a), there are two I/O prepara-
tion operations: journal block preparation and commit block
preparation. Each preparation operation includes allocating
buffer pages, allocating a block on the journal area, calcu-
lating the checksum and computation operations within the
block and device driver layers. Since these operations only
modify in-memory data structures, they have no dependency
on the previous I/O operation in the same write path. Note
that, at any given time, only a single file system transaction
can be committed. While a transaction is in the middle of
commit, no other file system changes can be entangled to the
current transaction being committed. Hence, if the ordering
constraint, which allows the write of a commit block only
after the data blocks and journal blocks are made durable on
the storage media, is guaranteed, our approach can provide
the same crash consistency semantic provided by the vanilla
write path.

To this end, we change the fsync path as shown in Fig-
ure 5(b). Upon an fsync system call, an application thread
issues the writeback of dirty data pages first. Then, it wakes up
the journaling thread in advance to overlap the data block I/Os
with the computation parts in the journaling thread. The appli-
cation thread finally waits for the completion of the writeback
I/Os as well as the completion of the journal commit. While
the data block I/O operations are happening, the journaling
thread prepares the journal block writes and issues their write
I/Os. Then, it prepares the commit block write and waits for
the completion of all the previous I/O operations associated
with the current transaction. Once completed, it sends a flush
command to the storage device to make all the previous I/Os
durable and finally issues a write I/O of the commit block
using a write-through I/O command (e.g., FUA in SATA).
After finishing the commit block write, the journaling thread
finally wakes up the application thread.

When an fsync call does not entail a file system transac-
tion, it is not possible to overlap computation with I/O opera-
tion. In this case, the use of LBIO reduces its I/O latency.

3.4 Implementation

The proposed scheme is implemented in the Linux kernel ver-
sion 5.0.5. A new file open flag, O_AIOS, is introduced to use
the proposed I/O stack selectively. The current implementa-
tion supports read(), pread(), fsync(), and fdatasync()
system calls. For now, other asynchronous or direct I/O APIs
are not supported.

The LBIO layer shares the NVMe queue pairs used in the
original block layer. The spinlock of each queue pair provides
mutual exclusion between LBIO and the original block layer.
The most significant bit of a 16-bit tag is reserved to distin-

USENIX Association 2019 USENIX Annual Technical Conference 609

Object Linux block LBIO

128 KB
block

request

(l)bio 648 bytes 704 bytes+ (l)bio_vec
request 384 bytes

iod 974 bytes
prp_list 4096 bytes 4096 bytes

Total 6104 bytes 4800 bytes
Statically request pool 412 KB
allocated lbio array 192 KB
(per-core) free page pool 256 KB

Table 2: Memory cost comparison

guish the two block layers. Since the NVMe SSDs used for
evaluation supports 512 or 1024 entries for each queue, the
remaining 15 bits are sufficient for command tagging.

Table 2 summarizes the memory cost of our scheme and
the original block layer. To support a single 128 KB block
request, both layers use a comparable amount of memory for
(l)bio, (l)bio_vec, and prp_list objects. However, the
original block layer requires two additional memory objects:
request and iod, and thus requires extra memory compared
to LBIO.

As for the cost of statically allocated memory, the origi-
nal block layer maintains a pool of request objects (1024
objects with 1024 I/O queue depth), which requires 412 KB
memory per core. LBIO replaces the per-core request pool
with the per-core lbio row of size 192 KB. Meanwhile, our
scheme also maintains a pool of DMA-mapped free pages.
We maintain 64 free pages for each free page pool, hence
consuming additional 256 KB memory per core.

In order to implement the AIOS fsync path, the jbd2
wakeup routine in ext4_sync_file() is relocated to the po-
sition between data block write and data block wait. The func-
tion jbd2_journal_commit_transaction() is also modi-
fied to implement our scheme. The routine to prepare a com-
mit block is moved to the position before the waiting routine
for the journal block writes. The waiting routine for data block
writes (using t_inode_list) is also relocated to the position
before the waiting for journal block writes. The routine to is-
sue commit block write I/O (i.e., submit_bh() in the vanilla
path) is split into two routines: one for allocating an lbio and
mapping DMA address, and the other for submitting an I/O
command to a device (i.e., nvme_queue_lbio()). With this
separation, AIOS can control the time to submit the commit
block I/O so that it can satisfy the ordering constraints, while
allowing the overlap of block request-related computations
(e.g., DMA mapping) with the previous I/O operations.

4 Evaluation

4.1 Methodology
We use Dell R730 Server machine with Intel Xeon E5-2640
CPU and 32 GB DDR4 memory for our experiments. For the
ultra-low latency storage devices, we evaluate both Samsung
Z-SSD and Intel Optane SSD; both integrate a non-volatile

Server Dell R730
OS Ubuntu 16.04.4

Base kernel Linux 5.0.5
CPU Intel Xeon E5-2640v3 2.6 GHz 8 cores

Memory DDR4 32 GB

Storage devices

Z-SSD Samsung SZ985 800 GB
Optane SSD Intel Optane 905P 960 GB
NVMe SSD Samsung PM1725 1.6 TB
SATA SSD Samsung 860 Pro 512 GB

Table 3: Experimental configuration

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500

L
at

en
cy

 (
u

s)

Bandwidth (MB/s)

Vanilla

4KB
16KB

32KB

64KB

128KB
AIOS

AIOS-poll

(a) Z-SSD

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500

L
at

en
cy

 (
u

s)

Bandwidth (MB/s)

Vanilla

4KB
16KB

32KB

64KB

128KBAIOS
AIOS-poll

(b) Optane SSD

Figure 8: FIO single-thread random read latency and through-
put with varying block sizes.

write cache, which ignores flush and FUA commands in the
block layer. We implement our proposed scheme AIOS on
Linux kernel 5.0.5, denoted as AIOS. The baseline is the
vanilla Linux kernel 5.0.5 using the Ext4 file system, denoted
as vanilla. Table 3 summarizes our experimental setup.

For evaluation, we utilize both the synthetic micro-
benchmark and real-world workloads. For the synthetic micro-
benchmark, we use FIO [2] using the sync engine with varying
I/O request sizes, I/O types, the number of threads and so forth.
For real-world workloads we utilize various applications such
as key-value store (RocksDB [10]), file-system benchmark
(Filebench-varmail [40]), and OLTP workload (Sysbench-
OLTP-insert [18] on MySQL [22]). Specifically, we run
readrandom and fillsync workloads of the DBbench [30]
on RocksDB; each representing a read-intensive case and
fdatasync-intensive case, respectively. Filebench-varmail is
fsync-intensive, and Sysbench-OLTP-insert is fdatasync-
intensive.

4.2 Microbenchmark
4.2.1 Read Performance

Random read latency. Figure 8 shows the effect of AIOS
on FIO random read latency and throughput with varying
block sizes. The figure shows that AIOS reduces random read
latency by 15–33% when compared to the vanilla kernel on
both Z-SSD and Optane SSD. In general, a larger block size
results in greater latency reduction because a larger portion
of the read-related kernel computation gets overlapped with
the device I/O operation (see Figure 4). One important note
is that AIOS achieves single-digit microseconds latency for a
4 KB random read on Optane SSD, which was previously not
possible due to substantial read path overheads.

610 2019 USENIX Annual Technical Conference USENIX Association

 0

 50

 100

 150

 200

 100
 200

 300
 400

 500
 600

 700
 800

L
at

en
cy

 (
u

s)

IOPS (k)

Vanilla

1 2 4 8 16
32

64

128AIOS

(a) Z-SSD

 0

 50

 100

 150

 200

 100
 200

 300
 400

 500
 600

L
at

en
cy

 (
u

s)

IOPS (k)

Vanilla

1 2 4 8 16

32

64

128

AIOS

(b) Optane SSD

Figure 9: FIO 4 KB random read latency and throughput (in
IOPS) with varying the number of threads.

 0

 10

 20

 30

 40

 50

 60

 2 2.2 2.4 2.6

L
at

en
cy

 (
u

s)

Bandwidth (GB/s)

Vanilla

4KB

128KB
AIOS

(a) Z-SSD

 0

 10

 20

 30

 40

 50

 60

 2 2.2 2.4 2.6

L
at

en
cy

 (
u

s)

Bandwidth (GB/s)

Vanilla

4KB 8KB

128KB
AIOS

(b) Optane SSD

Figure 10: Single-thread FIO sequential read latency and
bandwidth with varying block sizes.

Polling vs. interrupt. Figure 8 also shows the impact of I/O
completion scheme to the read latency. In the figure, AIOS-
poll denotes the AIOS scheme using not interrupt but polling
as its I/O completion method. In general, polling is better
than interrupt in terms of latency because it eliminates con-
text switches [47]; Table 1 has shown that context switches
account for the largest fraction in kernel time. With small
I/O sizes, the latency reduction from polling is comparable
to that from AIOS. However, with large I/O sizes, the latency
reduction from AIOS is greater than that from polling because
of I/O-computation overlap to a greater extent. Please note
that the interrupt mode is used by default in the rest of this
section.
Random read throughput. Figure 9 shows the FIO 4 KB
random read latency and throughput in I/O operations per
second (IOPS) with varying the number of threads. Here,
each thread is set to issue a single I/O request at a time (i.e.,
queue depth is one). In this setting, a large number of threads
means that a large number of I/O requests are outstanding,
hence mimicking high queue-depth I/O. As shown in the
figure, both Z-SSD and Optane SSD achieve notably higher
IOPS (i.e., up to 47.1% on Z-SSD and 26.3% on Optane SSD)
than the baseline when the number of threads is less than 64.
From that point, the device bandwidth gets saturated, and thus
AIOS does not result in additional performance improvement.
Sequential read bandwidth. Figure 10 shows the effect of
AIOS on a single-thread sequential read workload with vary-
ing block sizes. Because the workload uses buffered reads, the
readahead mechanism in Linux prefetches data blocks with
large block size (128 KB) into the page cache. This results in
high sustained bandwidth. In both Z-SSD and Optane SSD

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140

L
at

en
cy

 (
u

s)

IOPS (k)

Vanilla

1 2
4

8

16

AIOS

(a) Ordered, # of threads

 0

 50

 100

 150

 200

 200 400 600 800

L
at

en
cy

 (
u

s)

Bandwidth (MB/s)

Vanilla

4KB
8KB

16KB
32KB

64KB

128KB

AIOS

(b) Ordered, block sizes

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70 80

L
at

en
cy

 (
u

s)

IOPS (k)

Vanilla

1 2
4

8

16

AIOS

(c) Data-journaling, # of threads

 0

 100

 200

 300

 400

 0 100 200 300 400

L
at

en
cy

 (
u

s)

Bandwidth (MB/s)

Vanilla

4KB
16KB

32KB

64KB

128KB

AIOS

(d) Data-journaling, block sizes

Figure 11: Fsync performance with different journaling
modes, number of threads and block sizes on Optane SSD.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500

L
at

en
cy

 (
u

s)

IOPS (k)

Vanilla

1 2 4
8

16

AIOS

(a) fdatasync, # of threads

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 200 400 600 800

L
at

en
cy

 (
u

s)

Bandwidth (MB/s)

Vanilla

4KB 8KB
16KB

32KB

64KB

128KB

AIOS

(b) fdatasync, block sizes

Figure 12: Fdatasync performance with ordered mode with
varying the number of threads and block sizes on Optane
SSD.

cases, AIOS enables higher sustained bandwidth usage only
for 4 KB block reads. For 16–128 KB blocks, AIOS does not
result in any bandwidth improvement because the baseline
scheme already reaches peak bandwidth.

4.2.2 Write Performance

Fsync performance. Figure 11 shows the performance im-
pact of AIOS on FIO 4 KB random write followed by fsync
workload. Here, we evaluate two journaling modes: ordered
mode and data-journaling mode. With a single thread, our
scheme shows IOPS improvement by up to 27% and 34% and
latency reduction by up to 21% and 26% in the ordered mode
and data journaling mode, respectively. With increasing the
number of threads, natural overlap between computation and
I/O occurs, thereby diminishing the performance benefit of
our scheme. With large block sizes, the long I/O-computation
overlapping happens, thereby widening the absolute perfor-
mance gap between our scheme and the baseline. In the data-
journaling mode, the length of the overlapped portion is longer
than that of the ordered mode, and thus its latency advantage

USENIX Association 2019 USENIX Annual Technical Conference 611

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

4KB 8KB 16KB 32KB 64KB 128KB

N
o

rm
al

iz
ed

 l
at

en
cy

Blocksize

Vanilla
+Preload

+MQ-bypass

+LBIO
+Async-page

+Async-DMA

(a) Random read

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

4KB 8KB 16KB 32KB 64KB 128KB

N
o

rm
al

iz
ed

 l
at

en
cy

Blocksize

Vanilla +LBIO +AIOS

(b) Random write

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

4KB 8KB 16KB 32KB 64KB 128KB

N
o

rm
al

iz
ed

 l
at

en
cy

Blocksize

Vanilla
AIOS

Vanilla-strict
AIOS-strict

(c) Random read with strict DMA unmapping

Figure 13: Normalized Latency of FIO 4 KB random read or write workloads with varying optimization levels on Optane SSD.

is slightly larger than that of the ordered mode.
Fdatasync performance. Figure 12 shows the performance
impact of AIOS on FIO 4 KB random write followed by
fdatasync under the ordered mode. Unlike fsync, fdatasync
does not journal metadata if the metadata has not changed;
hence showing fewer performance gains than the fsync cases.
Our AIOS presents up to 12% IOPS increase with a single
thread. AIOS shows up to 10.5% latency decrease on the
4 KB random write workload using a single thread.

4.2.3 Performance Analysis

Read latency. Figure 13(a) compares the 4 KB random read
latency on Optane SSD with varying optimization levels. The
leftmost bar represents the baseline, and the next five bars
represent the latency with cumulatively applying the optimiza-
tions presented throughout the paper. First, the preloading of
extent tree (+Preload, Section 3.2.1) shows up to 3.1% latency
reduction. Second, bypassing the block multi-queue schedul-
ing (+MQ-bypass) provides 1.1% of additional latency reduc-
tion. The complete use of LBIO (+LBIO, Section 3.1) reduces
I/O latency additionally by up to 12.5% because of its low
overhead. By overlapping only cache indexing (Section 3.2.3)
and page allocation (Section 3.2.2) with device I/O operation,
the latency is reduced by up to 11.9% (+Async-page). Finally,
the asynchronous DMA mapping/unmapping (+Async-DMA,
Section 3.2.4) further reduces the I/O latency by up to 7.8%.
The latency benefit of LBIO is similar across different block
sizes. The benefit of the asynchronous operations, however,
increases as the block size increases.
Write latency. Figure 13(b) compares the 4 KB random
write+fsync latency on Optane SSD with varying optimiza-
tion levels. For the write operation, the use of LBIO (+LBIO)
shows up to 9.8% of latency reduction. Our asynchronous
write path (+AIOS, Section 3.3) achieves additional latency
reduction by up to 24.4%.
Cost of safety. Figure 13(c) shows the latency penalty of
disabling the deferred DMA unmapping (i.e., unmapping
DMA addresses immediately after I/O completion). AIOS-
strict denotes our scheme without the lazy DMA unmapping
(Section 3.2.4). For a fair comparison, we also measured the
performance of the baseline without the deferred DMA un-
mapping [20] (denoted as Vanilla-strict). As shown in the

0.0

0.2

0.4

0.6

0.8

1.0

 0 1 2 3 4 5

C
D

F
 (

P
(X

<
x

))

Latency (us)

AIOS
AIOS-overlapped

Vanilla

(a) Latency from read entry to I/O cmd. submit

0.0

0.2

0.4

0.6

0.8

1.0

 0 10 20 30 40 50 60 70 80 90

C
D

F
 (

P
(X

<
x

))

Latency (us)

AIOS-journal
AIOS-commit

Vanilla-journal
Vanilla-commit

(b) Latency from fsync entry to each I/O cmd.
submit (journal block and commit block)

Figure 14: CDF of I/O command submission latencies in
4 KB random read and 4 KB random write+fsync workloads
on Optane SSD.

figure, the use of strict DMA unmapping incurs a slight in-
crease in I/O latency for both schemes by 1.2–11.9%.
Overlapping analysis. One of our key ideas is to overlap
computations with I/O so that the I/O command can be submit-
ted as early as possible. To clarify this behavior, we measured
the latency to submit I/O command(s) to a storage device and
present the cumulative distribution function (CDF) of laten-
cies. Figure 14(a) shows the time between the read system
call entry and the I/O command submission. We also show
the time to complete the overlapped operations in our scheme
(denoted as AIOS-overlapped). As shown in the figure, the
I/O submission latency is greatly reduced to 1.63 µs on aver-
age (75% reduction compared to the baseline). Also, note that
the time to complete the overlapped operations is earlier than
the I/O submission latency in the baseline. This is because of
the additional latency reduction achieved by LBIO.

Similar measurement is also made on the write paths. Fig-
ure 14(b) shows the time between the fsync system call entry
and the I/O command submission for journal block(s) and
commit block (denoted as -journal and -commit, respectively).

612 2019 USENIX Annual Technical Conference USENIX Association

 0

 100

 200

 300

 400

 500

1 2 4 8 16 1 2 4 8 16

of threads

O
P

/s
 (

k
)

 Z-SSD Optane SSD

Vanilla
AIOS

(a) readrandom

 0

 20

 40

 60

 80

 100

1 2 4 8 16 1 2 4 8 16

of threads

O
P

/s
 (

k
)

 Z-SSD Optane SSD

Vanilla
AIOS

(b) fillsync

Figure 15: DBbench on RocksDB Performance (IOPS) with
varying the number of threads.

 0

 0.2

 0.4

 0.6

 0.8

 1

Vanilla
AIO

S

Vanilla
AIO

S

Vanilla
AIO

S

Vanilla
AIO

S

readrandom fillsync

Z-SSD / Optane SSD / Z-SSD / Optane SSD

N
o
rm

al
iz

ed
 C

P
U

 u
sa

g
e

User
Kernel
I/O wait
Idle

Figure 16: Normalized CPU usage breakdown for DBbench
(readrandom and fillsync) on RocksDB using eight threads.

As shown in the figure, our scheme brings the I/O command
submission times forward. Interestingly, the time to submit
commit block I/O in AIOS is even earlier than the time to
submit journal block I/O in the baseline.

4.3 Real-world Applications
4.3.1 Key-value Store

Performance. Figure 15 demonstrates the performance result
of DBbench on RocksDB. Specifically, we evaluate the read-
random (64 GB dataset, 16-byte key and 1000-byte value)
and fillsync (16 GB dataset) workloads in DBbench, each
representing the random read-dominant case and the random
write (and fdatasync)-dominant case. Overall, AIOS demon-
strates notable speedups on the readrandom workload by 11–
32% and the fillsync workload by 22–44%. Recall that AIOS
allows duplicated I/Os because of the lazy page cache in-
dexing feature (Section 3.2.3). Duplicated I/Os happen in
this experiment. However, the frequency of such events is
extremely low (e.g., less than once in 10 million I/Os on the
readrandom workload).
CPU usage breakdown. Figure 16 shows the normalized
CPU usage breakdown analysis of each workload using eight
threads. Overall, AIOS reduces the CPU time spent on I/O
wait and kernel. This indicates that AIOS effectively overlaps
I/O operation with kernel operations without incurring extra
overhead and LBIO effectively reduces the block I/O man-
agement overhead. Furthermore, by providing a low random
read and write latency, AIOS reduces the overall runtime as
well. The trend is similar in both Z-SSD and Optane SSD.

 0

 50

 100

 150

 200

 250

1 2 4 8 16

O
P

/s
 (

k
)

of threads

Vanilla
AIOS

(a) Z-SSD

 0

 50

 100

 150

 200

 250

1 2 4 8 16

O
P

/s
 (

k
)

of threads

Vanilla
AIOS

(b) Optane SSD

Figure 17: Filebench-varmail performance with varying the
number of threads.

 0

 10

 20

 30

 40

1 2 4 8 16

T
X

/s
 (

k
)

of threads

Vanilla
AIOS

(a) Z-SSD

 0

 10

 20

 30

 40

1 2 4 8 16

T
X

/s
 (

k
)

of threads

Vanilla
AIOS

(b) Optane SSD

Figure 18: Sysbench-OLTP-insert performance with varying
the number of threads.

4.3.2 Storage Benchmark and OLTP Workload

Figure 17 and Figure 18 show the Filebench-varmail (default
configuration) and Sysbench-OLTP-insert (10 GB DB table
size) performance with varying the number of threads. On
the single thread cases of Filebench-varmail, utilizing AIOS
results in 29.9% and 29.4% of improved throughput on Z-SSD
and Optane SSD, respectively. Similarly, on the single thread
cases of Sysbench-OLTP-insert, AIOS achieves 15.4% and
16.2% performance increase with Z-SSD and Optane SSD,
respectively. In general, the use of multi-threading diminishes
the benefits of our scheme because of the natural overlap of
computation with I/O happens.

5 Related Work

Many prior works aim to alleviate the overheads of the kernel
I/O stack, some of which are deployed in commodity OS ker-
nels (e.g., Linux). Multi-context I/O paths can increase the
I/O latency due to the overhead of context switching [5, 35].
Today’s I/O path design for NVMe SSDs reduces this over-
head by eliminating the bottom half of interrupt handling [24].
Using polling instead of interrupts is another solution for re-
moving context switching from the I/O path [5, 47]. Hybrid
polling is also proposed to reduce high CPU overheads [9,21].
Simplified scheduling (e.g., Noop) is effective for reducing
I/O latency in flash-based SSDs due to its high-performance
random access [46, 51]. Instead of providing I/O scheduling
in software, the NVMe protocol supports I/O scheduling on
the device side in hardware [14,24]. Support for differentiated
I/O path was introduced to minimize the overhead of I/O path

USENIX Association 2019 USENIX Annual Technical Conference 613

for high priority tasks [5, 17, 48, 51], which is similar to our
LBIO. However, to the best of our knowledge, there is no
work applying the asynchronous I/O concept to the storage
I/O stack itself.

There are proposals to change the storage interface for
I/O latency reduction. Scatter/scatter I/O coalesces multiple
I/O requests into a single command, thereby reducing the
number of round trips in storage access [37, 42, 50]. DC-
express attempts to minimize protocol-level latency overheads
by removing doorbells and completion signals [44].

Improving the performance of fsync operation is im-
portant in many applications as it provides data durability.
Nightingale et al. propose to extend the time to preserve
data durability from the return of an fsync call to the time
when the response is sent back to the requester (e.g., remote
node) [23]. Using a checksum in the journal commit record
can be effective in overlapping journal writes and data block
writes [29], albeit checksum collision can become problematic
in production systems [41]. OptFS [7] and BFS [45] propose
write order-preserving system calls (osync and fbarrier).
With the order-preserving system calls, the overlapping ef-
fect in the fsync path will be identical. However, when ap-
plications need the fsync semantic, operations occur syn-
chronously with regard to I/Os.

User-level direct access can eliminate the kernel I/O stack
overhead in storage access [6, 16, 28, 49]. The lack of a file
system can be augmented by many different approaches from
a simple mapping layer [28, 49] to user-level file systems [15,
43, 49]. However, enforcing isolation or protection between
multiple users or processes should be carefully addressed [6],
and hardware-level support is highly valuable [24]. However,
this is not available at the moment.

6 Discussion and Future Work

I/O scheduling. I/O scheduling is necessary for certain com-
puting domains (e.g., cloud computing) [1]. Early versions
of the block multi-queue layer provided no I/O scheduling
capability [3], but recently, several I/O schedulers have been
integrated [8]. Our LBIO eliminates software-level request
queues, and thus the current implementation is not compat-
ible with software-level block I/O schedulers. However, the
NVMe protocol can support device-side I/O scheduling (e.g.,
weighted round robin with urgent priority feature [14, 24]),
which can augment LBIO. Furthermore, we believe that LBIO
can support proper process/thread/cgroup-level I/O schedul-
ing if we relax the static mapping between cores and NVMe
queues. We leave this as future work.
File system coverage. Our current implementation is based
on the Linux kernel with the Ext4 file system. However, we
believe that other journaling file systems (e.g., XFS [39])
or copy-on-write file systems (e.g., Btrfs [31]) may provide
similar opportunities for overlapping computation in the I/O
path with device access, considering out-of-place updates

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

V
an

ill
a

A
IO

S
SP

D
K

V
an

ill
a

A
IO

S
SP

D
K

V
an

ill
a

A
IO

S
SP

D
K

V
an

ill
a

A
IO

S
SP

D
K

V
an

ill
a

A
IO

S
SP

D
K

V
an

ill
a

A
IO

S
SP

D
K

4KB 8KB 16KB 32KB 64KB 128KB

Blocksize

L
at

en
cy

 (
u
s)

User+Device
Copy-to-user

Kernel
User+Device(SPDK)

Figure 19: FIO random read latency breakdown in compari-
son with Intel SPDK on Optane SSD.

employed by these file systems.
Copy-to-user cost. AIOS greatly reduces the I/O stack over-
head of the vanilla Linux kernel as shown in Figure 19. How-
ever, our proposal does not optimize copy-to-user operations,
which remain as a non-negligible source of the overhead, es-
pecially when the requested block size is large. Although
the in-memory copy is inevitable for buffered reads, we are
seeking solutions to take off the memory copy from the criti-
cal path so that our proposal can compete with the user-level
direct access approach.

7 Conclusion

We propose AIOS, an asynchronous kernel I/O stack cus-
tomized for ultra-low latency SSDs. Unlike the traditional
block layer, the lightweight block I/O (LBIO) layer of AIOS
eliminates unnecessary components to minimize the delay
in submitting I/O requests. AIOS also replaces synchronous
operations in the I/O path with asynchronous ones to overlap
computation associated with read and fsync with device I/O
access. As a result, AIOS achieves single-digit microseconds
I/O latency on Optane SSD, which was not possible due to
high I/O stack overhead. Furthermore, AIOS demonstrates
significant latency reduction and performance improvement
with both synthetic and real-world workloads on Z-SSD and
Optane SSD2.

Acknowledgments

We would like to thank the anonymous reviewers and our
shepherd, Youjip Won, for their valuable comments. We
also thank Prof. Jin-Soo Kim for his devotion of time at
LAX and valuable technical feedback. This work was sup-
ported partly by the National Research Foundation of Ko-
rea (NRF) grant funded by the Korea government (MSIT)
(NRF-2017R1C1B2007273, NRF-2016M3C4A7952587) and
by Samsung Electronics.

2The source code is available at https://github.com/skkucsl/aios.

614 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/skkucsl/aios

References

[1] AHN, S., LA, K., AND KIM, J. Improving I/O resource sharing
of linux cgroup for NVMe SSDs on multi-core systems. In
USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage ’16) (Denver, CO, USA, 2016).

[2] AXBOE, J. FIO: Flexible I/O tester. https://github.com/
axboe/fio.

[3] BJØRLING, M., AXBOE, J., NELLANS, D., AND BONNET, P.
Linux block IO: Introducing multi-queue SSD access on multi-
core systems. In International Systems and Storage Conference
(SYSTOR ’13) (New York, NY, USA, 2013), pp. 22:1–22:10.

[4] BROWN, N. A block layer introduction part 1: the bio layer,
2017. https://lwn.net/Articles/736534/.

[5] CAULFIELD, A. M., DE, A., COBURN, J., MOLLOW, T. I.,
GUPTA, R. K., AND SWANSON, S. Moneta: A high-
performance storage array architecture for next-generation,
non-volatile memories. In Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO ’10) (Atlanta, GA,
USA, 2010), pp. 385–395.

[6] CAULFIELD, A. M., MOLLOW, T. I., EISNER, L. A., DE, A.,
COBURN, J., AND SWANSON, S. Providing safe, user space
access to fast, solid state disks. In International Conference on
Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS XVII) (New York, NY, USA, 2012),
pp. 387–400.

[7] CHIDAMBARAM, V., PILLAI, T. S., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. Optimistic crash con-
sistency. In ACM Symposium on Operating Systems Principles
(SOSP ’13) (Farmington, PA, USA, 2013), pp. 228–243.

[8] CORBET, J. Two new block I/O schedulers for 4.12, 2017.
https://lwn.net/Articles/720675/.

[9] EISENMAN, A., GARDNER, D., ABDELRAHMAN, I., AXBOE,
J., DONG, S., HAZELWOOD, K., PETERSEN, C., CIDON, A.,
AND KATTI, S. Reducing DRAM footprint with NVM in
facebook. In European Conference on Computer Systems
(EuroSys ’18) (New York, NY, USA, 2018), pp. 42:1–42:13.

[10] FACEBOOK. Rocksdb. https://github.com/facebook/
rocksdb/.

[11] HUFFMAN, A. Delivering the full potential of PCIe storage.
In IEEE Hot Chips Symposium (2013), pp. 1–24.

[12] INTEL. Breakthrough performance for demanding stor-
age workloads. https://www.intel.com/content/
dam/www/public/us/en/documents/product-briefs/
optane-ssd-905p-product-brief.pdf.

[13] JEONG, S., LEE, K., LEE, S., SON, S., AND WON, Y. I/O
stack optimization for smartphones. In USENIX Annual Tech-
nical Conference (USENIX ATC ’13) (San Jose, CA, USA,
2013), pp. 309–320.

[14] JOSHI, K., YADAV, K., AND CHOUDHARY, P. Enabling
NVMe WRR support in Linux block layer. In USENIX Work-
shop on Hot Topics in Storage and File Systems (HotStorage

’17) (Santa Clara, CA, USA, 2017).

[15] KIM, H.-J., AND KIM, J.-S. A user-space storage I/O frame-
work for NVMe SSDs in mobile smart devices. IEEE Transac-
tions on Consumer Electronics 63, 1 (2017), 28–35.

[16] KIM, H.-J., LEE, Y.-S., AND KIM, J.-S. NVMeDirect: A
user-space I/O framework for application-specific optimization
on NVMe SSDs. In USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage ’16) (Denver, CO, USA,
2016).

[17] KIM, S., KIM, H., LEE, J., AND JEONG, J. Enlightening the
I/O path: A holistic approach for application performance. In
USENIX Conference on File and Storage Technologies (FAST
’17) (Santa Clara, CA, USA, 2017), pp. 345–358.

[18] KOPYTOV, A. Sysbench: Scriptable database and system
performance benchmark. https://github.com/akopytov/
sysbench.

[19] KÁRA, J. Ext4 filesystem scaling. https:
//events.static.linuxfound.org/sites/events/
files/slides/ext4-scaling.pdf.

[20] MARKUZE, A., MORRISON, A., AND TSAFRIR, D. True
IOMMU protection from DMA attacks: When copy is faster
than zero copy. In International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS ’16) (New York, NY, USA, 2016), pp. 249–262.

[21] MOAL, D. L. I/O latency optimization with polling, 2017.

[22] MYSQL AB. MySQL. https://www.mysql.com.

[23] NIGHTINGALE, E. B., VEERARAGHAVAN, K., CHEN, P. M.,
AND FLINN, J. Rethink the sync. In Symposium on Operating
Systems Design and Implementation (OSDI ’06) (Berkeley,
CA, USA, 2006), pp. 1–14.

[24] NVM EXPRESS. NVM express base specification.
https://nvmexpress.org/wp-content/uploads/
NVM-Express-1_3c-2018.05.24-Ratified.pdf.

[25] OHSHIMA, S. Scaling flash technology to meet application
demands, 2018. Keynote 3 at Flash Memory Summit 2018.

[26] PATTERSON, D. A., AND HENNESSY, J. L. Computer Orga-
nization and Design, Fifth Edition: The Hardware/Software
Interface, 5th ed. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2013.

[27] PETER, S., LI, J., ZHANG, I., PORTS, D. R., ANDERSON,
T., KRISHNAMURTHY, A., ZBIKOWSKI, M., AND WOOS, D.
Towards high-performance application-level storage manage-
ment. In USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage ’14) (Philadelphia, PA, USA, 2014).

[28] PETER, S., LI, J., ZHANG, I., PORTS, D. R., WOOS, D., KR-
ISHNAMURTHY, A., ANDERSON, T., AND ROSCOE, T. Ar-
rakis: The operating system is the control plane. In USENIX
Symposium on Operating Systems Design and Implementation
(OSDI ’14) (Broomfield, CO, USA, 2014), pp. 1–16.

[29] PRABHAKARAN, V., BAIRAVASUNDARAM, L. N.,
AGRAWAL, N., GUNAWI, H. S., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. IRON file systems. In
ACM Symposium on Operating Systems Principles (SOSP ’05)
(New York, NY, USA, 2005), pp. 206–220.

[30] REECE, A. DBbench. https://github.com/memsql/
dbbench.

USENIX Association 2019 USENIX Annual Technical Conference 615

https://github.com/axboe/fio
https://github.com/axboe/fio
https://lwn.net/Articles/736534/
https://lwn.net/Articles/720675/
https://github.com/facebook/rocksdb/
https://github.com/facebook/rocksdb/
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-ssd-905p-product-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-ssd-905p-product-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-ssd-905p-product-brief.pdf
https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench
https://events.static.linuxfound.org/sites/events/files/slides/ext4-scaling.pdf
https://events.static.linuxfound.org/sites/events/files/slides/ext4-scaling.pdf
https://events.static.linuxfound.org/sites/events/files/slides/ext4-scaling.pdf
https://www.mysql.com
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_3c-2018.05.24-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_3c-2018.05.24-Ratified.pdf
https://github.com/memsql/dbbench
https://github.com/memsql/dbbench

[31] RODEH, O., BACIK, J., AND MASON, C. BTRFS: The Linux
B-tree filesystem. ACM Transactions on Storage (TOS ’13) 9,
3 (2013), 9:1–9:32.

[32] SAMSUNG. Ultra-low latency with Samsung Z-NAND SSD.
https://www.samsung.com/us/labs/pdfs/collateral/
Samsung_Z-NAND_Technology_Brief_v5.pdf.

[33] SANDEEN, E. Enterprise filesystems, 2017. http:
//people.redhat.com/mskinner/rhug/q4.2017/
Sandeen_Talk_2017.pdf.

[34] SAXENA, M., AND SWIFT, M. M. FlashVM: Virtual memory
management on flash. In USENIX Annual Technical Confer-
ence (USENIX ATC ’10) (Berkeley, CA, USA, 2010), pp. 14–
14.

[35] SHIN, W., CHEN, Q., OH, M., EOM, H., AND YEOM, H. Y.
OS I/O path optimizations for flash solid-state drives. In
USENIX Annual Technical Conference (USENIX ATC ’14)
(Philadelphia, PA, USA, 2014), pp. 483–488.

[36] SILVERS, C. UBC: An efficient unified I/O and memory
caching subsystem for NetBSD. In USENIX Annual Technical
Conference (USENIX ATC ’00) (San Diego, CA, USA, 2000),
pp. 285–290.

[37] SON, Y., HAN, H., AND YEOM, H. Y. Optimizing file sys-
tems for fast storage devices. In ACM International Systems
and Storage Conference (SYSTOR ’15) (New York, NY, USA,
2015), pp. 8:1–8:6.

[38] SWANSON, S., AND CAULFIELD, A. M. Refactor, reduce,
recycle: Restructuring the I/O stack for the future of storage.
Computer 46, 8 (August 2013), 52–59.

[39] SWEENEY, A., DOUCETTE, D., HU, W., ANDERSON, C.,
NISHIMOTO, M., AND PECK, G. Scalability in the xfs file
system. In USENIX Annual Technical Conference (USENIX
ATC ’96) (San Diego, CA, USA, 1996), vol. 15.

[40] TARASOV, V., ZADOK, E., AND SHEPLER, S. Filebench: A
flexible framework for file system benchmarking. ;login: The
USENIX Magazine 41, 1 (2016), 6–12.

[41] TS’O, T. What to do when the journal checksum is incorrect,
2008. https://lwn.net/Articles/284038/.

[42] VASUDEVAN, V., KAMINSKY, M., AND ANDERSEN, D. G.
Using vector interfaces to deliver millions of IOPS from a
networked key-value storage server. In ACM Symposium on
Cloud Computing (SoCC ’12) (New York, NY, USA, 2012),
pp. 8:1–8:13.

[43] VOLOS, H., NALLI, S., PANNEERSELVAM, S., VARADARA-
JAN, V., SAXENA, P., AND SWIFT, M. M. Aerie: Flexible

file-system interfaces to storage-class memory. In European
Conference on Computer Systems (EuroSys ’14) (New York,
NY, USA, 2014), pp. 14:1–14:14.

[44] VUČINIĆ, D., WANG, Q., GUYOT, C., MATEESCU, R.,
BLAGOJEVIĆ, F., FRANCA-NETO, L., MOAL, D. L.,
BUNKER, T., XU, J., SWANSON, S., AND BANDIĆ, Z. DC
express: Shortest latency protocol for reading phase change
memory over PCI express. In USENIX Conference on File
and Storage Technologies (FAST ’14) (Santa Clara, CA, USA,
2014), pp. 309–315.

[45] WON, Y., JUNG, J., CHOI, G., OH, J., SON, S., HWANG, J.,
AND CHO, S. Barrier-enabled IO stack for flash storage. In
USENIX Conference on File and Storage Technologies (FAST
’18) (Oakland, CA, USA, 2018), pp. 211–226.

[46] XU, Q., SIYAMWALA, H., GHOSH, M., SURI, T., AWASTHI,
M., GUZ, Z., SHAYESTEH, A., AND BALAKRISHNAN, V. Per-
formance analysis of NVMe SSDs and their implication on
real world databases. In ACM International Systems and Stor-
age Conference (SYSTOR ’15) (New York, NY, USA, 2015),
pp. 6:1–6:11.

[47] YANG, J., MINTURN, D. B., AND HADY, F. When poll is bet-
ter than interrupt. In USENIX conference on File and Storage
Technologies (FAST ’12) (San Jose, CA, USA, 2012), pp. 3–3.

[48] YANG, T., LIU, T., BERGER, E. D., KAPLAN, S. F., AND

MOSS, J. E. B. Redline: First class support for interactivity
in commodity operating systems. In USENIX Conference on
Operating Systems Design and Implementation (OSDI ’08)
(Berkeley, CA, USA, 2008), pp. 73–86.

[49] YANG, Z., HARRIS, J. R., WALKER, B., VERKAMP, D., LIU,
C., CHANG, C., CAO, G., STERN, J., VERMA, V., AND PAUL,
L. E. SPDK: A development kit to build high performance
storage applications. In IEEE International Conference on
Cloud Computing Technology and Science (CloudCom ’17)
(Hong Kong, 2017), pp. 154–161.

[50] YU, Y. J., SHIN, D. I., SHIN, W., YOUNG SONG, N., CHOI,
J. W., KIM, H. S., EOM, H., AND EOM, H. Y. Optimiz-
ing the block I/O subsystem for fast storage devices. ACM
Transactions on Compueter Systems (TOCS ’14) 32 (2014).

[51] ZHANG, J., KWON, M., GOUK, D., KOH, S., LEE, C., ALIAN,
M., CHUN, M., KANDEMIR, M. T., KIM, N. S., KIM, J.,
AND JUNG, M. FlashShare: Punching through server storage
stack from kernel to firmware for ultra-low latency SSDs. In
Symposium on Operating Systems Design and Implementation
(OSDI ’18) (Carlsbad, CA, USA, 2018), pp. 477–492.

616 2019 USENIX Annual Technical Conference USENIX Association

https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
http://people.redhat.com/mskinner/rhug/q4.2017/Sandeen_Talk_2017.pdf
http://people.redhat.com/mskinner/rhug/q4.2017/Sandeen_Talk_2017.pdf
http://people.redhat.com/mskinner/rhug/q4.2017/Sandeen_Talk_2017.pdf
https://lwn.net/Articles/284038/

M3X: Autonomous Accelerators via Context-Enabled Fast-Path Communication

Nils Asmussen
† ‡

Michael Roitzsch
† ‡

Hermann Härtig
† ‡

†Technische Universität Dresden, Germany ‡ Barkhausen Institut, Dresden, Germany

Abstract
Performance and e�ciency requirements are driving a trend

towards specialized accelerators in both datacenters and

embedded devices. In order to cut down communication

overheads, system components are pinned to cores and

fast-path communication between them is established. These

fast paths reduce latency by avoiding indirections through

the operating system. However, we see three roadblocks that

can impede further gains: First, accelerators today need to

be assisted by a general-purpose core, because they cannot

autonomously access operating system services like �le

systems or network stacks. Second, fast-path communication

is at odds with preemptive context switching, which is still

necessary today to improve e�ciency when applications

underutilize devices. Third, these concepts should be kept

orthogonal, such that direct and unassisted communication

is possible between any combination of accelerators and

general-purpose cores. At the same time, all of them should

support switching between multiple application contexts,

which is most di�cult with accelerators that lack the

hardware features to run an operating system.

We present M3
X, a system architecture that removes these

roadblocks. M3
X retains the low overhead of fast-path com-

munication while enabling context switching for general-

purpose cores and specialized accelerators. M3
X runs acceler-

ators autonomously and achieves a speedup of 4.7 for PCIe-

attached image-processing accelerators compared to tradi-

tional assisted operation. At the same time, utilization of the

host CPU is reduced by a factor of 30.

1 Introduction
The end of Dennard scaling [18] prevents further frequency

gains and the prospect of dark silicon [21] hampers general-

purpose parallelism. Hardware and system designers thus

turn to new architectures to increase performance or reduce

power consumption. These new ideas often revolve around

specialization through custom accelerators [9, 26, 35, 37, 48,

67, 68] and streamlined communication that bypasses the

operating system to avoid overheads [10, 39, 46].

TPUs [27] are a key example of the �rst approach. By cre-

ating a �xed-function accelerator for neural network training

and inference, Google managed to increase performance

per socket 30-fold and performance per watt 80-fold over a

contemporary CPU. The second approach of preferring data

fast paths to avoid indirections through the operating system

can be observed today with technologies like single root

I/O virtualization (SR-IOV) or In�niband. System designs

like M3 [10] and DLibOS [39] have shown that fast-path

communication achieves latency reductions of 5× for a �le

system workload on M3, and 20× for memcached on DLibOS.

Furthermore, our previous work M3 demonstrates that this

idea can be generalized to provide fast-path communication

between all compute units in the system.

Encouraged by these bene�ts, we expect ongoing de-

velopment and increased deployment of these solutions.

Use-case-driven accelerators will �nd their place in data-

centers, also because of their deterministic execution

model which helps to meet tail-latency requirements.

We therefore assume that more applications will entail

complex interactions between a mix of accelerators and

general-purpose cores. Additionally, in multi-tenant cloud

environments context switching is essential, because a single

user will typically underutilize accelerators. We also envision

advantages for small embedded and edge devices. Due to

their limited hardware resources, these devices bene�t from

the power e�ciency of accelerators and require context

switching to �exibly time-share these resources.

1.1 Problem Statement
We extract three fundamental architectural challenges from

our assumptions: First, the system architecture should enable

accelerators to run autonomously. Currently, accelerators are

often treated as peripheral devices whose execution needs

to be assisted by a general-purpose CPU [57]. The TPUs

described in Google’s paper burden their controlling CPU

with 11 – 76% load just to operate the TPU [27]. Our compar-

ison to the traditional usage of accelerators in § 7.6 con�rms

this experience by showing that even a 3GHz out-of-order

USENIX Association 2019 USENIX Annual Technical Conference 617

x86-64 core is 86% loaded to assist three image-processing

accelerators attached via PCIe. If accelerators had direct

access to data sources and sinks, this overhead would not be

necessary. However, such connectedness requires �rst-party

interaction of accelerators with OS services like storage

and network. Specialized solutions exist, like GPUfs [58],

GPUnet [29], and PTask [52] for GPUs or BORPH [59] and

FPGAFS [31] for FPGAs. But there is no general solution that

would grant any accelerator �rst-party access to OS services

and also allow direct communication between multiple

accelerators without assistance by a general-purpose core.

Second, fast-path communication without OS interaction

is important for low-latency data and control transfer, but

con�icts with context switching. This problem applies

to communication channels involving general-purpose

cores as well as accelerators. If communication partners

are pinned and exclusively use dedicated resources, direct

communication is easy. However, with context switching,

communication needs to consider whether the intended

recipient is currently running and how to deliver a message

otherwise. A system design needs to answer, how the

equivalent of a blocking system call should work on an

accelerator that lacks the hardware features to run an

operating system. Current solutions like M3 and DLibOS

avoid this question and forgo context switching altogether.

Finally, all compute resources in the system — accelerators

as well as general-purpose cores — should be accessible via the

same communication primitives. The resulting system should

enable developers to o�oad any job to the most suitable com-

pute resource. Suchuni�cation wasexploredin previouswork,

but only for heterogeneous general-purpose cores [12, 19, 43].

1.2 Scope
We believe that accelerators should not be forced to adapt

to operating system requirements, but focus on their main

task: a fast and energy-e�cient solution to a speci�c problem.

In this paper, we take the extreme position and rethink the

system architecture to enable a �rst-class integration of

accelerators without imposing changes on them.

In contrast to conventional architectures, we do not
build upon coherent shared memory for two reasons: First,

providing global cache coherency is challenging for systems

that consists of a wide variety of compute units such as

general-purpose cores, DSPs, and �xed-function accelerators.

Second, the costs of cache coherency in terms of chip area,

power, complexity, and performance are expected to increase

with an increasing number of compute units [28, 41]. For

these reasons, it is still unclear whether and how future

systems will support cache coherency. Therefore, we keep

cache coherency optional.

Additionally, our long-term goal is to support arbitrary

accelerators as �rst-class citizens. In this paper, we begin

to address this challenge by demonstrating our approach

for accelerators that are arguably the most di�cult to

support as �rst-class citizens: �xed-function accelera-

tors [22, 26, 35, 37, 48, 65] that do not execute software and

therefore provide none of the features that are required to run

an operating-system kernel. We believe our e�orts towards

a uni�ed interface for all compute units will generalize to

more feature-rich accelerators in the future.

1.3 Contribution
We propose M3

X, a solution for the identi�ed issues using

a hardware-software co-design approach.

• We explore the design space for fast-path communication

and context switching. We explain the fundamental prob-

lems, when combining both techniques (§ 2) and discuss

solutions in terms of interaction modes (autonomous vs.

assisted) and mechanisms (hardware vs. software).

• We converge on a design for M3
X that allows fast-path

communication without involving the OS kernel and

enables accelerators to access data sources and sinks

without assistance by a general-purpose core. At the

same time, M3
X supports context switching on both

general-purpose cores and accelerators (§ 4).

• We implement these mechanisms within the M3 OS and

hardware architecture (§ 5). M3 already supports fast-path

communication within a tile-based architecture and

uni�es communication among heterogeneous instruction

sets [10]. Thus, it constitutes a suitable starting point,

which we extend with support for context switching and

autonomous accelerators.

• In the evaluation (§ 7), we demonstrate how M3
X retains

the low overhead of fast-path communication while

enabling context switching. We show the performance

and utilization bene�ts of autonomous accelerators

using an accelerator benchmark suite and an application

scenario that might occur in datacenters.

We rely on gem5 [16] as our simulation platform. Its high

accuracy and modularity enable us to experiment with new

hardware components. The implementation of M3
X

1
and our

extensions to gem5
2

are available as open source.

2 Background andMotivation
Traditional communication via UNIX pipes, sockets, or

microkernel IPC involves the kernel in every communication.

For that reason, the kernel can bu�er messages until the

recipient is ready to receive them, can schedule recipients

based on pending messages, and can easily switch to a

di�erent thread if the current thread needs to wait for I/O.

Communication that bypasses the kernel o�ers signi�cant

gains in terms of latency and throughput, as has been shown

by M3 [10] and DLibOS [39]. We call such communication

fast-path communication in this paper. Using fast-path

1https://github.com/TUD-OS/M3
2https://github.com/TUD-OS/gem5-dtu

618 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/TUD-OS/M3
https://github.com/TUD-OS/gem5-dtu

communication with dedicated cores for the applications

is easy, because none of the aforementioned actions are

required, which is why M3 and DLibOS chose to omit context

switching support altogether. We also believe the still

increasing core counts and the dark silicon e�ect [21, 25] will

reduce the context switching frequency and lead to dedicated

cores for applications by default. However, in the foreseeable

future, provisioning enough hardware resources to handle

all load spikes is not feasible. These load spikes therefore

require oversubscription of cores and accelerators. Thus,

fast-path communication needs to be combined with context

switching to use the system as e�ciently as possible.

Combining fast-path communication with context switch-

ing is a hard problem, though. If the kernel is not involved in

the communication, how can we determine whether the recip-

ient is running and how can we deliver the message if it is not

running? Even without relying on coherency (see § 1.2), we

could bu�er all messages in DRAM to cope with non-running

recipients. However, this would e�ectively route all communi-

cation over DRAM, which increases latency and DRAM load

and is therefore detrimental to the goals of fast-path commu-

nication. On the other hand, communicating directly between

compute units,without involving the OS,has the consequence

that a message cannot be delivered if the designated recipient

is not running. The naive solution of waking up the recipient

and retrying the fast-path communication is not su�cient.

Since these two steps are not atomic, the recipient can be

suspended in between, leading to no progress at the sender

side. Furthermore, the kernel can no longer make scheduling

or placement decisions if it cannot tell whether applications

are currently waiting for a message or are doing useful work.

Accelerators typically lack the architectural features

to run an OS kernel locally. To avoid the indirection of

all communication through a remote kernel, accelerators

require fast-path communication to interact with other

accelerators [57]. However, as described before, fast-path

communication is possible only if the recipient is running.

Thus, the combination of fast-path communication and con-

text switching is necessary to run accelerators autonomously,

without indirection through the kernel.

3 RelatedWork
There are industry solutions for accelerator integration such

as the coherent accelerator processor interface (CAPI) [6, 62]

and the heterogeneous system architecture (HSA) [4,51]. Both

allow the integration of accelerators into a cache coherent vir-

tual memory system, but in contrast to M3
X, these hardware

solutions do not consider direct access to operating system

services by accelerators. Such access is investigated by other

works for speci�c OS services and speci�c accelerators like

GPUs [15,29,34,52,58,64,69] or FPGAs [31,47,59]. In contrast,

M3
X does not target a speci�c kind of accelerator, but provides

a general construction principle for fast-path communication

of any accelerator with any OS service or application.

x86 x86

ARM ARM

Accel

Accel

Accel

Accel

Accel

Accel

DRAM

Figure 1: Overview of the system architecture.

K2 [36] and Popcorn Linux [12] demonstrate how the

Linux kernel can be extended to support multiple coherence

domains and potentially heterogeneous cores. However, het-

erogeneity in these cases is represented by general-purpose

cores with di�erent instruction sets and does not include

�xed-function accelerators. Barrel�sh [14] introduced the

multikernel concept, where message passing is used to

communicate between the operating system instances on

each core. This concept is close to the design of M3
X, but it

assumes that all cores o�er the architectural features to run

an OS kernel. M3
X sets out to remove this requirement to

integrate �xed-function accelerators as well.

Arrakis [46] and OmniX [57] integrate peripherals

and accelerators using SR-IOV. Instead of requiring the

architectural features to run a kernel, these works assume

the hardware to manage multiple contexts. M3
X explores a

more lightweight design, yet with enough hardware support

to enable context switching and fast-path communication

between components. Like NIX [11] or FlexSC [60], M3
X

adopts the idea of redirecting system calls to kernel cores to

reduce the duties of non-kernel cores such as accelerators.

Horizontal system layouts [66] with di�erent services on

separate cores were explored in DLibOS [39] and M3 [10].

Both works have shown latency reductions due to the use

of fast-path communication between cores, but they do not

support context switching due to the problems explained

in the previous section. Context switching of accelerators

has been explored speci�cally for GPUs [13, 45], but without

considering fast-path communication. M3
X combines context-

switching with the bene�ts of fast-path communication.

4 Design
We start this section with an introduction to the basic system

architecture and discuss the design space for accelerator

integration. Afterwards, we describe how fast-path com-

munication is combined with context switching. Finally, we

explain how this combination is used to run accelerators

autonomously.

4.1 SystemArchitecture
In this work,we assume a tiled system architecture as depicted

in Fig. 1. The system uses an interconnect to communicate

between tiles, similar to M3 [10] and DLibOS [39] and also

similar to upcoming system architectures based on GenZ [3]

or CCIX [2]. The tiles can contain heterogeneous compute
units (CUs), ranging from general-purpose cores to DSPs

USENIX Association 2019 USENIX Annual Technical Conference 619

to �xed-function accelerators. These CUs can be part of

the host system (left) and can be attached as an expansion

card (right). The host system has a shared DRAM. We use

the term activity to unify the active entities on these CUs.

On general-purpose cores, an activity is typically a thread,

whereas on accelerators it is the logic operating on a context.

4.2 Accelerator Integration
Adding accelerators into a system design poses the question

of how to balance responsibilities between hardware and

software. First, there are di�erent ways to support arbitrary

data sources and sinks for accelerators. Access to OS services

like �le systems or network stacks can be performed by

software, which is the typical approach today. This approach

requires a general-purpose core to assist the accelerator by

continuously moving data back and forth. However, if the

protocol to access OS services and data is su�ciently simple,

it can be implemented in hardware. Such a hardware-friendly

protocol allows accelerators to autonomously access arbitrary

sources and sinks and removes software from the critical

path. We present our protocol in § 4.8.

Second, if a system wants to supportmultiple activities with

di�erent priorities on a single accelerator, a low-latency con-

text switch to the prioritized activity is needed. However, ac-

celerators are typically invoked by software and are not inter-

ruptible until the computation is complete. One way to lower

the latency is to reduce the amount of data per invocation.

Consequently, the compute time per invocation is reduced,but

software needs to continuously invoke the accelerator, which

causes more CPU utilization and power consumption. Alter-

natively, the �ne-grained invocation can be done in hardware

by adding a simple state machine with preemption points

next to the accelerator logic, as described in § 4.9.

Finally, to improve the utilization of accelerators, support

for multiple contexts is necessary. One solution is to require

the accelerator to provide a su�cient number of contexts and

multiplex the hardware accordingly (e.g., based on SR-IOV).

Alternatively, a combination of hardware and software can

be used, which requires only a single context in hardware.

To keep the hardware simple, we chose the latter approach:

We perform the potentially complex scheduling decisions

in software and add a simple state machine to the hardware,

which saves and restores contexts.

4.3 Activity-aware Communication
To increase the �exibility and applicability of our system de-

sign,we chose not to rely on shared memory. Hence,messages

cannot be delivered if the receiving activity is suspended (e.g.,

by preemption). There are two basic solutions to this problem:

1. Eagerly invalidate all incoming communication channels

to an activity before suspending it or

2. keep the communication channels alive, but lazily detect

communication attempts with suspended activities.

The eager approach does not require hardware support, but

leads to more context switching overhead that grows linearly

with the number of communication channels. In contrast, the

lazy approach requires hardware support, but communication

channels do not need to be invalidated on context switches.

We chose the lazy approach, because our system supports

many incoming communication channels (at most (n−1) ∗m
percompute unitwithnCUs andm communication endpoints

per CU). Furthermore, many communication channels are

typically not used while an activity is suspended. To this end,

we inform the hardware of the running activity and of the

intended recipient activity when communicating (see § 5.5

for details). The hardware compares both and reports an error

upon communication attempts with suspended activities.

4.4 Message Forwarding
Independent of eager invalidation or lazy detection, the hard-

ware reports an error to the sender if the intended recipient is

not running. Unfortunately, the naive solution of scheduling

the recipient and retrying the fast-path communication in-

troduces the following race condition: Since the kernel is not

involved in this communication, it does not know when the

communication has been completed successfully. If the kernel

suspends the recipient before the communication has been

�nished, the sender does not make progress. The problem is

that context switching and communication are decoupled, be-

cause the kernel performs the context switching, but activities

bypass the kernel when performing fast-path communication.

For example, if multiple senders try to communicate with

multiple recipients scheduled on the same CU, the kernel

could decide to schedule the next recipient before the

communication with the current recipient has been �nished.

We resolve this race condition by falling back to the

traditional kernel-based communication model, if a com-

munication failed due to a suspended activity. The kernel

performs both the context switching and the communication:

If activity A receives an error after trying to send a message

to activity B, it asks the kernel to forward this message

to B. When receiving the forward request, the kernel will

�rst schedule B and afterwards send the message to B. To

guarantee progress, the kernel does not suspend B until the

message has been successfully delivered.

4.5 Computing vs. Idling
Another consequence of fast-path communication is that

the kernel does not know whether an activity is currently

computing or idling, because it waits for a message. We solve

this problem by sending an idle noti�cation to the kernel,

similarly to scheduleractivations [8]. Alternatively, the kernel

could poll all CUs periodically to check whether the current

activity is performing useful work, but we opted against this

solution in favor of a less loaded and more scalable kernel.

We employ two optimizations. First, to prevent overeager

context switches, we delay the sending of idle noti�cations

620 2019 USENIX Annual Technical Conference USENIX Association

Accelerator logic

ASM

Accelerator logic

ASM

Figure 2: Stream-processing accelerators (left) and request-

processing accelerators (right).

by a kernel-de�ned value called idle delay. The idle delay

is stored in the address space of the current activity and

updated by the kernel. Second, an activity does not need to

send idle noti�cations at all if there is no ready activity that

can run on its CU. In this case the idle delay is set to zero.

Note that we cannot force activities to report idling.

However, threads on traditional systems can also decide to

poll instead of using blocking system calls. On both systems,

CPU-hogging activities can be penalized (e.g., priority

degradation) and forcefully preempted.

4.6 Gang Scheduling
The concepts described so far allow to suspend activities,

resume activities based on communication attempts, and

to use the system’s resources e�ciently by switching to a

di�erent activity in case the current activity idles. However, if

a set of heavily communicating activities contend with other

activities for the same CUs, a systematic scheduling approach

is required to maintain good performance. For example,

consider a chain of accelerator activities that perform stream

processing and therefore exchange messages and data at a

high rate. If multiple such chains are contending for the same

accelerators, the kernel needs to context switch these activ-

ities. However, uncoordinated context switching among the

activities of all chains leads to many failed communication at-

tempts when activities of di�erent chains run simultaneously.

We solve this problem by introducing a simple form of gang

scheduling [44]. Applications de�ne the gang of a new activity

at its creation time and the kernel pins all activities in a gang

on di�erent CUs and schedules them at the same time. We use

this to run all activities of a single chain simultaneously. As

the evaluation shows,multiple sets ofheavily-communicating

activities can therefore e�ciently share the same CUs.

4.7 Accelerator Types
In this work, we consider two types of accelerators, depicted

in Fig. 2: stream-processing accelerators that process a stream

of data in blocks and compute on each block exactly once

(e.g., AES encryption) and request-processing accelerators
that receive the entire data for the computation with a

single request and can access all data during the entire

computation (e.g., graph processing or garbage collection).

The stream-processing accelerators use DMA-based memory

access to load a block of data from a source (e.g., a �le or

network socket), perform the computation on the block, and

store the result to a sink. The request-processing accelerators

use cache-based memory access to the request data to support

large requests while maintaining �ne-grained data access. For

both accelerators,we add an accelerator supportmodule (ASM),

implemented as a �nite-state machine, to the accelerator logic.

The accelerator logic performs the computation, whereas the

ASM interacts with other CUs and invokes the accelerator

logic. We implemented the ASM as a piece of hardware in the

current gem5-based prototype to demonstrate its simplicity.

Running these two types of accelerators autonomously

requires access to OS services such as �le systems, network

stacks, and pipes to load and store data. Furthermore,

accelerators need to be interruptible without requiring

assistance by a general-purpose core. We describe our

solution for both problems in the following sections.

4.8 Access to OS Services

Enabling accelerators to access �les or network sockets

requires a simple and uni�ed protocol to obtain access

to these resources. To this end, we designed a simple

protocol for all �le-like objects, in the same spirit as UNIX’s

everything-is-a-�le principle. In contrast to UNIX, we

implement OS services as microkernel-style servers and

support both applications and accelerators as clients.

The �le protocol uses a fast-path messaging channel

between client and server. The server is expected to make the

data available in memory and to provide the client with access

to the data via a fast-path data channel. This channel enables

accelerators to access large amounts of data autonomously,

preventing frequent client-server interactions.

The protocol comprises two main requests: next_in and

next_out. The former requests access to the next piece

of data to read, whereas the latter requests access to the

memory to which the next piece of data should be written.

For example, a �le-system server will provide the client with

access to a fragmented �le piece by piece, as described in

more detail in § 5.7. After providing the client access to the

data, the server returns the o�set and size of the piece. Upon

receiving this reply, the client can access the data via the

fast-path data channel without involving the server again.

After �nishing the current piece, the client issues another

next_in or next_out request to the server. A piece of length

zero from the server denotes end-of-�le.

As the client accesses the data on its own, the server does

not know how many bytes the client has actually read or

written. Therefore, input and output requests need to be

committed. Each next_in and next_out request implicitly

commits the complete previous piece of input or output data,

respectively. Additionally, the commit(nbytes) request can

be used to explicitly commit the �rst nbytes of the previous

input or output request. The commit request is used, for

example, if a client wants to stop writing to a �le, in which

case it might have written less than it got access to.

USENIX Association 2019 USENIX Annual Technical Conference 621

Finally, some servers support the seek request to change

the �le position. As described in more detail in § 5.8,

the �le protocol is implemented within the ASM of the

stream-processing accelerators to load input data from

arbitrary �le-like sources and store the result to arbitrary

�le-like sinks. Note that request-processing accelerators can

access OS services via the �le protocol as well, but this has

not been implemented. To test the generality of the protocol,

we added a POSIX-like API on top and implemented a �le

system server, pipe server, and virtual terminal.

4.9 Interruptible Accelerators
As discussed in § 4.2, accelerators should be interruptible

with low latency, requiring �ne-grained invocations. At the

same time, accelerators should run autonomously, asking

for coarse-grained interactions with software. We achieve

both by using the ASM as an indirection. Software performs

the coarse-grained invocation of the hardware-implemented

ASM, which in turn invokes the accelerator logic in a

�ne-grained fashion and is interruptible between these invo-

cations. We implemented this scheme for request-processing

accelerators, because the considered stream-processing

accelerators already perform their computation block-wise

with relatively small block sizes.

5 Implementation
Our prototype implementation is based on the hardware and

software part of M3 [10]. The hardware platform of M3 exists

by now as custom silicon in the Tomahawk 4 chip [24]. To

extend the hardware part, we build on top of the already exist-

ing gem5 prototype. Both the gem5 prototype platform and

the OS are open source and have been extended in this work

to support context switching and autonomous accelerators.

5.1 Background onM3

The key idea of M3 is to introduce a new hardware component

next to each CU, which serves as an abstraction for the het-

erogeneity of the CUs and supports fast-path communication

between CUs. This hardware component is called data trans-

fer unit (DTU) and is accessible over memory-mapped I/O

(MMIO). Each CU is integrated with its DTU as a tile into the

network-on-chip. The DTU provides a set of communication

endpoints that can be con�gured as send, receive, or memory

endpoints. Sendandreceive endpoints allow to establisha fast-

path messaging channel,whereas memory endpoints are used

for fast-path data channels. Data channels provide DMA-like

access to a contiguous and byte-granular memory region.

The M3 kernel runs on a dedicated kernel tile, because

not all tiles can be expected to run an OS kernel. The M3

kernel is di�erent from traditional kernels, because it does

not run user applications on the kernel tile. Instead, the

kernel runs applications on other tiles, called user tiles,
and waits for system calls in the form of messages, sent

by applications via the DTU. Since only the kernel tile can

con�gure DTU endpoints, applications are isolated from each

other by default. The main responsibility of the kernel is to

establish communication channels between applications by

con�guring DTU endpoints remotely. After a communication

channel has been established, applications communicate

directly with each other, bypassing the kernel.

On M3, the same activity abstraction
3

is used for all types

of tiles, because the kernel is only concerned with their

DTU state. The M3 kernel uses capabilities to manage the

permissions in the system. Each activity has its own address

space and capability space and system calls allow to exchange

capabilities between activities. Since M3 does not support

context switching, an activity is assigned to a free tile on

creation and occupies this tile until its termination.

Outside of the kernel, M3 provides servers to host the

actual functionality of the OS. M3 o�ers an in-memory

�lesystem, called m3fs, that organizes the data similarly to

classical UNIX �lesystems. The important di�erence is that

m3fs grants applications direct access to �le data via the DTU.

Additionally, M3 o�ers a pipe server to connect activities via

a unidirectional, �rst-in-�rst-out communication channel.

5.2 Virtual Memory Support
So far, M3 supports only simple general-purpose cores

without virtual memory. Instead, cores have untranslated

access to their dedicated scratchpad memory. To support

more complex applications and be able to switch between

them without �rst saving their entire memory state to DRAM,

we added virtual memory support to M3. However, to prepare

for future systems, M3
X does not take advantage of cache

coherency, but keeps it optional.

As virtual memory is also desirable for the cache-based

memory access of request-processing accelerators, we added

virtual memory support in two variants. For general-purpose

cores, we use their memory management unit (MMU) and

run a small helper on the core that receives page faults. For

accelerators, we add an MMU to the DTU, consisting of a page

table walker and translation lookaside bu�er (TLB). In both

cases, page faults are resolved by a pager in collaboration with

the M3
X kernel,whichupdates the page table entries,similar to

othermicrokernel-basedsystems [33,61]. The pager is a server

in M3
X that supports copy-on-write and demand loading. On

general-purpose cores, the helpersends a message to the pager

to resolve page faults. On accelerators, the DTU sends the

message to the pager, which is transparent to the accelerator.

5.3 Context Switching Overview
Context switches are performed remotely on the user tiles,

initiatedby the M3
X kernel. This approach is required foraccel-

erators that do not have the architectural features to run an OS

kernel,but is optional forgeneral-purpose cores withthese fea-

tures. In other words, the implementation could be extended

to perform context switches on general-purpose cores locally.

3
M3 calls tiles processing elements (PEs) and activities virtual PEs (VPEs).

622 2019 USENIX Annual Technical Conference USENIX Association

Kernel

DTU

CU: Accelerator

DTU

CU: x86

RCTMux

App

DTU

CU: ARM

CtxSwCtxSw

ASM RCTMux

Figure 3: The involved components for context switches and

their interfaces, shown on an exemplary assembly of CUs.

A context switch involves four components, depicted in

Fig. 3: the CU, the DTU, the context switcher (CtxSw) in the

M3
X kernel, and a small component on each user tile, called

remotely controlled time multiplexer (RCTMux). RCTMux

saves and restores the CU-state (e.g., CPU registers or the

accelerator’s local memory) during a context switch. The

security-critical DTU-state (e.g., communication endpoints)

is saved and restored by the kernel. RCTMux is CU-speci�c

and either a piece of software on programmable CUs or a

piece of hardware as part of the ASM for accelerators. The

M3
X kernel maintains one context switcher for each user tile

and performs scheduling and placement decisions.

These four components have two important interfaces.

The �rst interface between the context switcher and RCTMux

(green in Fig. 3) is used by the kernel to request saves and

restores from RCTMux and by RCTMux to acknowledge their

completion. Second, the DTU-CU interface (red) is used by

the kernel to signal the CU about an imminent context switch.

Depending on the type of CU, the signal injects an interrupt

request into a core or noti�es the ASM of an accelerator.

5.4 Kernel Extensions
We incorporated the context switcher module into the M3

kernel to perform context switches on user tiles. First, the

context switcher asks RCTMux to save the CU state. The

context switcher then saves the DTU state of the current

activity, restores the DTU state of the new activity, and asks

RCTMux to restore said activity’s CU state. Each of these

steps is executed individually to be able to handle other

requests (e.g., system calls) in the meantime.

Furthermore, we introduced a system call to forward

messages upon communication attempts with suspended

activities. The kernel bu�ers the message to forward, sched-

ules the recipient, and delivers the message to the recipient

as soon as it is running. Finally, we added a system call for

idle noti�cations, upon which the kernel switches to the next

ready activity or work-steals an activity from another tile in

case no activity was ready. For application activities, the ker-

nel sets the idle delay to 20,000 cycles
4
. For server activities,

the kernel uses an idle delay of one cycle, because servers are

4
This idle delay turned out to be a good trade-o� between context switch-

ing too often and overly long idle periods.

typically only activated on demand. Hence, switching to an

application is more bene�cial for the system’s performance.

To facilitate fast-path communication, the kernel migrates

activities in two situations. First, if two activities are scheduled

on the same CU and attempt to communicate, the kernel tries

to migrate the currently suspended activity to another CU. If

migration is not possible (e.g., no other compatible CU is avail-

able), the kernel instead performs a context switch from the

activity that attempted the communication to the suspended

activity. Second, if an activity is idling (see § 4.5), the kernel

tries to work-steal a ready activity from a compatible CU.

5.5 DTU Extensions
To detect communication attempts with suspended activities,

we equipped the DTU with the ID of the current activity and

added the destination activity ID to the message header. If

the destination activity ID at the recipient’s DTU does not

match the current activity ID, the DTU reports an error to

the sender. In this case, the sender asks the kernel to forward

the message to the recipient via the forward system call.

If the kernel decides to perform a context switch on a user

tile, the DTU might currently be busy with a communication.

As explained in § 5.1, the DTU supports messaging channels

and data channels. Messages need to be delivered exactly

once, whereas data accesses can be repeated. To keep the DTU

simple, we decided against a complicated protocol to abort

potentially ongoing communication. Instead, the DTU has

an abort command, which consists of two parts. First, further

communication attempts are rejected with an error until re-

enabledbythe kernel. Second,the DTU waits untilallmessage-

based communication is completed, whereas data accesses

are aborted with an error and need to be repeated later.

5.6 RCTMux
We implemented RCTMux both for accelerators and for

general-purpose cores. As mentioned before, on accelerators,

RCTMux receives a signal from the kernel if a context switch

is desired. The ASM checks for the signal only at convenient

points in time, because the accelerator logic is not assumed

to be interruptible. Upon the signal, it saves the ASM’s state

and the accelerator’s local memory via DTU to a previously

allocated space in DRAM,uses the DTU’s abort command,and

noti�es the kernel that the state has been saved. Analogously,

the state is restored upon a restore request from the kernel.

We also implemented RCTMux for x86-64 as a small

piece of software running in ring 0. In this case, RCTMux is

activated by an interrupt injection, saves the CPU registers,

uses the DTU’s abort command, and noti�es the kernel. Upon

a restore request from the kernel, it restores the CPU registers

and resumes a previously aborted data access, if necessary.

5.7 File Protocol Servers
M3 already features an in-memory �le system, called m3fs,

and a pipe server. However, since M3 was only evaluated

USENIX Association 2019 USENIX Annual Technical Conference 623

DTU

Scratchpad

M

in out
D M D

ASM

Accel.
logic

CU

C

RD OU

W

E

IN WR

input
no input

output

no outputin reply

out reply
EOF

Figure 4: Stream-processing accelerator.

on general-purpose cores (in some cases with instruction

extensions), the protocols to access these OS services are

not suited for accelerators. First, M3 uses a di�erent protocol

for m3fs than for the pipe server, requiring accelerators to

implement multiple protocols. Second, m3fs’s protocol is

based on the exchange of capabilities to obtain access to

the data and requires clients to manage the �le position.

In summary, the existing protocols are too complex to be

implemented in hardware. For that reason, we replaced them

with the �le protocol, as introduced in § 4.8.

On M3
X, the �le protocol is based on a messaging channel

between client and server and a data channel to access the

�le data. Since m3fs manages the �le data in extents, similar

to other modern �le systems [40, 50], the next_in request

provides the client with access to the next extent of the

�le by asking the kernel to establish a corresponding data

channel. The �le position is managed and advanced by m3fs

and can also be changed by the seek request. For appends,

the next_out request allocates new space and provides the

client with access to this space. Upon commit, m3fs truncates

this space, if necessary, and makes it visible to other clients.

The pipe server uses a single and contiguous shared

memory area in DRAM per pipe to exchange data between

clients. For that reason, the pipe server asks the kernel to

con�gure the client’s data channel only once for the complete

area and tells the clients where to read or write next. If no

data can be read or written, the pipe server delays its response

to the next_in or next_out request correspondingly.

5.8 File Protocol Clients
On the client side, we implemented the �le protocol in

software (for general-purpose cores) and in hardware (for

accelerators). The software version is part of M3
X’s standard

library and allows applications to use a POSIX-like �le API.

The library maps this API to the corresponding next_in,

next_out, commit, and seek requests.

To enable access to �le-like resources forstream-processing

accelerators, we implemented the �le protocol as part of the

accelerator support module (ASM). The stream-processing

accelerator has an input stream and an output stream, each

using one messaging channel (M) to the server and one

data channel (D) to access to data, as shown in Fig. 4. Like

many other accelerators [17, 38, 55, 56, 63], the computation

is performed on scratchpad memory (SPM), because it allows

many parallel memory accesses (indicated by the thick

arrows) and has predictable access latency.

The ASM loads data via the DTU from the input stream

into the accelerator’s SPM, activates the accelerator logic, and

writes the result to the output stream. The ASM starts in state

IN , which checks whether the input data channel has data

left to read. If so, it directly transitions to state RD to read the

next block of data into the SPM. Otherwise, it sends an input

request (next_in) to the input server to request access to new

input data and transitions to state W . State W waits until a

message arrives and transitions to RD as soon as the reply to

the input request has been received. After the next data block

has been read into the SPM, the accelerator logic is activated

and the ASM transitions to state C for the computation.

As soon as the computation has been completed, the ASM

transitions to state OU . Analogously to the input phase, OU
�rst checks whether the output data channel has space left for

the result of the computation. If so, it directly transitions to

WR and writes the data. Otherwise it �rst requests new space

from the output server (next_out). Afterwards, the ASM

transitions back to state IN , which repeats the procedure

until the reply to an input request indicates end-of-�le. In this

case, the ASM commits the written data by sending commit
to the output server, if required, and transitions to state E.

6 Discussion
We believe that our architecture provides a good foundation

for very heterogeneous systems, but we are aware that CUs

will be diverse and have di�erent requirements. This section

discusses a few examples of how our current prototype can

be extended to support other use cases.

Our context switching mechanism handles the simple

save and restore actions on user tiles and the decision

making in the M3
X kernel. While we show in the evaluation

that context switches on �xed-function accelerators have

acceptable overhead, the mechanism is probably not a

good �t for accelerators that have a large state such as

GPUs. General-purpose cores provide native mechanisms

to save/restore their state, which are used by the software

version of RCTMux. Therefore we believe that large-state

accelerators need tailored context-switching mechanisms

as already partially supported by modern GPUs.

As described in § 5.4, the M3
X kernel currently migrates

an activity to a di�erent tile if two activities on the same

tile try to communicate. This policy assumes that the

communication attempt starts a series of interactions

between these activities, which mostly holds true for our

current workloads. Clearly this is not the best solution in all

cases. For example, if the activities communicate just once,

a local communication channel with context switching can

be preferable, if supported by the compute unit.

624 2019 USENIX Annual Technical Conference USENIX Association

x86−64 (local)
x86−64 (fwd)
x86−64 (fast)

RP−accel (fwd)
RP−accel (fast)
SP−accel (fwd)
SP−accel (fast)

Time (µs)

0 1 2 3 4 5 6 7 8 9 10

Figure 5: Fast-path vs. forwarded communication.

And �nally, our current prototype does not queue messages

at the recipient’s compute unit if the recipient is suspended,

but forwards the message to the recipient via the M3
X kernel.

We chose this solution to keep the hardware extensions small

and, most importantly, minimize the burden on accelerators.

If accelerators support message queues or such queues are

added externally, the number of kernel involvements can

be reduced. Thus, arguably our solution uses a queue size of

zero, which can be extended to queue a few messages locally

and only resort to the M3
X kernel if the queue is full.

7 Evaluation
Our evaluation answers the following questions:

• How does fast-path and forwarded communication

perform?

• Do the changes to the �le protocol reduce its performance?

• What is the performance impact if activities share tiles?

• What are the bene�ts of autonomous accelerators?

7.1 Evaluation Platform
We used the gem5-based prototype platform for our eval-

uation. General-purpose tiles contain a single out-of-order

x86-64 core with 32 KiB L1 instruction cache, 32 KiB L1 data

cache, and 256 KiB L2 cache. The request-processing accel-

erators use 32 KiB L1 cache, whereas the stream-processing

accelerators use 2 KiB scratchpad memory. General-purpose

cores are simulated with a 3GHz clock frequency, whereas

accelerators are clocked with 1GHz. All DTUs are con�gured

to have 16 endpoints available. We use the DDR3_1600_8x8
model of gem5 as the physical memory, clocked at 1GHz.
To keep the simulation times manageable, we connect the

tiles via a crossbar instead of a full network-on-chip, which

was su�cient, because our evaluation does not require large

numbers of tiles. Due to the still long simulation times we

used representative, but short-running benchmarks.

7.2 Fast-Path vs. Forwarding
M3

X combines fast-path communication with context switch-

ing. In a �rst step, we use micro-benchmarks to determine

the costs of forwarded communication, requiring a context

switch, compared to fast-path communication. We measure

the round-trip-time between activities on di�erent CUs. Fig. 5

shows the average time over 16 runs with warm caches. The

uppermost two rows show the time for stream-processing

accelerators (SP), �rst if the recipient is running, resulting

in fast-path communication, and second if the recipient is

suspended, resulting in forwarded communication. The next

two rows show the results for request-processing acceler-

ators (RP), followed by two rows for an x86-64 core. The

�nal row shows the time for a core-local round trip, using for-

warded communication for both the request and the response.

As the results in Fig. 5 show, fast-path communication

is more than one order of magnitude faster than forwarded

communication on our system. All forwarded communication

requires a forward system call, upon which the kernel per-

forms a context switch to the receiving activity and forwards

the message to the recipient. Most of the time is spent with the

actual context switch, because it requires multiple steps and

is carried out partially by RCTMux and partially by the kernel.

Since stream-processing accelerators use a local scratchpad

memory, the content needs to be saved and restored, leading

to additional overhead. On x86-64, the overhead is larger,

because the RCTMux is implemented in software. Finally, the

core-local round trip requires two context switches. However,

it is not twice as expensive as a single context switch, because

the kernel optimizes this case by omitting the idle noti�cation.

7.3 Application-level Benchmarks
As described in § 5.7, we simpli�ed and uni�ed the �le

protocol to be hardware-friendly. To evaluate whether these

changes impact performance, we used the system call tracing

infrastructure from M3. It allows to run an application on

Linux, trace the system calls including timing information and

replay the trace on M3. We used the following applications:

1. tar: creates a tar archive from �les with sizes between

128 and 8192 KiB and 16 MiB in total,

2. untar : unpacks the same archive,

3. shasum: computes the SHA256 hash of a 512 KiB �le,

4. sort: sorts a 256 KiB �le with 408 lines,

5. �nd: searches 24 directories with 40 �les each,

6. SQLite: creates a table and inserts/selects 32 entries, and

7. LevelDB: creates a table and inserts/selects 512 entries.

The applications tar, untar, shasum, sort, and �nd have been

taken from BusyBox 1.26.2 [1]. SQLite is an embedded and

highly reliable database engine [7]. LevelDB is a light-weight

and high-performance key-value store, created by Google [5].

We chose these applications to stress the system in di�erent

ways: tar and untar are data intensive, shasum and sort are

compute intensive, �nd performs many small �le-system

requests, and SQLite and LevelDB are mixtures of these.

We used these applications to compare the performance

between Linux 4.10, M3 with the original �le protocol, and

M3
X using the uni�ed and hardware-friendly �le protocol. In

this section,M3 and M3
X use three dedicated x86-64 tiles (with-

out accelerator tiles) for the application, m3fs, and the pager,

whereas Linux uses a single x86-64 core. However,M3 andM3
X

USENIX Association 2019 USENIX Annual Technical Conference 625

L
x

M
3

M
3x

tar

0

5

10

R
u

n
ti

m
e

(m
s)

L
x

M
3

M
3x

untar
L

x
M

3
M

3x

sha

L
x

M
3

M
3x

sort

L
x

M
3

M
3x

find

L
x

M
3

M
3x

SQLi

L
x

M
3

M
3x

LDB

App Xfers OS

Figure 6: Performance comparison between Linux (Lx), M3,

and M3
X.

do not take advantage of multiple tiles, because all cross-tile

interactions are synchronous and therefore,atno point in time

is useful work done in parallel. On M3 and M3
X, we use extents

of at most 512 KiB, requiring multiple requests to m3fs to read

and write �les. On Linux, we use tmpfs as the in-memory �le

system. All �le systems use a block size of 4 KiB. Fig. 6 shows

the average runtime of 7 runs after one warmup run, broken

down into the application time, time for data transfers, and

OS overhead. We account Linux’s time for the system calls,

which are unsupported
5
, as application time as well. Since

the standard deviation is below 1%, we omit error bars.

In our previous work, we have already shown that data-

intensive workloads like tar and untar have signi�cantly less

OS overhead on M3 than on Linux when running on simple

Xtensa cores. As Fig. 6 shows, these improvements can be seen

on x86-64 cores as well. Note however, that the di�erence is

about a factor of two on x86-64 instead of �ve as on Xtensa,

because the Xtensa cores did not have a cacheline prefetcher,

resulting in poorperformance on Linux [10]. On both architec-

tures, the DTU’s data channel can be con�gured in constant

time for any byte-granular and contiguous region of memory,

independent of its size. After the channel has been established,

applications access the data via DMA withalmostno overhead.

Therefore, M3 and M3
X outperform Linux signi�cantly.

For the remaining applications, computation dominates

the runtime, leading to smaller overall performance improve-

ments. Note that SQLite is slightly faster on M3, because the

new �le protocol in M3
X currently does not provide clients

with read-write access to data and SQLite often switches

between reading and writing of the same �le. These switches

require a commit request and a new next_in or next_out
request, causing additional overhead.

7.4 Tile Sharing
After the performance comparison using three tiles, we show

the performance impact when activities share tiles by means

of context switching. In the �rst step, we ran both OS servers

(m3fs and pager) on the same tile and in the second step, we

ran the OS servers and the application on a single tile.

Fig. 7 shows the average runtime of three runs, preceded

by one warmup run, normalized to the average runtime on

5
In these benchmarks, the system calls access,brk,chdir,chmod,chown,

dup2, fchown, fcntl, fdatasync, futex, geteuid, getpid, getrlimit,

gettimeofday, getuid, ioctl, and utimes were unsupported on M3/M3
X.

The sum of the times for the ignored system calls was at most 0.4ms.

tar untar sha sort find SQLi LDB
0

1

2

3

R
el

.
ru

n
ti

m
e

M3x (3 tiles) M3x (2 tiles) M3x (1 tile) Lx (1 core)

Figure 7: Application performance with a varying number of

tiles, relative to the runtime on M3
X with 3 tiles.

M3
X with three tiles. The standard deviation is less than 2%.

As the results show, using the same tile for both servers and a

dedicated tile for the application (two tiles in total) has almost

no performance impact. Running servers and application

on a single tile leads to a performance degradation in some

cases. For tar and untar, the runtime is increased by 17% and

12%, respectively, but M3
X is still about twice as fast as Linux.

shasum and sort show almost no performance degradation,

whereas �nd and SQLite experience a signi�cant slowdown.

The reason is, that both �nd and SQLite communicate

heavily with m3fs, leading to many context switches. The

performance of LevelDB degrades slightly, but is still better

than on Linux. We conclude that some workloads require

faster core-local context switches. We could improve M3
X by

running a kernel with context-switching support directly on

the core, in case the necessary hardware features are available.

7.5 Autonomous Request Processing
After the evaluation on general-purpose cores, we want to

demonstrate the bene�ts of autonomous accelerators. In this

section, we start with request-processing accelerators. As

described in § 4.9, software invokes the ASM, which in turn

invokes the accelerator logic. In this section, we evaluate

the impact of the invocation granularity on performance and

CPU wake-up frequency.

We simulate the accelerators using gem5-Aladdin [56],

which is a power-performance accelerator modeling

framework that can be used to explore the design space for

�xed-function accelerators. gem5-Aladdin simulates the

accelerator logic and uses the memory subsystem of gem5 to

perform memory accesses. gem5-Aladdin achieves an error

of less than 6% for the accelerator’s performance compared

to real hardware. We adapted gem5-Aladdin to be invoked

by the ASM and to notify the ASM of completions.

To use a request-processing accelerator, an application

creates an activity for the desired accelerator, creates

the memory mappings for the input and output data in

the activity’s virtual address space, and establishes the

communication channel to invoke the ASM. In this case, the

input data is stored in �les and the output data should be

written to �les as well. Therefore, these �les are mapped into

the virtual address space of the accelerator activity.

We use di�erent accelerator workloads from Mach-

Suite [49]. MachSuite has been analyzed by gem5-Aladdin

626 2019 USENIX Annual Technical Conference USENIX Association

Stencil
0.0
0.3
0.6
0.9
1.2

R
u

n
ti

m
e

(m
s)

MD FFT SPMV

1 4 16 64 256 N

Stencil
1e+02
1e+03
1e+04
1e+05
1e+06

T
im

e
(n

s)

MD FFT SPMV

1 4 16 64 256 N

Figure 8: Total runtime (left) and the average (bars on the

right) and maximum execution times (lines on the right) for

di�erent batch sizes.

with the result that some accelerators bene�t from DMA-

based memory access and others bene�t from cache-based

memoryaccess. Forthis evaluation,we pickedthe accelerators

that bene�t from cache-based memory access:

1. Stencil-3D: a three-dimensional stencil computation,

2. MD-KNN: a k-nearest-neighbor computation from

molecular dynamics,

3. FFT-1D: a one-dimensional fast Fourier transform, and

4. SPMV: a sparse matrix-vector multiplication.

We adjusted each accelerator to perform a single indivisible

step per invocation by the ASM. Multiple such invocations

are batched in a single invocation by the CPU. We analyze

the spectrum between assisted and autonomous operation

by varying the batch size.

Fig. 8 shows the results from three runs after one warmup

run with batch sizes of 1 to 256. Performing all invocations

in a single batch is shown as ‘N’, because the total number

of invocations depends on the workload. The standard

deviation is less than 1%. As can be seen in the left part of the

�gure, larger batch sizes lead to better performance. More

importantly, the right part of the �gure shows the average

(bars) and maximum (lines) accelerator execution times for

each ASM invocation. For example, using the MD workload

and a batch size of 16 shows acceptable performance, but

leads to a context switching latency of 48µs and the CPU is

woken up every 8µs on average. High wake-up frequencies

are a problem on modern cores, which can only achieve

signi�cant power savings in deep sleep states. However,

the deeper the sleep state, the longer the time to bring the

core back into a functional state (e.g., on Intel’s Haswell

generation, dozens of microseconds to leave C6 and up to

several milliseconds to leave C10 [32, 54]). Hence, deeper

sleep states are only bene�cial during longer idle periods.

M3
X performs all accelerator invocations in a single batch

and uses an ASM that is interruptible between invocations

to get the best of both worlds: On the one hand, a single

batch leads to the best performance. On the other hand,

the �ne-grained interruptibility allows to context-switch

to a more important activity with a low latency. Note that

an immediate interruption can be achieved by resetting

the accelerator logic, but requires to repeat the last step of

the computation. If all invocations are done by the ASM

in hardware (autonomous), the accelerator needs to repeat

only a single indivisible step. If all invocations are done in

software (assisted), the accelerator needs to repeat as many

steps as the performance and energy constraints allow.

7.6 Autonomous Stream Processing
Finally, we want to show the bene�ts of autonomous

stream-processing accelerators. Stream processing is used

in various domains such as mobile communication, image

processing, and audio processing. In this work, we consider

an image processing scenario as is imaginable in data centers,

similar to Google’s TPU [27] workloads. The cloud provider

o�ers a set of image-processing accelerators as a service and

allows customers to perform large-scale image processing

on these accelerators. An e�cient method for large images is

FFT convolution [42], which �rst performs a 2D fast Fourier

transform (FFT) on the input image, then multiplies the

result pointwise with an image �lter, and �nally performs

the inverse FFT. Depending on the �lter, FFT convolution can

be used, for example, for edge detection or low-pass �ltering.

To evaluate this scenario, we use three types of accelerators

called FFT, MUL, and IFFT. Each accelerator has 2 KiB (the

block size for the 32×32 point FFT) of local scratchpad mem-

ory (SPM) and uses the �le protocol (see § 5.8) to stream the

data block-wise from the input stream via the SPM to the out-

put stream. Due to the deterministic execution model of these

accelerators, we did not use gem5-Aladdin to simulate the ac-

celerator logic, but used Aladdin [55] to determine the compu-

tation times o�ine. To get reasonable results, we generated all

sensiblecon�gurationsandpickedthesweetspotbetweenper-

formanceandtheproductofchipareaandpowerconsumption.

We obtained 5,856 cycles for FFT and IFFT and 1,189 cycles for

MUL. To put these numbers into perspective, the FFT/IFFT

accelerator is about three times as fast as a simple software im-

plementation and Aladdin reports a three orders of magnitude

lower power consumption than a typical modern x86 core.

These three types of accelerators run activities that form

an FFT-MUL-IFFT chain to process a 4 MiB image �le and

store the resulting image as a �le. In our �rst experiment,

we run 1 to 4 such chains simultaneously without context

switching, thus using 1 to 4 instances of each accelerator type.

To show the bene�ts of autonomous accelerators, we compare

M3
X’s autonomous approach with the assisted approach. The

assisted approach drives the accelerators from software using

a single general-purpose core. Hence, software loads the input

data into the SPM, starts the accelerator via a message, and

asks the accelerator’s DTU to move the result from the SPM

to the next accelerator or to the output �le. The autonomous

variant connects the DTU endpoints of the accelerators

as follows: The input of the �rst and the output of the last

accelerator are connected to a �le. The output of the �rst and

second accelerator are directly pushed to the successor.

We simulate two ways to attach accelerators to the system:

network-on-chip and PCI Express (PCIe). The former leads to

superior performance due to lower latency, whereas the latter

USENIX Association 2019 USENIX Annual Technical Conference 627

1R
u

n
ti

m
e

(m
s)

0
15
30
45
60
75

2 3 4

Assist. Auton.

(a) Runtime

1C
P

U
 t

im
e

(r
el

)

0.0
0.2
0.4
0.6
0.8
1.0

2 3 4

Assist. Auton.

(b) CPU time

1

R
u

n
ti

m
e

(r
el

)

0.98
1.00
1.02
1.04
1.06
1.08

2 3 4

1ms 2ms 4ms1ms 2ms 4ms

(c) CtxSw Overhead

Figure 9: Total runtime, CPU time, and context switching

overhead for di�erent numbers of accelerator chains when

integrating the accelerators into the NoC.

1R
u

n
ti

m
e

(m
s)

0
15
30
45
60
75

2 3 4

Assist. Auton.

(a) Runtime

1C
P

U
 t

im
e

(r
el

)

0.0
0.2
0.4
0.6
0.8
1.0

2 3 4

Assist. Auton.

(b) CPU time

1

R
u

n
ti

m
e

(r
el

)

0.98
1.00
1.02
1.04
1.06
1.08

2 3 4

1ms 2ms 4ms1ms 2ms 4ms

(c) CtxSw Overhead

Figure 10: Like Fig. 9, but with PCIe-attached accelerators.

allows a �exible combination of independently developed

components. The result for the NoC version is depicted

in Fig. 9, whereas the PCIe version is depicted in Fig. 10.

We show the overall runtime (a) and the CPU time spent

to drive the accelerators (b), depending on the number of

accelerator chains using three runs, preceded by one warmup

run. The standard deviation is below 3%. We simulate the

PCIe-attached add-on card by connecting the accelerators via

a bridge with a delay of 500 ns to the host system, which is the

typical one-way latency for PCIe gen 3 [20,23,30,53]. In other

words, we do not simulate a complete PCIe interconnect,

but only the latency PCIe introduces. The one-way latency

within the NoC is about 10 ns. In both cases, the DRAM is

part of the host system and stores the in-memory �le system.

Using the assisted approach leads to slightly worse overall

runtime with an increasing number of accelerator chains

when integrating the accelerators into the NoC. With PCIe,

the overall runtime increases signi�cantly, leading to a

slowdown of factor 4.7. In contrast, the autonomous approach

always achieves the same runtime, independent of the number

of chains. More importantly, the assisted approach keeps the

CPU busymostof the time. Within the NoC,the CPU is utilized

100% of the time starting at four accelerator chains, whereas

with PCIe, the CPU is already fully utilized starting with two

chains. The autonomous approach does not cause signi�cant

CPU load in either case. Additionally, Fig. 10 shows that the

autonomous approach outperforms the assisted approach for

PCIe-based accelerators even if the assisted approach does

not fully utilize the CPU. The reason is the 500 ns delay when

communicating with the accelerators, which prevents the

assisted approach from fully utilizing the accelerators.

Finally, we evaluate the context switching overhead when

two chains of activities compete for the same accelerators. In

this case, we use only the autonomous approach and put each

chain of activities into the same gang to bene�t from gang

scheduling. Plot (c) in Fig. 9 and Fig. 10 shows the context

switching overhead by comparing the runtime of two activity

chains running consecutively with the runtime of two chains

running interleaved. We vary the time slice length for context

switching between 1ms and 4ms. As the results show, using

a still rather short time slice of 4ms leads to less than 0.9%

overhead with accelerators integrated into the NoC and less

than 2.9% overhead when attaching them via PCIe.

Note that the performance can still be improved for both

the assisted and the autonomous approach. For the assisted

approach, batching could be used to reduce the interaction

frequency with the accelerators. However, batching is only

possible by increasing the SPM sizes of the accelerators,

which is expensive in terms of area and energy and increases

the time the accelerator is not interruptible. Additionally,

the assisted approach can trade more CPU time for more

accelerator performance by using multiple cores to drive

the accelerators, until the PCIe bus becomes the bottleneck.

The autonomous approach does not su�er from the trade-o�

between SPM size and CPU utilization and can further

improve performance by overlapping data transfers to the

DRAM instead of issuing one transfer at a time.

8 Conclusion
In this work, we presented M3

X, which combines fast-path

communication, bypassing the kernel, with context switching

and thereby enables autonomous accelerators. To this end, we

re-evaluated the boundary between hardware and software.

We found that (1) introducing a hardware-friendly �le proto-

col enables accelerators to autonomously access �le systems

ornetworkstacks,(2)performingpotentiallycomplexschedul-

ing decisions in software and simple save and restore actions

in hardware allows to context switch accelerators, and (3) at-

taching a simple hardware component to the accelerator logic

allows to combine autonomous operation and interruptibility.

We demonstrated in our evaluation that M3
X retains the

performance advantages of M3’s fast-path communication,

while using the system’s resources more e�ciently by

performing context switches, if required. Additionally, we

have shown that running PCIe-attached image processing

accelerators autonomously achieves a speedup of 4.7 and

reduces the CPU utilization by a factor of 30.

In future work, we plan to study other types of accelerators

such as FPGAs and GPUs and apply our insights from

simulation to real hardware.

9 Acknowledgments
We would like to thank our shepherd, Christopher Rossbach,

and the anonymous reviewers for their helpful suggestions.

This work was funded by the German Research Council DFG

through the Cluster of Excellence Center for Advancing

Electronics Dresden (cfaed) and by public funding of the state

of Saxony/Germany.

628 2019 USENIX Annual Technical Conference USENIX Association

References
[1] BusyBox. https://www.busybox.net. Accessed: 10/27/2018.

[2] Cache Coherent Interconnect for Accelerators (CCIX). http://www.
ccixconsortium.com. Accessed: 08/03/2018.

[3] Gen-Z Consortium: Computer Industry Alliance Revolutionizing Data

Access. https://genzconsortium.org/. Accessed: 08/03/2018.

[4] HSA foundation ARM, AMD, Imagination, MediaTek, Qualcomm, Sam-

sung, TI. http://www.hsafoundation.com. Accessed: 12/15/2017.

[5] LevelDB. https://leveldb.org. Accessed: 06/15/2018.

[6] OpenCAPI consortium. https://opencapi.org/. Accessed:

12/15/2017.

[7] SQLite. https://www.sqlite.org. Accessed: 07/12/2017.

[8] Anderson, T. E., Bershad, B. N., Lazowska, E. D., and Levy, H. M.

Scheduler activations: E�ective kernel support for the user-level man-

agement of parallelism. ACMTransactions on Computer Systems (TOCS)
10, 1 (1992), 53–79.

[9] Arnold, O., Matus, E., Noethen, B., Winter, M., Limberg, T., and

Fettweis, G. Tomahawk: Parallelism and heterogeneity in commu-

nications signal processing MPSoCs. ACM Transactions on Embedded
Computing Systems (TECS) 13, 3s (Mar 2014), 107:1–107:24.

[10] Asmussen, N., Völp, M., Nöthen, B., Härtig, H., and Fettweis, G.

M3: A hardware/operating-system co-design to tame heterogeneous

manycores. In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating
Systems (2016), ASPLOS’16, ACM, pp. 189–203.

[11] Ballesteros, F. J., Evans, N., Forsyth, C., Guardiola, G., McKie, J.,

Minnich, R., and Soriano-Salvador, E. Nix: A case for a manycore

system for cloud computing. Bell Labs Technical Journal 17, 2 (2012),

41–54.

[12] Barbalace, A., Sadini, M., Ansary, S., Jelesnianski, C., Ravichan-

dran, A., Kendir, C., Murray, A., and Ravindran, B. Popcorn: Bridg-

ing the programmability gap in heterogeneous-ISA platforms. In Pro-
ceedings of the Tenth European Conference on Computer Systems (New

York, NY, USA, 2015), EuroSys’15, ACM, pp. 29:1–29:16.

[13] Basaran, C., and Kang, K.-D. Supporting preemptive task executions

and memory copies in GPGPUs. In Proceedings of the 2012 24th Eu-
romicro Conference on Real-Time Systems (Washington, DC, USA, 2012),

ECRTS’12, IEEE Computer Society, pp. 287–296.

[14] Baumann, A., Barham, P., Dagand, P.-E., Harris, T., Isaacs, R., Peter,

S., Roscoe, T., Schüpbach, A., and Singhania, A. The multikernel:

A new OS architecture for scalable multicore systems. In Proceedings
of the ACM SIGOPS 22nd Symposium on Operating Systems Principles
(New York, NY, USA, 2009), SOSP’09, ACM, pp. 29–44.

[15] Bergman, S., Brokhman, T., Cohen, T., and Silberstein, M. SPIN:

seamless operating system integration of peer-to-peer DMA between

SSDs and GPUs. In Proceedings of the Seventeenth USENIX Annual
Technical Conference (2017), vol. 17 of USENIX ATC’17.

[16] Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi, A.,

Basu, A., Hestness, J., Hower, D. R., Krishna, T., Sardashti, S., Sen,

R., Sewell, K., Shoaib, M., Vaish, N., Hill, M. D., and Wood, D. A. The

gem5 simulator. SIGARCH Computer Architecture News 39, 2 (u 2011),

1–7.

[17] Cota, E. G., Mantovani, P., Di Guglielmo, G., and Carloni, L. P. An

analysis of accelerator coupling in heterogeneous architectures. In

Proceedings of the 52nd Annual Design Automation Conference (New

York, NY, USA, 2015), DAC’15, ACM, pp. 202:1–202:6.

[18] Dennard, R., Rideout, V., Bassous, E., and LeBlanc, A. Design of

ion-implanted MOSFET’s with very small physical dimensions. IEEE
Journal of Solid-State Circuits 9, 5 (Oct 1974), 256–268.

[19] DeVuyst, M., Venkat, A., and Tullsen, D. M. Execution migration

in a heterogeneous-ISA chip multiprocessor. In Proceedings of the
Seventeenth International Conference on Architectural Support for Pro-
gramming Languages andOperating Systems (New York, NY, USA, 2012),

ASPLOS’12, ACM, pp. 261–272.

[20] Erickson, K. G., Boyer, M. D., and Higgins, D. NSTX-U advances in

real-time deterministic PCIe-based internode communication. Fusion
Engineering and Design 133 (2018), 104–109.

[21] Esmaeilzadeh, H., Blem, E., St. Amant, R., Sankaralingam, K., and

Burger, D. Dark silicon and the end of multicore scaling. In Proceedings
of the 38th Annual International Symposium on Computer Architecture
(New York, NY, USA, 2011), ISCA’11, ACM, pp. 365–376.

[22] Esmaeilzadeh, H., Sampson, A., Ceze, L., and Burger, D. Neural

acceleration for general-purpose approximate programs. IEEE Micro
33, 3 (May 2013), 16–27.

[23] Flajslik, M., and Rosenblum, M. Network interface design for low

latency request-response protocols. In Proceedings of the 2013 USENIX
Annual Technical Conference (San Jose, CA, 2013), USENIX ATC’13,

USENIX, pp. 333–346.

[24] Haas, S., Seifert, T., Nöthen, B., Scholze, S., Höppner, S., Dixius,

A., Adeva, E. P., Augustin, T., Pauls, F., Moriam, S., Hasler, M., Fis-

cher, E., Chen, Y., Matúš, E., Ellguth, G., Hartmann, S., Schiefer,

S., Cederström, L., Walter, D., Henker, S., Hänzsche, S., Uhlig, J.,

Eisenreich, H., Weithoffer, S., Wehn, N., Schüffny, R., Mayr, C.,

and Fettweis, G. A heterogeneous SDR MPSoC in 28 nm CMOS for

low-latency wireless applications. In Proceedings of the 54th Annual
DesignAutomationConference 2017 (New York, NY, USA, 2017), DAC’17,

ACM, pp. 47:1–47:6.

[25] Henkel, J., Khdr, H., Pagani, S., and Shafiqe, M. New trends in dark

silicon. In Proceedings of the 52nd ACM/EDAC/IEEE Design Automation
Conference (2015), DAC’15, IEEE, pp. 1–6.

[26] Jarvinen, K., and Skytta, J. High-speed elliptic curve cryptography

accelerator for koblitz curves. In Proceedings of the 16th International
Symposium on Field-Programmable Custom Computing Machines (April

2008), FCCM’08, pp. 109–118.

[27] Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa,

R., Bates, S., Bhatia, S., Boden, N., Borchers, A., Boyle, R., Cantin,

P.-l.,Chao,C.,Clark,C.,Coriell, J.,Daley,M.,Dau,M.,Dean, J.,Gelb,

B., Ghaemmaghami, T. V., Gottipati, R., Gulland, W., Hagmann, R.,

Ho, C. R., Hogberg, D., Hu, J., Hundt, R., Hurt, D., Ibarz, J., Jaffey,

A., Jaworski, A., Kaplan, A., Khaitan, H., Killebrew, D., Koch, A.,

Kumar, N., Lacy, S., Laudon, J., Law, J., Le, D., Leary, C., Liu, Z., Lucke,

K., Lundin, A., MacKean, G., Maggiore, A., Mahony, M., Miller,

K., Nagarajan, R., Narayanaswami, R., Ni, R., Nix, K., Norrie, T.,

Omernick, M., Penukonda, N., Phelps, A., Ross, J., Ross, M., Salek,

A., Samadiani, E., Severn, C., Sizikov, G., Snelham, M., Souter, J.,

Steinberg, D., Swing, A., Tan, M., Thorson, G., Tian, B., Toma, H.,

Tuttle,E.,Vasudevan,V.,Walter,R.,Wang,W.,Wilcox,E.,andYoon,

D. H. In-datacenter performance analysis of a tensor processing unit.

In Proceedings of the 44th Annual International Symposium on Computer
Architecture (New York, NY, USA, 2017), ISCA’17, ACM, pp. 1–12.

[28] Kelm, J. H., Johnson, D. R., Tuohy, W., Lumetta, S. S., and Patel, S. J.

Cohesion: An adaptive hybrid memory model for accelerators. IEEE
micro 31, 1 (2011), 42–55.

[29] Kim, S., Huh, S., Hu, Y., Zhang, X., Witchel, E., Wated, A., and Sil-

berstein, M. GPUnet: Networking abstractions for GPU programs. In

Proceedings of the 11th USENIX Conference on Operating Systems De-
sign and Implementation (Berkeley, CA, USA, 2014), OSDI’14, USENIX

Association, pp. 201–216.

[30] Kim, S., and Yang, J.-S. Optimized I/O determinism for emerging NVM-

based NVMe SSD in an enterprise system. In Proceedings of the 55th
Annual Design Automation Conference (2018), DAC’18, ACM, p. 56.

[31] Krill, B., Amira, A., and Rabah, H. Generic virtual �lesystems for re-

con�gurable devices. In 2012 IEEE International Symposium on Circuits
and Systems (2012), IEEE, pp. 1815–1818.

USENIX Association 2019 USENIX Annual Technical Conference 629

https://www.busybox.net
http://www.ccixconsortium.com
http://www.ccixconsortium.com
https://genzconsortium.org/
http://www.hsafoundation.com
https://leveldb.org
https://opencapi.org/
https://www.sqlite.org

[32] Kurd, N., Chowdhury, M., Burton, E., Thomas, T. P., Mozak, C.,

Boswell, B., Mosalikanti, P., Neidengard, M., Deval, A., Khanna,

A., et al. Haswell: A family of IA 22 nm processors. IEEE Journal of
Solid-State Circuits 50, 1 (2015), 49–58.

[33] Lackorzynski, A., and Warg, A. Taming subsystems: Capabilities as

universal resource access control in L4. In Proceedings of the Second
Workshop on Isolation and Integration in Embedded Systems (New York,

NY, USA, 2009), IIES’09, ACM, pp. 25–30.

[34] LeBeane, M., Potter, B., Pan, A., Dutu, A., Agarwala, V., Lee, W.,

Majeti, D., Ghimire, B., Van Tassell, E., Wasmundt, S., Benton, B.,

Breternitz, M., Chu, M. L., Thottethodi, M., John, L. K., and Rein-

hardt,S. K. Extended taskqueuing: Active messages forheterogeneous

systems. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (Piscataway, NJ,

USA, 2016), SC ’16, IEEE Press, pp. 80:1–80:12.

[35] Lim, K., Meisner, D., Saidi, A. G., Ranganathan, P., and Wenisch,

T. F. Thin servers with smart pipes: Designing SoC accelerators for

memcached. In Proceedings of the 40th Annual International Symposium
on Computer Architecture (New York, NY, USA, 2013), ISCA’13, ACM,

pp. 36–47.

[36] Lin, F. X., Wang, Z., and Zhong, L. K2: A mobile operating system for

heterogeneous coherence domains. ACM Transactions on Computer
Systems 33, 2 (u 2015), 4:1–4:27.

[37] Liu,D.,Chen,T.,Liu,S.,Zhou,J.,Zhou,S.,Teman,O.,Feng,X.,Zhou,X.,

and Chen, Y. PuDianNao: A polyvalent machine learning accelerator.

In Proceedings of the Twentieth International Conference on Architec-
tural Support for Programming Languages andOperating Systems (2015),

ASPLOS’15, ACM, pp. 369–381.

[38] Liu, Z., Severance, A., Singh, S., and Lemieux, G. G. Accelerator com-

piler for the venice vector processor. In Proceedings of the ACM/SIGDA
international symposium on Field Programmable Gate Arrays (2012),

FPGA’12, ACM, pp. 229–232.

[39] Mallon, S., Gramoli, V., and Jourjon, G. DLibOS: Performance and

protection with a network-on-chip. In Proceedings of the 23rd Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (New York, NY, USA, 2018), ASPLOS’18, ACM,

pp. 737–750.

[40] Mathur, A., Cao, M., Bhattacharya, S., Dilger, A., Tomas, A., and

Vivier, L. The new ext4 �lesystem: current status and future plans. In

Proceedings of the Linux Symposium (2007), vol. 2, pp. 21–33.

[41] Mattson, T. G., Van der Wijngaart, R., and Frumkin, M. Program-

ming the Intel 80-core network-on-a-chip terascale processor. In Pro-
ceedings of the 2008 ACM/IEEE Conference on Supercomputing (Piscat-

away, NJ, USA, 2008), SC’08, IEEE Press, pp. 38:1–38:11.

[42] Moreland, K., and Angel, E. The FFT on a GPU. In Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware
(2003), Eurographics Association, pp. 112–119.

[43] Nightingale, E. B., Hodson, O., McIlroy, R., Hawblitzel, C., and

Hunt, G. Helios: Heterogeneous multiprocessing with satellite kernels.

InProceedings of theACMSIGOPS22ndSymposiumonOperatingSystems
Principles (New York, NY, USA, 2009), SOSP’09, ACM, pp. 221–234.

[44] Ousterhout, J. K., et al. Scheduling techniques for concurrent sys-

tems. In ICDCS (1982), vol. 82, pp. 22–30.

[45] Park, J. J. K., Park, Y., and Mahlke, S. Chimera: Collaborative preemp-

tion for multitasking on a shared GPU. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (New York, NY, USA, 2015), ASPLOS’15,

ACM, pp. 593–606.

[46] Peter, S., Li, J., Zhang, I., Ports, D. R., Woos, D., Krishnamurthy, A.,

Anderson, T., and Roscoe, T. Arrakis: The operating system is the

control plane. ACM Transactions on Computer Systems 33, 4 (2016), 11.

[47] Putnam, A., Caulfield, A. M., Chung, E. S., Chiou, D., Constan-

tinides, K., Demme, J., Esmaeilzadeh, H., Fowers, J., Gopal, G. P.,

Gray, J., Haselman, M., Hauck, S., Heil, S., Hormati, A., Kim, J.-Y.,

Lanka, S., Larus, J., Peterson, E., Pope, S., Smith, A., Thong, J., Xiao,

P. Y., and Burger, D. A recon�gurable fabric for accelerating large-

scale datacenter services. In Proceeding of the 41st Annual International
Symposium on Computer Architecuture (Piscataway, NJ, USA, 2014),

ISCA ’14, IEEE Press, pp. 13–24.

[48] Qadeer, W., Hameed, R., Shacham, O., Venkatesan, P., Kozyrakis,

C., and Horowitz, M. A. Convolution engine: Balancing e�ciency &

�exibility in specialized computing. In Proceedings of the 40th Annual
International Symposium onComputerArchitecture (New York, NY, USA,

2013), ISCA ’13, ACM, pp. 24–35.

[49] Reagen, B., Adolf, R., Shao, Y. S., Wei, G.-Y., and Brooks, D. Mach-

suite: Benchmarks for accelerator design and customized architectures.

In Proceedings of the IEEE International Symposium onWorkload Char-
acterization (2014), IISWC’14, IEEE, pp. 110–119.

[50] Rodeh,O.,Bacik, J.,andMason,C. BTRFS: The Linux B-tree �lesystem.

ACM Transactions on Storage (TOS) 9, 3 (Aug 2013), 9:1–9:32.

[51] Rogers, P., and Fellow, A. Heterogeneous system architecture

overview. In Hot Chips (2013), vol. 25.

[52] Rossbach, C. J., Currey, J., Silberstein, M., Ray, B., and Witchel,

E. PTask: Operating system abstractions to manage GPUs as compute

devices. In Proceedings of the Twenty-Third ACM Symposium on Op-
erating Systems Principles (New York, NY, USA, 2011), SOSP’11, ACM,

pp. 233–248.

[53] Rota, L., Vogelgesang, M., Perez, L. A., Caselle, M., Chilingaryan,

S., Dritschler, T., Zilio, N., Kopmann, A., Balzer, M., and Weber, M.

A high-throughput readout architecture based on PCI-Express Gen3

and DirectGMA technology. Journal of Instrumentation 11, 02 (2016),

P02007.

[54] Schöne, R., Molka, D., and Werner, M. Wake-up latencies for proces-

sor idle states on current x86 processors. Computer Science-Research
and Development 30, 2 (2015), 219–227.

[55] Shao, Y. S., Reagen, B., Wei, G.-Y., and Brooks, D. Aladdin: A pre-

RTL, power-performance accelerator simulator enabling large design

space exploration of customized architectures. In Proceedings of the
41st Annual International Symposium on Computer Architecture (2014),

ISCA’14, IEEE, pp. 97–108.

[56] Shao, Y. S., Xi, S. L., Srinivasan, V., Wei, G.-Y., and Brooks, D. Co-

designing accelerators and SoC interfaces using gem5-aladdin. In

Proceedings of the 49th Annual IEEE/ACM International Symposium on
Microarchitecture (2016), MICRO’16, IEEE, pp. 1–12.

[57] Silberstein, M. OmniX: An accelerator-centric OS for omni-

programmable systems. In Proceedings of the 16th Workshop on Hot
Topics inOperating Systems (New York, NY, USA, 2017), HotOS’17, ACM,

pp. 69–75.

[58] Silberstein, M., Ford, B., Keidar, I., and Witchel, E. GPUfs: In-

tegrating a �le system with GPUs. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (New York, NY, USA, 2013), ASPLOS’13,

ACM, pp. 485–498.

[59] So, H. K.-H., and Brodersen, R. A uni�ed hardware/software runtime

environment for FPGA-based recon�gurable computers using BORPH.

ACM Transactions on Embedded Computing Systems 7, 2 (Jan 2008),

14:1–14:28.

[60] Soares, L., and Stumm, M. FlexSC: Flexible system call scheduling with

exception-less system calls. In Proceedings of the 9thUSENIXConference
on Operating Systems Design and Implementation (Berkeley, CA, USA,

2010), OSDI’10, USENIX Association, pp. 1–8.

[61] Steinberg, U., and Kauer, B. NOVA: A microhypervisor-based secure

virtualization architecture. InProceedingsof the5thEuropeanConference
on Computer Systems (New York, NY, USA, 2010), EuroSys’10, ACM,

pp. 209–222.

630 2019 USENIX Annual Technical Conference USENIX Association

[62] Stuecheli, J., Blaner, B., Johns, C., and Siegel, M. CAPI: A coherent

accelerator processor interface. IBM Journal of Research and Develop-
ment 59, 1 (2015), 7–1.

[63] Thanh-Hoang, T., Shambayati, A., Deutschbein, C., Hoffmann, H.,

and Chien, A. A. Performance and energy limits of a processor-

integrated FFT accelerator. In Proceedings of the 2014 IEEE High Perfor-
mance Extreme Computing Conference (2014), HPEC’14, IEEE, pp. 1–6.

[64] Tseng, H.-W., Zhao, Q., Zhou, Y., Gahagan, M., and Swanson, S. Mor-

pheus: creating application objects e�ciently for heterogeneous com-

puting. In Proceedings of the 43rd Annual International Symposium on
Computer Architecture (2016), ISCA’16, IEEE, pp. 53–65.

[65] Venkatesh, G., Sampson, J., Goulding, N., Garcia, S., Bryksin, V.,

Lugo-Martinez, J., Swanson, S., and Taylor, M. B. Conservation

cores: Reducing the energy of mature computations. In Proceedings of
theFifteenthEditionofASPLOSonArchitecturalSupport forProgramming
Languages and Operating Systems (New York, NY, USA, 2010), ASPLOS

XV, ACM, pp. 205–218.

[66] Wentzlaff, D., and Agarwal, A. Factored operating systems (fos):

The case for a scalable operating system for multicores. ACM SIGOPS
Operating Systems Review 43, 2 (Apr 2009), 76–85.

[67] Wu, L., Barker, R. J., Kim, M. A., and Ross, K. A. Navigating big data

withhigh-throughput,energy-e�cientdata partitioning. InProceedings
of the 40th Annual International Symposium on Computer Architecture
(New York, NY, USA, 2013), ISCA’13, ACM, pp. 249–260.

[68] Yu, W., and He, Y. A high performance CABAC decoding architecture.

IEEE Transactions on Consumer Electronics 51, 4 (Nov 2005), 1352–1359.

[69] Zhang, J., Donofrio, D., Shalf, J., Kandemir, M. T., and Jung, M.

NVMMU: A non-volatile memory management unit for heterogeneous

GPU-SSD architectures. In Proceedings of the International Conference
on Parallel Architecture and Compilation (2015), PACT’15, IEEE, pp. 13–

24.

USENIX Association 2019 USENIX Annual Technical Conference 631

SmartDedup: Optimizing Deduplication for Resource-constrained Devices

Qirui Yang
Arizona State University

Runyu Jin
Arizona State University

Ming Zhao
Arizona State University

Abstract
Storage on smart devices such as smartphones and

the Internet of Things has limited performance, capacity,
and endurance. Deduplication has the potential to ad-
dress these limitations by eliminating redundant I/Os and
data, but it must be considered under the various resource
constraints of the devices. This paper presents Smart-
Dedup, a deduplication solution optimized for resource-
constrained devices. It proposes a novel architecture that
supports symbiotic in-line and out-of-line deduplication
to take advantage of their complementary strengths and
allow them to be adapted according to a device’s cur-
rent resource availability. It also cohesively combines
in-memory and on-disk fingerprint stores to minimize the
memory overhead while achieving a good level of dedu-
plication. SmartDedup is prototyped on EXT4 and F2FS
and evaluated using benchmarks, workloads generated
from real-world device images, and traces collected from
real-world devices. The results show that SmartDedup
substantially improves I/O performance (e.g., increases
write and read throughput by 31.1% and 32%, respec-
tively for an FIO experiment with 25% duplication ratio),
reduces flash writes (e.g., by 70.9% in a trace replay ex-
periment with 75.8% duplication ratio), and saves space
usage (e.g., by 45% in a DEDISbench experiment with
46.1% duplication ratio) with low memory, storage, and
battery overhead, compared to both native file systems
and related deduplication solutions.

1 Introduction
Smart devices such as smartphones and the Internet of
Things (IoT) are becoming pervasively used. The high
volume and velocity of data produced by the growing
applications and sensors on these devices present serious
challenges to the on-device flash storage, which has lim-
ited performance, capacity, and endurance. Deduplication

has the potential to address these limitations by reduc-
ing the I/Os and storage caused by duplicate data. But
adopting deduplication on smart devices must address
their unique resource constraints. In particular, the lim-
ited memory on the devices presents a difficult trade-off
between the speed of deduplication and the amount of du-
plicates that it can find. The limited storage performance
and endurance require the deduplication operations to
incur minimal additional I/Os. For many devices with
limited power and energy capacity, the design of dedu-
plication also needs to be aware of its power and energy
usage.

To address these challenges, this paper presents Smart-
Dedup, a deduplication solution optimized for smart de-
vices considering their various resource constraints. The
architecture of SmartDedup is designed to support the
symbiotic in-line and out-of-line deduplication. It em-
ploys in-line deduplication in the foreground to reduce
redundant writes and runs out-of-line deduplication in the
background to find duplicates missed by in-line dedupli-
cation. These two techniques work together cooperatively
by sharing the fingerprint stores and information (e.g.,
fingerprints) about the I/O requests.

SmartDedup employs cohesively designed in-memory
and on-disk fingerprint stores to minimize memory over-
head while achieving a good level of deduplication. The
small in-memory fingerprint store provides fast finger-
print lookup and effective write reduction; the on-disk
fingerprint store supports complete data deduplication.
Fingerprints migrate between the two stores dynamically
based on data access patterns. SmartDedup also embod-
ies several techniques to make efficient use of the two
fingerprint stores. To further reduce the overhead, both
fingerprint stores share the same indexing data struc-
ture to save memory usage; fingerprints are evicted from
memory in groups to reduce the involved I/Os and wear-

USENIX Association 2019 USENIX Annual Technical Conference 633

out.
To support this study, we collected file system images

and long-term (2-6 months) traces from real-world smart-
phones. The data confirms that there is a good level of
duplication in real-world workloads: the average duplica-
tion ratio is 33% in the data from the images, and ranges
from 22% to 48% among the writes in the traces. The
specific applications and types of files that contribute the
most duplicates differ by device, so a holistic system-
level deduplication solution is needed to fully exploit
these I/O and data reduction opportunities.

We prototyped SmartDedup on OSs (Android and
Raspbian) and file systems (EXT4 and F2FS) commonly
used by smart devices. We evaluated it on two represen-
tative devices, a Nexus 5X smartphone and a Raspberry
Pi 3 device, using intensive benchmark (FIO [12]) and
realistic workloads generated by DEDISbench [20] from
sampling real-world smartphone images and by replaying
real-world smartphone I/O traces. The results show that
SmartDedup achieves substantial improvements in perfor-
mance, storage utilization, and flash endurance compared
to both the native file systems and related solutions.

For example, on Nexus, SmartDedup outperforms na-
tive EXT4 by 16.9% in throughput and 18.5% in 95th
percentile latency for writes, and 38.2% in throughput
and 18.7% in 95th percentile latency for reads, for in-
tensive FIO workloads with only 25% duplicates; and
it improves the write latency by 25.5% for a trace seg-
ment with a 47.9% duplication ratio. In terms of space
saving, SmartDedup saves 45% of space (after factor-
ing in its own space overhead) compared to EXT4 when
the duplication ratio is 46.1% in a DEDISbench exper-
iment. In terms of reducing the wear-out, SmartDedup
reduces 70.9% of writes from EXT4 (after factoring in
its own write overhead) in a trace replay with a duplica-
tion ratio of 75.8%. SmartDedup also outperforms the
state-of-the-art related works Dmdedup [16, 23] by 1.5X
in throughput and 57.1% in 95th percentile latency in
an FIO write experiment with 25% duplicates, and CA-
FTL [9] by 37.7% in average write latency in a trace
replay with 75.8% duplication ratio. All the improve-
ments are achieved with low resource usage. In these
experiments, SmartDedup uses less than 3.5MB of mem-
ory, and it actually reduces the battery usage by up to
7.7% and 49.2% for intensive workloads on Nexus and
Pi, respectively.

2 Analysis of Real-world Device Data
To confirm the potential of deduplication for smart de-
vices, we collected and analyzed I/O traces and file sys-
tem images from smartphones used by different real users.

ID Total Read/ # Unique Unique Dup-
I/Os write of addresses data lication
(GB) ratio days (GB) (GB) ratio (%)

1 2096.8 7.5 173 148.2 192.7 21.9
2 773.6 3.4 85 36.3 96.2 45.3
3 426.7 4.8 73 34.6 56.5 23.2
4 2385.6 5.8 145 101.2 184.2 47.5
5 1119.7 3.4 92 126.7 148.6 41.6
6 765.9 3.4 72 23.9 124.8 28.3

Table 1: File system traces from real-world smartphones.
For each trace, the table shows the total amount of data
requests (4KB each), the ratio between reads and writes,
the total number of days, the total amount of writes with
unique addresses, the total amount of writes with unique
data, and the total percentage of duplicate writes.

Top 3 duplicate contributors
(file type, % of writes, duplication ratio (%))

Trace 1 2 3
1 (res, 12, 15) (db, 10, 15) (exe, 39, 13)
2 (tmp, 3, 73) (exe, 36, 65) (res, 27, 62)
3 (res, 17, 65) (media, 3, 19) (db, 11, 17)
4 (exe, 29, 78) (tmp, 4, 77) (media, 24, 49)
5 (media, 76, 48) (res, 2, 34) (exe, 12, 25)
6 (res, 19, 45) (exe, 35, 36) (media, 9, 31)

Table 2: The file types that contribute the most amount
of duplicates in the file system traces collected from smart-
phones used by real users. For each top contributor, the
table shows the file type, the percentage of writes that it
contributes to the trace’s total write volume, and the per-
centage of duplicate writes within only this type of files.

First, we studied the long-term file system I/O traces [4]
collected from six smartphones (from VFS and EXT4 on
Android) used by six users from four countries who are
between 20 to 40 years old, which recorded the finger-
prints of writes when they were flushed from the page
cache to flash storage. Commonly used applications in-
clude chat (WhatsApp and WeChat), video (Youtube),
and social network (Facebook and Weibo) applications.
As summarized in Table 1, these traces confirm that: 1)
real-world device workloads are indeed quite intensive,
and do have a significant impact on the performance
and endurance of devices. The average daily I/O volume
ranges from 4.2GB to 17.6GB, and the amount of writes
ranges from 0.7GB to 3.5GB; and 2) a good level of
deduplication can be achieved on the writes captured in
the traces. Considering the entire traces, the percentage
of duplicate writes ranges from 21.9% to 47.5%; and on
a daily basis, on average between 16.6% and 37.4% of
writes are also duplicates.

To understand where the duplicates came from, we fur-
ther analyzed the effectiveness of deduplication within

634 2019 USENIX Annual Technical Conference USENIX Association

the writes to each type of files. We classified the files
into several categories (resource files, database files, ex-
ecutables, temporary files, and multimedia), following
the methodology in [14]. 1 Table 2 shows that the file
types that contribute the most duplicates vary across the
traces collected from different users’ devices. This ob-
servation suggests that applying deduplication only to
specific types of files, or even more narrowly, only to
specific applications [17], is insufficient. Although not
shown in the figure, our results also reveal that whole-file-
based deduplication [3] is also insufficient as over 80%
of the duplicates are from files that are not completely
duplicate.

To complement the above trace analysis, we also stud-
ied file system images collected from 19 real-world smart-
phones, which on average have 10.4GB of data stored on
the device and 33% duplicates in the data. The analysis
also confirms that there is a good amount of duplicate
data stored on the devices. We also analyzed the effec-
tiveness of deduplication on different types of files, and
as in the trace analysis, we did not find any pattern—the
file types that contribute the most to deduplication differ
across the devices. For example, on one image, a large
percentage of duplicates is found within database files
(69.1%) and apk files (74.8%), but this percentage is low
on the other images; on another image, thumbnail files
have a duplication ratio of 99.0% whereas on another
image this ratio is only 0.9%.

Overall the above analysis of real-world device traces
and images shows strong evidence for the potentials of
deduplication on devices. They also suggest that a holis-
tic, system-level solution is necessary to fully exploit the
deduplication opportunities.

3 Design and Implementation

3.1 Design Overview
Overall the design of SmartDedup is based on the follow-
ing key principles:

I The storage on smart devices has limited bandwidth,
capacity, and endurance, so deduplication should be
applied as much as possible to improve its perfor-
mance, utilization, and lifetime.

II The available memory on devices is often limited, so
the use of in-memory data structures should be kept
as low as possible. To complement the low memory

1Our results show that the writes to database-related files account
for 21.9% of the total amount of writes, which is much lower than the
90% observed by [14]. We believe that this discrepancy is because
the related work considered only writes from Facebook and Twitter,
whereas we analyzed system-wide writes.

footprint, disk space should also be leveraged to
keep additional data structures.

III Many smart devices are power or energy constrained
(e.g., limited battery life), and deduplication should
work adaptively according to the current power or
energy availability.

While following these general principles, we also cau-
tiously design the data structures and operations used by
deduplication so that its overhead is as low as possible.
The rest of this section presents first an overview and
then details of this design.

Deduplication can be performed at different layers (file
system or block layer) of the storage stack. SmartDedup
chooses the design of file system level deduplication,
which allows it to exploit useful semantics and improve
efficiency (e.g., avoid deduplicating unallocated blocks or
processing files that have not been modified). Although
hints can be passed from the file system to the block
layer [16], they may not be sufficient (e.g., for providing
the above semantics), and the file system’s unawareness
of deduplication also leads to inefficiencies. For example,
the file system either cannot exploit the space saved by
deduplication or has to assume a fixed deduplication ratio
which does not always hold for the actual workload.

According to Design Principle I, SmartDedup consid-
ers both in-line and out-of-line deduplication to maxi-
mize the effectiveness of deduplication. In-line dedupli-
cation removes duplicate writes before they reach the
disk, and can thereby quickly reduce the data and avoid
the wear-out caused by duplicates. But it needs to run
in the I/O path at all times; otherwise, it may miss many
deduplication opportunities. Out-of-line deduplication
works in the background to remove duplicates already
stored on disk, and can use fingerprints stored both in
memory and on disk to identify duplicates. Although
out-of-line deduplication can be integrated with garbage
collection to reduce wear-out [10], it is not as effective
as the in-line method which removes duplicates before
they reach the disk. Therefore, SmartDedup combines
in-line and out-of-line deduplication to take advantage of
their complementary strengths, and optimizes their uses
for resource-constrained devices. In particular, these two
deduplication procedures share the same fingerprint store
to reduce the resource overhead (per Design Principle II);
and both procedures can be dynamically enabled or dis-
abled and dynamically change the processing rate based
on a device’s current power or energy status (per Design
Principle III).

According to Design Principle II, to address the mem-
ory limitations of smart devices, SmartDedup adopts co-
hesively designed two-level in-memory and on-disk fin-

USENIX Association 2019 USENIX Annual Technical Conference 635

gerprint stores. The fingerprint store is the core data
structure of a deduplication solution: it maintains the fin-
gerprints of existing data so that it can determine whether
new data is duplicate or not by comparing the fingerprint
to existing ones. In SmartDedup, the in-memory finger-
print store supports fast deduplication of commonly used
data with low memory cost; the on-disk fingerprint store
keeps fingerprints that are not in memory and supports
more thorough data deduplication; and fingerprints can
dynamically migrate between these two stores. Together,
these two fingerprint stores support the efficient operation
of both in-line and out-of-line deduplication.

The rest of this section explains the various compo-
nents of SmartDedup and how they function together.
Our core designs, including cooperative in-line and out-
of-line deduplication and tiered fingerprint stores are
applicable to different types of file systems. We use our
prototypes for EXT4 [18], which is the de facto file sys-
tem on Android devices, and F2FS [15], a new flash-
optimized file system increasingly used by smart devices,
to explain SmartDedup.

3.2 Two-level Fingerprint Stores

In-memory Fingerprint Store. SmartDedup uses only
a small amount of memory to store important fingerprints
(and the corresponding PBNs) and support fast dedupli-
cation, while the other less important fingerprints are
kept on disk. When the in-memory fingerprint store gets
full, some of the fingerprints are demoted to the on-disk
fingerprint store to make room for new ones.

To support fast fingerprint search at low memory cost,
the store uses a prefix tree (implemented using a Linux
radix tree [8]) as the fingerprint index (Figure 1). To
conserve memory, different from typical indexes which
provide direct locations of individual fingerprints, our
index provides the locations of fingerprint groups—the
fingerprints in each group shares the same prefix. For
example, with an 18-bit index, all the fingerprints that
share the same 18-bit prefix are grouped together. This de-
sign also facilitates the group-based fingerprint eviction
and on-disk fingerprint lookup discussed later in this sec-
tion. Within each group, the fingerprints are indexed by a
linked list. The list is sorted by the fingerprints’ remain-
ing bits, which allows misses to be determined sooner
than using an unsorted list. Moreover, the length of such
a list is generally short because 1) the in-memory finger-
print store is typically small, and 2) the cryptographic
hash function used for fingerprinting tends to distribute
the fingerprints evenly across the different groups. Exper-
iments from replaying our traces confirm that the average
length of these lists is 9 (maximum length is 63).

Figure 1: SmartDedup’s two-level fingerprint stores.

With the above design, the space overhead of the in-
memory fingerprint store is kept low. If we use 1% of
the device’s memory (40MB of a 4GB memory) to store
MD5-based fingerprints, we can take the first 18 bits of
each fingerprint as the prefix index and limit the height
of the tree to three. Under this setting, the fingerprint
index uses 2.03MB of memory. Considering the data
structure overhead, the in-memory store can keep 1.3
million fingerprints for 5GB of unique data. For SHA1-
based fingerprints, the number of fingerprints that the
store can hold is 1.12 million.

The in-memory fingerprint store is used by both in-
line and out-of-line deduplication as explained later. By
allowing them to share this store, SmartDedup further re-
duces its memory usage on resource-constrained devices.

On-disk Fingerprint Store. The on-disk fingerprint
store maintains the fingerprints that are evicted from
memory due to the limited space of the in-memory fin-
gerprint store. It allows SmartDedup to make full use of
the existing fingerprints for providing thorough dedupli-
cation, and supports the promotion of fingerprints from
disk to memory when they become important to the cur-
rent workload. It is implemented as a sparse file on disk
where the fingerprints are stored sequentially along with
the PBNs. The size of the sparse file grows and shrinks,
block by block, on demand with the number of finger-
prints in the store for space efficiency. For 256GB of
device storage, the total number of fingerprints that need
to be stored on disk is 226 in the worst case, assuming all
the data is unique, which requires 2GB of disk space. In
comparison, deduplicating merely 1% of 256GB of data
saves 2.6GB of space and can already compensate the
overhead of the on-disk store.

To enable fast search of on-disk fingerprints, Smart-
Dedup also needs an index in memory, but it reuses the
same fingerprint index—the prefix tree—described above
for the in-memory store to reduce its memory usage (Fig-
ure 1). In fact, it adds only an address to each leaf node

636 2019 USENIX Annual Technical Conference USENIX Association

of the index, which is the starting PBN of the on-disk
group of fingerprints with the same prefix as the finger-
prints of the in-memory fingerprint group. Each group of
fingerprints is stored in an array on disk, which is sorted
by its remaining fingerprint bits and stored sequentially
from this PBN address in one or multiple disk blocks.
In this way, the same fingerprint index is shared by both
in-memory and on-disk fingerprint stores, and each leaf
node can point to both an in-memory fingerprint group
and an on-disk fingerprint group that share the same pre-
fix. For a three-level tree that indexes an 18-bit prefix,
the addition of the PBN in each leaf node adds at most
1MB of memory usage.

This scheme allows efficient operations on on-disk fin-
gerprints. To search for a fingerprint on disk, SmartDedup
looks for the corresponding leaf node in the fingerprint
index. If the node does not exist in the prefix tree, Smart-
Dedup knows immediately that the fingerprint does not
exist on disk. If the node exists and contains a valid PBN,
SmartDedup loads the whole group from that address into
memory and searches for the given fingerprint in memory
using binary search. The I/O overhead for accessing the
on-disk groups is small because the size of each group is
generally small. Assuming each group shares the 18-bit
prefix, for 256GB of device storage with no duplicate
data blocks, there are about 256 fingerprints per group,
requiring only one to two 4KB blocks to store them. For
even larger disks, we can increase the length of the prefix
to bound the group size.

As discussed above, our proposed fingerprint index
provides the functionality of a Bloom filter; in compari-
son, employing a separate Bloom filter incurs additional
time and space overhead. For example, using a Bloom
filter to determine whether a group of fingerprints exists
or not would require 0.92MB of memory and applying
five hash functions. In addition, it needs to deal with the
difficulty of fingerprint deletions [7, 11].

Fingerprint Migration. Fingerprints evicted from the
in-memory store are moved to the on-disk store; con-
versely, when an on-disk fingerprint is matched by new
data, it is promoted from disk to memory. When deciding
which fingerprints to evict, the in-memory fingerprint
store tries to keep the fingerprints that are important to
the current workload. Our evaluation results show that a
simple policy such as least recently used (LRU) achieves
good deduplication ratios (Section 4.2).

But the I/O overhead of fingerprint migrations is an im-
portant consideration for devices. Evicting a fingerprint
from memory to disk requires two I/Os for loading the
corresponding fingerprint group from disk and storing the
updated group back to disk. To reduce disk I/O overhead,

instead of evicting one fingerprint at a time, SmartDedup
evicts a group of fingerprints at a time, so that a number
of slots are freed up at once in the in-memory fingerprint
store and can be used to store a number of fingerprints
from the future requests. With the design of a prefix-tree-
based index, the fingerprints linked to the same leaf node
share the same prefix and automatically form an eviction
group. Note that when migrating fingerprints from disk
to memory, SmartDedup still promotes one fingerprint,
instead of a whole group, at a time, since there is limited
locality within each group. Moreover, with a small group
size (9 on average), the deduplication ratio is also not
compromised much by evicting the whole group together.

To implement a group-based eviction policy, Smart-
Dedup keeps an LRU list for all the groups in the finger-
print index. Whenever a fingerprint is matched to a new
request, its group is brought to the head of the LRU list.
When eviction is needed, the entire group of fingerprints
that is at the tail of the LRU list is evicted. Since both the
in-memory and on-disk fingerprint stores share the same
index, fingerprints that are evicted together from the in-
memory fingerprint store also belong to the group that
shares the same prefix in the on-disk fingerprint store, so
they can be inserted into the on-disk group using a single
read-merge-write operation.

3.3 Hybrid Deduplication
In-line Deduplication happens when the file system han-
dles a write request, and it removes a duplicate write
by modifying the file system’s logical block to physi-
cal blocks mappings. Specifically, in our prototypes, the
write paths of EXT4 and F2FS are modified in the follow-
ing manner to make sure that the deduplication procedure
does not violate the basic design principles of modern
file systems. First, SmartDedup achieves deduplication
by changing the one-to-one mappings that the file sys-
tem maintains from logical blocks to physical blocks
to many-to-one. Second, SmartDedup performs in-line
deduplication when the file system writes back buffered
data to disk; by doing so, it saves itself from processing
repeated writes to buffered data, which does not hurt ei-
ther performance or endurance. SmartDedup also handles
direct I/Os, but the discussion here focuses on buffered
I/Os since they dominate common device workloads.

In-line deduplication may not be able to find a match
for a request even if there is a duplicate block on the
file system, because the in-memory fingerprint store is
not large enough to hold all the existing fingerprints. For
such requests, in-line deduplication hands them over to
out-of-line deduplication, which searches the on-disk
fingerprint store in the background without slowing down
the foreground application.

USENIX Association 2019 USENIX Annual Technical Conference 637

Figure 2: SmartDedup operations.

Out-of-line Deduplication works in the background on
data that is not processed by in-line deduplication, which
may be still in the page cache waiting to be written back
or be already stored on disk. When processing a block of
data, it looks for the fingerprint in both the in-memory
and on-disk stores. When a match is found for a logi-
cal block, it changes the mappings between the logical
block and physical block and, if needed, deallocates the
redundant physical block to perform deduplication.

For efficiency, SmartDedup avoids processing data
blocks that have not been modified since the last time
they were processed by either in-line or out-of-line dedu-
plication. It uses an in-memory buffer, called skipped
buffer, which stores the list of blocks skipped by in-line
deduplication, either because the latter is disabled or is
enabled but cannot find fingerprint matches in the in-
memory store. Each entry in this buffer stores a skipped
block’s information (inode number, LBN, and fingerprint
(if available)) for the out-of-line deduplication to process
the block quickly. It is implemented using an array-based
hash table, indexed by inode and LBN. When the finger-
print of a data block is updated, the previous content of
the hash table entry is replaced by the new one.

The size of the skipped buffer is kept small and is also
adjustable depending on the device’s current memory
availability. For example, with 0.5MB of memory, the
skipped buffer can store the information of 22K requests
and 65K requests with and without their fingerprints,
respectively. If the buffer does get full, SmartDedup con-
verts it to store only the inode numbers of modified files
so that out-of-line deduplication processes only these
files. As the inode number requires only 4 bytes, the
buffer rarely overflows in practice.

3.4 Putting Everything Together
Read and Write Path. When handling a write, Smart-
Dedup fingerprints the request, searches for it in the fin-

gerprint store(s), and deduplicates it if a match is found,
as discussed above and illustrated in Figure 2. The read
path in the file system is also modified to make use of
deduplication to improve read performance. Because the
page cache is indexed by each file’s LBNs, a read that
cannot find its LBN in the page cache cannot be avoided
even if the requested data duplicates another logical block
that is already in the cache.

To address this limitation, SmartDedup employs a
page cache index which maps from PBNs to their corre-
sponding pages in the page cache. For a read that cannot
find a match in the page cache by its LBN, SmartDedup
searches the index using its PBN, before considering it a
miss as the native file system does. If a match is found, it
means that the requested data already exists in the page
cache, and there is no need to perform the actual read I/O.
SmartDedup directly copies the data from the duplicate
page in the cache. The size of this index is bounded by the
size of page cache, and it can be further restricted when
SmartDedup indexes only the important set of pages (e.g.,
the most recently used ones) in the cache.

Handling Data Updates and Deletions. A complica-
tion to the above write process is that when handling an
update to or deallocation of an existing block, the finger-
print stores need to be consistently updated. SmartDedup
needs to find the original fingerprint of the block so that
it can update the reference count (the number of logical
blocks deduplicated by this fingerprint) and delete the
fingerprint if the reference count drops to zero. But Smart-
Dedup does not have the original data’s fingerprint; it has
only the new request’s LBN (and from there the PBN). To
address this problem, SmartDedup maintains a reverse in-
dex (a sparse file) on disk for the fingerprint stores, which
maps from a fingerprint’s PBN to its corresponding leaf
node in the fingerprint index of the fingerprint store us-
ing an array where the PBN is the index and the entries
store the leaf node addresses. The leaf node represents
a group of fingerprints either in memory or on disk, and
SmartDedup can search this group to quickly locate the
fingerprint. Compared to mapping from PBNs directly to
the locations of the fingerprints, this design reduces the
overhead of the reverse index because when a fingerprint
migrates between the in-memory and on-disk stores, the
leaf node that the fingerprint belongs to does not change
and the index does not have to be updated.

Adaptive Deduplication. To further reduce the overhead
of deduplication, SmartDedup can adapt its processing
rate based on the current resource availability. For out-
of-line deduplication, SmartDedup adapts the number of
blocks that it processes per period of time (e.g., every
minute). For in-line deduplication, it adapts the process-

638 2019 USENIX Annual Technical Conference USENIX Association

ing rate by selectively processing n out of the N write re-
quests that it receives—n/N defines the selectivity. Con-
sidering CPU and I/O load, SmartDedup automatically
reduces its processing rate whenever it detects that the
CPU or disk is fully utilized. Considering battery usage,
SmartDedup reduces its processing rate proportionally
to the remaining battery life, and completely disables
deduplication when the device enters low-power mode.
Similar policies for other resource constraints can also
be easily specified and carried out by SmartDedup using
this adaptive deduplication mechanism.

To further reduce resource usage, SmartDedup can
also adapt its processing rate (by adjusting the selectiv-
ity) based on the level of data duplication observed in
the workload. When the observed duplication level is
low in the previous time window, SmartDedup gradu-
ally reduces its processing rate, but it quickly restores its
processing rate when it detects an increasing duplication
level in the current workload.
File System Consistency. Because the LBN-to-PBN
mapping is already kept consistent by the native file sys-
tem, the only metadata that SmartDedup needs to safe-
keep is the reference counts of the fingerprints—it relies
on the reference counts to decide when to free a data
block and when to perform copy-on-write. SmartDedup
stores the reference counts persistently as part of the on-
disk reverse index (together with the leaf node addresses
of the corresponding fingerprints as described above).

To ensure consistency, on EXT4, SmartDedup jour-
nals the modifications to the reverse index as part of
the file system journaling. The design of the reverse in-
dex helps reduce the overhead from its journaling. The
entries in the index are sorted by the PBNs, so consecu-
tive updates to the reference counts of adjacent physical
blocks can be aggregated into much fewer updates to the
reverse index blocks—a 4KB block stores 512 entries.
Experiments using our traces confirm that the amount of
additional writes to the reverse index is less than 0.5%
of the total write volume. After a crash, the file system
can be brought back to a consistent state by replaying
the latest valid journal transaction. Similarly, on F2FS,
SmartDedup ensures that modifications to the reverse
index and on-disk fingerprint store are captured by the
file system checkpoint so that they can always be brought
to a valid state after the file system’s crash recovery. The
overhead of recovery is also small as it requires only up-
dating the affected reference counts using the journal or
checkpoint.

All other data structures that SmartDedup maintains
can be safely discarded without affecting file system con-
sistency. The in-memory fingerprint store will be warmed

Nexus 5X Raspberry Pi 3
CPU Qualcomm Broadcom

Snapdragon 808 BCM2837
RAM 2 GB 1 GB

Storage 32GB eMMC 16GB SDHC UHS-1
Operating System Android Nougat Raspbian Stretch Lite

Kernel Version Linux 3.10 Linux 4.4
File System EXT4 F2FS

Table 3: Specifications of the testing devices.

up again after the system recovers. The page cache index
will be reconstructed as the page cache warms up again.
The loss of the skipped buffer will make SmartDedup
miss the requests that have not been processed by out-of-
line deduplication. For a 0.5MB skipped buffer, at most
254MB of data will be missed (assuming that the buffer
stores only the inode and LBN of each request). To re-
duce this impact, SmartDedup periodically checkpoints
the inodes and LBNs from the skipped buffer.

4 Evaluation
We evaluated SmartDedup based on prototypes imple-
mented on EXT4 and F2FS. Testing devices include a
Nexus 5X phone and a Raspberry Pi 3 device (Table 3).
We considered the following workloads to provide a com-
prehensive evaluation:

• FIO [12]: We used FIO to create intensive I/O work-
loads with different access patterns and levels of
duplication.

• Trace Replay: We replayed our collected real-world
smartphone traces (Table 1), which helps us under-
stand the performance of SmartDedup for real-world
workloads of smart devices.

• DEDISbench [20]: We used DEDISbench to scan
our collected real-world Android images and then
generate workloads that reflect the data duplication
characteristics (such as the distribution of reference
counts) of these images.

We compared SmartDedup to two related solutions:
Dmdedup [16, 23] and CAFTL [9]. Dmdedup is a block-
level in-line deduplication solution that supports flexible
metadata management policies. It can use a copy-on-
write B-tree to store metadata and provide a consistency
guarantee by flushing metadata periodically. To provide a
fair comparison, we further enhanced Dmdedup by pass-
ing hints from the file system and allowing it to flush
metadata only at journal commit times.

CAFTL implements both in-line and out-of-line dedu-
plication at the flash translation layer (FTL), with sev-
eral techniques designed for the resource constraints at
this layer. Sampling hashing fingerprints only one data

USENIX Association 2019 USENIX Annual Technical Conference 639

block in a request that has multiple blocks to reduce
overhead. Lightweight pre-hashing applies CRC32 to
pre-hash data blocks and filter out the unmatched ones
to save fingerprinting overhead. Dynamic switches dy-
namically enable and disable deduplication based on the
available cache space. For a fair comparison, we imple-
mented sampling hashing and lightweight pre-hashing in
the EXT4 writeback path, but dynamic switches are not
necessary because the page cache supports rate limiting.

In all the experiments, the memory usage was capped
at 3.5MB for all the evaluated solutions (unless otherwise
noted). SmartDedup used 3MB for in-memory finger-
print store, which used a 14-bit prefix, and 0.5MB for the
skipped buffer, which stored full information and never
overflowed during the experiments. All the experiments
were started with empty in-memory and on-disk finger-
print stores. Both in-line and out-of-line deduplication
were used in the experiments (unless otherwise noted);
adaptive deduplication was enabled and evaluated only
in Section 4.4. SmartDedup uses fingerprints generated
by cryptographic hash functions [19, 21] to find dupli-
cates. The overhead for fingerprinting one 4KB block
of data on Nexus 5X is about 9µs if using SHA1 and
16µs if using MD5, and on Pi is about 30µs for both. Due
to limited space, we present only the MD5 results here.
Each experiment was repeated at least five times.

4.1 FIO
We ran FIO with three threads, each issuing random
4KB reads or writes, using buffered I/Os (which is what
real-world applications typically use). For all FIO ex-
periments, the total read or write size was set to 2GB
on Nexus and 1GB on Pi. We varied the percentage
of duplicates in the workloads; at 0%, SmartDedup’s
in-memory fingerprint store can hold 20% and 10% of
total fingerprints for the 1GB and 2GB experiments, re-
spectively. The read experiments were performed using
random reads on the data written by FIO in the write
experiments (after the page cache was dropped).

Nexus 5X Results. Figure 3a and 3b show the write per-
formance on Nexus 5X. The worst case for SmartDedup
is when there is no duplicate, where SmartDedup has
only 3.8% overhead in throughput and 1.1% overhead
in 95th percentile latency compared to EXT4, including
all the overhead from fingerprinting and operations on
in-memory and on-disk fingerprint stores. In compari-
son, Dmdedup has a much higher overhead, 62.8% in
throughput and 1.1X in 95th percentile latency, which we
believe is due to 1) deduplication at the block layer adds
another level of LBN-to-PBN mapping and additional
overhead; 2) to guarantee consistency, the copy-on-write

 0

 20

 40

 60

 80

 100

0 25 50 75 100T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Percentage of Duplicates

EXT4
SmartDedup

Dmdedup
CAFTL

(a) Write throughput

 0

 40

 80

 120

 160

 200

0 25 50 75 100

L
a

te
n

c
y
 (

u
s
)

Percentage of Duplicates

(b) Write latency

 0

 30

 60

 90

0 25 50 75 100T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Percentage of Duplicates

 200

 300

(c) Read throughput

 0
 1
 2
 3
 4
 5
 6
 7

0 25 50 75 100

L
a

te
n

c
y
 (

m
s
)

Percentage of Duplicates

(d) Read latency
Figure 3: FIO on EXT4 using Nexus 5X. Figures 3a and 3c
show the average write and read throughput, respectively,
with the error bars showing the standard deviations. Fig-
ures 3b and 3d illustrate the write and read latency re-
sults, respectively, using box and whisker plots, where the
whiskers indicate the 5th and 95th percentiles.

B-tree requires more metadata I/Os. For this experiment,
Dmdedup introduces 75.6% more metadata writes than
EXT4, whereas SmartDedup introduces only 9% more.
CAFTL has less overhead than SmartDedup (1.4% less in
throughput and 3.2% less in 95th percentile latency) be-
cause, with no duplicates in the workload, its pre-hashing
can save substantial fingerprinting.

As the percentage of duplicates in the workload grows,
the performance of SmartDedup quickly improves and ex-
ceeds EXT4. With 25% duplicates, SmartDedup already
outperforms EXT4 by 16.9% in throughput and 18.5%
in 95th percentile latency. Dmdedup has an overhead of
52.8% in throughput and 90.2% in 95th percentile latency.
CAFTL outperforms EXT4 by only 3.1% in throughput
and 6.5% in 95th percentile latency. We found out that us-
ing pre-hashing hurts deduplication performance—since
requests are filtered out by pre-hashing, CAFTL does
not have their fingerprints and cannot deduplicate future
requests that have the same data. To verify this observa-
tion, we tried removing pre-hashing from CAFTL and
the deduplication ratio indeed increases (by 14% for FIO
with 25% duplicates). Without pre-hashing, CAFTL is
still slower than SmartDedup (6.7% in throughput and
9.3% in 95th percentile latency), because 1) its out-of-
line deduplication works only when the system is idle
and cannot help much; 2) its reference-count-based evic-
tion policy cannot exploit temporal locality in fingerprint
accesses (further discussed in Section 4.2).

Figure 3c and 3d compare the read performance. Even
in the worst case with no duplicates, the overhead of
SmartDedup is small, merely 0.6% in throughput and
2.7% in median read latency, which is mainly from main-

640 2019 USENIX Annual Technical Conference USENIX Association

 0

 20

 40

 60

 80

 100

0 25 50 75 100T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Percentage of Duplicates

F2FS
SmartDedup

Dmdedup

(a) Write throughput

 0
 10
 20
 30
 40
 50
 60

0 25 50 75 100

L
a

te
n

c
y
 (

u
s
)

Percentage of Duplicates

(b) Write latency

 0
 10
 20
 30
 40

0 25 50 75 100T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Percentage of Duplicates

 400

 500

(c) Read throughput

 0

 1

 2

 3

 4

0 25 50 75 100

L
a

te
n

c
y
 (

m
s
)

Percentage of Duplicates

(d) Read latency
Figure 4: FIO on F2FS using Raspberry Pi. Figure 4a
and 4c represent the average write and read throughput,
respectively, and the error bars represent the standard de-
viations. Figure 4b and 4d illustrate the write and read
latency results, respectively, using box and whisker plots,
where the whiskers indicate the 5th and 95th percentiles.

taining the page cache index. As the percentage of du-
plicates increases, the performance of SmartDedup rises
accordingly, as expected, and SmartDedup substantially
outperforms EXT4, improving the throughput by up to
13.4X and reducing the 95th percentile latency by up to
93%, owing to the page cache index which allows Smart-
Dedup to use cached data to satisfy read requests for
different logical blocks but with the same content (as dis-
cussed in Section 3.4). In comparison, both Dmdedup and
CAFTL are slower than EXT4. CAFTL has up to 23%
and 64.1% overhead in throughput and 95th percentile
latency, respectively, which we believe is due to the frag-
mentation induced by deduplication [13]. SmartDedup’s
use of page cache index helps compensate for this over-
head; additional techniques [22] can also be adopted to
address this problem as discussed in Section 4.5.

Raspberry Pi Results. Figure 4 compares the FIO per-
formance on Raspberry Pi which has even fewer re-
sources than Nexus 5X. The results show that Smart-
Dedup also achieves substantial improvements compared
to the native file system (F2FS) and the related solu-
tion (Dmdedup). For example, SmartDedup achieves a
speedup of 31.1% and 32% in throughput for the write
and read workloads with 25% duplicates, respectively
compared to F2FS. Compared to Dmdedup, the through-
put improvement is 2.8X and 34.5% for write and read, re-
spectively. Although the improvement of 95th percentile
latency is not as significant as in the Nexus results, Smart-
Dedup still improves the 99.5th percentile latency sub-
stantially. Compared to F2FS, SmartDedup reduces the
write tail latency by 30.4% and the read tail latency by

 0
 5

 10
 15
 20
 25
 30
 35
 40

Mix 1 Mix 2

C
P

U
 L

o
a
d
 (

%
) EXT4

EXT4 (SmartDedup)
F2FS

F2FS (SmartDedup)

(a) CPU load

 0
 200
 400
 600
 800

 1000
 1200
 1400

Mix 1 Mix 2

B
a
tt
e
ry

U

s
a
g
e
(W

 *
 s

)

(b) Battery usage
Figure 5: Resource usage of FIO.

Write size Duplication Read/Write Source
(MB) ratio (%) ratio Trace #

Segment 1 17612.8 75.8 1.5 4
Segment 2 12697.6 47.9 2.2 6
Segment 3 9318.4 26.4 6.8 2
Segment 4 65.8 46.1 51.3 4
Segment 5 78.5 19.4 69.8 4

Table 4: Trace segment statistics.

15.7%; and it outperforms Dmdedup by 85.4% in write
and 18.7% in read.
Resource Usage. To understand the resource usage un-
der realistic settings, we used FIO with different mixes of
reads and writes to mimic the composition of real-world
workloads. In our traces, the percentage of reads varies
from 77.4% to 88% and the percentage of duplicates
varies from 21.9% to 47.5%. For power measurement,
we used the Trepn profiler [24] (for Nexus) and Watts Up
Pro [5] (for Pi). Figure 5 shows the results. In Mix 1, the
workload has 4GB of I/Os with 50% reads and 25% dupli-
cates. SmartDedup’s CPU overhead on EXT4 and F2FS
is 3.3% and 2.2%, respectively, which are both reasonably
small. For battery usage, SmartDedup has 4% overhead
on EXT4 and uses 21.2% less battery on F2FS. In Mix 2,
the workload consists of 6GB of I/Os with 66% reads and
25% duplicates. In this setting, SmartDedup’s CPU over-
head is merely 1.7% on EXT4 and 5.5% on F2FS; but it
actually saves 7.7% of battery usage on EXT4 and 49.2%
on F2FS because its saving on FIO runtime outweighs its
overhead in power consumption. SmartDedup achieves
these results while using only 0.2% (3.5MB out of 2GB)
of the device’s memory. Therefore, it is reasonable to
believe that for typical device workloads, SmartDedup
does not incur much resource overhead, and can in fact
save the battery usage of the devices.

4.2 Trace Replay
The above FIO results give us insight into SmartDedup’s
performance and overhead under highly intensive set-
tings. In the following two sections, we consider more
realistic workloads using traces and images collected
from real-world smartphones.
Replay on Real Devices. We replayed several represen-

USENIX Association 2019 USENIX Annual Technical Conference 641

0%

20%

40%

60%

80%

Seg 1 Seg 2 Seg 3

Deduplication ratio
Write speedup
Storage saving
Write reduction

(a) SmartDedup

0%

20%

40%

60%

80%

Seg 1 Seg 2 Seg 3

(b) CAFTL
Figure 6: Trace replay on EXT4 using Nexus 5X.

tative segments of the traces as summarized in Table 4
(Segments 1 to 3) using the real implementation of Smart-
Dedup and CAFTL on the Nexus 5X device. These seg-
ments have different levels of duplication and all have
a substantial amount of writes. Therefore, they can well
represent the characteristics of the entire traces.

Figure 6 shows the results of the trace replay, including
the achieved deduplication ratio and the speedup and
the space and write savings compared to EXT4. The
deduplication ratio reported here as well as the rest of
the evaluation is computed using only the duplicates
discovered by in-line deduplication. SmartDedup delivers
a good speedup, up to 51.1%. It also achieves a high
level of write reduction, up to 70.9%, after factoring in
its own overhead in journaling and managing the on-
disk data structures, e.g., 24.8 MB and 127.9 MB data
were written to the reverse index and on-disk fingerprint
store, respectively, during the replay of Segment 1. But
there is not much space saving here, mainly because
these trace segments are dominated by updates to existing
data on the file system. During the replay of Segment
2, 34.2 MB and 12.5 MB disk space were used by the
on-disk fingerprint store and reverse index, respectively.
In comparison, CAFTL achieves less improvement (up
to 13.4% and 38.7% in speedup and write reduction,
respectively).

Since navigation is one of the typical applications on
IoT devices [1, 2], we extracted the Google Map I/Os
from our smartphone traces and replayed them (Segments
4 and 5 in Table 4) on the Raspberry Pi. As shown in
Figure 7, SmartDedup also achieves good write speedup
(up to 30.9%) and reduction (up to 47%) on the Pi.

Replay on Simulator. We also replayed three entire
traces listed in Table 1 on a simulator of SmartDedup.
The simulator implements SmartDedup’s data structures
and operations in user space and allows us to replay these
months-long traces within a reasonable amount of time.
Even though it does not model real-time performance, it
allows the study of several important aspects of Smart-
Dedup by replaying the entire traces.

First, we used the simulator to study the impact of
our group-based fingerprint eviction (G-LRU) versus the

standard, individual fingerprint eviction (LRU). Figure 8
shows that for different traces, G-LRU achieves a dedu-
plication ratio that is at most 3% lower than LRU, which
confirms that group-based eviction does not compromise
the effectiveness of deduplication while saving substan-
tial I/O overhead (on average 87%).

Next, we compared our recency-based fingerprint re-
placement, which replaces the least recently used finger-
print, to CAFTL’s reference-count-based replacement,
which replaces the fingerprint with the smallest refer-
ence count. As discussed in Section 4.1, pre-hashing is
detrimental to deduplication ratio; here we considered
the modified CAFTL that does not use pre-hashing. The
results confirm the importance of exploiting temporal lo-
cality which allows SmartDedup to achieve 41.8% higher
deduplication ratio than CAFTL.

We also studied the effectiveness of SmartDedup’s in-
memory fingerprint store design, which uses a prefix tree
to index the fingerprints, by comparing its results to Dm-
dedup, which uses a copy-on-write B-tree as the index.
We varied the amount of memory that each solution is
allowed to use from 1MB to 40MB. The results show
that SmartDedup’s memory-conserving designs allow it
to achieve higher deduplication ratios (by up to 35.7%),
especially when the available memory is limited.

Finally, we evaluated the effectiveness of our two-level
fingerprint store design by comparing the deduplication
ratio of G-LRU with (G-LRU) and without (G-LRU (in-
line only)) the on-disk fingerprint store. As expected,
when the in-memory fingerprint store is small (1MB),
the availability of an on-disk store and out-of-line dedu-
plication improves the deduplication ratio from 6.7%
to 12.1% (Trace 1). With a larger in-memory fingerprint
store, the use of an on-disk fingerprint store still increases
the deduplication ratio from 36.7% to 43.1% (Trace 2).
These results prove that our designs for synergistic in-line
and out-of-line deduplication with two-level fingerprint
stores work well for real-world workloads, and they are
particularly important for devices with limited memory
capacity.

4.3 DEDISbench
In addition to using real traces, we also created additional
workloads by sampling real-world smartphone images us-
ing DEDISbench [20]. We chose two of the smartphone
images that we collected, with duplication ratios of 46.1%
and 19.4%, and used DEDISbench to generate workloads
that represent the data duplication characteristics of these
images. All experiments were done on Nexus 5X using
four threads and a total of 2GB of random 4KB reads or
writes (SmartDedup’s in-memory fingerprint store can

642 2019 USENIX Annual Technical Conference USENIX Association

0%

20%

40%

60%

Seg 4 Seg 5

Deduplication ratio
Write speedup
Storage saving
Write reduction

Figure 7: Trace replay on
F2FS using Pi

 0

 10

 20

 30

 40

 50

1 3 40

D
e

d
u

p
lic

a
ti
o

n
 R

a
ti
o

 (
%

)

In-memory fingerprint
store size (MB)

LRU
G-LRU

Dmdedup
G-LRU (inline only)

CAFTL (w/o pre-hashing)

(a) Trace1

 0

 10

 20

 30

 40

 50

1 3 40
In-memory fingerprint

store size (MB)

(b) Trace2

 0

 5

 10

 15

 20

1 3 40
In-memory fingerprint

store size (MB)

(c) Trace3
Figure 8: Deduplication ratio from different migration
policies.

0%

20%

40%

60%

Image 1 Image 2

Deduplication ratio
Write speedup
Read speedup
Storage saving
Write reduction

Figure 9: DEDISbench

 0

 200

 400

 600

 800

 0 40 80 120 160

P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 (

m
W

)

Time (s)

EXT4

SmartDedup (basic)

SmartDedup (adaptive)

(a) Power consumption

 0

 20

 40

 60

 0 20 40 60 80 100

D
e
d
u
p
lic

a
ti
o
n

ra
ti
o
 (

%
)

Time (s)

(b) Deduplication ratio
Figure 10: Adaptive deduplication based on duplication
level

 0

 200

 400

 600

 800

 0 50 100 150 200 250 300

P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 (

m
W

)

Time (s)

EXT4

SmartDedup (basic)

SmartDedup (adaptive)

(a) Power consumption

 0

 20

 40

 60

 80

 0 50 100 150 200 250 300

D
e
d
u
p
lic

a
ti
o
n

ra
ti
o
 (

%
)

Time (s)

(b) Deduplication ratio
Figure 11: Adaptive deduplication based on available
battery.

hold 20% of all the fingerprints during these experiments).
The write experiment was done in the peak mode (the
more intensive mode of DEDISbench) with the hotspot
I/O distribution (which DEDISbench uses to model real-
world workloads with hotspot regions in their requests).
The read experiment was done by reading from what
DEDISbench generated in the write experiment (after the
page cache was dropped).

Figure 9 shows the deduplication ratio achieved by
SmartDedup and its I/O speedups, storage savings, and
write reduction compared to EXT4. The write and read
speedups are both significant, up to 54.4% and 33.6%,
respectively, and largely follow the deduplication ratio of
the workload. The read speedup is lower than the write
speedup, because not all duplicate data can be found in
the page cache due to cache evictions.

The space and write savings are also substantial, up to
45.0% and 41.6%, respectively. Note that these savings
are computed after SmartDedup’s overhead—the space
and writes used for its on-disk data structures (including
the on-disk fingerprint store and the reverse index and
its journal)—is factored in. These results confirm the
effectiveness of our techniques (Sections 3.2 and 3.4)
for reducing the I/O overhead of deduplication.

4.4 Adaptive Deduplication
Next, we evaluated the effectiveness of adaptive dedupli-
cation described in Section 3.4 by replaying trace seg-
ments on Nexus 5X. The first experiment studied the
effectiveness of adapting deduplication selectivity based
on the level of duplication observed in the workload. Fol-
lowing the general strategy described in Section 3.4, the
specific algorithm used by SmartDedup is as follows. It

computes the deduplication ratio of the last window—the
last 150 write requests—and compares it to the average
ratio from the past 30 windows. If the former is lower,
it indicates that the current workload has fewer dupli-
cates, and SmartDedup slowly reduces the percentage of
requests that it fingerprints in-line in the next window
(by 10% until it reaches a lower bound of 30%). But
if the deduplication ratio of the last window is higher,
SmartDedup quickly increases the percentage of requests
that it fingerprints in-line in the next window (by 30%
until it is back to 100%). How quickly SmartDedup ad-
justs its selectivity offers a tradeoff between performance
and battery usage. We omit the sensitivity study’s results
due to lack of space. With the setting mentioned above,
SmartDedup reduces its power consumption overhead
(compared to EXT4) by up to 14% at the cost of 8% loss
in deduplication ratio (as shown in Figure 10).

The second experiment evaluated adaptive deduplica-
tion based on the available battery level (Figure 11). We
replayed a 12-hour long trace segment and assumed that
the device’s battery level was 100% (when it was fully
charged) at the start of the replay and dropped to 20%
(when it entered low-power mode) at the end. With adap-
tive deduplication, SmartDedup automatically increased
the selectivity of fingerprinting as the available battery
reduced. The power consumption overhead (compared
to EXT4) dropped from 8%, when the battery level is
100%, to 0.3% when the battery level is 20%, at the cost
of reducing the deduplication ratio from 51% to 32%.

4.5 Fragmentation Resistance
Deduplication usually brings fragmentation to disk and
can hurt I/O performance. Even though flash storage is

USENIX Association 2019 USENIX Annual Technical Conference 643

 0

 20

 40

 60

 80

Trace 4 Trace 5 Trace 6

D
e
d
u
p
lic

a
ti
o
n

 R
a
ti
o
 (

%
)

Threshold = 1
Threshold = 2
Threshold = 4

(a) Deduplication ratio
result

 0

 1

 2

Trace 4 Trace 5 Trace 6

In
c
re

a
s
e
 o

f
F

ra
g
m

e
n
ta

ti
o
n
 (

X
)

(b) Increase of fragmenta-
tion w.r.t. EXT4

Figure 12: Fragmentation-resistant deduplication.

much less affected by fragmentation than HDDs, Hahn
et al. [13] showed that flash devices still suffer from frag-
mentation due to increased I/O stack overhead. To ad-
dress fragmentation, we leveraged the filtering technique
from iDedup [22], which applies deduplication only to
a physically contiguous sequence of writes that are du-
plicates. It sets a threshold on the length of a duplicate
sequence, and filters out all sequences shorter than this
threshold.

To evaluate the effectiveness of this filtering technique
in SmartDedup, we replayed three complete traces listed
in Table 1 on our simulator while varying the value of
the threshold from one to four (when the threshold is one,
the filtering is essentially disabled). We evaluated the
impact on fragmentation, by measuring the total number
of extents created by the workload. The results in Fig-
ure 12 confirm that by integrating the filtering technique,
SmartDedup can reduce fragmentation without hurting
the effectiveness of deduplication. For example, as the
threshold increases from one to four, the deduplication
ratio of SmartDedup drops by 6.0% while the increase in
fragmentation (compared to native EXT4) reduces from
1.5X to 1.06X for Trace 6.

5 Related Work
There are several related deduplication solutions de-
signed for resource-constrained systems. As mentioned
in Section 4.1, CAFTL includes several techniques de-
signed for deduplication on flash device controllers. The
key differences of SmartDedup are its symbiotic use of
in-line and out-of-line deduplication and the synergistic
combination of in-memory and on-disk fingerprint stores
for low-overhead and effective deduplication. In com-
parison, CAFTL relies mainly on in-line deduplication,
while its out-of-line deduplication plays only a minor
role and is completely separate from the former.

A recent study [17] proposed per-application, in-line
deduplication for smartphones. It groups the fingerprints
by applications, loads only the group for the foreground
application, and swaps it out to disk when the application
is switched to the background. As discussed in Section 2,
per-application deduplication can miss many duplicates

that exist across different applications. Moreover, migrat-
ing applications’ entire fingerprint sets between memory
and disk can be expensive when they become large. For
example, our traces show that commonly used applica-
tions such as Gmail and Youtube have over 20MB of
fingerprints and Weibo has 40MB. In comparison, Smart-
Dedup supports system-wide deduplication with fine-
grained fingerprint migration, and performs well with
much lower memory usage.

Hybrid use of in-line and out-of-line deduplication
has been studied in other related works. For example,
DDFS [6, 25] employs both in-line and out-of-line dedu-
plication for backup systems, and like CAFTL, they are
not well integrated as in SmartDedup. DDFS caches
fingerprints in memory to reduce on-disk fingerprint
lookups, but unlike SmartDedup’s in-memory fingerprint
store, it is not designed for memory-constrained scenar-
ios. For example, DDFS requires complex data structures
to organize fingerprints that are grouped by their spatial
locality. This design is important for deduplication on
high-performance backup systems, but is unnecessary
and costly for deduplicating the primary storage of low-
end devices.

6 Conclusions and Future Work
This paper presents a deduplication solution optimized
for smart devices. The novelties of this work lie in a new
architectural design that synergistically integrates in-line
with out-of-line deduplication and in-memory with on-
disk fingerprint stores. The entire solution is cautiously
designed and optimized considering the various resource
constraints of smart devices. An extensive experimen-
tal evaluation based on intensive workloads and smart-
phone images and I/O traces confirms that SmartDedup
can achieve substantial improvement in performance, en-
durance, and storage utilization with low memory, disk,
and battery overhead. In our future work, we will fur-
ther study the effectiveness of SmartDedup in other types
of resource-constrained environments such as various
Internet of Things and embedded storage controllers.

7 Acknowledgements
We thank the anonymous reviewers and our shepherd,
Geoff Kuenning, for their thorough reviews and insightful
suggestions. We also acknowledge Wenji Li and other
colleagues at the ASU VISA research lab for their help
in collecting the traces. This research is sponsored by
the National Science Foundation CAREER award CNS-
1619653 and awards CNS-1562837, CNS-1629888, IIS-
1633381, and CMMI-1610282.

644 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Android auto. https://www.android.com/
auto/.

[2] Apple car play. https://www.apple.com/ios/
carplay/.

[3] Apple file system (APFS). https://developer.
apple.com/wwdc/.

[4] VISA lab traces. http://visa.lab.asu.edu/
traces.

[5] Watts Up Pro power meter. https://www.
vernier.com/products/sensors/wu-pro/.

[6] Yamini Allu, Fred Douglis, Mahesh Kamat, Philip
Shilane, Hugo Patterson, and Ben Zhu. Backup to
the future: How workload and hardware changes
continually redefine Data Domain file systems.
Computer, 50(7):64–72, 2017.

[7] Burton H Bloom. Space/time trade-offs in hash
coding with allowable errors. Communications of
the ACM, 13(7):422–426, 1970.

[8] Daniel P Bovet and Marco Cesati. Understand-
ing the Linux Kernel: From I/O ports to process
management. O’Reilly Media, Inc., 2005.

[9] Feng Chen, Tian Luo, and Xiaodong Zhang. CA-
FTL: A content-aware flash translation layer en-
hancing the lifespan of flash memory based solid
state drives. In Proceedings of USENIX Conference
on File and Storage Technologies (FAST), 2011.

[10] Fred Douglis, Abhinav Duggal, Philip Shilane, Tony
Wong, Shiqin Yan, and Fabiano Botelho. The logic
of physical garbage collection in deduplicating stor-
age. In Proceedings of USENIX Conference on
File and Storage Technologies (FAST), pages 29–
44, Santa Clara, CA, 2017.

[11] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z
Broder. Summary cache: A scalable wide-area web
cache sharing protocol. IEEE/ACM Transactions
on Networking (TON), 8(3):281–293, 2000.

[12] FIO — Flexible I/O tester synthetic benchmark.
http://git.kernel.dk/?p=fio.git.

[13] Sangwook Shane Hahn, Sungjin Lee, Cheng Ji, Li-
Pin Chang, Inhyuk Yee, Liang Shi, Chun Jason Xue,
and Jihong Kim. Improving file system perfor-
mance of mobile storage systems using a decoupled

defragmenter. In Proceedings of USENIX Annual
Technical Conference (ATC), pages 759–771, Santa
Clara, CA, 2017.

[14] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoung-
bum Son, and Youjip Won. I/O stack optimization
for smartphones. In Proceedings of USENIX An-
nual Technical Conference (ATC), pages 309–320,
2013.

[15] Changman Lee, Dongho Sim, Joo Young Hwang,
and Sangyeun Cho. F2FS: A new file system for
flash storage. In Proceedings of 13th USENIX Con-
ference on File and Storage Technologies (FAST),
pages 273–286, 2015.

[16] Sonam Mandal, Geoff Kuenning, Dongju Ok, Varun
Shastry, Philip Shilane, Sun Zhen, Vasily Tarasov,
and Erez Zadok. Using hints to improve inline
block-layer deduplication. In Proceedings of 14th
USENIX Conference on File and Storage Technolo-
gies (FAST), pages 315–322, 2016.

[17] Bo Mao, Suzhen Wu, Hong Jiang, Xiao Chen, and
Weijian Yang. Content-aware trace collection and
I/O deduplication for smartphones. In Proceed-
ings of 33rd International Conference on Massive
Storage Systems and Technology (MSST), 2017.

[18] Avantika Mathur, Mingming Cao, Suparna Bhat-
tacharya, Andreas Dilger, Alex Tomas, and Laurent
Vivier. The new EXT4 filesystem: Current status
and future plans. In Proceedings of the Linux sym-
posium, pages 21–33, 2007.

[19] FIPS PUB NIST. 180-1: Secure hash standard,
1995.

[20] Joao Paulo, Pedro Reis, Jose Pereira, and Antonio
Sousa. DEDISbench: A benchmark for dedupli-
cated storage systems. In Proceedings of Con-
federated International Conferences On the Move
to Meaningful Internet Systems, pages 584–601.
Springer, 2012.

[21] Ronald Rivest. The MD5 message-digest algorithm.
RFC 1321, Internet Request For Comments, 1992.

[22] Kiran Srinivasan, Timothy Bisson, Garth R Good-
son, and Kaladhar Voruganti. iDedup: Latency-
aware, inline data deduplication for primary stor-
age. In Proceedings of 12th USENIX Conference on
File and Storage Technologies (FAST), pages 1–14,
2012.

USENIX Association 2019 USENIX Annual Technical Conference 645

https://www.android.com/auto/
https://www.android.com/auto/
https://www.apple.com/ios/carplay/
https://www.apple.com/ios/carplay/
https://developer.apple.com/wwdc/
https://developer.apple.com/wwdc/
http://visa.lab.asu.edu/traces
http://visa.lab.asu.edu/traces
https://www.vernier.com/products/sensors/wu-pro/
https://www.vernier.com/products/sensors/wu-pro/
http://git.kernel.dk/?p=fio.git

[23] Vasily Tarasov, Deepak Jain, Geoff Kuenning,
Sonam Mandal, Karthikeyani Palanisami, Philip
Shilane, Sagar Trehan, and Erez Zadok. Dmdedup:
Device mapper target for data deduplication. In
Proceedings of Linux Symposium, 2014.

[24] Trepn power profiler. https://
developer.qualcomm.com/software/

trepn-power-profiler/.

[25] Benjamin Zhu, Kai Li, and R Hugo Patterson.
Avoiding the disk bottleneck in the Data Domain
deduplication file system. In Proceedings of 6th
USENIX Conference on File and Storage Technolo-

gies (FAST), pages 1–14, 2008.

646 2019 USENIX Annual Technical Conference USENIX Association

https://developer.qualcomm.com/software/trepn-power-profiler/
https://developer.qualcomm.com/software/trepn-power-profiler/
https://developer.qualcomm.com/software/trepn-power-profiler/

Data Domain Cloud Tier: Backup here, backup there, deduplicated everywhere!

Abhinav Duggal Fani Jenkins Philip Shilane Ramprasad Chinthekindi Ritesh Shah
Mahesh Kamat

Dell EMC

Abstract

Data Domain has added a cloud tier capability to its on-
premises storage appliance, allowing clients to achieve the
cost benefits of deduplication in the cloud. While there were
many architectural changes necessary to support a cloud tier
in a mature storage product, in this paper, we focus on in-
novations needed to support key functionality for customers.
Consider typical customer interactions: First, a customer de-
termines which files to migrate to the cloud by estimating
how much space will be freed on the on-premises Data Do-
main appliance. Second, a customer transfers selected files
to the cloud and later restores files back. Finally, a cus-
tomer deletes a file in the cloud when its retention period
has expired. Each of these operations requires significant ar-
chitectural changes and new algorithms to address both the
impact of deduplicated storage and the latency and expense
of cloud object storage. We also present analysis from de-
ployed cloud tier systems. As an example, some customers
have moved more than 20PB of logical data to the cloud tier
and achieved a total compression factor (deduplication * lo-
cal compression) of 40× or more, resulting in millions of
dollars of cost savings.

1 Introduction

Today many customers want options to migrate portions of
their data to cloud storage. Object storage in public and
private clouds provides cost-effective, on-demand, always
available storage. Data protection is a key requirement, and
Data Domain [32] has traditionally served as an on-premises
data protection product, holding backups of customers’ pri-
mary data. Data Domain added a deduplicated cloud tier
to its data protection appliances. Our deduplication system
consists of an active tier where customers backup their pri-
mary data (typically retained for 30-90 days) and a cloud tier
where selected backups are transitioned to cloud storage and
retained long term (1-7 years). Our recent cloud tier product
is currently being used by hundreds of customers.

Adding a cloud tier to a mature storage appliance involved
numerous architectural changes to support local and remote
storage tiers. We present some of the most novel improve-

ments necessary to support basic capabilities required by
customers. First a customer wishes to free up space on their
active tier by migrating files to the cloud and wishes to deter-
mine how much space will be saved (Section 4). While this
is straightforward to calculate in traditional storage systems,
deduplication complicates the process because the files may
have content that overlaps with other files that will remain
on the active tier. We present a new algorithm to estimate
the amount of space unique to a set of files. This algorithm
builds upon a previous technique using perfect hashes and
sequential storage scans [7] for memory and I/O efficiency.

Once a customer selects files for migration to the cloud
tier, we wish to transfer the unique content to the cloud
tier to preserve the benefits of deduplication during transfer.
When a large quantity of data is being initially transferred,
we developed a bulk seeding algorithm that also uses perfect
hashes to select the set of chunks to transfer (Section 5). For
ongoing transfers, we developed a file migration algorithm
that leverages metadata that is stored locally to accelerate
the deduplication process and avoids the latency of accesses
to cloud object storage (Section 6.1). We then describe how
files can be efficiently restored to the active tier.

Finally, as a customer deletes files from a cloud tier, un-
referenced chunks must be removed to free space and reduce
storage costs (Section 7.2). While garbage collection for the
active tier has been described [11], we updated the cloud tier
version to handle the latency and financial cost of reading
data from the cloud back to the on-premises appliance.

From experience with a deployed cloud tier, we have
learned lessons about sizing objects stored in private and
public object storage systems and trade-offs of performance
and cost. After analyzing deployed systems, we found that
customers achieve a range of deduplication ratios. Our cus-
tomers achieved an active tier deduplication ranging between
1× and 848× and cloud tier deduplication ranging between
1× and 66×. The space savings result in cost savings and
one customer saved as much as $10 million (Section 8).

Our largest system has a single 1PB active tier and two
1PB cloud units within a single cloud tier. This is the phys-
ical capacity before the benefits of deduplication and com-
pression. A cloud unit is a single deduplication domain.
Each cloud unit has its own metadata, data and fingerprint

USENIX Association 2019 USENIX Annual Technical Conference 647

…

Active Tier Fingerprint Index

f1  A f2  A f10  B

Local Storage (RAID-6 HDD Array)

L0 Container A LP Container B

Active Tier Containers

Primary Storage Primary Storage

Protocols: NFS, CIFS, VTL,
DDBOOST, APIs

Active Tier File
as Merkel Tree

f1 f2 f3 f4

f10

…

Cloud Tier Fingerprint Index

f5 C f6  C f11  C

Cloud Tier File as
Merkel Tree

f5 f6 f7 f8

f11
Data Movement

f1 f2 f3 f4 f10 … … …
LP Container E

Cloud Tier Containers

f11 … … …D E … …

Metadata
Container C

Global Namespace

f5 f6 f7 f8 f11 … … …

D E … …

Metadata Container C

L0 Container D LP Container E

Object Storage

Figure 1: Data Domain with active and cloud tiers

index. For simplicity, we will use active tier and cloud tier
as the terminology when referring to the active and cloud
components of our backup appliance. Our cloud tier is de-
signed to work with object storage that is either on-premises
or in a public cloud, and we use the terms object storage and
cloud storage interchangeably.

The vast majority of the technology described in this paper
is publicly available and used by our customers. The excep-
tion is an experimental improvement to our garbage collec-
tion algorithm described in Section 7.2 based on microser-
vices for public cloud providers. We believe the following
contributions, except the performance results, are applicable
to other deduplicated storage systems adding a cloud tier.

1. An architecture for a deduplicated cloud storage tier
2. A space estimation algorithm for files within dedupli-

cated storage
3. Algorithms to seed a cloud tier or perform ongoing file

migration
4. A garbage collection algorithm designed for cloud stor-

age properties
5. An evaluation of how customers are using the cloud tier
6. Performance results on internal systems

2 Architecture

We updated our deduplicated storage architecture to support
both a local, active tier and a remote, cloud tier. We first
review the active tier architecture and then describe changes
for a cloud tier as shown in Figure 1.

2.1 Active Tier Architecture

A file in both, active and cloud tiers, is represented by a
Merkle tree with user data as variable sized chunks at the
bottom level of the tree, referred to as L0 chunks. The SHA1
fingerprints of those chunks are grouped together at the next
higher level of the tree to form chunks, referred to as L1
chunks. SHA1 fingerprints of L1 chunks are grouped to-
gether as L2 chunks, and this continues up to L6 which rep-
resents the entire file. The top chunk of the tree is always
an L6 chunk, even though it may refer to chunks in a lower
numbered level. We refer to chunks above L0 as LP chunks.
The L6 chunk of every file is stored in a namespace which is
represented as a B+ Tree [11].

Deduplication happens when different files refer to the
same L0 and LP chunks. As an example, if two files are
exactly the same, they would have the same L6 fingerprint.
But if two files only partially overlap in content, then some
branches of the tree will be identical (LP and L0 chunks),
while other branches will have different fingerprints. Multi-
ple L0 chunks are compressed into 64K-128K sized com-
pression regions, while LP chunks are not compressed as
SHA1 fingerprints are quite random and do not compress.
If encryption is enabled, the compression regions are also
encrypted before they are written to storage containers.

A Data Domain appliance tends to be utilized by a sin-
gle customer, who typically selects a single encryption key
for all of the data. If multiple keys are selected, customers
accept a potential loss in cross-dataset deduplication. We
have not found customer demand for convergent encryption
or stronger encryption requirements for cloud storage than
on-premises storage.

All chunks (L0s and LPs) are written into storage contain-
ers. On the active tier, containers are 4.5MB in size, while
the container size on the cloud tier varies with properties of
each cloud storage system (Section 2.3). We segregate the
L0 and LP chunks into separate containers, which we refer
to as L0-Containers and LP-Containers, respectively. Creat-
ing separate LP-Containers supports various operations like
garbage collection that need to process LP chunks. Segregat-
ing L0 chunks from LP chunks also ensures that the locality
of L0 chunks is preserved which results in better read per-
formance. Both types of containers consist of a data section
with the chunks and a metadata section with fingerprints of
the chunks. During deduplication, container metadata sec-
tions are loaded into a memory cache. This loads 1,000
or more fingerprints into memory, helps to accelerate dedu-
plication, and reduces fingerprint index accesses from disk.
During reads, container metadata sections are loaded into the
same memory cache and this avoids having to read all sub-
sequent fingerprints in the container from disk [32].

648 2019 USENIX Annual Technical Conference USENIX Association

2.2 Cloud Tier Architecture

With the introduction of cloud tier, there is a single names-
pace, referred to as global namespace. The global namespace
spans both, active tier and cloud tier files. The Merkle trees
of files in the cloud tier are stored on the local storage of the
Data Domain system to facilitate high-speed access of those
files. The global namespace which contains the L6 chunks of
every file is periodically written to the cloud tier. In this de-
sign, files exist in one tier or the other based on a customer’s
policy. In some cases, customers use the cloud tier as extra
capacity, while other customers use it for long term archival
of selected data.

For the cloud tier, we introduced a third type of con-
tainer, which we refer to as Metadata-Container. Metadata-
Containers store the metadata sections from multiple L0 and
LP-Containers. Since the metadata sections of containers are
read during deduplication and garbage collection, and re-
quire quick access, Metadata-Containers are stored on the
local storage as well as in cloud storage.

The SHA1 fingerprints of chunks are stored in an on-disk
fingerprint index which consists of a mapping of fingerprint
to container number. To avoid these writes and reads to the
cloud, the cloud tier fingerprint index is stored on the local
storage of the Data Domain system. In the active tier, the
fingerprint index contains fingerprint to L0 or LP-Container
number mappings, while the cloud tier index contains fin-
gerprint to Metadata-Container number mappings. This is
an optimization to load fingerprints from a local Metadata-
Container instead of a remote L0 or LP-Container.

Figure 1 shows an active tier file that contains L0 chunks
with fingerprints f1, f2, f3, and f4. The L0 chunk finger-
prints are stored in an LP chunk with fingerprint f10. The L0
chunks and their fingerprints are stored in an L0-Container
A, while the LP chunks and their fingerprints are stored in
an LP-Container B. The active tier fingerprint index contains
mappings for all the L0 and LP chunks’ fingerprints. Fig-
ure 1 also shows a cloud tier file. The global namespace
contains the location of this file. The file contains L0 chunks
with fingerprints f5, f6, f7, and f8. The L0 chunk finger-
prints are stored in an LP chunk with fingerprint f11. The L0
chunks and their fingerprints are stored in an L0-Container
D, while the LP chunks and their fingerprints are stored in
an LP-Container E. L0-Container D is written to object stor-
age in the cloud, while LP-Container E is written to both,
object storage in the cloud and local storage. The cloud tier
fingerprint index contains mappings for all the L0 and LP
chunks’ fingerprints, and is stored on local storage.

As explained above, we store critical cloud tier metadata
on the local storage of the Data Domain system to improve
performance and reduce cost. The majority of this metadata,
including the global namespace, is also mirrored to the cloud
in order to provide a disaster recovery (DR) functionality.
Disaster recovery is needed if a Data Domain system with a

cloud tier was lost in a disaster. Such a disaster can result in
the loss of active tier and the local cloud tier storage, where
cloud tier metadata resides. Disaster recovery is the main
reason why the active tier and cloud tier have different dedu-
plication domains. If an active tier is lost, the backup copies
migrated to object storage can be recovered.

The DR procedure to recover the cloud tier includes
procuring a replacement Data Domain system and initiat-
ing an automated recovery process, which involves: creating
a new cloud unit, copying the metadata (LP and Metadata-
Containers) to the local storage for the cloud tier, rebuilding
the cloud tier fingerprint index, and recovering the global
namespace. Note that we only recover the metadata from the
cloud storage. The data continues to reside in cloud storage,
and it is not copied to the Data Domain system. After the
DR procedure is completed, the cloud tier is accessible from
the new Data Domain system.

To summarize our new architecture, we support an active
tier and a cloud tier. Both tiers offer the benefits of dedu-
plication, however each tier is a separate deduplication do-
main. Chunks are not shared between the active tier and the
cloud tier. Note that if the underlying object storage provides
deduplication, it would be ineffective since our deduplication
algorithm removes the majority of duplicates at 8KB gran-
ularity. A global namespace maintains the location of both,
active tier and cloud tier files. Each tier has its own metadata,
data, and fingerprint index. To eliminate the costly reads and
writes from/to the cloud, we copy key cloud tier data struc-
tures on the local storage of the Data Domain system. The
data structures stored locally are the Metadata-Containers,
the LP-Containers, the Merkle trees, and the cloud tier fin-
gerprint index. The Metadata-Containers and LP-Containers
are also mirrored to the cloud to facilitate disaster recovery.

2.3 Object Sizes for Cloud Tier

The cloud tier architecture we have chosen allows us to se-
lect an optimum object size because we write L0-Containers
as individual objects and we have the ability to control the
container size, up to 4.5MB. We are not able to write con-
tainers larger than 4.5MB without significant changes to our
implementation. In the case of cloud tier, we use the terms
objects and containers interchangably.

We started with 64KB objects, but evolved to larger sizes
in the range of 1-4MB for several reasons. Larger objects re-
sult in less metadata overhead at the cloud storage provider
because they store per-object metadata. Larger objects also
decrease transaction costs as cloud storage providers charge
per-object transaction costs. We have also discovered that
larger objects perform better. Using an internal tool, we ex-
perimented with object sizes ranging between 64K and 4MB.
On private cloud storage such as ECS [8], we saw a 6x im-
provement with 4MB objects compared to 64KB objects. On
public cloud storage such as Amazon S3 [3], we saw a 2x

USENIX Association 2019 USENIX Annual Technical Conference 649

improvement with 4MB objects compared to 64KB objects.
Even though the performance does not improve much af-
ter 1MB, a higher object size is better as it reduces the cost
of transfer. Ultimately, writing larger-sized objects is a bet-
ter choice for our cloud tier solution, though the exact size
we choose varies with properties of each cloud storage sys-
tem. In some cases certain object sizes align better with the
provider’s block size. For different providers, we choose dif-
ferent object sizes ranging from 1MB to 4MB.

3 Background on Perfect Hashing and Physi-
cal Scanning for the Cloud Tier

In addition to the architecture changes described in Sec-
tion 2.2, we introduced several new algorithms specific to
cloud tier. Since these algorithms utilize the perfect hashing
technique from Botelho et al. [7] and the physical scan tech-
nique of Douglis et al. [11] as building blocks, we briefly
review those works. Perfect hashing and physical scanning
provide the basis for building the following cloud tier algo-
rithms: space estimation (Section 4), seeding (Section 5),
and cloud tier garbage collection (Section 7.2). Adapting
perfect hashing and physical scanning to these cloud tier al-
gorithms was mostly an engineering effort, and the novelty is
specific to solving the challenges of the cloud tier algorithms
and not necessarily the underlying techniques used.

3.1 Perfect Hashing
For algorithms described below, we need to perform a mem-
bership query for our fingerprints. Perfect hashing is a tech-
nique that helps us to perform this membership query by rep-
resenting a fixed key set. We use a perfect hash vector which
consists of a perfect hash function and a bit vector [7, 11].
A perfect hash function is a collision-free mapping which
maps a key to a unique position in a bit vector. To generate
the hash functions, a static set of fingerprints under consid-
eration is used to generate a 1:1 mapping of fingerprint to
a unique position in the bit vector. The function building
process involves hashing the fingerprints into buckets where
multiple fingerprints map to one bucket. Then for the fin-
gerprint set in each bucket, we build a perfect hash function.
By dividing the fingerprints into these buckets, we can build
functions for each bucket in parallel. Once we obtain the
function for each bucket, we store the function in a compact
way [5, 6, 9]. Without the compactness of the perfect hash-
ing representation, we would not have sufficient memory to
reference all fingerprints in the system.

Building the perfect hash functions is quite efficient. For
example, on a full 1PB system, we can build the perfect hash
functions for 256 billion fingerprints in less than 3 hours with
about 2.8 bits needed per fingerprint. The bit value in the
perfect hash vector is used to record membership, such as
chunk liveness for garbage collection.

3.2 Physical Scanning

As files are deduplicated, new LP chunks are written which
refer to lower level LP and L0 chunks. Say two L2’s written
by two different files refer to the same L1, then these L2s
most likely will get written to different containers. Hence
these LP chunks get fragmented over time. For algorithms
described in the sections below (e.g. garbage collection), we
need to walk the LP chunks of all or most of the files in the
system.

One way to walk the Merkle trees of LP chunks is to do it
in a depth first manner. For every file, walk from L6 chunk,
to L5, L4, L3, L2 and down to L1 chunks and get the L0 ref-
ererences. There are two problems with this traversal. First
is that if two files point to the same LP chunk, then by do-
ing file by file walk in depth-first manner, we will enumerate
the same LP twice. The second problem is that since these
LP chunks can be in different containers, loading these LP
chunks will result in doing a random lookup to first get the
location of LP chunk from the fingerprint index and second
to read the LP chunk. Over time as deduplication increases,
the same LP and L0 chunks get referenced multiple times
and the LP fragmentation worsens.

Hence, instead of doing an expensive depth-first traver-
sal, enumeration is done in a breadth first manner. By keep-
ing track of LP chunks we have already enumerated (using a
perfect hash vector), we avoid enumerating the same chunk
twice. To reduce the random lookups, we first segregated
LP and L0 chunks in different containers. By doing this, we
converted random lookup for every LP to a random lookup
for a group of LPs present in same compression region of
the container. Here is a summary of the steps we follow to
perform a physical scan of the file system:

Analysis Step: We walk the on-disk fingerprint index to
create three perfect hash vectors as described in Section 3.1.
Two of the perfect hash vectors are called the walk vector
and read vector, respectively, and are used to assist in the
breadth-first walk of the Merkle trees of all the files. These
two vectors are only built for LP chunks. The third vector is
called the fingerprint vector, and is used to record the live-
ness of a fingerprint. The fingerprint vector has bits for LP
and L0 chunks. 97% of chunks are L0s, so the fingerprint
vector is the largest.

Enumeration Step: We perform a number of sequential
scans of containers to find chunks at specific levels in the
Merkle trees. We first walk the namespace and mark all
L6 fingerprints in the walk and fingerprint vectors. The top
chunk is always a L6 chunk, which may refer to any lower-
numbered chunk. Our system has an in-memory structure
that records which LP types (L6, L5, ... L0) exist in each
container, so we can specifically scan containers with L6
chunks. Figure 2 shows the next two steps of the enumer-
ation process along with how the perfect hash vectors are
used. Blue indicates the state of perfect hash vectors in the

650 2019 USENIX Annual Technical Conference USENIX Association

Figure 2: Physical Enumeration process

previous step, green indicates that we are reading containers
and setting the read vector and yellow indicates that we are
setting the walk and fingerprint vectors and gray indicates
that we are yet to process those fingerprints. In step 1, we
walk the container set reading L6 chunks and for any L6 fin-
gerprints marked in the walk vector, we mark that L6 in the
read vector (green). In this example, the L6 chunks reference
L2 fingerprints, so we mark the L2 fingerprints in the walk
(yellow) and fingerprint vectors (yellow). In step 2, we walk
the container set again reading L2 chunks and for any L2 fin-
geprints which are marked in walk vector, we mark those L2
fingerprints in read vector (green). We read the L1 finger-
prints from the marked L2 chunks and mark those L1 finger-
prints in the walk (yellow) and fingerprint (yellow) vectors.
For deeper trees, we repeat the steps of reading a level, mark-
ing fingerprints in a walk vector and fingerprint vector, and
then reading the lower level and marking fingerprints in the
walk vector. Finally, in the L1 container set walk, the L1
chunks have a list of L0 fingerprints, which we mark in the
fingerprint vector. Parallel I/O is leveraged to read contain-
ers from the RAID array, and multiple threads are used for
marking the chunks in the walk, read, and fingerprint vectors.

4 Estimate Freeable Space

Deduplication creates a new challenge for customers inter-
ested in reducing their active tier footprint. In traditional
storage, transferring 10GB of files would reduce the active
tier by 10GB. With deduplicated storage, less space may be
freed because of content overlap with files that remain on
the active tier. So, a customer may end up paying for on-
premises capacity as well as object storage capacity despite
their intention.

Such customers need a way to evaluate how much space
would be freed on the active tier by moving files to the cloud
tier. Variants of this problem have been considered for di-
recting content to storage nodes [10, 12, 20] to maximize
deduplication and to evaluate the unique space referenced by
volumes of block storage [14]. Our system does not maintain
reference counts due to the difficulty of maintaining accurate
counts under complex error cases, so we implemented an al-
gorithm to calculate the space that would be saved on the
active tier if selected files were migrated to the cloud.

Using the perfect hashing (Section 3.1) and physical scan-
ning (Section 3.2) techniques, we walk the files selected for
migration in a breadth-first manner through the Merkle tree
and mark the chunks in an in-memory perfect hash vector.
Then, we walk all the remaining files (those not selected for
migration) and repeat the breadth-first traversal again. In
the second traversal, we unmark the chunks referenced by
these remaining files. After this traversal is complete, the
chunks which are still marked in the perfect hash vector are
the chunks which are uniquely referenced by files selected
for migration to the cloud tier. We perform a walk of the con-
tainers and sum up the chunk sizes for any chunks marked in
the perfect hash vector.

This gives us an exact count of the bytes that would be
freed. It becomes an estimate when new files are written to
the active tier after constructing the perfect hash vector and
such files deduplicate with selected chunks. In such cases,
our algorithm overestimates the number of bytes that would
be freed due to migration.

Since space estimation uses perfect hashing, the estima-
tion cannot be done until the perfect hash functions are gen-
erated. As discussed in Section 3.1, this process takes nearly
3 hours for 1 PB of physical data. Also, this process gives
only a point in time space estimate. As new data gets written
to active tier, it can deduplicate against the chunks that will
be moved to the cloud storage. As a result the point in time
estimate becomes stale. Our customers can run this tool pe-
riodically to get the updated estimate. In practice, this has
not been an issue.

5 Seeding

When customers started using cloud tier, they faced new
challenges with data migration to the cloud. Some customers

USENIX Association 2019 USENIX Annual Technical Conference 651

had hundreds of TBs of data on the active tier that they
wanted to migrate to the cloud tier. Being a deduplication
system, migration of large amount of data to the cloud suf-
fered from the same challenges as described in Section 3.2.
Hence, we implemented a seeding algorithm based on the
perfect hashing (Section 3.1) and physical scanning (Sec-
tion 3.2) techniques.

We first build an in-memory perfect hash vector for fin-
gerprints in the active tier fingerprint index. Then, for all the
files that need to be transferred to the cloud tier, we traverse
the Merkle trees in the same breadth first manner and mark
the corresponding chunks live in the perfect hash vector. We
then walk the containers on the active tier, pick the chunks
which are marked live in the perfect hash vector, pack them
in destination containers, and write them to cloud tier. This
process generates both data containers (L0) and containers
for metadata (LP and Metadata-Containers). Once all these
containers are written, we update the namespace to indicate
that all these files are now located in the cloud tier.

Seeding needs to be resumable because the memory re-
quirements for seeding and GC are high and memory is
shared between these processes. Cloud GC and seeding
share memory, but until seeding is complete, there is no need
to run cloud GC since the cloud tier is nearly empty. Active
GC and seeding may need to run at the same time, especially
since seeding may take weeks to transfer data depending on
WAN speed. To make it resumable, after we mark the chunks
that need to be transferred in the perfect hash vector, we per-
sist the perfect hash vector (function and bit vector) to disk
and then start active GC. Once active GC finishes, we load
the perfect hash vector and resume writing to the cloud.

Seeding guarantees that all the L0 and LP chunks are
transferred to the cloud tier before the file’s location is
changed in the namespace. It uses the perfect hash vector to
guarantee that property. As we transfer chunks to the cloud
tier, we change the membership bit in the perfect hash vector
from 1 to 0. At the end of seeding, all the bits in the per-
fect hash vector should be 0 to guarantee that all necessary
chunks are transferred.

There is an important caveat with seeding. The chunks
written to the cloud tier do not pass through the deduplication
process. So, seeding is only used to transfer large amounts
of data for the first time when a customer buys a cloud tier
license. We cannot use the typical fingerprint caching and
prefetching approach for deduplication because the seeding
process works in physical disk order instead of the logical
order of chunks in a file, so caching is ineffective. Another
approach is to consider generating a perfect hash vector for
data already stored in the cloud tier, but this would double
the memory requirements since we would need to generate
perfect hash vectors for both the active and cloud tiers. We
already use a large perfect hash vector and cloud tier had to
be supported on existing active tier systems in the field, so
adding more memory for this is not a practical solution.

6 File Migration and Restore

6.1 File Migration

Unlike seeding which is a one time process to transfer a large
amount of data from the active tier to a nearly empty cloud
tier, file migration is designed to transfer a few files incre-
mentally. File migration reduces the amount of data trans-
ferred to the cloud tier by performing a deduplication process
relative to chunks already present in the cloud tier.

File migration starts in the active tier by traversing the
Merkle trees for selected files in a depth-first search man-
ner. This traversal is performed in parallel for a number of
selected files. The traversal ends when we reach the desired
L1 chunks, which contain L0 fingerprints. The fingerprints
are checked against the cloud tier using the same container
metadata prefetching technique used during deduplication to
see if identical fingerprints are already present in the cloud
tier. If the fingerprints are not present in the cloud tier, then
the corresponding chunks are read from the active tier and
packed to form new L0-Containers. This process generates
both data containers (L0) and containers for metadata (LP
and Metadata-Containers). After Metadata-Containers are
written, all contained fingerprints are added to the cloud tier
fingerprint index. Finally, the namespace is updated to indi-
cate that the file is located in the cloud tier.

To compare seeding and file migration, seeding is de-
signed for bulk transfers such as when first moving files from
a full active tier to nearly empty cloud tier. Seeding has the
overhead of generating the perfect hash function, which is
nearly 3 hours per 1PB of physical capacity. This is accept-
able relative to the many days or weeks possibly required to
transfer a large dataset to the cloud. Seeding has the advan-
tage of physical enumeration, which uses sequential I/O in-
stead of random I/O. On the other hand, when transferring a
small number of files, it is more efficient to perform the ran-
dom I/O to find the needed chunks for the files than generate
the perfect hash function. Newer backup files on the active
tier also tend to have better physical locality as our dedu-
plication engine explicitly writes duplicates to keep locality
high [2, 25]. Seeding and file migration are experimentally
compared in Section 8.

6.2 File Restore

Restoring a file back from the cloud tier involves the reverse
process of reading the Merkle trees to the L1 chunks in a
depth-first manner. The L1 chunks are read from local stor-
age since the LP-Containers are stored locally. The L0 fin-
gerprints are checked against the active tier fingerprint in-
dex, and if present, do not need to be read from cloud tier.
For new L0 fingerprints (not present in the active tier), we
get the Metadata-Container number from the cloud tier fin-
gerprint index, read the Metadata-Container to get the L0-

652 2019 USENIX Annual Technical Conference USENIX Association

Container number, read the L0-Container from object stor-
age, and write the relevant L0 chunks to L0-Containers in
the active tier. As L0-Containers are being written to ac-
tive tier, new Merkle trees for the active tier are formed in a
bottom-up manner. This process generates new LP chunks
which are written to LP-Containers in the active tier, and the
namespace is updated.

To summarize, while performing file migration to the
cloud tier, we deduplicate against chunks in the cloud tier,
and while restoring files from the cloud tier, we deduplicate
against chunks in the active tier.

7 Garbage Collection (GC)

When customers expire backups, some chunks become un-
referenced. The Data Domain filesystem is log-structured
and garbage collection is responsible for cleaning the unref-
erenced data asynchronously. Our garbage collection is mark
and sweep based and described in our previous work [11].
To briefly summarize the process, we use the physical scan-
ning technique described in Section 3.2 to mark chunks live
(referenced from live files) in the perfect hash vector. Then,
we perform the sweep operation. Active tier GC and Cloud
tier GC differ in the sweep process, and we describe the dif-
ferences here. Most of our customers run GC on the active
tier weekly according to a default schedule, whereas cloud
tier garbage collection varies from once every two weeks to
once every month to never.

7.1 Active Tier Garbage Collection
After marking chunks live in the perfect hash vector, the
sweep process walks the container set to copy live chunks
from old containers into newer containers while deleting the
old containers. This sweep process is also called copy for-
ward. This process focuses on a subset of the container set
which will give us the maximum space back.

During this process we first read the source containers
from disk. Then, we check the fingerprints from the metadata
sections of these containers against the perfect hash vector to
determine which L0 chunks are live. Finally, we decrypt (if
encrypted) and uncompress the compression regions inside
the source containers, encrypt and compress the live chunks
into new compression regions, and pack them into destina-
tion containers which are written to disk. The copy forward
process for LP Containers does not perform decompression/-
compression since LP chunks are not compressed.

7.2 Cloud Tier Garbage Collection
As data is written to the cloud tier, space usage and costs
grow. Similar to the active tier, when customers expire files
in the cloud, GC needs to clean unreferenced chunks on the
cloud tier. The challenge for cloud GC is that L0 containers

are not local and reading them from the cloud is expensive.
It is also slow in terms of performance as we have to read the
container objects over WAN.

From our experience with active tier, we know that a single
cycle of GC copies forward 15% of the containers on aver-
age, where each container has an average of 50% live data.
Hence, for 1PB of physical capacity in a cloud tier, we need
to read 150TB of partially-live containers and write 75TB of
newly-formed containers, increasing data transfer costs and
transactional costs. As an example, based on AWS pricing,
we calculated the cost of copy forward for 150TB of data
to be nearly $14,000 per GC cycle. The major contributor
to this cost is egress data transfer cost, so we needed a way
to do garbage collection without reading the L0-Containers
from object storage and writing new L0-Containers to ob-
ject storage. To address this, we defined an API to perform
copy forward inside the cloud provider’s infrastructure. ECS
and VirtuStream cloud providers have implemented this API.
The API takes a list of source container objects, a list of off-
set ranges inside of those container objects, and a destination
container object. The offset ranges correspond to live com-
pression regions within the source container objects. Upon
receiving the API, the cloud provider copies the live offset
ranges from the source container object to a new, destination
container object.

In order to perform the chunk level copy forward done by
active tier GC, the compression regions need to be decrypted
and uncompressed, and the live chunks need to be copied for-
ward to form new compression regions inside new contain-
ers. Doing all of this in the cloud provider’s infrastructure
poses a challenge as we need to expose our container for-
mat, compression libraries, and encryption keys to the cloud
provider. To address this, the new API we have implemented
does not decompress/compress or decrypt/encrypt compres-
sion regions. It performs copy forward at the compression
region level. We only delete a compression region in a cloud
container when it is completely unreferenced. This approach
is different from active tier GC where we delete individual
chunks. The advantage of treating an entire compression re-
gion as live or dead is that the service running inside the
cloud does not need to understand the container format or
to compress/uncompress or decrypt/encrypt the compression
regions. The service just reads offset ranges of where the
live compression regions reside in existing container objects
and writes a new destination container object. The disadvan-
tage is that we won’t delete a compression region until all
the chunks inside the compression region are unreferenced.
This can reduce our cleaning efficiency. In Section 8.1.2, we
present field analysis of how live and dead data is distributed
in compression regions and how much cleaning efficiency
is lost due to compression region based cleaning instead of
chunk based cleaning.

The cloud GC copy forward process works as follows.
Once the live chunks have been identified in the per-

USENIX Association 2019 USENIX Annual Technical Conference 653

fect hash vector using the physical scanning technique de-
scribed in Section 3.2, cloud tier GC performs a copy
forward process of the Metadata-Containers. This pro-
cess copies the live chunks’ metadata from an exist-
ing Metadata-Container to a new Metadata-Container, and
deletes the old Metadata-Container. The copy forward pro-
cess of Metadata-Containers occurs on the local storage as
Metadata-Containers are stored locally. As part of this pro-
cess, we create a recipe containing the old L0-Container,
the offset ranges of the live compression regions in that L0-
Container, and a destination L0-Container which is being
generated. Next, we send this recipe to the cloud provider
in the form of the new API, and the cloud provider performs
the copy forward of compression regions within their infras-
tructure. We then delete the old container objects.

For public cloud storage like AWS, Azure, and Google
Cloud, such an API does not yet exist, so we have created
an experimental version (not yet available to our customers)
using a microservice that can be deployed and run inside the
public cloud provider environment. Our plan is to work with
cloud providers to either use a custom API for copy forward
or our microservice. The results from the API and microser-
vices based approaches are presented in Section 8.

8 Evaluation

We divide our evaluation into results from deployed systems
and results from internal experiments.

8.1 Deployed Systems Evaluation
In this section, we show how our customers are using cloud
tier in terms of data written, deduplication, and data deleted.
We do not present results for space estimation and seeding
in this section as these were recently released and the sam-
ple set is statistically small. Those techniques are evaluated
on internal systems. We considered results from hundreds
of deployed systems, filtered out systems with less than 1TB
(post dedup/compression) of data in the cloud tier and incon-
sistent reports, and randomly selected 200 systems for anal-
ysis. Across systems, the age of the cloud tier varied from a
few months to over two years.

Figure 3 shows monthly cumulative bytes (before dedu-
plication and compression) sent from active tier to cloud tier
for our 200 systems in the last three months. On one end,
in 35% of the cases, less than 60TB (before dedup/compres-
sion) per month has been moved to cloud tier. On the other
end, in 15% of the cases, over 660TB per month was sent to
the cloud tier.

Figure 4 shows a scatter plot comparing the amount of
data (before deduplication and compression) the deployed
systems have moved to cloud tier and the total compression
they have achieved. Total compression ratio is defined as
deduplication ratio * local compression ratio. The general

Figure 3: Distribution of TB/month moved to the cloud

Figure 4: Data moved to the cloud versus total compression

trend is that as more data is moved to the cloud tier, the more
total compression is achieved because the new data dedupli-
cates with older data. But there are some cases where even
after moving large amounts of data to the cloud tier, the to-
tal compression is low. We further analyzed those systems
and discovered that those customers are selecting and mov-
ing datasets with low total compression to the cloud tier to
reduce their on-premises cost. Interestingly, we also found
a few systems that have moved 20PB or more to the cloud
tier and achieved a total compression factor of 40× or more.
One system in particular achieved 66× total compression af-
ter moving 40PB of logical data to the cloud tier, resulting in
substantial space and cost savings.

To understand the cost savings seen by our customers, we
calculated how much money our customers are saving due
to deduplication and compression. Even though customers
are using various cloud providers, for simplicity, we assume
Amazon S3 cost metrics for transaction and storage costs.
We calculated total storage costs by calculating a monthly
storage cost and accumulating it for all the months. We then
calculated the transaction costs based on the total number
of transactions performed and the cost of each transaction.
Next, we added the storage and transaction costs based on
bytes written before and after deduplication and compres-
sion, and we calculated the difference of the two. The his-
togram in Figure 5 shows this difference which represents
the cumulative cost savings due to deduplication and com-
pression in thousands of dollars on a log scale. Some of our
customers saved nearly $10 million due to deduplication and

654 2019 USENIX Annual Technical Conference USENIX Association

Figure 5: Histogram of cumulative cost savings in thousands
of dollars due to deduplication and compression

Figure 6: Comparison of physical churn due to file deletes
and duplicates

compression. As customers retain the cloud tier data for a
longer time period or write more data, their savings due to
deduplication and compression will further increase.

8.1.1 Field GC Analysis

To understand how customers are deleting data and how
much churn is really generated, we looked at customers who
ran GC at-least once (40% of our selected 200 systems). As
customers delete files in the cloud tier, data becomes unrefer-
enced and needs to be cleaned. As mentioned in Section 7.2,
our system writes some duplicates to improve restore perfor-
mance. In turn, our GC algorithm retains the most recent
version of a duplicate (written to the newest container) and
removes older duplicates to reclaim space. Hence there are
two types of chunks that can be freed from our system: un-
referenced chunks due to file deletions and duplicate chunks.
Figure 6 presents the percentage of physical churn (bytes
deleted within a time period) that is dead due to file dele-
tions and due to duplicates relative to total capacity of the
system. Results from the last three months are included for
systems that have run cloud GC at least once.

The churn due to file deletions is relatively low-90% of
the systems had less than 5% of space reclaimed for dead
chunks, because deduplication creates many references to
chunks and because customers tend to retain their cloud data
for long periods. There are some cases where the churn due
to file deletions is over 25%, suggesting some customers

Figure 7: Percentage of cleaning efficiency loss

delete a large fraction of their cloud tier periodically. In
the steady state, most customers continue to delete the oldest
backups as newer backups are stored. This graph also shows
that while most of the systems have less than 30% of their
churn as duplicates, in some cases the duplicates are very
high (up to 75%). We looked at those systems and found
that some of those customers have never run GC or have not
run GC recently, so duplicates have not yet been removed.
In contrast, active tier GC runs each week, so duplicates do
not accumulate. We have learned that retention policies dif-
fer between active and cloud data, and we have provided an
option to customers to control the amount of duplicates they
want to write to cloud tier in case they infrequently run GC.

8.1.2 Cleaning Efficiency Loss due to Compression Re-
gion Cleaning

We analyzed the 200 systems to understand how much clean-
ing efficiency we lose with compression region-based clean-
ing for the cloud tier relative to possibly running chunk-level
cleaning. Figure 7 shows the percentage of bytes that cannot
be deleted by compression-region level cleaning but could
have been deleted by chunk-level cleaning. As we can see,
the cleaning efficiency loss is almost 100% in some cases. In
such cases, compression-region level cleaning won’t delete
anything. We looked at some of these systems closely and
found that this happens because the churn (bytes deleted
within a time period) in the cloud tier is low. Even though
there are a lot of duplicates that can be removed, these dupli-
cates reside in the same compression regions as chunks that
are still live, and this prevents us from deleting the compres-
sion region. In contrast, chunk-level cleaning is able to delete
the duplicates while keeping only the live chunks. Further
analysis of this observation is needed as the frequency and
pattern of deletions and deduplication can result in different
amounts of cleaning efficiency loss. In cases where we are
not able to free up any space using compression-region level
cleaning, we offer a chunk-level cleaning option, which per-
forms the traditional algorithm of reading and writing con-
tainer objects over the WAN. We also plan to augment our
API and microservice based cleaning services to perform
chunk level cleaning in the future.

USENIX Association 2019 USENIX Annual Technical Conference 655

Hardware DD-Mid DD-High
Memory 192GB 384GB

CPU(cores * GHz) 8 * 2.4GHz 24*2.5GHz
Active tier capacity 288TB 720TB
Cloud tier capacity 576TB 1440TB

Table 1: Data Domain hardware for experiments

8.1.3 Deployed Systems Summary

Here are findings from our cloud tier deployments:
1. Some customers are writing 500TB logically per month

while others are writing 100TB or less.
2. Customer data is achieving a broad range of total com-

pression ratios, from less than 4× to 100×, because cus-
tomers are using a cloud tier in different ways. Some
are writing highly redundant data to cloud tier (their
total compression factor on the cloud and active tiers
are both high). Such customers may accumulate more
metadata than we originally anticipated and this can af-
fect the runtime of GC and other algorithms. Other
customers are writing non-redundant data to the cloud
tier. It is likely that such customers are choosing low-
deduplication data to migrate to the cloud tier. Other
customers have not written much data to the cloud tier
yet, so their total compression factor is lower.

3. Some customers have more data written to the cloud tier
than to the active tier, so these customers are trying to
reduce their on-premises storage cost.

4. Churn on the cloud tier (0-5% per month) is substan-
tially lower than churn on the active tier (10% per week)
because customers are not deleting much data. This
finding is aligned with our expectation that cloud tier
is used for long term retention.

5. Most customers are running cloud tier GC infrequently
or not at all and have accumulated a high number of
duplicates. Modifications to internal parameters can re-
duce the number of duplicates in these situations.

8.2 Experiments on Internal Systems
In this section, we focus on results from internal systems
experiments. For all experiments, we used two cloud storage
systems, Amazon S3 (public cloud) and ECS (private cloud).
We used two Data Domain systems shown in Table 1, with
the cloud tier feature as described in this paper. The two
systems are representative of midrange (DD6800) and high-
end (DD9300) products. We provide the size of the active
tier and local storage for the cloud tier configuration.

8.2.1 Load Generator

To measure performance of our algorithms, we used an in-
house synthetic load generator described previously [1, 11,
7]. A first generation backup is randomly generated, and

Figure 8: Space estimation performance

the following generations have deletions, shuffles, and ad-
ditions. We typically write many streams in parallel, each
stream consisting of generations of backups beginning from
a unique seed. The change rate between two consecutive
generations is 5%. Gen0 is the first generation of backups
where we only get local compression (an average of 2×)
and no deduplication. GenX is aged data where generations
Gen0-Gen(X-1) are already written to the active or cloud
tiers. Due to deduplication, only the new content in GenX
is stored while the rest deduplicates. In the experiments be-
low, we vary the initial backup size, number of generations,
and number of parallel streams. Beyond 42 generations, the
physical locality of data is degraded at a similar level as what
many of our customers experience. In one experiment (Sec-
tion 8.2.4), we generated 100 generations to explore the im-
pact of extremely poor locality.

8.2.2 Freeable Space Estimation

To evaluate space estimation, we used the synthetic gener-
ator to create a data set, selected portions of the data set to
potentially migrate, and ran the space estimation algorithm.
We created a dataset using 96 parallel streams, each writ-
ing generations 0-50 of backups that average 24GB each
for a total logical size of 120TB. Figure 8 shows the eval-
uation time and amount of space that can be freed as we
vary the number of generations selected to potentially mi-
grate. With no generations selected (None), the evaluation
time is 15 minutes, and no space can be freed. As the num-
ber of generations selected increases up to including every
generation (the rightmost bar), the evaluation time is consis-
tently about 24 minutes while the amount of freeable space
increases with the number of generations selected. When
all generations are selected, the amount of freeable space
jumps since chunks common to the highest generation can
finally be freed. These results show that our space estima-
tion algorithm has a run time based on the allocated space of
the system. This is because space estimation does physical
scans of metadata chunks followed by a container walk to
calculate the estimated space that will be freed. The time for
both physical scans and a container walk are a function of
the physical space on the system.

656 2019 USENIX Annual Technical Conference USENIX Association

Figure 9: File Migration and Restore performance

The duration of each run is only a few minutes because
we wrote a small dataset instead of filling up a 1 PB sys-
tem, which can take weeks. From experiences with active
GC runs on a 1PB system (with the same underlying perfect
hashing and physical scans), space estimation on a system of
such capacity should finish within a couple of days.

8.2.3 File Migration and Restore from Cloud

Figure 9 shows the logical performance of file migration and
restore on DD-Mid and DD-High using both AWS and ECS
for object storage. We connected to AWS across the public
Internet, while ECS was within our lab. We used Gen42 data
to model aged data with high deduplication ratio. Gen42
file migration performance is higher than Gen0 file migra-
tion performance because of deduplication, as we only need
to transfer the changed data to the cloud tier. In the case of
Gen0 file migration, the performance for both hardware con-
figurations is the same. This is because for Gen0, we are
reading non-deduplicated data from the active tier and writ-
ing to the cloud tier, which is mainly gated by object stor-
age latency and the hardware configuration does not have
much impact. But in the case of Gen42, DD-High performs
16% better than DD-Mid on Amazon S3 and 31% better on
ECS. This happens because Gen42 has highly deduplicated
data compared to Gen0, and DD-High is able to sustain a
higher throughput because it has higher parallelism. High
object storage latencies continue to be a bottleneck, other-
wise the performance difference between the systems would
be higher. Gen42 restore from object storage is better than
Gen0 restore because in case of Gen42 we are deduplicat-
ing against the previous generations of active tier. Also, the
latest generation has better locality and hence better perfor-
mance as GC tries to keep the latest copy of the chunk and
hence over time the old generations get fragmented.

Restoring from object storage is typically slower than
writing, because it involves reading data from different ob-
jects in object storage and writing to the active tier. For com-
parison, Gen42 write performance on the active tier with the
same hardware is 3x better than writing to ECS and 2x better
than restore performance from ECS. The major difference in
performance is due to object storage latencies. On the active

Figure 10: File Migration vs. Seeding performance

tier latencies of 10-50ms latencies are common, while on the
cloud tier these latencies vary from 100 ms to 1 second for
both public and private cloud vendors.

8.2.4 File Migration vs. Seeding Performance

Seeding does a bulk transfer of data in a breadth-first man-
ner as opposed to the depth-first manner of file migration.
To fairly compare the two algorithms, we did a transfer us-
ing both techniques. We ran three sets of tests, where we
wrote Gen0, Gen0-50, and Gen0-100 to the active tier and
then moved Gen0, Gen0-25, and Gen0-50 to the cloud tier,
respectively, using both seeding and file migration. After ev-
ery 5th generation written, we ran active tier GC and forced it
to copy forward 30% of the containers to remove duplicates
and degrade the physical locality of the data on the active
tier. This simulates the scenario where customers have old,
highly deduplicated data on the active tier and would like to
move 50% of their oldest data to the cloud tier.

Figure 10 shows that seeding and file migration have sim-
ilar performance for Gen0 because locality is high and seed-
ing has the overhead of generating the perfect hash func-
tions. As we transfer Gen0-25 and Gen0-50, seeding is faster
than file migration by a 2x factor. This is because Gen0-50
have highly deduplicated data with degraded locality and the
depth-first approach of file migration has to traverse the same
containers repeatedly and incur random I/Os. In the case of
seeding, the sequential scans during the breadth-first traver-
sal compensates for the overhead of perfect hashing hence
making the movement more efficient. This experiment was
only performed on a DD-Mid system with Amazon S3 as
the cloud storage. Similar to the Gen0 file migration perfor-
mance discussed in Section 8.2.3, the hardware configuration
does not have much impact because we are bottlenecked by
the network throughput.

8.2.5 Garbage Collection Performance

Our analysis focuses on the copy forward process of cloud
tier GC, as shown in Figure 11, since it is the only phase
that differs from active tier GC. As described in Section 7.2,
we developed a new API to perform copy forward for pri-

USENIX Association 2019 USENIX Annual Technical Conference 657

Figure 11: GC copy forward with different algorithms

vate cloud providers. Using this API, the system performs a
copy forward of live compression regions (64-128KB) from
existing container objects into new container objects without
reading the data back to the Data Domain system to avoid
transfer costs. Using the API, we are able to achieve a copy
forward performance of 600MB/s.

For public cloud providers that do not provide a copy for-
ward API, we developed an experimental microservice al-
gorithm for garbage collection. The Data Domain system
makes compression region cleaning decisions and passes a
recipe to one or more GC microservice instances running in
the cloud that perform the copy forward operations, similar
to the functionality of the API. We increased the number of
AWS t3.xlarge instances [4] to evaluate how well it scales.
Aggregate performance scaled close to linearly, starting at
256 MB/s with one instance and increasing to 2,040 MB/s
with eight instances. Even though microservice performance
is better than API performance, we can use a microservice
only in the case of a public provider where we can spin up
compute to run the microservice. This might not be possible
in private cloud environments.

9 Related Work

Deduplication is a well-studied field with multiple survey
articles [21, 23, 31]. Deduplication is a key aspect of the
Data Domain product to enable space savings and high per-
formance for backups [32], and Data Domain has evolved
with media and use case changes [1, 2].

There have been multiple papers characterizing backup
data [15, 17, 19, 26, 30], and the terms backup and archive
are often used interchangeable, so the previous analysis may
have applications to archival system design. In our data anal-
ysis, customers have specifically decided to archive a subset
of their backup data for longer term retention in the cloud.

Reading from deduplicated cloud storage can be slow, and
several papers suggest ways to improve read performance,
usually involving writing duplicates, caching, and prefetch-
ing techniques [18, 27]. Security implications of cloud stor-
age have also been considered [16, 22, 24]. In contrast to
these papers, we show how to evolve an existing dedupli-
cated backup product to support a cloud tier.

The issue of deciding where to place large directories

to maximize content overlap has been considered [10, 12].
Nagesh et al. [20] presented a technique to partition a col-
lection of files by related content using an in-memory graph
relationship on fingerprints. A current publication represents
the content of storage volumes with sketches of sampled fin-
gerprints to determine unique content for volumes [14]. In
contrast, our technique can estimate the amount of space ref-
erenced from an arbitrary set of files selected by the user and
scales to PB capacity.

Cumulus [28] provides backups to cloud storage by trans-
ferring file differences and storing files in large objects.
BlueSky [29] presents a file system backed by cloud stor-
age that uses a local cache for performance. Though neither
incorporates deduplication, both projects describe garbage
collection for large objects in the cloud as regions become
unreferenced. Fu et al. [13] improve GC and restore per-
formance in deduplicated storage by analyzing the history of
container references during a backup. They rewrite duplicate
chunks from sparse containers from a previous backup and
record emerging sparse containers. They also manage con-
tainer manifests that record which backups reference each
container, and when a manifest becomes empty, a container
can be safely removed. Such techniques could be used within
our cloud GC algorithm, though copy-forward bandwidth is
unlikely to be improved.

10 Conclusion

Data protection continues to be a key priority as customers
transition their archival data to cloud storage. Data Domain
is a mature data protection product, and adding a cloud tier
involved trade-offs within the current architecture. We had to
make decisions about object sizes and data structure relation-
ships to balance performance and cost not only of migrating
data to the cloud tier but also running GC. To address these
concerns, we developed several techniques: mirroring meta-
data locally supports efficient deduplication and GC, and us-
ing perfect hashes to track billions of references in memory
enables space estimation, seeding, and cloud GC. Experi-
ences with initial customers shows a strong interest in dedu-
plicated archival storage. Large amounts of data are trans-
ferred each month, which benefit from deduplication both in
terms of faster transfer speeds but also lower storage costs.

Acknowledgments
We thank our shepherd Gala Yadgar and the anonymous
reviewers. We thank the many Data Domain filesystem,
QA and performance engineers who have contributed to
its cloud tier-Bhimsen Bhanjois, Shuang Liang, Kalyani
Sundaralingam, Jayasekhar Konduru, Kalyan Gunda, Ash-
wani Mujoo, Srikant Viswanathan, Chetan Rishud, George
Mathew, Prajakta Ayachit, Srikanth Srinivasan, Lan Bai, Ab-
dullah Reza, Kadir Ozdemir, Colin Johnson.

658 2019 USENIX Annual Technical Conference USENIX Association

References

[1] ALLU, Y., DOUGLIS, F., KAMAT, M., PRABHAKAR,
R., SHILANE, P., AND UGALE, R. Can’t We All Get
Along? Redesigning Protection Storage for Modern
Workloads. In USENIX Annual Technical Conference
(ATC’18) (2018).

[2] ALLU, Y., DOUGLIS, F., KAMAT, M., SHILANE, P.,
PATTERSON, H., AND ZHU, B. Backup to the future:
How workload and hardware changes continually rede-
fine Data Domain file systems. Computer 50, 7 (2017),
64–72.

[3] AMAZON. Amazon S3. https://aws.amazon.com/s3/,
2018. Retrieved Sept. 17, 2018.

[4] AMAZON. Amazon Web Services.
https://aws.amazon.com/, 2018. Retrieved Sept.
17, 2018.

[5] BELAZZOUGUI, D., BOTELHO, F. C., AND DIET-
ZFELBINGER, M. Hash, displace, and compress. In
Algorithms-ESA 2009. Springer, 2009.

[6] BOTELHO, F. C., PAGH, R., AND ZIVIANI,
N. Practical perfect hashing in nearly opti-
mal space. Information Systems (June 2012).
http://dx.doi.org/10.1016/j.is.2012.06.002.

[7] BOTELHO, F. C., SHILANE, P., GARG, N., AND HSU,
W. Memory efficient sanitization of a deduplicated
storage system. In USENIX Conference on File and
Storage Technologies (FAST’13) (2013).

[8] DELL EMC. Elastic Cloud Storage.
https://www.dellemc.com/en-us/storage/ecs/, 2018.
Retrieved Sept. 17, 2018.

[9] DIETZFELBINGER, M., AND PAGH, R. Succinct data
structures for retrieval and approximate membership.
In Proceedings of the 35th international colloquium on
Automata, Languages and Programming, Part I (2008),
ICALP ’08, Springer-Verlag, pp. 385–396.

[10] DOUGLIS, F., BHARDWAJ, D., QIAN, H., AND SHI-
LANE, P. Content-aware load balancing for distributed
backup. In Large Installation System Administration
Conference (LISA) (2011).

[11] DOUGLIS, F., DUGGAL, A., SHILANE, P., WONG,
T., YAN, S., AND BOTELHO, F. C. The logic of
physical garbage collection in deduplicating storage. In
USENIX Conference on File and Storage Technologies
(FAST’17) (2017).

[12] FORMAN, G., ESHGHI, K., AND SUERMONDT, J. Ef-
ficient detection of large-scale redundancy in enterprise

file systems. SIGOPS Oper. Syst. Rev. 43, 1 (Jan. 2009),
84–91.

[13] FU, M., FENG, D., HUA, Y., HE, X., CHEN, Z., XIA,
W., HUANG, F., AND LIU, Q. Accelerating restore and
garbage collection in deduplication-based backup sys-
tems via exploiting historical information. In USENIX
Annual Technical Conference (ATC’14) (2014).

[14] HARNIK, D., HERSHCOVITCH, M., SHATSKY, Y.,
EPSTEIN, A., AND KAT, R. Sketching volume capaci-
ties in deduplicated storage. In USENIX Conference on
File and Storage Technologies (FAST’19) (2019).

[15] JIN, K., AND MILLER, E. L. The effectiveness of
deduplication on virtual machine disk images. In Pro-
ceedings of The Israeli Experimental Systems Confer-
ence (2009), ACM.

[16] LI, J., LI, Y. K., CHEN, X., LEE, P. P., AND LOU, W.
A hybrid cloud approach for secure authorized dedupli-
cation. IEEE Transactions on Parallel and Distributed
Systems 26, 5 (2015), 1206–1216.

[17] LU, M., CHAMBLISS, D., GLIDER, J., AND CON-
STANTINESCU, C. Insights for data reduction in pri-
mary storage: a practical analysis. In Proceedings
of the International Systems and Storage Conference
(2012), ACM.

[18] MAO, B., JIANG, H., WU, S., FU, Y., AND TIAN,
L. Read-performance optimization for deduplication-
based storage systems in the cloud. ACM Transactions
on Storage 10, 2 (Mar. 2014).

[19] MEYER, D., AND BOLOSKY, W. A study of practi-
cal deduplication. In USENIX Conference on File and
Storage Technologies (FAST’11) (2011).

[20] NAGESH, P., AND KATHPAL, A. Rangoli: Space man-
agement in deduplication environments. In Proceed-
ings of the International Systems and Storage Confer-
ence (2013), ACM.

[21] NEELAVENI, P., AND VIJAYALAKSHMI, M. A survey
on deduplication in cloud storage. Asian Journal of
Information Technology 13, 6 (2014), 320–330.

[22] NG, W. K., WEN, Y., AND ZHU, H. Private data dedu-
plication protocols in cloud storage. In Proceedings
of the ACM Symposium on Applied Computing (2012),
ACM, pp. 441–446.

[23] PAULO, J., AND PEREIRA, J. A survey and classifica-
tion of storage deduplication systems. ACM Computing
Surveys 47, 1 (2014).

USENIX Association 2019 USENIX Annual Technical Conference 659

[24] PUZIO, P., MOLVA, R., ONEN, M., AND LOUREIRO,
S. Cloudedup: secure deduplication with encrypted
data for cloud storage. In International Conference
on Cloud Computing Technology and Science (Cloud-
Com) (2013), vol. 1, IEEE, pp. 363–370.

[25] SRINIVASAN, K., BISSON, T., GOODSON, G. R.,
AND VORUGANTI, K. iDedup: latency-aware, in-
line data deduplication for primary storage. In
USENIX Conference on File and Storage Technologies
(FAST’12) (2012).

[26] SUN, Z. J., KUENNING, G., MANDAL, S., SHILANE,
P., TARASOV, V., XIAO, N., AND ZADOK, E. Clus-
ter and single-node analysis of long-term deduplication
patterns. ACM Trans. Storage 14, 2 (May 2018), 13:1–
13:27.

[27] TAN, Y., JIANG, H., FENG, D., TIAN, L., AND YAN,
Z. Cabdedupe: A causality-based deduplication perfor-
mance booster for cloud backup services. In IEEE In-
ternational Conference on Parallel & Distributed Pro-
cessing Symposium (IPDPS) (2011).

[28] VRABLE, M., SAVAGE, S., AND VOELKER, G. M.
Cumulus: Filesystem backup to the cloud. ACM Trans-
actions on Storage (TOS) 5, 4 (2009), 14.

[29] VRABLE, M., SAVAGE, S., AND VOELKER, G. M.
Bluesky: A cloud-backed file system for the enterprise.
In USENIX conference on File and Storage Technolo-
gies (FAST’12) (2012).

[30] WALLACE, G., DOUGLIS, F., QIAN, H., SHILANE,
P., SMALDONE, S., CHAMNESS, M., AND HSU, W.
Characteristics of backup workloads in production sys-
tems. In USENIX Conference on File and Storage Tech-
nologies (FAST’12) (2012).

[31] XIA, W., JIANG, H., FENG, D., DOUGLIS, F., SHI-
LANE, P., HUA, Y., FU, M., ZHANG, Y., AND ZHOU,
Y. A comprehensive study of the past, present, and
future of data deduplication. Proceedings of the IEEE
104, 9 (Sept. 2016).

[32] ZHU, B., LI, K., AND PATTERSON, H. Avoiding the
disk bottleneck in the Data Domain deduplication file
system. In USENIX Conference on File and Storage
Technologies (FAST’08) (2008).

660 2019 USENIX Annual Technical Conference USENIX Association

GAIA: An OS Page Cache for Heterogeneous Systems

Tanya Brokhman, Pavel Lifshits and Mark Silberstein
Technion – Israel Institute of Technology

Abstract
We propose a principled approach to integrating GPU memory
with an OS page cache. We design GAIA, a weakly-consistent
page cache that spans CPU and GPU memories. GAIA en-
ables the standard mmap system call to map files into the GPU
address space, thereby enabling data-dependent GPU accesses
to large files and efficient write-sharing between the CPU and
GPUs. Under the hood, GAIA (1) integrates lazy release con-
sistency protocol into the OS page cache while maintaining
backward compatibility with CPU processes and unmodified
GPU kernels; (2) improves CPU I/O performance by using
data cached in GPU memory, and (3) optimizes the readahead
prefetcher to support accesses to files cached in GPUs.

We prototype GAIA in Linux and evaluate it on NVIDIA
Pascal GPUs. We show up to 3× speedup in CPU file I/O
and up to 8× in unmodified realistic workloads such as Gun-
rock GPU-accelerated graph processing, image collage, and
microscopy image stitching.

Introduction
GPUs have come a long way from fixed-function acceler-

ators to fully-programmable, high-performance processors.
Yet their integration with the host Operating System (OS) is
still quite limited. In particular, GPU physical memory, which
today may be as large as 32GB [9], has been traditionally man-
aged entirely by the GPU driver, without the host OS control.
One crucial implication of this design is that the OS cannot
provide core system services to GPU kernels, such as efficient
access to memory mapped files, nor can it optimize I/O per-
formance for CPU applications sharing files with GPUs. To
mitigate these limitations, tighter integration of GPU memory
into the OS page cache and file I/O mechanisms is required.
Achieving such integration is one of the goals of this paper.

Prior works demonstrate that mapping files into GPU mem-
ory provides a number of benefits [34, 36, 35]. Files can
be accessed from the GPU using an intuitive pointer-based
programming model, enabling GPU applications with data-
dependent access patterns. Transparent system-level perfor-
mance optimizations such as prefetching and double buffering
can be implemented to achieve high performance for I/O inten-
sive GPU kernels. Finally, file contents can be easily shared
between legacy CPU and GPU-accelerated processes.

Extending the OS page cache into GPU memory is advan-
tageous even for CPU I/O performance. With modern servers
commonly hosting 8 and more GPUs, the total GPU memory
available (100-200GB) is large enough to be used for caching
file contents. As we show empirically, doing so may boost
the I/O performance by up to 3× compared to accesses to a
high-performance SSD (§6). Finally, the OS management of
the page cache in GPU memory may allow caching GPU file
accesses directly in the GPU page cache, bypassing CPU-side
page cache and avoiding its pollution [15].

Unfortunately, today’s commodity systems fall short of
providing full integration of GPU memory with the OS page
cache. ActivePointers [34] enable a memory-mapped files
abstraction for GPUs, but their use of special pointers re-
quires intrusive modifications to GPU kernels, making them
incompatible with closed-source libraries such as cuBLAS [7].
NVIDIA’s Unified Virtual Memory (UVM) [8] and the Hetero-
geneous Memory Management (HMM) [4] module in Linux
allow GPUs and CPUs to access shared virtual memory space.
However, neither UVM nor HMM allow mapping files into
GPU memory, which makes them inefficient when process-
ing large files (§6.3.2). More fundamentally, both UVM and
HMM force the physical page to be present in the memory of
only one processor. This results in a performance penalty in
case of false sharing in data-parallel write-sharing workloads.
Moreover, false sharing has a significant impact on the system
as a whole, as we show in (§3).

Several hardware architectures introduce cache coherence
between CPUs and GPUs. In particular, CPUs with integrated
GPUs support coherent shared virtual memory in hardware.
In contrast to discrete GPUs, however, integrated GPUs lack
large separate physical memory. Therefore, today’s OSes do
not provide any memory management services for them.

Recent high-end IBM Power-9 systems feature hardware
cache-coherent shared virtual memory between CPUs and
discrete GPUs [31]. GPU memory is managed as another
NUMA node. Thus, the OS is able to provide memory man-
agement services to GPUs, including memory-mapped files.
Unfortunately, cache coherence between the CPU and dis-
crete GPUs is not available in x86-based commodity systems,
and it is unclear when it will be introduced (see §4.3). Clearly,
using the NUMA mechanisms for non-coherent GPU memory

USENIX Association 2019 USENIX Annual Technical Conference 661

management would not work. For example, migrating a CPU-
accessible page into GPU memory will break the expected
memory behavior for CPU processes, e.g., due to the lack of
atomic operations across the PCIe bus, among other issues.

To resolve these limitations, we propose GAIA1, a dis-
tributed, weakly-consistent page cache architecture for hetero-
geneous multi-GPU systems that extends the OS page cache
into GPU memories and integrates with the OS file I/O layer.
With GAIA, CPU programs use regular file I/O to share files
with GPUs. Calling mmap with a new MMAP_ONGPU flag makes
the mapping accessible to the GPU kernels, thus providing
support for GPU accesses to shared files. This approach al-
lows access to memory-mapped files from unmodified GPU
kernels.

This paper makes the following contributions:

• We characterize the overheads of CPU-GPU false shar-
ing in existing systems (§3.1). We propose a unified
page cache which eliminates false sharing by using a
lazy release consistency model [22, 10].

• We extend the OS page cache to control the unified (CPU
and GPU) page cache and its consistency (§4.1), without
requiring CPU-GPU hardware cache coherence. We in-
troduce a peer-caching mechanism and integrate it with
the OS readahead prefetcher, enabling any processor ac-
cessing files to retrieve them from the best location, and
in particular, from GPU memory (§6.2).

• We present a fully functional generic implementation in
Linux, not tailored to any particular GPU.

• We prototype GAIA on NVIDIA Pascal GPU, leveraging
its page fault support. We modify public parts of the
GPU driver and reliably emulate the functionality which
cannot be implemented due to the closed-source driver.

• We evaluate GAIA using real workloads, including
(1) an unmodified graph processing framework - Gun-
rock [38], (2) a Mosaic application that creates an im-
age collage from a large image database [34], and (3)
a multi-GPU image stitching application [16, 18] that
determines the optimal way to combine multiple image
tiles, demonstrating the advantages and the ease-of-use
of GAIA for real-life scenarios.

Background
We briefly explain the main principles of several existing

memory consistency models relevant to our work.
Release consistency. Release consistency (RC) [22] is a
form of relaxed memory consistency that permits delaying the
effects of writes to distributed shared memory. The program-
mer controls the visibility of the writes from each processor

1GlobAl unIfied pAge cache, or simply the daughter’s name of one of
the authors, born during this project.

by means of the acquire and release synchronization opera-
tions. Informally, the writes are guaranteed to be visible to the
readers of a shared memory region after the writer release-s
the region and the reader acquire-s it.

RC permits concurrent updates to different versions of the
page in multiple processors, which get merged upon later
accesses. A common way to resolve merge conflicts is by
using the version vectors mechanism, explained below.
Lazy release consistency. In Lazy Release Consistency
(LRC) [22, 10] the propagation of updates to a page is de-
layed until acquire. At synchronization time, the acquiring
processor receives the updates from the other processors. Usu-
ally, the underlying implementation leverages page faults to
trigger the updates [22]. Specifically, a stale local copy of the
page is marked inaccessible, causing the processor to fault
on the first access. The faulting processor then retrieves the
up-to-date copy of the page from one or more processors.
In the home-based version of the protocol, a home node is
assigned to a page to maintain the most up-to-date version of
the page. The requesting processor contacts the home node to
retrieve the latest version of the page.
Version vectors. Version vectors (VVs) [32] are used in dis-
tributed systems to keep track of replica versions of an object.
The description below is transcribed from Parker et al. [32].

A version vector of an object O is a sequence of n pairs,
where n is the number of sites at which O is stored. The pair
{Si : vi} is the latest version of O made at site Si. That is, the
vector entry vi counts the number of updates to O made at site
Si. Each time O is copied from site Si to S j at which it was
not present, the version vector of site Si is adopted by site S j.
If the sites have a conflicting version of the replica, the new
vector is created by taking the largest version among the two
for each entry in the vector.

Consistency model considerations
The choice of the consistency model for the unified page

cache is an important design question. We describe the options
we considered and justify our choice of LRC.
POSIX: strong consistency. In POSIX writes are immedi-
ately visible to all the processes using the same file [5]. In
x86 systems without coherent shared memory and with GPUs
connected via a high latency (relative to local memory) PCIe
bus, such a strong consistency model in a unified page cache
would be inefficient [36].
GPUfs: session semantics. GPUfs [36] introduces a GPU-
side library for file I/O from GPU kernels. GPUfs implements
a distributed page cache with session semantics. Session se-
mantics, however, couple between the file open/close opera-
tions and data synchronization. As a result, they cannot be
used with mmap, as sometimes the file contents need to be
synchronized across processors without having to unmap and
close the file and then reopen and map it again. Therefore, we
find session semantics unsuitable for GAIA.

662 2019 USENIX Annual Technical Conference USENIX Association

�

��

��

��

��

� �� �� 	� �� ��� ��� ��� �	�

�
��
�
�
�
�
�

����������	
����
�
�

�������������
 �������������

�

������������������
� �

������������������
�

(a) False sharing between two GPUs

�

�

�

��

��

� �� �� �� �� ��� ���

�
��
�
�
�
�
�

����������	
����
�
�

�����������
 �����������

�

����������������
� �

����������������
�

(b) False sharing between CPU and GPU

�����
�����

������
������

�����
�����

�����
����� �����

�����
�����

�����
�����

�����
�����

�����
�����

������
������

�����
�����

�����
�����

������
������

�����
�����

�����
�����

������
������ �����

������
������

������
������

�����
�����

������
������

�����
�����

�����
�����

������
������

�����
�����

�����
�����

������
������ �����

�����
�����

���

�

���

�

���

�
�
�
�
�
��
�	
�

�
�
�
��
��

�

����������	

�����

��������
�	���	��������������

��������
�	���������������

(c) The effect of false sharing in GPUs on an iso-
lated CPU-only kmeans benchmark [33]

Figure 1: Impact of false sharing on the performance of GPU kernels and the system as a whole.

UVM: page-level strict coherence. NVIDIA UVM [8] and
Linux (HMM) [4] implement strict coherence [24] at the
GPU page granularity (e.g., 64KB in NVIDIA GPUs). In this
model, a page can be mapped only by one processor at a time.
Thus, two processors cannot observe different replicas of the
page (multiple read-only replicas are allowed). If a processor
accesses a non-resident page, the page fault causes the page to
migrate, i.e., the data is transferred, and the page is remapped
at the requestor and unmapped at the source.

Although this model might seem appealing for page cache
management, it suffers from sporadic performance degrada-
tion due to false sharing. False sharing of a page occurs when
two processors inadvertently share the same page, at least
one of them for write, while performing non-overlapping data
accesses [17]. False sharing is known to dramatically degrade
the performance of distributed shared memory systems with
strict coherence because it causes repetitive and costly page
migration among different physical locations [17]. False shar-
ing has been also reported in multi-GPU applications that use
NVIDIA’s UVM [8]. The official recommended solution is to
allocate private replicas of the shared buffer in each processor
and manually merge them after use.
False sharing in a page cache. If strict coherence is used
for managing a unified page cache, false sharing of the page
cache pages might occur quite often. Consider an image pro-
cessing task that stitches multiple image tiles into a large
output image stored in a file, e.g., when processing samples
from a microscope [16]. False sharing will likely occur when
multiple GPUs process the images in a data-parallel way, each
writing its results to a shared output file. Consider two GPUs,
one processing the left and another the right half of the image.
In this case, false sharing might occur at every row of the
output. This is because for large images (thousands of pixels
in each dimension) stored in row-major format, each row will
occupy at least one memory page in the page cache. Since
each half of the row is processed on a different GPU, the same
page will be updated by both GPUs. We observe this effect in
real applications (§ 6.3.3).

False sharing with UVM

Impact of false sharing on application performance. To
experimentally quantify the cost of false sharing in multi-
GPU systems, we allocate a 64KB-buffer (one GPU page)
and divide it between two NVIDIA GTX1080 GPUs. Each
GPU executes read-modify-write operations (so they are not
optimized out) on its half in a loop. We run a total of 64
threadblocks per GPU, each accessing its own part of the array,
all active during the run. To control the degree of contention,
we vary the number of loop iterations per GPU.

We compare the execution time when both GPUs use a
shared UVM buffer (with false sharing) with the case when
both use private buffers and merge them at the end of the
run (no false sharing). Figure 1a shows the scatter graph
of the measurements. False sharing causes slowdown that
grows with the number of page migrations, reaching 28×, and
results in large runtime variance 2. Figure 1b shows similar
results when one of the GPUs is replaced with a single CPU
thread. This also indicates that adding more GPUs is likely to
cause even larger degradation due to higher contention and
increased data transfer costs.
System impact of false sharing. False sharing among GPUs
affects the performance of the system as a whole. We run the
CPU-only kmeans benchmark from Phoenix [33] in paral-
lel with the multi-GPU false sharing benchmark above. We
allocate two CPU cores for GPU management, and the re-
maining four cores to running kmeans (modified to spawn
four threads). The GPU activity should not interfere with
kmeans because kmeans does not use the GPU.

However, we observe significant interference when GPUs
experience false sharing. Figure 1c depicts the runtime of
kmeans when run together with the multi-GPU run, with and
without false sharing. Not only does kmeans become up to
47% slower, but the execution times vary substantially. Thus,
false sharing affects an unrelated CPU application, breaking
the fundamental OS performance isolation properties.
Preventing page bouncing via pinning. In theory, the false
sharing overheads could be reduced by pinning the page in

2The difference in the slowdown between the two GPUs stems from the
imperfect synchronization between them. Thus, the one invoked first (GPU0)
can run briefly without contention.

USENIX Association 2019 USENIX Annual Technical Conference 663

PCIe

Block layer

Disk driver

P2P
SSD

Page

cache

Memory

 Peer

caching

ReadaheadPage cache

Page

cache

Memory
P2P

GPU driver

Controller
VM

manager

GPU GPU

Radix-

tree Consistency

manager

Figure 2: GAIA high-level design in the OS kernel. The
modified parts are highlighted.

memory of one of the processors, and mapping it into the
address space of the other processors for remote access over
PCIe. Unfortunately, pinning page cache pages is quite prob-
lematic. It would require substantial modifications to the ex-
isting page cache management mechanisms. For example, to
be evicted, the pinned page would need to be unmapped from
the virtual address space of all the mapping processors.

Moreover, even though pinning is likely to yield better
system performance for pages experiencing false sharing,
in the common case remote accesses from other processors
would be slower than accessing the pages locally. Thus, robust
false sharing detection heuristics should be designed, such that
only the actual page bouncing triggers the pinning mechanism.
On the other hand, enabling the programmer to pin pages
manually at the mmap time is not efficient either, because then
the pages must be initialized with the contents of the file.
Mapping large files would thus require reading them in full
from the disk, which not only nullifies the on-demand file
loading benefits of mmap, but might not even be possible for
the large files exceeding physical memory.
Implications for Unified Page Cache design. We conclude
that the UVM strict coherence model is unsuitable for imple-
menting a unified page cache. It may suffer from spurious and
hard-to-debug performance degradation that affects the whole
system, and only worsens as the number of GPUs increases. A
system-level service with such inherent limitations would be
a poor design choice. Thus, we chose to build a unified cache
that follows the lazy-release consistency model and sidesteps
the false sharing issues entirely.

Design
Overview. Figure 2 shows the main GAIA components in
the OS kernel. A distributed page cache spans across the
CPU and GPU memories. The OS page cache is extended to
include a consistency manager that implements home-based
lazy release consistency (LRC). It keeps track of the versions
of all the file-backed memory pages and their locations. When
a page is requested by the GPU or the CPU (due to a page
fault), the consistency manager determines the locations of
the most recent versions, and retrieves and merges them if
necessary. We introduce new macquire and mrelease system

Figure 3: Code sketch of mmap for GPU. The CPU writes data
into the file and then invokes the GPU controller, which maps
the file and runs the GPU kernel.

calls which follow standard Release Consistency semantics
and have to be used when accessing shared files. We explain
the page cache design in (§4.1).

If an up-to-date page replica is available in multiple loca-
tions, the peer-caching mechanism retrieves the page via the
most efficient path, e.g., from GPU memory for the CPU I/O
request, or directly from storage for the GPU access as in
SPIN [15]. This mechanism is integrated with the OS reada-
head prefetcher to achieve high performance (§6.2). To enable
proper handling of memory-mapped files on GPUs, the GAIA
controller in the GPU driver keeps track of all the GPU virtual
ranges in the system that are backed by files.
File-sharing example. Figure 3 shows a code sketch of shar-
ing a file between a legacy CPU application (producer) and
a GPU-accelerated one (consumer). This example illustrates
two important aspects of the design. First, no GPU kernel
changes are necessary to access files, and no new system
code runs on the GPU. The consistency management is per-
formed by the CPU consumer process that uses the GPU,
which we call the GPU controller. Second, no modifications
to legacy CPU programs are required to share files with GPUs
or among themselves, despite the weak page cache consis-
tency model. The consistency control logic is confined to the
GPU controller process. Besides being backward compatible,
this design simplifies integration with the CPU file I/O stack.

Consistency manager

Version vectors. GAIA maintains the version of each file-
backed 4K page for every entity that might hold the copy of
the page. We call such an entity a page owner. We use the
well-known version vector mechanism (§2) to allow scalable
version tracking for each page [32].

A page owner might be a CPU, each one of the GPUs, or the
storage device. Keeping track of the storage copy is important
because GAIA supports direct transfer from the disk to GPU
memory. Consider the example in Figure 4, where a page
is first concurrently modified by the CPU and the GPU, and
then flushed to storage by the CPU. Flushing it from the CPU

664 2019 USENIX Annual Technical Conference USENIX Association

Figure 4: Version vectors in GAIA. The CPU flushes its
replica to disk, the GPU keeps its version. The following
CPU read must merge two replicas.

removes both the data and its version information from CPU
memory. The next reader must be able to retrieve the most
recent version of the page, which in our example requires
merging the page versions on the disk and on the GPU. The
storage entry in the version vector is always zero.

A new Time Stamp Version Table (TSVT) stores all the
version vectors for a page. This table is located in the respec-
tive node of the page cache radix tree. The GPU entries are
updated by the CPU-side GPU controller on behalf of the
GPU. We choose the CPU-centric design to avoid intrusive
modifications to GPU software and hardware.
Synchronizing system calls for consistency control. We in-
troduce two new system calls to implement LRC.

macquire(void *addr, size len, void* device)

must be called to ensure that the device accesses the
latest version of the data in the specified address range.
macquire scans through the address range on the device and
invalidates (unmaps and drops) all the outdated local pages.
When called for the CPU, it unmaps such pages from all the
CPU processes. Thus, the following access to the page will
cause a page fault trap to retrieve the most recent version of
the page, as we describe later in (§4.1.1).

mrelease(void *addr, size_t len, void* device)

must be called by the device that writes to the respective
range to propagate the updates to the rest of the system.
Similarly to macquire, this operation does not involve data
movements. It only increases the versions of all the modified
(since the last macquire) pages in the owner’s entry of its
version vector.

Tracking the status of CPU pages requires a separate
LRC_modified flag in the page cache node, in addition to
the original modified flag used by the OS page cache. This
is because the latter can be reset by other OS mechanisms,
e.g, flush, resulting in a missed update. The new flag is set
together with the original one, but is reset by mrelease call as
part of the version vector update.
Transparent consistency support for the CPU. GAIA does
not change the original POSIX semantics when sharing files
among CPU processes, because all the CPUs share the same
replica of the cached page. However, macquire and mrelease

calls must be invoked by all the CPU processes that might
inadvertently share files with GPUs. In GAIA we seek to
eliminate this requirement.

Our solution is to perform the CPU synchronization calls
eagerly, combining them with macquire and mrelease calls
issued on behalf of GPUs. The macquire call for the GPU is
invoked after internally calling mrelease for the CPU, and
mrelease of the GPU is always followed by macquire for the
CPU. This change does not affect the correctness of the origi-
nal LRC protocol, because it maintains the relative ordering
of the acquire and release calls on different processors, simply
moving them closer to each other.
Consistency and GPU kernel execution. GAIA’s design
does not preclude invocation of macquire and mrelease dur-
ing the kernel execution on the target GPU. However, the
current prototype does not support such functionality, because
we cannot retrieve the list of dirty pages from the GPU while
it is running, which is necessary for implementing mrelease.
Therefore, we support the most natural scenario (also in Fig-
ure 3), which is to invoke macquire and mrelease at the kernel
execution boundaries. Integrating these calls with the CUDA
streaming API might be possible by using CUDA CPU call-
backs [2]. We leave this for future work.

Page faults and merge

Page faults from any processor are handled by the CPU
(hence, home-based LRC). CPU and GPU-originated page
faults are handled similarly. For the latter, the data is moved
to the GPU. The handler locates the latest versions of the
page according to its TSVT in the page cache. If the faulting
processor holds the latest version in its own memory (minor
page fault), the page is remapped. If, however, the present
page is outdated or not available, the page is retrieved from
the memory of other processors or from storage.

This process involves handling the merge of multiple repli-
cas of the same page. The overlapping writes to the same
memory locations (i.e., the actual data races) are resolved via
an "any write wins" policy, in a deterministic order (i.e., based
on the device hardware ID). However, non-overlapping writes
to the same page must be explicitly merged via 3-way merge,
as in other LRC implementations [22].
3-way merge. The CPU creates a pristine base copy of the
page when a GPU maps the page as writable. Conflicting
pages are compared with their base copies first to detect the
changes.

The storage overheads due to pristine copies might compro-
mise scalability, as we discuss in (§6.1). The naive solution is
to store a per-GPU copy of each page. A more space-efficient
design might use a single page base copy for all the proces-
sors, employing copy-on-write and eagerly propagating the
updates after the processor mrelease-s the page, instead of
waiting for the next page fault (lazy update). Our current
implementation uses the simple variant.

The overheads of maintaining the base copy are not large in
practice. First, the base copy can be discarded after the page
is evicted from GPU memory. Further, it is not required for

USENIX Association 2019 USENIX Annual Technical Conference 665

read-only accesses, or when there is only one-page owner (ex-
cluding the storage) in the system. Most importantly, creating
the base copy is not necessary for writes from CPU processes.
This is because the CPU is either the sole owner, or the base
copy has already been created for the modifying GPU.

Interaction with file I/O

Peer-caching. GAIA architecture allows a page replica to be
cached in multiple locations, so that the best possible I/O path
(or possibly multiple I/O paths in parallel) can be chosen, to
serve page access requests. In particular, the CPU I/O request
can be served from GPU memory. Note that access to the
GPU-cached page does not invalidate it for the GPU.

A naive approach to peer-caching is to determine the best
location individually for each page. However, this approach
degrades the performance for sequential accesses by an order
of magnitude, due to the overheads of small data transfers
over the PCIe bus. Instead, GAIA leverages the OS prefetcher
to optimize PCIe transfers. We modify the prefetcher to deter-
mine the data location in conjunction with deciding how much
data to read at once. This modification results in a substantial
performance boost, as we show in (§6.2).
Readahead for GPU streaming access. GPUs may concur-
rently run hundreds of thousands of threads that access large
amounts of memory at once. GPU hardware coalesces multi-
ple page faults together (up to 256, one for 64KB page). If the
page faults are triggered by accesses to the memory-mapped
file on the GPU, GAIA reads the file according to the GPU-
requested locations and copies the data to GPU pages. We
call such accesses GPU I/O.

We observe that the existing OS readahead prefetcher does
not work well for GPU I/O. It is often unable to optimize
streaming access patterns where a GPU kernel reads the
whole file in data-parallel strides, one stride per group of
GPU threads. The file accesses from the GPU in such a case
appear random when delivered to the CPU due to the non-
deterministic hardware schedule of GPU threads, thereby con-
fusing the CPU read-ahead heuristics.

We modify the existing OS prefetcher by adjusting the up-
per bound on the read-ahead window to 16MB (64× of the
CPU), but only for GPU I/O accesses. We also add madvise

hints that increase the minimum read size from a disk to
512KB for sequential accesses. These changes allow the
prefetcher to retrieve more data faster when the sequential
pattern is recognized, but it does not fully recover the per-
formance. Investigating a better prefetcher heuristic that can
cope with massive multi-threading is left for future work.

Discussion

GAIA and cache-coherent accelerator architectures.
Cache-coherent systems with global virtual address space

may allow a simpler solution to the page cache management.
However, we believe that cache coherence between the CPU
and discrete accelerators is unlikely to fully replace exist-
ing systems soon. Despite the cache coherent technologies
(CAPI [37]) having been available, the high cost and the need
for industry-wide coordination on open interfaces have hin-
dered their adoption thus far. Nor is it apparent how and
to what extent these technologies will improve commodity
applications (i.e., graphics, deep learning). Many additional
open issues (for example, scalability) also must be addressed.
Therefore, in GAIA we choose not to rely on cache-coherence
among CPUs and accelerators.
No snapshot isolation. GAIA does not provide snapshot iso-
lation. This is consistent with prior work on GPU file system
support [36]. While adding such guarantee is possible, we did
not find applications that require it.
Prefetching hints. Our current prototype could be extended
to support more advanced prefetching hints similar to
UVM [1]. For example, it could employ eager data copy into
the page cache of a specific GPU that is known to exclusively
access the data. We leave this for future work.
Using huge CPU pages. GAIA design and implementation is
tailored for 4KB pages managed by the OS. However, GAIA
can be adapted to support different page sizes as well, i.e.
2MB huge pages. Huge pages require only minor modifica-
tions to the TSVT management logic and tables, and might
improve performance for applications with sequential file ac-
cess. This is because transferring 2MB pages over PCIe is
about 5× more efficient than 4KB pages. On the other hand,
increasing the page sizes would affect the workloads with
poor spatial locality, such as Mosaic (§6.3.1).
GAIA compatibility with other accelerators. GAIA’s de-
sign can be extended to other GPUs and accelerators with
paging capabilities. In fact, support for paging was introduced
recently in AMD GPUs [4, 6]. However, implementation in
GAIA would require an accelerator to expose minimal page
management APIs, as we explain in the next section.

Implementation
GAIA implementation requires changing 3300 LOC and

1200 LOC in Linux kernel and the NVIDIA UVM driver
respectively.

OS changes

Page cache with GPU pointers. In Linux, the page cache
is represented as a per-file radix tree with each leaf node
corresponding to a continuous 256KB file segment. Each leaf
holds an array of addresses (or NULLs) of 64 physical pages
caching the file content.

GAIA extends the tree leaf node data structure to store the
addresses of GPU pages. We add 4 pointers per leaf node per
GPU, to cover a continuous 256KB file segment (GPU page is

666 2019 USENIX Annual Technical Conference USENIX Association

Function Purpose UVM implementation\
GAIA emulation Used by

Available in UVM allocVirtual/allocPhysical
mapP2V

allocate virtual/physical range
map physical-to-virtual cudaMallocManaged() mmap

freeVirtual/freePhysical free virtual/physical range
unmap virtual cudaFree() munmap

Emulated by GAIA unmapV Invalidate mapping in GPU Migrate page to CPU maquire

fetchPageModifiedBit Retrieve dirty bit in GPU Copy page to CPU and
compute diff mrelease

Table 1: Main GPU Virtual Memory management functions and their implementation with UVM

64KB). The CPU only keeps track of file-backed GPU pages
rather than the entire GPU physical memory. The leaf node
stores all the versions (TSVT) for the 64 4KB pages.
Linking the page cache with the GPU page ranges. GAIA
keeps track of all the GPU virtual ranges in the system that
are backed by files to properly handle the GPU faults for file-
backed pages. When mmap allocates a virtual address range in
the GPU via the driver, it registers the range with GAIA and
associates it with the file radix tree.
Data persistence. GAIA inherits the persistence semantics
of the Linux file I/O. It updates both msync and fsync to fetch
the fresh versions of the cache pages (similarly to the logic in
the page fault handler) and write their contents to storage.
GPU cache size limit. GAIA enforces an upper bound on
the GPU cache size by evicting pages. The evicted pages can
be discarded from the system memory entirely (after syncing
with the disk if necessary) or cached by moving them to avail-
able memory of other processors. In our current implementa-
tion, we cache the evicted GPU pages in CPU memory. We
implement the Least Recently Allocated eviction policy [36],
due to the lack of the access statistics for GPU pages.

Integration with GPU driver

The NVIDIA GPU driver provides no public interface for
low-level virtual memory management. Indeed, giving the
OS the full control over GPU memory management might
seem undesirable. For example, only the vendors might have
the intimate knowledge of the device/vendor-specific proper-
ties that require special handling, such as different page sizes,
texture memory, alignment requirements, and physical mem-
ory constraints. However, we believe that a minimal subset
of APIs is enough to allow generic advanced OS services
for GPUs, such as unified page cache management, without
forcing the vendors to give up on the GPU memory control.

We define such APIs in Table 1. The driver is in full control
of the GPU memory, i.e., it performs allocations and imple-
ments the page eviction policy, only notifying the OS about
the changes (callbacks are not shown in the table). We demon-
strate the utility of such APIs for GAIA, encouraging GPU
vendors to add them in the future.

Using the GPU VM management API

Implementing GAIA functionality is fairly straightforward,
and closely follows the implementation of the similar func-
tionality in the CPU OS. We provide a brief sketch below just
to illustrate the use of the API.
mmap/munmap. When mmap with MAP_ONGPU is called, the
system allocates a new virtual memory range in GPU memory
via allocVirtual and registers it with the GAIA controller
in the driver to associate it with the respective file radix tree,
similar to the CPU mmap implementation. The munmap function
performs the reverse operation using unmapV call.
Page fault handling. To serve the GPU page fault, GAIA
determines the file offset and searches for the pages that cache
the content in the associated page cache radix tree. If the most
recent version of the page is found, and it is already located
on the requesting GPU (minor page fault), GAIA maps the
page at the appropriate virtual address using mapP2V call.

Otherwise (major page fault), GAIA allocates a new GPU
physical page via allocPhysical call, populates it with the
appropriate data (merging replicas if needed), updates the
page’s TSVT structure in the page cache to reflect the version,
and maps the page to the GPU virtual memory. If necessary,
GAIA creates a pristine copy of the page.

If a page has to be evicted to free space in GPU mem-
ory, GAIA chooses the victim page, unmaps it via unmapV,
retrieves its dirty status via fetchPageModifiedBit, stores
the page content on the disk or CPU memory if marked as
dirty, removes the page reference from the page cache, and
finally frees it via freePhysical.
Consistency system calls. GPU macquire scans through the
GPU-resident pages of the page cache to identify outdated
GPU page replicas and unmaps the respective pages via
unmapV. GPU mrelease retrieves the modified status via
fetchPageModifiedBit for all the GPU-resident pages in the
page cache, and updates their versions in TSVT.

Functional emulation of the API

Implementing the proposed GPU memory management
API without vendor support requires access to low-level inter-
nals of the closed-source GPU driver. Therefore, we choose
to implement it in a limited form.

USENIX Association 2019 USENIX Annual Technical Conference 667

First, we use the user-level NVIDIA’s UVM memory man-
agement APIs to implement a limited version of the API for
allocation and mapping physical and virtual pages in GPU
(refer to Table 1). Specifically, cudaMallocManaged is used to
allocate the GPU virtual address range, and cudaFree to tear
down the mapping and de-allocate memory.

Second, we modify the open-source part of the NVIDIA
UVM driver. The GPU physical page allocation and mapping
of the virtual to physical addresses are all part of the GPU
page fault handling mechanism, yet they are implemented in
the closed-source part of the UVM driver. To use them, GAIA
modifies the open-source UVM page fault handler to perform
the file I/O and page cache-related operations, effectively
implementing the scheme described above (§5.2.1).

Finally, whenever the public APIs and open-source part
of the driver are insufficient, we resort to emulation. To im-
plement unmapV, we use a public driver function to migrate
the page to the CPU, which also unmaps the GPU page. The
fetchPageModifiedBit call is emulated by copying the re-
spective page to the CPU without unmapping it on the GPU
and computing diff with the base copy.

In Table 1 we highlight the emulated functions (in red) and
specify where they are used.

Ultimately, this pragmatic approach allows us to build a
functional prototype to evaluate the concepts presented in the
paper. We hope that tese APIs will be implemented properly
by GPU vendors in the future.

Limitations due to UVM

Our forced reliance on NVIDIA UVM leads to several
limitations. The page cache lifetime and scope are limited to
those of the process where the mapping is created, as UVM
does not allow allocating physical pages that do not belong to
a GPU context. Therefore, the page cache cannot be shared
among GPU kernels belonging to different CPU processes.
Further, the maximum mapped file size is limited by the size
of the maximum UVM buffer allocation, which must fit in
the CPU physical memory. Finally, UVM controls memories
of all the system GPUs, preventing us from implementing a
distributed page cache between multiple NVIDIA GPUs.

These limitations are rooted in our use of UVM, and are
not pertinent to GAIA design. They limit the scope of our eval-
uation to a single CPU process and a single GPU, but allow
us to implement a substantial prototype to perform thorough
and reliable performance analysis of the heterogeneous page
cache architecture.

Evaluation
We evaluate the following aspects of our system 3:

• Benefits of peer-caching and prefetching optimizations;
• Memory and compute overheads;
3GAIA source code is publicly available at https://github.com/

acsl-technion/GAIA.

• End-to-end performance in real-life applications with
read and write-sharing.

Platform. We use an Intel Xeon CPU E5-2620 v2 at 2.10GHz
with 78GB RAM, GeForce GTX 1080 (with 8GB GDDR)
GPU and 800GB Intel NVMe SSD DC P3700 with 2.8GB/s
sequential read throughput. We use Ubuntu 16.04.3 with ker-
nel 4.4.15 that includes GAIA modifications, CUDA SDK
8.0.34, and NVIDIA-UVM driver 384.59.
Performance cost of functional emulation. The emulation
introduces performance penalties that do not exist in the CPU
analogues of the emulated functions. In particular, unmapV
constitutes more than 99% of macquire latency, and fetch-

PageModifiedBit occupies nearly 100% of mrelease.
These functions are expensive only because of the lack of

the appropriate GPU driver and hardware support. We expect
them to be as fast as their CPU analogues if implemented by
GPU vendors. For example, mmap or mprotect calls for a 1GB
region take less than 10 µseconds on the CPU. If implemented
for the GPU, they might last slightly longer due to over-PCIe
access to update the page tables.

To be safe, we conservatively assume that unmapV and
fetchPageModifiedBit are as slow as 10 msec in all the re-
ported results. These are the worst-case estimates, yet they
allow us to provide a reliable estimate of GAIA performance
in future systems.
Evaluation methodology. We run each experiment 11 times,
omit the first result as a warmup, and report the average. We
flush the system page cache before each run (unless stated
otherwise). We do not report standard deviations below 5%.

Overhead analysis

Impact on CPU I/O. GAIA introduces additional version
checks into the CPU I/O path. To measure the overheads, we
run the standard TIO benchmark suite [23] for evaluating CPU
I/O performance. We run random/sequential reads/writes us-
ing the default configuration with 256KB I/O requests, ac-
cessing a 1GB file. As a baseline, we run the benchmark on
the unmodified Linux kernel 4.4.15.

We vary the number of supported GPUs in the system
as it affects the number of version checks. We observe less
than 1% and up to 5% overhead for 32GPUs and 160GPUs
respectively for random reads, and no measurable overheads
for sequential accesses. We conclude that GAIA introduces
negligible performance overheads for legacy CPU file I/O.
Memory overheads. The main dynamic cost stems from pris-
tine page copies for 3-way merge. However, common read-
only workloads require no such copies, therefore incurring no
extra memory cost. Otherwise, the memory overheads depend
on the write intensity of the workload. GAIA creates one copy
for every writable GPU page in the system.

The static cost is due to the addition of version vectors
to the page cache. This cost scales linearly with the utilized

668 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/acsl-technion/GAIA
https://github.com/acsl-technion/GAIA

�

�

�

�

�

�� �� �� �� �� �� �� 	�
� ���

�
�
�
�
�
�
�
�

���������	�	
������
���������

�������
��

�
�
��
�����������

������ �������
�� �����
��

Figure 5: CPU I/O speedup of GAIA over unmodified Linux.
Higher is better.

GPU memory size as GPU versions are stored only for GPU-
resident pages, but grows quadratically with the number of
GPUs. With 512 bytes per version vector entry, the worst-case
memory overhead (all GPUs fill their memories with files)
and 100 GPUs each with 8GB memory, the overhead reaches
about 5GB, which is less than 1% of the total utilized GPU
memory (800GB).

Microbenchmarks

Benefits of peer caching. We measure the performance of
CPU POSIX read accesses to a 1GB file which is partially
cached in GPU memory. Thus, these accesses result in reading
the GPU-resident pages from the GPU instead of the SSD.
We vary the cached portion of the file, reading the rest from
the SSD. We run three experiments: (1) random reads (2)
sequential reads, and (3) sequential reads while the SSD is
busy serving other I/O requests. We compare to unmodified
Linux, where all the data is fetched from the SSD.

Figure 5 shows that peer-caching can boost the CPU perfor-
mance by up to 3× for random reads, and up to 2× when the
SSD is under load. GAIA is no faster than SSD for sequen-
tial reads, however. This is due to the GPU DMA controller
bottleneck, stemming from the lack of public interfaces to
program its scatter-gather lists. Therefore, GAIA is forced to
perform the I/O one GPU page at a time.
False sharing. We run the same CPU-GPU false-sharing
microbenchmark as in §3.1. We map the shared buffer from
a file, and let the CPU and the GPU update it concurrently
with non-overlapping writes. GAIA merges the page when the
GPU kernel terminates. We compare with the execution where
each of the processors writes into a private buffer, without
false sharing. We observe that GAIA with shared buffer is the
same as the baseline. The cost of merging the page in the end
is constant per 4KB page: 1.4 µsecond.

This experiment highlights the fact that GAIA eliminates
the overheads of false sharing entirely.
Streaming read performance. We evaluate the case where
the GPU reads and processes the whole file. We use three
kernels: (1) a zero-compute kernel that copies the data from

the input pointer into an internal buffer, one stride at a time per
threadblock; (2) an unmodified LUD kernel, representative of
compute-intensive kernels in Rodinia benchmark suite [19];
(3) a closed-source cuBLAS SGEMM library kernel [7]. We
modify their CPU code such that the GPU input is read from
a file rather than from memory, as in prior work [40].

We evaluate several techniques to read files into the GPU:

1. CUDA-[must fit in GPU memory]: read from the host,
copy to GPU;

2. GPUfs-[requires GPU code changes]: read from the
GPU kernel via GPUfs API. GPUfs uses 64KB pages as
in GPU hardware;

3. UVM: read from the host into UVM memory (physically
residing in CPU), read from the GPU kernel;

4. GAIA: map the file into GPU, read from the GPU kernel.

We implement all four variants for the zero-compute ker-
nel. LUD and cuBLAS cannot run with GPUfs because that
requires changing their code. We run the experiments with
two input files, one smaller and one larger than GPU memory.

Figure 6a shows the results of reading a 1GB and 10GB
file for the zero-compute kernel. GAIA is competitive with
UVM and GPUfs for all of the evaluated use cases, but slower
than CUDA when working with a small file in the CPU
page cache, due to inefficiency of the GPU data transfers
in GAIA. In CUDA, the data is copied in a single transfer
over PCIe, whereas in GAIA the I/O is broken into multiple
non-consecutive 64KB blocks, which is much slower.

GAIA is faster than UVM when reading cached files due to
the UVM’s extra data copy, and faster than GPUfs with 1GB
because of GPUfs trashing. The thrashing occurs because the
GPUfs buffer cache in GPU memory is not large enough to
store the whole file. Pages are constantly evicted as a result,
introducing high runtime overheads.

Figure 6b shows the results of processing a 1GB and a
10GB file for the compute-intensive LUD and cuBLAS ker-
nels for techniques (1), (3) and (4). Large files cannot be
evaluated with CUDA as they do not fit in GPU memory.
GAIA is faster than LUD on UVM, yet slightly slower than
the other methods. With cuBLAS, the specific access pattern
results in a large working set, causing trashing with GAIA.

The insufficient coordination with the OS I/O prefetcher
in the current implementation makes it slower when the file
fits GPU memory. The performance can be improved via a
more sophisticated prefetcher design and transfer batching
in future GPU drivers. With large files, however, GAIA is on
par with and faster than UVM, while offering the convenience
of using a GPU-agnostic OS API and supporting unmodified
GPU kernels.

USENIX Association 2019 USENIX Annual Technical Conference 669

���

���

���

���

���

���	
��
���
���������������� ���	
��
�������
��

�
�
��
��
�
�
�	
�

�
�

�
�
��

�����

����	

���
����

����	

���
����

���	

���

���	

�����

���	

(a) Zero-compute kernel, normalized to GAIA. Higher is better.

���

���

���

���

���

���	
��
����

��
������������ ���	
��
����������
��������������

�
�
��
��
�
�
�	
�

�
�

�
�
��

��������

�	
���

����

�	
���

����

���

��������

���

(b) LUD and cuBLAS small and large files (from disk). Higher is better.

Figure 6: Streaming read I/O performance analysis

Prefetched On disk

GAIA (sec) 1.2 2.9
UVM (sec) 11.4 (↑ 9×) 17.8 (↑ 6×)
ActivePointers(4 CPU threads) (sec) 0.5 (↓ 2×) 1.7 (↓ 2×)
ActivePointers(1 CPU thread) (sec) 0.6 (↓ 2×) 5.5 (↑ 2×)

Table 2: Image collage: GAIA vs. UVM vs. ActivePointers

Applications

Performance of on-demand data I/O

We use an open-source image collage benchmark [34]. It
processes an input image by replacing its blocks with "simi-
lar" tiny images from a large indexed dataset stored in a file.
The access pattern depends on the input: each block of the
input image is processed separately to generate the index into
the dataset, fetching the respective tiny image afterward. The
dataset is 19GB, thus it does not fit in memory of our GPU.
While only about 25% of the dataset is required to completely
process one input, the accesses are input-dependent.

We compare three implementations: (1) original Active-
Pointers, (2) UVM and (3) GAIA. For the last two we modify
the original code by replacing ActivePointers [34] with reg-
ular pointers. In UVM the dataset is first read into a shared
UVM buffer. In GAIA the file is mmap-ed into GPU memory.

Both ActivePointers and GAIA allow random file access
from the GPU, but they differ in that they rely on software-
emulated and hardware page faults respectively.

Table 2 shows the end-to-end performance comparison.
GAIA is 9× and 6× faster than UVM, because it accesses
the data in the file on-demand, whereas in UVM the file must
be read in full prior to kernel invocation.

We investigate the performance difference between Active-
Pointers and GAIA. We observe that ActivePointers use four
I/O threads on the CPU to serve GPU I/O requests. Reducing
the number of I/O threads to only one as in GAIA provides a
more fair comparison. In this case, GAIA is 2× faster when
reading data from disk, but still 2× slower when the file is
prefetched. The reasons are not yet clear, however.

We conclude that GAIA’s on-demand data access is com-
petitive with highly optimized ActivePointers, and signifi-
cantly faster than UVM.

�

���

�

� �� �� �� ���

�
��

�
��
��
�
	

����������	
���������

���
��������
������

��������

����

����

Figure 7: Graph processing with dynamic graph updates,
while varying the number of updates. Lower is better.

Dynamic graph processing with Gunrock

We focus on a scenario where graph computations are in-
voked multiple times, but the input graph periodically changes.
This is the case, for example, for a road navigation service
such as Google Maps, which needs to accommodate the traffic
changes or road conditions while responding to user queries.

We assume the following service design. There are two pro-
cesses: an updater daemon (producer) and a GPU-accelerated
compute server (consumer), which share the graph database.
The daemon running on the CPU (1) retrieves the graph up-
dates (traffic status) from an external server; (2) updates the
graph database file; and (3) signals to the compute service to
recalculate the routes. The latter reads these updates from the
file each time it recomputes in response to a user query. The
producer updates only part of the graph (i.e., edge weights rep-
resenting traffic conditions). This design is modular, easy to
implement, and supports very large datasets. Similar producer-
consumer scenarios have also been used in prior work [15].

We use an unmodified Gunrock library [38] for fast graph
processing. We run the Single Source Shortest Path algorithm
provided with Gunrock, modifying it to read input from a file,
which is updated in a separate (legacy) CPU process that uses
standard I/O (no consistency-synchronizing system calls).
The file updates and graph computations are interleaved: the
compute server invokes the updater, which in turn invokes the
computations, and so on. We run a loop of 100 iterations and
measure the total running time.

We implement the benchmark using UVM and GAIA, and
also compare it with the original CUDA implementation. For

670 2019 USENIX Annual Technical Conference USENIX Association

�

���

�

���

����� ����� ����� ����� 	���� 	���� ������

�
�
�
�
�
�
�

����������	
���	�
��

��� ��� ����	�������� ����	��������

(a) CPU and GPU speedups over UVM while varying the number of compu-
tations. Higher is better.

�

�

�

�

��

��

�	

��
�
����

����

����
�
����

����

�
�
����

�
��

�
��
��
�	

����

������	�
�

��
�������

����

��
�	���

�����

�	���

�����

�����

����
����

(b) End-to-end runtime comparison. Other: memory (de)/allocation. Touch
time = time of first access from CPU, includes merge for GAIA. Prep time =
time of reading input. Lower is better.

Figure 8: Performance impact of false sharing in image stitching.

both UVM and CUDA, the whole file must be copied into a
GPU-accessible buffer on every update because the locations
of the modified data in the file are unknown. No such copy
is required for GAIA, where each GPU kernel invocation is
surrounded by macquire and mrelease calls.

We run the experiment on the uk_2002 input graph pro-
vided with Gunrock examples, extended to include edge
weights. The file size is 5.2GB.

Figure 7 shows the performance as a function of the por-
tion of the graph being updated. GAIA is faster than the
alternatives with fewer changes to the file, automatically de-
tecting the changes in the pages that were indeed modified.
For the worst case of full file update (above 75%) GAIA be-
comes slower than the original CUDA implementation. This
is due to the inefficiency of the GPU data transfers, as we
also observed in Fig. 6a. This experiments shows the utility of
GAIA’s fine-grain consistency control, which enables efficient
computations in a read-write sharing case.

Effects of false sharing in image stitching

We consider an image processing application used in opti-
cal microscopy to acquire large images. Microscopes acquire
these images as grids of overlapping patches that are then
stitched together. Recent works accelerate this process on
multiple GPUs [18, 16]. The output image is split into non-
overlapping sub-images, where each GPU produces its output
independently, and the final result is merged into a single
output image.

This application benefits from using GAIA to write into
the shared output file directly from GPUs, eliminating the
need to store large intermediate buffers in CPU memory. We
seek to show the effects of false sharing in this workload if
it were implemented with GAIA. Unfortunately, we cannot
fully evaluate GAIA on multiple GPUs, as we explained ear-
lier (§5.2.3). Instead, we implement only its I/O-intensive
component in the CPU and the GPU.

Both the CPU and GPU load their patches, with already
pre-computed output coordinates. Each patch is sharpened

via a convolution filter, and then is written to the output file.
The convolution filter is invoked several times per output to
explore a range of different compute loads. In GAIA, we map
both the input patches and the output file into the CPU and the
GPU. For the UVM baseline, the inputs are read into UVM
memory before kernel invocation.

We run the experiment on a public Day2 Plate [3] stitching
dataset with 5.3GB of input tiles and 1.3GB of output. We
use the patch locations included in the dataset to write the
patches, which ensures realistic access to the output file.

We split the output image over the vertical dimension and
load-balance the input such that both the CPU and the GPU
run about the same time in the baseline implementation which
writes into a UVM shared output buffer. The patch coordinates
determine the amount of false sharing in this application.

Figure 8a shows the speedup of GAIA over UVM while
varying the amount of computations per patch. We observe
up to 45% speedup for the CPU, and over 2.3× speedup for
the GPU. This experiment corroborates the conclusions of the
microbenchmark in (§3.1), now in a realistic write-sharing
workload. GAIA enables significant performance gain by
eliminating false sharing in the unified page cache.

To evaluate the complete system rather than the perfor-
mance of each processor separately, we pick one of the run-
time parameters in the middle of Figure 8a, and measure the
end-to-end runtime, including file read, memory allocation,
and page merging. We prefetch the input into the page cache
on the CPU to highlight the performance impact.

Figure 8b shows the results. For exactly the same runtime
configuration GAIA outperforms UVM by 21%. Moreover,
GAIA allows further improvements by rebalancing the load
between the processors (GPU runs faster without false shar-
ing), achieving overall 31% performance improvement.

Related work
To the best of our knowledge, GAIA is the first system to

offer a distributed page cache abstraction for GPUs that is
integrated into the OS. Our work builds on prior research in

USENIX Association 2019 USENIX Annual Technical Conference 671

the following areas.
Memory coherence for distributed systems. Lazy Release
Consistency [22, 10] serves as the basis for GAIA. GAIA
implements the home-based version of LRC [41]. Munin [14]
implements eager RC by batching the updates. GAIA adopts
this idea by using LRC-dirty bit to batch multiple updates.
Version Vectors is an idea presented in [32] for detecting mu-
tual inconsistency in multiple-writers systems. We believe
that GAIA is the first to apply these ideas to building a het-
erogeneous OS page cache.
Heterogeneous, multi-core, and distributed OS design for
systems without cache coherence. Several proposed OSes
support heterogeneous and non-cache coherent systems by
applying distributed system principles to their design [29, 13,
12]. None of these systems implements shared page cache
support, which is the main tenet of our work.

K2 [25] is a shared-most OS for mobile devices running
over several coherence domains. It implements a sequentially
consistent software DSM for the OS structures shared among
the domains. K2 DSM implements sequential consistency,
which is a strict coherence model. Similarly to GAIA, K2
relies on page faults as the trigger for consistency operations.
K2 DSM implementation of the coherence model relies heav-
ily on the underlying hardware. Thus, even read-only sharing
is not possible as it requires a different MMU for handling
reads and writes. GAIA does not have this limitation. Sol-
ros [27] proposes a data-centric operating system to enable
efficient I/O access for XeonPhi accelerators. Solros includes
a buffer cache for faster I/O, but unlike GAIA, it is limited to
host memory, and does not explicitly discuss inter-accelerator
sharing.

The file system in the FOS multikernel [39] shares data
between cores but is limited to read-only workloads. Hare [21]
is a file system for non-cache-coherent multicores in which
each node may cache file data in the private memory and a
shared global page cache. Hare uses close-to-open semantics,
which GAIA refines. Distributed OSes such as Sprite [30],
Amoeba [28], and MOSIX [11] aim to provide a single system
image abstraction and in particular, coherent and transparent
access to files from different nodes, but they achieve this via
process migration/use home nodes to forward their I/O.
GPU file I/O. GPUfs [36] allows file access from GPU pro-
grams and implements a distributed weakly consistent page
cache with session semantics. ActivePointers [34] extend
GPUfs with a software-managed address translation and page
faults, enabling GPU memory mapped files. However, unlike
GAIA, ActivePointers require intrusive changes to GPU ker-
nels, its session semantics is too coarse-grain for our needs,
and its page cache is not integrated with the CPU page cache,
thus lacks peer-caching support. SPIN [15] integrates direct
GPU-SSD communications into the OS. As in GAIA peer-
caching, SPIN adds a mechanism for choosing the best path
for file I/O to the GPU. However, it does not extend the page
cache into the GPU.

Memory management in GPUs. NVIDIA Unified Virtual
Memory (UVM) and Heterogeneous Memory Management
(HMM) [4] allow both the CPU and GPU to share virtual
memory, migrating the pages to/from GPU/CPU upon page
fault. Neither currently supports memory mapped files on
x86 processors. Both introduce a strict coherence model that
suffers from false sharing overheads. Asymmetric Distributed
Shared Memory [20] is a precursor of UVM that emulates a
unified address space between CPUs and GPUs in software.

IBM Power9 CPU with NVIDIA V100 GPUs provides
hardware support for coherent memory between the CPU and
the GPU. Since GPU memory is managed as another NUMA
node, memory-mapped files are naturally accessible from the
GPUs. This approach would not work for commodity x86
architectures which lack CPU-GPU hardware coherence.

Dragon [26] extends NVIDIA UVM to enable GPU ac-
cess to large data sets residing in NVM storage, by mapping
them into the GPU address space. Dragon focuses exclusively
on accessing the NVM from the GPU, does not integrate
GPU memory into a unified page cache, has no peer-caching
support, and does not consider CPU-GPU file sharing, all of
which are the main contributions of our work.

Conclusions
GAIA enables GPUs to map files into their address space

via a weakly consistent page cache abstraction over GPU
memories that is fully integrated with the OS page cache. This
design optimizes both CPU and GPU I/O performance while
being backward compatible with legacy CPU and unmodified
GPU kernels. GAIA’s implementation in Linux for NVIDIA
GPUs shows promising results for a range of realistic ap-
plication scenarios, including image and graph processing.
It demonstrates the benefits of lazy release consistency for
write-shared workloads.

GAIA demonstrates the importance of integrating GPU
memory in the OS page cache, and proposes the minimum
set of memory management extensions required for future
OSes to provide the unified page cache services introduced
by GAIA.

Acknowledgments
We thank Idit Keidar, Isaac Gelado and our shepherd David

Nellans for their valuable feedback. We also gratefully ac-
knowledge the support of the Israel Science Foundation (grant
No. 1027/18).

References
[1] ’Beyond GPU Memory Limits with Uni-

fied Memory on Pascal’. https://
devblogs.nvidia.com/parallelforall/
beyond-gpu-memory-limits-unified-memory-pascal/.

[2] CUDA toolkit documentation - cudaStreamAdd-
Callback(). https://docs.nvidia.com/cuda/

672 2019 USENIX Annual Technical Conference USENIX Association

https://devblogs.nvidia.com/parallelforall/beyond-gpu-memory-limits-unified-memory-pascal/
https://devblogs.nvidia.com/parallelforall/beyond-gpu-memory-limits-unified-memory-pascal/
https://devblogs.nvidia.com/parallelforall/beyond-gpu-memory-limits-unified-memory-pascal/
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html

cuda-runtime-api/group__CUDART__STREAM.
html.

[3] Data dissemination: Reference Image Stitching
Data. https://isg.nist.gov/deepzoomweb/data/
referenceimagestitchingdata.

[4] Heterogeneous Memory Management (HMM).
https://www.kernel.org/doc/html/v4.18/vm/
hmm.html.

[5] IEEE 1003.1-2001 - IEEE Standard for IEEE Infor-
mation Technology - Portable Operating System In-
terface (POSIX(R)). https://standards.ieee.org/
standard/1003_1-2001.html.

[6] Radeon’s next-generation Vega architecture.
https://www.techpowerup.com/gpu-specs/
docs/amd-vega-architecture.pdf.

[7] cuBLAS Library User Guide. https://docs.nvidia.
com/pdf/CUBLAS_Library.pdf, October 2018.

[8] Everything you need to know about
Unified Memory. http://on-demand.
gputechconf.com/gtc/2018/presentation/
s8430-everything-you-need-to-/
know-about-unified-memory.pdf, February
2018.

[9] NVIDIA Tesla V100 GPU accelerator
data sheet. https://images.nvidia.
com/content/technologies/volta/pdf/
tesla-volta-v100-datasheet-letter-fnl-web.
pdf, March 2018.

[10] Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas, Pete
Keleher, Honghui Lu, Ramakrishnan Rajamony, Weimin
Yu, and Willy Zwaenepoel. TreadMarks: Shared Mem-
ory Computing on Networks of Workstations. Computer,
29(2):18–28, February 1996.

[11] Amnon Barak and Oren La’adan. The MOSIX Multi-
computer Operating System for High Performance Clus-
ter Computing. Future Generation Computer Systems,
13(4-5):361–372, March 1998.

[12] Antonio Barbalace, Binoy Ravindran, and David Katz.
Popcorn: a replicated-kernel OS based on Linux. In
Proceedings of the Linux Symposium, Ottawa, Canada,
2014.

[13] Andrew Baumann, Paul Barham, Pierre-Evariste Da-
gand, Tim Harris, Rebecca Isaacs, Simon Peter, Timo-
thy Roscoe, Adrian Schüpbach, and Akhilesh Singha-
nia. The Multikernel: A New OS Architecture for Scal-
able Multicore Systems. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Princi-
ples, SOSP ’09, pages 29–44. ACM, 2009.

[14] John K Bennett, John B Carter, and Willy Zwaenepoel.
Munin: Distributed Shared Memory Based on Type-
specific Memory Coherence. SIGPLAN Notices,
25(3):168–176, February 1990.

[15] Shai Bergman, Tanya Brokhman, Tzachi Cohen, and
Mark Silberstein. SPIN: Seamless Operating System
Integration of Peer-to-Peer DMA Between SSDs and
GPUs. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17), pages 167–179, Santa Clara, CA,
2017. USENIX Association.

[16] Timothy Blattner, Walid Keyrouz, Joe Chalfoun,
Bertrand Stivalet, Mary Brady, and Shujia Zhou. A Hy-
brid CPU-GPU System for Stitching Large Scale Optical
Microscopy Images. In 2014 43rd International Confer-
ence on Parallel Processing, pages 1–9, Sept 2014.

[17] William J. Bolosky and Michael L. Scott. False Shar-
ing and Its Effect on Shared Memory Performance. In
Proceedings of the USENIX Symposium on Experiences
with Distributed and Multiprocessor Systems (SEDMS),
volume 57, 1993.

[18] Joe Chalfoun, Michael Majurski, Tim Blattner, Kiran
Bhadriraju, Walid Keyrouz, Peter Bajcsy, and Mary
Brady. MIST: Accurate and Scalable Microscopy Image
Stitching Tool with Stage Modeling and Error Minimiza-
tion. Scientific reports, 7(1):4988, 2017.

[19] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan,
Jeremy W Sheaffer, Sang-Ha Lee, and Kevin Skadron.
Rodinia: A benchmark suite for heterogeneous comput-
ing. In 2009 IEEE International Symposium on Work-
load Characterization (IISWC), pages 44–54. IEEE,
2009.

[20] Isaac Gelado, John E Stone, Javier Cabezas, Sanjay Pa-
tel, Nacho Navarro, and Wen-mei W Hwu. An asymmet-
ric distributed shared memory model for heterogeneous
parallel systems. In ACM SIGARCH Computer Archi-
tecture News, volume 38, pages 347–358. ACM, 2010.

[21] Charles Gruenwald III, Filippo Sironi, M Frans
Kaashoek, and Nickolai Zeldovich. Hare: A File System
for Non-cache-coherent Multicores. In Proceedings of
the Tenth European Conference on Computer Systems,
EuroSys ’15, pages 30:1–30:16. ACM, 2015.

[22] Pete Keleher, Alan L. Cox, and Willy Zwaenepoel. Lazy
Release Consistency for Software Distributed Shared
Memory. In Proceedings of the 19th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’92,
pages 13–21. ACM, 1992.

[23] Mika Kuoppala. Tiobench-threaded I/O bench for Linux,
2002.

USENIX Association 2019 USENIX Annual Technical Conference 673

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
https://isg.nist.gov/deepzoomweb/data/referenceimagestitchingdata
https://isg.nist.gov/deepzoomweb/data/referenceimagestitchingdata
https://www.kernel.org/doc/html/v4.18/vm/hmm.html
https://www.kernel.org/doc/html/v4.18/vm/hmm.html
https://standards.ieee.org/standard/1003_1-2001.html
https://standards.ieee.org/standard/1003_1-2001.html
https://www.techpowerup.com/gpu-specs/docs/amd-vega-architecture.pdf
https://www.techpowerup.com/gpu-specs/docs/amd-vega-architecture.pdf
https://docs.nvidia.com/pdf/CUBLAS_Library.pdf
https://docs.nvidia.com/pdf/CUBLAS_Library.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-/know-about-unified-memory.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-/know-about-unified-memory.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-/know-about-unified-memory.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-/know-about-unified-memory.pdf
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf

[24] Kai Li and Paul Hudak. Memory Coherence in Shared
Virtual Memory Systems. ACM Transactions on Com-
puter Systems (TOCS), 7(4):321–359, November 1989.

[25] Felix Xiaozhu Lin, Zhen Wang, and Lin Zhong. K2: a
mobile operating system for heterogeneous coherence
domains. ACM SIGARCH Computer Architecture News,
42(1):285–300, 2014.

[26] Pak Markthub, Mehmet E Belviranli, Seyong Lee, Jef-
frey S Vetter, and Satoshi Matsuoka. DRAGON: break-
ing GPU memory capacity limits with direct NVM ac-
cess. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage,
and Analysis, page 32. IEEE Press, 2018.

[27] Changwoo Min, Woonhak Kang, Mohan Kumar, Sanid-
hya Kashyap, Steffen Maass, Heeseung Jo, and Taesoo
Kim. Solros: a data-centric operating system architec-
ture for heterogeneous computing. In Proceedings of the
Thirteenth EuroSys Conference, page 36. ACM, 2018.

[28] Sape J. Mullender, Guido Van Rossum, AS Tananbaum,
Robbert Van Renesse, and Hans Van Staveren. Amoeba:
a distributed operating system for the 1990s. Computer,
23(5):44–53, May 1990.

[29] Edmund B Nightingale, Orion Hodson, Ross McIlroy,
Chris Hawblitzel, and Galen Hunt. Helios: heteroge-
neous multiprocessing with satellite kernels. In Proceed-
ings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, pages 221–234. ACM, 2009.

[30] John K. Ousterhout, Andrew R. Cherenson, Frederick
Douglis, Michael N. Nelson, and Brent B. Welch. The
Sprite Network Operating System. Computer, 21(2):23–
36, February 1988.

[31] Tom Papatheodore. Summit System Overview. https:
//www.olcf.ornl.gov/wp-content/uploads/
2018/05/Intro_Summit_System_Overview.pdf,
June 2018.

[32] D Stott Parker, Gerald J Popek, Gerard Rudisin, Allen
Stoughton, Bruce J Walker, Evelyn Walton, Johanna M
Chow, David Edwards, Stephen Kiser, and Charles Kline.
Detection of Mutual Inconsistency in Distributed Sys-
tems. IEEE Transactions on Software Engineering,
9(3):240–247, May 1983.

[33] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa,
Gary Bradski, and Christos Kozyrakis. Evaluating

MapReduce for Multi-core and Multiprocessor Systems.
In IEEE 13th International Symposium on High Perfor-
mance Computer Architecture, pages 13–24, Feb 2007.

[34] Sagi Shahar, Shai Bergman, and Mark Silberstein. Ac-
tivePointers: A Case for Software Address Translation
on GPUs. In 2016 ACM/IEEE 43rd Annual Interna-
tional Symposium on Computer Architecture (ISCA),
pages 596–608, June 2016.

[35] Sagi Shahar and Mark Silberstein. Supporting Data-
driven I/O on GPUs Using GPUfs. In Proceedings of
the 9th ACM International on Systems and Storage Con-
ference, SYSTOR ’16, pages 12:1–12:11. ACM, 2016.

[36] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett
Witchel. GPUfs: Integrating a File System with GPUs.
In Proceedings of the Eighteenth International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’13, pages
485–498. ACM, 2013.

[37] Jeffrey Stuecheli, Bart Blaner, CR Johns, and MS Siegel.
Capi: A coherent accelerator processor interface. IBM
Journal of Research and Development, 59(1):7–1, 2015.

[38] Yangzihao Wang, Andrew Davidson, Yuechao Pan,
Yuduo Wu, Andy Riffel, and John D. Owens. Gunrock:
A High-performance Graph Processing Library on the
GPU. SIGPLAN Notices, 51(8):11:1–11:12, February
2016.

[39] David Wentzlaff and Anant Agarwal. Factored Operat-
ing Systems (Fos): The Case for a Scalable Operating
System for Multicores. SIGOPS Operating Systems
Review, 43(2):76–85, April 2009.

[40] Jie Zhang, David Donofrio, John Shalf, Mahmut T. Kan-
demir, and Myoungsoo Jung. NVMMU: A Non-volatile
Memory Management Unit for Heterogeneous GPU-
SSD Architectures. In Proceedings of the 2015 Interna-
tional Conference on Parallel Architecture and Compi-
lation (PACT), PACT ’15, pages 13–24. IEEE Computer
Society, 2015.

[41] Yuanyuan Zhou, Liviu Iftode, and Kai Li. Performance
evaluation of two home-based lazy release consistency
protocols for shared virtual memory systems. In Pro-
ceedings of the Second USENIX Symposium on Oper-
ating Systems Design and Implementation, OSDI ’96,

pages 75–88. ACM, 1996.

674 2019 USENIX Annual Technical Conference USENIX Association

https://www.olcf.ornl.gov/wp-content/uploads/2018/05/Intro_Summit_System_Overview.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2018/05/Intro_Summit_System_Overview.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2018/05/Intro_Summit_System_Overview.pdf

Transkernel: Bridging Monolithic Kernels to Peripheral Cores

Liwei Guo, Shuang Zhai, Yi Qiao, and Felix Xiaozhu Lin

Purdue ECE

Abstract
Smart devices see a large number of ephemeral tasks driven
by background activities. In order to execute such a task, the
OS kernel wakes up the platform beforehand and puts it back
to sleep afterwards. In doing so, the kernel operates various
IO devices and orchestrates their power state transitions. Such
kernel executions are inefficient as they mismatch typical
CPU hardware. They are better off running on a low-power,
microcontroller-like core, i.e., peripheral core, relieving CPU
from the inefficiency.

We therefore present a new OS structure, in which a
lightweight virtual executor called transkernel offloads spe-
cific phases from a monolithic kernel. The transkernel trans-
lates stateful kernel execution through cross-ISA, dynamic
binary translation (DBT); it emulates a small set of stateless
kernel services behind a narrow, stable binary interface; it spe-
cializes for hot paths; it exploits ISA similarities for lowering
DBT cost.

Through an ARM-based prototype, we demonstrate
transkernel’s feasibility and benefit. We show that while cross-
ISA DBT is typically used under the assumption of efficiency
loss, it can enable efficiency gain, even on off-the-shelf hard-
ware.

1 Introduction

Driven by periodic or background activities, modern em-
bedded platforms1 often run a large number of ephemeral
tasks. Example tasks include acquiring sensor readings, re-
freshing smart watch display [44], push notifications [38],
and periodic data sync [91]. They drain a substantial frac-
tion of battery, e.g., 30% for smartphones [13, 12] and smart
watches [45], and almost the entire battery of smart things for
surveillance [84]. To execute an ephemeral task, a commodity
OS kernel, typically implemented in a monolithic fashion,

1This paper focuses on battery-powered computers such as smart wear-
ables and smart things. They run commodity OSes such as Linux and Win-
dows. We refer to them as embedded platforms for brevity.

Wakeup
CPU

User Task

Sleep
Existing

Device
Resume

Thaw user

CPU
Peripheral

Core

Suspend
Resume

Commodity
Kernel

DRAM

Emu

Dynamic
Binary
Translation

IO

Translated
code

Freeze user

Device
Suspend

CPU Peripheral
Core

w/ Transkernel

(a) The transkernel model (b) System execution workflow
Time

A transkernel

Figure 1: An overview of this work

drives the whole hardware platform out of deep sleep before-
hand (i.e., “resume”) and puts it back to deep sleep afterwards
(i.e., “suspend”). During this process, the kernel consumes
much more energy than the user code [44], up to 10× shown
in recent work [38].

Why is the kernel so inefficient? Recent studies [26, 92, 44]
show the bottlenecks as two kernel phases called device sus-
pend/resume as illustrated in Figure 1. In the phases, the
kernel operates a variety of IO devices (or devices for brevity).
It invokes device drivers, cleans up pending IO tasks, and
ensures devices to reach expected power states. The phases
encompass concurrent execution of drivers, deferred func-
tions, and hardware interrupts; they entail numerous CPU idle
epochs; their optimization is proven difficult (§2) [92, 50, 46].

We deem that device suspend/resume mismatches CPU.
It instead would be much more efficient on low-power,
microcontroller-like cores, as exemplified by ARM Cortex-
M. These cores are already incorporated as peripheral cores
on a wide range of modern system-on-chips (SoCs) used in
production such as Apple Watch [59] and Microsoft Azure
Sphere [52]. On IO-intensive workloads, a peripheral core
delivers is much more efficient than the CPU due to lower idle
power and higher execution efficiency [42, 43, 54, 1]. Note
that running user code (which often builds atop POSIX) on
peripheral cores is a non-goal: on one hand, doing so would
gain much less efficiency due to fewer idle epochs in user

USENIX Association 2019 USENIX Annual Technical Conference 675

execution; on the other hand, doing so requires to support a
much more complex POSIX environment on peripheral cores.

Offloading the execution of a commodity, monolithic kernel
raises practical challenges, not only i) that the peripheral core
has a different ISA and wimpy hardware but also ii) that the
kernel is complex and rapidly evolving [68]. Many OS propos-
als address the former while being inadequate in addressing
the latter [5, 61, 6, 48, 75]. For instance, one may refactor a
monolithic kernel to span it over CPU and a peripheral core;
the resultant kernel, however, depends on a wide binary in-
terface (ABI) for synchronizing state between the two ISAs.
This interface is brittle. As the upstream kernel evolves, main-
taining binary compatibility across different ISAs inside the
kernel itself soon becomes unsustainable. Instead, we argue
for the code running on peripheral cores to enjoy firmware-
level compatibility: developed and compiled once, it should
work with many builds of the monolithic kernel – generated
from different configurations and source versions.

Our response is a radical design called transkernel, a
lightweight virtual executor empowering a peripheral core to
run specific kernel phases – device suspend/resume. Figure 1
overviews the system architecture. A transkernel executes
unmodified kernel binary through cross-ISA, dynamic binary
translation (DBT), a technique previously regarded as expen-
sive [5] and never tested on microcontroller-like cores to our
knowledge. Underneath the translated code, a small set of
emulated services act as lightweight, drop-in replacements
for their counterparts in the monolithic kernel. Four principles
make transkernel practical: i) translating stateful code while
emulating stateless kernel services; ii) identifying a narrow,
stable translation/emulation interface; iii) specializing for hot
paths; iv) exploiting ISA similarities for DBT.

We demonstrate a transkernel prototype called ARK (An
aRm transKernel). Atop an ARM SoC, ARK runs on a Cortex-
M3 peripheral core (with only 200 MHz clock and 32KB
cache) alongside Linux running on a Cortex-A9 CPU. ARK
transparently translates unmodified Linux kernel drivers and
libraries. It depends on a binary interface consisting of only
12 Linux kernel functions and one kernel variable, which
are stable for years. ARK offers complete support for de-
vice suspend/resume in Linux, capable of executing diverse
drivers that implement rich functionalities (e.g., DMA and
firmware loading) and invoke sophisticated kernel services
(e.g., scheduling and IRQ handling). As compared to na-
tive kernel execution, ARK only incurs 2.7× overhead, 5.2×
lower than a baseline of off-the-shelf DBT. ARK reduces sys-
tem energy by 34%, resulting in tangible battery life extension
under real-world usage.

We make the following contributions on OS and DBT:
• We present the transkernel model. In the design space of
OSes for heterogeneous multi-processors, the transkernel rep-
resents a novel point: it combines DBT and emulation for
bridging ISA gaps and for catering to core asymmetry, respec-
tively.

• We present a transkernel implementation, ARK. Target-
ing Linux, ARK presents specific tradeoffs between kernel
translation versus emulation; it identifies a narrow interface
between the two; it contributes concrete realization for them.

• Crucial to the practicality of ARK, we present an inverse
paradigm of cross-ISA DBT, in which a microcontroller-like
core translates binary built for a full-fledged CPU. We con-
tribute optimizations that systematically exploit ISA similar-
ities. Our result demonstrates that while cross-ISA DBT is
typically used under the assumption of efficiency loss, it can
enable efficiency gain, even on off-the-shelf hardware.

The source code of ARK can be found at http://
xsel.rocks/p/transkernel.

2 Motivations

We next discuss device suspend/resume, the major kernel
bottleneck in ephemeral tasks, and that it can be mitigated by
running on a peripheral core. We show difficulties in known
approaches and accordingly motivate our design objectives.

2.1 Kernel in device suspend/resume

Expecting a long period of system inactivity, an OS kernel
puts the whole platform into deep sleep: in brief, the kernel
synchronizes file systems with storage, freezes all user tasks,
turns off IO devices (i.e., device suspend), and finally powers
off the CPU. To wake up from deep sleep, the kernel performs
a mirrored procedure [11]. In a typical ephemeral task, the
above kernel execution takes hundreds of milliseconds [31]
while the user execution often takes tens of milliseconds [44];
the kernel execution often consumes several times more en-
ergy than the user execution [38].

Problem: device suspend/resume By profiling recent Linux
on multiple embedded platforms, our pilot study [92] shows
the aforementioned kernel execution is bottlenecked by de-
vice suspend/resume, in which the kernel cleans up pending
IO tasks and manipulates device power states. The findings
are as follows. i) Device suspend/resume is inefficient. It
contributes 54% on average and up to 66% to the total kernel
energy consumption. CPU idles frequently in numerous short
epochs, typically in milliseconds. ii) Devices are diverse. On
a platform, the kernel often suspends and resumes tens of
different devices. Across platforms, the bottleneck devices
are different. iii) Optimization is difficult. Device power state
transitions are bound by slow hardware and low-speed buses,
as well as physical factors (e.g., voltage ramp-up). While
Linux already parallelizes power transitions with great ef-
forts [50, 46], many power transitions must happen sequen-
tially per implicit dependencies of power, voltage, and clock.
As a result, CPU idle constitutes up to 68% of the device
suspend/resume duration.

676 2019 USENIX Annual Technical Conference USENIX Association

http://xsel.rocks/p/transkernel
http://xsel.rocks/p/transkernel

SoC Cores ISAs Shared
DRAM?

Mapping
kern mem?

Shared
IRQ

OMAP4460
[83] (2010) A9+M3 v7a+v7m Full Yes. MPU 39/102

AM572x [81]
(2014) A15+M4 v7a+v7m Full Yes. MPU 32/92

i.MX6SX [62]
(2015) A9+M4 v7a+v7m Full Yes. MPU 85/87

i.MX7 [65]
(2017) A7+M4 v7a+v7m Full Yes. MPU 88/90

i.MX8M [63]
(2018) A53+M4 v8a+v7m Full Yes. MPU 88/88

MT3620 [52]
(2018)* A7+M4 v7a+v7m Full Likely. MPU Likely

most

Table 1: Our hardware model fits many popular SoCs which
are used in popular products such as Apple Watch and Azure
Sphere. Section 7.5 discusses caveats. *: lack public technical
details.

Challenge: Widespread, complex kernel code Device sus-
pend/resume invokes multiple kernel layers [68, 32]. Specif-
ically, it invokes functions in individual drivers (e.g., MMC
controllers), driver libraries (e.g., the generic clock frame-
work), kernel libraries (e.g., for radix trees), and kernel ser-
vices (e.g., scheduler). In a recent Linux source tree (4.4), we
find that over 1000 device drivers, which represent almost all
driver classes, implement suspend/resume callbacks in 154K
SLoC. These callbacks in turn invoke over 43K SLoC in
driver libraries, 8K SLoC in kernel libraries, and 43K SLoC
in kernel services. The execution is control-heavy, with dense
branches and callbacks.

Opportunities We observe the following kernel behaviors in
device suspend/resume. i) Low sensitivity to execution delay
On embedded platforms, most ephemeral tasks are driven by
background activities [38, 53, 13]. This contrasts to many
servers for interactive user requests [93, 53]. ii) Hot kernel
paths In successful suspend/resume, the kernel acquires all
needed resources and encounters no failures [41]. Off the hot
paths, the kernel handles rare events such as races between
IO events, resource shortage, and hardware failures. These
branches typically cancel the current suspend/resume attempt,
perform diagnostics, and retry later. Unlike hot paths, they
invoke very different kernel services, e.g., syslog. iii) Simple
concurrency exists among the syscall path (which initiates
suspend/resume), interrupt handlers, and deferred kernel work.
The concurrency is for hardware asynchrony and kernel mod-
ularity rather than exploiting multicore parallelism.

Summary: design implications Device suspend/resume
shall be treated systematically. We face challenges that the
invoked kernel code is diverse, complex, and cross-layer; we
see opportunities that allow focusing on hot kernel paths, spe-
cializing for simple concurrency, and gaining efficiency at the
cost of increased execution time.

2.2 A peripheral core in a heterogeneous SoC

Hardware model We set to exploit peripheral cores already
on modern SoCs. Hence, our software design only assumes
the following hardware model which fits a number of popular
SoCs as listed in Table 1.

1. Asymmetric processors: In different coherence domains,
the CPU and the peripheral core offer disparate performance/-
efficiency tradeoffs. The peripheral core has memory protec-
tion unit (MPU) but no MMU, incapable of running commod-
ity OSes as-is.

2. Heterogeneous, yet similar ISAs: The two processors
have different ISAs, in which many instructions have sim-
ilar semantics, as will be discussed below.

3. Loose coupling: The two processors are located in sepa-
rate power domains and can be turned on/off independently.

4. Shared platform resources: Both processors share access
to platform DRAM and IO devices. Specifically, the periph-
eral core, through its MPU, should map all the kernel code/-
data at identical virtual addresses as the CPU does. Both
processors must be able to receive interrupts from the de-
vices of interest, e.g., MMC; they may, however, see different
interrupt line numbers of the same device.

How can peripheral cores save energy? They are known to
deliver high efficiency for IO-heavy workloads [42, 54, 78, 1,
76]. Specifically, they benefit the kernel’s device suspend/re-
sume in the following ways. i) A peripheral core can operate
while leaving the CPU offline. ii) The idle power of a periph-
eral core is often one order of magnitude lower [43, 64], min-
imizing system power during core idle periods. iii) Its simple
microarchitecture suits kernel execution, whose irregular be-
haviors often see marginal benefits from powerful microarchi-
tectures [58]. Note that a peripheral core offers much higher
efficiency than a LITTLE core as in ARM big.LITTLE [24],
which mandates a homogeneous ISA and tight core coupling.
We will examine big.LITTLE in Section 7.

ISA similarity On an SoC we target, the CPU and the periph-
eral core have ISAs from the same family, e.g., ARM. The two
ISAs often implement similar instruction semantics despite
in different encoding. The common examples are SoCs inte-
grating ARMv7a ISA and ARMv7m ISA [62, 65, 81, 52, 83].
Other families also provide ISAs amenable to same-SoC inte-
gration, e.g., NanoMIPS and MIPS32. We deem that the ISA
similarities are by choice. i) For ISA designers, it is feasible
to explore performance-efficiency tradeoffs within one ISA
family, since the family choice is merely about instruction
syntax rather than semantics [8]. ii) For SoC vendors, incor-
porating same-family ISAs on one chip simplifies software
efforts [40], silicon design, and ISA licensing.

USENIX Association 2019 USENIX Annual Technical Conference 677

Linux

kernel

Suspend

Resume

Peripheral

kernel

Kernel State

Linux

kernel

DBT

CPU Peripheral Core

2

1
Translated

Code

4

DRAM IO IO

CPU Peripheral Core

Kernel State

3

(a) Source code transplant (b) Full cross-ISA DBT

Figure 2: Alternative ways for offloading kernel phases

359

845

217

858

Device
specific

Driver
lib

Kernel
lib

Kernel
services

(a) # of functions

848

55

721

159

828

173

v4.17

(Jul 2018)

1075

1111 1043

354

498

395

155

674

214

707661

v3.16 v4.4 v4.9 v4.17v2.6

213

1060

384

1015

155

378

196

385

194

384

848

216

780

214

797

163

v2.6

(Jan 2011)

v3.16

(Aug 2014)

v4.4

(Jan 2016)

v4.9

(Dec 2016)

640

855

606

717

500

816

938

From To

(b) # of functions (upper) & types (lower) w/
changed ABI across kernel versions

Figure 3: Counts of Linux kernel functions referenced by
device suspend/resume, showing (a) the functions are rich
and diverse and (b) their ABI change is substantial over time.
Exported functions only. Build config: omap2defconfig. ABI
changes detected with ABI compliance checker [70]

2.3 OS design space exploration

We set to realize heterogeneous execution for an existing
monolithic kernel.

How about refactoring the kernel and cross-compiling
statically? One may be tempted to modify a monolithic
kernel (we use Linux as the example below) [43, 5] to be one
unified source tree; the tree shall be cross-compiled into a
kernel binary for CPU and a “peripheral kernel” for the pe-
ripheral core. This approach results in an OS structure shown
in Figure 2(a). Its key drawback is the two interfaces that are
difficult to implement and maintain, shown as in the
figure.
1 The interface between two heterogeneous ISAs, as needed

for resolving inter-kernel data dependency. Through the inter-
face, both kernels synchronize their kernel state, e.g., devices
configurations, pending IO tasks, and locks, before and after
the offloading. Built atop shared memory [43, 5, 23], the in-
terface is essentially an agreement on thousands of shared
Linux kernel data types, including their semantics and/or
memory layout. The agreement is brittle, as it is affected
by ISA choices, kernel configurations, and kernel versions.
Hence, keeping data types consistent across ISAs entails te-
dious tweak of kernel source and configurations [22, 23]. As

Greg Kroah-Hartman puts, “you will go insane over time if
you try to support this kind of release, I learned this the hard
way a long time ago.” [36]
2 The interface between the transplant code and the periph-

eral kernel, as needed for resolving functional dependency.
In principle, this interface is determined by the choice of
transplant boundary. In prior work, the example choices in-
clude the interface of device-specific code [22, 23, 80], that of
driver classes [10, 79], or that of driver libraries [43]. All these
choices expose at least hundreds of Linux kernel functions
on this interface, as summarized in Figure 3(a). This is due
to Linux’s diverse, sophisticated drivers. Implementing such
an interface is daunting; maintaining it is even more difficult
due to significant ABI changes [37] as shown in Figure 3(b).

In summary, all these difficulties root in the peripheral ker-
nel’s deep dependency on the Linux kernel. This is opposite
to the common practice: heterogeneous cores to run their own
“firmware” that has little dependency on the Linux kernel.
This is sustainable because the firmware stays compatible
with many builds of Linux.

How about virtual execution? Can we minimize the depen-
dency? One radical idea would be for a peripheral core to
run the Linux kernel through virtual execution, as shown in
Figure 2(b). Powered by DBT, virtual execution allows a host
processor (e.g., the peripheral core) to execute instructions
in a foreign guest ISA (e.g., the CPU). Virtual execution is
free of the above interface difficulties: the translated code pre-
cisely reproduces the kernel behaviors and directly operates
the kernel state (3). The peripheral core interacts with Linux
through a low-level, stable interface: the CPU’s ISA (4).

The problem, however, is the high overhead of existing
cross-ISA DBT [4]. It is further exacerbated by our inverse
DBT paradigm: whereas existing cross-ISA DBT is engi-
neered for a brawny host emulating a weaker guest (e.g., an
x86 desktop emulating an ARM smartphone) [17, 87], our
DBT host, a peripheral core, shall serve a full-fledged CPU.
A port of popular DBT exhibits up to 25× slowdown as will
be shown in §7. Such overhead would negate any efficiency
promised by the hardware and result in overall efficiency loss.
Furthermore, cross-ISA DBT for the whole Linux kernel is
complex [7]. A peripheral core lacks necessary environment,
e.g., multiple address spaces and POSIX, for developing and
debugging such complex software.

2.4 Design objective

We therefore target threefold objective.
G1. Tractable engineering. We set to reuse much of the ker-
nel source, in particular the drivers that are impractical to
build anew. We target simple software for peripheral cores.
G2. Build once, work with many. One build of the peripheral
core’s software should work with a commodity kernel’s bi-
naries built from a wide range of configurations and source

678 2019 USENIX Annual Technical Conference USENIX Association

versions. This requires the former to interact with the latter
through a stable, narrow ABI.
G3. Low overhead. The offloaded kernel phases should yield
a tangible efficiency gain.

3 The Transkernel Model

Running on a peripheral core, a transkernel consists of two
components: a DBT engine for translating and executing the
unmodified kernel binary; a set of emulated, minimalistic ker-
nel services that underpin the translated kernel code, as will
be described in detail in Section 4. A concrete transkernel im-
plementation targets a specific commodity kernel, e.g., Linux.
A transkernel does not execute user code in ephemeral tasks
as stated in Section 1.

The transkernel follows four principles:

1. Translating stateful code; emulating stateless services
By stateful code, we refer to the offloaded code that must
share states with the kernel execution on CPU. The stateful
code includes device drivers, driver libraries, and a small set of
kernel services. They cover the most diverse and widespread
code in device suspend/resume (§2). By translating their bi-
naries, the transkernel reuses the commodity kernel without
maintaining wide, brittle ABIs. (objective G1, G2)

The transkernel emulates a tiny set of kernel services. We
relax their semantics to be stateless, so that their states only
live within one device suspend/resume phase. Being stateless,
the emulated services do not need to synchronize states with
the kernel on CPU over ABIs. (G2)

2. Identifying a narrow, stable translation/emulation ABI
The ABI must be unaffected by kernel configurations and
unchanged since long in the kernel evolution history. (G2)

3. Specializing for hot paths In the spirit of OS specializa-
tion [20, 71, 51], the transkernel only executes the hot path of
device suspend/resume; in the rare events of executing off the
hot path, it transparently falls back on CPU. The transkernel’s
emulated services seek functional equivalence and only im-
plement features needed by the hot path; they do not precisely
reproduce the kernel’s behaviors. (G1)

4. Exploiting ISA similarities for DBT The transkernel de-
parts from generic cross-DBT that bridges arbitrary guest/host
pairs; it instead systematically exploits similarities in instruc-
tions semantics, register usage, and control flow transfer. This
makes cross-ISA DBT affordable. (G3)

Limitations First, across ISAs of which instruction se-
mantics are substantially different, e.g., ARM and x86, the
transkernel may see diminishing or even no benefit. Second,
the transkernel’s longer delays (albeit lower energy) may mis-
fit latency-sensitive contexts, e.g., for waking up platforms in
response to user input. Our current prototype relies on heuris-
tics to recognize such contexts and falls back on the CPU
accordingly (Section 4).

sched
spin

lock

virt

addr

deferred

work
IRQ

handler

IRQ

handler

(early)

mutex

sem

mem

alloc

fallback

Translated

Code

(stateful)

delay

sleep Emulation

(stateless)

Linux

kernel

binary

Device-specific

Driver libs

Accessing

Linux

kernel state
private

lib

Stable ABI

Kernel libs

DBT

contexts

DBT Engine

Figure 4: The ARK structure on a peripheral core

In Section 4 below we describe how to apply the model to
a concrete transkernel, in particular our translation/emulation
decisions for major kernel services, and our choices of the
emulation interface. We will describe DBT in Section 5.

4 ARK: An ARM Transkernel

Targeting an ARM SoC, we implement a transkernel called
ARK. The SoC encompasses a popular combination of ISAs:
ARMv7A for its CPU and ARMv7m for its peripheral core.
The CPU runs Linux v4.4.

Offloading workflow ARK is shipped as a standalone binary
for the peripheral core, accompanied by a small Linux kernel
module for control transfer between CPU and the peripheral
core. We refer to such control transfer as handoff. Prior to
a device suspend phase, the kernel shuts down all but one
CPU cores, passes control to the peripheral core, and shuts
down the last CPU core. Then, ARK completes the device
phase in order to suspend the entire platform. Device resume
is normally executed by ARK on the peripheral core; in case
of urgent wakeup events (e.g., a user unlocking a smart watch
screen), the kernel resumes on CPU with native execution.

System structure As shown in Figure 4, ARK runs a DBT
engine, its emulated kernel services, and a small library for
managing the peripheral core’s private hardware, e.g., in-
terrupt controllers. The emulated services serves downcalls
() from the translated code and makes upcalls (
) into the translated code. Table 2 summarizes the interfaces.
Upon booting, ARK replicates Linux kernel’s linear mem-
ory mappings for addressing kernel objects in shared mem-
ory [43, 23]. ARK maps I/O regions with MPU and time-
multiplexes the regions on the MPU entries.

To support concurrency in the offloaded kernel phases,
ARK runs multiple DBT contexts. Each context has its own
DBT state (e.g., virtual CPU registers and a stack), executing
DBT and emulated services independently. Context switch is
as cheap as updating the pointer to the DBT state.

ARK executes the hot paths. Upon entering cold branches
pre-defined by us, e.g., kernel WARN(), ARK migrates all the

USENIX Association 2019 USENIX Annual Technical Conference 679

Kernel services Implementations & reasons

Scheduler (§4.1) Emulated. Reason: simple concurrency.
IRQ handler (§4.2) Early stage emulated; then translated
HW IRQ controller (§4.2) Emulated. Reason: core-specific
Deferred work (§4.3) Translated. Reason: stateful
Spinlocks (§4.4) Emulated. Reason: core-specific
Sleepable locks (§4.4) Fast path translated. Reason: stateful
Slab/Buddy allocator (§4.5) Fast path translated. Reason: stateful
Delay/wait/jiffies (§4.6) Emulated. Reason: core-specific

jiffies udelay() msleep() tasklet_schedule() irq_thread()
ktime_get() queue_work_on() worker_thread() run_local_timers()
generic_handle_irq() schedule() async_schedule()* do_softirq()*

*=ABI unchanged since 2014 (v3.16); others unchanged since 2011 (v2.6).

Table 2: Top: Kernel services supported by ARK. Bottom:
Linux kernel ABI (12 funcs+1 var) ARK depends on. ARK
offers complete support for device suspend/resume in Linux.

DBT contexts of translated code back to the CPU and contin-
ues as native execution there (§6).

4.1 A Scheduler of DBT Contexts
ARK emulates a scheduler which shares no state, e.g., schedul-
ing priorities or statistics, with the Linux scheduler on the
CPU. Corresponding to the simple concurrency model of
suspend/resume (§2), ARK eschews reproducing Linux’s pre-
emptive multithreading but instead maintains and switches
among cooperative DBT contexts: one primary context for
executing the syscall path of suspend/resume, one for exe-
cuting IRQ handlers (§4.2), and multiple for deferred work
(§4.3). Managing no more than tens of contexts, ARK uses
simple, round-robin scheduling. It begins the execution in
the syscall context; when the syscall context blocks (e.g., by
calling msleep()), ARK switches to the next ready context to
execute deferred functions until they finish or block. When an
interrupt occurs, ARK switches to the IRQ context to execute
the kernel interrupt handler (§4.2).

4.2 Interrupt and Exception Handling
During the offloaded device phase, all interrupts are routed to
the peripheral core and handled by ARK.
Kernel interrupt handlers ARK emulates a short, early
stage of interrupt handling while translating the kernel code
for the remainder. This is because this early stage is ISA-
specific (e.g., for manipulating the interrupt stack), on which
the CPU (v7a) and the peripheral core (v7m) differ. Hence,
the emulated services implement a v7m-specific routine and
install it as the hardware interrupt handler. Once an interrupt
happens, the routine is invoked to finish the v7m-specific
task and make an upcall to the kernel’s ISA-neutral interrupt
handling routine (listed in Table 2), from where the ARK
translates the kernel to finish handling the interrupt.
Hardware interrupt controller ARK emulates the CPU’s
hardware interrupt controller. This is needed as the two cores

have separate, heterogeneous interrupt controllers. The CPU
controller’s registers are unmapped in the peripheral core;
upon accessing them (e.g., for masking interrupt sources) the
translated code triggers faults. ARK handles the faults and
operates the peripheral core’s controller accordingly.

Exception: unsupported We don’t expect any exception in
the offloaded kernel phases. In case exception happens, ARK
uses its fallback mechanism (§6) to migrate back to CPU.

4.3 Deferred Work
Device drivers frequently schedule functions to be executed in
the future. ARK translates the Linux services that schedule the
deferred work as well as the actual execution of the deferred
work. ARK chooses to translate such services because they
must be stateful: the peripheral core may need to execute
deferred work created on the CPU prior to the offloading, e.g.,
freeing pending WiFi packets; it may defer new work until
after the completion of resume.

ARK maintains dedicated DBT contexts for executing the
deferred work (Section 4.1). While the Linux kernel often
executes deferred work in kernel threads (daemons), our in-
sight is that deferred work is oblivious to its execution context
(e.g., a real Linux thread or a DBT context in ARK). Beyond
this, ARK only has to run the deferred work that may sleep
with separate DBT contexts so that they do not block other
deferred work. From these DBT contexts, ARK translates the
main functions of the aforementioned kernel daemons, which
retrieve and invoke the deferred work.
Threaded IRQ defers heavy-lifting IRQ work (i.e., deferred
work) to a kernel thread which executes the work after the
hardware IRQ is handled. A threaded IRQ handler may sleep.
Therefore, ARK maintains per-IRQ DBT contexts for ex-
ecuting these handlers. Each context makes upcalls into
irq_thread() (the main function of threaded irq daemon,
listed in Table 2).

Tasklets, workitems, and timer callbacks The kernel
code may dynamically submit short, non-sleepable functions
(tasklets) or long, sleepable functions (workitems) for de-
ferred execution. Kernel daemons (softirq and kworker) exe-
cute tasklets and workitems, respectively.

ARK creates one dedicated context for executing all non-
sleepable tasklets and per-workqeueue contexts for execut-
ing workitems so that one workqueue will not block oth-
ers. These contexts make upcalls to the main functions of
the kernel daemons (do_softirq(), worker_thread(), and
run_local_timers()), translating them for retrieving and ex-
ecuting deferred work.

4.4 Locking
Spinlocks ARK emulates spinlocks, because their implemen-
tation is core-specific and that ARK can safely assume all
spinlocks are free at handoff points: as described in early

680 2019 USENIX Annual Technical Conference USENIX Association

Section 4, handoff happens between one CPU core and one
peripheral core, which do not hold any spinlock; all other CPU
cores are offline and cannot hold spinlocks. Hence, ARK em-
ulates spinlock acquire/release by pausing/resuming interrupt
handling. This is because ARK runs on one peripheral core
and the only hardware concurrency comes from interrupts.
Sleepable locks ARK translates sleepable locks (e.g., mu-
tex, semaphore) because these locks are stateful: for example,
the kernel’s clock framework may hold a mutex preventing
suspend/resume from concurrently changing clock configura-
tion [56]. Furthermore, mutex’s seemingly simple interface
(i.e., compare & exchange in fast path) has unstable ABI and
therefore unsuitable for emulation: a mutex’s reference count
type changes from int to long (v4.10), breaking the ABI
compatibility. The translated operations on sleepable locks
may invoke spinlocks or the scheduler, e.g., when updating
reference counts or putting the caller to sleep, for which the
translated execution makes downcalls to the emulated ser-
vices.In practice, no sleepable lock is held prior to system
suspend.

4.5 Memory Allocation
The device phase frequently requests dynamic memory, often
at granularities of tens to hundreds of bytes. By Linux design,
such requests are served by the kernel slab allocator backed
by a buddy system for page allocation (fast path); when the
physical pages runs low, the kernel may trigger swapping or
kill user processes (slow path).

ARK provides memory allocation as a stateful service. It
translates the kernel code for the fast path, including the slab
allocator and the buddy system. In the case that the allocation
enters the slow path (e.g., due to low physical memory), ARK
aborts offloading; fortunately, our stress test suggests such
cases to be extremely rare, as will be reported in Section 7.
With a stateful allocator, the offloaded execution can free
dynamic memory allocated during the kernel execution on
CPU, and vice versa. Compare to prior work that instantiates
per-kernel allocators with split physical memory [43], ARK
reduces memory fragmentation and avoids tracking which
processor should free what dynamic memory pieces. Our
experience in Section 7 show that ARK is able to handle
intensive memory allocation/free requests such as in loading
firmware to a WiFi NIC.

4.6 Delays & Timekeeping

Delays ARK emulates udelay() and msleep() for busy wait-
ing and sleeping. ARK converts the expected wait time to the
hardware timer cycles on the peripheral core. ARK imple-
ments msleep() by pausing scheduling the caller context.
jiffies The Linux kernel periodically updates jiffies, a global
integer, as a low-overhead measure of elapsed time. By con-
sulting the peripheral core’s hardware timer, ARK directly

updates the jiffies. It is thus the only shared variable on the
kernel ABI that ARK depends (all others are functions).

5 The Cross-ISA DBT Engine

A Cross-ISA DBT Primer DBT, among its other uses [60,
49, 27], is a known technique allowing a host processor to
execute instructions in a foreign guest ISA. In such cross-
ISA DBT, the host processor runs a program called DBT
engine. At run time, the engine reads in guest instructions,
translates them to host instructions based on the engine’s built-
in translation rules, and executes these host instructions. The
engine translates guest instructions in the unit of translation
block – a sequence (typically tens) of guest instructions that
has one entry and one or more exits. After translating a block,
the engine saves the resultant host instructions to its code
cache in the host memory, so that future execution of this
translated block can be directed to the code cache.

Design overview We build ARK atop QEMU [7], a popular,
opensource cross-ISA DBT engine. ARK inherits QEMU’s
infrastructure but departs from its generic design which trans-
lates between arbitrary ISAs. ARK targets two well-known
DBT optimizations: i) to emit as few host instructions as
possible; ii) to exit from the code cache to the DBT engine
as rarely as possible. We exploit the following similarities
between the CPU’s and the peripheral core’s ISAs (ARMv7a
& ARMv7m):

1. Most v7a instructions have v7m counterparts with identi-
cal or similar semantics, albeit in different encoding. (§5.1)
2. Both ISAs have the same general purpose registers. The
condition flags in both ISAs have same semantics. (§5.2)
3. Both ISAs use program counter (PC), link register (LR),
and stack pointer (SP) in the same way. (§5.3)

Beyond the similarities, the two ISAs have important dis-
crepancies. Below, we describe our exploitation of the ISA
similarities and our treatment for caveats.

5.1 Exploiting Similar Instruction Semantics

Category Cnt v7m

w
/

C
N

T
P

R
T

 Identity 447 1

Side effect 52 3-5

Const constraints 22 2-5

Shift modes 10 2

w/o counterparts 27 2-5

Total (v7a) 558

Table 3: Translation rules for
v7a instructions. Column 3:
the number of v7m instructions
emitted for one v7a instruction

We devise translation
rules with a principled
approach by parsing a
machine-readable, for-
mal ISA specification
recently published by
ARM [72]. Our over-
all guideline is to map
each v7a instruction to
one v7m instruction
that has identical or
similar semantics. We
call them counterpart

instructions. For a counterpart instruction with similar (yet

USENIX Association 2019 USENIX Annual Technical Conference 681

ARMv7a ARMv7m (by ARK)

G1: ldr r0, [r1],

r2, lsr #4

H1: ldr.w r0, [r1]

H2: lsr.w t0, r2, 0x4

H3: add.w r1, r1, t0

G2: adds r0, r1,

0x80000001

H4: mov.w t0, 0xc0

H5: ror.w t0, t0, 0x7

H6: adds.w r0, r1, t0

G3: sub r0, r1, r2 H7: sub.w r0, r1, r2

Table 4: Sample translation by ARK. By contrast, our baseline
QEMU port translates G1–G3 to 27 v7m instructions

non-identical) semantics, ARK emits a few “amendment”
v7m instructions to make up for the semantic gap. The resul-
tant translation rules are based on individual guest instruc-
tions, different from translation rules based on one or more
translation blocks commonly seen in cross-ISA DBT [86].
This is because semantics similarities allows identity transla-
tion for most guest instructions. Amendment instructions are
oblivious to interrupts/exceptions: as stated in §4.2, ARK de-
fers IRQ handling to translation block boundary and expects
no exceptions.

Table 3 summarizes ARK’s translation rules for all 558
v7a instructions. Among them, 80% can be translated with
identity rules, for which ARK only needs to convert instruc-
tion encoding at run time. 15% of v7a instructions have v7m
counterparts but may require amendment instructions, which
fortunately fall into a few categories: i) Side effects. After
load/store, v7a instructions may additionally update memory
content or register values (shown in Table 4, G1). ARK emits
amendment instructions to emulate the extra side effect (H3).
ii) Constraints on constants. The range of constants that can
be encoded in a v7m instruction is often narrower (Table 4,
G2). In such cases, the amendment instructions load the con-
stant to a scratch register, operate it, and emulate any side
effects (e.g., index update) the guest instruction may have.
iii) Richer shift modes. v7a instructions support richer shift
modes and larger shift ranges than their v7m counterparts.
This is exemplified by Table 4 G1, where a v7m instruction
cannot perform LSR (logic shift right) inline as its v7a coun-
terpart. Similar to above, the amendment instructions perform
shift on the operand in a scratch register.

Beyond the above, only 27 v7a instructions have no v7m
counterparts, for which we manually devise translation rules.

In summary, through systematic exploitation of similar
instruction semantics, ARK emits compact host code at run
time. In the example shown in Table 4, three v7a instructions
are translated into seven v7m instructions by ARK, while to
27 instructions by our QEMU baseline.

5.2 Passthrough of CPU registers

General purpose registers Both the guest (v7a) and the host
(v7m) have the same set (13) of general-purpose registers. In
allocating registers of a host instruction, ARK follows guest

register allocation with best efforts (e.g., one-to-one mapping
in best case, as in Table 4, G1). ARK emits much fewer host
instructions than QEMU, which emulates all guest registers
in host memory with load /store.
Caveats fixed The amendment host instructions operate
scratch registers as exemplified by t0 in Table 4, H2-H6. How-
ever, the wimpy host faces higher register pressure, as it (v7m)
has no more registers than the brawny guest (v7a). To spill
some registers to memory while still reusing the guest’s regis-
ter allocation, we make the following tradeoff: we designate
one host register as the dedicated scratch register, and emu-
lates its guest counterpart register in memory. We pick the
least used one in the guest binary as the dedicated scratch
register, which is experimentally determined as R10 by ana-
lyzing kernel binary. We find most amendment instructions
are satisfied by one scratch register; in rare cases when extra
scratch registers are needed, ARK follows a common design
to allocate dead registers and spill unused ones to memory.

Condition flags Both the guest and the host ISAs involve
five hardware condition flags (e.g., zero and carry) with iden-
tical semantics; fortunately, most guest (v7a) instructions
and their host (v7m) counterparts have identical behaviors
in testing/setting flags per the ISA specifications [72]. ARK
hence directly emits instructions to manipulate the host’s cor-
responding flags. Such flag passthrough especially benefits
control-heavy suspend/resume, which contains extensive con-
ditional branches (§2); we study its benefits quantitatively in
§7.3.
Caveats fixed Amendment host instructions may affect the
hardware condition flags unexpectedly. For amendment in-
structions (notably comparison and testing) that must update
the flags as mandated by ISA, ARK emits two host instruc-
tions to save/restore the flags in a scratch register around the
execution of these amendment instructions.

5.3 Control Transfer and Stack Manipulation

Function call/return Both guest (v7a) and host (v7m) use
PC (program counter) and LR (link register) to maintain the
control flow. QEMU emulates guest PC and LR in host mem-
ory. As a result, the return address, loaded from stack or the
emulated LR, points to a guest address (i.e., kernel address).
Each function return hence causes the DBT to step in and
look up the corresponding code cache address. This overhead
is magnified in the control-heavy device phase.

By contrast, ARK never emits host code to emulate the
guest (i.e., kernel) PC or LR. For each kernel function call,
ARK saves the return addresses within code cache on stack
or in LR; for each kernel function return, ARK loads the
return address (which points to code cache) to hardware PC
from the stack or the hardware LR. By doing so, ARK no
longer participates in all function returns. Our optimization is
inspired by same-ISA DBT [34].

682 2019 USENIX Annual Technical Conference USENIX Association

Stack and SP QEMU emulates the guest (i.e., kernel) stack
and SP with a host array and a variable. Each guest push/pop
translates to multiple host instructions updating the stack
array and the emulated SP. This is costly, as suspend/resume
frequently makes function calls and operates stack heavily.

ARK avoids such expensive stack emulation by emitting
host push/pop instructions to directly operate the guest stack
in place. This is possible because ARK emulates the Linux
kernel’s virtual address space (§4). ARK also ensures the host
code generate the same stack frames as the guest would do
by making amendment instructions avoid using stack, which
would introduce extra stack contents. In addition, this further
facilitates the migration in abort (§6).

Caveats fixed i) As the host saves on the guest stack the code
cache addresses, which are meaningless to the guest CPU,
upon migrating from the peripheral core (host) to the CPU
(guest), the DBT rewrites all code cache addresses on stack
with their corresponding guest addresses. ii) guest push/pop
instruction may involve emulated registers (i.e., scratch reg-
ister). ARK must emit multiple host instructions to correctly
synchronize the emulated registers in memory.

6 Translated −→ Native Fallback

As described in Section 3, when going off the hot paths, ARK
migrates the kernel phase back to the CPU and continues as
native execution, analogous to virtual-to-physical migration
of VMs [85]. Migrating one DBT context is natural, as ARK
passes through most CPU registers and uses the kernel stack
in place (§5.3). Yet, to migrate all active DBT contexts, ARK
address the following unique challenges.

Migrate DBT contexts for deferred work After fallback,
all blocked workitems should continue their execution on the
CPU. Unfortunately, their enclosing DBT contexts do not
have counterparts in the Linux kernel. To solve this issue, we
again exploit the insight that the workitems are oblivious to
their execution contexts. Upon migration, the Linux kernel
creates temporary kernel threads as “receivers” for blocked
workitems to execute in. Once the migrated workitems com-
plete, the receiver threads terminate.

Migrate DBT context for interrupt If fallback happens
inside an ISA-neutral interrupt handler (translated), the re-
mainder of the handler should migrate to the CPU. This chal-
lenge, again, is that ARK’s interrupt context has no counter-
part on the CPU: the interrupt never occurs to the CPU. ARK
addresses this by rethrowing the interrupt as an IPI (inter-
processor interrupt) from the peripheral core to the CPU;
the Linux kernel uses the IPI context as the receiver for the
migrated interrupt handler to finish execution.

Section 7 will evaluate the fallback frequency and cost.

7 Evaluation

We seek to answer the following questions:
1. Does ARK incur tractable engineering efforts? (§7.2)
2. Is ARK correct and low-overhead? (§7.3)
3. Does ARK yield energy efficiency benefit? What are the
major factors impacting the benefit? (§7.4)

7.1 Methodology

Test Platform We evaluate ARK on OMAP4460, an ARM-
based SoC [83] as summarized in Table 6. We chose this
SoC mainly for its good documentation and longtime kernel
support (since 2.6.11), which allows our study of kernel ABI
over a long timespan in Section 2. As Cortex-M3 on the
platform is incapable of DVFS, for fair comparison, we run
both cores at their highest clock rates. Note that OMAP4460
is not completely aligned with our hardware model, for which
we apply workarounds as will be discussed in Section 7.5.

Benchmark setup We benchmark ARK on the whole sus-
pend/resume kernel phases. We run a user program as the test
harness that periodically kicks ARK for suspend/resume; the
generated kernel workloads are the same as in all ephemeral
tasks. Our benchmark is macro: it exercise extensive drivers
and services, during which ARK translates and executes over
200 million instructions.

The benchmark operates nine devices for suspend/resume.
1. SD card: SanDisk Ultra 16GB SDHC1 Class 10 card;
2. Flash drive: a generic drive connected via USB; 3. MMC
controller: on-chip OMAP HSMMC host controller; 4. USB
controller: on-chip OMAP HS multiport USB host controller;
5. Regulator: TWL6030 power management IC connected
via I2C; 6. Keyboard: Dell KB212-B keyboard connected
via USB; 7. Camera: Logitech c270 connected via USB;
8. Bluetooth NIC: an adapter with Broadcom BCM20702
chipset connected via USB; 9. WiFi NIC: TI WL1251 mod-
ule. The kernel invokes sophisticated drivers, thoroughly exer-
cising various services including deferred work (2–4,6–8),
slab/buddy allocator (1–4,6–9), softirq (9), DMA (2,6–9),
threaded IRQ (1,5,9), and firmware upload (9).

We measure device suspend/resume executed by ARK on
Cortex-M3 and report the measured results. We compare ARK
to native Linux execution on Cortex-A9. We further compare
to a baseline ARK version: its DBT is a straightforward v7m
port of QEMU that misses optimizations described in Sec-
tion 5. We report measurements taken with warm DBT code
cache, as this reflects the real-world scenario where device
suspend/resume is frequently exercised.

7.2 Analysis of engineering efforts
ARK eliminates source refactoring of the Linux kernel (§2.3).
As shown in Table 5, ARK transparently reuses substantial
kernel code (15K SLoC in our test), most of which are drivers

USENIX Association 2019 USENIX Annual Technical Conference 683

0 1 2 3 4 23
a) Accumulated Time (s)

Native
ARK

Baseline

Idle
Busy

0 70 140 210 280 681
b) Energy (mJ)

IO
DRAM

Core busy
Core idle

Figure 5: Execution time and energy in device suspend/re-
sume. ARK substantially reduces the energy.

and their libraries. We stress that ARK, as a driver-agnostic
effort, not only enables reuse of the drivers under test but also
other drivers in the ARMv7 Linux kernel.

Existing code (unchanged)

Translated 15K SLoC

Substituted

w/ emu
25K SLoC

New implementation

DBT 9K SLoC

Emulation 1K SLoC

Table 5: Source code

Table 5 also shows that
ARK requires modest efforts
in developing new software
for the peripheral core. The
9K new SLoC for DBT is low
as compared to commodity
DBT (e.g., QEMU has 2M
SLoC). ARK implements em-
ulation in as low as 1K SLoC and in return avoids translating
generic, sophisticated Linux kernel services [34, 21]. The
result validates our principle of specializing these emulated
services.

ARK meets our goal of “build once, run with many”. We
verify that the ARK binary works with a variety of ker-
nel configuration variants (including defconfig-omap4 and
yes-to-all) of Linux 4.4. We also verify that ARK works
with a wide range of Linux versions, from version 3.16 (2014)
to 4.20 (most recent at the time of writing). This is because
ARK only depends on a narrow ABI shown in Table 2, which
has not changed since Linux 3.16.

7.3 Measured execution characteristics

ARK’s correctness Formally, we derive translation rules
from the specification of ARM ISA [72]; experimentally, we
validate ARK by comparing its execution results side-by-side
with native execution and examining the translated code with
the native kernel binary. Over 200 million executed instruc-
tions, we verify that ARK’s translation preserves kernel’s
semantics and presents consistent execution results.

Core activity We trace core states during ARK execution.
Figure 5 (a) shows the breakdown of execution time. Com-
pared to the native execution on CPU, ARK shows the same
amount of accumulated idle time but much longer (16×) busy
time. The reasons are Cortex-M3’s much lower clock rate
(1/6 of the A9’s clock rate) and ARK’s execution overhead.
Despite the extended busy time, ARK still yields energy ben-
efit, as we will show below.

Memory activity We collect DRAM activities by sampling

0x

5x

10x

15x

20x

25x

O
v
e
rh

e
a
d

Baseline

Baseline + Reg Passthrough

ARK (Baseline + all optimizations)

SD Card
Flash

MMC-Ctrl

USB-Ctrl

RegulatorKB
Cam BT

Wi-F
i

0x

5x

10x

15x

20x

25x

Figure 6: Busy execution overhead for devices under test (top:
suspend; bottom: resume). Our DBT optimizations reduce the
overhead by up to one order of magnitude

the hardware counters of the SoC’s DDR controller. We ob-
served that ARK on Cortex-M3 generates much higher av-
erage DRAM utilization (32 MB/s read and 2MB/s write)
than the native execution on A9 (only 8MB/s read and 4MB/s
write). We attribute such thrashing to M3’s small (32KB) last-
level cache (LLC). Throughout the test, the ARK emitted and
executed around 230KB host instructions, which far exceeds
the LLC capacity and likely causes thrashing. By contrast,
Cortex-A9 has a much larger LLC (1MB), which absorbs
most of the kernel memory access. The memory activity has
a strong energy impact, as will be shown below.

Busy execution overhead Our measurement shows that
ARK incurs low overhead in busy kernel execution, which
includes both DBT and emulation. We report the overhead
as the ratio between ARK’s cycle count on Cortex-M3 to
the Linux’s cycle count on A9. Note that an M3 cycle is 6×
longer than A9 due to different clock rates.

Overall, the execution overhead is 2.7× on average (sus-
pend: 2.9×; resume: 2.6×). Of individual drivers, the execu-
tion overhead ranges from 1.1× to 4.5× as shown in Figure 6.
Our DBT optimizations (§5) have strong impact on lower-
ing the overhead. Lacking them, our baseline design incurs
a 13.9× overhead on average, 5.2× higher than ARK. We
examined how our optimizations contribute to the gap: reg-
ister passthrough (§5.2) reduces the baseline’s overhead by
2.5× to 5.5×. Remaining optimizations (e.g., control trans-
fer) collectively reduce the overhead by additional 2×. Our
optimizations are less effective on drivers with very dense
control transfer (e.g., USB) due to high DBT cost.

Emulated services Our profiling shows that ARK’s emu-
lated services incur low overhead. Overall, the emulated ser-
vices only contribute 1% of total busy execution. i) The early,
core-specific interrupt handling (§4.2) takes 3.9K Cortex-M3
cycles, only 1.5–2× more cycles than the native execution on

684 2019 USENIX Annual Technical Conference USENIX Association

CPU Peripheral core
Core Cortex A9@1.2GHz Cortex M3@200MHz
Cache L1:64KB + L2:1MB L1:32KB
Typical busy/idle power 630mW/80mW 17mW/1mW

Table 6: The test platform - OMAP4460 on a Pandaboard

A9. ii) Emulated workqueues (§4.3) incurs a typical queueing
delay of tens of thousands M3 cycles. The delay is longer than
the native execution but does not break the deferred execution
semantics.

Fallback frequency & cost We stress test ARK by repeating
the benchmark for 1000 runs. Throughout the 1000 runs,
ARK encounters only four cases when the execution goes
off the hot path, all of which caused by the WiFi hardware
failing to respond to resume commands; it is likely due to
an existing glitch in WiFi firmware. In such a case, ARK
migrates execution by spending around 20 us on rewriting
code cache addresses on stack (§5.3), 17 us to flush Cortex-
M3’s cache, and 2 us to wake up the CPU through an IPI.

7.4 Energy benefits

Methodology We study system-level energy and in particular
how it is affected by ARK’s its extended execution time. We
include energy of both cores, DRAM, and IO.

We measure power of cores by sampling the inductors on
the power rails for the CPU and the peripheral core. As the
board lacks measurement points for DRAM power [19], we
model DRAM power as a function of DRAM power state and
read/write activities, with Micron’s official power model for
LPDDR2 [55]. The system energy of ARK is given by:

EARK = Ecore︸︷︷︸
Measured

+Tidle · (Pmem_sr +Pio)︸ ︷︷ ︸
Modeled

+Tbusy · (Pmem +Pio)︸ ︷︷ ︸
Modeled

Here, Ecore is the measured core energy. All T s are mea-
sured execution time. Ps are power consumptions for DRAM
and IO: Pmem is DRAM’s active power derived from mea-
sured DRAM activities as described in Section 7.3; Pmem_sr is
DRAM’s self-refresh power, 1.3mW according to the Micron
model; Pio is the average IO power which we estimate as 5mW
based on prior work [90]. Note that during suspend/resume,
IO devices no longer actively perform work, thus consuming
much less power.

Energy saving ARK consumes 66% energy (a reduction
of 34%) of the native execution, despite its longer execution
time. The energy breakdown in Figure 5(b) shows the benefit
comes from two portions: i) in busy execution, ARK’s energy
efficiency is 23% higher than the native execution due to low
overhead (on average 2.7×); ii) during system idle, ARK re-
duces system energy to a negligible portion, as the peripheral
core’s idle power is only 1.25% of the CPU’s. Figure 5(b)
highlights the significance of our DBT optimizations: the
baseline, like ARK, benefits from lower idle power as well;
however its high execution overhead ultimately leads to 5.1×
energy compared to the native execution. Interestingly, ARK

1x 3x 5x 7x 9x 11x 13x 15x

DBT Overhead

0%

20%

40%

60%

80%

100%

%
 o

f B
us

y
Ti

m
e

in
 N

at
iv

e
Ex

ec
ut

io
n

(2.7x,41%)
ARK energy: 66%

(13.9x,41%)
w/o optimization

energy: 333%

0%
50%
100%
150%
200%
250%
300%
350%
400%

Figure 7: System energy consumption (inc. cores, DRAM,
and IO) of ARK relative to native execution (100%), under
different DBT overheads (x-axis) and processor core usage
(y-axis). ARK’s low energy hinges on low DBT overhead.

consumes more DRAM energy than the native execution. We
deem the cause as Cortex-M3’s tiny LLC (32KB) as describe
earlier. Our result suggests that the current size is suboptimal
for the offloaded kernel execution.

What-if analysis How sensitive is ARK’s energy saving
to two major factors: the DBT overhead (ARK’s behavior)
and the processor core usage (Linux’s behavior)? To answer
the question, we estimate the what-if energy consumption
by using the power model as described above. The analysis
results in Figure 7 show two findings. i) ARK’s energy benefit
will be more pronounced with lower core usage (i.e., longer
core idle), because ARK’s efficiency advantage over native
execution is higher during core idle. ii) ARK’s energy benefit
critically depends on DBT. When the DBT overhead (on
x-axis) drops to below 3.5×, ARK saves energy even for
100% busy execution; when the overhead exceeds 5.2×, ARK
wastes energy even for 20% busy execution, the lowest core
usage observed on embedded platforms in prior work [92].

Qualitative comparison with big.LITTLE We estimate
ARK saves tangible energy compared to a LITTLE core.
We use parameters based on recent big.LITTLE characteriza-
tions [66, 25]: compared to the big (i.e., CPU on our platform),
a LITTLE core has 40 mW idle power [69] and offers 1.3×
energy efficiency at 70% clock rate [47]. We favorably as-
sume LITTLE’s DRAM utilization is as low as the big, while
in reality the utilization should be higher due to LITTLE’s
smaller LLC. Even with this favorable assumption for LIT-
TLE and unfavorable, tiny LLC for ARK, LITTLE consumes
77% energy of native execution, more than ARK (51%–66%),
mainly because LITTLE’s idle power is 40× of Cortex-M3.
Furthermore, ARK’s advantage will be even more pronounced
with a proper LLC as discussed earlier.

Battery life extension Based on ARK’s energy reduction in
device suspend/resume, we project the battery life extension
for ephemeral tasks reported in prior work [38]. When the
ephemeral tasks are executed at 5-second intervals and the

USENIX Association 2019 USENIX Annual Technical Conference 685

native device suspend/resume consumes 90% system energy
in a wakeup cycle, ARK extends the battery life by 18%
(4.3 hours per day); with 30-second task intervals and a 50%
energy consumption percentage, ARK extends the battery
life by 7% (1.6 hours per day). This extension is tangible
compared to complementary approaches in prior work [38,
90].

7.5 Discussions

Workarounds for OMAP4460 While OMAP4460 mostly
matches our hardware model as summarized in Table 1, for mi-
nor mismatch we apply the following workarounds. Memory
mapping Our hardware model (§2.2) mandates that the periph-
eral core should address the entire kernel memory. Yet, Cortex-
M3, according to ARM’s hardware specification [82], is only
able to address memory in certain range (up to 0xE0000000),
which unfortunately does not encompass the Linux kernel’s
default address range. As a workaround, we configure the
Linux kernel source, shifting its address range to be address-
able by Cortex-M3. Interrupt handling While our hardware
model mandates that both processors should receive all in-
terrupts, OMAP4460 only routes a subset of them (39/102)
to Cortex-M3, leaving out IO devices such as certain GPIO
pins. These IO devices hence are unsupported by the ARK
prototype and are not tested in our evaluation.

Recommendation to SoC architects To make SoCs friendly
to a transkernel, architects may consider: i) routing all inter-
rupts to CPU and the peripheral core, ideally with the identical
interrupt line numbers; ii) making the peripheral core capable
of addressing the whole memory address space; iii) enlarging
the peripheral core’s LLC size modestly. We expect a careful
increase (e.g., to 64 KB or 128 KB) will significantly reduce
DRAM power at a moderate overhead in the core power.

Applicability to a pair of 64-bit/32-bit ISAs While today’s
smart devices often use ARMv7 CPUs, emerging ARM SoCs
start to combine 64-bit CPUs (ARMv8) with 32-bit peripheral
core (ARMv7m), as listed in Table 1. On one hand, transker-
nel’s idea of exploiting ISA similarity still applies, as exem-
plified by G2→H2 in Table 7; on the other hand, its DBT
overhead may increase significantly for the following rea-
sons. Compared to the 32-bit ISA, the 64-bit ISA has richer
instruction semantics, more general purpose registers, and
a much larger address space. As a result, ARK cannot pass
through 64-bit CPU registers but instead have to emulate them
in memory; ARK must translate the guest’s 64-bit memory
addresses to 32-bit addresses supported by the host (Table 7
G1→H1), e.g., by keeping consistent two sets of page tables,
for 64-bit and 32-bit virtual address spaces, respectively; with
large physical memory (>4GB), even this technique will not
work because the peripheral core’s page tables are incapable
of mapping the extra physical memory.

ARMv8 ARMv7m (by ARK, ideally)

G1:

ldrb w2, [x22, #1059]

ldrb w1, [x0, #160]

H1:
(emulate x22+#1059 in addr1)
ldrb r2, [addr1]
(emulate x0+#160 in addr2)
ldrb r1, [addr2]

G2: cmp w2, w1 H2: cmp r2, r1

G3: beq
mmc_select_bus_width+0x160

H3: beq
mmc_select_bus_width+0x160

Table 7: Ideal AARCH64 translation by ARK for
mmc_compare_ext_csds() in Linux v4.4. While identity map-
ping still exists (G2→H2), software emulation can diminish
ARK’s benefits (G1→H1).

8 Related Work

OS for heterogeneous cores A multikernel OS runs its ker-
nels on individual processors. A number of such OSes are
designed anew with a strong distributed system flavor. They
define explicit message interfaces among kernels [6, 88, 2];
some additionally exploit managed languages/compilers to
generate such interfaces [61]. Unlike them, transkernel targets
spanning an existing monolithic kernel and therefore adopts
DBT to address the resultant interface challenge.

OSes like Popcorn [5] and K2 [43] seek to present a sin-
gle Linux image over heterogeneous processors. For sharing
kernel state across ISAs, they rely on manual source tweaks
or hand-crafted communication. They face the interface diffi-
culty as described in §2.3.

Prior systems distribute OS functions over CPU and acceler-
ators [57, 77]. The accelerators cannot operate autonomously,
which is however required by device suspend/resume. Prior
systems offload apps from a smartphone (weak) to cloud
servers (strong) for efficiency [15, 14]. Unlike them, transker-
nel offloads kernel workloads from a strong processor to a
weak peripheral core on the same chip.

DBT DBT has been used for system emulation [7] and bi-
nary instrumentation [34, 27, 49, 21]; DeVuyst et al. [18] uses
DBT to speed up process migration. Related to transkernel,
prior systems run translated user programs atop an emulated
syscall interface [7, 29, 87]. Unlike them, transkernel trans-
lates kernel code and emulates a narrow interface inside the
kernel. Prior systems use DBT to run binaries in commod-
ity ISAs (e.g., x86) on specialized VLIW cores and hence
gain efficiency [9, 35, 73, 74]. None runs on microcontrollers
to our knowledge. transkernel demonstrates that DBT can
gain efficiency even on off-the-shelf cores. Existing DBT
engines leverage ISA similarities, e.g., between aarch32 and
aarch64 [17, 16]. They still fall into the classic DBT paradigm,
where the host ISA is brawny and the guest ISA is wimpy
(i.e., lower register pressure). With an inverse DBT paradigm,
ARK addresses very different challenges. Much work is done
on optimizing DBT translation rules, using optimizers [28, 3]
or machine learning[86]. Compared to them, ARK leverages
ISA similarities and hence reuses code optimization already

686 2019 USENIX Annual Technical Conference USENIX Association

in guest code by guest compilers.

Kernels and drivers The transkernel is inspired by the
POSIX emulator [30] however is different as it emulates ker-
nel ABIs. Prior kernel studies show rapid evolution of the
Linux kernel and the interfaces between kernel layers are
unstable [68, 67]. This observation motivates transkernel. Ex-
tensive work transplants device drivers to a separate core [23],
user space [22], or a separate VM [39]. However, the trans-
plant code cannot operate independent of the kernel, whereas
transkernel must execute autonomously.

Encapsulating the NetBSD kernel subsystems (e.g., drivers)
behind stable interfaces respected by developers, rump ker-
nel [33] seeks to enable their reuse in foreign environments,
e.g., hypervisors. The transkernel targets a different goal:
spanning a live Linux kernel instance over heterogeneous
processors. Applying Rump kernel’s approach to Linux is
difficult, as Linux intentionally rejects interface stability for
drivers [36].
Suspend/resume’s inefficiency raises attention for cloud
servers [53, 89] and mobile [38]. Drowsy [38] mitigates inef-
ficiency by reducing the devices involved in suspend/resume
through user/kernel co-design; Xi et al. propose to reorder de-
vices to resume [89]. While acknowledging the value of such
kernel optimizations, we believe ARK is a key complement
that works on unmodified binaries. ARK can co-exist with the
mentioned optimizations in the same kernel. PowerNap [53]
takes a hardware approach to speed up suspend/resume for
servers. It does not treat kernel execution for operating diverse
IO on embedded platforms. Kernels may put idle devices to
low power at runtime [90], complementary to suspend/resume
that ensures all devices are off.

9 Conclusions

We present transkernel, a new executor model for a peripheral
core to execute a commodity kernel’s phases, notably device
suspend/resume. The transkernel executes the kernel binary
through cross-ISA DBT. It translates stateful code while emu-
lating stateless services; it picks a stable ABI for emulation; it
specializes for hot paths; it exploits ISA similarities for DBT.
We experimentally demonstrate that the approach is feasible
and beneficial. The transkernel represents a new OS design
point for harnessing heterogeneous SoCs.

Acknowledgments

The authors were supported in part by NSF Award #1619075,
#1718702, and a Google Faculty Award. The authors thank the
paper shepherd, Prof. Timothy Roscoe, and the anonymous
reviewers for their insightful feedback. The authors thank
Prof. Lin Zhong for providing a JTAG debugger. The authors
are grateful to numerous video game emulators that inspired
this project.

References

[1] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl,
and R. Gupta. Somniloquy: Augmenting Network Inter-
faces to Reduce PC Energy Usage. In Proc. USENIX
Symp. Networked Systems Design and Implementation
(NSDI), 2009.

[2] N. Asmussen, M. Völp, B. Nöthen, H. Härtig, and
G. P. Fettweis. M3: A Hardware/Operating-
System Co-Design to Tame Heterogeneous Many-
cores. In Proc. ACM Int. Conf. Architectural Support
for Programming Languages & Operating Systems
(ASPLOS), 2016.

[3] S. Bansal and A. Aiken. Binary translation us-
ing peephole superoptimizers. In Proc. USENIX
Conf. Operating Systems Design and Implementation
(OSDI), 2008.

[4] A. Barbalace, R. Lyerly, C. Jelesnianski, A. Carno,
H.-R. Chuang, V. Legout, and B. Ravindran. Break-
ing the boundaries in heterogeneous-ISA datacen-
ters. In Proc. ACM Int. Conf. Architectural Support
for Programming Languages & Operating Systems
(ASPLOS), 2017.

[5] A. Barbalace, M. Sadini, S. Ansary, C. Jelesnianski,
A. Ravichandran, C. Kendir, A. Murray, and B. Ravin-
dran. Popcorn: Bridging the Programmability Gap in
heterogeneous-ISA Platforms. In Proc. The European
Conf. Computer Systems (EuroSys), 2015.

[6] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The Multikernel: a new OS architecture
for scalable multicore systems. In Proc. ACM Symp.
Operating Systems Principles (SOSP), 2009.

[7] F. Bellard. QEMU, a Fast and Portable Dynamic Trans-
lator. In Proc. USENIX Annual Technical Conference
(ATC), 2005.

[8] E. Blem, J. Menon, T. Vijayaraghavan, and K. Sankar-
alingam. ISA wars: Understanding the relevance of
ISA being RISC or CISC to performance, power, and
energy on modern architectures. ACM Transactions on
Computer Systems (TOCS), 33(1):3, 2015.

[9] D. Boggs, G. Brown, N. Tuck, and K. S. Venkatraman.
Denver: Nvidia’s First 64-bit ARM Processor. IEEE
Micro, 35(2):46–55, 2015.

[10] S. Boyd-Wickizer and N. Zeldovich. Tolerating Ma-
licious Device Drivers in Linux. In Proc. USENIX
Annual Technical Conference (ATC), 2010.

USENIX Association 2019 USENIX Annual Technical Conference 687

[11] A. L. Brown and R. J. Wysocki. Suspend-to-RAM in
Linux. In Ottawa Linux Symposium, 2008.

[12] X. Chen, N. Ding, A. Jindal, Y. C. Hu, M. Gupta,
and R. Vannithamby. Smartphone Energy Drain in
the Wild: Analysis and Implications. In Proc. ACM
SIGMETRICS (SIGMETRICS), 2015.

[13] X. Chen, A. Jindal, N. Ding, Y. C. Hu, M. Gupta,
and R. Vannithamby. Smartphone Background Activ-
ities in the Wild: Origin, Energy Drain, and Optimiza-
tion. In Proc. Ann. Int. Conf. Mobile Computing &
Networking (MobiCom), 2015.

[14] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti.
CloneCloud: Elastic Execution Between Mobile Device
and Cloud. In Proc. The European Conf. Computer
Systems (EuroSys), 2011.

[15] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wol-
man, S. Saroiu, R. Chandra, and P. Bahl. MAUI: mak-
ing smartphones last longer with code offload. In
Proc. ACM Int. Conf. Mobile Systems, Applications,
& Services (MobiSys), 2010.

[16] A. d’Antras, C. Gorgovan, J. Garside, J. Goodacre,
and M. Luján. HyperMAMBO-X64: Using Virtual-
ization to Support High-Performance Transparent Bi-
nary Translation. In Proc. Int. Conf. Virtual Execution
Environments (VEE), 2017.

[17] A. d’Antras, C. Gorgovan, J. Garside, and M. Luján.
Low Overhead Dynamic Binary Translation on ARM.
In Proc. ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), 2017.

[18] M. DeVuyst, A. Venkat, and D. M. Tullsen. Execu-
tion migration in a heterogeneous-ISA chip multiproces-
sor. In Proc. ACM Int. Conf. Architectural Support
for Programming Languages & Operating Systems
(ASPLOS), 2012.

[19] eLinux.org. PandaBoard Power Measurements. http:
//elinux.org/PandaBoard_Power_Measurements.

[20] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exoker-
nel: An Operating System Architecture for Application-
level Resource Management. In Proc. ACM Symp.
Operating Systems Principles (SOSP), 1995.

[21] P. Feiner, A. D. Brown, and A. Goel. Comprehensive ker-
nel instrumentation via dynamic binary translation. In
ACM SIGARCH Computer Architecture News, 2012.

[22] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan,
M. M. Swift, and S. Jha. The Design and Imple-
mentation of Microdrivers. In Proc. ACM Int. Conf.
Architectural Support for Programming Languages &
Operating Systems (ASPLOS), 2008.

[23] B. Gerofi, A. Santogidis, D. Martinet, and Y. Ishikawa.
PicoDriver: Fast-path Device Drivers for Multi-kernel
Operating Systems. In Proc. Int. Symp. on
High-Performance Parallel and Distributed Computing
(HPDC), 2018.

[24] P. Greenhalgh. Big.LITTLE processing with ARM
Cortex-A15 and Cortex-A7. Technical report, 2011.

[25] M. Hähnel and H. Härtig. Heterogeneity by the
numbers: A study of the ODROID XU+E big.little
platform. In Y. Agarwal and K. Rajamani, editors,
Proc. Workshp. Power-Aware Computing and Systems
(HotPower), 2014.

[26] U. Hansson. SDIO power on/off time impacts system
suspend/resume time! http://connect.linaro.org/
resource/sfo17/sfo17-402/, 2017.

[27] B. Hawkins, B. Demsky, D. Bruening, and Q. Zhao. Op-
timizing Binary Translation of Dynamically Generated
Code. In Proc. Int. Symp. on Code Generation and
Optimization (CGO), 2015.

[28] D. Hong, C. Hsu, P. Yew, J. Wu, W. Hsu, P. Liu, C. Wang,
and Y. Chung. HQEMU: a multi-threaded and retar-
getable dynamic binary translator on multicores. In
Proc. Int. Symp. on Code Generation and Optimization
(CGO), 2012.

[29] R. J. Hookway and M. A. Herdeg. Digital FX! 32:
Combining emulation and binary translation. Digital
Technical Journal, 9:3–12, 1997.

[30] J. Howell, B. Parno, and J. R. Douceur. How to Run
POSIX Apps in a Minimal Picoprocess. In Proc.
USENIX Annual Technical Conference (ATC), 2013.

[31] Intel. Intel SuspendResume Project. https://01.org/
suspendresume, 2015.

[32] A. Kadav and M. M. Swift. Understanding Modern De-
vice Drivers. In Proc. ACM Int. Conf. Architectural
Support for Programming Languages & Operating
Systems (ASPLOS), 2012.

[33] A. Kantee and J. Cormack. Rump Kernels No OS? No
Problem! Login: USENIX Magazine, 39(5), 2014.

[34] P. Kedia and S. Bansal. Fast Dynamic Binary Trans-
lation for the Kernel. In Proc. ACM Symp. Operating
Systems Principles (SOSP), 2013.

[35] A. Klaiber. The technology behind Crusoe processors.
Transmeta Technical Brief, 2000.

[36] G. Kroah-Hartman. The Linux Kernel
Driver Interface – Stable API Nonsense.
https://www.kernel.org/doc/Documentation/

688 2019 USENIX Annual Technical Conference USENIX Association

http://elinux.org/PandaBoard_Power_Measurements
http://elinux.org/PandaBoard_Power_Measurements
http://connect.linaro.org/resource/sfo17/sfo17-402/
http://connect.linaro.org/resource/sfo17/sfo17-402/
https://01.org/suspendresume
https://01.org/suspendresume
https://www.kernel.org/doc/Documentation/process/stable-api-nonsense.rst

process/stable-api-nonsense.rst. (Accessed on
05/04/2019).

[37] M. Larabel. A Stable Linux Kernel API/ABI?
"The Most Insane Proposal" For Linux Develop-
ment. https://www.phoronix.com/scan.php?page=
news_item&px=Linux-Kernel-Stable-API-ABI,
2016.

[38] M. Lentz, J. Litton, and B. Bhattacharjee. Drowsy Power
Management. In Proc. ACM Symp. Operating Systems
Principles (SOSP), 2015.

[39] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz. Unmod-
ified Device Driver Reuse and Improved System De-
pendability via Virtual Machines. In Proc. USENIX
Conf. Operating Systems Design and Implementation
(OSDI), 2004.

[40] T. Li, P. Brett, R. Knauerhase, D. Koufaty, D. Reddy,
and S. Hahn. Operating system support for overlapping-
ISA heterogeneous multi-core architectures. In Proc.
IEEE Int. Symp. on High Performance Computer
Architecture (HPCA), 2010.

[41] Y. Li, B. Dolan-Gavitt, S. Weber, and J. Cappos. Lock-
in-Pop: securing privileged operating system kernels by
keeping on the beaten path. In Proc. USENIX Annual
Technical Conference (ATC), 2017.

[42] F. X. Lin, Z. Wang, R. LiKamWa, and L. Zhong.
Reflex: using low-power processors in smartphones
without knowing them. In Proc. ACM Int. Conf.
Architectural Support for Programming Languages &
Operating Systems (ASPLOS), 2012.

[43] F. X. Lin, Z. Wang, and L. Zhong. K2: A mo-
bile operating system for heterogeneous coherence do-
mains. In Proc. ACM Int. Conf. Architectural Support
for Programming Languages & Operating Systems
(ASPLOS), 2014.

[44] R. Liu and F. X. Lin. Understanding the Characteristics
of Android Wear OS. In Proc. ACM Int. Conf. Mobile
Systems, Applications, & Services (MobiSys), 2016.

[45] X. Liu, T. Chen, F. Qian, Z. Guo, F. X. Lin, X. Wang,
and K. Chen. Characterizing Smartwatch Usage in the
Wild. In Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and
Services, 2017.

[46] LKML. [GIT PULL] PM updates for 2.6.33, 2009.

[47] D. Loghin, B. M. Tudor, H. Zhang, B. C. Ooi, and Y. M.
Teo. A Performance Study of Big Data on Small Nodes.
Proc. VLDB Endow., 8(7):762–773, 2015.

[48] G. Lu, J. Zhan, X. Lin, C. Tan, and L. Wang. On Hori-
zontal Decomposition of the Operating System. CoRR,
abs/1604.01378, 2016.

[49] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazel-
wood. Pin: Building customized program analysis
tools with dynamic instrumentation. In Proc. ACM
SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI), 2005.

[50] LWN. Redesigning asynchronous suspend/resume.
https://lwn.net/Articles/366915/, 2009.

[51] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand, and
J. Crowcroft. Unikernels: Library operating systems
for the cloud. In Proc. ACM Int. Conf. Architectural
Support for Programming Languages & Operating
Systems (ASPLOS), 2013.

[52] MediaTek. Microsoft Azure Sphere MCU with ex-
tensive I/O peripheral subsystem for diverse IoT ap-
plications. https://www.mediatek.com/products/
azureSphere/mt3620, 2018.

[53] D. Meisner, B. T. Gold, and T. F. Wenisch. PowerNap:
Eliminating Server Idle Power. In Proc. ACM Int. Conf.
Architectural Support for Programming Languages &
Operating Systems (ASPLOS), 2009.

[54] D. Meisner and T. F. Wenisch. DreamWeaver: architec-
tural support for deep sleep. In Proc. ACM Int. Conf.
Architectural Support for Programming Languages &
Operating Systems (ASPLOS), 2012.

[55] Micron Technology, Inc. TN4201 LPDDR2 Sys-
tem Power Calculator. https://www.micron.com/
support/tools-and-utilities/power-calc,
2013.

[56] Mike Turquette. The Common Clk Framework. https:
//www.kernel.org/doc/Documentation/clk.txt.

[57] C. Min, W. Kang, M. Kumar, S. Kashyap, S. Maass,
H. Jo, and T. Kim. Solros: a data-centric operating sys-
tem architecture for heterogeneous computing. In Proc.
The European Conf. Computer Systems (EuroSys),
2018.

[58] J. Mogul, J. Mudigonda, N. Binkert, P. Ranganathan,
and V. Talwar. Using Asymmetric Single-ISA CMPs
to Save Energy on Operating Systems. IEEE Micro,
28(3):26–41, 2008.

[59] J. Morrison, D. Yang, and C. Davis. Apple watch:
teardown. https://www.techinsights.com/about-
techinsights/overview/blog/apple-watch-
teardown/. (Accessed on 01/10/2019).

USENIX Association 2019 USENIX Annual Technical Conference 689

https://www.kernel.org/doc/Documentation/process/stable-api-nonsense.rst
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Kernel-Stable-API-ABI
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Kernel-Stable-API-ABI
https://lwn.net/Articles/366915/
https://www.mediatek.com/products/azureSphere/mt3620
https://www.mediatek.com/products/azureSphere/mt3620
https://www.micron.com/support/tools-and-utilities/power-calc
https://www.micron.com/support/tools-and-utilities/power-calc
https://www.kernel.org/doc/Documentation/clk.txt
https://www.kernel.org/doc/Documentation/clk.txt
https://www.techinsights.com/about-techinsights/overview/blog/apple-watch-teardown/
https://www.techinsights.com/about-techinsights/overview/blog/apple-watch-teardown/
https://www.techinsights.com/about-techinsights/overview/blog/apple-watch-teardown/

[60] N. Nethercote and J. Seward. Valgrind: A Frame-
work for Heavyweight Dynamic Binary Instrumenta-
tion. In Proc. ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), 2007.

[61] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel,
and G. Hunt. Helios: heterogeneous multiprocessing
with satellite kernels. In Proc. ACM Symp. Operating
Systems Principles (SOSP), 2009.

[62] NXP Semiconductors. i.MX 6SoloX - fact
sheet. https://www.nxp.com/docs/en/fact-sheet/
IMX6SOLOXFS.pdf. (Accessed on 05/14/2019).

[63] NXP Semiconductors. i.MX 8M Family of Applica-
tions Processors Fact Sheet. https://www.nxp.com/
docs/en/fact-sheet/i.MX8M-FS.pdf. (Accessed on
05/14/2019).

[64] NXP Semiconductors. i.MX 7DS power consump-
tion measurement. https://www.nxp.com/docs/en/
application-note/AN5383.pdf, 2016.

[65] NXP Semiconductors. i.MX 7 Series Applications
Processors | Arm® Cortex®-A7, Cortex-M4 | NXP.
https://www.nxp.com/products/processors-and-
microcontrollers/arm-based-processors-and-
mcus/i.mx-applications-processors/i.mx-7-
processors:IMX7-SERIES, 2017. (Accessed on
05/14/2019).

[66] H. Oi. A Case Study of Energy Efficiency on a Het-
erogeneous Multi-Processor. SIGMETRICS Perform.
Eval. Rev., 45(2):70–72, 2017.

[67] Y. Padioleau, J. L. Lawall, R. R. Hansen, and G. Muller.
Documenting and automating collateral evolutions in
Linux device drivers. In J. S. Sventek and S. Hand,
editors, Proc. The European Conf. Computer Systems
(EuroSys), 2008.

[68] Y. Padioleau, J. L. Lawall, and G. Muller. Understanding
collateral evolution in Linux device drivers. In ACM
SIGOPS Operating Systems Review, 2006.

[69] N. Peters, S. Park, S. Chakraborty, B. Meurer, H. Payer,
and D. Clifford. Web browser workload character-
ization for power management on HMP platforms.
In Proc. IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis
(CODES), 2016.

[70] A. Ponomarenko. ABI Compliance Checker. https://
lvc.github.io/abi-compliance-checker/, 2018.

[71] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky,
and G. C. Hunt. Rethinking the Library OS from the Top
Down. In Proc. ACM Int. Conf. Architectural Support

for Programming Languages & Operating Systems
(ASPLOS), 2011.

[72] A. Reid. Trustworthy Specifications of ARM v8-A
and v8-M System Level Architecture. In Proc. Formal
Methods in Computer-Aided Design (FMCAD), 2016.

[73] S. Rokicki, E. Rohou, and S. Derrien. Hardware-
accelerated dynamic binary translation. In Proc.
ACM/IEEE Design Automation & Test in Europe Conf.
(DATE), 2017.

[74] S. Rokicki, E. Rohou, and S. Derrien. Supporting
runtime reconfigurable VLIWs cores through dynamic
binary translation. In 2018 Design, Automation &
Test in Europe Conference & Exhibition, DATE 2018,
Dresden, Germany, March 19-23, 2018, 2018.

[75] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS: A
Disseminated, Distributed OS for Hardware Resource
Disaggregation. In Proc. USENIX Conf. Operating
Systems Design and Implementation (OSDI), 2018.

[76] H. Shen, A. Balasubramanian, A. LaMarca, and
D. Wetherall. Enhancing Mobile Apps to Use Sensor
Hubs Without Programmer Effort. In Proc. Int. Conf.
Ubiquitous Computing (UbiComp), 2015.

[77] M. Silberstein, B. Ford, I. Keidar, and E. Witchel.
GPUfs: Integrating a File System with GPUs.
In Proc. ACM Int. Conf. Architectural Support
for Programming Languages & Operating Systems
(ASPLOS), 2013.

[78] J. Sorber, N. Banerjee, M. D. Corner, and S. Rollins.
Turducken: hierarchical power management for mobile
devices. In Proc. ACM Int. Conf. Mobile Systems,
Applications, & Services (MobiSys), 2005.

[79] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M.
Levy. Recovering Device Drivers. In Proc. USENIX
Conf. Operating Systems Design and Implementation
(OSDI), 2004.

[80] M. M. Swift, B. N. Bershad, and H. M. Levy. Improv-
ing the Reliability of Commodity Operating Systems.
In Proc. ACM Symp. Operating Systems Principles
(SOSP), 2003.

[81] Texas Instruments. AM5728 Sitara Processor: Dual
Arm Cortex-A15 & Dual DSP, Multimedia | TI.com.
http://www.ti.com/product/AM5728. (Accessed on
05/14/2019).

[82] Texas Instruments. Cortex-M3: Proces-
sor technical reference manual. http:
//infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.ddi0337h/index.html. (Accessed on
05/07/2019).

690 2019 USENIX Annual Technical Conference USENIX Association

https://www.nxp.com/docs/en/fact-sheet/IMX6SOLOXFS.pdf
https://www.nxp.com/docs/en/fact-sheet/IMX6SOLOXFS.pdf
https://www.nxp.com/docs/en/fact-sheet/i.MX8M-FS.pdf
https://www.nxp.com/docs/en/fact-sheet/i.MX8M-FS.pdf
https://www.nxp.com/docs/en/application-note/AN5383.pdf
https://www.nxp.com/docs/en/application-note/AN5383.pdf
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors/i.mx-7-processors:IMX7-SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors/i.mx-7-processors:IMX7-SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors/i.mx-7-processors:IMX7-SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors/i.mx-7-processors:IMX7-SERIES
https://lvc.github.io/abi-compliance-checker/
https://lvc.github.io/abi-compliance-checker/
http://www.ti.com/product/AM5728
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337h/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337h/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337h/index.html

[83] Texas Instruments. OMAP4 Applications Processor:
Technical Reference Manual. http://www.ti.com/
lit/ug/swpu235ab/swpu235ab.pdf, 2010. (Ac-
cessed on 05/14/2019).

[84] D. Vasisht, Z. Kapetanovic, J. Won, X. Jin, R. Chan-
dra, S. Sinha, A. Kapoor, M. Sudarshan, and S. Strat-
man. FarmBeats: An IoT Platform for Data-Driven Agri-
culture. In Proc. USENIX Symp. Networked Systems
Design and Implementation (NSDI), 2017.

[85] VMWARE. Virtual Machine to Physical Machine
Migration. https://www.vmware.com/support/v2p/
doc/V2P_TechNote.pdf, 2004.

[86] W. Wang, S. McCamant, A. Zhai, and P.-C. Yew.
Enhancing Cross-ISA DBT Through Automatically
Learned Translation Rules. In Proc. ACM Int. Conf.
Architectural Support for Programming Languages &
Operating Systems (ASPLOS), 2018.

[87] W. Wang, P.-C. Yew, A. Zhai, S. McCamant, Y. Wu, and
J. Bobba. Enabling Cross-ISA Offloading for COTS
Binaries. In Proc. ACM Int. Conf. Mobile Systems,
Applications, & Services (MobiSys), 2017.

[88] D. Wentzlaff and A. Agarwal. Factored operating sys-
tems (fos): the case for a scalable operating system

for multicores. SIGOPS Oper. Syst. Rev., 43(2):76–85,
2009.

[89] S. L. Xi, M. Guevara, J. Nelson, P. Pensabene, and B. C.
Lee. Understanding the Critical Path in Power State
Transition Latencies. In Proc. ACM/IEEE Int. Symp.
Low Power Electronics & Design (ISLPED), 2013.

[90] C. Xu, F. X. Lin, Y. Wang, and L. Zhong. Au-
tomated OS-level Device Power Management for
SoCs. In Proc. ACM Int. Conf. Architectural Support
for Programming Languages & Operating Systems
(ASPLOS), 2015.

[91] F. Xu, Y. Liu, T. Moscibroda, R. Chandra, L. Jin,
Y. Zhang, and Q. Li. Optimizing Background Email
Sync on Smartphones. In Proc. ACM Int. Conf. Mobile
Systems, Applications, & Services (MobiSys), 2013.

[92] S. Zhai, L. Guo, X. Li, and F. X. Lin. Decelerating Sus-
pend and Resume in Operating Systems. In Proc. ACM
Workshp. Mobile Computing Systems & Applications
(HotMobile), 2017.

[93] Q. Zhu, M. Zhu, B. Wu, X. Shen, K. Shen, and Z. Wang.
Software Engagement with Sleeping CPUs. In Proc.
Workshp. Hot Topics in Operating Systems (HotOS),

2015.

USENIX Association 2019 USENIX Annual Technical Conference 691

http://www.ti.com/lit/ug/swpu235ab/swpu235ab.pdf
http://www.ti.com/lit/ug/swpu235ab/swpu235ab.pdf
https://www.vmware.com/support/v2p/doc/V2P_TechNote.pdf
https://www.vmware.com/support/v2p/doc/V2P_TechNote.pdf

Detecting Asymmetric Application-layer Denial-of-Service Attacks In-Flight with
FINELAME

Henri Maxime Demoulin Isaac Pedisich Nikos Vasilakis
Vincent Liu Boon Thau Loo Linh Thi Xuan Phan

University of Pennsylvania

Abstract
Denial of service (DoS) attacks increasingly exploit algo-

rithmic, semantic, or implementation characteristics dormant
in victim applications, often with minimal attacker resources.
Practical and efficient detection of these asymmetric DoS
attacks requires us to (i) catch offending requests in-flight, be-
fore they consume a critical amount of resources, (ii) remain
agnostic to the application internals, such as the programming
language or runtime system, and (iii) introduce low overhead
in terms of both performance and programmer effort.

This paper introduces FINELAME, a language-independent
framework for detecting asymmetric DoS attacks. FINELAME
leverages operating system visibility across the entire soft-
ware stack to instrument key resource allocation and negotia-
tion points. It leverages recent advances in the Linux extended
Berkeley Packet Filter virtual machine to attach application-
level interposition probes to key request processing func-
tions, and lightweight resource monitors—user/kernel-level
probes—to key resource allocation functions. The data col-
lected is used to train a model of resource utilization that
occurs throughout the lifetime of individual requests. The
model parameters are then shared with the resource monitors,
which use them to catch offending requests in-flight, inline
with resource allocation. We demonstrate that FINELAME
can be integrated with legacy applications with minimal ef-
fort, and that it is able to detect resource abuse attacks much
earlier than their intended completion time while posing low
performance overheads.

1 Introduction

Denial-of-Service (DoS) attacks aim to hinder the availability
of a service from its legitimate users. They work by over-
whelming one or more of the resources of the service (e.g., ,
CPU, network, memory, or disk), causing the service to be-
come slow or, in the limit, entirely unavailable.

Classic DoS attacks are simple in structure: attackers, in
large-scale, brute-force volumetric attacks, send many re-

quests that far exceed the service’s available resources. Al-
though potentially crippling—sometimes reaching aggregate
volumes of terabits per second [24, 43]—many effective mit-
igation techniques have been developed over the years, in-
cluding commercial services like CloudFlare, Akamai, or the
intrusion detection systems of Arbor Networks.

In response to these defenses, recent attacks have be-
come much more sophisticated in nature: rather than rely-
ing on the sheer volume, they take the form of highly spe-
cialized, application-specific asymmetric DoS (ADoS) at-
tacks [11, 12, 36, 48]. These attacks contain carefully-crafted,
pathological payloads that target algorithmic, semantic, or
implementation characteristics of the application’s internals.
They require significantly lower volumes of traffic and at-
tacker resources to compromise resource availability. With
the prevalence of third-part libraries, broad swaths of appli-
cations can be vulnerable to a given attack. For instance, the
Regular-Expression DoS (ReDoS) attack [12, 13, 51] affects
many programs that use regular expressions by leveraging
algorithmic complexity to craft a single payload of a few
characters that can occupy a service for several hours.

Due to this increase in sophistication, existing defenses are
becoming inadequate [10, 26–28, 31, 40, 54, 60–62]. Network-
based defenses are generally ineffective against ADoS attacks
because these attacks lack identifiable problematic patterns at
the network level. To be successful, network tools would not
only need to perform deep packet inspection, but would also
need to be able to predict which requests will hog resources a
priori—a challenge analogous to solving the halting problem.
Similarly, existing application-level defenses are limited in
their efficacy: since these attacks can target arbitrary resources
and arbitrary components of the service, which may be written
in different programming languages and contain multiple
binary third-party packages whose source code is not available
or with complex dependencies, manual instrumentation of
the application is prohibitively difficult, expensive, and time-
consuming.

This paper presents the design and implementation of
FINELAME (Fin-Lahm), a practical framework for detect-

USENIX Association 2019 USENIX Annual Technical Conference 693

ing ADoS attacks. In FINELAME, users only need to annotate
their own code to mark the start and end of request process-
ing; in many cases, annotations are not even required as ap-
plications lend themselves naturally to this demarcation. Our
interaction with the most recent Apache Web Server1 and
Node.js2 versions, for example, involves tracing three and
seven functions, respectively, and not a single modification
in their source code. Based on the annotations, FINELAME
automatically tracks CPU, memory, storage, and networking
usage across the entire application (even during execution of
third-party compiled binaries). It does so with low overhead
and at an ultra-fine granularity, which allows us to detect di-
vergent requests before they leave the system and while they
are attempting to exhaust resources.

Enabling our approach is a recent Linux feature called
extended Berkeley Packet Filter (eBPF). eBPF enables the
injection of verified pieces of code at designated points in
the operating system (OS) and/or application, regardless of
the specific programming language used. The OS is a nat-
ural, de facto layer of resource arbitration, with extensive
infrastructure and pluggable tooling for fine-grained resource
monitoring and distribution. By interposing on key OS ser-
vices, such as the network stack, the scheduler, and user-level
memory management facilities, FINELAME can detect abnor-
mal behavior in a unified fashion across the entire software
stack at run time.

FINELAME consists of three synergistic components that
operate at the user/kernel interface. The first component al-
lows attaching application-level interposition probes to key
functions responsible for processing requests. These probes
are based on inputs from the application developers, and they
are responsible for bridging the gap between application-
layer semantics (e.g., HTTP requests) to its underlying operat-
ing system carrier (e.g., process IDs). Examples of locations
where those probes are attached include event handlers in a
thread pool. The second component attaches resource moni-
tors to user or kernel-space data sources. Examples of such
sources include the scheduler, TCP functions responsible for
sending and receiving packets on a connection, and the mem-
ory manager used by the application. To perform anomaly
detection, a third component deploys a semi-supervised learn-
ing model to construct a pattern of legitimate requests from
the gathered data. The model is trained in the user space, and
its parameters are shared with the resource monitors through-
out the system, so that anomaly detection can be performed
in-line with resource allocation.

In summary, we make the following contributions:

• A novel, backward-compatible architecture at the user/k-
ernel interface for transparently implanting resource
monitors, exposed to applications via a probe API.

12.4.38 at the time of this writing
2v12.0.0-pre, 4a6ec3bd05e2e2d3f121e0d3dea281a6ef7fa32a on the Mas-

ter branch at the time of this writing

Fig. 1: Billion Laughs (XML Bomb) Attack. Under a normal load of about
500 requests per second, legitimate users experience a median of 6.75ms
latency. After a short period of time, we start a malicious load of 10 requests
per second (shaded area). XML bombs can take up to 200ms to compute (vs.
a median of about 60ns for normal input). As a results, legitimate requests get
serviced much slower, experiencing up to 2s latency. Setup details covered
in (§6).

• A library of resource monitors and associated probes
that can be used to detect asymmetric DoS attacks.

• An eBPF-based implementation and evaluation of
FINELAME on Linux.

Our evaluation shows that FINELAME requires low addi-
tional instrumentation overhead, requiring between 4-11%
additional overhead for instrumenting web applications rang-
ing from Apache, Node.js, and DeDOS [15]. Moreover, when
evaluated against real application-layer attacks such as Re-
DOS [5], Billion Laughs [3], and SlowLoris [46], FINELAME
is able to detect the presence of these attacks in near real-time
with high accuracy, based on the attack deviation from normal
behavior.
The rest of the paper is structured as follows: it first motivates
FINELAME’s goals by providing a brief overview of asym-
metric DoS attacks (§2); it then lays out our threat model and
assumptions (§3); it describes the FINELAME’s design and
its three component parts, (i) request mapping (§4.1), (ii) re-
source monitoring (§4.2), and (iii) anomaly detection (§4.3); it
next details several prototype implementations (§5) and evalu-
ates the FINELAME prototypes’ intrusiveness, overheads and
accuracy, using a combination of micro-benchmarks and real
applications (§6); finally, it compares with prior work (§7)
and concludes with a discussion of limitations and possible
directions for future research (§8).

2 Motivation

We begin by showing via an example server-side application
the operation of an ADoS attack, the limitations of current
detection mechanisms, and design goals for our system.

2.1 Background on ADoS Attacks
Fundamentally, asymmetric DoS attacks are attacks that lever-
age application-specific behaviors to cause disproportionate
harm to the system using comparatively low amount of at-
tacker resources. They can target any layer of the stack and

694 2019 USENIX Annual Technical Conference USENIX Association

any resource within the system. ADoS vulnerabilities are
widespread and often affect entire software ecosystems [41].
We detail a few of them below.

Regular-expression DoS (ReDoS) [12, 13, 51]. ReDoS at-
tacks target programs that use regular expressions. Attackers
craft patterns that result in worst-case asymptotic behavior of
a matching algorithm. An example pattern is (a+)+, which
does not match any string of the form a*X, but requires the
system to check 2N decomposition of the pattern to reach that
conclusion, where N is the length of the target string.

XML Bomb [3]. An XML bomb (or Billion-Laughs attack) is
a malicious XML document that contains layers of recursive
data definitions3, resulting in quadratic resource consump-
tion: a 10-line XML document can easily expand to a multi-
gigabyte memory representation and consume an inordinate
amount of CPU time and memory on the server. Fig. 1 illus-
trates the impact of XML bombs on the latency of requests
on a susceptible server. Under normal operation, a load of
500 legitimate requests per second are served in less than 10
milliseconds each; under a low-volume attack of 10 XML
bombs per second, the latency jumps up to more than two
seconds. An XML bomb affects any serialization format that
can encode references (e.g., YAML, but not JSON).

Improper (de-)serialization [47, 52, 53]. This class of at-
tacks encompasses those where malicious code can be in-
jected into running services. These vulnerabilities are, unfor-
tunately, common in practice, and they allow malicious users
to, for instance, inject a for (;;) {} loop to stall a process
indefinitely.

Event-handler Poisoning (EHP) [14]. Attacks like the pre-
ceding can be additionally amplified in an event-driven frame-
work. In event-handler poisoning, attackers exploit the block-
ing properties of event-driven frameworks so that, when a
request unfairly dominates the time spent by an event han-
dler, other clients are further blocked from proceeding. Any
slowdown, whether it is in the service itself or in its recursive
layers of third-party libraries can contribute to this head-of-
line blocking.

2.2 Design Goals
The attacks in the previous section highlight several goals that
drive FINELAME’s design (§4) and implementation (§5).

In-flight Detection. Actions often need to be taken while the
offending requests are “in the work”—for example, when a
single request can bring the system down (e.g., cooperative
scheduling) or when subsequent defenses cannot be deployed
(e.g., IP spoofing). DoS detection needs to catch such re-
quests before they leave the system, by monitoring resource
consumption at a very fine temporal and spatial granularity.

3 For example, the first layer consists of 10 elements of the second layer,
each of which consists of 10 elements of the third layer, and so on.

Resource Independence. ADoS attacks may target arbitrary
system-level resources (CPU, memory, storage, or network-
ing), and may even target multiple resources (i.e., multi-vector
attacks). A desirable solution needs to be agnostic to the re-
source and able to handle any instance of inordinate consump-
tion.

Cross-component Tracking. Given the complex structure of
modern applications, ADoS attacks can also cross the bound-
aries of the application’s internal components or processing
phases. For instance, if a request causes the triggering of a
timeout to an event queue, resources consumed by the initial
request parsing and the timeout should both be attributed to
the same request.

Language Independence. Applications today combine sev-
eral ready-made libraries, which are written in multiple pro-
gramming languages and often available only as compiled
binaries. Thus, DoS detection should remain agnostic to the
application details such as the programming language, lan-
guage runtime, and broader ecosystem (e.g., packages, mod-
ules).

Minimal Developer Effort. Detection needs to impose min-
imal burden to developers and devops, who should benefit
from DoS mitigation without having to study the application
internals. Rather than presenting developers with an overabun-
dance of configuration knobs, a DoS detection system should
direct precious human labor at sprinkling applications with
key semantic information utilized at runtime.

3 Threat Model

To be more concrete, FINELAME assumes the following about
the attacker and the broader environment.

Threats. We consider a powerful remote attacker that (i) can
send arbitrary requests to a service hosting a vulnerable appli-
cation, (ii) has control over potentially all of the application’s
legitimate clients, and (iii) is aware of the application’s struc-
ture and vulnerabilities, including exploits in its dependency
tree. We do not distinguish between legitimate and malicious
clients who intersperse harmful requests that attack resources
with one or more benign requests. Specifically, any subset of
hosts can send any number of requests that may or may not
attack any subset of resources. We do not limit resources of
interest to CPU; attackers can target memory, file descriptors,
or any other limited resource in the host system. That means
that attacks can take the form of a single client attempting to
consume 100% of the CPU indefinitely, or of multiple attacks
from multiple clients over many of the system’s resources.

Assumptions. We assume (i) vulnerable but not actively mali-
cious code, and (ii) that FINELAME sees at least some benign
traffic. If all traffic is malicious from the beginning, in-flight
detection and mitigation become less urgent, as anomalies
become the norm, and the application owners should first

USENIX Association 2019 USENIX Annual Technical Conference 695

revise their deployment pipeline. We also assume that the
resource utilization of request processing can be attributed
to a single request by the end of each processing phase, even
if the processing phases is split into multiple phases across
different application components. As keeping a reference to
the originating request is a natural design pattern, in all of the
services we tested, a unique identifier was already available;
in cases where there is no such identifier, one must be added,
and we detail how to do so in section 4.

4 FINELAME Design

Figure 2 depicts the overall design of FINELAME. Conceptu-
ally, FINELAME consists of three main components:

• Programmer annotations that mark when a request is
being processed. FINELAME requires only a few annota-
tions, even for complex applications, to properly attribute
resource utilization to requests.

• Fine-grained resource monitors that track the resource
utilization of in-flight requests at the granularity of con-
text switches, mallocs, page faults.

• A cross-layer anomaly detection model that learns the
legitimate behavior and detects attacks as soon as they
deviate from such behavior.

Programmers can use FINELAME by annotating their appli-
cation with what we call request-mappers. These annotations
delineate, for each component and processing phase, the start
and end of processing, as well as the request to which re-
source utilization should be attributed. For example, in an
event-driven framework, the beginning and the end of each
iteration of the event handler loop should be marked as the
start and the end of a request’s processing, respectively.

At runtime, when FINELAME is installed on the host
environment, FINELAME attaches small, low-overhead re-
source monitors to particular points in the application or
operating system. The aforementioned request-mappers en-
able FINELAME to determine the request to which the re-
source consumed by a thread or process should be credited.
In section 5, we detail our out-of-the-box FINELAME library
of request-mappers and resource monitors for several popu-
lar cloud frameworks. Our library tracks the utilization of a
range of key OS-level resources; however, programmers can
further extend it with user-level resource monitors to track
application-specific resources (e.g., the occupancy of a hash
table).

Finally, FINELAME’s monitoring data is used to perform
lightweight, inline anomaly detection. Resource monitors first
feed data to a machine learning model training framework
that computes a fingerprint of legitimate behavior. Parameters
of the trained model are installed directly into the resource

monitors, which evaluate an approximation of the model to au-
tomatically detect anomalous behavior on-the-fly. The end re-
sult of FINELAME is a system for high-accuracy, fine-grained,
and general ADoS attack detection.

4.1 Request-mapping in FINELAME

Conceptually, there are three operations in request mapping:

• startProcessing(): This annotation denotes the start
of a processing phase. Any resource utilization or allo-
cations after this point are attributed to a new unique
request.

• attributeRequest(reqId): As soon as we can de-
termine a unique and consistent request identifier, we
map the current processing phase to that request. For
instance, when reading packets from a queue, if the best
consistent identifier for a packet is its 5-tuple, resource
tracking would start as soon as the packet is dequeued,
but would only be attributed to a consistent request ID
after Layer-3 and Layer-4 processing are completed. In
general, attributeRequest(reqId) is called directly
after startProcessing(), and depending on the spe-
cific of the application, the two can sometimes be merged
(§ 5).

• endProcessing(): Finally, this operation denotes the
completion of processing, indicating that subsequent uti-
lization should not be attributed to the current request.

In order for the resource monitors to properly attribute
utilization to a request, FINELAME requires programmers
to annotate their applications using the above three request
mapping operations. Ideally, the annotations should cover as
much of the code base as possible; however, not all resource
utilization can be attributed to a single request. In such cases,
programmers have flexibility in how they perform mapping:
for true application overhead—rather than request process-
ing overhead—utilization can remain unattributed, and for
shared overhead (e.g., garbage collection), utilization can be
partitioned or otherwise assigned stochastically.

Every request is given an identifier that must be both unique
and consistent across application components and processing
phases. This identifier is used to maintain an internal mapping
between OS entity (process or thread) and the request. Exam-
ple identifiers include the address of the object representing
the request in the application, a request ID generated by some
application-level tracing solution [7, 20, 29, 34, 45, 49, 55],
or a location in memory if the request is only processed
once. From the moment a startProcessing annotation is
called to the moment the endProcessing annotation is called,
FINELAME will associate all the resources consumed by the
OS entity to the request.

An optimization of this technique can be implemented
when the application lends itself naturally to such mapping

696 2019 USENIX Annual Technical Conference USENIX Association

net

vm

sched

glibc/runtime

appJS .so C++ JS

training
Para-
meterization

Shared
state

&
Model

malloc

page_faults

Kernel space
tcp_*

cputime

req. lifetime
Model

Training

FineLame

S
ta
ck

Time

handle request
User space

Fig. 2: FINELAME overview. Key elements: (1, right) user and kernel data-collection probes at points where an HTTP request interacts with resource allocation;
(2, mid-left) a data structure shared between user and kernel space, that aggregates and arranges collected data; (3, left) a userspace training component that
instantiates model parameters, fed back to the probes. Information flow between 1–3 is bidirectional.

between OS entity and request. For instance, event-driven
frameworks or thread-pool based services usually have a sin-
gle or small number of entry points for the request, to which
FINELAME can readily attach request-mappers via eBPF with-
out source code modification. We found this optimization to
be the common case, and FINELAME does not require any
modification to the application we explore in section 6.

4.2 Resource Monitoring in FINELAME

Resource tracking between startProcessing and
endProcessing annotations are done via a recent Linux
kernel feature called eBPF. We first provide some background
on the operation of eBPF, and then discuss how we utilize
it to perform extremely fine-grained resource monitoring of
in-flight requests.

4.2.1 Background on eBPF

The original Berkeley Packet Filter (BPF) [35] has been a
long-time component of the Linux kernel networking subsys-
tem. It is a virtual machine interpreting a simple language
traditionally used for filtering data generated by kernel events.
Notable use cases are network packets parsing with Tcp-
dump [56] and filtering access to system calls in the seccomp
facility. In version 3.0 a just-in-time compiler was imple-
mented, allowing for a considerable speedup of the processing
of BPF programs by optimizing them on the fly.

In version 3.15, Alexei Starovoivtov significantly extended
BPF (dubbing the new system “eBPF”). The new version has
access to more registers and an instruction set mimicking a na-
tive RISC ISA, can call a restricted subset of kernel functions,
and can share data from kernel-space to user-space through
hash-like data structures. While eBPF is a low-level language,
users can write programs in higher languages such as C (and
even Python with the BCC project [2]) and generate eBPF
code with compilers such as GCC and LLVM.

Generated programs are verified before being accepted in
the kernel. The verifier imposes a set of strict constraints to
eBPF programs to guarantee the safety of the kernel. Common
constraints include the absence of floating point instructions,

a limit of 4096 instructions per program, a stack size capped
at 512 Bytes, no signed division, and the interdiction of back-
edges in the program’s control flow graph (i.e., no loops).

The ability of eBPF programs to be attached to both kernel
and user-space functions and events, their extremely low over-
head, and their ability to share data with user space without the
need for any IPC or queuing mechanism make eBPF a prime
candidate for implementing resource monitors in FINELAME.

4.2.2 Resource Monitor Architecture

FINELAME’s resource monitors are attached to various user-
and kernel-space data sources (e.g., the scheduler or TCP
stack) and use the mapping described in section 4.1 to as-
sociate resource consumption to application-level workflow
(e.g., HTTP requests). A resource monitor requires the follow-
ing information: the type and name of the data source, and
potentially the path of its binary.

Our current prototype of FINELAME uses the features listed
in Table 1. When executed, most resource monitors operate
under the following sequence of actions: i) verify whether a
request mapping is active for the current PID and exit if not;
ii) collect the metric of interest (usually through the arguments
of the function triggering it) and store it, time-stamped, in
a shared data structure; and iii) perform anomaly detection
on the request if the model’s parameters are available (see
section 4.3).

The time a request spends executing instructions on a pro-
cessor is represented by cputime. We instrument both the
scheduler_tick() and the finish_task_switch() kernel functions,
which are called at every timer interrupt and context switch,
respectively, to either start a timer when a thread execut-
ing a registered request is scheduled for execution or col-
lect the amount of CPU time consumed by the task swapped
out. We instrument the tcp_sendmsg() and tcp_rcleanbuf()
to collect tcp_sent and tcp_rcvd, the amounts of bytes sent
and read from a TCP connection, respectively. To compute
tcp_idle_time, which represents the period of inactivity from
the sender on a TCP connection, we measure the time elapsed
between two occurrences of tcp_cleanup_rbuf(). To monitor
the heap memory consumption occasioned by the processing

USENIX Association 2019 USENIX Annual Technical Conference 697

Name Description Event Type

tcp_idle_time Inactivity time on a TCP connection tcp_cleanup_rbuf kernel probe
tcp_sent Bytes sent through TCP connections tcp_sendmsg kernel probe
tcp_rcvd Bytes received through TCP connections tcp_cleanup_rbuf kernel probe
cputime Amount of CPU time consumed scheduler_tick, finish_task_switch kernel probe
malloc_memory Bytes allocated through the malloc function glibc_malloc user probe
page_faults Number of page faults events exceptions:page_fault_user kernel tracepoint

Tab. 1: Default resource monitors in FINELAME.

of a request, we monitor the glibc malloc function. Applica-
tions where memory management is partly handled by the
runtime (such as in Python) can be monitored in a similar
fashion. Likewise, the model can be generalized to garbage
collected languages. Finally, we monitor the page fault events
in the application by attaching a resource monitor to the ex-
ception: page_fault_user kernel tracepoint. We observed in
our evaluation that CPU time was the best discriminant for
CPU based attacks, while connection idle time the best for
slow attacks (such as Slowloris and RUDY).

The above default, general-purpose resource monitors in
FINELAME are sufficient for a large set of existing applica-
tions; however, it can be extended to all the kernel events
available for tracing and probing, as well as user-level func-
tions (to monitor application-level metrics). If any application-
level metrics are required (such as data structure occupancy,
counters, and so on), programmers can augment our resource
monitors with custom eBPF programs attached to arbitrary
probe points in either kernel- or user-space.

4.3 Attack Detection in FINELAME

Detection algorithm. For fast detection, FINELAME is de-
signed to enable anomaly detection as close as possible to
the resource allocation mechanism. Without a method for
in-flight anomaly detection in addition to mechanisms for
in-flight resource tracing, detection and mitigation of in-flight
requests would not be possible.

This detection problem can be reduced to quantizing the
abnormality of a vector in n-dimensional space. Once a suf-
ficient amount of data has been gathered to compute a fin-
gerprint of the legitimate requests’ behavior, we can train an
anomaly detection model. The model can span all the metrics
collected by the resource monitors, allowing us to detect abuse
on any of the resources of the system as well as cross-resource
(multi-vector) attacks.

For the unsupervised version of this problem, the most pop-
ular methods take one of two approaches: distance-based or
prediction-based. The former family of models aims to cluster
known, legitimate data points and compute the distance of
new data points to those clusters—distance that is used to
quantify the anomaly. The latter family assumes the existence
of a set of input data points that are correct, and learns a func-

Required
data

structures

Is there a
mapping?

Update
request
profile

If anomaly
detection

parameters
are available,

scale and
standardize
the data in

the FPA
space

Update
distance to

clusters

Perform
anomaly
detection

FPAS # FPA scaling factor
pid_to_rid # OS carrier to request
req_points # Request profiles
model_params # K-means parameters
dp_dists # Distances to centroids
thresholds # Alerts cut-off bar

fun resource_monitor(context):
pid = bpf_get_current_pid()
rid = pid_to_rid.get(pid)
if (rid):

ts = get_timestamp()
metric = context.get_arguments()
dp = req_points.get(rid)
if (dp):

dp.update(metric , ts)
else:

dp = init_dp(rid, metric , ts)
req_points.insert(dp)

µ, σ = model_params.get()
if (µ && σ):

metric_scaled = metric << FPAS
metric_scaled -= µ
if metric_scaled < 0:

metric_scaled *= -1
metric_scaled /= σ

metric_scaled *= -1
else:

metric_scaled /= σ

min_dist , closest_k
#pragma loop unroll
for k in K:

current_dist =
dp_dists.get(dp, k)

new_dist =
metric_scaled+current_dist

dp_dists.update(dp, new_dist)
if (new_dist < min_dist):

min_dist = new_dist
closest_k = k

t = thresholds.get(closest_k)
if new_dist > t:

report(rid, dp, s)

Fig. 3: FINELAME anomaly detection. Pseudocode for FINELAME’s inline
anomaly detection.

tion representing those points. When a new point enters the
system, the model computes the value of the learned function;
the prediction error is then used to quantify the degree of

698 2019 USENIX Annual Technical Conference USENIX Association

anomaly.
Because of the training complexity, prediction complexity,

and required training data, many existing solutions in both
distance-based and prediction-based categories are imprac-
tical to execute at fine granularity. For instance, the popular
algorithm DBSCAN [18] is not suitable for FINELAME, as it
requires us to evaluate the distance of new data points to all
the possible “core” data points in the model. The amount of
data points considered (and therefore the size of the model)
is usually linearly proportional to the size of the training set.
Some accurate approximations of DBSCAN have been pro-
posed [22], but even with a small number of clusters, almost
all of the training dataset still needs to be part of the model.
Likewise, the performance of prediction-based models made
on neural networks, such as Kitsune [38], is highly dependent
on the depth and width of the model. The amount of parame-
ters of such networks grows exponentially with the number
and size of the hidden layers.

Given the above concerns, we chose to implement anomaly
detection in FINELAME with K-means, a technique that al-
lows us to summarize the fingerprint of legitimate requests
with a small amount of data. In K-means, the objective func-
tion seeks to minimize the distance between points in each
cluster. The model parameters are then the centroids and dis-
tribution of the trained clusters. In a typical use-case scenario,
FINELAME is configured to perform only request monitoring
for a certain amount of time, after which it trains k-means on
the monitoring data gathered in user-space from the resource
monitors shared maps. In practice, we found that a K value
equal to the number of request types in the application yields
a reasonable estimation of the different behaviors adopted by
legitimate requests, while being a number low enough such
as to contain FINELAME’s overhead.
Model training and deployment. Gathering the training
data is done by a simple look-up from the user-space agent
to the shared eBPF maps holding the requests resource con-
sumption data. Using those profiles, the user-space agent
standardizes the data (center to 0 and cast to unit standard
deviation). Subsequently, the agent trains K-means to gener-
ate a set of centroids representing the fingerprint of the good
traffic. The parameters of the model, to be shared with the
performance monitors, are then the cluster centroids, as well
as the mean µ and standard deviation σ of each feature in the
dataset, and a threshold value τ statistically determined for
each cluster.

As described above, the performance monitors have lim-
ited computing abilities and do not have access to floating
point instructions. Thus, they are designed to perform fixed
point arithmetic in a configurable shifted space, and require
FINELAME’s to shift the model parameters in this space be-
fore sharing them. Using two precision parameters a and b,
each datapoint is transposed in a higher space 10a, and normal-
ized such that the resulting value lies in an intermediate space
10a−b, retaining a precision of a−b digits. This means that

Application Request mapping probes SLOC

Apache 5 41
Node.js 9 64
DeDoS 2 21

Tab. 2: Intrusiveness of FINELAME, quantified.

during the normalization operation each parameter value x un-
dergoes the following transformation: x = (x ∗ 10a)− (µ ∗ 10a)

σ ∗ 10b .
Once standardized, the clusters’ centroids as well as each

feature’s mean and standard deviation are shared with the
resource monitors through eBPF maps. Upon availability
of those parameters, the resource monitors update not only
the resource consumption of existing requests, but also their
outlier scores, a measure we use to quantify the degree of
anomaly of a request. Due to the constraints imposed on eBPF
programs—specifically, taking a square root is complex as
we do not have access to loops—we choose the normalized
L1 distance to the closest cluster as the outlier score. While
being a crude measure, the L1 is equivalent to more complex
norms as resource vectors are of finite dimension. It preserves
information about which resource is abused, and it lets us
set statistical thresholds to determine cut-off points used for
flagging abnormal requests. The algorithm for this entire
process is shown in Figure 3.

Finally, we note that because FINELAME is primarily de-
signed toward the detection of resource exhaustion attacks,
we allow the anomaly detection engine to maintain signed
values for outlier scores. This means that requests that have
not reached their expected legitimate amounts of resource con-
sumption, and that would look abnormal in an absolute value
setting, are not flagged as such. This is important because
it highlights the fact that FINELAME is not geared toward
volumetric attacks that aim to bring the system down with a
vast amount of low consumption requests.

5 Use Cases and Implementation

To demonstrate the generality of FINELAME and the mini-
mal developer effort required to use it, we apply FINELAME
to three web platforms: Apache [1], which is estimated to
serve ∼40% of all active webpages; Node.js [4] a popular
server-side JavaScript-based web server; and DeDoS [15]
an open source component-based framework for building
web services. Our prototype of FINELAME is available on
https://github.com/maxdml/Finelame. Table 2 quanti-
fies the programming effort required to write request-mappers
for those three applications to use FINELAME.

Apache web server. Primarily written in C, Apache’s re-
quest processing is implemented by Multi-Processing Mod-
ules (MPM). In the latest versions of Apache (2.x), requests
are served by multiple processes which can have multiple

USENIX Association 2019 USENIX Annual Technical Conference 699

https://github.com/maxdml/Finelame

worker threads themselves; each thread handles one connec-
tion at a time.

When a request enters the system, an application-level
(conn) object is created by the core_create_conn func-
tion to contain it before the request is dispatched to
a worker thread. Subsequently, the request is processed
by either the ap_process_http_sync_connection or the
ap_process_http_async_connection functions, which
take the conn object as argument. From FINELAME, we
attach one request-mapper to core_create_conn, and two
requests-mappers to the http processing functions, one over
a uprobe called upon entering the function, the other over a
uretprobe called when returning from it. We exploit the conn
object to generate a unique identifier for each request and map
it to the underlying thread worker, so that resource monitors
can later gather resource consumption data on the request’s
behalf. The mapping is undone when the function returns and
the request exits the system. When a worker thread executes
a new request, the request-mapper updates the mapping with
the new request’s ID. This solution requires no modification
to the Apache source code, and 41 lines of eBPF code over 5
probes.

Node.js required more slightly more instrumentation due to
its asynchronous model, which offloads work to a worker
pool (implemented with libuv [30]). The instrumentation re-
quired eBPF probes to be attached to seven user-space func-
tions within the libuv library. As in Apache, we found a data
structure—struct uv_stream_t—that could (i) be used to
generate a unique identifier, and (ii) was carried consistently
across the disparate components of the framework.

Request-mappers were applied to the seven libuv functions
as follows:

• uv_accept: a new request is initialized, and is associ-
ated with the uv_stream_t structure that handled com-
munication with the client.

• uv__read and uv__write: the request associated with
the client’s stream is assigned to the current thread for
the duration of the function.

• uv__work_submit: the request assigned to the current
thread is associated with a work-request submitted to the
worker pool.

• uv__fs_work, and uv__fs_done: the request associ-
ated with the work-request is assigned to the current
(worker) thread.

• uv_async_send: the request is unassigned from the cur-
rent thread.

Again, this solution requires no changes in Node.js source
code, only knowledge of which functions are processing re-
quests. The request-mappers totalized 64 lines of eBPF code.

DeDoS is an event-driven framework where programmers
write and deploy their application as software components
that are automatically allocated and deallocated based on
demand. Each of those components monitor a local event-
queue from which new requests are consumed. Unifying the
disparate components is a generic event-handling function
(receive()). Programmers implement their component’s
functionality inside this event-handling function.

DeDOS provides request tracing and explicitly tracks the
passing of requests between components. We chose DeDoS
as a proof-of-concept proxy for micro-service, event-driven
applications providing request tracing capability. In these
types of applications, annotation is simple as FINELAME
can maintain a direct mapping between the application-level
unique request identifier and the event handler’s thread PID
in order to track resource consumption across component
boundaries. FINELAME traces only the receive() function
class with request mappers, and does not require modifications
to the framework. The request-mappers require 21 lines of
eBPF code.

6 Evaluation

In this section, we present our evaluation results of
FINELAME. Our evaluation is centered around the follow-
ing aspects of the system:

• Overhead. The overhead of FINELAME compared to no
monitoring, or in-application instrumentation

• Accuracy. The ability of FINELAME to accurately detect
real attacks never seen yet by the application

6.1 Experimental setup
We present the setup on which we evaluate both the overhead
and accuracy aspects of FINELAME. In all cases, the server
applications are running on a 12 cores Xeon Silver 4114 at
2.20GHz , while our legitimate and attack clients are running
on an Intel Xeon E5-2630L v3 at 1.80GHz. Both server and
client machines have a total of 62G of RAM, and have hyper-
threading and DVFS disabled.

We use version 2.4.38 of Apache, and configure it to use
50 worker threads. We use version 12.0.0− pre of Node.js
with the default configuration of 4 worker threads for libuv.
Both Apache and Node.js are configured to serve a set of
Wikipedia [59] pages. Node.js parses a regular expression pro-
vided in the request’s URI to find the path of the file to serve.
It’s parser, liburi, is vulnerable to the ReDoS attack. All the
applications impose a timeout of 20 seconds on connections.
We deploy a simple webserver in DeDoS which can process
three types of requests: serve a Wikipedia article, process a
randomly generated XML file uploaded in a POST request,
and parse a regular expression. The server is decomposed into

700 2019 USENIX Annual Technical Conference USENIX Association

several software components: socket reading, HTTP parsing,
file serving, XML parsing, regular expression parsing, and re-
sponse writing. The XML parser is implemented with libxml2,
which is vulnerable to the Billion Laughs attack.

Our good traffic is generated by Tsung [6] and explores
evenly all the servers’ exposed endpoints; bad traffic is gener-
ated by an in-house C client for the ReDoS and Billion Laughs
attacks, and pylorys [23] for the Slowloris attack. Tsung gen-
erates load under an exponential distribution centered on a
configurable mean, while our attack client is configured to
send a fixed load.

6.2 Overhead of FINELAME

Figures 4 presents the overheads incurred by FINELAME’s
instrumentation on Apache, Node.js and DeDoS. In all of
our experimental setups, we evaluate the legitimate client
latency experienced when the server is not instrumented, when
it is instrumented by FINELAME, and when FINELAME’s
resource monitors are also performing anomaly detection
(FINELAME +). The load is as described earlier in sec 6.1, and
explore all the instrumented paths in the applications. We also
evaluate the cost of instrumenting the DeDoS framework itself
to evaluate FINELAME overheads compared to a traditional
user-space solution. The bars plot the median of the clients
latency, and all our experiments are run thrice for a period
of 100 seconds. In the case of Node.js the instrumentation
cost adds 8.55% overheads and adding anomaly detection
9.21%. In the case of Apache, FINELAME adds 11.38% and
11.72% overheads respectively. In the case of DeDoS, the
baseline latency is higher than with the two previous services,
due to the fact that the application is not only serving files
but also parsing POST requests, and also the framework is
less optimized than the two battle-tested Apache and Node.js.
Instrumenting directly the framework comes with an overhead
of 2.9%, while FINELAME comes with 4.23% overheads,
6.3% if also performing anomaly detection.

In general we observe that the overheads incurred by
FINELAME are higher when the baseline processing time
of the service is low, and does not grow linearly with the
complexity of the application. In addition, we found that per-
forming anomaly detection in addition to monitoring resource
consumption almost comes for free.

6.3 Performance of FINELAME

https://www.overleaf.com/project/5c22751775031d099f528e64
Our performance evaluation of FINELAME is centered
around its ability to detect attacks requests before they exit
the system, while providing accuracy competitive with
non-approximated user-level algorithms.

6.3.1 Attacks

Our experiments aim to quantify the impact of attacks on qual-
ity of service. Consequently, we tune attacks strength such
that they will not bring down the server but rather degrade the
quality of service provided to legitimate users.

ReDoS: This attack consist of specially crafted regular ex-
pressions which are sent to the server for processing. The
strength of the attack grows exponentially with the number of
malicious characters present in the expression. Because the
application processing units are busy handling those requests,
legitimate requests get queued for a longer period of time, and
ends-up being responded to more slowly.

Billion Laughs: The attack consists of XML files filled with
several levels of nested entities. The parsing cost is exponen-
tially proportional to the depth of the document. The impact
is similar to the ReDoS attack.

SlowLoris: The attack consists in maintaining open connec-
tions to the server, keeping them alive by sending individual
HTTP headers at a regular interval smaller than the server’s
timeout, but never completing the request—we assume that
the attacker is able to probe the service and discover this time-
out. As a result, the server’s connection pool gets exhausted,
and it can’t answer new requests. This technique can also
implement a dormant attack which cripples the ability of the
server to handle surges of legitimate traffic, by denying a
fraction of the total connection pool.

6.3.2 Anomaly Detection Performance

Evaluation metrics As is common with anomaly detectors,
the output of FINELAME is a score which quantifies the ab-
normality of a request. This score is then either used as a
raw metric for mitigation algorithms, or compared against a
threshold τ to be transformed into a binary variable where 0
means negative (no anomaly), and 1 means positive (attack).
With τ set, and using our knowledge of the ground truth, we
can determine the accuracy of each of the detector’s outputs
as true/false positive/negative. The choice of τ is crucial, as
too low a value can result in a large amount of false positive,
while too high a value can induce a large amount of false
negative. For our experiments, we set τ to be the outermost
point for each cluster in the training set, i.e., the most consum-
ing legitimate request we’ve seen so far for the cluster. The
challenge associated with deriving a large τ from the train-
ing traffic is that attacks can now take longer to detect—and
might not be detected at all if they are too weak. This latter
case does not concern us, because to bring down the system
with weaker attacks, an attacker would be forced to change
its method from asymmetric to volumetric. The benefit of a
higher τ is that it helps decreasing the False Positive Rate
(FPR, FP

FP+T N), a desirable behavior for operators using the
system. For our experiments, we present the True Positive

USENIX Association 2019 USENIX Annual Technical Conference 701

(a) FINELAME overheads with DeDoS (b) FINELAME overheads with Apache (c) FINELAME overheads with Node.js

Fig. 4: Overhead of FINELAME with various applications

Rate (TPR, T P
T P+FN), True Negative Rate (TNR, T N

T N+FP) and
F1 (2T P

2T P+FP+FN). TPR evaluates the system’s ability to detect
all the attack requests. TNR evaluates its ability to evaluate
legitimate requests as such. The F1 score is the harmonic
mean of the TPR and the recall. It evaluates both the TPR and
the precision of the system.

In addition to its post-hoc instrumentation abilities and low
programmer burden, the main contribution of FINELAME is
it’s detection pace. We evaluate the Detection Speedup (DS)
of the system, which we define as being the delta between
the time of last detection and the time to first detection, over
the lifetime of the request. We expect DS to increase as users
set more strict thresholds (lower values of τ), but found that
even with τ set to the outermost point in each training cluster,
FINELAME is able to detect attacks up to more than 97%
faster.

Experiments All our experiments are run for a duration of
400 seconds, split into 3 phases. The first phase sees only
legitimate traffic flowing through our target applications, and
last 200 seconds. FINELAME is configured to only have the
performance monitors gather data for the first 180 seconds,
after which point it triggers the training of the anomaly de-
tection model and share its parameters. Attacks start at time
200, and last for 150 seconds. A final period of 50 seconds
sees the attack stop, and only good traffic is sent to the ap-
plication. We perform two CPU exhaustion attacks, Billion
Laughs and ReDoS, as well as a connection pool exhaustion
attack, SlowLoris. For all experiments, we compare the TPR
and TNR of FINELAME to a non approximated user-space
implementation of K-means (that is, with floating point arith-
metic) to confirm that the system is competitive with more
complex user space solutions. We set K = 3, the maximum
number of request types that the application we setup can
accept, and use a = 10 and b = 6 factor to retain 4 digits in
fixed point arithmetic.

Table 3 presents the detection speed and performance of
FINELAME.

ReDoS: In our first experiment, we attack Node.js with three

strengths of ReDoS requests. In the two first experiments,
the workload is made of 98% of benign requests and 2% of
malicious regular expressions blocking the event loop of the
server (about 500 and 10 r/s, respectively). In the third ex-
periment, with the strongest attack, we reduce the attack rate
to 1 r/s, such that the attack does not bring down the server.
Legitimate requests are served in about 0.8ms on average
under normal conditions, but get delayed in proportion of the
intensity of the ReDoS requests when the attack starts. During
the first attack, bad requests are served in 23ms on average, a
28.75× increase compared to normal requests. Good requests
are also penalized and are served in about 4ms. During the
second attack, bad requests are served in 45.6ms on average,
a 57× increase compared to normal requests. Legitimate re-
quests are affected and incur an average latency of 13.5ms.
During the third attack, bad requests are served in 90.9ms
on average, a 113.6× increase. Legitimate requests incur an
average latency of 6ms. Due to its ability to credit requests’ re-
source consumption at the granularity of context switches, in
both experiments, FINELAME is able to detect attack requests
before they exist the system, at least 80.9% earlier for 50%
of the bad traffic, and up to 95.3% earlier. The user-space,
non-approximated evaluation of k-means using the L2 norm
for measuring distances, perform only marginally better.

Billion Laughs: In this experiment, we attack DeDoS with
two different strengths of Billion Laughs (XML bomb) re-
quests. The good traffic follows a diurnal pattern, oscillating
between 250 and 750 requests per second. Under normal con-
ditions, legitimate requests are served in 6.87ms on average.
In the first experiment, we send 15 malicious requests per
seconds (about 2% of the peak legitimate traffic, and 6% of
the lower phase), which are served in 29.28ms on average, a
4.26× increase in response time. In the second experiment,
we decrease the number of bad requests to one per second
(about 0.1% and 0.4% of the peak and low traffic, respec-
tively), and increase their intensity such that they are served
in 203ms in average (an order of magnitude increase com-
pared to the first case), which represents a 29.55× increase

702 2019 USENIX Annual Technical Conference USENIX Association

Attack Strength TPR TNR F1 DS

FL K-means L2 FL K-means L2 FL K-means L2 median 75th max

ReDoS
28.7× 100% 100% 99.995% 99.999% 99.88% 99.98% 80.9% 81.2% 83.2%
57× 100% 100% 99.993% 99.994% 99.81% 99.83% 90.4% 90.5% 91.0%
113.7× 100% 100% 99.997% 99.999% 99.29% 99.76% 90.9% 95.1% 95.3%

Billion Laughs
4.7× 100% 100% 100% 100% 100% 100% 83.1% 85.5% 87.7%
34.8× 100% 100% 99.998% 99.998% 99.53% 99.76% 97.0% 97.1% 98.2%

SlowLoris 5 sockets 100% 100% 100% 100% 100% 100% 75% n/a n/a

Tab. 3: FINELAME TPR, and detection Speedup for Apache, Node.js and DeDoS.

in load compared to legitimate requests in normal conditions.
For the weaker attack, FINELAME is able to detect malicious
requests 78.83% faster than the user-space solution, at least
50% of the time, and up to and 97% faster for the strongest
attack.

SlowLoris: In this experiment, we configure Apache to han-
dle requests with 25 worker threads, and timeout on read-
ing HTTP headers after 20 seconds. We configure the attack
client to maintain 5 connections to the server opened at all
times, refreshing it every 5 seconds. Effectively, this drives
the tcp_idle_time of the malicious request high and makes
them standout from the legitimate ones. This attack is “all or
nothing”, in the sense that it will not impact the legitimate re-
quests until the connection pool gets exhausted. FINELAME’s
is able to detect the abnormal idle time about 75% faster than
the application (1− 5

20 ∗100), which would have otherwise to
experience the timeout before reporting the request.

7 Related Work

Volumetric Attack Detection There is a large body of work
addressing volumetric DoS attacks [10, 26, 31, 40, 60–62],
including attacks that target the network [27, 28, 54]. As de-
scribed earlier (§1), these systems do not protect against asym-
metric DoS attacks, a concern shared by both industry [32,50]
and academia [13, 14, 51].

Application-based Detection Prior works on application-
layer DoS detection either depend heavily on repeated outliers,
or are often deeply tied to a specific application. Techniques
include comparing the entropy of offending and legitimate
traffic [39, 63], sampling traffic flows [25], and sketch-based
feature-dimensionality reduction [58]. While these techniques
work well for volumetric attacks, they have self-assumed lim-
itations when the attack traffic is low—the primary focus of
this paper.

DSHIELD [44] is a system that assigns “suspicion scores”
to user sessions based on their distance from legitimate ses-
sion. While similar in nature to FINELAME’s anomaly detec-
tion technique, it relies on the operator knowing all the possi-
ble classes of requests that the server can process. FINELAME

anomaly detection engine learns on legitimate requests so that
it does not depend on a priori knowledge of execution paths
or vulnerabilities.

BreakApp [57] is a module-level compartmentalization
system that attempts to defend against DoS attacks, among
other threats stemming from third-party modules. While
BreakApp’s capabilities increase with more and smaller mod-
ules, FINELAME works even with monolithic applications
entirely developed as a single module. BreakApp’s mitigation
uses simple queue metrics (i.e., queue length at the module
boundary vs. replica budget), whose cut-off parameters are
statically provided by the programmer; FINELAME uses a
more advanced learning model, which parameters are adjusted
at runtime.

Rampart [36] focuses on asymmetric application-level CPU
attacks in the context of PHP. It estimates the distribution of
a PHP application function’s CPU consumption, and peri-
odically evaluates running requests to assess the likelihood
they are malicious. It then builds filters to probabilistically
drop offenders—repeated offenders increase their probability
of being filtered out. While FINELAME profiles legitimate
requests resource consumption, it is not limited to CPU-based
attacks. It also works with applications with components built
with many different languages.

In-kernel Detection Recent work has shown good results
for mitigating ADoS attacks by exploiting low level system
metrics. Radmin [16] and its successor Cogo [17] train Proba-
bilistic Finite Automatas (PFAs) offline for each resource of a
process they want to monitor, then perform anomaly detection
by evaluating how likely the process’ transition in the resource
space is. Training the PFAs requires days in Radmin, and min-
utes in Cogo, while FINELAME can train accurate models in
seconds or hundreds of microseconds. We expect this capabil-
ity to be helpful in production systems where the model has
to be updated, e.g., to account for changes in an application’s
component. In addition, Cogo reports detection time in the or-
der of seconds, while FINELAME’s inline detection operates
at the scale of the request’s complexity—milliseconds in our
experiments. Lastly, Radmin/Cogo operate at the granularity
of processes/connections. FINELAME assumes a worst-case
threat model where malicious requests are sent sporadically

USENIX Association 2019 USENIX Annual Technical Conference 703

by compromised clients, and thus operate at this granularity.
Per-request detection has the added benefit to enable pre-
cise root cause analysis, further enhancing the practicality of
FINELAME.

Programmer Annotations Prior work proposes an annota-
tion toolkit that programmers can use in their code to specify
resource consumption requirements [42]. The framework de-
tects connections that violate the provided specification (and
then attempts to mitigate by rate limiting or dropping them).
Unfortunately, it requires knowledge of the application in-
ternals. Worse even, it expects developers to understand the
program’s expected resource consumption quite accurately.
Moreover, such a hard cut does not distinguish between oc-
casional consumption that is slightly above limits and true
attackers.

Prevention-as-a-Service A recent vein of work proposed “At-
tack prevention as a Service”, where security appliances are
automatically provisioned at strategic locations in the net-
work [19, 37]. Those techniques are largely dependent on
attack detection (to which they do not provide a solution), and
thus are orthogonal to our platform, which operates directly
at the victim’s endpoint.

Performance anomaly detection ADoS attacks are a sub-
set of the broader topic of performance degradation, a topic
that has been extensively studied. Magpie [9] instruments
an application to collect events from the entire stack and
obtain request profiles post-mortem. X-trace [21] is a trac-
ing framework that preserves causal relationship between
events, and allow the offline reconstruction of request trees.
X-ray [8] builds on taint-tracking to provide record and replay
system to summarize the performance of application events
offline. One of FINELAME’s key difference with those sys-
tems is its lightweight in-flight profiling technique, which
allows us to perform anomaly detection while the request is
still in the system. Retro [33] provides a tracing architecture
for multi-tenant systems that enables the implementation of
resource management policies. While its architecture is simi-
lar to FINELAME’s, its focus is on performance degradation
caused by competing workloads, rather than the detection of
degradation within a single application.

While the impact can be similar, we note that for ADoS
attacks, in-flight request tracking is critical to timely detection
and mitigation.

8 Conclusion

In this paper, we describe and evaluate FINELAME, a
novel fine-grained application-level DoS detection frame-
work. FINELAME is designed for interaction with modern
distributed applications, operates orders of magnitude faster
than previous techniques, and is able to detect yet-unseen
attacks on an application. FINELAME is enabled by recent
advances in the Linux kernel, and bridges the gap between

application-layer semantic and low-level resource allocation
sub-systems. It is a first step toward deploying complex ma-
chine learning applications for fine grained services, in an era
where the size of services is shrinking (micro/pico-services).

9 Acknowledgments

We would like to thank our shepherd, Mike Reiter, and the
anonymous ATC reviewers for their useful feedback. This
material is based upon work supported in parts by the De-
fense Advanced Research Projects Agency (DARPA) under
Contracts No. HR0011-16-C-0056 and No. HR001117C0047,
and NSF grants CNS-1513687, CNS-1513679, CNS-1563873,
CNS-1703936 and CNS-1750158. Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of DARPA or NSF.

References

[1] Apache HTTP server project. https://httpd.
apache.org/.

[2] bcc on GitHub. https://github.com/iovisor/bcc.

[3] Common vulnerabilities and exposures (see cve-2003-
1564). http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2003-1564.

[4] Node.js server project. https://nodejs.org/en/.

[5] Regular expression denial of service - ReDoS.
https://www.owasp.org/index.php/Regular_
expression_Denial_of_Service_-_ReDoS.

[6] Tsung. http://tsung.erlang-projects.org/.

[7] OpenTracing API. Consistent, expressive, vendor-
neutral apis for distributed tracing and context prop-
agation.

[8] Mona Attariyan, Michael Chow, and Jason Flinn. X-
ray: Automating root-cause diagnosis of performance
anomalies in production software. In Proceedings of
the 10th USENIX Conference on Operating Systems
Design and Implementation, OSDI’12, pages 307–320,
Berkeley, CA, USA, 2012. USENIX Association.

[9] Paul Barham, Rebecca Isaacs, Richard Mortier, and
Dushyanth Narayanan. Magpie: Online modelling and
performance-aware systems. In Proceedings of the 9th
Conference on Hot Topics in Operating Systems - Vol-
ume 9, HOTOS’03, pages 15–15, Berkeley, CA, USA,
2003. USENIX Association.

704 2019 USENIX Annual Technical Conference USENIX Association

https://httpd.apache.org/
https://httpd.apache.org/
https://github.com/iovisor/bcc
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1564
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1564
https://nodejs.org/en/
https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS
https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS
http://tsung.erlang-projects.org/

[10] Cristina Basescu, Raphael M Reischuk, Pawel Szala-
chowski, Adrian Perrig, Yao Zhang, Hsu-Chun Hsiao,
Ayumu Kubota, and Jumpei Urakawa. Sibra: Scalable in-
ternet bandwidth reservation architecture. arXiv preprint
arXiv:1510.02696, 2015.

[11] Ang Chen, Akshay Sriraman, Tavish Vaidya, Yuankai
Zhang, Andreas Haeberlen, Boon Thau Loo, Linh
Thi Xuan Phan, Micah Sherr, Clay Shields, and Wen-
chao Zhou. Dispersing asymmetric ddos attacks with
splitstack. In Proceedings of the 15th ACM Workshop
on Hot Topics in Networks, HotNets ’16, pages 197–203,
New York, NY, USA, 2016. ACM.

[12] Scott A. Crosby and Dan S. Wallach. Denial of service
via algorithmic complexity attacks. In Proceedings of
the 12th Conference on USENIX Security Symposium -
Volume 12, SSYM’03, pages 3–3, Berkeley, CA, USA,
2003. USENIX Association.

[13] James C. Davis, Christy A. Coghlan, Francisco Servant,
and Dongyoon Lee. The impact of regular expression
denial of service (redos) in practice: An empirical study
at the ecosystem scale. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2018, pages 246–256,
New York, NY, USA, 2018. ACM.

[14] James C. Davis, Eric R. Williamson, and Dongyoon
Lee. A sense of time for javascript and node.js: First-
class timeouts as a cure for event handler poisoning. In
Proceedings of the 27th USENIX Conference on Secu-
rity Symposium, SEC’18, pages 343–359, Berkeley, CA,
USA, 2018. USENIX Association.

[15] Henri Maxime Demoulin, Tavish Vaidya, Isaac Pedisich,
Bob DiMaiolo, Jingyu Qian, Chirag Shah, Yuankai
Zhang, Ang Chen, Andreas Haeberlen, Boon Thau Loo,
Linh Thi Xuan Phan, Micah Sherr, Clay Shields, and
Wenchao Zhou. Dedos: Defusing dos with dispersion
oriented software. In Proceedings of the 34th Annual
Computer Security Applications Conference, ACSAC
’18, pages 712–722, New York, NY, USA, 2018. ACM.

[16] Mohamed Elsabagh, Daniel Barbará, Dan Fleck, and An-
gelos Stavrou. Radmin: Early detection of application-
level resource exhaustion and starvation attacks. In
Proceedings of the 18th International Symposium on
Research in Attacks, Intrusions, and Defenses - Volume
9404, RAID 2015, pages 515–537, New York, NY, USA,
2015. Springer-Verlag New York, Inc.

[17] Mohamed Elsabagh, Dan Fleck, Angelos Stavrou,
Michael Kaplan, and Thomas Bowen. Practical and ac-
curate runtime application protection against dos attacks.

In International Symposium on Research in Attacks, In-
trusions, and Defenses, pages 450–471. Springer, 2017.

[18] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xi-
aowei Xu. A density-based algorithm for discovering
clusters a density-based algorithm for discovering clus-
ters in large spatial databases with noise. In Proceedings
of the Second International Conference on Knowledge
Discovery and Data Mining, KDD’96, pages 226–231.
AAAI Press, 1996.

[19] Seyed K. Fayaz, Yoshiaki Tobioka, Vyas Sekar, and
Michael Bailey. Bohatei: Flexible and elastic ddos de-
fense. In Proceedings of the 24th USENIX Conference
on Security Symposium, SEC’15, pages 817–832, Berke-
ley, CA, USA, 2015. USENIX Association.

[20] Rodrigo Fonseca, George Porter, Randy H Katz, Scott
Shenker, and Ion Stoica. X-trace: A pervasive network
tracing framework. In Proceedings of the 4th USENIX
conference on Networked systems design & implemen-
tation, pages 20–20. USENIX Association, 2007.

[21] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott
Shenker, and Ion Stoica. X-trace: A pervasive network
tracing framework. In Proceedings of the 4th USENIX
Conference on Networked Systems Design & Imple-
mentation, NSDI’07, pages 20–20, Berkeley, CA, USA,
2007. USENIX Association.

[22] Junhao Gan and Yufei Tao. Dbscan revisited: Mis-claim,
un-fixability, and approximation. In Proceedings of
the 2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’15, pages 519–530,
New York, NY, USA, 2015. ACM.

[23] Gkbrk. SlowLoris attack tool. https://github.com/
gkbrk/slowloris.

[24] Dan Goodin. US service provider survives the biggest
recorded ddos in history, 2018.

[25] Hossein Hadian Jazi, Hugo Gonzalez, Natalia
Stakhanova, and Ali A. Ghorbani. Detecting http-based
application layer dos attacks on web servers in the
presence of sampling. Comput. Netw., 121(C):25–36,
July 2017.

[26] Srikanth Kandula, Dina Katabi, Matthias Jacob, and
Arthur Berger. Botz-4-sale: Surviving organized ddos
attacks that mimic flash crowds. In Proceedings of the
2Nd Conference on Symposium on Networked Systems
Design & Implementation - Volume 2, NSDI’05, pages
287–300, Berkeley, CA, USA, 2005. USENIX Associa-
tion.

USENIX Association 2019 USENIX Annual Technical Conference 705

https://github.com/gkbrk/slowloris
https://github.com/gkbrk/slowloris

[27] Min Suk Kang and Virgil D. Gligor. Routing bottlenecks
in the internet: Causes, exploits, and countermeasures.
In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’14,
pages 321–333, New York, NY, USA, 2014. ACM.

[28] Min Suk Kang, Soo Bum Lee, and Virgil D. Gligor. The
crossfire attack. In Proceedings of the 2013 IEEE Sym-
posium on Security and Privacy, SP ’13, pages 127–141,
Washington, DC, USA, 2013. IEEE Computer Society.

[29] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Ker-
sten, Jeffrey Palm, and William G. Griswold. An
overview of aspectj. In Proceedings of the 15th Eu-
ropean Conference on Object-Oriented Programming,
ECOOP ’01, pages 327–353, London, UK, UK, 2001.
Springer-Verlag.

[30] libuv. A multi-platform support library with a focus on
asynchronous i/o.

[31] Xin Liu, Xiaowei Yang, and Yong Xia. Netfence: pre-
venting internet denial of service from inside out. SIG-
COMM Comput. Commun. Rev., 41(4):–, August 2010.

[32] SS Jeremy Long. Owasp dependency check, 2015. Ac-
cessed: 2017-06-11.

[33] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and
Madanlal Musuvathi. Retro: Targeted resource manage-
ment in multi-tenant distributed systems. In Proceedings
of the 12th USENIX Conference on Networked Systems
Design and Implementation, NSDI’15, pages 589–603,
Berkeley, CA, USA, 2015. USENIX Association.

[34] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca.
Pivot tracing: Dynamic causal monitoring for distributed
systems. ACM Trans. Comput. Syst., 35(4):11:1–11:28,
December 2018.

[35] Steven McCanne and Van Jacobson. The bsd packet
filter: A new architecture for user-level packet capture.
In Proceedings of the USENIX Winter 1993 Conference
Proceedings on USENIX Winter 1993 Conference Pro-
ceedings, USENIX’93, pages 2–2, Berkeley, CA, USA,
1993. USENIX Association.

[36] Wei Meng, Chenxiong Qian, Shuang Hao, Kevin Bor-
golte, Giovanni Vigna, Christopher Kruegel, and Wenke
Lee. Rampart: Protecting web applications from cpu-
exhaustion denial-of-service attacks. In Proceedings of
the 27th USENIX Conference on Security Symposium,
SEC’18, pages 393–410, Berkeley, CA, USA, 2018.
USENIX Association.

[37] Rui Miao, Minlan Yu, and Navendu Jain. Nimbus:
Cloud-scale attack detection and mitigation. SIGCOMM
Comput. Commun. Rev., 44(4):121–122, August 2014.

[38] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and
Asaf Shabtai. Kitsune: An ensemble of autoencoders
for online network intrusion detection. arXiv preprint
arXiv:1802.09089, 2018.

[39] Tongguang Ni, Xiaoqing Gu, Hongyuan Wang, and
Yu Li. Real-time detection of application-layer ddos
attack using time series analysis. J. Control Sci. Eng.,
2013:4:4–4:4, January 2013.

[40] Tao Peng, Christopher Leckie, and Kotagiri Ramamo-
hanarao. Survey of network-based defense mechanisms
countering the dos and ddos problems. ACM Comput.
Surv., 39(1), April 2007.

[41] Open Web Application Security Project. Owasp top ten
project’17, 2018. Accessed: 2018-09-27.

[42] Xiaohu Qie, Ruoming Pang, and Larry Peterson. De-
fensive programming: Using an annotation toolkit to
build dos-resistant software. SIGOPS Oper. Syst. Rev.,
36(SI):45–60, December 2002.

[43] Steve Ranger. Github hit with the largest ddos attack
ever seen, 2018.

[44] Supranamaya Ranjan, Ram Swaminathan, Mustafa
Uysal, Antonio Nucci, and Edward Knightly. Ddos-
shield: Ddos-resilient scheduling to counter application
layer attacks. IEEE/ACM Trans. Netw., 17(1):26–39,
February 2009.

[45] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jef-
frey C. Mogul, Mehul A. Shah, and Amin Vahdat. Pip:
Detecting the unexpected in distributed systems. In Pro-
ceedings of the 3rd Conference on Networked Systems
Design & Implementation - Volume 3, NSDI’06, pages
9–9, Berkeley, CA, USA, 2006. USENIX Association.

[46] David Senecal. Slow DoS on the rise.
https://blogs.akamai.com/2013/09/
slow-dos-on-the-rise.html.

[47] N. Seriot. http://seriot.ch/parsing_json.php,
2016.

[48] Yuju Shen, Yanyan Jiang, Chang Xu, Ping Yu, Xiaoxing
Ma, and Jian Lu. Rescue: Crafting regular expression
dos attacks. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software En-
gineering, ASE 2018, pages 225–235, New York, NY,
USA, 2018. ACM.

[49] Benjamin H Sigelman, Luiz Andre Barroso, Mike Bur-
rows, Pat Stephenson, Manoj Plakal, Donald Beaver,
Saul Jaspan, and Chandan Shanbhag. Dapper, a large-
scale distributed systems tracing infrastructure. Techni-
cal report, Technical report, Google, Inc, 2010.

706 2019 USENIX Annual Technical Conference USENIX Association

https://blogs.akamai.com/2013/09/slow-dos-on-the-rise.html
https://blogs.akamai.com/2013/09/slow-dos-on-the-rise.html
http://seriot.ch/parsing_json.php

[50] Snyk. Find, fix and monitor for known vulnerabilities
in node.js and ruby packages, 2016.

[51] Cristian-Alexandru Staicu and Michael Pradel. Freezing
the web: A study of redos vulnerabilities in javascript-
based web servers. In Proceedings of the 27th USENIX
Conference on Security Symposium, SEC’18, pages 361–
376, Berkeley, CA, USA, 2018. USENIX Association.

[52] Cristian-Alexandru Staicu, Michael Pradel, and Ben-
jamin Livshits. Synode: Understanding and automati-
cally preventing injection attacks on node.js. In Net-
worked and Distributed Systems Security, NDSS’18,
2018.

[53] Michael Stepankin. [demo.paypal.com] node.js code
injection (rce), 2016. Accessed: 2018-10-05.

[54] Ahren Studer and Adrian Perrig. The coremelt attack.
In Proceedings of the 14th European Conference on
Research in Computer Security, ESORICS’09, pages
37–52, Berlin, Heidelberg, 2009. Springer-Verlag.

[55] Eno Thereska, Brandon Salmon, John Strunk, Matthew
Wachs, Michael Abd-El-Malek, Julio Lopez, and Gre-
gory R Ganger. Stardust: tracking activity in a dis-
tributed storage system. In ACM SIGMETRICS Per-
formance Evaluation Review, volume 34, pages 3–14.
ACM, 2006.

[56] Vern Paxson Steven McCanne Van Jacobson,
Sally Floyd. Tcpdump, a command-line packet
analyzer.

[57] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan
Dautenhahn, André DeHon, and Jonathan M. Smith.

Breakapp: Automated, flexible application compart-
mentalization. In Proceedings of the 25th Networked
and Distributed Systems Security Symposium, NDSS’18,
2018.

[58] Chenxu Wang, Tony TN Miu, Xiapu Luo, and Jinhe
Wang. Skyshield: A sketch-based defense system
against application layer ddos attacks. IEEE Transac-
tions on Information Forensics and Security, 13(3):559–
573, 2018.

[59] wikipedia. Wikipedia, the free encyclopedia.

[60] Yang Xu and Yong Liu. Ddos attack detection under sdn
context. In INFOCOM 2016-The 35th Annual IEEE In-
ternational Conference on Computer Communications,
IEEE, pages 1–9. IEEE, 2016.

[61] Xiaowei Yang, David Wetherall, and Thomas Anderson.
A dos-limiting network architecture. In Proceedings
of the 2005 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communica-
tions, SIGCOMM ’05, pages 241–252, New York, NY,
USA, 2005. ACM.

[62] Saman Taghavi Zargar, James Joshi, and David Tipper.
A survey of defense mechanisms against distributed
denial of service (ddos) flooding attacks. IEEE commu-
nications surveys & tutorials, 15(4):2046–2069, 2013.

[63] Wei Zhou, Weijia Jia, Sheng Wen, Yang Xiang, and
Wanlei Zhou. Detection and defense of application-layer
ddos attacks in backbone web traffic. Future Generation

Computer Systems, 38:36–46, 2014.

USENIX Association 2019 USENIX Annual Technical Conference 707

SemperOS: A Distributed Capability System

Matthias Hille† Nils Asmussen† ∗ Pramod Bhatotia‡ Hermann Härtig† ∗
†Technische Universität Dresden ‡The University of Edinburgh ∗ Barkhausen Institut

Abstract
Capabilities provide an efficient and secure mechanism for
fine-grained resource management and protection. However,
as the modern hardware architectures continue to evolve
with large numbers of non-coherent and heterogeneous cores,
we focus on the following research question: can capability
systems scale to modern hardware architectures?

In this work, we present a scalable capability system to drive
future systems with many non-coherent heterogeneous cores.
More specifically, we have designed a distributed capability
system based on a HW/SW co-designed capability system.
We analyzed the pitfalls of distributed capability operations
running concurrently and built the protocols in accordance
with the insights. We have incorporated these distributed
capability management protocols in a new microkernel-based
OS called SEMPEROS. Our OS operates the system by
means of multiple microkernels, which employ distributed
capabilities to provide an efficient and secure mechanism
for fine-grained access to system resources. In the evaluation
we investigated the scalability of our algorithms and run
applications (Nginx, LevelDB, SQLite, PostMark, etc.), which
are heavily dependent on the OS services of SEMPEROS. The
results indicate that there is no inherent scalability limitation
for capability systems. Our evaluation shows that we achieve
a parallel efficiency of 70% to 78% when examining a system
with 576 cores executing 512 application instances while
using 11% of the system’s cores for OS services.

1 Introduction

Capabilities are unforgeable tokens of authority granting
rights to resources in the system. They can be selectively
delegated between constrained programs for implementing
the principle of least authority [48]. Due to their ability of
fine-grained resource management and protection, capabilities
appear to be a particularly good fit for future hardware
architectures, which envision byte granular memory access to
large memories (NVRAM) from a large numbers of cores (e.g.
The Machine [31], Enzian [18]). Thereby, capability-based

systems have received renewed attention recently to provide
an efficient and secure mechanism for resource management
in modern hardware architectures [5, 24, 30, 36, 44, 64, 67].

Today the main improvements in compute capacity
are achieved by either adding more cores or integrating
accelerators into the system. However, the increasing core
counts exacerbate the hardware complexity required for global
cache coherence. While on-chip cache coherence is likely to
remain a feature of future hardware architectures [45], we see
characteristics of distributed systems added to the hardware
by giving up on global cache coherence across a whole
machine [6, 28]. Additionally, various kinds of accelerators
are added like the Xeon Phi Processor, the Matrix-2000 accel-
erator, GPUs, FPGAs, or ASICs, which are used in numerous
application fields [4,21,32,34,43,60]. These components also
contribute to the number of resources an OS has to manage.

In this work, we focus on capability-based systems and how
their ability to implement fine-grained access control combines
with large systems. In particular, we consider three types of
capability systems: L4 [30], CHERI [67] (considered for The
Machine [31]), and M3 [5] (see Section 2.1). For all these
capability types it is not clear whether they will scale to modern
hardware architectures since the scalability of capability
systems has never been studied before. Also existing capability
schemes cannot be turned into distributed schemes easily since
they either rely on centralized knowledge, cache-coherent
architectures, or are missing important features like revocation.

Independent of the choice which capability system to use,
scaling these systems calls for two basic mechanisms to be
fast. First, it implies a way of concurrently updating access
rights to enable fast decentralized resource sharing. This
means fast obtaining or delegating of capabilities, which
acquires or hands out access rights to the resources behind the
capabilities. The other performance-critical mechanism is the
revocation of capabilities. Revoking the access rights should be
possible within a reasonable amount of time and with minimal
overhead. The scalability of this operation is tightly coupled to
the enforcement mechanism, e.g. when using L4 capabilities
the TLB shootdown can be a scalability bottleneck.

USENIX Association 2019 USENIX Annual Technical Conference 709

We base our system on a hardware/software co-designed ca-
pability system (M3). More specifically, we propose a scalable
distributed capability mechanism by building a multikernel
OS based on the M3 capability system. We present a detailed
analysis of possible complications in distributed capability
systems caused by concurrent updates. Based on this inves-
tigation we describe the algorithms, which we implemented
in our prototype OS—the SEMPEROS multikernel.

Our OS divides the system into groups, with each of them
being managed by an independent kernel. These independently
managed groups resemble islands with locally managed re-
sources and capabilities. Kernels communicate via messages to
enable interaction across groups. To quickly find objects across
the whole system—a crucial prerequisite for our capability
scheme—we introduce an efficient addressing scheme.

Our system design aims at future hardware, which might
connect hundreds of processing elements to form a powerful
rack-scale system [28]. To be able to experiment with such
systems, we use the gem5 simulator [14] Our evaluation
focuses on the performance of the kernel, where we showcase
the scalability of our algorithms by using microbenchmarks
as well as OS-intensive real-world applications. We describe
trade-offs in resource distribution between applications and
the OS to determine a suitable configuration for a specific
application. We found that our OS can operate a system which
hosts 512 parallel running application instances with a parallel
efficiency of 70% to 78% while dedicating 11% of the system
to the OS and its services.

To summarize, our contributions are as follows.
• We propose a HW/SW co-designed distributed capability

system to drive future systems. Our capability system
extends M3 capabilities to support a large number of
non-cache-coherent heterogeneous cores.

• We implemented a new microkernel-based OS called
SEMPEROS that operates the system by employing
multiple microkernels and incorporates distributed
capability management protocols.

• We evaluated the distributed capability management
protocols by implementing the HW/SW co-design for
SEMPEROS in the gem5 simulator [14] to run real
applications: Nginx, SQLite, PostMark, and LevelDB.

2 Background

We first assess existing capability systems and explain the
basic principles of M3, which is the foundation of our work.

2.1 Capability Systems
The term capability was first used by Dennis and van Horn [20]
to describe a pointer to a resource, which provides the owner
access to the resource. There are three basic types of capabili-
ties: (1) partitioned capabilities, which have been employed in
multiple OSes such as KeyKOS [27], EROS [56] and various

L4 M3 CHERI
Scope Coherence Dom. Machine Address space
Enforcement MMU / Kernel DTU / Kernel CHERI co-proc.
Limitation Coherence Dom. Core count no revoke

Table 1: Classification of capability types.

L4 microkernels [30,36,40,62], (2) instruction set architecture
(ISA) capabilities, as implemented by the CAP computer [49]
and recently revived by CHERI [67] and (3) sparse capabilities
which are deployed in the password-capability system of the
Monash University [2] and in Amoeba [63].

Capabilities can be shared to exchange access rights. ISA
capabilities and sparse capabilities can be shared without
involving the kernel since their validity is either ensured by
hardware or checked by the kernel using a cryptographic
one-way function in the moment they are used. In contrast,
sharing of partitioned capabilities is observed by the kernel.

To analyze capability systems regarding their scalability, we
inspect their enforcement mechanism, their scope, and their
limitation in Table 1. The three categories of capability systems
in Table 1 represent a relevant subset of capability systems for
the scope of this work: (1) L4 capabilities which are partitioned
capabilities employed in L4 µ-kernels [30, 36, 40, 62], (2) M3

capabilities which are a special form of partitioned capabilities
involving a different enforcement mechanism explained in the
following, and lastly (3) CHERI capabilities which are ISA
capabilities implemented by the CHERI processor [64, 67].

L4 capabilities utilize the memory management unit
(MMU) of the processor to restrict a program’s memory access.
Access to other resources like communication channels or
process control are enforced by the kernel. Since L4 is built
for cache coherent machines both the scope of a capability and
the current limitation is a coherence domain.

In contrast, M3 introduces a hardware component called
data transfer unit (DTU) which provides message passing
between processing elements and a form of remote direct mem-
ory access. Consequently, memory access and communication
channels are enforced by the DTU and access to other system
resources by the kernel. The DTU is the only possibility
for a core to interact with other components. Hence it can
be used to control a core’s accesses to system resources via
NoC-level isolation. (We will give a more detailed explanation
of M3capabilities in the following section.) Importantly, M3

capabilities are valid within a whole machine spanning mul-
tiple coherence domains. However, M3 is currently limited by
using a single kernel core to control multiple application cores.

Lastly, the ISA capabilities of the CHERI system are en-
forced by a co-processor. CHERI capabilities contain a de-
scription of the resource, i.e., memory they point to. This infor-
mation is used by the co-processor to determine the validity of
accesses. The scope of a CHERI capability is an address space.
Thus, such a system typically uses one address space for multi-
ple applications. However, CHERI does not support revocation
and therefore does not have the problem we are solving.

710 2019 USENIX Annual Technical Conference USENIX Association

User PE

CU

DTU

Kernel PE

CU

DTU

User PE

CU

DTU

User PE

CU

DTU

User PE

CU

DTU

User PE

CU

DTU

Kernel

App App

App

App

App

S

R

R S

Figure 1: System architecture of M3. Each processing ele-
ment (PE) has a data transfer unit (DTU) connecting them to
the network-on-chip. DTUs are configured by the kernel PE.

For both L4-style and M3-style capabilities, scaling to
larger systems and maintaining consistency demands the
extension to multiple kernels and their coordination. For
L4-style systems, multiple kernels are required to scale beyond
coherence domains. For M3-style systems, multiple kernels
are required to scale to large core counts.

2.2 M3: HW/SW Co-designed Capabilities
To accommodate for the hardware trends of growing

systems without global cache coherence and an increasingly
diverse set of processing elements, we chose M3 as the
foundation of our work. Additionally, M3 already supports
byte-granular memory capabilities including their (selective)
revocation (in contrast to CHERI).

The hardware architecture of M3 is depicted in Figure 1.
The key idea of M3 is to introduce a new hardware component
next to each processing element (PE), which is used as an
abstraction for the heterogeneity of the PEs, ranging from
general purpose cores to accelerators. This hardware compo-
nent is called data transfer unit (DTU). All PEs are integrated
into a network-on-chip (NoC) as prevalent in current multi-
and manycore architectures [15, 39, 60]. The DTU represents
the gateway for the PE to access remote memory (memories
in other PEs or off-chip memory such as DRAM) and to
exchange messages with other PEs. As such, the DTU enables
a different isolation mechanism, called NoC-level isolation,
that does not require the PEs to possess hardware features
like MMUs and privileged mode execution to ensure isolation.
Instead, since all communication between the PEs and all
memory accesses are performed via the NoC, controlling the
access to the NoC suffices to control and isolate the PEs.

The M3 kernel runs on a dedicated PE, called kernel PE.
The M3 kernel is different from traditional kernels because
it does not run user applications on the same PE based on
user/kernel mode and entering the kernel via system call,
interrupt, or exception. Instead, the kernel runs the applications
on other PEs, called user PEs, and waits for system calls in

the form of messages, sent by the applications via the DTU
(red communication channel in Figure 1). Because there is
only a single privileged kernel PE in M3 this kernel PE quickly
becomes the limiting factor when scaling to large systems.

Data Transfer Unit (DTU). The DTU provides a number of
endpoints to connect with other DTUs or memory controllers.
Endpoints can represent send, receive or memory endpoints.
Establishing communication channels requires to configure
endpoints to these representations. This can only be done
by a privileged DTU. Initially all DTUs in the system are
privileged and get downgraded by the kernel during boot
up. Only the DTU of the kernel PE remains privileged. The
kernel is required to establish the communication channels
between applications (blue in Figure 1) which can be used by
applications later on without involving the kernel.

Operating system. The M3 OS follows a microkernel-based
approach, harnessing the features of the DTU to enforce
isolation at NoC-level. So far, it employs a single kernel
PE to manage the system. M3 implements drivers and
OS services such as filesystems as applications, like other
microkernel-based OSes. The execution container in M3 is
called virtual PE (VPE), which represents a single activity and
is comparable to a single-threaded process. Each VPE has its
own capability space and the M3 kernel offers system calls to
create, revoke, and exchange capabilities between the VPEs.

Services on M3. Services are registered at the M3 kernel
and offer an IPC interface for clients. Additionally, clients
can exchange capabilities with services. For example, M3’s
in-memory file system, m3fs, offers an IPC interface to
open files and perform meta operations such as mkdir and
unlink. To access the files’ data, the client requests memory
capabilities from m3fs for specific parts of the file. The client
can instruct the kernel to configure a memory endpoint for the
memory capability to perform the actual data access via the
DTU, without involving m3fs or the kernel again. This works
much like memory mapped I/O, but with byte granular access.
Reading the files’ data via memory capabilities without
involving the OS lends itself well for upcoming non-volatile
memory (NVM) architectures.

3 Design

Our design strives to build a scalable distributed capability
management for an operating system that uses multiple kernels.
An application’s scalability depends on two OS components:
the kernel itself, especially the capability subsystem, and
the OS services, e.g. a filesystem service. To investigate dis-
tributed capability management we concentrate on the kernel.
The kernel sets up communication channels and memory
mappings. How a service implementation uses the kernel
mechanisms depends on the type of service. A copy-on-write
filesystem for example can be implemented efficiently on top
of a capability system with a sufficiently fast revoke operation.

USENIX Association 2019 USENIX Annual Technical Conference 711

PE ID
(Partition #)

Kernel ID

000 000
001 000
010 000
011 001
... ...

Membership Table PE ID
000

VPE ID
001

Type
100

Object ID
000...

Kernel 0
VPE 1

Cap X
DDL Key:
000 001 100 000...

Child:
011 010 101 010...

Kernel 1
VPE 2

Cap Y
Parent:
000 001 100 000...

DDL Key:
011 010 101 010...

Figure 2: DDL addressing with globally valid DDL keys.

When an application performs a write it receives a mapping
to its own copy of data and access to the original data has
to be revoked. In a capability system with slow revocation
it is questionable whether an efficient implementation of
a copy-on-write filesystem is possible. The distributed
capability system presented in this work shall lay a foundation
for various service implementations, however, a discussion
on the scaling of OS services is out of scope for this work.

3.1 System Overview
SEMPEROS employs multiple µ-kernels, each kernel running
on a dedicated PE. This way we can distribute the handling of
system calls to improve the scalability of the capability system.
We use message passing as communication means between
the kernels since we are not assuming a cache coherent system.

PE groups. To maintain a large number of PEs, we divide them
into groups. Each group is managed by a single kernel; that
means, every group has to contain at least one PE capable of
executing a kernel. A simple general-purpose core is sufficient
for this purpose. The group’s kernel has exclusive control
over all PEs of its group and manages the corresponding
capabilities. The mapping of a PE’s capabilities to a kernel is
static in the current implementation of SEMPEROS because we
do not yet support the migration of PEs. The unit of execution
being scheduled on a PE is a virtual PE (VPE). A VPE is in
general comparable to a process. All system calls of a VPE are
handled by the kernel responsible for the PE, which the VPE is
running on. If a system call does not affect any VPEs outside
the group, only the group’s kernel is involved in handling
the request. Operations covering the VPEs of other groups
involve their kernels as well. A more detailed view on the
communication to handle system calls is given in Section 3.3.

Distributed state. The system state consists of the hardware
components (available PEs), the PE groups, and the resource
allocations and permissions, represented as capabilities. The
capabilities represent VPEs, byte-granular memory mappings,
or communication channels. Our high-level approach to
manage the aforementioned kernel data is to store it where
the data emerges and avoid replication as far as possible.
Thereby, we minimize the shared state, which reduces the
communication required to maintain the coherence.

DDL

µ-Kernel µ-Kernel

VPE2VPE1 VPE3 VPE4 . . .
A.1

A.2
A.3A.4

B.1

B.2

B.3
B.4

B.5

B.6

Figure 3: Two VPEs establish a communication channel. Se-
quence A shows the group-internal communication,whereas
sequence B is group-spanning involving two kernels.

3.2 Distributed Data Lookup (DDL)
The distributed data lookup is our capability addressing
scheme and the mechanism to determine the location of
kernel data. Each kernel object or capability which needs to be
referable by other kernels is given a DDL key which acts as its
global ID. In the top right corner of Figure 2 we illustrate how
we split the key’s value into several regions representing the
following: the PE ID and VPE ID, denoting the creator of the
object, and the Type and Object ID, describing the object itself.
To clarify the concept the amount of digits is deliberately kept
smaller than our system requires in practice. We use the PE
ID to split the key space into multiple partitions. Each PE in
the system is allocated to one such partition, which in turn are
assigned to kernels individually. The mapping of partitions
to the kernels designates the PE groups and is stored in a
membership table which is present at each kernel and depicted
on the left of Figure 2. To support the migration of PEs, in
SEMPEROS, the mappings in the membership table would
have to be updated at all kernels of the system However, our
current implementation does not support migration yet.

With this addressing scheme we are able to reference
objects, for example capabilities, across the whole system
which is a key enabler for our capability scheme. The lower
right part of Figure 2 illustrates how the relations between the
capabilities are tracked by this means. It depicts a situation
in which two applications, VPE 1 and VPE 2, are residing
in different PE groups, thus managed by different kernels.
The (simplified) excerpt of the kernels’ internal capability
mappings shows that VPE 1 has a capability Cap X and
delegated it to VPE 2, which in turn created Cap Y. This
group-spanning relation is tracked using the DDL keys.

3.3 System Call Handling
System calls are implemented by messages sent to the kernel
PE. Some of the actions taken by the kernel receiving a system
call involve agreement between the kernels depending on
the involved VPEs. Hence, we divide the handling of system
calls into group-internal and group-spanning operations. The
different message sequences are outlined in Figure 3.

Group-internal operations. Sequence A in Figure 3 depicts
the establishing of a communication channel between two

712 2019 USENIX Annual Technical Conference USENIX Association

VPEs (2 & 3) in the same group. Such an operation only
involves resources managed by a single kernel, thus it is called
a group-internal operation. The sequence starts with a message
to the kernel (A.1), which is the counterpart to the traditional
mode switch. The connection request is forwarded to VPE3
(A.2) which then responds to the kernel. Depending on the
response, the kernel hands out the appropriate capabilities and
informs VPE2 (A.4). Once the endpoint for the exchanged
communication capability is configured, the kernel is not
involved in further communication.

Group-spanning operations. Sequence B in Figure 3 shows
the message flow when VPEs of different PE groups establish
a communication channel. The second kernel is involved in the
operation because it is in charge of VPE4’s capabilities. This
is where our distributed capability protocol will be used. After
receiving the system call in step B.1, the first kernel uses the
DDL to determine which kernel is responsible for VPE4 in step
B.2 and forwards the request. Steps B.3 and B.4 are identical
to A.2 and A.3 of the group-internal operation. After these
steps, the channel at VPE4’s side is prepared which the first
kernel indicates to VPE 1. As for the group-internal operations,
the communication via the created channel does not involve
the kernel anymore after the endpoint has been configured.

3.4 Capabilities
SEMPEROS employs capabilities for managing permissions.
Each VPE has its own set of capabilities, describing the
resources it can access. To share resources with other VPEs,
capabilities can be exchanged. In SEMPEROS delegating
a capability starts with a system call by the supplying VPE
indicating to the kernel which capability should be delegated.
The kernel makes a copy of the selected capability and adds
that copy to the capability’s children. The copied capability
(the child) is handed over to the VPE which shall receive the
new access rights. If the sharing is no longer desired, the access
rights to the resource can be withdrawn recursively by revoking
the capability. These operations require action of the kernel.

From the kernel’s perspective, a capability references
a kernel object, a VPE, and other capabilities. The kernel
object is the resource this capability permits access to
and the reference to the VPE (which is a kernel object
of its own) tells the kernel who holds these access rights.
Individual references to other capabilities are maintained
to track sharing as is done by the mapping database in other
microkernel-based systems [30, 36, 40, 62]. SEMPEROS keeps
sharing information in a tree structure which is used to enable
recursive revocation. In the capability tree, capabilities of
different VPEs are interlinked, as indicated in Figure 2.

Challenges in a distributed setting. Capabilities are modi-
fied by multiple operations, requested via system calls from
applications. For example, when creating a VPE, a capability
to control the new VPE is delegated to the parent VPE. We
call such actions capability modifying operations (CMO).

Running a system with multiple independent kernel instances
introduces new properties of capability handling:

1. Multiple CMOs can be in flight at the same time.
2. CMOs can involve the modification of capabilities owned

by other kernel instances.
3. A capability managed by one kernel can reference a

kernel object owned by another kernel.
The first property requires to assure that the modifications
of one kernel do not overlap with changes of another kernel.
The second and third property are results of our system’s
distributed nature. Resources such as a service, which is
resembled by a service capability, could be used by VPEs of
different PE groups. Consider the connection establishment to
a service. Assuming that the service is controlled by kernel 1
and the connecting VPE by kernel 2, kernel 2 would create
a session capability. A session can only be created between
a client and a service; hence, the client’s session capability
is listed as a child of the service capability. This modification
of the service capability’s list of children involves the other
kernel, because the service capability is owned by kernel 1.

Since capabilities are used to control access to resources,
we host a capability at the kernel which owns the resource. Yet,
this attribution is not always obvious. The example of a session
capability illustrates the third property. One could argue, that
the session is a resource which is used by both, the service and
the client; thus, any of the two corresponding kernels could
actually be responsible for the session. To avoid the overhead
of coordination between multiple resource owners, we allow
only one kernel to be the owner of a resource.

4 Implementation

SEMPEROS implements a distributed capability scheme with
multiple kernels in order to scale to large numbers of PEs. We
based SEMPEROS on M3 [5]. SEMPEROS adds PE groups to
the base system, requiring coordination of the kernels which we
implement by so called inter-kernel calls explained in the fol-
lowing Section 4.1. Furthermore, SEMPEROS is implemented
as a multithreaded kernel for reasons explained in Section 4.2.
The transparent integration of the PE groups into a single sys-
tem presented to the applications requires the kernels to imple-
ment a distributed capability system described in Section 4.3.

4.1 Inter-Kernel Calls
The system call interface of SEMPEROS did not change
compared to M3 though the action to be taken by the kernel
changed to incorporate the coordination with other kernels.
The kernels in SEMPEROS communicate via messages
adhering to a messaging protocol. We call this type of remote
procedure calls inter-kernel calls. These calls can be split into
three functional groups: (1) messages to start up and shutdown
kernels and OS services, (2) messages to create connections
to the services in other PE groups, and lastly, (3) messages

USENIX Association 2019 USENIX Annual Technical Conference 713

used to exchange and revoke capabilities across PE-group
boundaries. Messages of the last two groups are part of the
distributed capability protocol.

The DTU, which is used to send and receive messages,
provides only a limited number of message slots. If this limit
is exceeded then the messages will be lost. To prevent this, we
limit the number of in-flight messages between two kernels. We
dedicate a certain number of DTU endpoints for the kernel-to-
kernel communication, which also determines the maximum
number of kernels supported by the system. We keep track of
free message slots at each kernel to avoid the message loss.

4.2 Multithreaded Kernel

The kernel needs to split some operations, e.g. revocation
or service requests across the PE groups, into multiple parts
to prevent deadlocks. For instance, a revocation might run
into a deadlock in the following situation: three capabilities
are involved forming the capability tree: A1→B2→C1. The
index indicates the kernel which owns the capability. If A1
is revoked, kernel 1 contacts kernel 2 which in turn contacts
kernel 1 again to revoke capability C1. If kernel 1 would block
on the inter-kernel call to kernel 2, the system would end up in
a deadlock because kernel 2 is waiting for kernel 1 to respond.
While this can be implemented as an event-driven system, this
involves the danger to loose the overview of the logical flow
of complicated operations like the revocation.

Therefore, we decided to use cooperative multithreading
within the kernel. This approach allowed us to implement such
capability operations sequentially with dedicated preemption
points in between, which made it comparatively easy to
reason about the code. Note that, in contrast to simultaneous
multithreading, SEMPEROS only executes one thread per
kernel at a time because it executes on one single-threaded
core. The preemption points do not only prevent deadlocks,
but also allow to process other system calls or requests from
other kernels until the suspended operation can be continued.

To prevent the denial-of-service attacks on the kernel,
the kernel cannot spawn new threads on behalf of system
calls. Instead, a fixed number of threads needs to suffice. We
create a kernel’s thread pool at start up. The size of the pool is
determined by the number of system calls and kernel requests
which can arrive at the same time. It is calculated as:

Vgroup+Kmax∗Min f light (1)

Since each VPE can issue only one system call at a time, the
kernel needs one thread per VPE in its PE group, denoted
as Vgroup. The number of kernel requests is limited by the
maximum amount of kernels in the system, denoted as Kmax,
multiplied by the maximum number of in-flight messages
between two kernels, denoted as Min f light .

4.3 Distributed Capability Management
SEMPEROS uses capabilities to control the access to resources
such as VPEs, service connections, send/receive endpoints
and memory. Applications can create, use, exchange, and
revoke capabilities. Creation means to create a new capability
for a given resource (e.g., memory) and usage means to use
a previously created capability without changing it (e.g.,
configure a DTU endpoint for a send capability). Exchanges
and revokes are capability modifying operations (CMO),
requiring the most attention. Exchanging capabilities allows
two VPEs to share resources and it comes in two flavors: a
capability can be delegated to another VPE, and obtained from
another VPE. Capability exchanges can be undone with the
revoke operation. Revocation is performed recursively, that
is, if VPE V1 has delegated a capability to VPE V2, which in
turn has delegated it to V3 and V4, and V1 revokes its capability,
it is revoked from all four VPEs.

As in other capability systems [30, 36, 40, 62], the recur-
sive revoke requires a way to track former exchanges. The
kernel uses a so-called mapping database for this purpose. In
SEMPEROS each capability has a parent and a list of children
to explicitly track all such links. These tree relations can span
multiple kernels; hence,we use DDL keys to identify and locate
the capabilities across all kernels. The mapping database is up-
dated on every CMO. In a multikernel setting multiple CMOs
can be started concurrently potentially involving the same capa-
bility. We next describe how inconsistent updates on the map-
ping database are prevented if multiple CMOs run in parallel.

4.3.1 Interference between CMOs

Exchanging a capability consists of two actions: (1) creating a
new capability based on the donor’s capability and (2) inserting
the new capability into the capability tree. The latter requires
to store a reference to the parent capability and to update the
parent’s list of children. Revoking a capability requires to re-
voke all of its children and to remove it from the parent’s list of
children. Both need to perform inter-kernel calls in case capa-
bilities reside at other kernels, possibly leading to interference.

An important precondition for all operations is that
messages between two kernels need to sustain ordering. More
specifically, if kernel K1 first sends a message M1 to kernel K2,
followed by a message M2 to kernel K2, then K2 has to receive
M1 before M2.

Table 2 shows an overview of all combinations and their
effects. The operation in the leftmost column is started first and
overlaps with the operation in the topmost row. The following
walks through the combinations and describes the effects.

Serialized. Overlapping exchange operations do not present
a problem for our scheme because they serialize at one kernel.
For example, if two VPEs obtain a capability from VPE V1,
these operations serialize at the kernel that manages V1. In
general, each VPE can only perform one system call at a time
preventing two parallel delegates initiated by the same VPE.

714 2019 USENIX Annual Technical Conference USENIX Association

1st 2nd Obtain Delegate Revoke/Crash

Obtain XSerialized XSerialized ! Orphaned
Delegate XSerialized XSerialized E Invalid
Revoke ! Pointless ! Pointless E Incomplete

Table 2: Types of interference with overlapping CMOs.

However, during an exchange operation initiated by a VPE V1
other VPEs could exchange capabilities with V1, which again
serializes at the kernel that manages V1.

Orphaned. The obtain operation needs to ask the capability
owner for permission before being able to obtain the capability.
If the owner resides at a different kernel this requires an
inter-kernel call. Before its completion nothing is changed in
the obtainer’s capability tree. However, the obtainer could be
killed while waiting for the inter-kernel call. This leaves an
orphaned child capability in the owner’s capability tree, in case
the owner agreed to the exchange. The orphaned capability can-
not be accessed by anyone, but it wastes a bit of memory, which
will be freed the latest when its parent capability is revoked.

Invalid. The delegate operation is similar to obtain regarding
leaving the delegator’s capability tree untouched until
the inter-kernel call returns successfully. However, if the
delegator is killed while waiting for the inter-kernel call, the
receiving VPE might have already received the capability. This
constitutes a problem, because the child of the capability in
delegation does not yet exist in the delegator’s capability tree.
That is, although all capabilities of the delegator are revoked,
the delegated capability stays valid at the receiving VPE.

Incomplete. The naive implementation of the revoke operation
would simply perform a depth-first walk through the capability
tree, remove local capabilities on its own and perform the
inter-kernel calls to remove remote capabilities. However, if
two revoke operations run in parallel on overlapping capability
subtrees, this approach results in early replies to revoke system
calls, that is, acknowledgements of incomplete revokes.

For instance, let us consider the following capability tree
with the owning kernel as the index: A1→B2→C3. If a VPE
requests the revoke of A1, kernel K1 performs a call to K2 to
revoke the remaining part of the tree. If another VPE requested
the revoke of B2 in the meantime, K2 does not know B2 any-
more, potentially leading to an early response to K1. The reason
is that K2 might still be waiting for K3 to revoke C3. Since ap-
plications have to rely on the semantic that completed revokes
are indeed completed, we consider this behavior unacceptable.

Pointless. The revoke operation requires inter-kernel calls if
the capability tree spans multiple kernels. Hence, VPEs might
request capability exchanges of not yet revoked capabilities
within this tree. This does not lead to inconsistencies because
these capabilities would be revoked as soon as the running
revoke operation continues. However, the exchange is
pointless because it is already known that the capabilities will
be revoked afterwards.

4.3.2 Capability Exchange

This section details the capability exchange operations to
address the problems described in the previous section. As
already mentioned, the beginning of obtain and delegate is
similar. If a VPE (V1) requests an exchange, the corresponding
kernel (K1) checks whether the other party (V2) is in the same
PE group. If so, the operation is handled by K1. If V1 and V2
are in different PE groups, K1 forwards the exchange request
to the second kernel (K2). K2 asks V2 whether it accepts the
capability exchange. If V2 denies the exchange, the operation
is aborted and a corresponding reply is sent to K1. Otherwise,
we distinguish between obtain and delegate:
(1) Obtain:.V2’s capability (C2) will become the parent ofV1’s
new capability (C1). Hence,C1 will be added toC2’s list of child
capabilities. Afterwards, K2 sends a reply to K1. As outlined
previously, if V1 was killed in the meantime, C2 stays in the
child capability list as an orphaned capability. To prevent a per-
manent memory waste,we let K1 send a notification to K2 on be-
half of K2’s reply for the obtain operation in case V1 was killed.
(2) Delegate: . K2 creates a new capability (C2) for V2 with C1
as its parent. If C1 was revoked in the meantime, V2’s resource
access through C2 would be unjustified. To avoid this, we
implement delegation with a two-way handshake. Instead of
inserting C2 into V2’s capability tree, K2 only sends a reply to
K1. After that K1 adds C2 to C1’s list of children and sends an
acknowledgement back to K2 to actually insert C2 into V2’s
capability tree.

Note that the two-way handshake creates an orphaned capa-
bility if V2 is killed while waiting for the acknowledgement of
K1. As for obtain, we handle this case by sending an error back
to K1 to allow a quick removal of the orphaned capability.

4.3.3 Capability Revocation

Like the capability exchange, the revocation requires inter-
kernel calls in case the capability tree spans multiple kernels.
To keep the kernel responsive it should not wait synchronously
for the reply of another kernel. Instead, the revoke should be
paused using the threading infrastructure introduced in Sec-
tion 4.2. However, in contrast to the exchange operation, the
number of inter-kernel calls for a revoke can be influenced by
applications. For example, two malicious applications residing
in different PE groups could exchange a capability back and
forth, building a deep hierarchy of capabilities at alternating
kernels. Revoking this capability hierarchy would lead to
inter-kernel calls sent back and forth between the two kernels.
Thus, the naive approach of spawning a new thread for every
incoming revoke inter-kernel call cannot be used, because this
would enable denial-of-service attacks. Our solution uses a
maximum of two threads per kernel to avoid this attack.

To avoid acknowledgements of incomplete revokes, our
algorithm uses two phases, similar to mark-and-sweep [46].
Algorithm 1 presents a high-level overview of the approach.
The function revoke_syscall_hdlr is executed by the

USENIX Association 2019 USENIX Annual Technical Conference 715

kernel that receives the revoke system call. First, it calls
revoke_children, which recursively marks all local capa-
bilities and sends inter-kernel calls for remote capabilities.
Each capability maintains a counter for outstanding kernel
replies. If it encountered any remote capabilities, the function
wait_for_remote_children waits for the kernel replies by
pausing the thread.

The inter-kernel call is handled by
receive_revoke_request, which will also call
revoke_children. In this case, the thread will not be
paused to stay at a fixed number of threads. Instead, the
thread calls receive_revoke_reply in case there are
no outstanding kernel replies and returns. The function
receive_revoke_reply is also called whenever a reply to an
inter-kernel call is received, which first updates the counter of
the capability accordingly. If there are no further outstanding
kernel replies, it deletes the capability tree starting at the given
capability. Afterwards, it wakes up the syscall thread or sends
a reply, depending on whether this kernel started the revoke
operation or participated due to an inter-kernel call.

To keep the pseudo code brief it does not show how already
running revocations for a capability are handled. In this
case, revoke_syscall_hdlr will also wait for the already
outstanding kernel replies to prevent acknowledgement of
an incomplete revoke. Furthermore, the two phases allow
us to immediately deny exchanges of capabilities that are in
revocation, which prevents pointless capability exchanges.

5 Evaluation

5.1 Experimental Testbed
We evaluate SEMPEROS using the gem5 system simula-
tor [14], which enables us to evaluate the hardware/software
co-designed capability system and perform experiments on
systems larger than currently available. The system is com-
posed of 640 out-of-order x86_64 cores, which are clocked at
2 GHz. However, the cores used for applications could also be
exchanged with any other architecture or accelerator. Each core
is equipped with a DTU similar to the one used in Asmussen et
al.’s work [5]. We modified the mechanism to store incoming
messages to support delayed replying which enables us to
interrupt kernel threads. Messages are kept in a fixed number
of slots. Each DTU provides 16 endpoints with 32 message
slots each. Kernel PEs use one endpoint to send messages
to other kernels, one endpoint to send messages to services,
and 14 endpoints to receive messages. Six of the receiving
endpoints are used for the system calls. Each kernel can handle
up to 192 PEs in the current implementation since each VPE
can only issue one (blocking) system call at a time. Eight
endpoints are used to receive messages from other kernels. In
contrast to system calls, the inter-kernel calls are non-blocking
and we limit the number of in-flight messages to four messages
per kernel. Thus, at most 64 kernel PEs are supported.

Algorithm 1: Capability revocation
1 Function revoke_syscall_hdlr(capability)
2 revoke_children(capability)
3 wait_for_remote_children()
4 Function revoke_children(capability)
5 mark_for_revocation(capability)
6 foreach child of capability do
7 if child is local then
8 revoke_children(child)
9 else

10 send_revoke_request(child)
11 end
12 end
13 Function receive_revoke_request(capability)
14 revoke_children(capability)
15 receive_revoke_reply(capability) // see line 10
16 Function receive_revoke_reply(capability)
17 if all revoke requests are serviced then
18 delete_tree(capability)
19 if initiator then
20 notify_syscall_hdlr_thread()
21 else
22 send_revoke_reply()
23 end
24 end

Operation Scope SemperOS M3 Increase
(cycles) (cycles)

Exchange Local 3597 3250 10.7%
Exchange Spanning 6484 — —
Revoke Local 1997 1423 40.3%
Revoke Spanning 3876 — —

Table 3: Runtimes of capability operations.

5.2 Microbenchmarks

Capability exchange and revocation. To examine the ex-
change and revocation of capabilities we start two applications
where the second application obtains a capability from
the first, followed by a revoke by the first application. We
distinguish two scopes for these operations: group-local and
group-spanning. In the group-local case one kernel manages
both applications and their capabilities. The group-spanning
case involves two kernels, each handling one application.

Table 3 lists the execution times in cycles for exchanging
and revoking capabilities in the group-local and group-
spanning case. We can only compare the group-local case
to M3, because in M3 there is only one kernel. To support
multiple kernels, SEMPEROS references parent and child
capabilities via DDL keys instead of plain pointers. Analyzing
the DDL key to determine the capability’s owning kernel and
VPE introduces overhead in the local case. Group-spanning
operations involve another kernel, which almost doubles the
time of exchanges and revokes. This suggests, that applications
should be assigned to PE groups such that the group-spanning
operations are minimized.

Chain revocation. In the chain revocation benchmark we
measure the time to revoke a number of capabilities forming
a chain. Such a chain emerges when a capability is exchanged
with an application which in turn exchanges this capability

716 2019 USENIX Annual Technical Conference USENIX Association

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

R
e
v
o
c
a
ti
o
n

 T
im

e
 (

K
 c

y
c
le

s
)

Length of Capability Chain

Local chain (SemperOS)
Group−spanning chain (SemperOS)

Local chain (M
3
)

Figure 4: Revoking capability chains of varying sizes.

again with another application and so on. Figure 4 depicts the
time to revoke such capability chains depending on their length.
A local chain comprises only applications managed by one
kernel and can again be compared to M3. As the previous mi-
crobenchmarks showed, revocation in SEMPEROS needs about
twice the time compared to M3 due to the added indirections.

The group-spanning chain depicts a scenario in which an
ill-behaving application repeatedly exchanges a capability
between two VPEs, which are managed by different kernels.
This creates a circular dependency between the two involved
kernels during revocation. However, as described in Sec-
tion 4.3.3, this is not a problem for our revocation algorithm.
In particular, only the kernel thread for the revoke system
call is blocked during the operation. Still, the revocation of
a group-spanning chain takes about three times longer than
revoking a group-local chain, because messages are sent back
and forth between the two kernels.

Tree revocation. This microbenchmark resembles a situation,
in which an application exchanges a capability with many other
applications, for example, to establish shared memory. This
results in a capability tree of one root capability with several
children. Figure 5 shows the performance of the revocation
depending on the capability count and their distribution among
kernels. The line labeled with 1 + 0 Kernels represents the local
scenario in which the whole capability tree is managed by
one kernel. For all other lines, the second number indicates the
number of kernels the child capabilities have been distributed
to. After exchanging the capabilities, the application owning
the root capability revokes the capability tree. Figure 5
illustrates that the revocation scales to many capabilities and
kernels. It also shows that our current implementation can
take advantage of multiple kernels by performing the revoke
in parallel, but the effect is rather small. It currently leads to a
break-even at 80 child capabilities, when comparing the local
revocation time with a parallel revocation with 12 kernels.
However, we believe that this can be further improved by the
use of message batching. So far, the kernel managing the root
capability sends out one message for each child capability.

5.3 Application-level Benchmarks
We next perform application-level benchmarks to examine
the scalability of SEMPEROS in more realistic settings.

 0

 50

 100

 150

 200

 0 16 32 48 64 80 96 112 128

R
e
v
o
c
a
ti
o

n
 T

im
e
 (

µ
s
)

Capability Count

1 + 0 Kernels
1 + 1 Kernels
1 + 4 Kernels
1 + 8 Kernels

1 + 12 Kernels

Figure 5: Parallel revocation of capability trees with
different breadths utilizing multiple kernels.

5.3.1 Experimental Setup

Applications. We use seven different applications to analyze
the scalability: tar and untar pack or unpack an archive of
4 MiB containing five files of sizes between 128 and 2048 KiB.
The find benchmark scans a directory tree with 80 entries
for a non-existent file. The SQLite database and the LevelDB
key-value store both create a table to insert 8 entries into it and
select them afterwards. The PostMark mailserver application
resembles a heavily loaded mail server, thus does a lot of
operations on the mail files. (In addition, we evaluated Nginx
Webserver in Section 5.3.3.) Note that we were forced to
use rather short running applications to keep the simulation
times of gem5 acceptable (e.g. SQLite required five days on a
48-core machine). The selected applications are well suited for
this evaluation since they make heavy use of the OS in various
ways. In particular they use the in-memory filesystem service
which implements file access by handing out the memory
capabilities to the clients so they can access the memory region
in which the requested file is stored. More specifically, the
filesystem service hands out a memory capability to a range
of the file’s contents. If the application exceeds this range,
for example by appending to the file, it is provided with an
additional memory capability to the next range. When the file
is closed again, the memory capabilities are revoked.

Table 4 lists the number of capability operations for the
individual benchmark applications. We show the numbers for
a single benchmark instance and 512 parallel instances. The
capability operations per second for 512 benchmark instances
are retrieved when employing 64 kernels and 64 filesystem
services; we will explain what this means in the following
paragraph on our methodology. The tar and untar benchmarks
are memory-bound applications exposing a regular read and
write pattern which requires the filesystem service to hand
out several memory capabilities throughout the benchmark
execution. The find benchmark mainly stresses the filesystem
service by doing many stat calls to examine the directory’s
metadata. The small database engine of SQLite exhibits
a more compute intensive behavior with several bursts of
capability operations when opening and closing the database
and the database journal whereas the LevelDB key-value
store accesses its data files with a higher frequency resulting

USENIX Association 2019 USENIX Annual Technical Conference 717

Benchmark Cap. ops Cap. ops/s Cap. ops Cap. ops/s
of instances 1 512
tar 21 7,295 10,752 191,703
untar 11 4,012 5,632 100,772
find 3 1,310 1,536 27,096
SQLite 24 5,987 12,288 207,072
LevelDB 22 8,749 11,264 201,204
PostMark 38 21,166 19,456 348,285

Table 4: Number of capability operations for the selected
applications. Values shown for 1 and 512 parallel bench-
mark instances. The capability operations per second are
the average rate of capability operations over the runtime.

in more capability operations per second. PostMark does
little computation and operates on many files resulting in the
highest load for the capability system.

Performance metric. We use the system call tracing
infrastructure introduced by Asmussen et al. [5] to run the
benchmarks. We run an application on Linux, trace the system
calls including timing information, and replay the trace on
SEMPEROS while checking for correct execution. We account
for the system calls which are not supported by our system
yet by waiting for the time it took to execute them on Linux.
However, all relevant system calls (especially those to interact
with the file system) are executed. We replay the same trace
multiple times in parallel, which is denoted as number of
benchmark or application instances in the graphs. We assess
scalability using the parallel efficiency of these benchmark
instances. In a perfectly scaling system, a benchmark instance
will have the same execution time when running alone as
when running with other instances in parallel. However, due to
resource contention for the kernel and for hardware resources
like the interconnect and the memory controller, each instance
will need more time if multiple of them are executed in parallel.
The discrepancy in runtime is shown by parallel efficiency.

Methodology. There are two main factors influencing the
scalability of applications running in a µ-kernel-based system:
the OS services and the kernel. The OS service used by the
examined applications is the m3fs filesystem. To concentrate
our analysis on the scalability of the kernel, especially the
distributed capability management, we simplify scaling of
the m3fs service by adding more service instances, each
having its own copy of the filesystem image in memory. We
exclude accessing the actual memory locations of the files
because our current simulator does not include a scalable
memory architecture yet. Instead we let the application
compute for the amount of time the access would have taken,
assuming a non-contended memory controller. We argue
that this still produces useful results since we do not want to
show the scalability of the memory architecture but of the
distributed capability scheme. Furthermore, a non-contended
memory puts even more burden on the OS because capability
operations might occur with higher frequency.

 60

 65

 70

 75

 80

 85

 90

 95

 100

 64 128 192 256 320 384 448 512

P
a
ra

lle
l
E

ff
ic

ie
n
c
y
 (

%
)

of Benchmark Instances

tar
untar

find
SQLite

LevelDB
PostMark

Figure 6: Parallel efficiency of all six applications using 32
kernels and 32 file service instances.

5.3.2 Results

Scalability. Figure 6 depicts the parallel efficiency of the
six applications when distributing them equally between 32
kernels and 32 filesystem services. With this configuration
the tar benchmark already reaches an efficiency of 78% when
running 512 instances in parallel. However, SQLite achieves
only 70%, which is not the optimal configuration for this
type of application as we will show in the next measurement
(see Figure 7). We next discuss how to determine a fitting
configuration for an application.

Service dependence. To determine the number of services
required to scale an application we set the number of kernels
to a high number and then gradually increase the number
of services. As long as there are less services than kernels,
services are shared between PE groups. Kernels which host
a service in their PE group prefer to connect their applications
to the service in their PE group over a service in another
PE group. Figure 7 shows the parallel efficiency for tar and
SQLite depending on the number of services.

The tar benchmark is not very dependent on the filesystem
service, which can be inferred from the fact that using 48 ser-
vices does not pose any improvement over 32 services. In fact,
it seems already fair enough to use only 16 service instances.
SQLite shows a higher dependence on the number of services.
For example, increasing the number of service instances from
16 to 32 leads to further improvement of 9 percent points.

Kernel dependence. Similarly to the dependence on the num-
ber of services, we now show the influence of the number of ker-
nels. Figure 8 depicts the parallel efficiency of PostMark and
LevelDB using a fixed number of services. LevelDB exhibits
smaller improvements when employing more than 16 kernels
compared to PostMark, indicating that PostMark is even more
susceptible to the number of kernels. However, all applications
show a relatively high sensitivity to the number of kernels,
which in fact are mostly handling capability operations. This
confirms our expectation that a scalable distributed capability
system is a vital part of a fast µ-kernel-based OS for the future
hardware architectures. The analysis so far only involved tun-
ing for parallel efficiency, which is analogous to optimize for
execution time. We next discuss the efficient usage of PEs.

718 2019 USENIX Annual Technical Conference USENIX Association

 60
 65
 70
 75
 80
 85
 90
 95

 100

 128 256 384 512

P
a
ra

lle
l
E

ff
ic

ie
n
c
y
 (

%
)

of Benchmark Instances

(a) tar benchmark

 60
 65
 70
 75
 80
 85
 90
 95

 100

 128 256 384 512

of Benchmark Instances

(b) SQLite key-value store

64 Kernels 4 Services
64 Kernels 8 Services

64 Kernels 16 Services

64 Kernels 32 Services
64 Kernels 48 Services
64 Kernels 64 Services

Figure 7: Service dependence: Parallel efficiency of tar and
SQLite with fixed number of kernels.

 60
 65
 70
 75
 80
 85
 90
 95

 100

 128 256 384 512

P
a
ra

lle
l
E

ff
ic

ie
n
c
y
 (

%
)

of Benchmark Instances

(a) PostMark mail server

 60
 65
 70
 75
 80
 85
 90
 95

 100

 128 256 384 512

of Benchmark Instances

(b) LevelDB key-value store

4 Kernels 64 Services
8 Kernels 64 Services

16 Kernels 64 Services

32 Kernels 64 Services
48 Kernels 64 Services
64 Kernels 64 Services

Figure 8: Kernel dependence: Parallel efficiency of
PostMark and LevelDB with fixed number of services.

System efficiency. If we consider the whole system and ac-
count for the PEs used by the OS with an efficiency of zero, the
optimal configurations change. We call this measure the system
efficiency, which is depicted in Figure 9. Instead of showing the
efficiency only in relation to the benchmark instances executed
we relate them to the total number of PEs. By means of this
metric we can tune a system for throughput and determine
the optimal number of kernels and services for an application
depending on the number of PEs available. For SQLite this
implies to choose 16 kernels and 16 service instances if the
system had 192 PEs, but if the system would consist of 256
PEs we would run it with 32 kernels and 16 services.

5.3.3 Server Benchmark

We next detail the results for the Nginx webserver [53]. We
used our system call tracing infrastructure to record the
behavior of Nginx on Linux when handling requests. We
stressed Nginx similar to the Apache ab benchmark [1] by
introducing PEs that resemble a network interface. These
PEs constantly send out requests to our webserver processes
running on separate PEs. These PEs replay the trace upon
receiving a request and send the response back. Figure 10
depicts the number of requests per second of all webserver

 62

 64

 66

 68

 70

 72

 128 256 384 512 640

S
y
s
te

m
 E

ff
ic

ie
n
c
y
 (

%
)

PE Count

(a) PostMark mail server

 62

 64

 66

 68

 70

 72

 128 256 384 512 640

PE Count

(b) SQLite key-value store

8 Kernels 8 Services
16 Kernels 16 Services
32 Kernels 16 Services

32 Kernels 32 Services
48 Kernels 32 Services
64 Kernels 32 Services

Figure 9: System efficiency of PostMark and SQLite with
different configurations.

 0

 500

 1000

 1500

 2000

 2500

 3000

 32 64 96 128 160 192 224 256

R
e
q
u
e

s
ts

 /
 s

 (
x
1
0

0
0

)

of Server Processes

8 Kernels, 8 Services
8 Kernels, 16 Services
8 Kernels, 32 Services

16 Kernels, 16 Services
32 Kernels, 16 Services
32 Kernels, 32 Services

Figure 10: Scalability of the Nginx webserver.

PEs. Despite this OS-intensive benchmark, the number of
requests scales almost linearly when employing 32 kernels and
32 services. Using less resources for the OS flattens the graph.

6 Related Work

Capability systems. The evaluation of previous capability sys-
tems typically resorted to performance measurements of single
core or small systems. Since many capability systems, such as
Mach, Fluke or EROS [19,23,56] are based on µ-kernels which
had to prove their enhanced efficiency over previous µ-kernel
generations [29,41], their kernel mechanisms like inter-process
communication, system-call performance, context-switch
overhead or process-creation time have been measured to
demonstrate their in fact competitive performance. With these
measurements it is only partly possible to derive the perfor-
mance of the capability subsystem. So far the only work which
included capabilities in a distributed setting is Barrelfish [11]
but only parts of the capability subsystem’s scalability can be
concluded from the reported results. Barrelfish’s two-phase
commit approach to reach agreement (determining the
relations between capabilities) requires broadcasting to every
other kernel in the system, which is different from our approach.
The revocation in Barrelfish uses a mark-sweep algorithm and

USENIX Association 2019 USENIX Annual Technical Conference 719

so called delete cascades which also require to broadcast to
every kernel if capabilities have cross-kernel relations because
these are not stored explicitly in Barrelfish [25]. Even though
this broadcast operation can be tuned to fit the interconnect
of the machine it is running on [33], it is unknown how well
it performs in conjunction with their capability scheme.

Other capability systems like Capsicum [65] and
CHERI [67] emphasize their sandboxing features and com-
patibility to existing software by executing application bench-
marks. However, these do not include any assessment of large
scalable systems. Further, CHERI does not support revocation,
thus eliminating the overhead of tracking capability relations.

Operating systems. Apart from a scalable capability sub-
system the OS also has to entail mechanisms to drive large
possibly heterogeneous systems. The monolithic architecture
of Linux, which runs a shared-memory kernel on homoge-
neous cores, has many scalability bottlenecks [16, 17, 26].
Developers try to counteract that by utilizing scalable data
structures like RCU [47] within the kernel. To investigate more
profound changes researchers built frameworks like K42 [37]
to enable development and testing of new approaches like
clustered objects [3]. Song et al. proposed Cerberus [61] which
runs multiple Linux instances on top of a virtualization layer.

Systems like Popcorn Linux [8–10],and K2 [42] adapt Linux
for heterogeneous ISAs. These systems also run multiple Linux
instances closely resembling a distributed system. Rack-scale
operating systems like LegoOS employ multiple distributed
components to manage disaggregated resources [55]. They can
benefit from our approach when combined with capabilities.

Barrelfish proposed the multikernel approach which aims
to improve the scalability and support for many heterogeneous
cores by constructing the OS as a distributed system. Cosh [12],
a derivative of Barrelfish, demonstrated how to share and pro-
vide the OS services across different domains. While Cosh de-
fines an interface how to communicate between different coher-
ence islands and adds guarantees regarding memory accesses
after sharing, it is not discussing the underlying capability sys-
tem. Barrelfish/DC [68] examined the separation of kernel
state from a kernel instantiation to provide an elastic system.
Fos [66] targets manycore systems by proposing the concept
of service fleets to provide OS services via spatially distributed
servers. Importantly, these OSes are based on communication
over message passing and do not assume cache coherent shared
memory. Our system SEMPEROS shares the same two design
principles: (1) the multikernel approach, and (2) communica-
tion via message passing. However, the design of Barrelfish
and fos require executing a kernel on every core. Whereas,
we based our work on M3 [5] which runs the kernel only on a
single dedicated core. This allows us to explore another design
point in the multikernel design space in which the capabilities
of several processing units are managed by one kernel which
has to coordinate with other kernels to scale to large systems.

The philosophy of providing OS services without executing
a kernel on every core has also been explored in NIX [7],

which is based on Plan 9 [52]. NIX proposes an OS with a
concept of application cores which do not execute a kernel
to prevent OS noise. However, the communication in NIX is
based on shared memory. Similarly, Helios [50], an extension
of Singularity [22], minimizes the kernel requirement for
some cores to a smaller satellite kernel.

Motivated by the recent trends in hardware, in a similar
spirit but with a different focus, new OSes such as Arrakis [51],
IX [13], and Omnix [57] have been proposed. These OSes
share a similar design philosophy to SEMPEROS where we
aim to provide applications direct control of the underlying
hardware to improve the performance.

Alternatively, there are several proposals to support OS
services for one specific type of accelerator. For instance,
GPUfs [58], GPUNet [35], and PTask [54] are designed
for GPUs. Likewise, BORPH [59], FPGAFS [38], etc. are
designed to support FPGAs. In contrast, using M3 as our
foundation allows us to support different types of accelerators
and general purpose heterogeneous cores as first-class citizens.

7 Conclusion

In this paper, we presented a HW/SW co-designed dis-
tributed capability system based on M3. More specifically,
we presented a detailed analysis of distributed capability
management, covering the inconsistencies which can arise
in a distributed multikernel setting where concurrent updates
to capabilities are possible. Leveraging the results of this
investigation we devised efficient algorithms to modify
capabilities in a scalable and parallel manner.

We implemented these algorithms in our microkernel-based
OS, SEMPEROS, which employs multiple kernels to distribute
the workload of managing the system. We evaluated the
distributed capability management protocols by co-designing
the HW/SW capability system in the gem5 simulator [14]. Our
evaluation shows that there is no inherent scalability limitation
for capability systems for running real applications: Nginx,
SQLite, PostMark, and LevelDB. In particular, we showed
that SEMPEROS achieves a parallel efficiency of 70% to 78%
when running 512 applications and dedicating 11% of the
system’s cores to the OS.
Software availability. SEMPEROS will be open-sourced at
https://github.com/TUD-OS/SemperOS.

8 Acknowledgements

We would like to thank our shepherd, Gernot Heiser, and
the anonymous reviewers for their helpful suggestions. This
work was funded through the German Research Council
DFG through the Cluster of Excellence Center for Advancing
Electronics Dresden (cfaed), and by the German priority
program 1648 "Software for Exascale Computing" via the
research project FFMK, and by public funding of the state of
Saxony/Germany.

720 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/TUD-OS/SemperOS

References
[1] ab - Apache HTTP server benchmarking tool. https://httpd.apache.

org/docs/2.4/programs/ab.html. Accessed: May, 2018.

[2] ANDERSON, M., POSE, R., AND WALLACE, C. S. A password-
capability system. The Computer Journal (1986).

[3] APPAVOO, J., SILVA, D. D., KRIEGER, O., AUSLANDER, M., OS-
TROWSKI, M., ROSENBURG, B., WATERLAND, A., WISNIEWSKI,
R. W., XENIDIS, J., STUMM, M., AND SOARES, L. Experience dis-
tributing objects in an SMMP OS. ACM Transactions on Computer
Systems (TOCS) (2007).

[4] ARNOLD, O., MATUS, E., NOETHEN, B., WINTER, M., LIMBERG,
T., AND FETTWEIS, G. Tomahawk: Parallelism and heterogeneity in
communications signal processing MPSoCs. ACM Transactions on
Embedded Computing Systems (TECS) (2014).

[5] ASMUSSEN, N., VÖLP, M., NÖTHEN, B., HÄRTIG, H., AND FET-
TWEIS, G. M3: A hardware/operating-system co-design to tame hetero-
geneous manycores. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (2016).

[6] BALKIND, J., LIANG, X., MATL, M., WENTZLAFF, D., MCKEOWN,
M., FU, Y., NGUYEN, T., ZHOU, Y., LAVROV, A., SHAHRAD, M.,
FUCHS, A., AND PAYNE, S. OpenPiton: An open source manycore
research framework. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (2016).

[7] BALLESTEROS FRANCISCO J., EVANS NOAH, F. C., AND GUARDI-
OLA GORKA, MCKIE JIM, MINNICH RON, S.-S. E. NIX: A case for
a manycore system for cloud computing. Bell Labs Technical Journal
(2012).

[8] BARBALACE, A., ILIOPOULOS, A., RAUCHFUSS, H., AND BRASCHE,
G. It’s time to think about an operating system for near data processing
architectures. In Proceedings of the 16th Workshop on Hot Topics in
Operating Systems (HotOS) (2017).

[9] BARBALACE, A., LYERLY, R., JELESNIANSKI, C., CARNO, A.,
CHUANG, H.-R., LEGOUT, V., AND RAVINDRAN, B. Breaking the
boundaries in heterogeneous-ISA datacenters. In Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS) (2017).

[10] BARBALACE, A., RAVINDRAN, B., AND KATZ, D. Popcorn: a
replicated-kernel OS based on Linux. Ottawa Linux Symposium (OLS)
(2014).

[11] BAUMANN, A., BARHAM, P., DAGAND, P.-E., HARRIS, T., ISAACS,
R., PETER, S., ROSCOE, T., SCHÜPBACH, A., AND SINGHANIA, A.
The Multikernel: A new OS architecture for scalable multicore systems.
In Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles (SOSP) (2009).

[12] BAUMANN, A., HAWBLITZEL, C., KOURTIS, K., HARRIS, T., AND
ROSCOE, T. Cosh: Clear OS data sharing in an incoherent world. In 2014
Conference on Timely Results in Operating Systems (TRIOS) (2014).

[13] BELAY, A., PREKAS, G., KLIMOVIC, A., GROSSMAN, S.,
KOZYRAKIS, C., AND BUGNION, E. IX: A protected data-
plane operating system for high throughput and low latency. In 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI) (2014).

[14] BINKERT, N., BECKMANN, B., BLACK, G., REINHARDT, S. K., SAIDI,
A., BASU, A., HESTNESS, J., HOWER, D. R., KRISHNA, T., SAR-
DASHTI, S., SEN, R., SEWELL, K., SHOAIB, M., VAISH, N., HILL,
M. D., AND WOOD, D. A. The Gem5 simulator. SIGARCH Computer
Architecture News (2011).

[15] BOHNENSTIEHL, B., STILLMAKER, A., PIMENTEL, J., ANDREAS,
T., BIN LIU, TRAN, A., ADEAGBO, E., AND BAAS, B. A 5.8 pJ/Op
115 billion ops/sec, to 1.78 trillion ops/sec 32nm 1000-processor array.
In IEEE Symposium on VLSI Circuits (VLSI-Circuits) (2016).

[16] BOYD-WICKIZER, S., CLEMENTS, A. T., MAO, Y., PESTEREV, A.,
KAASHOEK, M. F., MORRIS, R., AND ZELDOVICH, N. An analysis
of linux scalability to many cores. Proceedings of the 9th USENIX
conference on Operating systems design and implementation (OSDI)
(2010).

[17] CLEMENTS, A. T., KAASHOEK, M. F., ZELDOVICH, N., MORRIS,
R. T., AND KOHLER, E. The scalable commutativity rule: Designing
scalable software for multicore processors. ACM TOCS (2015).

[18] COCK ET AL. Enzian: a research computer for datacenter and rackscale
computing. In Poster proceedings of the 13th European Conference on
Computer Systems (EuroSys) (2018).

[19] DAVID GOLUB, R. D., GOLUB, D., DEAN, R., FORIN, A., AND
RASHID, R. Unix as an application program. In In USENIX 1990
Summer Conference (1990), pp. 87–95.

[20] DENNIS, J. B., AND VAN HORN, E. C. Programming semantics for
multiprogrammed computations. Communications of the ACM (1966).

[21] DONGARRA, J. Report on the Tianhe-2A system. Tech. rep., University
of Tennesssee Oak Ridge National Laboratory, 2017.

[22] FÄHNDRICH, M., AIKEN, M., HAWBLITZEL, C., HODSON, O., HUNT,
G., LARUS, J. R., AND LEVI, S. Language support for fast and reliable
message-based communication in singularity OS. In Proceedings of the
1st ACM SIGOPS/EuroSys European Conference on Computer Systems
(EuroSys) (2006).

[23] FORD, B., HIBLER, M., LEPREAU, J., TULLMANN, P., BACK, G.,
AND CLAWSON, S. Microkernels meet recursive virtual machines. In
Proceedings of the second USENIX symposium on Operating systems
design and implementation (OSDI) (1996).

[24] GE, Q., YAROM, Y., CHOTHIA, T., AND HEISER, G. Time protection:
the missing OS abstraction. In Proceedings of the Thirteenth EuroSys
Conference (EuroSys) (2019).

[25] GERBER, S. Authorization, Protection, and Allocation of Memory in a
Large System. PhD thesis, ETH Zurich, 2018.

[26] HAIBO, S. B.-W., RONG, C., YANDONG, C., KAASHOEK, F., MORRIS,
R., PESTEREV, A., STEIN, L., AND WU, M. Corey: An operating
system for many cores. In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation (OSDI) (2008).

[27] HARDY, N. KeyKOS architecture. SIGOPS Operating Systems Review
(1985).

[28] HARRIS, T. Hardware trends: Challenges and opportunities in dis-
tributed computing. ACM SIGACT News (2015).

[29] HÄRTIG, H., HOHMUTH, M., LIEDTKE, J., AND SCHÖNBERG, S. The
performance of µ-kernel-based systems. In Proceedings of the sixteenth
ACM symposium on Operating systems principles - (SOSP) (1997).

[30] HEISER, G., AND ELPHINSTONE, K. L4 microkernels: The lessons
from 20 years of research and deployment. ACM Transactions on
Computer Systems (TOCS) (2016).

[31] HP LABS. The Machine. https://www.labs.hpe.com/
the-machine, 2018. Accessed: May, 2018.

[32] JÄRVINEN, K., AND SKYTTÄ, J. High-speed elliptic curve cryptography
accelerator for Koblitz curves. In Proceedings of the 16th IEEE Sympo-
sium on Field-Programmable Custom Computing Machines (FCCM)
(2008).

[33] KAESTLE, S., ACHERMANN, R., HAECKI, R., HOFFMANN, M.,
RAMOS, S., AND ROSCOE, T. Machine-aware atomic broadcast trees
for multicores. In Proceedings of the 12th USENIX conference on
Operating Systems Design and Implementation (OSDI) (2016).

[34] KARNAGEL, T., HABICH, D., AND LEHNER, W. Adaptive work place-
ment for query processing on heterogeneous computing resources. In
Proceedings of Very Large Data Bases (VLDB) (2017).

USENIX Association 2019 USENIX Annual Technical Conference 721

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://www.labs.hpe.com/the-machine
https://www.labs.hpe.com/the-machine

[35] KIM, S., HUH, S., ZHANG, X., HU, Y., WATED, A., WITCHEL, E.,
AND SILBERSTEIN, M. GPUnet: Networking abstractions for GPU
programs. In 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI) (2014).

[36] KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK, J., COCK,
D., DERRIN, P., ELKADUWE, D., ENGELHARDT, K., KOLANSKI, R.,
NORRISH, M., SEWELL, T., TUCH, H., AND WINWOOD, S. sel4:
Formal verification of an OS kernel. In Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles (SOSP) (2009).

[37] KRIEGER, O., AUSLANDER, M., ROSENBURG, B., WISNIEWSKI,
R. W., XENIDIS, J., DA SILVA, D., OSTROWSKI, M., APPAVOO, J.,
BUTRICO, M., MERGEN, M., WATERLAND, A., AND UHLIG, V. K42:
Building a complete operating system. In Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Computer Systems 2006
(EuroSys) (2006).

[38] KRILL, B., AMIRA, A., AND RABAH, H. Generic virtual filesystems for
reconfigurable devices. Proceedings of IEEE International Symposium
on Circuits and Systems (ISCAS) (2012).

[39] KUMAR, A. Intel’s new mesh architecture: The “superhighway" of the
data center – IT Peer Network, 2017.

[40] LACKORZYNSKI, A., AND WARG, A. Taming subsystems: Capabilities
as universal resource access control in L4. In Proceedings of the Second
Workshop on Isolation and Integration in Embedded Systems (IIES)
(2009).

[41] LIEDTKE, J. On µ-kernel construction. In Proceedings of the fifteenth
ACM symposium on Operating systems principles (OSDI) (1995).

[42] LIN, F. X., WANG, Z., AND ZHONG, L. K2: A mobile operating
system for heterogeneous coherence domains. In Proceedings of the
19th international conference on Architectural support for programming
languages and operating systems (ASPLOS) (2014).

[43] LIU, D., CHEN, T., LIU, S., ZHOU, J., ZHOU, S., TEMAN, O., FENG,
X., ZHOU, X., AND CHEN, Y. PuDianNao: A polyvalent machine
learning accelerator. In Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (2015).

[44] LYONS, A., MCLEOD, K., ALMATARY, H., AND HEISER, G.
Scheduling-context capabilities: A principled, light-weight operating-
system mechanism for managing time. In Proceedings of the Thirteenth
EuroSys Conference (EuroSys) (2018).

[45] MARTIN, M. M. K., HILL, M. D., AND SORIN, D. J. Why on-chip
cache coherence is here to stay. Communications of the ACM (CACM)
(2012).

[46] MCCARTHY, J. Recursive functions of symbolic expressions and their
computation by machine, part i. Communications of the ACM (CACM)
(1960).

[47] MCKENNEY, P., APPAVOO, J., KLEEN, A., KRIEGER, O., RUSSELL,
R., SARMA, D., AND SONI, M. Read-copy update. Ottawa Linux
Symposium (OLS) (2001).

[48] MILLER, M. S., YEE, K.-P., SHAPIRO, J., ET AL. Capability myths
demolished. Tech. rep., Johns Hopkins University Systems Research
Laboratory, 2003.

[49] NEEDHAM, R. M., AND WALKER, R. D. The cambridge CAP computer
and its protection system. In Proceedings of the Sixth ACM Symposium
on Operating Systems Principles (SOSP) (1977).

[50] NIGHTINGALE, E. B., HODSON, O., MCILROY, R., HAWBLITZEL, C.,
AND HUNT, G. Helios: Heterogeneous multiprocessing with satellite
kernels. In Proceedings of the ACM SIGOPS 22Nd Symposium on
Operating Systems Principles (SOSP) (2009), SOSP.

[51] PETER, S., LI, J., ZHANG, I., PORTS, D. R. K., WOOS, D., KRISHNA-
MURTHY, A., ANDERSON, T., AND ROSCOE, T. Arrakis: The operating
system is the control plane. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (2014).

[52] PIKE, R., PRESOTTO, D., DORWARD, S., FLANDRENA, B., THOMP-
SON, K., TRICKEY, H., AND WINTERBOTTOM, P. Plan 9 from Bell
Labs. In Proceedings of Computing Systems, Volume 8 (1995).

[53] REESE, W. Nginx: the high-performance web server and reverse proxy.
Linux Journal 2008, 173 (2008), 2.

[54] ROSSBACH, C. J., CURREY, J., SILBERSTEIN, M., RAY, B., AND
WITCHEL, E. Ptask: Operating system abstractions to manage GPUs as
compute devices. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles (SOSP) (2011).

[55] SHAN, Y., HUANG, Y., CHEN, Y., ZHANG, Y., AND OSDI, I. LegoOS
: A disseminated , distributed OS for hardware resource disaggregation.
In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (OSDI) (2018).

[56] SHAPIRO, J. S., SMITH, J. M., AND FARBER, D. J. EROS: A fast
capability system. In Proceedings of the Seventeenth ACM Symposium
on Operating Systems Principles (SOSP) (1999).

[57] SILBERSTEIN, M. OmniX: an accelerator-centric OS for omni-
programmable systems. In Proceedings of the 16th Workshop on Hot
Topics in Operating Systems (HotOS) (2017).

[58] SILBERSTEIN, M., FORD, B., KEIDAR, I., AND WITCHEL, E. GPUfs:
Integrating a file system with GPUs. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2013).

[59] SO, H. K.-H., AND BRODERSEN, R. A unified hardware/software
runtime environment for FPGA-based reconfigurable computers using
BORPH. ACM Transaction of Embedded Computing Systems (TECS)
(2008).

[60] SODANI, A. Knights landing (KNL): 2nd generation Intel® Xeon Phi
processor. In Proceedings of Hot Chips 27 Symposium (HCS) (2015).

[61] SONG, X., CHEN, H., CHEN, R., WANG, Y., AND ZANG, B. A case for
scaling applications to many-core with OS clustering. In Proceedings of
the 6th European Conference on Computer Systems (EuroSys) (2011).

[62] STEINBERG, U., AND KAUER, B. NOVA: A microhypervisor-based
secure virtualization architecture. In Proceedings of the 5th European
Conference on Computer Systems (EuroSys) (New York, NY, USA,
2010), ACM, pp. 209–222.

[63] TANENBAUM, A., MULLENDER, S., AND RENESSE, R. V. Using
sparse capabilities in a distributed operating system. In Proceedings
of the 6th International Conference on Distributed Computing Systems
(ICDCS) (1986).

[64] WATSON, R. N., WOODRUFF, J., NEUMANN, P. G., MOORE, S. W.,
ANDERSON, J., CHISNALL, D., DAVE, N., DAVIS, B., GUDKA, K.,
LAURIE, B., MURDOCH, S. J., NORTON, R., ROE, M., SON, S., AND
VADERA, M. CHERI: A hybrid capability-system architecture for scal-
able software compartmentalization. In IEEE Symposium on Security
and Privacy (S&P) (2015).

[65] WATSON, R. N. M., ANDERSON, J., LAURIE, B., AND KENNAWAY,
K. Capsicum: Practical capabilities for UNIX. In USENIX Security
Symposium (USENIX Security) (2010).

[66] WENTZLAFF, D., AND AGARWAL, A. Factored operating systems
(fos): The case for a scalable operating system for multicores. ACM
SIGOPS Operating Systems Review (2009).

[67] WOODRUFF, J., WATSON, R. N. M., CHISNALL, D., MOORE, S. W.,
ANDERSON, J., DAVIS, B., LAURIE, B., NEUMANN, P. G., NORTON,
R., AND ROE, M. The CHERI capability model: Revisiting RISC in
an age of risk. In Proceedings of the 41st International Symposium on
Computer Architecture (ISCA) (2014).

[68] ZELLWEGER, G., GERBER, S., KOURTIS, K., AND ROSCOE, T. Decou-
pling cores, kernels, and operating systems. In 11th USENIX Symposium

on Operating Systems Design and Implementation (OSDI) (2014).

722 2019 USENIX Annual Technical Conference USENIX Association

Pragh: Locality-preserving Graph Traversal with Split Live Migration

Xiating Xie, Xingda Wei, Rong Chen, Haibo Chen

Shanghai Key Laboratory of Scalable Computing and Systems

Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

Contacts: rongchen@sjtu.edu.cn

Abstract

Many real-world data like social, transportation, biology, and

communication data can be efficiently modeled as a graph.

Hence, graph traversal such as multi-hop or graph-walking

queries has been key operations atop graph stores. However,

since different graph traversals may touch different sets of

data, it is hard or even impossible to have a one-size-fits-

all graph partitioning algorithm that preserves access local-

ity for various graph traversal workloads. Meanwhile, prior

shard-based migration faces a dilemma such that coarse-

grained migration may incur more migration overhead over

increased locality benefits, while fine-grained migration usu-

ally requires excessive metadata and incurs non-trivial main-

tenance cost.

This paper proposes Pragh, an efficient locality-preserving

live graph migration scheme for graph store in the form of

key-value pairs. The key idea of Pragh is a split migration

model which only migrates values physically while retains

keys in the initial location. This allows fine-grained migra-

tion while avoiding the need to maintain excessive metadata.

Pragh integrates an RDMA-friendly location cache from

DrTM-KV to provide fully-localized accesses to migrated

data and further makes a novel reuse of the cache replace-

ment policy for lightweight monitoring. Pragh further sup-

ports evolving graphs through a check-and-forward mecha-

nism to resolve the conflict between updates and migration of

graph data. Evaluations on an 8-node RDMA-capable clus-

ter using a representative graph traversal benchmark show

that Pragh can increase the throughput by up to 19× and de-

crease the median latency by up to 94%, thanks to split live

migration that eliminates 97% remote accesses. A port of

split live migration to Wukong with up to 2.53× throughput

improvement further confirms the effectiveness and general-

ity of Pragh.

1 Introduction

Graph data ubiquitously exist in a wide range of applica-

tion domains, including social networks, road maps, biologi-

cal networks, communication networks, electronic payment,

semantic webs, just to name a few examples [47]. Graph

traversal (aka multi-hop or graph-walking) queries have

been prevalent and important operations atop graph store

to support emerging applications like fraud detection in e-

commerce transaction [45], user profiling in social network-

ing [11, 18, 6], query answering in knowledge base [52, 63],

and urban monitoring in smart city [64].

With the increasing scale of data volume and the grow-

ing number of concurrent operations, running graph traver-

sal workloads over distributed graph store becomes essen-

tial. Graph traversal workloads are severely sensitive to the

access locality, while it is notoriously difficult to partition

graph with good locality. For example, the difference of

median latency for two-hop query (like friends-of-friends

(FoF) [18]) over a Graph500 dataset (RMAT26) [12] is about

30× (0.75ms vs. 22.5ms) between a single machine and an

8-node cluster. Further, preserving locality is even more chal-

lenging where workloads and datasets may evolve, while it

is common for many production applications [7, 16, 42, 33].

We argue that live migration of graph data is a necessary

mechanism for preserving access locality in graph traver-

sals, because existing alternatives have several limitations in

many scenarios. First, locality-aware graph partitioning al-

gorithms may improve the performance of a specific dataset

and workload [27, 13]. However, one partition scheme can-

not fit all [62]. Further, a proper graph partitioning scheme

for a certain workload may be ineffective and even harmful

to another graph traversal workload. Second, replicating data

to multiple or all machines allows more (fast) localized read

accesses, but also leads to excessive memory overhead as the

increase of machines and heavy synchronization cost among

replicas for write operations.

Hence, live migration becomes a compelling approach to

preserve locality, which has been widely investigated in the

database and distributed systems community over the last

decade. Unfortunately, the unique characteristics of graph

data and traversal operations significantly weaken the ben-

efits of live migration using a shard-based approach, even

which is adopted by almost all existing systems. For example,

USENIX Association 2019 USENIX Annual Technical Conference 723

8

2

4

6

Q2(1):

7 1 48

1

2

3

8

2

3
5

1

8

6
4

7
8 21

8 2
4

4 52

7

5

5
3

4
6

1

3

7

5

Q2(4): Q2(6):

key value key value

Graph Key-value Store

M0 M1

Query

5

Fig. 1. A sample graph (G), key-value store over 2 machines, and

three two-hop queries (Q2).

using a typical shard-based live migration [25, 60] with an

optimal migration plan on above two-hop query experiment

will just decrease 29% (22.5ms vs. 15.9ms) median latency,

still far from the performance of ideal setting (pure localized

access). This is because the majority of the migrated data in

a shard would likely have different location preferences. On

the other hand, decreasing the size of the shard (fine-grained)

would incur high memory and CPU overhead due to storing

and maintaining excessive metadata (a location mapping for

every shard).

In this paper, we present Pragh, an efficient locality-

preserving live migration scheme for distributed in-memory

graph store. The key idea of Pragh is a new migration scheme

called split live migration, which separates the migration of

keys and values. Only the value would be migrated physi-

cally, while the key would always be stationary at its initial

location. This allows fine-grained migration (vertex granular-

ity) while avoiding the need to maintain excessive metadata.

Pragh is made efficient and cost-effective with several

key design choices. First, to migrate well-selected vertices

(scattered over the entire store) efficiently, Pragh proposes

a unilateral migration protocol such that the target machine

can migrate vertices alone by carefully leveraging one-sided

RDMA primitives, while the traversal workloads can concur-

rently execute on the store. Second, Pragh integrates split live

migration with location-based caching [61] to provide fully-

localized accesses to migrated data. This eliminates the re-

striction from the stationary key and unleashes the full power

of split migration. Third, to support the evolving graph with

live migration, Pragh designs a check-and-forward mecha-

nism to resolve the conflict between updating and migrating

data. Finally, fine-grained monitoring both local and remote

accesses to every vertex may incur non-trivial memory and

CPU overhead to traversal workloads. Pragh makes a novel

reuse of the cache replacement policy to concentrate on track-

ing remote data accessed frequently. Pragh further provides

two optional mechanisms (eager and deferred) for local ac-

cess tracking to balance the accuracy and the timeliness of

migration.

We have implemented Pragh by extending DrTM-KV [61],

a state-of-the-art RDMA-enable key-value store, to store

graph data and support split live migration. To demonstrate

Table 1: A detail analysis of shard-based live migration.

Ideal
Shard-based

Before After

Throughput (K ops/sec) 3,248 123 171

Median/50th Latency (msec) 0.75 22.5 15.9

Tail/99th Latency (msec) 4.2 76.6 59.2

Remote Access Rate (%) 0 86.2 64.4

Data Migration Rate (%) - - 85.6

the effectiveness and efficiency of Pragh, we have conducted

a set of experiments using a state-of-the-art graph traversal

benchmark on an 8-node RDMA-capable cluster. The exper-

imental results show that Pragh can increase the throughput

by up to 19× and decrease the median latency by up to 94%

through live migration, as the rate of remote accessing re-

duces from 86.2% to 2.0%. We have also integrated split

live migration to Wukong [52], a state-of-the-art distributed

graph store that leverages RDMA-based graph exploration

(graph traversals in parallel) to provide highly concurrent

and low-latency queries. An evaluation using original con-

current workload benchmark [52] shows that the throughput

increases by up to 2.53× due to using split live migration.

2 Background and Motivation

2.1 Graph Store and Traversal Workload

The graph-structured store (aka graph store) becomes more

and more prevalent in an increasing number of applica-

tions [47] for modeling the relationships among connected

data. Due to fast lookup and good scalability, distributed

key-value stores are widely used by existing graph sys-

tems [52, 64, 57, 22, 31, 24, 51, 63, 54] as the underlying

storage layer to support graph traversal operations efficiently,

which play a vital role for many emerging and crucial appli-

cations [45, 11, 18, 63, 52].

A natural way to build a graph model on top of the key-

value store is to simply use the vertex as the key and the

adjacency list as the value [51]. Further, separate key and

value memory regions are used to support variable-sized key-

value pairs [39, 61, 52]. Specifically, the key region is a fix-

sized hash table, where each entry stores a key and an ad-

dress (i.e., offset and size) of the value region. The value

region stores variable-sized values consecutively. As shown

in Fig. 1, a sample graph (G) is stored into a key-value store

over two machines. Various graph traversal operations (like

FoF, multi-hop query, and random walking) can be imple-

mented by iteratively accessing key and value pairs. For ex-

ample, the two-hop query on vertex 1 (Q2(1)) will first re-

trieve neighbors of the start point (vertex 1) by hashing it as

the key and accessing its value (vertex 7 and 8). The next

hop will use the value in this hop as the keys (hash(7) and

hash(8)) to retrieve their neighbors (vertex 2 and 5) recur-

sively. The accesses over key and value may be either local

or remote according to the partitioning scheme.

724 2019 USENIX Annual Technical Conference USENIX Association

2.2 Poor Locality and Partitioning

For distributed in-memory stores, the locality of data access-

ing is quite important because accessing local memory is

still more than 20× faster than accessing remote memory

across networks, even using high-speed networks [22]. Un-

fortunately, the traversal on distributed graph data is notori-

ously slow due to poor data locality. Prior work shows that

assigning vertices to N machines randomly will lead to the

expected fraction of remote accesses reaching 1− 1
N

[27].

To illustrate the performance impact of locality for graph

store, we conducted a motivating experiment using two-

hop queries (like FoF [18]) over Graph500 dataset [12]

(RMAT26) on an 8-node RDMA-capable cluster. The graph

is partitioned into 8 machines randomly (hash-based), and

a set of vertices randomly sampled with a Zipf distribution

(θ=0.99) is used to run two-hop queries which access fixed

100 friends of 100 friends. As shown in Tab. 1, the distributed

setting using 8 machines only achieves less than 4% through-

put (123K vs. 3,248K) and about 30× median (50th per-

centile) latency (22.5ms vs. 0.75ms) of the ideal setting since

the rate of remote accessing reaches up to 86.2%.1

Therefore, designing locality-aware graph partitioning al-

gorithms has been an active area of research for a decade [27,

13], especially for graph analytics systems. However, one

partition scheme cannot fit all [62]. It is hard or even impos-

sible to handle dynamic workloads or evolving graphs only

relying on static partition-based approaches. One example is

shown in Fig. 1 such that Q2(1) and Q2(4) contends for the

same vertices (8 and 2). The queries may arrive at different

times, which causes false contention. Actually, prior work

on production applications has shown that workloads change

rapidly over time [7, 16, 42, 33].

2.3 Live Migration

Live migration (aka dynamic migration) is a compelling ap-

proach for handling dynamic workloads and has been widely

investigated in the database and distributed systems commu-

nities [20, 21, 26, 25, 35, 60, 5]. Generally, a centralized coor-

dinator will make the migration plan according to the statis-

tics (e.g., access frequency) collected by the monitor on each

machine. The migration threads on the source and/or target

machines will implement the plan by migrating key-value

pairs in a synchronous way (see Fig. 2(b)). Since the posi-

tion of vertices may change after migration, additional meta-

data (POS) will be accessed to look up the latest positions

of the key-value pairs before accessing them (see Fig. 2(a)).

The metadata should be updated by the coordinator during

live migration and usually is consistently cached at each ma-

chine to avoid remote lookup for every accesses.

1The ideal result is gained by running the benchmark on a single machine

(fully local accessing). The throughput is further magnified 8× (the number

of machines).

addr

P(key) P(key)

M0 M1 M0 M1
get(key)

KEY

VAL

H(key)

addr

H(key)

value VAL

BEFORE AFTERw/ META

(a) (b)

Send MSG

Local Read

H(key)

POS

P(key)

KEY

POS

addr

POS

KEY

key

VAL

Fig. 2. (a) The sequence of an access on (kv-based) graph store

and (b) a comparison of accesses before and after live migration.

Shard-based migration. A ubiquitous approach in live mi-

gration is to group the data into shards (partitions) by key

ranges or key hashing [49, 53, 4, 35, 5]. Shards serve as the

unit of migration for load balancing and locality-aware opti-

mization. Prior work mainly focuses on relational workloads

(e.g., TPC-C) or simple CRUD (Create, Read, Update, and

Delete) workloads (e.g., YCSB [15]). Compared to travers-

ing graph data, such workloads with datasets usually have

high access locality (e.g., accessing 1% remote key in TPC-

C). Consequently, leveraging shard-based migration on the

graph store is ineffective and may be harmful, due to the fol-

lowing reasons:

First, migrating data at shard granularity will significantly

weaken the benefits of data migration. Due to lacks of data

locality, after migrating a shard, the majority of the migrated

data in the shard would likely not be accessed by the work-

load at the target machine. Meanwhile, it will also increase

the number of remote accesses at the source machine. Based

on the above motivating experiment, we partition graph data

into one hundred shards per machine (about 70K keys per

shard), similar to prior work [11, 5]. All of the local and re-

mote accesses to every shard are monitored and aggregated

to make an optimal migration plan. As shown in Tab. 1,

the rate of remote accessing only decrease from 86.2% to

64.4% even after migrating more than 85.6% of graph data

(about 20GB). As a result, the throughput only increases 39%

(123K vs. 171K) and the median latency also just decreases

29% (22.5ms vs. 15.9ms), still far from the performance of

an ideal setting.

Second, though decreasing the size of shard could enhance

the effectiveness of migration, it still faces the same draw-

backs of static graph partitioning approaches when handling

dynamic workloads, unless vertices (key-value pairs) serve

as the unit of migration. For example, two irrelevant queries

may contend the same shard even assigning two vertices to

one shard by key ranges, like vertex 2 and 4 for Q2(1) and

Q2(6) in Fig. 1. More importantly, the amount of metadata

(POS) needed to manage the shards would incur extremely

high memory pressure. For example, the metadata for the

motivating experiment will consume about 3GB memory on

each machine to support vertex granularity migration. Each

machine has to cache the entire metadata since the workload

USENIX Association 2019 USENIX Annual Technical Conference 725

may access any vertex of the graph. Consequently, the size of

metadata may exceed the size of graph data when the graph

scales.

3 Approach and Overview

Our approach: split live migration. We propose a new

migration approach, named split live migration, that enables

live migration at the minimum level of granularity (i.e., key-

value pair). A landmark difference compared to prior ap-

proaches is that split live migration has no need of metadata

at all. This is the greatest advantage but also the biggest chal-

lenges for live migration.

The key principle of split migration is to separate the mi-

gration of keys and values. The key will always be stationary

at its initial location, which can be found without metadata

(e.g., key hashing). The value will be migratory on demand

to improve locality or rebalance the load. Our design natu-

rally tackles the issue of memory pressure by avoiding meta-

data due to the stationary key. Further, allowing fine-grained

migration (even a single value) would maximize the effec-

tiveness of data migration for graph store. However, there

are still many challenges before making split live migration

come true.

Opportunity: RDMA. Remote Direct Memory Access

(RDMA) is a networking feature to provide cross-machine

accesses with high speed, low latency, and kernel bypassing.

The one-sided RDMA primitive (e.g., READ, WRITE, and CAS)

allows one machine to directly access the memory of another

machine without involving the host CPU. Much prior work

has demonstrated the benefit of using RDMA for in-memory

key-value stores [39, 22, 32, 61]. Generally, the Get/Put

(read/write) operation first uses RDMA READs to look up the

location (address) of the value by hashing the given key, and

then use RDMA READ/WRITE to retrieve/update the value (see

the left part of Fig. 4(b)). We observe that one-sided RDMA

primitives decouple the accesses of keys and values, which

make it easy and efficient to separate keys and values in phys-

ical. It opens a new opportunity to split live migration.

Challenges and solutions. First, split live migration uses

the key-value pair as the unit of migration, such that the key-

value pairs which will be migrated are scattered over the en-

tire graph store. Therefore, directly using existing protocols

designed for shard-based migration may be inefficient. We

propose a unilateral (target-only) migration protocol that the

target machine can do it alone and efficiently by carefully

leveraging one-sided RDMA primitives (§4.1).

Second, the basic split migration only migrates the values

of key-value pairs, which can at most eliminate about half of

the remote accesses. This is because the read access to the

key of key-value pair (look up the location of the value) will

still be remote. We address this challenge by integrating split

migration with RDMA-friendly location-based caching [61]

to provide fully-localized access to migrated data (§4.2).

key-value
store

key/value ops

...

monitor

migration
threads

worker
threads

key-value
store

coordinator

IB
 S

w
it
c

h

p
l
a
n

get/put

stat

N
e

tw
o

rk

RNIC

S

E M

RNIC

S

E M

RNIC

S

E M

RNIC

S

E M

Storage

Layer

Task

Enigne

M
ig

ra
tio

n

To
o

lk
it

RDMA NIC

Machine 1

...
.
.

1

2

3 1

2

3

Fig. 3. The architecture of Pragh.

Third, the split of key and value after performing mi-

gration presents a new challenge to the support of evolv-

ing graphs, especially for the target-only protocol. We use

a check-and-forward mechanism to resolve the conflict be-

tween data updating and data migrating tasks (§4.3).

Finally, to maximize the effectiveness of data migration,

both local and remote accesses to every key-value pair

should be tracked to generate an optimal migration plan. It

may incur non-trivial memory and CPU overhead to traversal

workloads. We design a lightweight, memory-saving moni-

tor, which reuses the location cache to track frequent remote

accesses and provides two optional mechanisms for local ac-

cess tracking to balance the accuracy and the timeliness of

live migration (§4.4).

Architecture. As shown in Fig. 3, Pragh is a distributed

in-memory graph store with split live migration. It follows

a decentralized architecture to deploy servers on a cluster of

machines connected with a high-speed, low-latency RDMA

network. Each server is composed of three components: task

engines, a storage layer, and a migration toolkit. The task en-

gine binds a worker thread on each core with a task queue

to continuously execute operations (e.g., Get and Put) from

clients or other servers. The storage layer adopts an RDMA-

enabled key-value store over distributed hashtable to support

a partitioned global address space. The migration toolkit en-

ables a monitor to collect statistics of graph store and runs

migration threads to perform live migration. Pragh scales by

partitioning graph data randomly (hash-based) into multiple

servers. Each server stores a partition of the graph, which is

shared by all of the workers and migration threads on the

same machine.

Execution flow. Pragh is designed to handle concurrent op-

erations on graph data with low-latency and high-throughput.

The key advantage of Pragh over previous systems is capa-

ble of physically migrating data to improve locality in a split

way, which can promptly and significantly enhance perfor-

mance for dynamic workloads.

Similar to prior work [53, 60, 35], a centralized coordina-

tor will make migration plan according to the statistics (e.g.,

access frequency) collected by the monitor on each server

and migration policies. The details – how to make a proper

policy and how to find an optimal plan – are beyond the

726 2019 USENIX Annual Technical Conference USENIX Association

M0 M1 M0 M1
get(key)

KEY

VAL

H(key)

KEY

VAL

addr

H(key)

value VAL

KEY

BEFORE AFTERw/o META

(a) (b)

RDMA Read

Local Read

H(key)

addr addr

Fig. 4. (a) The sequence of an access on (kv-based) graph store

without meta-data and (b) a comparison of accesses before and

after split live migration.

scope of this paper and are part of our future work. Currently,

Pragh uses a simple threshold-based policy to generate mi-

gration plans. On each server, the monitor will track the ac-

cesses of worker threads to the key-value store in the back-

ground and report to the coordinator periodically (e.g., 10s)

or instantly (e.g., when exceeding 100 times per second). The

coordinator will compare the statistics from the applicant and

the machine hosting the vertex at present, and approve the mi-

gration if the profit is more than a threshold (e.g., 50% more

accesses per second). After that, the migration threads will

migrate the key-value pairs according to the plan from the co-

ordinator, while the worker threads will continue to execute

queries by accessing the same key-value store concurrently.

Note that the centralized coordinator is just used to collect a

few statistics from servers and approve migrations by simply

comparing the statistics. Further, the fine-grained approach

commonly only needs to migrate much fewer vertices (e.g.,

0.13% in §6.1). Hence, the coordinator may hardly become

a bottleneck in a medium-sized cluster.

4 Split Live Migration

Pragh uses an RDMA-enabled key-value store over dis-

tributed hashtable to store graph data physically. For brevity,

Pragh supposes that each vertex has a unique ID (vid) and

use it as the key. The hash value of the key (H(key)) can

be used to identify the host machine (mid) and the location

in the key region (off). As shown in Fig. 4(a), to get neigh-

bors of a given vertex, the worker thread first uses H(key)

to look up the address of its value and then retrieves the

value (a list of IDs of neighbors). For remote key-value pairs,

RDMA READs are used to access keys and values (see the left

part of Fig. 4(b)), which are at least 20× slower than local

reads. Hence, Pragh uses split live migration to eliminate

such remote accesses.

4.1 Basic Split Migration

We start from the basic migration protocol, assuming that

there only exist traversal workloads (i.e., Get operations) in

the graph store. Since the key is always stationary in the split

migration, Pragh will only move the value to the target ma-

chine. This could improve locality by avoiding remote ac-

cesses to the values (see the right part of Fig. 4(b)).

RDMA_WRITE(0)

RDMA_WRITE(addr)

KEY

VAL
VALRDMA Read

RDMA Write

Type/1
ADDR

value=RDMA_READ(addr)

RDMA_CAS(addr,new-addr)

/7 /22

6463 52 34 0

offset/341 sizeID

offset/340 size/29

Remote
Addr

Local
Addr

M0 M1

new-addr=ALLOC(addr)

Reclaim
Table

Migration
thread

RDMA CAS

5

3

2
1

4

size/64Value

Fig. 5. The execution flow of basic split migration.

Address layout. To avoid the influence between accessing

and migrating key-value pairs, the address (within the key)

should be changed from local to remote in a lock-free way

(e.g., compare-and-swap (CAS)). Therefore, both the local

and remote location of value should use a 64-bit address uni-

formly, which can be modified atomically using both local

and RDMA atomic instructions.2

Considering the machine ID should be added into the ad-

dress, a simple layout may severely restrict the scope of ad-

dress space. Pragh adopts a differentiated layout for local and

remote addresses. As shown in the top left corner of Fig. 5,

The most significant bit is used to present the type of address,

local (0) or remote (1). For local addresses, the rest of the bits

are used to store 29-bit value size and 34-bit offset within the

value region. Thus, the size of a single value and value region

on a single machine can reach 4GB and 128GB respectively

(assuming 8-byte granularity and alignment). For remote ad-

dresses, the value offset still occupy 34 bits to present the

entire remote value region, while the value size reduces to

22 bits for hosting 7-bit machine ID. Thus, the graph store

can scale up to 128 machines, while the size of the maxi-

mum value that can be migrated is limited to 32MB. The

observation is that the system will prefer to migrate the work-

loads rather than very large key-value pairs [52, 57]. Further,

a large key-value pair can be split into multiple ones (ver-

tex decomposition [52, 57]), and each one can be migrated

separately.

Unilateral migration protocol. Similar to traditional

shard-based migration systems, the split live migration also

could be implemented by the collaboration of migration

threads on source and target machines. However, the key-

value pairs which will be migrated, are scattered over the

entire graph store due to lacks of locality. It means that mi-

grating multiple key-value pairs may incur a prolonged in-

terruption to the concurrent graph accessing and/or lengthy

migration delay since multiple addresses (within separated

keys) should be modified by atomic operations (e.g., CAS).

Pragh proposes a unilateral (target-only) migration proto-

col based on one-sided RDMA primitives. It only uses the

2Note that RDMA primitives guarantee atomic 64-bit transfer [9], and RDMA

READ/WRITE operations are also cache coherent with local accesses [22, 61].

USENIX Association 2019 USENIX Annual Technical Conference 727

MIGRATE(key)

1 retry:

2 kmid = H(key).mid � e.g., key % machines

3 addr = LOOKUP(kmid, key)

4 buf = ALLOC(addr.sz)

5 new_addr = { 1, local_mid, addr.sz, buf }

6 RDMA_READ(addr.mid, buf, addr.off, addr.sz)

7 if !RDMA_CAS(kmid, H(key).off, addr, new_addr)

8 goto retry � conflict w/ PUT

9 zero = 0 � invalidate value

10 RDMA_WRITE(addr.mid, addr.off, zero, 8)

11 RDMA_WRITE(addr.mid, reclaim, addr, 8) � reclaim5

3

2

1

4

Fig. 6. Pseudo-code of Migrate operation.3

migration thread on the target machine to migrate the key-

value pair instantly, while the worker threads on every ma-

chine can still access the key-value pair concurrently. Fig. 5

illustrates three steps of the migration protocol (a detail

pseudo-code is shown in Fig. 6). First, the migration thread

on the target machine will allocate memory space in local

value region (new_addr) to host migrated value (❶), accord-

ing to the size in the original address. Second, the migra-

tion thread will retrieve the value using one RDMA READ from

the original address to the new address (❷). Finally, one

RDMA CAS is used to replace the original (local) address with

the new (remote) address (❸).

Invalidation and reclaim. Unilateral migration protocol

will incur two new problems. First, the memory of migrated

value in the source machine should be invalidated. How-

ever, some worker threads may still have the original address

of the migrated value and will access it in the future. To

solve it, Pragh proposes a passive invalidation mechanism.

The migration thread will invalidate the original memory

of migrated value by zeroing (RDMA WRITE) the size within

the value (❹). Before using the retrieved value, the worker

thread should check whether the size within the value and ad-

dress are equal. If not, the address should be regained. Note

that the worker thread can safely read the value from the

original memory before invalidation even it has just been mi-

grated (❸).

Second, the memory of migrated value on the source ma-

chine should be reclaimed. However, it is hard or even im-

possible for the migration thread on the target machine to

solely free the memory. Therefore, Pragh uses a lease-based

mechanism to reclaim the memory of migrated values in

the background by a garbage collection (GC) thread on the

source machine.4 The migration thread will actively write

(RDMA WRITE) the original address to the reclaim table5 of the

source machine, at the end of live migration (❺). The GC

thread on each machine will periodically check the reclaim

table to free the expired memory, which has been migrated

3RDMA provides fences between different requests [38], and Pragh uses

them before invalidating and reclaiming the memory (Line 10 and 11).
4Pragh uses the precision time protocol (PTP) [1] to implement lease.
5We implement the reclaim table like the circular buffer [22].

M0 M1 M0 M1
get(key)

VAL

H(key)

KEY

VAL

addr

H(key)

value

L$

VAL

addr

L$

addr

KEY

BEFORE AFTERw/o META

(a) (b)

RDMA Read

Local Read

H(key)

KEYL$

Fig. 7. (a) The sequence of an access on (kv-based) graph store

with location cache and (b) a comparison of accesses before and

after split live migration with location cache (for remote kv pair).

before a pre-agreed lease (e.g., 60s). All the worker threads

comply with the convention that the value address obtained

before a lease duration should not be used, since it may have

been freed and reused. The performance impact could be triv-

ial by using a long-term lease.

4.2 Fully-localized Split Migration

The basic split migration only avoids remote accesses to the

values, which limits the effects of migration since only at

most half of remote accesses can be eliminated.

Observation: location cache. Prior work [61, 23, 59] pro-

poses location-based caching for RDMA-friendly key-value

stores, which aims at avoiding remote accesses to the keys.

Different to caching the content (value) of key-value pairs,

the location cache (L$) only stores the location (address) of

key-value pairs, which is very space-efficient and effective

(see the left part of Fig. 7). We observe that location cache is

a perfect counterpart to split migration. They focus on two

different halves of the access to the remote key-value pair,

and the candidates of them are also well matched, namely

remote key-value pairs frequently accessed. Finally, a small

cache has negligible memory overhead (e.g., 128MB) and

lookup cost, yet it is sufficient to achieve fully-localized ac-

cesses for most workloads [46, 61].

Integration with location cache. Pragh extends the graph

store with location cache (L$) and integrates it with split live

migration to enable fully localized accesses after migration.

Fig. 8 illustrates the pseudo-code of Get operation with the

integration of location cache and split live migration. When

accessing a remote key-value pair (Line 9), the worker thread

will first check location cache (Line 21) and fill the cache (if

missed) with the address of the value (Line 25) obtained by

the remote access to the key (Line 24). Given the address, the

worker thread will retrieve the value using one RDMA READ

(Line 14).

If the worker threads access the key-value pair frequently

enough, the value will be migrated to the local using the basic

migration protocol. After that, the address stored in location

cache will be updated by the new address, which points to the

local value region. Therefore, the accesses to the key-value

pair will be fully localized (Line 10-12), as shown in the right

part of Fig. 7. In contrast, the local key-value pair could also

728 2019 USENIX Annual Technical Conference USENIX Association

GET(key, buf)

+1 retry:

2 kmid = H(key).mid � e.g., key % machines

3 addr = LOOKUP(kmid, key)

4 if kmid == local_mid � local key

+5 if addr.type == 0 � local value

6 MEMCPY(buf, vals[addr.off], addr.sz)

+7 else � remote value (migrated)

+8 RDMA_READ(addr.mid, buf, addr.off, addr.sz)

9 else � remote key

+10 if addr.type == 1 � migrated

+11 && addr.mid == local_mid � local value

+12 MEMCPY(buf, vals[addr.off], addr.sz)

+13 else � remote value

14 RDMA_READ(addr.mid, buf, addr.off, addr.sz)

+15 if CHECK(addr, buf)

+16 if kmid != local_mid

+17 cache.DELETE(key) � invalidate

+18 goto retry

LOOKUP(kmid, key)

19 if (kmid == local_mid) � local key

20 return keys[H(key).off]

x21 if cache.FIND(key)

+22 && !EXPIRED(cache.GET(key).lease)

x23 return cache.GET(key).addr � cache hit

24 RDMA_READ(kmid, addr, H(key).off, 8)

x25 cache.INSERT(key, addr) � fill cache

+26 cache.GET(key).lease = NOW()

27 return addr

Fig. 8. Pseudo-code of Get operation with location cache. The

code lines with “x” and “+” stand for additional instructions to

integrate with location cache and split live migration, respectively.

be migrated to other machines, thus the type of address will

be used to decide how to retrieve the value (Line 5-8).

Finally, the address stored in the location cache should

also follow the convention of the invalidation and the reclaim

mechanisms. First, if the retrieved value is invalid (Line 15),

the worker thread has to delete the address in location cache

for the remote key-value pair (Line 16-17), and needs to retry

(Line 18). Second, the cached address must expire after a

lease duration (e.g., 60s) from the last cache time (Line 22

and 26). Note that the duration of the (cache) lease should be

equal or smaller than that of the (reclaim) lease (§4.1).

4.3 Full-fledged Split Migration

The basic migration protocol only considers traversal work-

loads (i.e., Get operations) concurrently execute in the graph

store. Pragh extends it with a check-and-forward mecha-

nism to support the evolving graph (i.e., Put operations).

For brevity, suppose that graph store has provided some

mechanisms (e.g., snapshot read [52, 64]) to run traversal

workloads over evolving graphs correctly.6 Therefore, Pragh

only tackles the conflict between split live migration and the

change of graph. More specifically, Pragh only needs to con-

6Pragh assumes the Put operation will use atomic in-place updates on the

key to ensure consistency, which is common in prior work [52, 64].

PUT(key, val)

+1 retry:

2 kmid = H(key).mid

3 addr = LOOKUP(kmid, key)

+4 if addr.mid != local_mid � migrated

+5 SEND(addr.mid, key, val) � forward PUT op

+6 return false

7 new_addr = WRITE_VALUE(addr, val)

8 if !RDMA_CAS(kmid, H(key).off, addr, new_addr)

9 goto retry � conflict w/ put or migrate

10 zero = 0 � invalidate value

11 MEMCPY(vals[addr.off], zero, 8)

12 MEMCPY(reclaim, addr, 8) � reclaim

13 return true

Fig. 9. Pseudo-code of Put operation. The code lines with “+”

stand for additional instructions to support split live migration.

sider the concurrent update to edges (i.e., change the value

of a key-value pair).

We observe that both Migrate and Put operations will

change the address within the key atomically to mark the

success of processing (Line 7 in Fig. 6 and Line 8 in Fig. 9).7

Moreover, Put operation will always be assigned to the ma-

chine hosting the key at first. So for key-value pairs migrated,

a better choice is to forward the Put operation to the machine

hosting the value upon conflicts, which also ensures consis-

tency and reclaims the memory. Consequently, Pragh adopts

different strategies for Migrate and Put operations when de-

tecting the conflict over the address; Migrate operation will

be retried (Line 8 in Fig. 6), while Put operation will forward

itself (Line 5 in Fig. 9), if it conflicts with some Migrate

operation and then is retried (Line 9 in Fig. 9). Note that

Put operation will always update the address in the machine

hosting the key using RDMA CAS, even though Put operation

is forwarded.

4.4 Lightweight Monitoring

To generate a proper migration plan, the coordinator should

collect the statistics of both local and remote accesses to ev-

ery key-value pair. A (much) higher remote access number

from a certain machine to a key-value pair in the most re-

cent interval (e.g., 10s) indicates that migrating the key-value

pair to that machine may improve locality (fewer remote ac-

cesses). It has been a great challenge to track the accesses at

the granularity of key-value pairs.8 Even worse, the remote

accesses using RDMA READ contributes much more extra bur-

dens (both memory and CPU overhead) to the monitor, since

each machine has to track the accesses to remote key-value

pairs (except local key-value pairs).

Pragh designs a lightweight, memory-saving monitor for

split live migration by tracking local and remote accesses

separately. For remote accesses, worker threads may access

7Suppose that Put operation will change the size or the offset of the address

(or both), namely addr is not equal to new_addr.
8Relational database can leverage table schema to reduce the number of

tuples should be tracked, by grouping co-accessed tuples into blocks [53,

25, 50, 60]. Unfortunately, graph store is generally schema-less.

USENIX Association 2019 USENIX Annual Technical Conference 729

any key-value pairs, while the monitor may (very likely) only

care about remote key-value pairs accessed frequently. This

observation also matches the intention of the location cache.

Hence, Pragh reuses the cache to track (partial) remote ac-

cesses(remote key). The monitor relies on the replacement

policy of cache to recognize the key-value pairs (worth track-

ing) freely. Note that the accesses for the values migrated to

local will still be tracked through the cache.

For local accesses, reserving space for every key and track-

ing every access might be not worth, especially for a very

large store. This is because only a small fraction of key-value

pairs should be migrated for a while. For example, migrating

less than 0.2% of key-value pairs is sufficient for the motivat-

ing experiment (§6.1). Therefore, Pragh allows to skip track-

ing local accesses to the key-value pairs and provides two

optional mechanisms to balance the timeliness and the accu-

racy of split live migration. Note that the monitor on each

machine will report to the coordinator when remote accesses

to a key-value pair exceed a threshold.

Eager migration: The coordinator will eagerly approve the

migration of the key-value pair. After migration, the ma-

chine hosting the key will track the (remote) accesses to the

key-value pair using a separate table, and then may migrate

it back in future if it accesses the key-value pair more fre-

quently.9

Deferred migration: The coordinator will notify the machine

hosting the key to track the (local) accesses to the key-value

pair using a separate table. After a migration interval, the

coordinator will decide whether to migrate the key-value pair

according to the statistics from all of the machines.

4.5 Discussion

Even though the current design of split live migration highly

relies on RDMA, we believe that it can still benefit graph

traversal workloads without RDMA, including no need for

metadata and vertex granularity migration. However, after

migrating the value to local, the cost to retrieve the address

would be almost the same as the cost to retrieve the value

directly. Hence, location cache must be deployed even with-

out RDMA. On the other hand, the lack of RDMA would

also need to rethink the implementation of migration proto-

col. Our future work may extend Pragh to support commod-

ity networks without RDMA.

5 Implementation

Fault tolerance. Pragh supposes distributed in-memory

graph store has provided durability and/or availability by us-

ing specific mechanisms like checkpointing or replication.

Pragh only needs to consider the interrupted migration tasks

and the recovery of crashed machines, because split live mi-

gration only changes the location of key-value pairs rather

9Pragh relies on the coordinator to prevent the “ping-pong” of migrations,

which prefers not to migrate the vertex competed by multiple machines.

than the content of key-value pairs.

Interrupted migration tasks: If the crashed machine is the

source of migration, there is nothing to do since the key-

value pair will be recovered on the crashed machine later.

If the crashed machine is the target of migration, a corner

case that the interruption occurs after replacing address (❸

in Fig. 5) but before reclaiming memory (❺ in Fig. 5) will

cause a little memory leakage, which can be detected and re-

claimed by scanning the entire value memory region in back-

ground.

System recovery: Pragh relies on the mechanism provided by

graph store to detect machine failures, like Zookeeper [30].

It will notify surviving machines to assist the recovery of

crashed machines, which needs to handle two kinds of key-

value pairs. First, the key-value pairs hosted by a crashed

machine will be reloaded by the substitute of the crashed

machine. Before that, all surviving machines will flush ad-

dresses in location cache which point to the key-value pairs

hosted by crashed machines (i.e., H(key).mid) whether they

have been migrated or not, and reclaim the memory of

values migrated from crashed machines. Second, the key-

value pairs, hosted by a surviving machine but migrated to a

crashed machine, will be reloaded by the surviving machine.

Before that, all surviving machines will also flush addresses

in location cache which point to the key-value pairs migrated

to the crashed machines (i.e., addr.mid). The coordinator

will record the latest target machines of values migrated per-

sistently before approving the migration, which could help

surviving machines reload vertices precisely. Moreover, all

workloads running on surviving machines involving crash

machines will be aborted and suspended until recovery is

complete. Finally, the coordinator in Pragh is stateless and

easy to recover. The coordinator failure will not influence

the execution of worker threads and only pause launching

new migration tasks and recovering crashed machines. The

migration thread can continue to complete the outstanding

migrations.

Optimizations. Pragh adopts a unilateral migration proto-

col (see §4.1) to migrate one key-value pair (vertex) at a

time, which requires at most five one-sided RDMA opera-

tions: two READs to lookup and retrieve the value, one CAS to

change the address atomically, and two WRITEs to invalidate

and reclaim the original memory. Though this approach can

provide instant response to migration demands and fully by-

pass the CPU and kernel of source machine, the throughput

of migration may be bottlenecked by the network due to too

many RDMA operations with small payloads.

To remedy it, Pragh enables three optimizations to further

accelerate split migration. First, in most cases, the migrated

key-value pair is frequently accessed by the target machine;

thus, its address (very likely) has been already cached in the

location cache. It means that the migration thread can skip

the first RDMA READ to look up the address. Second, Pragh will

730 2019 USENIX Annual Technical Conference USENIX Association

 10
2

10
3

10
4

T
h

p
t
(K

 o
p

s
/s

) Orig vs. Shard-based

+39% (123K vs. 171K)

Orig vs. Split

+90% (123K vs. 234K)

Orig/Cache vs. Split/Cache

+888% (238K vs. 2,352K)

 10
2

10
3

10
4

Summary

Ideal: 3,248K

Orig: 123K

 10
3

10
4

10
5

L
A

T
5

0
 (

µ
s
)

-29% (22.5ms vs. 15.9ms)

-47% (22.5ms vs. 11.9ms)

-89% (11.0ms vs. 1.2ms)
 10

3

10
4

10
5

Orig: 22.5ms

Ideal: 0.75ms

 10
3

10
4

10
5

L
A

T
9

9
 (

µ
s
)

-22% (76.6ms vs. 59.2ms)

-45% (76.6ms vs. 41.8ms)

 -88% (40.3ms vs. 4.5ms)

 10
3

10
4

10
5

Orig: 76.6ms

Ideal: 4.2ms

0
 20
40
60
80

100

-10 0 10 20 30

R
e

m
o

te
A

c
c
 R

a
te

 (
%

)

Time (s)

-25% (86.2% vs. 64.4%)

-10 0 10 20 30

Time (s)

-45% (86.2% vs. 47.1%)

-10 0 10 20 30

Time (s)

-95% (43.6% vs. 2.0%)
0

 20
40
60
80

100

S
h

a
rd

S
p

lit

+
C

a
c
h

e

Orig: 86.2%

Ideal: 0%

Fig. 10. A comparison of migration schemes on the traversal benchmark with a skewed workload (a Zipf distribution with θ = 0.99).

migrate multiple key-value pairs concurrently in a pipelined

fashion to better utilize network bandwidth. Each RDMA

operation to migrate one key-value pair is implemented as

one stage, and Pragh schedules these stages without waiting

for the request completion. Finally, since the memory inval-

idation and reclaim are not on the critical path to migrate

one key-value pair10, Pragh enables passive ACK [59] to

acknowledge the completion of such two RDMA WRITEs pas-

sively, which further reduces the network bandwidth. As a

result, a single migration thread is sufficient to migrate more

than one million vertices per second (§6).

Load balance. Though Pragh mainly focuses on using live

migration to improve the locality of graph traversal work-

loads, it also can be used to rebalance load across machines,

similar to prior work [53, 60, 35]. Basically, it all depends

on the migration plan generated by the coordinator. Gener-

ally, the traversal workload will be sent to the machine host-

ing the initial vertex and run to completion. The remote key-

value pairs will be retrieved by RDMA operations. Therefore,

the coordinator should recognize such hotspots and generate

proper plans to scatter them over all of the machines using

live migration, like Pragh. Meanwhile, different goals also

need different migration policies and statistics. It is orthogo-

nal to the design of Pragh and beyond the scope of this paper.

6 Evaluations

Hardware configuration. All evaluations were conducted

on a rack-scale cluster with 8 nodes. Each node has two 12-

core Intel Xeon E5-2650 v4 processors and 128GB DRAM.

Each node is equipped with two ConnectX-4 MCX455A

10To ensure consistency, the (original) memory invalidation must be com-

pleted before the next Put operation on (new) memory starts, which is

easy to implement with the check-and-forward mechanism (§4.3).

100Gbps InfiniBand NIC via PCIe 3.0 x16 connected to a

Mellanox SB7890 100Gbps IB Switch, and an Intel X540

10GbE NIC connected to a Force10 S4810P 10GbE Switch.

In all experiments, we reserve four cores on each CPU to

generate requests to avoid the impact of networking between

clients and servers as done in prior work [56, 58, 61, 14, 60,

52]. All experimental results are the average of five runs.

Traversal benchmark. Inspired by YCSB [15], we build

a simple benchmark to evaluate the effectiveness of dif-

ferent migration approaches for graph traversal workloads.

The traversal benchmark uses a synthetic graph provided by

Graph500 [12]. In this paper, the graph with 226 vertices and

230 edges (RMAT26) is used as default dataset since we need

to run the benchmark on a single machine to gain the per-

formance of ideal setting (pure localized access). Note that

the experimental results on larger graphs (e.g., RMAT29) are

similar. The traversal benchmark consists of 95% two-hop

queries (Get) and 5% edge updates/inserts (Put), similar to

YCSB-B (read-heavy) [15]. Note that the majority of many

traversal workloads [11] are two-hop queries, and it is easy to

compose other complicated queries like SPARQL query [52].

The starting vertices of two-hop queries are chosen accord-

ing to a Zipf distribution with θ = 0.99. The scope of start-

ing vertices and the number of neighboring vertices retrieved

could be configured. The default values are 210 and 100, re-

spectively. We will compare the performance impact with dif-

ferent settings in separate experiments.

Comparing targets. The following five results are pro-

vided in the evaluation of the traversal benchmark. Orig in-

dicates the performance of running the benchmark over the

graph data partitioned randomly and without data migration.

Ideal is the result gained by running the benchmark on a sin-

gle machine. Specifically, throughput is simply magnified by

USENIX Association 2019 USENIX Annual Technical Conference 731

1

10

100

2
10

2
14

2
18

2
22

2
26

N
o

rm
a

liz
e

d
 S

p
e

e
d

u
p

Scope of Starting Vertex

Shard-based
Split Basic

Split w/ Cache

 0

 20

 40

 60

 80

 100

 120

2
10

2
14

2
18

2
22

2
26

R
e

m
o

te
 A

c
c
 R

a
te

 (
%

)

Scope of Starting Vertex

Shard-based
Split Basic

Split w/ Cache
Orig

Fig. 11. A comparison of migration benefits for different ap-

proaches with the increase of scopes of starting vertices.

the number of machines (i.e., 8×). Shard-based represents

the performance of a shard-based migration approach, which

deploys one hundred shards at each machine, similar to prior

work [11, 5]. Note that we always generate optimal migra-

tion plans for shard-based migration by tracking every access

but do not consider the tracking cost. Split/Cache and Split

are the performance of Pragh using split live migration with

and without location cache. The size of the location cache is

128MB. The migration plan is built by the statistics collected

by our lightweight monitor. The default interval is set to 10

seconds.

6.1 Migration Benefits

To study the benefits of migration approaches, we run the

traversal benchmark using different migration schemes and

compare to the result of the original and ideal settings. As

shown in Fig. 10, the original throughput and latency are

about 26× slower than the ideal results (123K vs. 3,248K)

since about 86.2% accesses to the key-value store are re-

mote. Shard-based approach can only increase the through-

put by 39% (123K vs. 171K) and decrease the median (50th

percentile) latency by 29% (22.5ms vs. 15.9ms) as it just re-

moves about 25% remote accesses. Pragh can almost double

the throughput and reduce the latency by half, thanks to the

basic split migration, which removes nearly all remote ac-

cesses to the values. Using location cache can remove almost

all of the remote accesses to the keys, as the cache hit rate is

about 99%. Note that the performance of enabling basic split

migration or location cache alone are similar, because both

of them still need one RDMA READ to retrieve the remote key

or value separately.

When combining two techniques, the throughput of Split/-

Cache can reach 2,352K queries per second (19× compare to

Orig). It has achieved close to 72% of ideal performance. The

remaining 2.0% of remote accesses is due to the competition

on vertices shared by multiple queries running on different

machines. Note that traditional migration scheme is hard to

integrate with location cache, since they will migrate both

keys and values physically and make location cache useless.

Migration time and network traffic. Both split migration

and shard-based migration can complete migration in sec-

onds since we optimize the data transmissions in both meth-

ods. For shard-based migration, we migrate the shards in

block granularity to fully utilize network bandwidth. How-

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

C
D

F
 (

%
)

Latency (msec)

Orig

Split/Cache

99.0

99.2

99.4

99.6

99.8
99.9

100.0

 0 10 20 30 40 50 60 70 80

C
D

F
 (

%
)

Latency (msec)

Split/Cache

Fig. 12. The CDF graph of latency for Put operations.

ever, split migration is still faster even using more net-

work round-trips for one key. This is because fine-grained

migration migrates much less data than coarse-grained,

shard-based migration. For this experiment, only 78,242

keys (0.13% of the total vertices) are migrated in split migra-

tion, where 782MB data is migrated in total. For comparison,

85.6% of shards (685 out of 800) are migrated in shard-based

migration with a total size of 20GB key-value to transfer.

Scope of starting vertices. Generally, the query will start

from a certain type of vertices (e.g., users or tweets in social

networks), and the size of the subset of vertices may be var-

ious. Fig. 11 further presents the impact of using different

scopes of starting vertices in the traversal benchmark from

210 to 226. The speedup after migration decreases with the

increase of scope steadily due to the increase of contention

on key-value pairs accessed by multiple queries. It will also

result in the rise of remote accesses (see Fig. 11(b)).

Impact on Put operations. To reveal the impact of check-

and-forward mechanism in Pragh on the latency of Put oper-

ations, we use an update-heavy traversal benchmark, which

consists of 50% two-hop queries (Get) and 50% edge up-

dates/inserts (Put), similar to YCSB-A [15]. Fig. 12(a)

shows the CDF graph of latency for Put operations with and

without split live migration. After migration, the latency of

99.9% Put operations decreases significantly, thanks to the

decline of waiting time in the queue. Moreover, as shown in

Fig. 12(b), the check-and-forward mechanism will just im-

pact the 99.9th percentile latency, since about 0.11% Put op-

erations updates migrated key-value pairs and is forwarded

to another machine. Note that Pragh only migrates 0.13% of

total key-value pairs. The increase of latency is mainly con-

tributed by the extra cost for forwarding the operation, wait-

ing in the queue, and re-executing the operation.

Uniform workload. We also evaluate the traversal bench-

mark with a uniform workload. Shard-based approach can

hardly gain benefits and only increases the throughput by

8% (126K vs. 136K) after migration, as the remote access

rate just drops from 85% to 82%. In contrast, the basic split

migration eliminates over 43% of remote accesses and in-

creases the throughput by 84% (126K vs. 232K). By using lo-

cation cache, the throughput of Split/Cache can reach 1,521K

queries per second (12× compared to Orig). The remote ac-

cess rate reduces to 5%.

732 2019 USENIX Annual Technical Conference USENIX Association

 0

 2

 4

 6

 8

 10

 12

 14

8 16 64 256 1K 4K 16K

T
h

p
t

(M
 v

tx
s
/s

e
c
)

Payloads (Bytes)

1 thread

24 threads

 0

 50

 100

 150

 200

8 16 64 256 1K 4K 16K

B
a

n
d

w
id

th
 (

G
b

p
s
)

Payloads (Bytes)

NIC: 100 Gbps x2

1 thread

24 threads

Fig. 13. The throughput and bandwidth of unilateral migration

using 1 and 24 threads.

6.2 Migration Speed

To evaluate the capability of unilateral migration protocol,

we conduct an experiment to migrate values from a remote

machine to local with full speed. Fig. 13 shows the through-

put of migration and network bandwidth consumed with

the increase of payload (i.e., value) size. A single thread is

enough to migrate values for millions of vertices per second

with less than 4KB payloads. Using parallel migration with

24 threads can further increase the throughput of moving val-

ues to more than 10 million per second. Further, using mul-

tiple RDMA primitives to migrate a single value will not be

limited by network. It should be noted that split live migra-

tion will only use the CPU of the target machine.

 0

 1000

 2000

 3000

-10 -5 0 5 10 15 20

T
h
p
t
(K

 o
p
s
/s

)

Time (s)

#1 Eager migration Deferred migration

#2 Eager migration

Deferred

Eager

Fig. 14. The throughput timeline for split live migration (w/

Cache) using eager or deferred mechanism.

6.3 Eager Migration vs. Deferred Migration

Pragh provides two optional migration mechanisms, eager

and deferred, to balance the accuracy and the timeliness of

live migration. Fig. 14 compares these two mechanisms us-

ing the traversal benchmark. The monitor on each machine

tracks remote accesses and reports the statistics to the coordi-

nator periodically. After receiving statistics at 0 second, the

coordinator adopts different mechanisms to notify migration

threads. For eager migration, all of the migration threads will

start migration directly, and the throughout reflects the bene-

fits immediately, increasing from 239K to 2,142K. However,

since the migration plan may not be optimal, the second mi-

gration happens at the next interval (after about 10s). The

throughput further increases to 2,362K. For deferred migra-

tion, the coordinator will only ask monitors to track the local

accesses on the potential key-value pairs for migration at 0

second, and do the migration with an optimal plan at the next

interval. The throughput will directly increase from 239K to

about 2,362K.

 10
2

10
3

10
4

0
0
:0

0

0
0
:0

5

0
0
:1

0

0
9
:5

5

1
0
:0

0

1
0
:0

5

1
0
:1

0

1
9
:5

5

2
0
:0

0

2
0
:0

5

2
0
:1

0

2
9
:5

5

3
0
:0

0

3
0
:0

5

3
0
:1

0

3
9
:5

5

4
0
:0

0

4
0
:0

5

4
0
:1

0

T
h
p
t
(K

 o
p
s
/s

)

Time (mm:ss)

Split w/ Cache Shard-based

Fig. 15. The throughput timeline for dynamic workloads using

shard-based or split live migration.

6.4 Dynamic Workloads

To study the effectiveness of split live migration in the face

of dynamic workloads, we change workloads every 10 min-

utes by using non-overlapping scopes of starting vertices. As

shown in Fig. 15, the performance notably drops every time

the workloads change, because the location of vertex mi-

grated for the current workload is very likely not suitable for

the next workload. Shard-based migration can only provide

very limited performance improvement as expected. Split

migration with location cache can recover the performance

after migration. Note that Pragh uses instant migration in

this case, which is hard to implement in traditional migra-

tion approaches. When the monitor detects the frequency of

accesses to some remote key-value pair exceeding a thresh-

old (100 times per second), it will instantly report to the

coordinator. Further, the migration on every machine can

move values at any time, and there is no need to synchronize

with other machines. Therefore, the performance is recov-

ered gradually in about 5 seconds. Note that using a more

aggressive policy could further reduce the time spent in re-

covery.

6.5 Application: RDF Graph and SPARQL Query

Wukong+M. To demonstrate the generality of Pragh, we

have integrated split live migration with Wukong [52], called

Wukong+M. Wukong is a state-of-the-art distributed graph

store that leverages RDMA-based graph exploration to pro-

vide highly concurrent and low-latency SPARQL queries

over large RDF graph datasets. RDF (Resource Description

Framework) is a standard data model for the Semantic Web,

recommended by W3C [2], which presents linked data as a

set of 〈sub ject, predicate,ob ject〉 triples forming a directed

and labeled graph. SPARQL is the standard query language

for RDF datasets, which can be supported by using graph

exploration (i.e., graph traversals in parallel). We also im-

plement an RDMA-friendly location cache on Wukong+M,

similar to DrTM-KV [61].

Benchmark and workload. We use the Lehigh University

Benchmark (LUBM) [3] which is widely used to evaluate the

performance of RDF query systems [63, 36, 28, 52, 64, 37].

More specifically, we use LUBM-10240 dataset where each

machine deploys about 32GB memory. We use the query set

published in Atre et al. [8] and a mixed workload consist-

USENIX Association 2019 USENIX Annual Technical Conference 733

 0

 200

 400

 600

 800

 1000

T
h
p
t
(K

 o
p
s
/s

)

254 267

407
455

642

Wukong

+Shard

+Split

Wukong w/ Cache

+Split w/Cache

 0

 20

 40

 60

 80

 100

R
e
m

o
te

 A
c
c
 R

a
te

 (
%

) 86 85

52
46

10

Fig. 16. The comparison of (a) throughput and (b) remote access

rate using a mixed workload for Wukong with various settings.

ing of 6 classes as the same in the original paper [52]. The

workload is skewed such that the starting vertices are chosen

following a Zipf distribution (θ = 0.99) over all vertices.

Performance. As shown in Fig. 16, Wukong+M (+Split)

with location cache (w/ Cache) can outperform all other

counterparts by up to 2.53×, thanks to split live migration

that eliminates about 88% remote accesses (from 86% to

10%). Shard-based live migration (+Shard) only improves

the mixed query throughput by about 5%, since it is hard

to balance requirements for keys in each shard. The basic

split migration (+Split) outperforms shard-based migration

by 1.52× (407K ops/s vs. 267K ops/s) due to allowing fine-

grained migration. After enabling location cache (+Split w/

Cache), the throughput further increases by 1.58× (642K op-

s/s vs. 407K ops/s).

7 Related Work

Live migration on relational stores. There have been

many efforts to provide live migration features for distributed

relational databases, considering different low-level archi-

tectures, such as shared-storage [20, 21, 26, 48, 19, 10] or

partitioned database [53, 25, 60, 35]. They mainly focus

on migrating shards efficiently across machines for balanc-

ing load and reducing latency. There are two main types

of approaches: pre-copy based [20, 21, 60] and post-copy

based [26, 25, 35].

To the best of our knowledge, almost all such systems

adopt shard-based mechanisms (e.g., range or hash partition-

ing [17, 43]) and the changes of the ownership of shard are

necessary when migration. Hence, they must maintain the

state of shards explicitly by using internal global data struc-

tures or external location services [55, 4, 5]. Differently, split

live migration fixes the (logical) location of data to avoid the

maintenance overhead, which makes it different from all of

the previous approaches.

The inherent drawback of one-off sharding has driven a

few recent efforts to support dynamic sharding [25], auto

sharding [4] and application-specific sharding [5] techniques.

However, when shards still serve as the unit of migration, it is

hard to balance the effectiveness (granularity) and efficiency

(CPU and memory) for large-scale graph data with dynamic

workloads due to lacks of locality.

Live migration on graph stores. The increasing impor-

tance of graph data models has stimulated a few recent

designs of vertex migration or graph re-partitioning tech-

niques targeting graph systems [44, 62, 34, 41, 65], since

it is hard or even impossible to handle dynamic workloads

or evolving graphs only relying on static partition-based ap-

proaches [27, 13]. The most related work is Mizan [34], a dis-

tributed graph processing system that leverages fine-grained

vertex migration to improve load balance for iterative ana-

lytics workloads (e.g., PageRank and DMST [34]) over a

static graph. Further, vertex migration can only happen when

all worker threads reach a synchronization barrier (stop-the-

world), and all selected vertices in one machine can only be

migrated to a pairwise machine (non-flexible). By contrast,

Pragh uses live migration to preserve locality for concurrent

and dynamic traversal operations over evolving graphs. Thus,

it makes many fine-grained migrations on demand, and ver-

tices can be migrated to any machines flexibly.

Most graph re-partitioning approaches [44, 62, 65] need to

maintain global metadata to map vertices to partitions, and

use multiple phases to iteratively migrate vertices for reduc-

ing the communication cost. Therefore, these design choices

make them slow to react to changes of workloads and other

real-time events. Pragh can provide instant response to mi-

gration demands using lightweight monitoring and unilateral

migration protocol.

Further, data replication has been used to improve the lo-

cality of traversal workloads over graph stores [29, 62, 40]

by duplicating vertices on multiple machines. However, it

will consume more memory and complicate the design of

graph store in the face of evolving graphs. It should be noted

that data replication is orthogonal to live migration, and inte-

grating split live migration with fine-grained vertex replica-

tion [27, 13] is part of our future work.

8 Conclusion

This paper presents Pragh, an efficient locality-preserving

live migration scheme for graph store. The key idea of Pragh

is split live migration, which allows fine-grained migration

while avoiding the need to maintain excessive metadata. Sev-

eral key designs like the unilateral migration protocol, the

integration of location-based caching, and the check-and-

forward mechanism for evolving graphs made Pragh fast and

full-fledged. Evaluations using both a graph traversal bench-

mark and SPARQL workloads confirmed the effectiveness

and generality of Pragh.

Acknowledgments

We sincerely thank our shepherd Dushyanth Narayanan and

the anonymous reviewers for their insightful suggestions.

This work was supported in part by the National Natural

Science Foundation of China (No. 61772335, 61572314,

61732010), the National Youth Top-notch Talent Support

Program of China, and a research grant from Alibaba Group

through Alibaba Innovative Research (AIR) Program. Corre-

sponding author: Rong Chen (rongchen@sjtu.edu.cn).

734 2019 USENIX Annual Technical Conference USENIX Association

rongchen@sjtu.edu.cn

References

[1] IEEE 1588 Precision Time Protocol (PTP) Version 2.

http://sourceforge.net/p/ptpd/wiki/Home/.

[2] Semantic Web. https://www.w3.org/standards/

semanticweb/.

[3] SWAT Projects - the Lehigh University Bench-

mark (LUBM). http://swat.cse.lehigh.edu/

projects/lubm/.

[4] A. Adya, D. Myers, J. Howell, J. Elson, C. Meek,

V. Khemani, S. Fulger, P. Gu, L. Bhuvanagiri, J. Hunter,

et al. Slicer: Auto-sharding for datacenter applications.

In OSDI, pages 739–753, 2016.

[5] M. Annamalai, K. Ravichandran, H. Srinivas,

I. Zinkovsky, L. Pan, T. Savor, D. Nagle, and

M. Stumm. Sharding the shards: managing datas-

tore locality at scale with akkio. In 13th USENIX

Symposium on Operating Systems Design and Imple-

mentation, OSDI ’18, pages 445–460, 2018.

[6] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and

M. Callaghan. Linkbench: A database benchmark

based on the facebook social graph. In Proceedings of

the 2013 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’13, pages 1185–1196,

New York, NY, USA, 2013. ACM.

[7] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and

M. Paleczny. Workload analysis of a large-scale key-

value store. In Proceedings of the 12th ACM SIGMET-

RICS/PERFORMANCE Joint International Conference

on Measurement and Modeling of Computer Systems,

SIGMETRICS ’12, pages 53–64, New York, NY, USA,

2012. ACM.

[8] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler. Ma-

trix "bit" loaded: A scalable lightweight join query pro-

cessor for rdf data. In Proceedings of the 19th Inter-

national Conference on World Wide Web, WWW ’10,

pages 41–50, New York, NY, USA, 2010. ACM.

[9] D. Barak. VERBS Programming Tutorial. OpenSH-

MEM, 2014.

[10] S. Barker, Y. Chi, H. J. Moon, H. Hacigümüş, and

P. Shenoy. "cut me some slack": Latency-aware live mi-

gration for databases. In Proceedings of the 15th Inter-

national Conference on Extending Database Technol-

ogy, EDBT ’12, pages 432–443, New York, NY, USA,

2012. ACM.

[11] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Di-

mov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. C.

Li, et al. Tao: Facebook’s distributed data store for the

social graph. In USENIX Annual Technical Conference,

pages 49–60, 2013.

[12] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A re-

cursive model for graph mining. In Proceedings of the

2004 SIAM International Conference on Data Mining,

pages 442–446. SIAM, 2004.

[13] R. Chen, J. Shi, Y. Chen, and H. Chen. Powerlyra:

Differentiated graph computation and partitioning on

skewed graphs. In Proceedings of the Tenth European

Conference on Computer Systems, EuroSys ’15, pages

1:1–1:15, New York, NY, USA, 2015. ACM.

[14] Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen. Fast and

general distributed transactions using rdma and htm.

In Proceedings of the Eleventh European Conference

on Computer Systems, EuroSys’16, pages 26:1–26:17,

New York, NY, USA, 2016. ACM.

[15] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,

and R. Sears. Benchmarking cloud serving systems

with YCSB. In Proceedings of the 1st ACM Sympo-

sium on Cloud Computing, SoCC’10, pages 143–154.

ACM, 2010.

[16] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism:

A workload-driven approach to database replication

and partitioning. Proc. VLDB Endow., 3(1-2):48–57,

Sept. 2010.

[17] C. Curino, E. P. Jones, S. Madden, and H. Balakrish-

nan. Workload-aware database monitoring and consol-

idation. In Proceedings of the 2011 ACM SIGMOD In-

ternational Conference on Management of Data, SIG-

MOD ’11, pages 313–324, New York, NY, USA, 2011.

ACM.

[18] M. Curtiss, I. Becker, T. Bosman, S. Doroshenko,

L. Grijincu, T. Jackson, S. Kunnatur, S. Lassen,

P. Pronin, S. Sankar, G. Shen, G. Woss, C. Yang, and

N. Zhang. Unicorn: A system for searching the social

graph. Proc. VLDB Endow., 6(11):1150–1161, Aug.

2013.

[19] S. Das, D. Agrawal, and A. El Abbadi. Elastras:

An elastic, scalable, and self-managing transactional

database for the cloud. ACM Trans. Database Syst.,

38(1):5:1–5:45, Apr. 2013.

[20] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi.

Live Database Migration for Elasticity in a Multitenant

Database for Cloud Platforms. CS, UCSB, Santa Bar-

bara, CA, USA, Tech. Rep, 9:2010, 2010.

[21] S. Das, S. Nishimura, D. Agrawal, and A. El Ab-

badi. Albatross: Lightweight elasticity in shared stor-

age databases for the cloud using live data migration.

Proc. VLDB Endow., 4(8):494–505, May 2011.

USENIX Association 2019 USENIX Annual Technical Conference 735

http://sourceforge.net/p/ptpd/wiki/Home/
https://www.w3.org/standards/semanticweb/
https://www.w3.org/standards/semanticweb/
http://swat.cse.lehigh.edu/projects/lubm/
http://swat.cse.lehigh.edu/projects/lubm/

[22] A. Dragojević, D. Narayanan, O. Hodson, and M. Cas-

tro. FaRM: Fast remote memory. In Proceedings of

the 11th USENIX Conference on Networked Systems

Design and Implementation, NSDI’14, pages 401–414.

USENIX Association, 2014.

[23] A. Dragojević, D. Narayanan, E. B. Nightingale,

M. Renzelmann, A. Shamis, A. Badam, and M. Castro.

No compromises: Distributed transactions with consis-

tency, availability, and performance. In Proceedings of

the 25th Symposium on Operating Systems Principles,

SOSP’15, pages 54–70, New York, NY, USA, 2015.

ACM.

[24] A. Dubey, G. D. Hill, R. Escriva, and E. G.

Sirer. Weaver: A high-performance, transactional graph

database based on refinable timestamps. Proc. VLDB

Endow., 9(11):852–863, July 2016.

[25] A. J. Elmore, V. Arora, R. Taft, A. Pavlo, D. Agrawal,

and A. El Abbadi. Squall: Fine-grained live reconfigu-

ration for partitioned main memory databases. In Pro-

ceedings of the 2015 ACM SIGMOD International Con-

ference on Management of Data, SIGMOD ’15, pages

299–313, New York, NY, USA, 2015. ACM.

[26] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi.

Zephyr: Live migration in shared nothing databases

for elastic cloud platforms. In Proceedings of the

2011 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD ’11, pages 301–312, New

York, NY, USA, 2011. ACM.

[27] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and

C. Guestrin. Powergraph: Distributed graph-parallel

computation on natural graphs. In Presented as part

of the 10th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 12), pages 17–30,

Hollywood, CA, 2012. USENIX.

[28] S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald.

Triad: A distributed shared-nothing rdf engine based on

asynchronous message passing. In Proceedings of the

2014 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD ’14, pages 289–300, New

York, NY, USA, 2014. ACM.

[29] R. Harbi, I. Abdelaziz, P. Kalnis, N. Mamoulis,

Y. Ebrahim, and M. Sahli. Accelerating sparql queries

by exploiting hash-based locality and adaptive parti-

tioning. The VLDB Journal, 25(3):355–380, June 2016.

[30] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.

Zookeeper: Wait-free coordination for internet-scale

systems. In Proceedings of the 2010 USENIX Con-

ference on USENIX Annual Technical Conference,

USENIX ATC’10, pages 11–11. USENIX Association,

2010.

[31] B. Iordanov. Hypergraphdb: A generalized graph

database. In Proceedings of the 2010 Interna-

tional Conference on Web-age Information Manage-

ment, WAIM’10, pages 25–36, Berlin, Heidelberg,

2010. Springer-Verlag.

[32] A. Kalia, M. Kaminsky, and D. G. Andersen. Using

rdma efficiently for key-value services. In Proceed-

ings of the 2014 ACM Conference on SIGCOMM, SIG-

COMM’14, pages 295–306. ACM, 2014.

[33] A. Khandelwal, R. Agarwal, and I. Stoica. Blowfish:

Dynamic storage-performance tradeoff in data stores.

In 13th USENIX Symposium on Networked Systems De-

sign and Implementation (NSDI 16), pages 485–500,

Santa Clara, CA, Mar. 2016. USENIX Association.

[34] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom,

D. Williams, and P. Kalnis. Mizan: A system for dy-

namic load balancing in large-scale graph processing.

In Proceedings of the 8th ACM European Conference

on Computer Systems, EuroSys ’13, pages 169–182,

New York, NY, USA, 2013. ACM.

[35] C. Kulkarni, A. Kesavan, T. Zhang, R. Ricci, and

R. Stutsman. Rocksteady: Fast migration for low-

latency in-memory storage. In Proceedings of the 26th

Symposium on Operating Systems Principles, SOSP

’17, pages 390–405, New York, NY, USA, 2017. ACM.

[36] K. Lee and L. Liu. Scaling queries over big rdf graphs

with semantic hash partitioning. Proceedings of the

VLDB Endowment, 6(14):1894–1905, 2013.

[37] C. Mayer, R. Mayer, J. Grunert, K. Rothermel, and

M. A. Tariq. Q-graph: preserving query locality in

multi-query graph processing. In Proceedings of the 1st

ACM SIGMOD Joint International Workshop on Graph

Data Management Experiences & Systems (GRADES)

and Network Data Analytics (NDA), page 6. ACM,

2018.

[38] Mellnox. RDMA Aware Networks Programming

User Manual, Rev 1.7. http://www.mellanox.com/

related-docs/prod_software/RDMA_Aware_

Programming_user_manual.pdf.

[39] C. Mitchell, Y. Geng, and J. Li. Using one-sided rdma

reads to build a fast, cpu-efficient key-value store. In

Proceedings of the 2013 USENIX Conference on An-

nual Technical Conference, USENIX ATC’13, pages

103–114. USENIX Association, 2013.

[40] J. Mondal and A. Deshpande. Managing large dynamic

graphs efficiently. In Proceedings of the 2012 ACM

SIGMOD International Conference on Management of

Data, SIGMOD ’12, pages 145–156, New York, NY,

USA, 2012. ACM.

736 2019 USENIX Annual Technical Conference USENIX Association

http://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
http://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
http://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf

[41] D. Nicoara, S. Kamali, K. Daudjee, and L. Chen. Her-

mes: Dynamic partitioning for distributed social net-

work graph databases. In EDBT, pages 25–36, 2015.

[42] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware au-

tomatic database partitioning in shared-nothing, paral-

lel oltp systems. In Proceedings of the 2012 ACM

SIGMOD International Conference on Management

of Data, SIGMOD ’12, pages 61–72, New York, NY,

USA, 2012. ACM.

[43] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware au-

tomatic database partitioning in shared-nothing, paral-

lel oltp systems. In Proceedings of the 2012 ACM

SIGMOD International Conference on Management

of Data, SIGMOD ’12, pages 61–72, New York, NY,

USA, 2012. ACM.

[44] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang,

N. Laoutaris, P. Chhabra, and P. Rodriguez. The little

engine(s) that could: Scaling online social networks. In

Proceedings of the ACM SIGCOMM 2010 Conference,

SIGCOMM ’10, pages 375–386, New York, NY, USA,

2010. ACM.

[45] X. Qiu, W. Cen, Z. Qian, Y. Peng, Y. Zhang, X. Lin, and

J. Zhou. Real-time constrained cycle detection in large

dynamic graphs. Proc. VLDB Endow., 11(12):1876–

1888, Aug. 2018.

[46] L. Rietveld, R. Hoekstra, S. Schlobach, and C. Guéret.

Structural properties as proxy for semantic relevance

in rdf graph sampling. In International Semantic Web

Conference, pages 81–96. Springer, 2014.

[47] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T.

Özsu. The ubiquity of large graphs and surprising

challenges of graph processing. Proc. VLDB Endow.,

11(4):420–431, Dec. 2017.

[48] O. Schiller, N. Cipriani, and B. Mitschang. Prorea: Live

database migration for multi-tenant rdbms with snap-

shot isolation. In Proceedings of the 16th International

Conference on Extending Database Technology, EDBT

’13, pages 53–64, New York, NY, USA, 2013. ACM.

[49] M. Serafini, E. Mansour, A. Aboulnaga, K. Salem,

T. Rafiq, and U. F. Minhas. Accordion: elastic scal-

ability for database systems supporting distributed

transactions. Proceedings of the VLDB Endowment,

7(12):1035–1046, 2014.

[50] M. Serafini, R. Taft, A. J. Elmore, A. Pavlo, A. Aboul-

naga, and M. Stonebraker. Clay: Fine-grained adaptive

partitioning for general database schemas. Proc. VLDB

Endow., 10(4):445–456, Nov. 2016.

[51] B. Shao, H. Wang, and Y. Li. Trinity: A distributed

graph engine on a memory cloud. In Proceedings of

the 2013 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’13, pages 505–516,

New York, NY, USA, 2013. ACM.

[52] J. Shi, Y. Yao, R. Chen, H. Chen, and F. Li. Fast

and concurrent rdf queries with rdma-based distributed

graph exploration. In Proc. OSDI, 2016.

[53] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. El-

more, A. Aboulnaga, A. Pavlo, and M. Stonebraker. E-

store: Fine-grained elastic partitioning for distributed

transaction processing systems. Proc. VLDB Endow.,

8(3):245–256, Nov. 2014.

[54] Titan. Titan Data Model. http://s3.

thinkaurelius.com/docs/titan/current/

data-model.html, 2018.

[55] N. Tran, M. K. Aguilera, and M. Balakrishnan. On-

line migration for geo-distributed storage systems. In

USENIX Annual Technical Conference, 2011.

[56] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.

Speedy transactions in multicore in-memory databases.

In Proceedings of the Twenty-Fourth ACM Symposium

on Operating Systems Principles, SOSP’13, pages 18–

32. ACM, 2013.

[57] S. Wang, C. Lou, R. Chen, and H. Chen. Fast and con-

current rdf queries using rdma-assisted gpu graph ex-

ploration. In Proc. USENIX ATC, 2018.

[58] Z. Wang, H. Qian, J. Li, and H. Chen. Using restricted

transactional memory to build a scalable in-memory

database. In Proceedings of the Ninth European Con-

ference on Computer Systems, EuroSys’14, pages 26:1–

26:15, New York, NY, USA, 2014. ACM.

[59] X. Wei, Z. Dong, R. Chen, and H. Chen. Decon-

structing rdma-enabled distributed transactions: Hybrid

is better! In 13th USENIX Symposium on Operating

Systems Design and Implementation, OSDI ’18, pages

233–251, 2018.

[60] X. Wei, S. Shen, R. Chen, and H. Chen. Replication-

driven live reconfiguration for fast distributed transac-

tion processing. In Proceedings of the 2017 USENIX

Annual Technical Conference, USENIX ATC’17, pages

335–347, Santa Clara, CA, 2017. USENIX Associa-

tion.

[61] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast in-

memory transaction processing using rdma and htm. In

Proceedings of the 25th Symposium on Operating Sys-

tems Principles, SOSP ’15, pages 87–104, New York,

NY, USA, 2015. ACM.

USENIX Association 2019 USENIX Annual Technical Conference 737

http://s3.thinkaurelius.com/docs/titan/current/data-model.html
http://s3.thinkaurelius.com/docs/titan/current/data-model.html
http://s3.thinkaurelius.com/docs/titan/current/data-model.html

[62] S. Yang, X. Yan, B. Zong, and A. Khan. Towards ef-

fective partition management for large graphs. In Pro-

ceedings of the 2012 ACM SIGMOD International Con-

ference on Management of Data, SIGMOD ’12, pages

517–528, New York, NY, USA, 2012. ACM.

[63] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A

distributed graph engine for web scale rdf data. In Pro-

ceedings of the 39th international conference on Very

Large Data Bases, PVLDB’13, pages 265–276. VLDB

Endowment, 2013.

[64] Y. Zhang, R. Chen, and H. Chen. Sub-millisecond state-

ful stream querying over fast-evolving linked data. In

Proc. SOSP, 2017.

[65] A. Zheng, A. Labrinidis, and P. K. Chrysanthis. Planar:

Parallel lightweight architecture-aware adaptive graph

repartitioning. In Data Engineering (ICDE), 2016

IEEE 32nd International Conference on, pages 121–

132. IEEE, 2016.

738 2019 USENIX Annual Technical Conference USENIX Association

ElasticBF: Elastic Bloom Filter with Hotness Awareness for Boosting Read
Performance in Large Key-Value Stores

Yongkun Li, Chengjin Tian, Fan Guo, Cheng Li, Yinlong Xu
University of Science and Technology of China

Abstract

LSM-tree based key-value (KV) stores suffer from severe
read amplification because searching a key requires to check
multiple SSTables. To reduce extra I/Os, Bloom filters are
usually deployed in KV stores to improve read performance.
However, Bloom filters suffer from false positive, and simply
enlarging the size of Bloom filters introduces large memory
overhead, so it still causes extra I/Os in memory-constrained
systems. In this paper, we observe that access skewness is
very common among SSTables or even small-sized segments
within each SSTable. To leverage this skewness feature, we
develop ElasticBF, a fine-grained heterogeneous Bloom filter
management scheme with dynamic adjustment according to
data hotness. ElasticBF is orthogonal to the works optimizing
the architecture of LSM-tree based KV stores, so it can be
integrated to further speed up their read performance. We
build ElasticBF atop of LevelDB, RocksDB, and PebblesDB,
and our experimental results show that ElasticBF increases
the read throughput of the above KV stores to 2.34×, 2.35×,
and 2.58×, respectively, while keeps almost the same write
and range query performance.

1 Introduction
With the exponential growth of data volume, traditional rela-
tional database meets challenges in scalability in dealing with
extremely large-scale data. As an alternative, key-value (KV)
store is widely used as the fundamental storage infrastructure
in many applications, such as cloud systems [25], advertis-
ing [8, 16], social networks [3, 37], search indexing [8, 21],
online gaming [13], etc. According to the used index struc-
tures, KV stores can be categorized into hash index based
design [12,13,26], B-tree based design [20,31] and LSM-tree
based design [27, 30, 32, 36]. Because hash index based de-
sign requires large memory and can not well support range
query, and B-tree based design involves an abundance of
random writes, so most modern KV stores use LSM-tree,
e.g., LevelDB [21] at Google, RocksDB [16] at Facebook,
Dynamo [14] at Amazon, and Cassandra [1] at Apache.

An LSM-tree based KV store is typically composed of two
components, and we take LevelDB as an example to illustrate.
One resides in memory to cache KV pairs, and it includes a
MemTable and an Immutable MemTable. The other is stored
in secondary storage, which is divided into multiple levels
consisting of multiple SSTables. Each SSTable contains a

set of sorted KV pairs and necessary metadata. When a level
reaches its size limit, its SSTables will be compacted into the
next level via compaction, which first reads out the SSTables
in the two levels, then performs a merge sort, and finally
writes back the new SSTables into the next level. As a result,
compaction induces severe write amplification [27, 32].

Various designs are recently proposed to mitigate the com-
paction overhead [5, 27, 32, 42]. The most recent work Peb-
blesDB [32] proposes a novel data structure called Frag-
mented Log-Structured Merge-Trees (FLSM), which follows
the LSM-tree structure, but relaxes the fully sorted constraint
in each level. Thus, compaction just needs to append data
to multiple fragments in the next level, and there is no need
to merge with the SSTables in the next level. Therefore,
PebblesDB can greatly reduce the write amplification. How-
ever, sacrificing the sorted nature of KV pairs in each level,
PebblesDB inevitably degrades the read performance.

On the other hand, LSM-tree based KV stores also suffer
from severe read amplification [27, 31, 39]. This is because
when lookup a KV pair, KV store needs to check multiple
SSTables from the lowest level to the highest level until the
key is found or all levels have been checked. Furthermore, it
is required to read multiple metadata blocks to really check
whether a KV pair exists in one SSTable. Thus, read am-
plification can reach a factor of over 300× [27]. To reduce
extra I/Os induced by checking multiple SSTables, modern
designs use Bloom filters in KV stores [35] to quickly check
the existence of a KV pair in an individual SSTable. However,
Bloom filters suffer from false positive, so they may return
a positive result even when a KV pair does not exist in the
SSTable, and this incurs unnecessary I/Os. We also conduct
experiments to measure the impact of false positive by us-
ing Bloom filters with four bits-per-key in a 100GB KV
store. Other parameter settings and system configurations are
presented in §4.1. Results show that a key lookup incurs 7.6
inspections to SSTables on average, but 1.3 disk accesses are
needless and induced by false positive.

Allocating more bits for each key can reduce the false
positive rate, but the volume of all Bloom filters also increases,
e.g., a 10TB KV store with 100B KV pairs requires 128GB
Bloom filters under 10 bits-per-key setting. If the volume
of Bloom filters exceeds the memory capacity, some filters
will be swapped out to secondary storage, which induces extra
I/Os and increases the read amplification.

It is a consensus that data access is usually skewed in real

USENIX Association 2019 USENIX Annual Technical Conference 739

applications [4, 9]. Some KV pairs are hot and frequently
accessed, while most KV pairs are seldom accessed. Thus, if
we allocate more bits to the Bloom filters for hot KV pairs,
then we can reduce the overall false positive rate in the whole
process of running an application, while still limit the vol-
ume of all Bloom filters. However, it is not an easy task to
dynamically adjust the setting of Bloom filters in KV stores
due to the following reasons, which are revealed by our ex-
periments. First, different levels exhibit significantly different
access unevenness. Even though KV pairs in a lower level
are usually more frequently accessed, there are still a con-
siderable proportion of SSTables in a higher level that are
evidently hotter than SSTables in a lower level. Second, even
for KV pairs within the same SSTable, the access unevenness
is also serious. Last but not least, the hotness of KV pairs
dynamically changes during the running time of applications.
Monkey [10] proposes a heterogeneous scheme which allo-
cates more bits to Bloom filters in lower levels, but it uses
the same setting for all filters in the same level and fails to
dynamically adjust the setting according to data hotness.

In this paper, we propose ElasticBF, a fine-grained and
elastic Bloom filter management scheme. Its basic idea is
assigning multiple small-sized Bloom filters to each small
group of KV pairs when building SSTables, and these Bloom
filters reside in secondary storage and are dynamically loaded
into memory to activate according to the hotness of KV pairs.
However, to realize dynamical allocation of Bloom filters, the
following key issues must be addressed: (1) How to accu-
rately measure and record the hotness of KV pairs with low
storage and CPU overheads? (2) How to dynamically change
the ability of Bloom filters based on hotness with low memory
and computation overheads? (3) How to efficiently inherit the
hotness of SSTables with low metadata overhead when SSTa-
bles are reorganized during compaction? ElasticBF carefully
addresses the above issues by developing multiple techniques
to limit its overhead, including fine-grained allocation, hot-
ness inheritance and in-memory management optimization.

We emphasize that ElasticBF is orthogonal to existing
works focusing on the optimization of KV store structures, so
it can be combined with these designs to further accelerate
the lookup of KV pairs. To demonstrate its efficiency, we
carefully build ElasticBF atop three commonly used or state-
of-the-art KV stores, LevelDB, RocksDB and PebblesDB.
Experiments show that for all of the above KV stores,
ElasticBF increases the read throughput to 2.34×, 2.35×,
and 2.58×, respectively, while keeps almost the same write
performance. Also, for workloads with mixed reads and
writes, ElasticBF reduces read latency by 38.9% - 51.8%
without affecting writes. Compared with Monkey, which is
the state-of-the-art heterogeneous Bloom filter management
scheme, ElasticBF achieves up to 2.20× throughput. In
summary, our contributions are as follows.

• Fine-grained allocation. We find that the hotness of
KV pairs varies significantly in different ranges within

the same SSTable. So we divide each SSTable into
different segments, measure and record their hotness
with acceptable storage and CPU overheads, so as to
receive relatively accurate hotness estimation and enable
fine-grained Bloom filter allocation.

• Hotness inheritance. We design an effective scheme to
estimate the access frequencies of new SSTables during
compaction by inheriting from the outdated SSTables.
So ElasticBF can preserve the hotness during the whole
execution process of applications, and avoids frequent
cold start of hotness due to compaction and consistently
improves read performance.

• In-memory management optimization. We propose a
Multi-Queue to manage the in-memory Bloom filters,
and use parallel I/Os to accelerate the adjustment. Thus,
we can dynamically adjust the Bloom filters in memory
according to the hotness of KV pairs with negligible
CPU overhead.

The rest of this paper is as follows. §2 introduces LSM-
tree based KV stores and shows our observations on access
skewness to motivate this work. §3 presents the design details
of ElasticBF and §4 evaluates its performance. Finally, §5
reviews related work and §6 concludes this paper.

2 Background & Motivation
In this section, we first briefly introduce LSM-tree, then ana-
lyze the read amplification in LSM-tree based KV stores, and
finally present our observations about data access locality in
KV stores to motivate this work.

2.1 Log-Structured Merge Trees
Figure 1 illustrates the structure of an LSM-tree based KV
store, which mainly consists of two components. One is
in memory, which includes a MemTable and an Immutable
MemTable. The other is in secondary storage, which is divided
into multiple levels, say L0, L1, · · ·, Lk, where k depends on
the KV store size. Besides, the size limit of level Li is usually
m times of that of level Li−1 for 1 ≤ i ≤ k, e.g., m = 10 in
LevelDB by default.

Now we illustrate how data is stored. Specifically, KV
pairs are first written to the MemTable which works as a
cache. When MemTable is filled up, it will be converted to
an Immutable Memtable, which can not be written any more.

Figure 1: Structure of LSM-tree based KV store.

740 2019 USENIX Annual Technical Conference USENIX Association

Later, Immutable Memtable will be packed into an SSTable
and appended into L0 in the secondary storage. Note that keys
in each SSTable are sorted, but they are not sorted between
SSTables in L0 so as to make the writes to disk fast. Thus,
this write policy degrades read performance, so the size of
L0 is usually limited, e.g., it is limited as 12 SSTables in
LevelDB. To balance read and write performance, SSTables
are organized into a multi-level tree, and if one level (say
Li−1) is filled up, its SSTables will be merged into its higher
level (say Li) by compaction, which merges all KV pairs in
Li−1 into Li, so data are sorted in every level except for L0.

To find a key in the secondary storage, we need to search
it level by level from L0 to Lk. Note that we should check
all SSTables in L0 because they are not sorted, while we only
need to check one SSTable in each of the other levels until
we find the key or all levels are checked. Thus, we usually
need to read multiple SSTables to find a key, which induces
read amplification, and Bloom filters are commonly used to
reduce the read amplification. As a result, besides KV pairs,
each SSTable also includes Bloom filters and other metadata
(see Figure 1). For performance consideration, the Bloom
filters are usually required to be also buffered in memory.

However, Bloom filters suffer from false positive because
of hash collision, and thus incur extra I/Os to read out data
from SSTables for key comparison. The false positive rate of
a Bloom filter is (1− e−k/b)k, where b is the number of bits
allocated to each key, i.e., bits-per-key, and k means the
number of hash functions [24]. Since (1 − e−k/b)k is min-
imized when k = ln2 · b, false positive rate can be simply
represented as 0.6185b. Thus, the value of b directly deter-
mines the memory usage of a Bloom filter. We can reduce
the false positive rate by allocating more bits-per-key for
Bloom filters, but allocating more bits to each keys will in-
crease the volume of all Bloom filters and thus consumes
more memory. Even worse, if the volume of all Bloom fil-
ters exceeds the memory capacity, some Bloom filters will be
swapped out to secondary storage, and this will induce extra
I/Os and further aggravate read amplification.

2.2 Motivation
Uneven accesses are still very common in KV stores [9, 22],
where only a small proportion of the KV pairs are frequently
accessed, while the majority of the KV pairs are seldom
accessed. Therefore, if we allocate more bits to the Bloom
filters for hot KV pairs and fewer bits for cold ones, then the
overall positive false rate during the whole execution process
of applications will be reduced. Clearly, we will face to a
series of challenges to realize such heterogeneous Bloom
filters and enable dynamic adjustment. In this subsection, we
present our observations on the access skewness of KV stores
to motivate this work. The detailed design of ElasticBF will
be presented in §3.

We run experiments with RocksDB to validate the access
unevenness in KV stores. We use YCSB [9] to load a 256GB

1x107

1x106

100000

10000

 1000

 100

 10

A
cc

e
ss

 F
r e

q u
e
n
ci

e
s

uniform

1x107

1x106

100000

10000

 1000

 100

 10
 1 10 1000 100

SSTable ID

zipf 1.2

Figure 2: File access frequencies under different workloads.

database in the experiments, where the size of each SSTable is
set as 64MB, which is the default configuration, and the size
of each key value pair is 1KB. Note that the maximum size of
L1 is configured as 256MB in RocksDB, and the size of Li is
10 times of that in Li−1 (i ≥ 2), therefore 5 levels are enough
to keep 256GB data. We then generate two representative
workloads with uniform and Zipfian distributions, and each
workload contains ten million Get requests. Note that there
are about 4400 SSTables in the tested KV store, so issuing
ten million Get requests is enough to study the access pattern.
To make the evaluation of the hotness of SSTables and the
hotness of different regions in the same SSTable accurate, we
disable the Bloom filters in these experiments. That is, we
search the keys level by level, and at each level, we compare
the target key with the key ranges of SSTables. If the key falls
into the range of an SSTable, we will read the data out and
check whether the key exists or not until the key is found or
all levels are checked.

We first show the file-level access characteristics, and Fig-
ure 2 shows the access frequency of each SSTable. The x-axis
represents the identities of SSTables which are numbered se-
quentially from the lowest level to the highest level, and the
y-axis shows the number of accesses to each SSTable. From
the results, we can have two observations. First, on average,
the access frequencies of SSTables in lower levels are higher
than those in higher levels. This is because lookup always
flows from lower levels to higher levels. Second, if we zoom
in one particular level, we can find that the access frequencies
vary very significantly from SSTables, i.e., some SSTables
are much hotter than others within each level. Besides, when
we compare the access frequencies of SSTables in adjacent
two levels, we can find that it is very common to have some
SSTables in level Li+1 which are even hotter than some SSTa-
bles in level Li, especially for the skewed workload with Zipf
distribution. That is, SSTables in higher levels may also be
hotter than those in lower levels. For example, 21% of SSTa-
bles in L4 is even hotter than 11% of SSTables in L3. More
importantly, since more than 98% SSTables are stored in
the highest two levels, i.e., L3 and L4 in this example, we
can conclude that the hotness of most SSTables can not be

USENIX Association 2019 USENIX Annual Technical Conference 741

 0
10
20
30
40
50
60
70
80

 1 10 100 1000

R
a
ti
o
:

(m
a
x
-m

in
)/

a
v
g

SSTable ID

zipf 1.2

Figure 3: The ratio of the difference between the maximum and the
minimum access frequencies of different regions to their average
access frequency within each file.

accurately characterized according to which level they are
placed. This observation implies that Monkey’s level-based
coarse-grained heterogeneous Bloom filters can not take full
advantage of the access skewness, and finer-grained Bloom
filter design is necessary.

Since the size of an SSTable may still be configured to be
large to leverage sequential I/O bandwidth, e.g., RocksDB
uses 64MB or even larger SSTables, the access skewness
may still be serious within each SSTable. Note that it will
bring very large memory and CPU overheads to record the
hotness of each KV pair, so we divide each 64MB SSTable
into 64 regions, each of which has 1MB, and record the access
frequencies of different regions in each SSTable. Figure 3
shows the ratio of the difference between the maximum and
the minimum access frequencies of all regions in the same
SSTable to their average access frequency. We can see the
ratio value is very large for many SSTabes, e.g., greater than
10 for 73% SSTables. So the access unevenness is very serious
even within the same SSTable.

In summary, access skewness is very serious among dif-
ferent SSTables, and even among different regions within
the same SSTable. This offers an opportunity to develop
finer-grained heterogeneous Bloom filters by allocating more
bits-per-key for hot SSTables or regions so as to reduce
the overall false positive rate without increasing the volume
and memory overhead of Bloom filters.

3 Design
The main idea of ElasticBF is to construct multiple Bloom
filters for each SSTable, but allocate less bits-per-key to
each filter. Note that the Bloom filters in SSTables are stored
in secondary storage, and they are just reserved for future use.
That is, Bloom filters become active only after being loaded
into memory, which is a dynamical process according to the
hotness of SSTables. If an SSTable becomes hot, we will
load more of its Bloom filters into memory, and we may also
disable some of its Bloom filters in memory when it becomes
cold. Thus, we can dynamically adjust Bloom filters while
avoiding heavy I/O and CPU overheads for computing the
hash functions when we change Bloom filters according to
the hotness of SSTables. Thanks to the dynamic allocation
and adjustment of Bloom filters, we can reduce the overall
false positive rate, while keeping the same memory usage.

Figure 4: The architecture of ElasticBF.

3.1 Overview
Figure 4 depicts the architecture of ElasticBF, which mainly
contains three components, fine-grained Bloom filter alloca-
tion, hotness identification and inheritance, and Bloom filter
management in memory. For the design of fine-grained Bloom
filter allocation, we mainly face to the problems of how many
Bloom filters should be allocated to each SSTable and how
many bits should be assigned to each filter so as to achieve
low false positive rate and low memory usage. We also need
to carefully design the data structure and management scheme
with low I/O overhead. For hotness identification, our goal
is to achieve relatively accurate estimation of hotness with
low overhead. Finally, hotness inheritance is designed to
avoid cold start of hotness identification after compaction,
and Bloom filter management in memory is to efficiently
adjust Bloom filters according to hotness.

Remarks: ElasticBF realizes an elastic Bloom filter man-
agement scheme with little extra memory usage and small
CPU and I/O overheads. It is orthogonal to existing works
focusing on optimizing the structure of KV stores and can
be integrated to accelerate their read performance. Besides,
ElasticBF may also be applied in other scenarios to improve
object lookups, and the management technique for hot/cold
adaption is applicable to other summary data structures.

3.2 Fine-grained Bloom Filter Allocation
The read performance of KV stores can be improved by
reducing the I/Os caused due to false positive of Bloom filters.
In the following, we first analyze the expected false positive
rate by dynamically activating Bloom filters according to
hotness, then we describe how to construct multiple Bloom
filters for SSTables to realize fine-grained allocation.

Construction of multiple Bloom filters. ElasticBF gener-
ates multiple Bloom filters for each SSTable by using different
and independent hash functions. Each filter is allocated with
less bits-per-key, and we call it a filter unit. All filter
units assigned to an SSTable are named as a filter group, as
shown in Figure 5. Since the multiple filters within a filter
group are independent, a key is certainly not in an SSTable
as long as one filter unit returns a negative answer. That is, if
multiple filter units are enabled, then only when all enabled

742 2019 USENIX Annual Technical Conference USENIX Association

1 0 0 0 0 0 � 0 0 1

0 1 0 0 0 0 � 1 0 0

0 0 1 0 0 0 � 1 0 0

Figure 5: Construction of multiple Bloom filters.

filter units indicate the existence of a key, we need to read out
the SSTable to search the key.

As pointed out in [24], the false positive rate of a filter
group is equivalent to a single Bloom filter which has the
same bits-per-key to all filter units within the filter group.
We call this feature separability, which can be further justified
as follows. Assume that a filter group consists of n filter units,
each of which is a b/n bits-per-key filter, then the false
positive rate of each filter unit is 0.6185b/n. Since the filter
units in a group are generated by different independent hash
functions, the false positive rate of n filter units in a group is
(0.6185b/n)n = 0.6185b, which is exactly the same with that
of a single Bloom filter with b bits-per-key.

Based on the separability feature, we should determine
b and n to optimize the setting of multiple Bloom filters.
As we should enable all the filter units in a group for the
hottest SSTables such that the false positive rate 0.6185b

closes to zero, in our configuration, we set b = 24 with
a false positive rate of about 0.001%. On the other hand,
n indicates the maximum number of hotness categories
to distinguish different SSTables. Increasing n will more
accurately differentiate the hotness of SSTables, but it needs
more I/Os to load filter units to achieve low false positive
rate. Thus, we set n = 6, i.e., a filter group has 6 filter units,
each is allocated with 4 bits-per-key. We will analyze
the impact of bits-per-key of each filter unit on the read
performance in §4. Notice that ElasticBF allocates multiple
filter units to SSTables, which induces extra storage usage.
Assuming that the size of KV pairs is 1KB, thus one group
of filter units cost about 192KB storage, which is only 0.3%
of a 64MB SSTable, and the filters are stored in secondary
storage, so the storage overhead of ElasticBF is negligible.

Benefit analysis. Now we analyze the benefit of using
multiple Bloom filters. Suppose that there are N SSTables,
s1, s2, ..., sN , in a KV store, and we use static setting to set
b bits-per-key for all SSTables, i.e., the memory usage
to reside Bloom filters is b bits for each key. Suppose that
a workload needs to access SSTable si with pi times, then
the expected number of times to really read out data from all
SSTables due to false positive with static setting is

Rstatic =
∑N

i=1
pi · 0.6185b. (1)

In a contrary, if we dynamically set multiple Bloom filters
with the same memory usage as the static setting, and suppose

uniform zipf 0.90 zipf 0.99 zipf 1.10 zipf 1.20N
u
m

b
e
r

o
f
I/
O

s
 (

×
1
M

)

0

5

10
static dynamic

Figure 6: Number of I/Os caused due to false positive.

we load n′i filter units for SSTable si according to its hotness,
each allocates b′ bits-per-key, then under the assumption
of the same memory usage with static setting, the expected
number of times to read out data from SSTables is

Rdynamic =
∑N

i=1
pi ·
(
0.6185b

′
)n′

i

, (2)

subject to
∑N

i=1
n′i × b′ ≤ Nb,

where the inequality
∑N

i=1 n
′
i× b′ ≤ Nb represents the same

memory usage constraint.
To better understand why dynamical allocation can reduce

I/Os, i.e., Rdynamic < Rstatic, we count the number of
I/Os due to false positive by conducting experiments on
RocksDB. We set the average bits-per-key as 4 for both
Bloom filter allocation schemes. For the dynamical allocation
scheme, we generate 6 filter units for each SSTable and still
use 4 bits-per-key for each filter unit. We first issue ten
million Get requests on a 100GB database using static setting
of Bloom filters, half of the Get operations request non-
existent items, and we count the real number of I/Os issued
due to false positive as Rstatic. Then we classify SSTables
into 7 categories (C0, C1, ..., C6) according to their access
frequencies, and initially load i filter units for SSTables in
Ci in the dynamical allocation. We use this configuration
to replay the ten million Get requests and count Rdynamic.
Figure 6 shows the results under different workloads, we find
that with the same memory usage, dynamic setting of Bloom
filters reduces the number of I/Os caused due to false positive
under different workloads by 55.9% - 89.7% compared to
static setting, and the reduction becomes larger for more
skewed workloads. Note that in practical systems, Bloom
filters may be configured with larger bits-per-key so as to
achieve very low false positive rate, dynamical allocation still
has its benefit, e.g., it can use much less memory to achieve
similar false positive rate.

Finer-grained design with chunking. As mentioned in
Section 2.2, access unevenness is still serious within an
SSTable. So we may further reduce the false positive rate by
differentiating the hotness of keys within the same SSTable.
However, this will bring too large extra overheads of memory
usage and CPU for recording the hotness of individual keys.
To balance the accuracy of measuring hotness and the extra

USENIX Association 2019 USENIX Annual Technical Conference 743

Figure 7: Segments in one SSTable.

overheads to KV stores, we further divide each SSTable into
multiple regions called segments and record the hotness at the
granularity of the segment. Each segment is then allocated
a group of filter units, as shown in Figure 7. From §2.2,
we know the hotness of different segments still significantly
varies, so we are still expected to reduce the false positive
rate by differentiating the hotness of segments.

The challenging issue is to optimize the size of segments,
as large segment can not accurately reflect the hotness of
different KV pairs in an SSTable and small segment will
bring large overhead to KV stores. Our rule to configure the
size of segment is to make the size of each Bloom filter be
close to the device block size, e.g., 4KB, so as to reduce the
I/O overhead when loading Bloom filters. We will analyze
the impact of segment size on the read performance in §4.

Finally, since we only need several bytes to record the
hotness for each segment, the memory overhead is smaller
than 1% of the Bloom filter size. For storage overhead, if the
KV pair size is 1KB and ElasticBF uses 4 bits-per-key

for each filter unit, then one filter unit only costs around 2KB
storage space, which is only 0.05% of a 4MB segment.
Remarks: All Bloom filters allocated to an SSTable are
stored in its metadata area and kept in secondary storage.
Upon reading an SSTable, the default number of Bloom filters
are also loaded into memory, so loading Bloom filters at
initialization does not induce extra I/Os.

3.3 Hotness Identification and Inheritance

Hotness identification. The hotness of a segment is deter-
mined by its access frequency and the time duration since
its last access. Specifically, we propose an expiring policy
to differentiate hot/cold segments. We maintain a global
variable named currentTime, which is defined as the total
number of Get requests issued to the whole KV store so
far, and we also associate a variable named expiredTime

with each segment to denote the time point at which
the segment will be “expired”. Precisely, expiredTime

is defined as lastAccessedTime + lifeTime, where
lastAccessedTime denotes the time of the most recent
access to the segment and lifeTime is a fixed constant.
Note that the “time” concept here means logical time
which is actually represented by the number of accesses.
Each time when a segment is accessed, we increase the
currentTime by one and update the expiredTime of this

Figure 8: Hotness inheritance after compaction.

segment by setting lastAccessedTime as the updated value
of the currentTime. We define a segment as “expired” if
currentTime already becomes larger than expiredTime.
The physical meaning of the above policy is that if a segment
is not accessed during a fixed number of Get requests which
is defined by lifeTime, then it is expired and considered as
cold. Note that the time complexity to update the hotness
metadata of a segment is only O(1). Besides, the memory
overhead is also small, e.g., for a 100GB KV store, there are
around 25K segments whose size is 4MB, assume that 4 bytes
are used to record the expireTime of each segment, then the
total memory overhead is only around 100KB.

Hotness inheritance after compaction. Compaction will
trigger merge sort between SSTables to generate new SSTa-
bles. So the segments in new SSTables are also newly
generated and their hotness should be changed. If we set
the hotness of new segments as 0, then ElasticBF will face to
cold start of hotness and this may degrade the performance
of future read from the new segments. To inherit the
hotness, ideally, we can accurately estimate the hotness of
new segments based on the hotness of all keys within it, but
this will bring into KV stores too large overhead.

Instead, ElasticBF uses the hotness of old segments to
estimate the hotness of new segments. Specifically, as
illustrated in Figure 8, when a new segment is generated,
we first find out the old segments which are involved in
the procedure of generating the new segment and also have
overlapped key ranges, then we estimate the hotness value of
the new segment by simply using the mean of the hotness of
all old segments. At last, we enable some filter units for the
new segment accordingly. Experiments in §4 show that this
simple scheme is efficient to improve the read performance
for workloads with mixed reads and writes in KV stores.

3.4 Bloom Filter Management in Memory

Now the final issue is to determine how many filter units
should be enabled for each segment. Although we can
address this issue by formulating an optimization problem to
minimize the overall false positive rate, but this will consume
lots of CPU resources. Besides, every access changes the
access frequency of some segment, so it needs to recompute
the optimal solution and incurs lots of I/Os to adjust the
optimal configuration. To address this issue, ElasticBF
develops a lightweight and efficient adjustment scheme.

744 2019 USENIX Annual Technical Conference USENIX Association

Bloom filter adjusting rule. We use a metric which is
defined as the expected number of I/Os caused by false
positive to guide the adjustment, and we denote this amount
of extra I/Os as E[Extra IO], which can be expressed as

E[Extra IO] =
∑M

i=1
fi × ri, (3)

where M means the total number of segments in the KV store,
fi denotes the access frequency of segment i, ri denotes the
false positive rate and it is determined by the number of filter
units loaded in memory for segment i. Here, the rule of thumb
is to adjust the number of filter units, and thus changes ri, so
as to make E[Extra IO] be decreased.

The procedure of adjusting Bloom filters is as follows.
Each time when a segment is accessed, we update its access
frequency and the E[Extra IO], then we check whether
E[Extra IO] could be decreased if we enable one more filter
unit for this segment and disable one unit for other segment to
guarantee the same memory usage. If the E[Extra IO] could
be decreased, then we apply the adjustment, otherwise, we
do nothing. Note that in this adjusting procedure, one key
issue is to find out which filter unit should be disabled, and
we address this problem by maintaining an in-memory index
based on Multi-Queue, which will be described later.

Realizing dynamic adjustment with Multi-Queue. Recall
that the challenging issue in the adjust procedure is to decide
which filter unit should be disabled. We extend Multi-Queue
(MQ) [33,46] to address this problem. Specifically, ElasticBF
maintains multiple in-memory Least-Recently-Used (LRU)
queues to manage the metadata of each segment as shown
in Figure 9. We denote these queues as Q0,...,Qn, where
n is equal to the maximum number of filter units allocated
to each segment. Each element of a queue corresponds to
one segment, and it manages the filter units enabled for the
segment. Precisely, each element in queue Qi indicates that
i filter units are enabled for the corresponding segment, i.e.,
only these i filter units are used to check the existence of keys.
To keep the LRU feature of each queue, each time when a
segment is accessed, we move the corresponding element to
the MRU side within the same queue.

To find out which filter unit should be disabled and then
removed from memory, we use the hotness information
defined by the expiring policy described in §3.3. Specifically,
we search “expired” segments from Qn to Q1, and for
each queue, we search from the LRU side to the MRU
side, since an “expired” segment must be the least recently
used one. When we find an “expired” segment, and if the
E[Extra IO] can be decreased when we disable one filter
unit of this segment, we then downgrade it to the next
lower-level queue to release one filter unit. Note that the
access frequency of the “expired” segment does not change,
while the E[Extra IO] could be decreased because of the
change of false positive rates by adjusting the Bloom filters
in corresponding segments. If there is no “expired” segment,

MRULRU

…

…

…

…… … ……

…

Figure 9: The in-memory Multi-Queue in ElasticBF.

we skip the Bloom filter adjustment this time, this is a
conservative strategy to prevent us from degrading the lookup
efficiency of possible hot segments (which are not “expired”),
and combined with checking if E[Extra IO] (which is related
to the access frequency) can be decreased, the adjustment
overhead is limited as the adjustment frequency is limited,
we also analyze the adjusting overhead in §4. On the other
hand, we set lifeTime as the same order of magnitude as
the total number of segments. The rationale is that if there
is no “expired” segment, it means almost all the segments
have been accessed recently, so they may have similar hotness
during that time and we do not need to do the adjustment.

3.5 Implementation Issues
We implement ElasticBF on top of various commonly used
KV stores, including LevelDB, RocksDB and PebblesDB.
Here, we briefly describe the issues in the implementation.

ElasticBF keeps multiple filter units for each segment in
each SSTable, to make minimum changes to SSTables, each
filter unit is treated as a meta block in original SSTable
organization, and the offset information in the file are
recorded in meta index block. Besides, as generating multiple
Bloom filters may add latency to writes, ElasticBF leverages
multi-threading via threadpool to generate multiple filter units
simultaneously so as to further reduce the computation time.
On the other hand, ElasticBF maintains a background thread
to manage Multi-Queue, so loading filter units and fetching
data from secondary storage can be done in parallel, therefore
the device bandwidth can be efficiently exploited.

4 Evaluation
In this section, we evaluate ElasticBF to validate its efficiency.
We build ElasticBF atop LevelDB [21], RocksDB [16], and
PebblesDB [32], and compare the performance of these
systems with and without ElasticBF so as to study how
much improvement ElasticBF can achieve. We point out
that LevelDB is the classical LSM-tree based design, and
RocksDB further improves the performance of LevelDB with
multiple optimizations. Both of them are widely used as
baselines for performance comparison [27, 32]. Besides,
PebblesDB is developed based on the new and state-of-the-art
index called fragmented LSM-tree, so we also take it as a
baseline to demonstrate the effectiveness of ElasticBF. We

USENIX Association 2019 USENIX Annual Technical Conference 745

emphasize that since ElasticBF is orthogonal to the works
optimizing architecture of KV stores, it can also be integrated
to other KV stores to further speedup their read performance.
In the evaluation, we try to address the following questions.

• How much improvement does ElasticBF achieve to
speedup the read performance of KV stores? (§4.2)

• How is the performance of ElasticBF under the work-
loads of YCSB benchmark? (§4.3)

• What is the performance impact of dynamically allocat-
ing bits to Bloom filters in ElasticBF, as compared to
the static heterogeneous scheme in Monkey? (§4.4)

• What is the performance impact of different configura-
tions on ElasticBF? (§4.5)

4.1 Experiment Setup
We run experiments on a Dell PowerEdge R730 with an 12-
cores Intel Xeon CPU E5-2650 v4 with 2.20GHz processor,
64GB RAM, and Ubuntu 16.04 OS with Linux 4.15 kernel.
The testbed is equipped with one 500GB SSD and one 1TB
7200RPM HDD. By default, we run experiments on the SSD.
We build ElasticBF on top of LevelDB (v1.20), RocksDB
(v5.14) and PebblesDB. As RocksDB and PebblesDB use
64MB or larger SSTables as their default configuration, we
also set the SSTable size by modifying max file size to 64MB
in LevelDB. To make a fair comparison, only the management
strategy of Bloom filters was changed accordingly, while the
memory usage is limited as the same and other parameters
are also set as the same with the default values.

In the experiment, we use the benchmark YCSB-C [31,34],
which is the C++ version of YCSB [9] with low overhead.
Unless specifically mentioned, we use the following default
configuration. We set the size of each KV pair as 1KB, and
load a 100GB database with randomly generated distinct
keys. For the benchmarked workload, we generate 10M
Get operations by following the Zipf distribution with a
Zipfian constant 0.99 by default. Note that there is no
warm up phase, i.e., we immediately issue the benchmarked
workload to the randomly loaded database. We also point
out that the performance is already stable after issuing 10M
operations. By default, we assume that half of the Get
operations request non-existent items (i.e., zero lookup),
mainly because lookups of non-existent KV pairs are very
common in practical systems [6, 23, 35, 38]. As many KV
stores provide their own cache mechanisms, thus we enable
direct I/O [19] to better manage memory. For the default
setting, we disable the block cache [17] to minimize the
influence of cache. This represents the scenario in which a KV
store runs within a memory-constrained environment [11,25],
we also show the performance impact of block cache size
in §4.5. For ElasticBF, the segment size of each SSTable
is set as 4MB, and the lifeTime is set as 10K as there are
around 30K segments in total. The average Bloom filter space

for each key (i.e., bits-per-key) is set as four bits, this
is because allocating a large number of bits for each key is
not cost-efficient and it may be impractical in very large KV
stores. Cassandra [2] also uses a similar setting of about 5
bits-per-key by configuring the Bloom filter to have the
false positive rate of 0.1 in its LeveledCompactionStrategy.
We also study the impact of different system configurations
on the performance of ElasticBF in §4.5.

4.2 Micro-benchmarks
We first evaluate the performance of ElasticBF with micro-
benchmarks. To evaluate the read performance, we consider
both read-only workload and mixed workloads with different
read/write ratios so as to validate the effectiveness of the
hotness inheritance technique in ElasticBF. Finally, we also
show the performance impact on writes and range queries.
Read-only workload. We use one thread to run the YCSB
benchmark to perform 10M Get requests. Figure 10(a)-(c)
show the results of read throughput, average read latency, and
total number of I/Os. We can see that ElasticBF improves
the read performance of different KV stores. Specifically,
the read throughput with ElasticBF is increased to 2.08×,
2.15× and 2.17× compared to the results without ElasticBF
under LevelDB, RocksDB and PebblesDB, respectively. For
average read latency, ElasticBF can reduce the latency of
LevelDB, RocksDB and PebblesDB by 51.9%, 54.0% and
55.8%, respectively. The improvement of ElasticBF is mainly
because the reduction of extra I/Os caused by false positive of
Bloom filters. To validate this, we also count the total number
of I/Os generated to serve the Get requests, and the results
are shown in Figure 10(c). We can see ElasticBF reduces the
number of I/Os issued under different KV stores by 59.1% -
63.8%. As a result, ElasticBF can further improve the read
performance of KV stores. To validate the effectiveness of
the expiring policy and the adjusting rule, we count the total
number of I/Os issued by loading filter units, it is only about
1% of the total number of I/Os generated to serve the Get
requests, thus the adjusting overhead is small.

We further study the concurrent read performance of
ElasticBF by using 16 threads to run the YCSB benchmark,
and each thread performs 1M Get requests. Since we observe
similar results for throughput, latency and total number of
I/Os, we only show the throughput results in Figure 10(d) for
the interest of space. In particular, ElasticBF increases the
read throughput to 2.34× - 2.58× in these KV stores. Note
that the improvement is slightly larger than that in single-
threaded scenario, this is because multi-threaded reads can
better utilize the I/O bandwidth.
Mixed workloads. Now we show the performance of
ElasticBF under mixed workloads with different read/write
ratios. The goal of this experiment is to validate that ElasticBF
can still achieve a consistent improvement for reads due
to the hotness inheritance design, even though compaction
continuously generates new SSTables.

746 2019 USENIX Annual Technical Conference USENIX Association

LevelDB RocksDB PebblesDB

K
O

P
S

0

5

10 w/o ElasticBF with ElasticBF

(a) Throughput

LevelDB RocksDB PebblesDB

L
a

te
n

c
y
 (

u
s
)

0

100

200

300

400 w/o ElasticBF with ElasticBF

(b) Latency

LevelDB RocksDB PebblesDBN
u

m
b

e
r

o
f

I/
O

s
 (

×
1

M
)

0

5

10

15

20

25
w/o ElasticBF with ElasticBF

(c) Total number of I/Os

LevelDB RocksDB PebblesDB

K
O

P
S

0

20

40

60 w/o ElasticBF with ElasticBF

(d) Multi-threaded throughput

Figure 10: Read performance of KV stores with and without ElasticBF under read-only workload.

LevelDB RocksDB PebblesDB

R
e
a
d
 L

a
te

n
c
y
 (

u
s
)

0

500

1000

w/o ElasticBF with ElasticBF

(a) Read latency (50% reads)

LevelDB RocksDB PebblesDBN
u

m
b

e
r

o
f

I/
O

s
 (

×
1

M
)

0

5

10

15
w/o ElasticBF with ElasticBF

(b) Number of I/Os (50% reads)

LevelDB RocksDB PebblesDB

R
e

a
d

 L
a

te
n

c
y
 (

u
s
)

0

200

400

600
w/o ElasticBF with ElasticBF

(c) Read latency (90% reads)

LevelDB RocksDB PebblesDB

N
u
m

b
e
r

o
f
I/
O

s
 (

×
1
M

)

0

5

10

15

20
w/o ElasticBF with ElasticBF

(d) Number of I/Os (90% reads)

Figure 11: Read performance of KV stores with and without ElasticBF under mixed workloads.

Figure 11 (a)-(b) show the results under the workload
with 50% reads and 50% writes, and Figure 11 (c)-(d) show
the results under the workload with 90% reads and 10%
writes. Note that the total number of requests in the workload
is 10M. We can see that ElasticBF can help reduce the
read latency by 48.2%, 28.4%, and 54.8% for LevelDB,
RocksDB and PebblesDB, respectively, under the workload
with 50% reads, and the corresponding reduction ratios are
51.8%, 38.9% and 48.8% under the workload with 90%
reads. We also count the total number of I/Os issued by Get
operations. Specifically, ElasticBF reduces 66.8% (61.1%),
49.1% (46.7%), and 73.3% (60.7%), for LevelDB, RocksDB
and PebblesDB, respectively, for workloads with 50% (90%)
reads. Note that the reduction of read latency is smaller than
that under read-only workload, the reason is that different
KV stores use different compaction strategies, e.g., RocksDB
enables multiple threads to do compaction and PebblesDB
reduces compaction I/Os by avoiding rewriting SSTables to
the same level, so the background compaction I/Os that are
competed with the foreground Get I/Os are varied from KV
stores. Note that the write performance does not decrease,
and we will evaluate the write performance later.

Write and range query performance. Now we study the
impact on write and range query performance. For different
KV stores, we first randomly load a 100GB database and then
issue 10M scan requests. We compare the time of loading
the database and performing scan requests to evaluate the
write and range query performance, and the results are shown
in Figure 12. We can see that both the write and range query
performance keep almost the same (the difference is less than
1%) even when ElasticBF is integrated in KV stores. The
main reason is that Bloom filters are organized into blocks in
SSTables, and ElasticBF also uses multi-threading to speedup
the generation of Bloom filters. For range query, since it needs
to fetch all blocks overlapped with the given range, Bloom
filters are not involved in this procedure. Thus, ElasticBF has
negligible impact on write and range query performance.

LevelDB RocksDB PebblesDBL
o
a
d
 T

im
e
 (

×
1
0
0
0
s
)

0

5

10

15
w/o ElasticBF with ElasticBF

(a) Time to load the KV store

LevelDB RocksDB PebblesDB

K
O

P
S

0

0.1

0.2

0.3

0.4
w/o ElasticBF with ElasticBF

(b) Throughput of range query

Figure 12: Put and Scan performance.

4.3 YCSB Benchmarks

Now we evaluate the performance of ElasticBF with YCSB
benchmarks, which provide a set of six workloads with differ-
ent combinations of KV operations. Specifically, Workload
A consists of 50% reads and 50% updates, Workload B
consists of 95% reads and 5% updates, Workload C consists
of 100% reads, Workload D consists of 95% reads and 5%
inserts, Workload E consists of 95% scans and 5% inserts,
and Workload F consists of 50% reads and 50% read-modify-
writes. Note that Workload D uses the Latest distribution [9],
while others follow Zipfian distribution. Each of the six
workloads consists of 10M operations, which are issued on a
100GB database, and other settings are the same as before.

We first compare the performance of LevelDB, RocksDB
and PebblesDB with and without ElasticBF. Figure 13(a),
13(b) and 13(c) show the throughput results. We can see that
ElasticBF improves the performance for all workloads except
for Workload E (95% scans), this is because Workload E is a
scan-dominated workload, and ElasticBF does not affect the
performance of write and scan. In particular, for read-only
Workload C, ElasticBF achieves 1.99× - 2.11× throughput in
different KV stores due to the optimized Bloom filter design.
For Workload A (50% reads) and Workload B (95% reads),
ElasticBF improves the throughput by 7.4% - 36.8% and
52.6% - 71.5% for different KV stores, respectively. The
reason why the improvement under Workload A and B is
smaller than that under Workload C is because the request
keys are Zipfian distributed, and the updates make most of

USENIX Association 2019 USENIX Annual Technical Conference 747

A B C D E F

K
O

P
S

0

20

40
w/o ElasticBF with ElasticBF

(a) LevelDB

A B C D E F

K
O

P
S

0

10

20

30 w/o ElasticBF with ElasticBF

(b) RocksDB

A B C D E F

K
O

P
S

0

20

40
w/o ElasticBF with ElasticBF

(c) PebblesDB

A B C D E F

K
O

P
S

0

5

10 w/o ElasticBF with ElasticBF

(d) MongoDB

Figure 13: Performance comparison of different KV stores with and w/o ElasticBF under YCSB benchmarks.

zipf 0.99 zipf 1.10 zipf 1.20

K
O

P
S

0

10

20

30
Monkey ElasticBF

(a) Thpt. under 100GB database

zipf 0.99 zipf 1.10 zipf 1.20N
u

m
b

e
r

o
f

I/
O

s
 (

×
1

M
)

0

1

2

3

4
Monkey ElasticBF

(b) Total number of I/Os

0% 25% 50% 75% 100%

K
O

P
S

0

5

10

15 Monkey ElasticBF

(c) Impact of zero lookup ratio

zipf 0.99 zipf 1.10 zipf 1.20

K
O

P
S

0

10

20

30
Monkey ElasticBF

(d) Thpt. under 400GB database

Figure 14: Performance compared with Monkey under micro-benchmarks.

the accessed keys issued by Get are stored in lower levels,
and thus leads to a smaller number of SSTables that need to
be checked during read than that in read-only Workload C,
so ElasticBF has a smaller improvement. The above reason
also leads to the results under Workload F which has 50%
reads and 50% read-modify-writes, and ElasticBF improves
the throughput by 7.8% - 46.6%. Finally, for Workload D,
ElasticBF increases the throughput by 47.9% - 93.0%.

We also study the performance impact of ElasticBF on
MongoDB [29], which is a popular open-source NoSQL
database using WiredTiger [41] and RocksDB as its stor-
age engine. Since WiredTiger is not based on LSM-tree,
we choose RocksDB as the storage engine, and evaluate
the performance improvement when integrate ElasticBF in
MongoDB. The client of YCSB benchmark is running on
the same machine with the MongoDB server. Figure 13(d)
shows the results. We find that the improvements are only
about 11% - 15% except for the scan-dominated Workload
E. This is because the YCSB workloads issue only one
read/update/insert per request, while MongoDB adds a lot
of latency in the critical path of read operations, e.g., the
query planner, and thus the latency induced by RocksDB
accounts for only about 20% of the total latency. As a result,
optimization in the KV storage layer does not result in a large
improvement, and this is also observed in PebblesDB [32].
However, we point out that MongoDB may issue batch reads
to hide extra latency in real-world scenarios, and in this case,
ElasticBF must bring in larger improvement.

4.4 Comparison with Monkey
Now we compare the performance of ElasticBF with Monkey
[10], both are built atop LevelDB. As Monkey mainly focuses
on zero lookups, which are very common in practice, e.g.,
the insert-if-not-exist queries, we also assume that all Get
operations request non-existent items in the experiments.

We first evaluate the performance of micro-benchmarks.
We conduct the evaluation by issuing 10M Get requests to
100GB KV stores. Figure 14(a) shows the results. We can

A B C D E F
K

O
P

S
0

20

40
Monkey ElasticBF

(a) Throughput with Zipf 0.99

A B C D E F

K
O

P
S

0

50

100 Monkey ElasticBF

(b) Throughput with Zipf 1.2

Figure 15: Compared with Monkey under YCSB benchmarks.

see that ElasticBF increases the throughput to 1.39× - 2.20×
across different workloads. In particular, the improvement
ratio increases if the workload is more skewed, and this
validates the efficiency of taking into account data locality.
However, the performance of Monkey is flat across workloads,
the reason is that each zero lookup will traverse all levels of
the LSM-tree regardless of the access skewness, thus the
number of I/Os caused by each Get request due to false
positive keeps almost the same under the static setting in
Monkey. To further justify, we also count the total number
of I/Os issued by Get operations. As shown in Figure 14(b),
ElasticBF reduces the number of I/Os by 36.9% - 80.9%
compared with Monkey. We then study the impact of zero
lookup ratio, and Figure 14(c) shows the result by fixing the
Zipfian constant as 0.99. ElasticBF improves the throughput
to 1.16× - 1.39×. In particular, as the number of I/Os to find
the relevant items accounts for a higher proportion when there
are fewer zero lookups, ElasticBF results in smaller benefits
in the case of lower zero lookup ratio. Finally, we also study
the performance impact on 400GB KV stores, as shown in
Figure 14(d), ElasticBF preserves similar improvement, e.g.,
it increases the throughput to 1.36× - 2.15×.

Next, we study the performance of ElasticBF under the
YCSB benchmarks with four threads, each workload of
YCSB issues 10M operations on a 100GB KV store. To
consider the impact of access skewness, we conduct two sets
of experiments by setting the Zipfian constant as 0.99 and 1.2,
respectively. Figure 15(a) and Figure 15(b) show the results.
We can see that ElasticBF outperforms Monkey for all read-
dominated workloads. In particular, for Workload C (100%

748 2019 USENIX Annual Technical Conference USENIX Association

LevelDB RocksDB PebblesDB

O
P

S

0

50

100

150

200 w/o ElasticBF with ElasticBF

(a) Performance under HDD

0% 25% 50% 75% 100%

K
O

P
S

0

5

10

15 w/o ElasticBF with ElasticBF

(b) Impact of zero lookup ratio

0MB 4MB 16MB 64MB

K
O

P
S

0

5

10

15
w/o ElasticBF with ElasticBF

(c) Impact of block cache size

1KB 512B 256B 128B

K
O

P
S

0

5

10
w/o ElasticBF with ElasticBF

(d) Impact of KV pair size

100GB 200GB 300GB 400GB

K
O

P
S

0

5

10
w/o ElasticBF with ElasticBF

(e) Impact of database size

256KB 1MB 4MB 16MB 64MB

K
O

P
S

0

5

10
w/o ElasticBF with ElasticBF

(f) Impact of segment size

10K 20K 30K 40K 50K

K
O

P
S

0

5

10
w/o ElasticBF with ElasticBF

(g) Impact of lifeTime

2bit 3bit 4bit 5bit 6bit

K
O

P
S

0

5

10
w/o ElasticBF with ElasticBF

(h) Impact of filter unit size

Figure 16: Read throughput under different system and parameter configurations.

reads) and Workload D (95% reads and 5% inserts), when
the Zipfian constant is 0.99, ElasticBF obtains 1.29× and
1.20× throughput, respectively, and the improvement ratios
increase to 1.99× and 1.89× when the workload becomes
more skewed. For other workloads, such as Workload A,
B and F, the improvement of ElasticBF is small, this is
because the updates in these workloads make most of the
keys requested by Get be at lower levels, and Monkey can
gain the benefits even with a level-based static scheme, and
thus the further improvement of ElasticBF is small.

ElasticBF performs better than Monkey mainly because
of the finer-grained hotness identification strategy, i.e., the
segment-level hotness identification and Bloom filter adjust-
ment. We will further evaluate the impact of the granularity of
hotness identification in details by varying the segment size in
the next subsection. Besides the performance improvement,
ElasticBF is also a more general Bloom filter management
scheme, e.g., it can be deployed in KV stores which use
complicated compaction strategies [15, 18], while in these
cases, the LSM-tree structure becomes hard to predict, so it is
hard for Monkey to find the optimal setting of Bloom filters,
and Monkey also fails to dynamically adjust the setting when
the structure of the LSM-tree changes.

4.5 Impact of Different Configurations

In this subsection, we study the performance impact of
different configurations on ElasticBF. We use one thread
to run YCSB benchmark, and issue 10M Get requests to
a 100GB database. Due to page limit, we only show the
performance improvement over LevelDB, and improvements
over RocksDB and PebblesDB are also similar.
Performance under HDD. Figure 16(a) shows the read
throughput under HDD. We can see that ElasticBF achieves
2.31× - 2.38× better throughput for LevelDB, RocksDB and
PebblesDB. Besides, we also note that the improvement ratio
is similar to that under SSD. That is, ElasticBF can improve
the read performance of KV stores for all the main-stream
storage devices, including both SSD and HDD.

Impact of zero lookup ratio. Figure 16(b) studies the impact
of different ratios of non-existent items. Specifically, the
x-axis represents the ratio of Get requests which access
non-existent keys, i.e., zero lookup. Specifically, ElasticBF
increases the read throughput to 1.65× - 3.08× when the zero
lookup ratio increases from 0% to 100%. Besides, we can
see that with the increasing of zero lookup ratio, ElasticBF
achieves larger improvement. This is because looking up non-
existent keys leads to the search of all levels in the KV store,
and so it needs to check more SSTables. Thus, optimizing
the Bloom filter can bring larger benefit to reduce the I/Os, so
ElasticBF can get a larger improvement from zero lookups.
Impact of block cache size. We study the impact of cache
size. As mentioned before, we enable direct I/O in the
experiments. Figure 16(c) shows the results with different
block cache sizes, note that the default block cache size is
8MB [17], and we set its size as 64MB which is slightly
larger than the amount of Bloom filters (50MB). We can see
that with a larger block cache, the read performance improves.
Besides, ElasticBF still improves the performance when cache
is enabled, e.g., it increases the throughput to 1.43× - 2.08×.
Impact of KV pair size and database size. Figure 16(d)
studies the impact of KV pair size. ElasticBF increases the
read throughput for different KV pair sizes, e.g., it increases
the throughput to 1.99× - 2.08× when we vary the KV pair
size from 1KB to 128B. Similarly, Figure 16(e) shows that
ElasticBF consistently increases the read throughput for large
databases, e.g., it increases the throughput to 2.00× - 2.08×
when we vary the database size from 100GB to 400GB.
Impact of segment size, lifeTime length and filter unit
size. Finally, we study the impact of configuration parameters
on the read performance of ElasticBF. First, we consider
the impact of segment size, and Figure 16(f) shows the read
throughput versus the segment size. Note that the SSTable
size is 64MB, if the segment size is also set as 64MB, then
it means that we measure hotness and adjust Bloom filters in
unit of an SSTable. The results show that the improvement is
the largest under the 4MB setting, e.g., the throughput under

USENIX Association 2019 USENIX Annual Technical Conference 749

the 4MB setting is 17.8% higher than that under the 64MB
setting. The reason is that as the segment size decreases,
ElasticBF can perform a finer-grained hotness recognition,
so it can gain more benefits from the adjustment of Bloom
filters. This also demonstrates the effectiveness of the finer-
grained design in ElasticBF. However, if the size of each
filter unit is too small (e.g., less than a block size), then
each load of the filter unit is wasting for the I/Os, so the
throughput drops. Second, from the results in Figure 16(g),
which show the impact of lifeTime length, we can see that
and the performance improvement has no big difference. That
is, ElasticBF is not sensitive to the lifeTime parameter, e.g.,
we can simply set lifeTime according to the total number of
segments. Finally, Figure 16(h) shows the impact of filter unit
size, the x-axis represents the bits-per-key of each filter
unit, and we configure the total bits-per-key of a filter
group as 24 (or 25 for 5bit). The improvement is the largest
when using 4bit. This is because if each filter unit uses fewer
bits-per-key, then it can have more filter units for each
SSTable, and this implies to have more hotness categories,
but too many categories will also require more I/Os to load
enough filter units to achieve low false positive rate.

To summarize this section, we find that ElasticBF can
effectively boost the read performance of various KV stores
under different storage mediums and database scales, but
it mainly focuses on the memory-constrained environment.
That is, if the memory capacity is not a bottleneck, then one
can simply allocate more bits to each Bloom filter and keeps
all of them in memory, in this case, the false positive rate can
be very small and the benefit of ElasticBF is limited.

5 Related Work
In recent years, many studies have proposed new designs
based on LSM-tree [30]. WiscKey [27] reduces the com-
paction I/Os by using key-value separation technique to
manage keys and metadata in LSM-tree, while stores values
into an appended-only log. HashKV [7] further optimizes the
value management for key-value separation based design by
using hash-based data organization. LSM-trie [42] focuses
on small key value pairs, and organizes data into a hash-
based trie structure to reduce write amplification. bLSM [35]
uses a new merge scheduler to reduce the impact of the
compaction on the front-end write performance, and also uses
Bloom filters to help efficient lookup. TRIAD [5] reduces
write I/Os by leveraging the skewed data popularity and
delayed compaction strategy. PebblesDB [32] reorganizes
the storage layout inspired from skip lists, thereby avoiding
data rewriting in the same level to reduce the compaction
overhead. We point out that these works mainly focus on
improving the write performance, and they still follow the
basic structure of LSM-tree and require Bloom filter, so our
work is orthogonal to them, and can be used to further improve
the read performance by adaptively adjusting Bloom filters.

Some other studies aim to better utilize the features of

emerging storage devices to improve the performance of KV
stores. For example, RocksDB [16] utilizes the parallelism
of SSDs by scheduling multiple compaction operations con-
currently. LOCS [40] leverages the multi-channel of SSDs to
exploit the abundant parallelism for efficient compaction and
data access. NVMKV [28] cooperates with FTL by mapping
KV pairs in physical address space to decrease the redundant
work between the store layer and the device layer. HiKV [43]
also leverages NVRAM by using a hybrid index. In contract,
ElasticBF mainly focuses on the Bloom filter design, and it
can improve the read performance on both HDDs and SSDs.

At last, there are also several works considering Bloom
filter optimization. In particular, RocksDB [15] uses prefix
Bloom filter to reduce read amplification on range queries.
SuRF [44] is based on a succinct data structure to reduce I/Os
by filtering requests of point queries and range queries. Het-
erogeneous Bloom filter design is also considered to configure
different Bloom filters for different levels or files [10, 45].
However, Monkey [10] adopts a coarse-grained scheme which
allocates the same number of filters for SSTables within the
same level and also fails to dynamically adjust according
to hotness. ElasticBF further leverages the access locality
in a finer granularity with dynamical adjustment, and our
extensive experiments demonstrate its benefit, especially
for skewed workloads. Finally, compared with our previ-
ously published workshop paper [45], we also make multiple
novel optimizations: (1) we develop a fine-grained hetero-
geneous scheme by further differentiating segments within
each SSTable, (2) we propose a hotness inheritance scheme to
quickly obtain the accurate hotness information of the newly
generated SSTables during compaction, (3) we implement
ElasticBF on top of various KV stores and conduct extensive
experiments to demonstrate its efficiency and generality, and
(4) we also leverage multi-threading and parallel I/Os in the
implementation for performance optimization.

6 Conclusion
In this paper, we developed a fine-grained heterogeneous
Bloom filter management scheme called ElasticBF by lever-
aging the access skewness within workloads. ElasticBF mea-
sures the hotness information with a lightweight method and
also supports dynamic adjustment of Bloom filters at a fine
granularity. As a result, ElasticBF can greatly reduce the
expected overall false positive rate without increasing the vol-
ume and memory overhead of Bloom filters, and thus speeds
up the read performance in KV stores. Finally, we also con-
ducted extensive experiments to demonstrate the efficiency
of ElasticBF by building it atop of various KV stores.

Acknowledgements
The work was supported by National Key R&D Program
of China under Grant No. 2018YFB1003204, National Na-
ture Science Foundation of China (61772484, 61832011, and
61772486).

750 2019 USENIX Annual Technical Conference USENIX Association

References
[1] Apache. Cassandra. http://cassandra.apache.

org/.

[2] Apache. Tuning Bloom filters. http:

//cassandra.apache.org/doc/4.0/operating/

bloom_filters.html, 2018.

[3] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba
Borthakur, and Mark Callaghan. LinkBench: A
Database Benchmark based on the Facebook Social
Graph. In Proceedings of the 2013 ACM SIGMOD In-
ternational Conference on Management of Data. ACM,
2013.

[4] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload Analysis of a
Large-Scale Key-Value Store. In ACM SIGMETRICS
Performance Evaluation Review, volume 40, pages 53–
64. ACM, 2012.

[5] Oana Maria Balmau, Diego Didona, Rachid Guerraoui,
Willy Zwaenepoel, Huapeng Yuan, Aashray Arora,
Karan Gupta, and Pavan Konka. TRIAD: Creating Syn-
ergies Between Memory, Disk and Log in Log Struc-
tured Key-Value Stores. In USENIX ATC 17, 2017.

[6] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry C Li, et al. TAO:
Facebook’s Distributed Data Store for the Social Graph.
In USENIX Annual Technical Conference, pages 49–60,
2013.

[7] Helen HW Chan, Yongkun Li, Patrick PC Lee, and
Yinlong Xu. HashKV: Enabling Efficient Updates in KV
Storage via Hashing. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18). USENIX Association,
2018.

[8] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C
Hsieh, Deborah A Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E Gruber. Bigtable:
A Distributed Storage System for Structured Data. ACM
Transactions on Computer Systems (TOCS), 26(2):4,
2008.

[9] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154.
ACM, 2010.

[10] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.
Monkey: Optimal Navigable Key-Value Store. In Pro-
ceedings of the 2017 ACM International Conference on
Management of Data. ACM, 2017.

[11] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-
plified Data Processing on Large Clusters. Communica-
tions of the ACM, 51(1):107–113, 2008.

[12] Biplob Debnath, Sudipta Sengupta, and Jin Li. Flash-
Store: High Throughput Persistent Key-Value Store.
Proceedings of the VLDB Endowment, 3(1-2):1414–
1425, 2010.

[13] Biplob Debnath, Sudipta Sengupta, and Jin Li. SkimpyS-
tash: RAM Space Skimpy Key-Value Store on Flash-
based Storage. In Proceedings of the 2011 ACM SIG-
MOD International Conference on Management of data,
pages 25–36. ACM, 2011.

[14] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s Highly Avail-
able Key-Value Store. In ACM SIGOPS operating sys-
tems review. ACM, 2007.

[15] Siying Dong, Mark Callaghan, Leonidas Galanis,
Dhruba Borthakur, and Tony Savor. Optimizing Space
Amplification in RocksDB.

[16] Facebook. RocksDB. http://rocksdb.org/.

[17] Facebook. Block Cache. https://github.com/

facebook/rocksdb/wiki/Block-Cache, 2017.

[18] Facebook. Universal Compaction. https:

//github.com/facebook/rocksdb/wiki/

Universal-Compaction, 2017.

[19] Facebook. Direct IO. https://github.com/

facebook/rocksdb/wiki/Direct-IO, 2018.

[20] Peter Frühwirt, Marcus Huber, Martin Mulazzani, and
Edgar R Weippl. InnoDB Database Forensics. In 2010
24th IEEE International Conference on Advanced Infor-
mation Networking and Applications. IEEE, 2010.

[21] Sanjay Ghemawat and Jeff Dean. LevelDB. https:

//github.com/google/leveldb, 2011.

[22] Tyler Harter, Dhruba Borthakur, Siying Dong, Ami-
tanand S Aiyer, Liyin Tang, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. Analysis of HDFS un-
der HBase: A Facebook Messages Case Study. In FAST,
2014.

[23] Yangwook Kang, Rekha Pitchumani, Thomas Marlette,
and Ethan L Miller. Muninn: A Versioning Flash Key-
Value Store Using an Object-based Storage Model. In
Proceedings of International Conference on Systems
and Storage, pages 1–11. ACM, 2014.

[24] Adam Kirsch and Michael Mitzenmacher. Less Hashing,
Same Performance: Building a Better Bloom Filter. In
ESA, volume 6, pages 456–467. Springer, 2006.

[25] Chunbo Lai, Song Jiang, Liqiong Yang, Shiding Lin,
Guangyu Sun, Zhenyu Hou, Can Cui, and Jason Cong.
Atlas: Baidu’s Key-Value Storage System for Cloud
Data. In Mass Storage Systems and Technologies

USENIX Association 2019 USENIX Annual Technical Conference 751

http://cassandra.apache.org/
http://cassandra.apache.org/
http://cassandra.apache.org/doc/4.0/operating/bloom_filters.html
http://cassandra.apache.org/doc/4.0/operating/bloom_filters.html
http://cassandra.apache.org/doc/4.0/operating/bloom_filters.html
http://rocksdb.org/
https://github.com/facebook/rocksdb/wiki/Block-Cache
https://github.com/facebook/rocksdb/wiki/Block-Cache
https://github.com/facebook/rocksdb/wiki/Universal-Compaction
https://github.com/facebook/rocksdb/wiki/Universal-Compaction
https://github.com/facebook/rocksdb/wiki/Universal-Compaction
https://github.com/facebook/rocksdb/wiki/Direct-IO
https://github.com/facebook/rocksdb/wiki/Direct-IO
https://github.com/google/leveldb
https://github.com/google/leveldb

(MSST), 2015 31st Symposium on, pages 1–14. IEEE,
2015.

[26] Guanlin Lu, Young Jin Nam, and David HC Du. Bloom-
Store: Bloom-Filter based Memory-efficient Key-Value
Store for Indexing of Data Deduplication on Flash. In
Mass Storage Systems and Technologies (MSST), 2012
IEEE 28th Symposium on, pages 1–11. IEEE, 2012.

[27] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, An-
drea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
WiscKey: Separating Keys from Values in SSD-
Conscious Storage. In FAST, pages 133–148, 2016.

[28] Leonardo Marmol, Swaminathan Sundararaman, Nisha
Talagala, Raju Rangaswami, Sushma Devendrappa,
Bharath Ramsundar, and Sriram Ganesan. NVMKV: A
Scalable and Lightweight Flash Aware Key-Value Store.
In HotStorage, 2014.

[29] MongoDB. MongoDB. https://www.mongodb.

com/.

[30] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and
Elizabeth O’Neil. The Log-Structured Merge-Tree
(LSM-tree). Acta Informatica, 33(4):351–385, 1996.

[31] Anastasios Papagiannis, Giorgos Saloustros, Pilar
González-Férez, and Angelos Bilas. Tucana: Design
and Implementation of a Fast and Efficient Scale-up
Key-value Store. In USENIX ATC, pages 537–550,
2016.

[32] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. PebblesDB: Building Key-Value
Stores using Fragmented Log-Structured Merge Trees.
In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 497–514. ACM, 2017.

[33] Luiz E Ramos, Eugene Gorbatov, and Ricardo Bian-
chini. Page Placement in Hybrid Memory Systems. In
Proceedings of the international conference on Super-
computing, pages 85–95. ACM, 2011.

[34] J. REN. YCSB-C. https://github.com/

basicthinker/YCSB-C, 2015.

[35] Russell Sears and Raghu Ramakrishnan. bLSM: A Gen-
eral Purpose Log Structured Merge Tree. In Proceedings
of the 2012 ACM SIGMOD International Conference
on Management of Data. ACM, 2012.

[36] Pradeep Shetty, Richard P Spillane, Ravikant Malpani,
Binesh Andrews, Justin Seyster, and Erez Zadok. Build-
ing Workload-Independent Storage with VT-Trees. In
FAST, pages 17–30, 2013.

[37] Roshan Sumbaly, Jay Kreps, Lei Gao, Alex Feinberg,
Chinmay Soman, and Sam Shah. Serving Large-scale
Batch Computed Data with Project Voldemort. In Pro-
ceedings of the 10th USENIX conference on File and
Storage Technologies, pages 18–18. USENIX Associa-
tion, 2012.

[38] Guido Urdaneta, Guillaume Pierre, and Maarten
Van Steen. Wikipedia Workload Analysis for Decentral-
ized Hosting. Computer Networks, 53(11):1830–1845,
2009.

[39] Hoang Tam Vo, Sheng Wang, Divyakant Agrawal, Gang
Chen, and Beng Chin Ooi. LogBase: A Scalable Log-
structured Database System in the Cloud. Proceedings
of the VLDB Endowment, 5(10):1004–1015, 2012.

[40] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang,
Shiding Lin, Chen Zhang, and Jason Cong. An Efficient
Design and Implementation of LSM-tree based Key-
Value Store on Open-Channel SSD. In Proceedings of
the Ninth European Conference on Computer Systems,
page 16. ACM, 2014.

[41] WiredTiger. WiredTiger. http://www.wiredtiger.

com/.

[42] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang.
LSM-trie: An LSM-tree-based Ultra-Large Key-Value
Store for Small Data. In USENIX ATC 15, pages 71–82.
USENIX Association, 2015.

[43] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun.
HiKV: A Hybrid Index Key-Value Store for DRAM-
NVM Memory Systems. In 2017 USENIX Annual Tech-
nical Conference (USENIX ATC 17), pages 349–362,
2017.

[44] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G
Andersen, Michael Kaminsky, Kimberly Keeton, and
Andrew Pavlo. SuRF: Practical Range Query Filtering
with Fast Succinct Tries. In Proceedings of the 2018 In-
ternational Conference on Management of Data, pages
323–336. ACM, 2018.

[45] Yueming Zhang, Yongkun Li, Fan Guo, Cheng Li, and
Yinlong Xu. ElasticBF: Fine-grained and Elastic Bloom
Filter Towards Efficient Read for LSM-tree-based KV
Stores. In USENIX HotStorage 18, 2018.

[46] Yuanyuan Zhou, James Philbin, and Kai Li. The Multi-
Queue Replacement Algorithm for Second Level Buffer
Caches. In USENIX Annual Technical Conference, Gen-
eral Track, pages 91–104, 2001.

752 2019 USENIX Annual Technical Conference USENIX Association

https://www.mongodb.com/
https://www.mongodb.com/
https://github.com/basicthinker/YCSB-C
https://github.com/basicthinker/YCSB-C
http://www.wiredtiger.com/
http://www.wiredtiger.com/

SILK: Preventing Latency Spikes in
Log-Structured Merge Key-Value Stores

Oana Balmau
University of Sydney

Florin Dinu
University of Sydney

Willy Zwaenepoel
University of Sydney

Karan Gupta
Nutanix Inc.

Ravishankar Chandhiramoorthi
Nutanix Inc.

Diego Didona
IBM Research – Zurich

Abstract

LSM-based KV stores are designed to offer good write per-
formance, by capturing client writes in memory, and only
later flushing them to storage. Writes are later compacted
into a tree-like data structure on disk to improve read perfor-
mance and to reduce storage space use. It has been widely
documented that compactions severely hamper throughput.
Various optimizations have successfully dealt with this prob-
lem. These techniques include, among others, rate-limiting
flushes and compactions, selecting among compactions for
maximum effect, and limiting compactions to the highest
level by so-called fragmented LSMs.

In this paper we focus on latencies rather than throughput.
We first document the fact that LSM KVs exhibit high tail
latencies. The techniques that have been proposed for opti-
mizing throughput do not address this issue, and in fact in
some cases exacerbate it. The root cause of these high tail
latencies is interference between client writes, flushes and
compactions. We then introduce the notion of an I/O sched-
uler for an LSM-based KV store to reduce this interference.
We explore three techniques as part of this I/O scheduler: 1)
opportunistically allocating more bandwidth to internal op-
erations during periods of low load, 2) prioritizing flushes
and compactions at the lower levels of the tree, and 3) pre-
empting compactions.

SILK is a new open-source KV store that incorporates this
notion of an I/O scheduler. SILK is derived from RocksDB,
but the concepts can be applied to other LSM-based KV
stores. We use both a production workload at Nutanix and
synthetic benchmarks to demonstrate that SILK achieves up
to two orders of magnitude lower 99th percentile latencies
than RocksDB and TRIAD, without any significant negative
effects on other performance metrics.

1 Introduction

Latency-critical applications require data platforms that are
able to deliver low latency and predictable throughput. Tail

latency is especially important, because applications often
exhibit high fan-out queries whose overall latency is de-
termined by the response time of the slowest reply. Log-
structured merge key-value stores (LSM KVs), such as
RocksDB [18], LevelDB [14] and Cassandra [30], are widely
adopted in production environments to provide storage be-
yond main memory for such latency-critical applications,
especially for write-heavy workloads. At Nutanix, we use
LSM KVs for storing the meta-data of our core enter-
prise platform, which serves thousands of customers with
petabytes of storage capacity.

KV stores support a range of client operations, such as
Get(), Update() and Scan(), to store and retrieve data.
LSM KVs strive for good update performance by absorbing
updates in an in-memory buffer [36, 37]. A tree-like struc-
ture is maintained on storage. In addition to client opera-
tions, LSM KVs implement two types of internal operations:
flushing, which persists the content of in-memory buffers to
disk, and compaction, which merges data from the lower into
the higher levels of the tree.

In this paper we demonstrate that tail latencies in state-of-
the-art LSM KVs can be quite poor, especially under heavy
and variable client write loads. We introduce the notion of an
I/O scheduler for LSM KVs. We implement this I/O sched-
uler in RocksDB, and we show up to two orders of magnitude
improvements in tail latency.

Our work complements much recent work that has sought
to improve the client throughput of LSM KVs (e.g., [4, 24,
28, 32, 34, 38, 39, 42, 43]). Client throughput is improved by
reducing the cost of internal operations, but this does not suf-
fice to reduce tail latency. Internal operations remain neces-
sary, and client operations that arrive during ongoing internal
operations experience increased latency because of interfer-
ence with these internal tasks. The internal operations may
be fewer in number and less costly, reducing the probabil-
ity of latency spikes, but in practice they occur sufficiently
often to influence the higher order percentiles of the latency
distribution, especially if client load is bursty.

USENIX Association 2019 USENIX Annual Technical Conference 753

One may at first think that limiting the I/O bandwidth allo-
cated to internal operations, as is commonly done in produc-
tion systems, would avoid latency spikes due to interference
between internal work and client load. On closer inspection,
however, we find this not to be the case. As a simple ex-
ample, consider a burst of client writes, triggering a burst
of flushes. If a number of compactions is going on at the
same time, the flushes have to share the limited bandwidth
with the compactions, and they become slow. This leads
to the in-memory component filling up and blocking further
writes, hence producing latency spikes. Limiting the rate of
compactions is also insufficient, because they can lead to the
lowest level of the tree filling up, stalling flushes, and in turn
stalling writes.

These and other observations lead us to the conclusion
that reducing the cost of internal operations or limiting their
bandwidth allocation does not suffice to avoid latency spikes,
and that instead there is a fundamental need for coordination
between the client load and the load imposed by different in-
ternal operations. To this end we introduce an I/O scheduler
for an LSM-based KV store.

We build a new KV store, SILK, which we derive from
RocksDB. The I/O scheduler in SILK (1) dynamically allo-
cates bandwidth between client and internal operations, (2)
gives preference to internal operations that may block client
operations, and (3) allows preemption of less critical internal
operations. Other techniques could possibly be included, but
we have found these sufficient to get two orders of magni-
tude benefits in tail latency for write-heavy workloads, with
no negative effects on throughput or average latency. Also,
SILK does not produce significant negative effects in read-
and scan-heavy workloads.
Contributions. The main contributions of this paper are:

1. An extensive empirical study that demonstrates the high
tail latencies of current LSM KVs.

2. The introduction of an I/O scheduler for LSM KVs, and
various scheduling techniques useful for reducing tail
latency while maintaining good throughput.

3. An implementation of an LSM KV store I/O scheduler
in an industry-standard LSM KV store (RocksDB).

4. An experimental evaluation demonstrating up to two or-
ders of magnitude improvements in tail latency in our
production workload, without significant negative ef-
fects on other performance metrics or workloads.

2 LSM KV background

2.1 LSM KV architecture
An LSM KV store has three main components: the memory
component, the disk component, and the commit log.

Memory component. The memory component Cm is a
sorted data structure that resides in main memory. Its size
is typically small, around a few tens of MBs. The purpose of
Cm is to temporarily absorb user updates. When Cm fills up,
it is replaced by a new, empty component. The old memory
component is then in the background flushed as is to level 0
(L0) of the LSM disk component.

Disk component. The disk component Cdisk is structured
into multiple levels (L0, L1, . . . Ln), where each level is
larger than the previous (lower) level by a configurable fac-
tor (e.g., 10). Each level contains multiple sorted files, called
SSTables. The number of SSTables on a given level is lim-
ited by a configuration parameter, as is the maximum size
of an individual file for a given level. SSTables on levels
Li (i > 0) have disjoint key-ranges. L0 allows overlapping
key-ranges between files.

Commit log. The commit log Clog stores the updates that
are made to Cm (in small batches) on stable storage. Clog
is usually a few hundreds of MBs large. It is used if the
application requires the data to be recoverable in case of a
failure, but it is not mandatory. The techniques we propose
in SILK apply regardless of whether Clog is active or not.

2.2 LSM KV operations

LSM KVs implement two main kinds of operations, which
are executed by disjoint thread pools.

Client operations. The main client operations in LSM KVs
are writes (Update(k, v)), reads (Get(k)), and range scans
(Scan(k1, k2)). Update(k, v) associates value v to key k. Up-
dates are absorbed in Cm, to achieve high write throughput.
Get(k) returns the most recent value of k. The read first goes
to Cm. If k is not found in Cm, the read continues to L0, L1,
. . . Ln, until k is found. By design, at most one SSTable is
checked on each level Li for i > 0. On the contrary, more
than one SSTable in L0 may need to be checked because
L0 SSTables may contain the entire key-range. Per-SSTable
Bloom filters [7, 25] are used to address this issue. There-
fore, in practice, only one SSTable ends up being checked
on L0 most of the time. Scan(k1, k2) returns a range of key-
value tuples with the keys ranging from k1 to k2. First, Cm
is queried for keys in the k1–k2 range. Then, SSTables in
Cdisk that may contain the k1–k2 range are read, going down
the levels, until all the keys are found. Client operations are
enqueued and served in FIFO order by a fixed-size worker
thread pool.

Internal operations. LSM KVs implement flushing and
compaction as background processes. Flushing writes Cm as
is to L0. Because flushing speed affects the rate at which new
memory components can be installed, memory components
are written to disk without additional processing. As a result,
L0 allows overlapping key-ranges between files. Compaction
is the operation that cleans up the LSM tree. It merges SSTa-

754 2019 USENIX Annual Technical Conference USENIX Association

bles in level Li of Cdisk into SSTables with overlapping key-
ranges in Li+1, discarding older values in the process. When
the size of Li exceeds its maximum, an SSTable F in Li is
picked and merged into the SSTables in Li+1 that have over-
lapping key-ranges with F , in a way similar to a merge sort.
Most LSM KVs support parallel compactions, apart from
compactions from L0 to L1 which are not parallelized be-
cause of overlapping key-ranges on L0. Compaction induces
large I/O overhead by reading the SSTables and writing the
new ones to disk.

The system maintains an internal FIFO work queue, where
flushes and compactions are enqueued. When a new internal
work request is enqueued, it is placed at the end of the in-
ternal work queue. A flush is enqueued when Cm fills up.
A compaction operation may be enqueued after a flush com-
pletes, or after a compaction completes. A pool of internal
worker threads serve the requests in the internal work queue.
In current LSM KVs an internal operation is enqueued when-
ever the system deems it necessary in order to maintain the
structure of the LSM tree (e.g., when the maximum size or
maximum number of files is reached on a level).

2.3 State-of-the-art LSM-based systems
Our experimental study includes three state-of-the-art sys-
tems: RocksDB, TRIAD, and PebblesDB.
RocksDB [18] developed at Facebook, is a popular system
in production environments, including ours. Its architecture
follows the description above. In addition, RocksDB pro-
vides a rate limiter to restrict the I/O bandwidth for inter-
nal operations. The bandwidth can be set to a fixed value,
or RocksDB can change it over time in a multiplicative-
increase, multiplicative-decrease manner [19]. This auto-
tuned version of the rate limiter adapts the bandwidth to the
amount of internal work, allocating more bandwidth when
there is more pending work.
TRIAD [4] reduces the overhead of internal operations
through three techniques. First, TRIAD keeps frequently up-
dated keys in Cm, decreasing internal operation overhead in
skewed workloads. Second, TRIAD provides an improve-
ment to the flushing operation, by leveraging data already
written in Clog. Finally, at the disk level, TRIAD employs a
cost-based approach to trigger compaction from L0 to L1.
Compaction happens only when there is significant key-
range overlap, reducing the frequency of compaction oper-
ations and amortizing their cost.
PebblesDB [39] avoids most of the compaction overhead of
merging and rewriting SSTables, by allowing overlapping
key-ranges on all but the highest tree level through the use
of Fragmented LSM trees. PebblesDB orders SSTables by
key-ranges on each level, and uses special pointers called
guards to indicate where a given key-range is on a level.
When the number of guards on a level reaches a threshold,
the guards and the corresponding keys are moved to the next

level, mostly without re-writing the SSTables. PebblesDB
only requires compaction at the highest tree level, when the
number of guards reaches a threshold.

3 Performance requirements for LSM KVs

LSM KVs should meet the following requirements:

1. Low tail latency. In environments where LSM KVs
serve applications with high fan-out operations, in
which the slowest reply within an operation determines
the latency of the whole operation, low tail latency is a
key requirement [15].

2. Predictable throughput. LSM KVs must deliver a
throughput that matches the client load at any time.
Throughput variability is a well-known problem in
LSM KVs, mostly stemming from the interference be-
tween LSM internal work and client requests.

3. Small main memory footprint. Typically, LSM KVs
are only one piece of a wider set of services that are
accessed by an application. For example, a KV store
that handles meta-data can co-exist on the same ma-
chine with other services that require large amounts of
memory, making memory a constrained resource.

LSM issues. A common issue in LSM KVs is interfer-
ence between LSM internal work and client operations when
a sudden burst of client-side writes occurs in parallel with
long-running, resource-intensive compaction tasks. Despite
the fact that internal LSM work directly influences client la-
tency, it is handled without being aware of the client load.
For instance, large compactions (e.g., compacting tens of
GBs) may occupy a large fraction of the I/O bandwidth for
extended periods of time (e.g., tens of minutes). The result-
ing problem is two-fold. First, when flushes do not proceed
in a timely manner, the memory component fills up, and in-
coming writes cannot be absorbed in the memory compo-
nent. Second, slow L0 to L1 compactions lead to the accu-
mulation of a large number of SSTables on L0. In extreme
situations, when the maximum number of SSTables on L0 is
reached, this dynamic brings the entire system to a halt. Both
scenarios lead to severe spikes in client latency.

4 Experimental study of tail latency

We perform an extensive experimental study to show that
established techniques used in industry and state-of-the-art
research systems do not solve the issue of tail latency.

4.1 Experimental environment
We use the YCSB [11] update-intensive workload, corre-
sponding to a 50:50 read:write ratio on 1 KB items (YCSB

USENIX Association 2019 USENIX Annual Technical Conference 755

!

!"

!""

!"""

!""""

!"""""

!#!" $

!#!" %

!#!" &

" !"" '"" ("")"" *""

+,- ./01.234 516

732819:/7 . ;5/<;=.42> /+,- ./?.@,.1

732819:/5 . A;BC=
732819:/D 3/E3B1.8.. F,4G

La
te

nc
y

(m
icr

os
)

104

106

102

Time (s)
100 200 3000 400 500

Default RocksDB
No internal ops.

Figure 1: RocksDB compared to a RocksDB version with
no internal operations. Internal operations lead to spikes in
client request 99th percentile latency.

workload A), with a uniform data distribution. We choose
this workload because it is representative for write-intensive
workloads in LSM KVs. Furthermore, a uniform workload
allows us to detect more quickly performance problems that
in skewed workloads would remain hidden due to in-memory
caching [4]. LSM KVs are notorious for having numerous
tuning knobs. Throughout this study, we configure all the in-
volved systems to the best of our abilities, following guide-
lines in [23, 39]. The hardware configuration we use in this
study is described in Section 6.1.

Each experiment consists of a population phase followed
by read and write operations issued at 18 Kops/sec. Unless
stated otherwise, all experiments are run without I/O band-
width rate limiting for internal operations. For RocksDB,
unless stated otherwise, we use two memory components
of 128MB each. For the rest of the systems we limit the
memory use to 1GB. We configure the maximum number of
concurrent internal operations to ten for all systems. The la-
tency is measured every second. The 99th percentile latency
is computed for every 1-second interval.

4.2 RocksDB

We first show the performance degradation of client opera-
tions caused by internal operations in RocksDB. To this end,
we compare RocksDB with a modified version of RocksDB
in which compaction and flushing are disabled. We disable
internal operations by discarding Cm when it fills up (the data
store is pre-populated with the full set of keys, so persistent
storage is accessed by reads, if necessary).

Figure 1 shows the performance of the two systems over
time. The 99th percentile latency of operations in RocksDB
is 2 to 4 orders of magnitude higher than in the system with-
out internal operations. These spikes are not present at the
50th and 90th percentiles of the latency distribution. Both
reads and writes experience latency spikes at the same time
and of the same magnitude, despite their different access
paths in the LSM KV store (i.e., writes complete in-memory,
while reads are typically served from persistent storage).

The main culprit for the latency spikes is the fact that
writes get blocked by virtue of Cm filling up. The reads then
get queued behind these writes in the threading architecture.

107 128 11 13 259 2219 2420 2316 2114 15 17 18 26

L1 à L2 compaction

Latency spike
(writes)Flush

7 L0 files

L0 à L1 compaction (7 L0 SSTables)

Time (seconds)

8 L0 files 9 L0 files 10 L0 files

L1 à L2 compaction

L1 à L2 compaction

L0 limit reached

Flush Flush Flush Flush

L1 à L2 compaction L1 à L2 compaction L1 à L2

Figure 2: RocksDB. Timeline of internal operations during a
writes latency spike (dashed red line) caused by L0 reaching
full capacity. L0 reaches 10 SSTables at t = 19, so flushes
are temporarily paused.

We identify two main reasons for write latency spikes, il-
lustrated in Figures 2 and 3. The examples showcase real
scenarios encountered while profiling RocksDB.

Figure 2 illustrates an example of a write latency spike (the
red dashed line) occurring because L0 reaches maximum ca-
pacity (10 SSTables in this example). Several compactions
on levels L0, L1 and L2 occur in parallel between t = 14
and t = 23. Even if many parallel compactions can run at
higher levels (i.e., Li to Li+1, where i >0), there can only
be one L0 to L1 compaction running at a time. Since I/O
bandwidth is spread equally over all compactions, L0 to L1
compaction is slowed down. Consequently, L0 is not cleared
fast enough, which, in turn, causes flushes from Cm to be
temporarily halted.

A second cause for latency spikes is Cm filling up because
of slow flushing, as illustrated in Figure 3. Here, L0 does
not fill up, reaching only 7 SSTables at t = 5. However, the
flush starting at t = 0 takes an unusually long time (5 seconds
compared to 1-2 seconds for a typical flush). The cause is
that, by coincidence, a large number of compactions are run-
ning at the same time, which makes flushing slow because of
limited available I/O bandwidth. There are 7 ongoing com-
pactions at the time of the very slow flush.

4.3 Rate-limited RocksDB

Limiting the I/O bandwidth for internal operations is a pop-
ular technique to prevent them from consuming an exces-
sive amount of I/O bandwidth, and hence to “shelter” client
operations. We now report the results that we obtain when
running RocksDB with limited I/O bandwidth for internal
operations [22].

Figure 4 shows the 99th percentile latency of client opera-
tions over time when limiting the I/O bandwidth for internal
operations to 50, 75 and 90 MB/s. For the sake of legibility,
in Figure 4 we show the results of the experiment only up to
the time that the tail latency greatly deteriorates (at 900s for
50MB/s, etc). The higher the bandwidth assigned to inter-

756 2019 USENIX Annual Technical Conference USENIX Association

Flush

30 51 4 65754 255 56 58 59 7 8
Time (seconds)

FlushFlushFlush Flush
Latency spike

(writes)L1 à L2
L1 à L2 compaction
L1 à L2 compaction
L1 à L2 compaction
L1 à L2 compaction
L1 à L2 compaction
L1 à L2 compaction

L0àL0 (6 L0 SSTables)

5 L0 files 6 L0 files 7 L0 files 3 L0 files

Figure 3: RocksDB. Timeline of internal operations during a
writes latency spike caused by slow flushing. From t = 0 to
t = 7, flushes are slowed down by many parallel L1 to L2
compactions monopolizing I/O bandwidth. Consequently,
Cm fills up, not being able to absorb incoming updates.

0

1x106

2x106

3x106

4x106

5x106

0 500 1000 1500 2000 2500 3000 3500 4000 4500

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Time (seconds)

RocksDB Read Latency Time Series

50 MB/s P99 Read Latency
70 MB/s P99 Read Latency
90 MB/s P99 Read Latency

La
te

nc
y

(m
icr

os
)

Time (s)
0 1000 2000 3000 4000

50 MB/s
70 MB/s
90 MB/s

106

3x106

5x106

Figure 4: RocksDB. 99th percentile of client request latency
when limiting the I/O bandwidth for internal operations.

nal operations, the longer the system is able to postpone the
occurrence of latency spikes. However, restricting the band-
width for internal operations results in slowing them down.
This approach therefore increases the likelihood that at some
later point many compactions are running at the same time,
contending for the limited I/O bandwidth.

4.4 RocksDB with increased Cm

We investigate whether allocating larger memory buffers in-
fluences tail latencies in LSM KV. To this end, we run a se-
ries of experiments in RocksDB where we increase the total
size of the memory component(s) to 1GB – a value close to
the upper limit of what we can allow in our production envi-
ronments (see Section 3). We distribute the memory first into
two 500MB memory components and then into ten memory
components of 100MB each. We also vary the maximum
number of flushes, experimenting with one and ten parallel
flushing threads. We find the setup with ten memory compo-
nents and a single flushing thread to be the most efficient in
postponing the latency spikes because the memory absorbs
more updates and the data flow from memory to L0 matches
more closely the L0 to L1 compaction flow. However, we
encounter tail latency spikes sooner or later in all of these
cases, for similar reasons to the ones in the scenarios above.

800 1300

La
te

nc
y

(m
icr

os
)

Time (s)

102

900 1000 1100 1200

106

104

1

10

100

1000

10000

100000

1x106

1x107

0 100 200 300 400 500

La
te

nc
y

(m
icr

os
ec

on
ds

)

Time (seconds)

triad-latency-motivation

TRIAD

Figure 5: TRIAD. 99th percentile latency. Despite reduc-
ing internal operations overhead, TRIAD does not prevent
latency spikes during resource-intensive compactions.

0 10000

La
te

nc
y

(m
icr

os
)

Time (s)

102

2000 4000 6000 8000

106

104

1

10

100

1000

10000

100000

1x106

1x107

0 2000 4000 6000 8000 10000 12000 14000

La
te

nc
y

(m
icr

os
ec

on
ds

)

Time (seconds)

pebbles

Cronos

12000 14000

1GB memory
limit exceeded

Figure 6: PebblesDB. 99th percentile latency. Postponing
compaction keeps the latency low. Experiment ends because
of high memory overhead.

4.5 TRIAD

Reducing the overhead of internal operations, as done by
state-of-the-art systems [4, 12, 13, 17], is not enough to avoid
resource interference. We use TRIAD [4] as a representative
of such state-of-the-art systems in the next experiment. Fig-
ure 5 shows the 99th percentile latency of client operations
over time. In this scenario, TRIAD reduces compaction over-
head mainly by choosing when to run L0 to L1 compactions
depending on key-range overlap. Postponing compactions
at the lower levels (closer to Cm) results in postponing com-
pactions at the higher levels. So, in the long term, TRIAD
increases the likelihood of running many concurrent com-
pactions. Consequently, the 99th percentile of client opera-
tions shows no spikes for the first ≈ 1,000 seconds but, after
that point, shows frequent and significant spikes.

4.6 PebblesDB

Figure 6 shows PebblesDB’s 99th percentile latency over
time. The experiment stops after 10,500 seconds. Although
we provide PebblesDB with more memory than RocksDB
and TRIAD, it runs out of memory at this time. The memory
consumption is due to the frequent creation of guards and
Bloom filters in a write-intensive workload. During its up-
time, PebblesDB provides very good tail latencies due to the
absence of compactions. In other words, the LSM tree is re-
structured through the use of guards but no data compactions
occurred.

To create a situation in which PebblesDB experiences
compactions, we run it with a read-intensive workload (95:5)
which reduces memory pressure. With this workload, tail la-
tencies remain very good in the early going, but after around

USENIX Association 2019 USENIX Annual Technical Conference 757

8 hours, when compaction sets in, the system effectively
comes to a halt. PebblesDB stalls client operations when
it has to perform the very resource-demanding compaction
on the highest level of the tree. When such compaction takes
place, all threads for internal operations are busy, so they
cannot push down guards and keys from the lower levels of
the tree. Hence, to maintain the tree integrity, PebblesDB
stalls client operations until compaction terminates.

4.7 Lessons learned
We gain three main insights from our experimental study.
Lesson 1) The main reason for high tail latency is the fact
that writes get blocked by Cm filling up. There are two prin-
cipal reasons for this. The first reason is that L0 on disk is
full, which causes flushes from Cm to be halted. L0 reaches
its capacity if L0 to L1 compaction cannot keep up. The sec-
ond reason is that, by coincidence, a large number of com-
pactions are happening concurrently, which causes flushing
to be slow because of limited available bandwidth.
Lesson 2) Simply limiting bandwidth for internal operations
does not solve the problem of limited bandwidth being avail-
able for flushes and can in fact exacerbate it in the long run.
This approach effectively postpones compactions, and there-
fore increases the likelihood that at some later point many
compactions occur at the same time.
Lesson 3) Recent approaches to improve throughput, such as
being selective about starting compactions or only perform-
ing compactions at the highest level, avoid latency spikes in
the short run, but aggravate the problem in the long run, be-
cause they too increase the likelihood of many concurrent
compactions at some later point in time.

As a corollary to Lesson 1, we conclude that not all inter-
nal operations are equal. Internal operations on the lower
levels of the tree (i.e., closer to Cm) are critical, because
failing to complete them in a timely fashion may result in
stalling client operations.

Finally, as a corollary to Lessons 2 and 3, it is essential to
run performance tests for an extended amount of time, lest
these issues go undetected.

5 SILK

5.1 SILK design principles
SILK integrates the lessons we learn from our experimental
study into an I/O scheduler for internal and external work.
SILK follows three core design principles.
1) Opportunistically allocating I/O bandwidth to inter-
nal operations. SILK leverages the fact that, in produc-
tion workloads, the load of client-facing operations typi-
cally varies over time (see Figure 7). SILK allocates less
I/O bandwidth to compactions on higher levels during peak

Time (s)
0 500100 200 300 400

Cl
ie

nt
 Lo

ad
(K

op
s/

s)

20

10

30

Figure 7: Client load in Nutanix production workload. Real
workloads are not flat lines.

client load, and exploits transient low-load periods to boost
the processing of internal operations. Dynamic I/O throttling
enables SILK (1) to limit interference between internal oper-
ations and client-facing ones, and (2) to avoid accumulating
over time too large a backlog of internal work, preventing
overload conditions in the long term.
2) Prioritizing internal operations at the lower levels of
the tree. SILK integrates Lesson 1 in its design by introduc-
ing prioritized execution of flushes and compactions from L0
to L1. SILK splits internal operations of LSM KVs into three
categories with respect to the effect they have on client laten-
cies: (1) SILK ensures that the flushes are fast, making room
in memory to absorb incoming updates, which directly af-
fects write latency, (2) SILK gives second priority to L0 to L1
compactions, ensuring that L0 does not reach its full capac-
ity, so that flushes can proceed, (3) SILK gives third priority
to compactions on the levels below L1 because, while they
maintain the structure of the LSM tree, their timely execu-
tion does not significantly affect client operation latencies in
the short term.
3) Preempting compactions. SILK implements a new com-
paction algorithm that allows internal operations on lower
levels of the tree to preempt compactions on higher levels.

5.2 SILK implementation
5.2.1 Opportunistically allocating I/O bandwidth

SILK continuously monitors the bandwidth used by client
operations and allocates the available leftover I/O bandwidth
to internal operations. The client load monitoring and rate
limiting are handled by a separate SILK thread. The mon-
itoring granularity is a system parameter which depends on
the frequency of fluctuations in the workload; the monitoring
granularity in SILK is currently configured to 10 ms.

If the total I/O bandwidth available to the LSM KV store
is T B/s, SILK measures the bandwidth C B/s used by the
client requests and it continuously adjusts the internal op-
eration bandwidth to I = T −C−ε B/s , where ε is a small
buffer. To adjust the I/O bandwidth, SILK makes use of a
standard rate limiter (e.g., [22]). SILK maintains a minimum
configurable I/O bandwidth threshold for flushing and L0 to
L1 compactions, because these operations directly influence
client latency.

758 2019 USENIX Annual Technical Conference USENIX Association

To minimize overhead associated with changing the rate
limit, SILK only adjusts the limit if the difference between
the current value and the new measured value is significant.
We empirically set this threshold to be 10 MB/s. We find
that lower thresholds cause overly frequent changes in the
rate limit. The role of ε is to account for small fluctuations in
client load which are not significant enough to adjust internal
operation bandwidth using the rate limiter.

5.2.2 Prioritizing and preempting internal operations

Recall that in LSM KVs internal work is handled by a pool
of internal worker threads. Once a flush or a compaction is
completed, the system checks whether more internal work is
needed by assessing the size of the levels and the state of the
memory component. If needed, more internal work tasks are
scheduled in an internal work queue. SILK maintains two
internal worker thread pools: a high-priority one for flushing,
and a low-priority one for compactions.
Flushing has the highest priority among the internal oper-

ations. Flushes have their dedicated thread pool and always
have access to the I/O bandwidth available for internal op-
erations. The minimum flushing bandwidth is chosen to be
sufficient to be able to flush the immutable memory compo-
nent before the active one fills up. The current implemen-
tation of SILK allows two memory components (i.e., an im-
mutable one, and an active one) and one flushing thread. If
memory constraints allow it, having multiple memory com-
ponents and flushing threads may help sustain longer client
activity peaks.
L0 to L1 compaction. SILK needs L0 to L1 compactions
to progress to ensure that there is enough room to flush on
L0. Unlike flushes, these compactions do not have a ded-
icated thread pool. If L0 to L1 compaction needs to pro-
ceed and all the threads in the compaction pool are running
higher-level compactions, one of them is preempted. This
way, L0 to L1 compactions do not wait behind higher-level
compactions. In the current implementation the preempted
compaction task is picked at random.

L0 to L1 compaction, like all internal operations is subject
to dynamic I/O throttling. However, this type of compaction
is never paused, even if SILK may choose to give no band-
width to compactions. In order to keep L0 to L1 compaction
running, SILK temporarily moves this job to the high prior-
ity thread pool and keeps it running via a high priority thread
(i.e., same priority as the flush thread). In this case, the min-
imum flushing bandwidth mentioned above is shared by the
flushing thread and the L0 to L1 compaction thread. At most
one L0 to L1 compaction can run at a time, due to consis-
tency issues caused by overlapping key-ranges. So, only one
extra thread is added in the high priority thread pool. Re-
cent versions of RocksDB support L0 to L0 compactions as
an optimization to quickly reduce the number of SSTables

on L0 [21]. Since this optimization is beneficial for allowing
flushes to proceed, SILK treats this case the same as L0 to L1
compactions.

Higher-level compactions. Compactions on levels higher
than L1 are scheduled in the low priority compaction thread
pool. They make use of the I/O bandwidth available, as indi-
cated by the dynamic rate limiter described in Section 5.2.1.
SILK can pause and resume these larger compactions, either
individually (because of L0 to L1 compaction preemption) or
at the level of the thread pool (because of high user load).

It might happen that an L1 to L2 compaction is invalidated
by the work done by an L0 to L1 compaction which pre-
empted it. In this case, SILK discards the partial work done
by the higher level compaction. We did not find this wasted
work to significantly impact performance.

SILK supports parallel compaction, like most current
LSM KVs. By default, and assuming equally aggressive
compaction threads, each thread gets a similar share of the
resources. LSM KVs do not allow parallel compactions from
L0 to L1, so, if many parallel compactions are allowed, most
of the compaction threads are working on the higher levels.
This is detrimental to the client operation latencies, since L0
to L1 compactions are key to system performance and would
benefit from getting the bulk of the resources. Reducing the
size of the thread pool, together with SILK’s compaction pre-
empting scheme allows each internal worker thread to access
a larger share of the resources, which results in faster com-
pletion of critical compactions.

The typical recommendation [23] is to set the number
of compaction threads equal to the total number of cores.
However, we find that the number of compaction threads
should instead depend on the total drive I/O bandwidth and
the amount of I/O bandwidth required by individual com-
paction operations. For instance, for a drive with 200MB/s
bandwidth, four internal work threads is a suitable choice;
even if all the threads happen to run in parallel, they are still
allocated a large enough amount of bandwidth to finish the
compaction operations fast, thus avoiding scenarios like the
ones described in Section 4.

Currently, SILK controls the total I/O bandwidth allocated
for compactions in the low priority thread pool. An interest-
ing strategy to explore would be allocating different amounts
of bandwidth to compactions at a finer granularity, depend-
ing on how urgent the compaction task is considered. We
find the current approach to bring good improvements with-
out this additional level of complexity.

6 Evaluation

We implement SILK as an extension of RocksDB –
used at Nutanix–, and of TRIAD. The source code of
SILK is available at https://github.com/theoanab/

SILK-USENIXATC2019. In what follows, we refer to the

USENIX Association 2019 USENIX Annual Technical Conference 759

https://github.com/theoanab/SILK-USENIXATC2019
https://github.com/theoanab/SILK-USENIXATC2019

La
te

nc
y

(m
ic

ro
s)

La
te

nc
y

(m
ic

ro
s)

Th
ro

ug
hp

ut
(K

op
s/

s)

1

10

100

1000

10000

100000

1x106

1x107

0 500 1000 1500 2000

La
te

nc
y (

m
icr

os
ec

on
ds

)

Time (seconds)

Cronos Operations Latency Production Workload

Cronos

1

10

100

1000

10000

100000

1x106

1x107

0 500 1000 1500 2000

La
te

nc
y (

m
icr

os
ec

on
ds

)

Time (seconds)

RocksDB Operations Latency Production Workload

RocksDB

1

10

100

1000

10000

100000

1x106

1x107

0 500 1000 1500 2000

La
ten

cy
 (m

icr
os

ec
on

ds
)

Time (seconds)

RocksDB Autotuned Operations Latency Production Workload

RocksDB Autotuned

0

10000

20000

30000

40000

50000

0 500 1000 1500 2000

Th
ro

ug
hp

ut
 (o

ps
/s)

Time (seconds)

TRIAD Throughput Production

TRIAD

1

10

100

1000

10000

100000

1x106

1x107

0 500 1000 1500 2000

La
te

nc
y (

m
icr

os
ec

on
ds

)

Time (seconds)

TRIAD Operations Latency Production Workload

TRIAD

0

10000

20000

30000

40000

50000

0 500 1000 1500 2000

Th
ro

ug
hp

ut
 (o

ps
/s)

Time (seconds)

Cronos Throughput Production

CRONOS

0

10000

20000

30000

40000

50000

0 500 1000 1500 2000

Th
ro

ug
hp

ut
 (o

ps
/s)

Time (seconds)

RocksDB Throughput Production

RocksDB

0

10000

20000

30000

40000

50000

0 500 1000 1500 2000

Th
rou

gh
pu

t (o
ps

/s)

Time (seconds)

RocksDB Autotuned Throughput Production

RocksDB Autotuned

La
te

nc
y

(m
ic

ro
s) 106

RocksDB

20

40

Th
ro

ug
hp

ut
(K

op
s/

s)
Th

ro
ug

hp
ut

(K
op

s/
s)

Th
ro

ug
hp

ut
(K

op
s/

s)

20

40

20

40

20

40

TRIAD

SILK

Autotuned RocksDB

103

106

103

106

103

La
te

nc
y

(m
ic

ro
s) 106

103

Time (s)
20001000 15000 500

Time (s)
20001000 15000 500

1

10

100

1000

10000

100000

1x106

1x107

1x108

0 200 400 600 800 1000

La
ten

cy
 (m

icr
os

ec
on

ds
)

Time (seconds)

Cronos Read Latency Long Peak

Cronos

1

10

100

1000

10000

100000

1x106

1x107

1x108

0 200 400 600 800 1000

La
ten

cy
 (m

icr
os

ec
on

ds
)

Time (seconds)

RocksDB Read Latency Long Peak

Cronos

1

10

100

1000

10000

100000

1x106

1x107

1x108

0 200 400 600 800 1000

La
ten

cy
 (m

icr
os

ec
on

ds
)

Time (seconds)

CRONOS Read Latency Long Peak

Cronos

1

10

100

1000

10000

100000

1x106

1x107

1x108

0 200 400 600 800 1000

La
ten

cy
 (m

icr
os

ec
on

ds
)

Time (seconds)

RocksDB Read Latency Long Peak

Cronos

0

10000

20000

30000

40000

50000

60000

0 200 400 600 800 1000

Th
ro

ug
hp

ut
(o

ps
/s)

Time (seconds)

Cronos vs RocksDB Throughput 10s Peak

Cronos

0

10000

20000

30000

40000

50000

60000

0 200 400 600 800 1000

Th
ro

ug
hp

ut
(o

ps
/s)

Time (seconds)

Cronos vs RocksDB Throughput 50s Peak

Cronos

0

10000

20000

30000

40000

50000

60000

0 200 400 600 800 1000

Th
ro

ug
hp

ut
(o

ps
/s)

Time (seconds)

Cronos Throughput 100s Peak

Cronos

0

10000

20000

30000

40000

50000

60000

0 200 400 600 800 1000

Th
ro

ug
hp

ut
(o

ps
/s)

Time (seconds)

Cronos vs RocksDB Throughput 1500s Peak

Cronos

La
te

nc
y

(m
ic

ro
s)

103

106 SILK 10s peaks 50% write
Th

ro
ug

hp
ut

(K
op

s/
s)

20
40

Th
ro

ug
hp

ut
(K

op
s/

s)
Th

ro
ug

hp
ut

(K
op

s/
s)

Th
ro

ug
hp

ut
(K

op
s/

s)

20
40

20

40

20

40

La
te

nc
y

(m
ic

ro
s)

La
te

nc
y

(m
ic

ro
s)

La
te

nc
y

(m
ic

ro
s)

103

106

103

106

103

106

SILK 50s peaks 50% write

SILK 100s peaks 50% write

SILK long peak 50% write

1

10

100

1000

10000

100000

1x106

1x107

0 200 400 600 800 1000

La
ten

cy
 (m

icr
os

ec
on

ds
)

Time (seconds)

silk-latency-1500s-90w

Silk

Time (s)
400 6000 200 800

Th
ro

ug
hp

ut
(K

op
s/

s)

Time (s)
1000400 6000 200 800

20
40

1000

La
te

nc
y

(m
ic

ro
s)

103

106 SILK long peak 90% write

0

10000

20000

30000

40000

50000

60000

0 200 400 600 800 1000

Th
ro

ug
hp

ut
(o

ps
/s)

Time (seconds)

silk-throughput-peaks-1500s-90w

Silk

Th
ro

ug
hp

ut
(K

op
s/

s)
Th

ro
ug

hp
ut

(K
op

s/
s)

Time (s)
1000400 6000 200 800

40

80

40

80

40

80

La
te

nc
y

(m
ic

ro
s)

La
te

nc
y

(m
ic

ro
s)

La
te

nc
y

(m
ic

ro
s)

103

106

103

106

103

106

0

20000

40000

60000

80000

100000

0 200 400 600 800 1000 1200 1400

Th
rou

gh
pu

t (o
ps

/s)

Time (seconds)

SILK-throughput-breakdown

SCHEDULING ONLY

0

20000

40000

60000

80000

100000

0 200 400 600 800 1000 1200 1400

Th
rou

gh
pu

t (o
ps

/s)

Time (seconds)

SILK-throughput-breakdown

BANDWIDTH ONLY

0

20000

40000

60000

80000

100000

0 200 400 600 800 1000 1200 1400

Th
ro

ug
hp

ut
(o

ps
/s)

Time (seconds)

SILK-throughput-breakdown

SILK

1200 1400

0.1

1

10

100

1000

10000

100000

1x106
1x107
1x108

0 200 400 600 800 1000 1200 1400

La
ten

cy
 (m

icr
os

ec
on

ds
)

Time (seconds)

SILK-latency-breakdown

SCHEDULING ONLY
0.1

1

10

100

1000

10000

100000

1x106
1x107
1x108

0 200 400 600 800 1000 1200 1400

La
ten

cy
 (m

icr
os

ec
on

ds
)

Time (seconds)

SILK-latency-breakdown

BANDWIDTH ONLY

0.1

1

10

100

1000

10000

100000

1x106
1x107
1x108

0 200 400 600 800 1000 1200 1400

La
ten

cy
 (m

icr
os

ec
on

ds
)

Time (seconds)

SILK-latency-breakdown

SILK

Scheduling and Preemption

Dynamic I/O Rate Limiting

SILK

Time (s)
1000400 6000 200 800 1200 1400

Th
ro

ug
hp

ut
(K

op
s/

s)

A). Nutanix production workload. Left: 99th percentile latency, log scale on y-axis. Right: throughput. SILK
maintains low and steady tail latency and its throughput closely follows the client load. Throughput presents

high fluctuations in RocksDB and TRIAD. Average throughput is shown by the dashed black line.

B). Synthetic workloads. Degradation is faster during long peaks, as workloads get more write intensive.

C). Breakdown of SILK techniques. 50% write - 50% read workload, 100s peaks.
SILK’s techniques complement each other in order to maintain low tail latency in the long run.

Figure 8: SILK performance in production and synthetic workloads.

760 2019 USENIX Annual Technical Conference USENIX Association

RocksDB and the TRIAD extensions as RocksDB-SILK and
TRIAD-SILK, respectively. An I/O scheduler could also be
applied to PebblesDB, with suitable modifications for the
fact that compactions only happen at the highest level. We do
not extend PebblesDB with an I/O scheduler because of lack
of familiarity with the code base and because PebblesDB’s
memory demands are not suitable in our environment.

We evaluate SILK with production and synthetic work-
loads, focusing on write-intensive workloads. We compare
against TRIAD and RocksDB and show that:

• SILK achieves up to 2 orders of magnitude lower tail la-
tency than state-of-the-art systems (Section 6.2).

• SILK’s performance does not deteriorate over time in long
running production workloads (Section 6.2).

• SILK provides stable throughput, close to the client load
(Sections 6.2 and 6.4).

• SILK does not create any significant negative side effects
on other important metrics such as average latency and read
performance (Section 6.3).

• SILK can sustain long client activity peaks interrupted by
short client activity lows (Section 6.4).

• The techniques used in SILK contribute to the results above
in complementary ways (Section 6.5).

6.1 Experimental setup

Hardware. We perform the evaluation on a 20-core Intel
Xeon, with two 10-core 2.8 GHz processors, 256 GB of
RAM, and 960GB SSD Samsung 843T. All systems were re-
stricted to run with 1GB of RAM using Linux control groups.

Benchmark. We compare the performance of RocksDB-
SILK and TRIAD-SILK to RocksDB, TRIAD, and a version
of RocksDB that uses the auto-tuned rate limiter [19]. All
experiments are run through db bench, one of RocksDB’s
standard benchmarking tools [20].

Measurements. Load-generator threads issue requests in an
open loop according to the workload characteristics. They
deposit the requests in the queues of the KV store worker
threads. Latency is measured on the side of the load-
generator threads, capturing both queuing time and process-
ing time. We measure the 99th percentile tail latency and
the throughput over one-second intervals (i.e., not cumula-
tive over the entire experiment run). We report throughput
and latency every second in the time-series plots.

Dataset. The dataset size for both the production and the
synthetic workloads is approximately 500GB. The KV-tuple
sizes vary between the production and the synthetic work-
loads. In all the experiments the data store is pre-populated
with the entire dataset.

RocksDB TRIAD RocksDB Autotuned SILK

20
40
60

0

80

tim

es
 C

m
fu

ll

10

20

0%
 ti

m
e

st
al

lin
g

100s
178s

18s 0s0

Figure 9: Production workload. Number of times Cm cannot
be flushed (left) and time spent stalling writes (right).

KV store configuration. We use a 128MB memory com-
ponent size and two memory components (i.e., one active
and one immutable). In SILK, flushing and L0 to L1 com-
pactions proceed at a rate of 50MB/s if SILK paused the
other internal operations. The total I/O bandwidth allocated
to the LSM KV store is 200MB/s. The level0-slowdown

and level0-stop parameters (used to slow down or stop
client writes once a maximum number of files is reached on
L0) are configured to very large values in all data stores so
as not to artificially interfere with the measured latency. We
use a thread pool of 4 threads for internal operations (includ-
ing the flushing thread) for all the systems. All systems are
pinned to 16 cores, out of which 8 are used by the worker
threads, and 8 are used by the internal operations and other
LSM threads (e.g., monitoring the client load in SILK). The
load-generator threads run on separate dedicated cores.

Compression and commit logging are disabled in all re-
ported measurements. While enabling them affects the ab-
solute performance results, it does not impact the conclu-
sions of our evaluation: the performance differences between
RocksDB-SILK or TRIAD-SILK, on the one hand, and stan-
dalone RocksDB and TRIAD, on the other hand, remain
similar. Using compression is equivalent to working with
a smaller dataset. Commit logging takes the same amount of
bandwidth in all systems. Therefore, from an experimental
perspective, using Clog is roughly equivalent to working on a
machine with smaller disk bandwidth.

6.2 Nutanix workload

Workload description. We sample one of our production
workloads at Nutanix over 24h. It is a write-dominated
workload, with a 57:41:2 write:read:scan ratio (a scan length
is in the order of tens of keys). The client requests arrive in
bursts (peaks of around 20K requests/s), separated by peri-
ods of low activity (valleys of around hundreds of requests/s
or less). A typical duration of a valley is between 5s and
20s, with an average valley length being approximately 15s.
Most peaks (approximately 90%) are short bursts between
10s and 20s. The longer peaks (>100s) make up the rest
of the workload. The maximum peak lasts approximately
400s. The request sizes range between 250B and 1KB for

USENIX Association 2019 USENIX Annual Technical Conference 761

Time (h)

103

106

20

40

0 24126 18
0

10000

20000

30000

40000

50000

0 10000 20000 30000 40000 50000 60000 70000 80000

T
h

r
o

u
g

h
p

u
t

(
o

p
s
/
s
)

Time (seconds)

Cronos vs RocksDB Throughput Long Peak

Cronos
1

10

100

1000

10000

100000

1x106

1x107

0 5000 10000 15000 20000 25000 30000 35000 40000

L
a
te

n
c
y
 (

m
ic

r
o
s
e
c
o

n
d
s
)

Time (seconds)

Cronos Read Latency Long Peak

Cronos

99
p

La
te

nc
y

(m
icr

os
)

Th
ro

ug
hp

ut
(K

op
s/

s)

Figure 10: SILK in 24h Nutanix production workload. Top:
99th percentile latency, log scale on y-axis. Bottom: through-
put. SILK maintains stable low latency and throughput close
to the client load for extended time spans.

the single-point operations (i.e., reads and writes), with a me-
dian of 400B. We use a trace replay of the original workload,
providing the input at the same rate as the original trace.

Results. Figure 8A shows the 99th percentile latency (left)
and throughput (right) for RocksDB-SILK (bottom row),
compared to state-of-the-art systems. Results obtained with
TRIAD-SILK are similar.

SILK obtains two orders of magnitude lower tail latency
than the auto-tuned RocksDB, and three orders of magni-
tude better than RocksDB and TRIAD, due to its combi-
nation of adjusting the I/O bandwidth and better internal
work scheduling. Similar to their behavior described in Sec-
tion 4, the tail latencies in RocksDB and TRIAD exhibit fre-
quent spikes, due to stalling and contention for I/O band-
width. The auto-tuned rate limiter in RocksDB achieves
one order of magnitude better tail latency than both TRIAD
and RocksDB, but does not avoid interference on shared re-
sources as effectively as SILK (see Figure 8A, third row).
The auto-tuner simply increases I/O bandwidth when there
is more internal work to do, and it is oblivious of user load.

Throughput in SILK stays close to the offered client load,
while throughput in RocksDB presents high fluctuations.
Client operations build up in the worker thread queues be-
cause of interference with internal operations. When they
can proceed, they are processed in bursts, which results in
throughput spikes. TRIAD and the auto-tuned RocksDB stay
closer to the offered client load, but still present throughput
fluctuations, correlated to increases in tail latency.

Figure 9 shows the number of times Cm cannot be flushed
right away (left) and the amount of time the writes are
stalled, relative to the duration of the experiment (right).
The statistics are collected for the experiment shown in Fig-
ure 8A. SILK never stalls writes and can always flush Cm
as soon as it fills up. TRIAD has the most problems flush-
ing Cm on time – the flush is delayed 69 times – because of
its L0 − L1compaction strategy. The auto-tuned version of
RocksDB does better, but it still spends a significant amount
of the time stalling writes, consisting of 1% of the total ex-
periment time.

0

50

100

150

200

18700 18750 18800 18850 18900

IO
 B

an
dw

id
th

 (
M

B
/s

)

Time (seconds)

Cronos Bandiwdth allocation

Client

Internal Operations

Client Load
Internal Operations

0

50

100

150

200

18700 18750 18800 18850 18900

IO
 B

a
n

d
w

id
th

 (
M

B
/s

)

Time (seconds)

Cronos Bandiwdth allocation

Client

Internal Operations

Time (s)
18700 18800 18900I/O

 B
an

dw
id

th

100

0

200

Figure 11: Detail of RocksDB-SILK I/O bandwidth alloca-
tion. SILK boosts internal work when client load decreases.

24h production workload. Figure 10 presents the 99th per-
centile latency and throughput time series of RocksDB-SILK
for a 24h run of our production workload. SILK maintains
stable performance over the extended period of time. Fig-
ure 11 shows a detail of the I/O bandwidth allocation in
RocksDB-SILK during 200s of the production workload. In-
ternal work may be temporarily postponed, but is eventually
completed in the long term. RocksDB-SILK compacts ap-
proximately 3TB of data over the 24h and never has more
than three compaction operations waiting to be scheduled.
The worker threads experience no write stalls and have less
than three operations enqueued throughout the experiment.

6.3 YCSB benchmarks
To evaluate the performance of SILK for a wide range of
workloads, we now present results with the the full YCSB
benchmark. From this point forward, we show results ob-
tained with TRIAD-SILK. We report that the results for
RocksDB-SILK are similar.
Workload description. YCSB provides six core workloads,
described in Table 1. We use 8B keys and 1024B values. We
evaluate SILK in the zipfian and uniform key distributions
and show that SILK reduces tail latency in write-dominated
workloads without inducing significant performance degra-
dation in other scenarios.
Results. Figure 12 shows the average throughput of TRIAD
and TRIAD-SILK, for the uniform (top) and zipfian (bot-
tom) key distributions. SILK has low impact on throughput
for both key distributions, amounting to at most 7%. As ex-
pected, SILK incurs the highest overhead for the uniform key
distribution for the write-dominated workloads (i.e., YCSB
F), because it entails frequent compactions and therefore fre-
quent scheduling interventions by SILK. Reads do not suffer
significantly compared to the baseline because of L0 read op-
timizations in TRIAD (and RocksDB): (1) there is a Bloom
filter for each L0 file, and (2) reads return after the KV tuple
is first found on L0, without checking all the L0 files. Be-
cause of these two optimizations, most of the time only one
L0 file is read. So, even if SILK postpones L0 – L1 com-
pactions, it has little impact on read performance. With a zip-
fian key distribution, most requests are served from memory
in the entire benchmark, leading to less compaction. Here,
SILK’s overhead is at most 4%. Similarly, read-dominated
workloads (YCSB B, C, D and E) are less impacted by com-

762 2019 USENIX Annual Technical Conference USENIX Association

Workload Description
YCSB A write-intensive: 50% updates, 50% reads
YCSB B read-intensive: 5% updates, 95% reads
YCSB C read-only: 100% reads
YCSB D read-latest: 5% updates, 95% reads
YCSB E scan-intensive: 5% updates, 95% scans;

average scan length 50 elements
YCSB F 50% read-modify-write, 50% reads

Table 1: YCSB core workloads description.

0
10
20
30
40
50

YCSB A YCSB B YCSB C YCSB D YCSB E YCSB F

0
50

100
150
200
250

YCSB A YCSB B YCSB C YCSB D YCSB E YCSB F

Th
ro

ug
hp

ut
(K

op
s/

s)
Th

ro
ug

hp
ut

(K

op
s/

s)

A. Uniform key distribution

B. Zipfian key distribution

SILK TRIAD

SILK
TRIAD

Figure 12: Average throughput of TRIAD and TRIAD-SILK
in YCSB. Using SILK has minimal impact on throughput in
read- and write- dominated workloads.

YCSB A YCSB B YCSB C YCSB D YCSB E YCSB F

YCSB A YCSB B YCSB C YCSB D YCSB E YCSB F

A. Uniform key distribution

B. Zipfian key distribution

104

106

La
te

nc
y

(m
ic

ro
s)

104

106

La
te

nc
y

(m
ic

ro
s)

SILK 50p TRIAD 50p SILK 99p TRIAD 99p

Figure 13: Latency of TRIAD and TRIAD-SILK in YCSB.
Log-scale on Y-axis. SILK decreases 99p latency by two
orders of magnitude in write-dominated workloads, while
maintaining similar median latency across all workloads.

pactions, leading to less overhead (at most 5% in the uniform
key distribution).

Figure 13 shows the median and 99 percentile latency for
TRIAD and TRIAD-SILK. Generally, SILK’s median la-
tency is on par with that of TRIAD, or slightly lower. The
only workload where SILK experiences higher median la-
tency than TRIAD is YCSB E with a zipfian key distribution,
where SILK surpasses TRIAD by 5%. Tail latency is lower
with SILK across all workloads, by at least 5% (in YCSB
E). SILK’s benefits in terms of tail latency are most pro-
nounced in write-dominated workloads, where the latency
is decreased by up to two orders of magnitude.

6.4 Stress testing for long peaks
Workload description. In this section we focus on work-
loads in the style of YCSB core workload A (see Table 1),
where we vary the ratio between the length of the client load
peaks and valleys (gradually increasing peak duration, while
keeping valley duration constant). We use 8B keys, 1024B
values and a uniform key distribution. Client load during low
activity periods is approximately 10 Koperations/second and
approximately 40 Koperations/s during peaks. The offered
load is higher for both the peaks and the valleys than our
production workload, in order to stress the system.

Results. Figure 8B shows the 99th percentile latency (left)
and the throughput (right) of TRIAD-SILK. The first three
rows show a 50:50 write:read workload, where the ratio of
peak:valley length is varied: peaks last 10, 50, and 100 sec-
onds, while the valleys last 10 seconds. SILK easily sustains
these peaks and valleys in the client load, keeping tail latency
low and the throughput steady.

On the last two rows of the figure we show the results of
an experiment with a long peak, to see at what point SILK’s
performance starts to degrade. The fourth row shows the
results with a 50:50 write:read workload and the last row
with a 90:10 write:read workload. Despite the prioritiza-
tion of critical internal work, if the peak load is high and
the peak duration long, the system cannot allocate enough
resources to the internal work, and the performance eventu-
ally starts to degrade. Also, as expected, the proportion of
writes influences the amount of time the peaks can be sus-
tained. SILK’s performance starts to degrade at around 500
seconds (300 seconds of peak) for the 90% writes workload,
while the peak can be sustained up to around 700 seconds
(500 seconds of peak) for the 50% writes scenario. Despite
showing performance degradation, SILK is able to handle
challenging workloads that are representative of real appli-
cations. Our production workload has at most 400s peaks,
50% writes and load peaks reaching only half the load of the
synthetic workload peaks (Figure 10).

6.5 Breakdown
Figure 8C shows 99th percentile latency (left) and through-
put (right) for the following variants of SILK. The first row
shows a version where we enable SILK’s dynamic I/O band-
width rate limiting, but where the priorities and preemption
are disabled. The second row shows the complementary ver-
sion which uses priorities and preemption but where the I/O
bandwidth is not controlled. The final row shows SILK. On
their own, neither of the two techniques is able to sustain the
client load.

In the first case (top row), the dynamic bandwidth alloca-
tion ensures that internal and external work interference is
low. However, as the experiment progresses and larger com-
pactions need to take place, the urgent internal operations are
slowed down.

USENIX Association 2019 USENIX Annual Technical Conference 763

In the second case (middle row), good prioritization main-
tains the tree structure at the levels close to the memory com-
ponent, allowing flushes and L0 – L1 compactions to proceed
without slowdowns. However, as larger compactions need to
take place, the fact that the bandwidth is not controlled leads
to negative interference between internal and external work.

7 Related work

Reducing compaction overhead. Many systems reduce the
overhead of compaction algorithms used in production sys-
tems, such as RocksDB [18], LevelDB [14] and Cassan-
dra [30]. WiscKey [32], HashKV [10] and LWC-tree [44]
separate keys from values, and only store keys in the LSM
tree, reducing data movement in compaction operations.
TRIAD [4] keeps hot data in memory, avoids duplicate
writes of the log component, and compacts an SSTable only
when there is sufficient overlap with lower-level SSTables.
SlimDB [40] allows overlapping key-ranges on each level of
the LSM tree to reduce the amount of data that is rewritten,
and uses new index blocks and cuckoo filters to perform fast
key lookup. Monkey [12], Dostoevsky [13], Lim et al. [31],
Dong et al. [17] tune the parameters of the LSM tree, in order
to limit the amount of maintenance work and to achieve bet-
ter performance. Accordion [8] optimizes the layout of the
in-memory component by means of a hierarchical structure
and in-memory compactions. SifrDB [33] employs different
compaction algorithms on different levels of the LSM tree.

These techniques decrease the amount of work performed
during internal operations, with the result of increasing
throughput. However, they do not avoid the interference
with user operations while internal operations execute. By
contrast, SILK schedules internal operations so as to avoid
interference on user operations, thus avoiding latency spikes
for user operations and improving tail latencies. The tech-
niques of SILK can be applied to existing designs, thereby
preserving their improvements in terms of internal operation
overhead. We show this by applying SILK techniques on top
of two systems: RocksDB and TRIAD.

Compaction variants and alternatives. PebblesDB [39] al-
lows overlapping key ranges in the lower LSM tree levels to
avoid SSTable merges, and uses a skip-list-like structure to
allow efficient key lookups. PebblesDB achieves remarkable
performance, but its last-level compaction may lead to pro-
longed service unavailability (Section 4). SILK techniques
can be applied to PebblesDB to improve its robustness.

Tucana [38] and ForestDB [2] use variants of the B-ε
tree [6, 9, 27] and of the B+ tree, respectively. Unlike LSM
trees, these systems do not maintain large sorted files and
hence do not implement flushing and compaction. How-
ever, they implement operations such as leaf splitting, leaf
merging and tree re-balancing to preserve the structure of
the tree. These operations result in random accesses that in-

crease write amplification and affect the latency of user op-
erations by contending for I/O. SILK targets LSM tree-based
systems, which favor sequential I/O, absorb writes in mem-
ory, and leverage sorted SSTables for efficient range scans.

Ahmad and Kemme [1] offload compaction to a dedicated
server. Atlas [29] uses different servers to store keys and
values. Using a different server for compactions is an ef-
fective way to address latency spikes, since this approach
removes interference between client and internal operations.
However, this solution substantially changes the architecture
of the KV store from a standalone system to a distributed
one, which results in higher operational costs and increased
complexity. Moreover, the transfer of SSTables between the
compaction server and the client-facing servers puts addi-
tional load on the network, which can generate interference
on co-located applications.

Data structure and algorithm improvements. FloDB [5],
cLSM [24], HyperLevelDB [26], Nibble [35] and Be-
spoKV [3] improve scalability by alleviating contention bot-
tlenecks. NoveLSM [28] reduces logging overhead by sup-
porting in-place updates to a component stored on NVM, and
performs parallel reads. These techniques are orthogonal to
SILK’s. Minos [16] reduces tail latency for in-memory KVs
focusing on workloads with heterogeneous item sizes. To
this end, Minos serves similar-sized requests on the same
cores. Similar approaches could be implemented in LSM
KVs to further reduce tail latency in heterogeneous work-
loads, and they can co-exist with SILK. bLSM [41] aims to
avoid stalling at a level L of the tree by ensuring that opera-
tions at lower levels have completed by the time level L has to
push data to lower levels. bLSM achieves this goal by throt-
tling internal operation rates. bLSM, however, may throttle
user writes as the memory component fills up. Instead of
artificially throttling requests, SILK performs internal oper-
ations during off-peak periods, and prioritizes higher-level
internal operations to avoid stalling user operations.

8 Conclusion

In this paper we presented SILK, a new LSM KV store de-
signed to prevent client request latency spikes. SILK uses
an I/O scheduler to manage external client load and inter-
nal LSM maintenance work. We implemented SILK in
two state-of-the-art LSM KVs and demonstrated order-of-
magnitude improvements in latency at the 99th percentile in
synthetic and production workloads from Nutanix.

Acknowledgements. We would like to thank our shepherd,
Vijay Chidambaram, and the anonymous reviewers for all
their helpful comments and suggestions. This work was sup-
ported in part by the Swiss National Science Foundation
through grant No. 513954, an EcoCloud Postdoctoral Fel-
lowship, and by a gift from Nutanix, Inc. Part of the work has
been done while Oana Balmau was an intern at Nutanix.

764 2019 USENIX Annual Technical Conference USENIX Association

References

[1] AHMAD, M. Y., AND KEMME, B. Compaction Man-
agement in Distributed Key-value Datastores. In Pro-
ceedings of VLDB (2015).

[2] AHN, J., SEO, C., MAYURAM, R., YASEEN, R.,
KIM, J., AND MAENG, S. ForestDB: A Fast Key-value
Storage System for Variable-length String Keys. IEEE
Transactions on Computers 65, 3.

[3] ANWAR, A., CHENG, Y., HUANG, H., HAN, J.,
SIM, H., LEE, D., DOUGLIS, F., AND BUTT, A. R.
BespoKV: Application Tailored Scale-out Key-value
Stores. In Proceedings of SC18 (2018).

[4] BALMAU, O., DIDONA, D., GUERRAOUI, R.,
ZWAENEPOEL, W., YUAN, H., ARORA, A., GUPTA,
K., AND KONKA, P. TRIAD: Creating Synergies Be-
tween Memory, Disk and Log in Log Structured Key-
value Stores. In Proceedings of USENIX ATC (2017).

[5] BALMAU, O., GUERRAOUI, R., TRIGONAKIS, V.,
AND ZABLOTCHI, I. FloDB: Unlocking Memory in
Persistent Key-value Stores. In Proceedings of EuroSys
(2017).

[6] BENDER, M. A., FARACH-COLTON, M., JANNEN,
W., JOHNSON, R., KUSZMAUL, B. C., PORTER,
D. E., YUAN, J., AND ZHAN, Y. An Introduction to
Bε-trees and Write-optimization. ;login: 40, 5 (2015).

[7] BLOOM, B. H. Space/time Trade-offs in Hash Coding
with Allowable Errors. Communications of the ACM
13, 7 (1970).

[8] BORTNIKOV, E., BRAGINSKY, A., HILLEL, E., KEI-
DAR, I., AND SHEFFI, G. Accordion: Better Memory
Organization for LSM Key-value Stores. In Proceed-
ings of VLDB (2018).

[9] BRODAL, G. S., AND FAGERBERG, R. Lower Bounds
for External Memory Dictionaries. In Proceedings of
SODA (2003).

[10] CHAN, H. H. W., LI, Y., LEE, P. P. C., AND XU, Y.
HashKV: Enabling Efficient Updates in KV Storage via
Hashing. In Proceedings of USENIX ATC (2018).

[11] COOPER, B. F., SILBERSTEIN, A., TAM, E., RA-
MAKRISHNAN, R., AND SEARS, R. Benchmarking
Cloud Serving Systems with YCSB. In Proceedings of
SoCC (2010).

[12] DAYAN, N., ATHANASSOULIS, M., AND IDREOS, S.
Monkey: Optimal Navigable Key-value Store. In Pro-
ceedings of SIGMOD (2017).

[13] DAYAN, N., AND IDREOS, S. Dostoevsky: Better
Space-time Trade-offs for LSM-tree Based Key-value
Stores via Adaptive Removal of Superfluous Merging.
In Proceedings of SIGMOD (2018).

[14] DEAN, J., AND GHEMAWAT, S. LevelDB. https:

//github.com/google/leveldb. visited Jan 2019.

[15] DELIMITROU, C., AND KOZYRAKIS, C. Amdahl’s
Law for Tail Latency. Communications of the ACM 61,
8 (2018).

[16] DIDONA, D., AND ZWAENEPOEL, W. Size-aware
Sharding for Improving Tail Latencies in In-memory
Key-value Stores. In Proceedings of NSDI (2019).

[17] DONG, S., CALLAGHAN, M., GALANIS, L.,
BORTHAKUR, D., SAVOR, T., AND STRUM, M. Opti-
mizing Space Amplification in RocksDB. In Proceed-
ings of CIDR (2017).

[18] FACEBOOK. RocksDB: A Persistent Key-value Store
for Fast Storage Environments. https://rocksdb.

org. visited Jan 2019.

[19] FACEBOOK. RocksDB Autotuned Rate Lim-
iter. https://rocksdb.org/blog/2017/12/18/

17-auto-tuned-rate-limiter.html. visited Jan
2019.

[20] FACEBOOK. RocksDB Benchmarking Tools.
https://github.com/facebook/rocksdb/wiki/

Benchmarking-tools. visited Jan 2019.

[21] FACEBOOK. RocksDB Level-based Compaction
Changes. https://rocksdb.org/blog/2017/06/

26/17-level-based-changes.html. visited Jan
2019.

[22] FACEBOOK. RocksDB Rate Limiter. https:

//github.com/facebook/rocksdb/wiki/

Rate-Limiter. visited Jan 2019.

[23] FACEBOOK. RocksDB Tuing Guide. https:

//github.com/facebook/rocksdb/wiki/

RocksDB-Tuning-Guide. visited Jan 2019.

[24] GOLAN-GUETA, G., BORTNIKOV, E., HILLEL, E.,
AND KEIDAR, I. Scaling Concurrent Log-structured
Data Stores. In Proceedings of EuroSys (2015).

[25] HUA, Y., XIAO, B., VEERAVALLI, B., AND FENG,
D. Locality-sensitive Bloom Filter for Approximate
Membership Query. IEEE Transactions on Computers
61, 6 (2012).

[26] HYPERDEX. HyperLevelDB. https://github.com/
rescrv/HyperLevelDB. visited Jan 2019.

USENIX Association 2019 USENIX Annual Technical Conference 765

https://github.com/google/leveldb
https://github.com/google/leveldb
https://rocksdb.org
https://rocksdb.org
https://rocksdb.org/blog/2017/12/18/17-auto-tuned-rate-limiter.html
https://rocksdb.org/blog/2017/12/18/17-auto-tuned-rate-limiter.html
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://rocksdb.org/blog/2017/06/26/17-level-based-changes.html
https://rocksdb.org/blog/2017/06/26/17-level-based-changes.html
https://github.com/facebook/rocksdb/wiki/Rate-Limiter
https://github.com/facebook/rocksdb/wiki/Rate-Limiter
https://github.com/facebook/rocksdb/wiki/Rate-Limiter
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/rescrv/HyperLevelDB
https://github.com/rescrv/HyperLevelDB

[27] JANNEN, W., YUAN, J., ZHAN, Y., AKSHINTALA,
A., ESMET, J., JIAO, Y., MITTAL, A., PANDEY,
P., REDDY, P., WALSH, L., BENDER, M., FARACH-
COLTON, M., JOHNSON, R., KUSZMAUL, B. C.,
AND PORTER, D. E. BetrFS: Write-optimization in
a Kernel File System. ACM Transactions on Storage
(TOS) 11, 4 (2015).

[28] KANNAN, S., BHAT, N., GAVRILOVSKA, A.,
ARPACI-DUSSEAU, A., AND ARPACI-DUSSEAU, R.
Redesigning LSMs for Nonvolatile Memory with Nov-
eLSM. In Proceedings of USENIX ATC (2018).

[29] LAI, C., JIANG, S., YANG, L., LIN, S., SUN, G.,
HOU, Z., CUI, C., AND CONG, J. Atlas: Baidu’s Key-
value Storage System for Cloud Data. In Proceedings
of MSST (2015).

[30] LAKSHMAN, A., AND MALIK, P. Cassandra: A De-
centralized Structured Storage System. ACM SIGOPS
Operating Systems Review 44, 2 (Apr. 2010).

[31] LIM, H., ANDERSEN, D. G., AND KAMINSKY, M.
Towards Accurate and Fast Evaluation of Multi-stage
Log-structured Designs. In Proceedings of FAST
(2016).

[32] LU, L., PILLAI, T. S., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. WiscKey: Separat-
ing Keys from Values in SSD-conscious Storage. In
Proceedings of FAST (2016).

[33] MEI, F., CAO, Q., JIANG, H., AND LI, J. SifrDB: A
Unified Solution for Write-optimized Key-value Stores
in Large Datacenter. In Proceedings of SoCC (2018).

[34] MEI, F., CAO, Q., JIANG, H., AND TINTRI, L. T.
LSM-tree Managed Storage for Large-scale Key-value
Store. In Proceedings of SoCC (2017).

[35] MERRITT, A., GAVRILOVSKA, A., CHEN, Y., AND
MILOJICIC, D. Concurrent Log-structured Memory
for Many-core Key-value Stores. In Proceedings of
VLDB (2017).

[36] O’NEIL, P., CHENG, E., GAWLICK, D., AND
O’NEIL, E. The Log-Structured Merge-tree (LSM-
tree). Acta Inf. 33, 4 (1996).

[37] OUSTERHOUT, J., AND DOUGLIS, F. Beating the I/O
Bottleneck: A Case for Log-structured File Systems.
ACM SIGOPS Operating Systems Review 23, 1 (1989).

[38] PAPAGIANNIS, A., SALOUSTROS, G., GONZÁLEZ-
FÉREZ, P., AND BILAS, A. Tucana: Design and
Implementation of a Fast and Efficient Scale-up Key-
value Store. In Proceedings of USENIX ATC (2016).

[39] RAJU, P., KADEKODI, R., CHIDAMBARAM, V., AND
ABRAHAM, I. PebblesDB: Building Key-value Stores
Using Fragmented Log-Structured Merge Trees. In
Proceedings of SOSP (2017).

[40] REN, K., ZHENG, Q., ARULRAJ, J., AND GIBSON,
G. SlimDB: A Space-efficient Key-value Storage En-
gine for Semi-sorted Data. In Proceedings of VLDB
(2017).

[41] SEARS, R., AND RAMAKRISHNAN, R. bLSM: A Gen-
eral Purpose Log Structured Merge Tree. In Proceed-
ings of SIGMOD (2012).

[42] WANG, P., SUN, G., JIANG, S., OUYANG, J., LIN, S.,
ZHANG, C., AND CONG, J. An Efficient Design and
Implementation of LSM-tree Based Key-value Store on
Open-channel SSD. In Proceedings of EuroSys (2014).

[43] WU, X., XU, Y., SHAO, Z., AND JIANG, S. LSM-trie:
An LSM-tree-based Ultra-large Key-value Store for
Small Data. In Proceedings of USENIX ATC (2015).

[44] YAO, T., WAN, J., HUANG, P., HE, X., WU, F., AND
XIE, C. Building Efficient Key-Value Stores via a
Lightweight Compaction Tree. ACM Transactions on
Storage (TOS) 13, 4 (2017).

766 2019 USENIX Annual Technical Conference USENIX Association

Unification of Temporary Storage in the NodeKernel Architecture

Patrick Stuedi† Animesh Trivedi‡ Jonas Pfefferle† Ana Klimovic§

Adrian Schuepbach† Bernard Metzler†

†IBM Research ‡Vrije Universiteit §Stanford University

Abstract
Efficiently exchanging temporary data between tasks is criti-
cal to the end-to-end performance of many data processing
frameworks and applications. Unfortunately, the diverse na-
ture of temporary data creates storage demands that often fall
between the sweet spots of traditional storage platforms, such
as file systems or key-value stores.

We present NodeKernel, a novel distributed storage archi-
tecture that offers a convenient new point in the design space
by fusing file system and key-value semantics in a common
storage kernel while leveraging modern networking and stor-
age hardware to achieve high performance and cost-efficiency.
NodeKernel provides hierarchical naming, high scalability,
and close to bare-metal performance for a wide range of data
sizes and access patterns that are characteristic of temporary
data. We show that storing temporary data in Crail, our con-
crete implementation of the NodeKernel architecture which
uses RDMA networking with tiered DRAM/NVMe-Flash
storage, improves NoSQL workload performance by up to
4.8× and Spark application performance by up to 3.4×. Fur-
thermore, by storing data across NVMe Flash and DRAM
storage tiers, Crail reduces storage cost by up to 8× compared
to DRAM-only storage systems.

1 Introduction

Managing temporary data efficiently is key to the performance
of cluster computing workloads. For example, application
frameworks often cache input data or share intermediate data,
both both within a job (e.g., shuffle data in a map-reduce job)
and between jobs (e.g., pre-processed images in a machine
learning training workflow). Temporary data storage is also in-
creasingly important in serverless computing for exchanging
data between different stages of tasks [17].

Storing temporary data efficiently is challenging as its char-
acteristics typically lie between the design points of existing
storage platforms, such as distributed file systems and key-
value stores. For instance, shuffle data in a map-reduce job

may consist of a large number of files which are organized
hierarchically, vary widely in size, are written randomly, and
read sequentially. While file systems (e.g., HDFS) offer a
convenient hierarchical namespace and efficiently store large
datasets for sequential access, distributed key-value stores are
optimized for scalable access to a large number of small ob-
jects. Similarly, DRAM-based key-value stores (e.g., Redis)
offer the required low latency, but persistent storage platforms
(e.g, S3) are more suitable for high capacity at low cost. Over-
all, we find that existing storage platforms are not able to
satisfy all the diverse requirements for temporary data storage
and sharing in distributed data processing workloads.

In this paper we present NodeKernel, a new distributed
storage architecture designed from the ground up to support
fast and efficient storage of temporary data. As its most dis-
tinguishing property, the NodeKernel architecture fuses file
system and key-value semantics while leveraging modern net-
working and storage hardware to achieve high performance.
NodeKernel is based on two key observations. First, many
features offered by long-term storage platforms, such as dura-
bility and fault-tolerance, are not critical when storing tem-
porary data. We observe that under such circumstances, the
software architectures of file systems and key-value stores
begin to look surprisingly similar. The fundamental differ-
ence is that file systems require an extra level of indirection
to map offsets in file streams to distributed storage resources,
while key-value stores map entire key-value pairs to stor-
age resources. The second observation is that low-latency
networking hardware and multi-CPU many-core servers dra-
matically reduce the cost of this indirection in a distributed
setting by enabling scalable RPC communication at latencies
of a few microseconds.

Based on these insights we develop the NodeKernel archi-
tecture by implementing file system and key-value semantics
as thin layers on top of a common storage kernel. The storage
kernel operates on opaque data objects called “nodes” in a
unified namespace. Applications can store arbitrary size data
in nodes, arrange nodes in a hierarchical namespace, and ob-
tain file system or key-value semantics through specialized

USENIX Association 2019 USENIX Annual Technical Conference 767

node types if needed. For instance, key-value and table nodes
permit concurrent creation of nodes with the same name, of-
fering last-put-wins semantics. On the other hand, file and
directory nodes permit efficient enumeration of data sets at a
given level in the storage hierarchy. By splitting functionality
in a common storage kernel and custom node types, NodeKer-
nel enables applications to use a single platform to store data
that may require different semantics, while generally offering
good performance for a wide range of data sizes and access
patterns.

NodeKernel is designed explicitly with modern hardware
in mind. Following strict separation of concerns, the storage
kernel is composed of a lightweight and scalable metadata
plane tailored to low-latency networking hardware and an
efficient data plane that provides access to multiple tiers of
network-attached storage resources. The metadata plane is
trimmed down to offer only the most critical functionality,
with low overhead. The data plane runs a lightweight software
stack and leverages modern networking and storage hardware
to achieve fast access to arbitrary size data sets while also op-
timizing cost efficiency. For instance, data attached to “nodes”
may either be pinned to a particular storage technology tier
or may spill from one storage tier to another depending on
performance and cost requirements.

Crail is our concrete implementation of the NodeKernel
architecture using RDMA networking and two storage tiers
based on DRAM and NVMe SSDs respectively. We evaluated
Crail on a 100Gb/s RoCE cluster equipped with Intel Optane
NVMe SSDs using raw storage microbenchmarks as well as
using the NoSQL YCSB benchmark and different Spark work-
loads. Our results show that Crail matches the performance
of current state-of-the-art file systems and key-value stores
when operated in their sweet spot, and outperforms existing
systems up to 3.4× for data accesses outside the sweet spot of
file systems and key-value stores. Moreover, Crail creates new
opportunities to reduce cost and gain flexibility with almost
no performance penalties by using NVMe Flash in addition
to DRAM. For instance, using Crail to store shuffle data in
Spark allows us to adjust the ratio between DRAM and Flash
with only a minimal increase in job runtimes.

In summary, this paper makes the following contributions:

• We propose NodeKernel, a new storage architecture fus-
ing file system and key-value semantics to best meet
the needs of temporary data storage in data processing
workloads.

• We present Crail, a concrete implementation of the
NodeKernel architecture using RDMA, DRAM, and
NVMe Flash.

• We show that storing temporary data in Crail reduces
the runtime and cost of data processing workloads. For
instance, Crail improves performance up to 4.8× for

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1 1kB 1MB 1GB

C
D

F

data size

TPC-DS
ML-Cocoa
PR-Twitter

Figure 1: CDF of the size of intermediate data written or read
per compute task in Spark for different workloads.

NoSQL workloads. When integrated in Spark’s shuf-
fle and broadcast services, Crail improves application
performance up to 3.4× and reduces cost up to 8×.

Crail is an open source Apache project [2, 3] with the
code available for download from the project website as well
as directly from GitHub at https://github.com/apache/
incubator-crail. Further, all benchmarks used in this pa-
per are open source.

2 Background and Motivation

Temporary data represent a large and important class of in-
processing data in analytics frameworks. For example, Zhang
et al. report that over 50% Spark jobs executed at Facebook
contain at least one shuffle operation, generating significant
amounts of temporary data [37].

We define temporary data as the multitude of all application
data being created, handled, or consumed during processing,
excluding the original input and final output data. Specifically,
we identify three distinct classes of temporary data: intra-job,
inter-job, and cached input/output datasets. Intra-job tempo-
rary data is generated within a framework when executing a
single job like page-rank, or a SQL query. Common examples
are datasets generated during shuffle or broadcast operations
in frameworks like Spark, Hadoop or Flink. Such data is typi-
cally generated and consumed by the same job, which puts a
bound on the lifetime of the data. Inter-job temporary data are
intermediate results in multi-job pipelines. For example, there
are many pre-processing and post-processing jobs in a typical
machine learning pipeline [35], where the output of one job
becomes the input of another job. Lastly, examples of cached
input/output data are mostly read-only datasets that are pulled
into a cache for fast repetitive processing. For instance, users
may run many SQL queries on the same table (or a view) over
a short period of time. In this case, a copy of the input table
might be cached on a fast storage media.

768 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/apache/incubator-crail
https://github.com/apache/incubator-crail

Local Remote
Technology Latency Latency Bandwidth Price
DRAM 80ns 2us 10s GB/s 5$/GB
3D XPoint 5us 10us 2-3 GB/s 1.25$/GB
NAND Flash 50us 55us 2-3 GB/s 0.63$/GB

Table 1: Price and performance of DRAM (DDR4), 3D
XPoint (NVMe) and NAND Flash (NVMe). Remote DRAM
latency for RDMA, remote 3D XPoint and NAND Flash la-
tency for NVMf.

Building an efficient storage platform for the different types
of temporary data requires careful consideration of application
demands, data characteristics and hardware opportunities. In
the following section we discuss several requirements for
a temporary storage platform and provide an overview of
current state-of-the-art solutions.

2.1 Requirements and Challenges
Size, API, and Abstractions Diversity: Temporary data in
data processing workloads can vary substantially with regard
to the data size. In Figure 1 we show the size distribution
(CDF) of temporary data generated per task during the execu-
tion of (a) PageRank on the Twitter graph; (b) SQL queries
on a TPC-DS dataset; and (c) Cocoa machine learning on a
sparse matrix dataset [24]. As shown, the per-task data sizes
are ranging from a few bytes (for machine learning) to a GB
(for TPC-DS). Historically, different storage systems are used
to handle the two ends of this spectrum. Distributed key-value
stores (e.g., RAMCloud, memcached, etc.) have an object API
and are optimized to store small values efficiently for fast ran-
dom lookups [20, 33]. In contrast, file systems like HDFS or
Ceph, can store large datasets (GBs) efficiently by partitioning
the dataset and maintaining indexes for lookups. Moreover,
filesystem abstractions of appendable files, enumerable hier-
archical namespace, and a streaming-byte interface for I/O
provide additional support for an easy mapping of temporary
datasets, such as all-to-all shuffle, to the underlying storage.

A temporary storage platform should be able to store small
and large values efficiently, with the unified benefit of file and
key-value abstractions in a single system.
Performance: Temporary data often lies in the critical path
of data processing, hence it is imperative that access to the
temporary data is fast. As with the size, the access pattern also
varies widely. For example, as there is no global order, shuffle
data is often written randomly [11], whereas SQL tables are
read in large sequential scans [32]. Hence, one requirement
a storage platform for temporary data has to fulfill is that it
should be capable of performing well on the entire spectrum
of data sizes for any access pattern.

Fortunately, over the last decade, I/O devices have evolved
rapidly to support high-bandwidth (100s of Gbps), ultra low-

latencies (less than 10 usec), with millions of IOPS. In order
to meet data processing demands, these devices are now being
deployed in the cloud (AWS, Azure), and used inside data
processing frameworks. Consequently, an ideal temporary
storage system should be able to run efficiently on modern
networking and storage hardware while delivering close to
bare-metal performance.
Beyond In-Memory Storage: The total amount of tempo-
rary data that is generated or consumed by data processing
workloads can be large. For instance, between the workloads
whose temporary data object size CDFs are shown in Fig-
ure 1, the collective total volume of data differs by 100s of
GBs (10-100% of the input dataset size, not shown in the
figure). Efficiently storing large volumes of data while offer-
ing good data access performance is difficult. For instance,
storing all the data in DRAM is preferred from a performance
standpoint but doing so typically is too costly. Thankfully,
over the past years different media types such as NAND Flash,
and PCM storage, have emerged to store data at a different
cost, performance, and energy price point. Hence, an efficient
storage platform for temporary data should integrate multi-
ple storage technologies that offer different performance cost
trade-offs, and allow applications to choose between differ-
ent points in the trade-off space. A comparison of different
storage technologies with respect to price and performance is
given in Table 1.
Non-Requirements: We observe that in the specific case of
temporary data storage, many traditional storage features such
as durability and fault-tolerance are not a priority. Durability,
for instance, is of low importance due to the short lifetime of
temporary data. While fault-tolerance is generally useful for
short-lived data, it still is not a high priority for temporary data
storage. Today, fault tolerance is often implemented at the
level of the compute framework, in a coarse grained manner.
For instance, Spark [36] and Ray [25] use lineage tracking to
re-compute data in case of data loss by relaunching tasks.

2.2 Limitations of Existing Approaches

We review current state-of-the-art storage systems with regard
to the design goals listed in the previous section. We classify
the systems discussed into the following three categories.
Key-Value Stores: Memcached [4] and Redis [5] are two of
the most popular key-value stores designed to store data in
DRAM. Network-optimized KVs like MICA [21], Herd [14],
FaRM [12], KVDirect [19] and RAMCloud [26] use RDMA
operations to provide high-performance data accesses but
cannot easily integrate data storage to different tiers beyond
DRAM. Redis has an extension to spill data to Flash, how-
ever keys are still stored in DRAM, and hence are limited
by the DRAM capacity. Storage-optimized KVs such as
Aerospike [30] or BlueCache [34], use NAND Flash for stor-
age. Hence, their performance is bounded by the performance
of Flash, and they are not optimized for the next-generation

USENIX Association 2019 USENIX Annual Technical Conference 769

of NVM storage devices like Optane (see Section 5.1). Other
systems, like HiKV [33], have hybrid DRAM-Flash indexes
but only target a single node deployment, hence limiting their
applications to a wider class of operations such as shuffling.
Furthermore, the design of these KV stores is tailored to very
small data sets of a few hundred bytes up to a few MB maxi-
mum, thus, limiting their operational window to these object
sizes.
Distributed Data Stores: Storage systems such as Ceph-
over-Accelio [8] and Octopus [23] are high-performance dis-
tributed file systems used for fast network and NVM devices.
However, due to the focus on providing fault-tolerant, durable
storage their performance for small objects is poor (see Sec-
tion 5). The recently proposed Regions system provides a file
abstraction to remote memory [6]. As with other in-memory
storage systems, however, Regions is not a cost-effective so-
lution for storing large data sets. Systems like Alluxio [1]
and Pocket [17] provide support for multiple storage tech-
nology types. But Alluxio does not deliver the performance
of high-end hardware, and is targeted towards building local
caches. Pocket shares our aim of a dedicated storage system
for temporary data and its design has similarities with the
NodeKernel architecture. However, the focus of Pocket is on
providing efficient and elastic temporary storage on commod-
ity hardware in the cloud whereas NodeKernel is designed
for low-latency high-bandwidth network and storage hard-
ware. Moreover, Pocket has only an object based I/O interface
which is well suited for data sharing in serverless workloads.
In contrast, NodeKernel’s unified API provides semantics
like “append” and “bag” to support storing a wide range of
temporary data in different workloads.
Temporary-data specific operations: A number of works
accelerate specific storage operations in data processing work-
loads. For instance, Riffle [37] is an optimized shuffle server
that aims to reduce overheads associated with large fanouts.
Sailfish [27] is a framework that introduced I-files which are
shuffle optimized data containers. ThemisMR [28] also aims
to optimize shuffle and target small rack-scale deployments.
In general, the aim of these systems is to optimize disk-based,
file-oriented shuffle data management for map-reduce type
workloads. It is not clear how their design can support other
communication patterns, such as broadcast and multicast, or
integrate different storage types to optimize for different ac-
cess patterns. Parallel databases [7,22] use RDMA-optimized
shuffling operations for database operators. These works, how-
ever, are highly database specific and do not extend naturally
to other data processing workloads or other forms of tempo-
rary data.

3 The NodeKernel Architecture

We present the NodeKernel, a new storage architecture de-
signed to match the diverse and complex demands of tempo-
rary data storage in data processing workloads. The NodeK-

ernel tackles this challenge by fusing storage semantics that
are otherwise available separately in file systems and key-
value stores, such as hierarchical naming, scalability, multiple
storage tiers, fast enumeration of datasets, and support for
both tiny and large data sizes (Figure 2). The NodeKernel
architecture is guided by three design principles:

1. Distill higher-level storage semantics into thin layers on
top of a common storage kernel.

2. Separate data management concerns into a lightweight
metadata plane and a ”dumb“ data plane optimized for
modern networking and storage hardware.

3. Leverage multiple storage technologies for efficient stor-
age of large datasets.

We discuss each of these design principles in more detail
below before describing Crail, a concrete implementation of
the NodeKernel architecture, in Section 4.

3.1 Storage Kernel and Node Types
In the NodeKernel architecture, higher-level storage seman-
tics are implemented as thin layers – or more precisely, as
specialized data types – on top of a shared storage kernel
exporting a hierarchical namespace of opaque data “nodes”.
Nodes are objects of an abstract type Node as shown in the
following code snippet.

abstract class Node {
protected:
/*implemented by derived types*/
abstract bool addChild(Node child);
abstract bool removeChild(Node child);
/*implemented by the storage kernel*/
future<int> read(byte[] buf);
future<int> append(byte[] buf);
future<int> update(byte[] buf, int off);
string getPath();
int size();
...

}

The kernel is responsible for allocating storage resources
on behalf of nodes, manipulating the hierarchical namespace,
and implementing basic data access operations such as read,
append and update. Applications interface with the storage
kernel to create data nodes at a given location in the hierarchy,
attach data of arbitrary size to a node, look up nodes, and fetch
the associated dataset from a node. Nodes are identified using
path names encoding the location in the storage hierarchy,
similar to files and directories in a file system.

Applications do not create raw Node objects directly, in-
stead they create objects of derived types offering specialized
functionality. These so-called custom types implement higher-
level storage semantics by extending Node in two ways. First,

770 2019 USENIX Annual Technical Conference USENIX Association

custom types provide implementations for the abstract op-
erations addChild and removeChild. These operations are
called by the kernel whenever a new node is inserted or re-
moved to/from the storage hierarchy. Second, custom data
types provide specialized data access operations implemented
using read and append available in Node.

NodeKernel defines five custom node types, each offering
slightly different semantics and operations:

• File and KeyValue: Both node types provide read and
append interfaces by exposing the corresponding oper-
ations in Node. The two types, however, provide differ-
ent semantics during the creation and insertion of new
nodes, controlled via the implementation of addChild
and removeChild. For File nodes, the first create oper-
ation for a given path name succeeds and subsequent cre-
ate operations on the same path name fail. For KeyValue
nodes, subsequent create operations on a path name rep-
resenting an existing node will succeed, replacing the
existing node. As we will see in Section 5, KeyValue
nodes are useful to cache input datasets in NoSQL work-
loads, permitting concurrent updates of the data, whereas
File nodes are a better match to cache read-only input
data in Spark workloads.

• Directory and Table: Those node types are containers
for File and KeyValue nodes respectively. Directory
and Table nodes store the name components of all of
their children as part of their data (implemented using
append and update operations available in Node). For
instance, the data segment of a Directory with path
name “/a/b” storing two files with path names “/a/b/c1”
and “/a/b/c2” consists of the two name components “c1”
and “c2”. Both Directory and Table nodes offer op-
erations to enumerate the names of all of their children
(implemented using read available in Node). Tables
can optionally be configured as “non-enumerable” in
which case no name components are stored and enumer-
ation returns the empty set. Creating KeyValue nodes
in a non-enumerable table is typically faster because it
eliminates the step of updating the name component (as
described in Section 4.1).

• Bag: The Bag node type is designed to support efficient
sequential reading of data spread across many data nodes.
A Bag behaves like a directory such that it acts as a con-
tainer for File nodes. Applications create and write
files in a Bag just like they create and write files in a
Directory. When reading a Bag, however, the Bag ap-
pears to the application like a single file. Using a Bag’s
read operation allows applications to sequentially read
through the full set of files in the bag. Generally, the
read operation of a Bag offers better performance than
reading each File node separately, due to more efficient
metadata access at file boundaries. As we will see in

Section 5, Spark applications can use Bags to store shuf-
fle data, allowing reduce tasks to efficiently fetch data
written by map tasks. The Bag type in NodeKernel is
similar in spirit than bags in Hurricane, a recent work on
taming skew in data processing workloads [9].

NodeKernel restricts the way node types can be stacked.
For instance, KeyValue nodes can only be attached to Table
nodes, whereas File nodes can only be attached to Bag and
Directory nodes. Moreover, directories can be arbitrarily
nested, whereas bags and tables implement a flat namespace.
The permitted combinations of node types match the spe-
cific use cases of temporary data storage. At the same time,
preventing arbitrary combinations of node types ensures the
architecture is not over-designed and simple to implement.
For instance, Bags are mainly used to store shuffle data which
is organized in flat per-reducer buckets, thus, enabling arbi-
trarily nested bags seemed unnecessary. At the time, a read
operation on flat Bags is easier to implement than a read
operation on an arbitrarily nested Bag.

Why provide a single unified storage namespace? By
splitting functionality in a common storage kernel and a set of
custom data types, the NodeKernel achieves two things. First,
it permits different types of temporary data requiring differ-
ent semantics to be managed by a single storage platform.
For instance, as we will see later, Spark applications can use
Crail for storing both broadcast and shuffle data, as well as
for caching RDDs. Second, decoupling core data access from
storage semantics allows applications to choose a particular
node type based on the semantics they need (key/value vs
file) rather than based on the size of the data or the access
pattern. As discussed in Section 2.1, temporary data often
varies in terms data size and access pattern even within a sin-
gle workload, making it difficult to store the data efficiently
in a storage platform like a filesystem or a key-value store. By
contrast, node types in NodeKernel have no size limitation
and provide efficient data access for different access patterns
as we will see later in Section 5.

3.2 System Architecture
Figure 2 illustrates the NodeKernel system architecture. At
the data management level, NodeKernel’s architecture resem-
bles the architecture of distributed file systems like HDFS
or GFS, consisting of a set of metadata and storage servers
deployed across a cluster. Data attached to a “node” in the
storage hierarchy appears to clients as a stream, but inter-
nally the data is composed of a sequence of blocks. A block
refers to a fixed sequence of bytes stored in one of the storage
servers. Metadata servers maintain the hierarchical storage
namespace as well as block metadata, i.e., a mapping between
storage blocks and storage servers. Storage servers allocate a
large set of storage blocks at startup and register them with

USENIX Association 2019 USENIX Annual Technical Conference 771

File

Bag

KeyValue

Table

Directory

Datacener
Network

Clients

Metadata
Servers

Data
Read/Write

Storage
Class 1

Metadata Lookup

Storage
Class 2

Storage
Class N

Application interface

Figure 2: The NodeKernel storage architecture.

one of the metadata servers. Metadata servers maintain a free
list with blocks that are not assigned to a particular node, and
move blocks from the free list to a per node list during data
writes and appends. When accessing data, clients first contact
one of the metadata servers and request the metadata for the
corresponding block. Based on this information clients then
contact the given storage server to read or write the data.

The Node abstract data type exports two abstract opera-
tions, addChild and removeChild, to be implemented by
the derived types described in Section 3.1. Those operations
are executed at the metadata server each time a new node
is created or removed. The Node further exports functions
to manipulate data such as read, append or update. Those
functions are implemented as part of the client library and
require interactions with both metadata and storage servers.
Finally, the basic metadata operations such as getPath or
size are also implemented by the client library returning
cached values if possible.

Target deployment: NodeKernel targets temporary data
which is short-lived and simple to regenerate. Furthermore,
NodeKernel targets small to medium size deployments con-
sisting of few compute racks. Considering the target deploy-
ments and the nature of the data to be stored, NodeKernel pri-
oritizes performance over fault tolerance. However, if deemed
necessary, additional fault-tolerance mechanism such as repli-
cation, erasure-coding, etc., can be added. The lack of these
features is not fundamental to the design.

Performance challenges: The main challenge in NodeKer-
nel was to come up with a system architecture that can serve
the full spectrum of demands discussed in Section 2.1. In
particular, the architecture should be scalable like a key-value
store despite offering a convenient hierarchical namespace.

Furthermore, the architecture should support both low-latency
key-value style access, as well as high-bandwidth file sys-
tem like data access. In the following we discuss in how we
accommodate these requirements in the NodeKernel architec-
ture.

3.2.1 Low-latency metadata operations

Fusing file system and key-value semantics into a single stor-
age kernel primarily requires a fast metadata access. In Sec-
tion 2.1, we observed that software architectures of distributed
file systems fundamentally differ from key-value stores only
by an extra metadata operation required to map offsets in file
streams to storage resources (e.g., blocks on storage servers).
Thus, keeping the overheads of metadata operations low will
make NodeKernel’s architecture amenable to key-value style
operations on small datasets, while also improving the effi-
ciency of large data accesses.

Today, modern low-latency networking hardware enables
RPC communication at latencies of a few microseconds [13,
16]. The NodeKernel features a lightweight metadata plane
that matches well with low-latency networking hardware. For
one, the metadata plane is trimmed down to offer only the
most critical functionality consisting of six key RPC opera-
tions: create to create a new node, lookup to retrieve the
metadata of a node, remove to delete an existing node, move
to move a node to a different location in the storage hierar-
chy, map to map a logical offset in a node’s data stream to
a storage resource, and register used by storage servers
to register storage resources with the metadata server. All
these operations have low compute and I/O intensity and can
be implemented at the latency of a few microseconds on a
high-performance network fabric. We deliberately move data
intensive metadata operations like enumeration to the data
plane to avoid interference (see Section 3.1 and 4).

3.2.2 Metadata partitioning

The scalability of NodeKernel heavily depends on the through-
put and scalability of its metadata RPC subsystem. Recent
work has shown that RPC systems can be scaled to mil-
lions of operations per second on a single server using high-
performance networking hardware on the one hand [15],
but also using efficient software stacks on commodity hard-
ware [13]. The lightweight RPC interface in NodeKernel is
designed for high throughput and can drive up to 10 million
metadata operations per second using a single metadata server,
as shown later in Section 5. Up to now in all of our deploy-
ments we have never had a situation where a single metadata
server would reach its limit. In fact, in one of our largest de-
ployments on 128 nodes the metadata throughout reached 4.5
million operations per second, thus, roughly half of what a
single metadata server can support.

Nevertheless, for the case where a single metadata server

772 2019 USENIX Annual Technical Conference USENIX Association

is not sufficient, NodeKernel permits partitioning the meta-
data space over multiple servers. Thereby, the top-level root
namespace is hash-partitioned among an ordered list of meta-
data servers. Using metadata partitioning, one can scale the
metadata plane horizontally assuming a sufficiently large top
level fan out.

One drawback of static of partitioning based on top-level
namespaces is that load may be unevenly distributed among
the metadata servers depending on the size of the subtree
and the activity within the subtree. One alternative approach
would be dynamic partitioning at a more fine grained level.
For instance, past work has proposed a partitioning scheme
for file systems where metadata partitioning is implemented
at the directory level, with an option to split large directories
on-demand as they grow too big and distribute the splits over
multiple metadata servers [29]. Even though such an approach
creates a more even load distribution, it comes at a significant
performance cost as it requires multiple RPC invocations dur-
ing path lookup and traversal. Given the performance target
of 5-10 µs in NodeKernel we ultimately decided to adopt
the simpler partitioning scheme where node paths are always
local to a metadata server.

3.2.3 Hardware-accelerated storage

NodeKernel’s data plane is designed to work well with mod-
ern networking and storage hardware. The goal is to keep
the storage interface simple to avoid excessive software over-
heads and permit as much of the data access functionality to
be implemented in hardware. Clients in NodeKernel inter-
act with local and remote storage servers via two interfaces:
read(blockid, offset, length, buffer) to fetch a
certain number of bytes from a block, and write(blockid,
offset, buffer, length) to write a data stored in a buffer
to a block. Later in Section 4 we show that read and write
operations in Crail can almost completely be offloaded to
networking and storage hardware for both DRAM and Flash.
Also note that the storage interface explicitly supports byte ad-
dressable storage hardware by defining the access granularity
at the byte level as opposed to block level.

3.2.4 Tiered storage

NodeKernel employs a simple tiered storage design to ac-
commodate large datasets that cannot be stored in DRAM
in a cost-effective manner. Storage servers are grouped into
different classes (see Figure 2), typically a class per storage
technology (DRAM, NVMe SSDs, HDD, etc.). A storage
server is a logical entity, i.e., one physical or virtual machine
may host multiple storage servers of different types. For in-
stance, a common deployment is to run two storage servers
per host, one exporting some amount of local DRAM and one
exporting storage space on the local NVMe SSD. In princi-
ple, storage classes are user-defined sets of storage servers.

Object type Methods
Crail create<T extends Node>(path, sc)→ future(T)

creates a data node of type T
lookup<T extends Node>(path)→ future(T)

lookup of an existing node
delete(path)→ future(boolean)

deletes an existing node at the given path
move(src, dst)→ future(boolean)

moves node src to new location dst
File & read(offset, buffer, length)→ future(Int)
KeyValue reads data at given offset

append(buffer, length)→ future(Int)
appends application buffer to data

Bag read(buffer, length)→ future(Int)
sequentially reads through all subfiles

Directory enumerate()→ iterator(Node)
& Table enumerates all nodes in a given directory

Table 2: Application programming interface of Crail.

A storage server always belongs to exactly one storage class.
In our evaluation we configure two storage classes, one for
DRAM servers and one of NVMe SSD servers.

The traditional approach to storage tiering is to migrate
data to more cost effective storage classes as the faster storage
classes fill up. We found this strategy to be ineffective for tem-
porary data due to the short lifetime of the data. Instead, we
opted for a simpler approach where storage classes are filled
up according to a user-defined order – typically DRAM first
followed by Flash and hard disk – without ever migrating data
between the tiers. Specifically during data write operations,
metadata servers try to allocate DRAM blocks first, turning
to lower priority storage tiers only once no higher priority
storage blocks are available across the entire cluster.

4 Crail

Crail is a concrete implementation of the NodeKernel archi-
tecture. We implemented Crail in about 10K lines of Java and
C++ code. Table 2 shows the application interface of Crail.
The top level data type in Crail is CrailStore. Applications
use CrailStore to create, lookup and delete data nodes,
or to move data nodes to a different location in the storage
hierarchy. Nodes are identified using path names similar to
file systems. When creating a new node using create, appli-
cations may choose a preferred storage class for the data to be
stored (parameter “sc” in Table 2). We also refer to the storage
class preference as storage affinity because it allows users to
specify affinity for a particular set of data to a particular set
of storage servers or storage media.

Crail implements the full set of node types discussed in
Section 3.1. Note that all operations in Crail are non-blocking
and asynchronous (returning a future object). Crail’s asyn-

USENIX Association 2019 USENIX Annual Technical Conference 773

chronous API matches well with asynchronous software in-
terfaces for modern networking and storage hardware. In fact,
almost all of Crail’s high-level operations can be mapped di-
rectly to a set of non-blocking and asynchronous network and
storage operations. Failures of Crail API calls are commu-
nicated either via invalid futures or exceptions (not shown
in Table 2). For instance, an attempt to lookup a node that
does not exist will result in an invalid future (nullpointer),
while an attempt to read data from a node beyond the node’s
capacity will result in an exception.

Crail can be operated either as a shared storage service or
in the form of per-user or per-application deployments. The
current implementation of Crail, however, does not provide
any tools to virtualize, protect and isolate multiple tenants
from each other.

4.1 Metadata plane
Crail metadata servers maintain an in-memory representation
of (a) the storage hierarchy, (b) the set of free-blocks, and (c)
the assignments of blocks to “nodes”. Specifically, each meta-
data server maintains a per storage class list of free blocks.
Storage classes are ordered according to a user-defined prefer-
ence. As discussed in Section 3.2, if during a write operation
the current write position does not yet point to an allocated
block, a client requests a fresh new block by calling the meta-
data map RPC operation. The metadata server selects a free
block based on the selected storage affinity (or “sc” in Ta-
ble 2). If there are no free blocks in the selected storage class,
the metadata server attempts to allocate a block from the next
storage class in the priority list. When selecting a block in
a storage class, the metadata server uses round-robin over
all storage servers in the given storage class to make sure
data is distributed uniformly in the cluster. If no free block is
available in any of the storage classes the write operation at
the client will fail.

Crail partitions metadata across an array of metadata
servers as discussed in Section 3.2.1, meaning, each metadata
server is responsible for a partition of the storage hierarchy.
Each individual server is implemented as a lightweight RPC
service using DaRPC [31], an asynchronous low-latency RPC
library based on RDMA send/recv. To achieve high through-
put, client connections are partitioned across the different
CPU cores. Each core manages a subset of the client connec-
tions in-place within a single process context to avoid context-
switching overheads. All the memory for RPC buffers is allo-
cated local to the NUMA node associated with the given CPU
core that is responsible for the particular connection. Figure
3 illustrates the different aspects of the metadata processing
in Crail.

Enumeration: In Section 3.1 we discussed how container
nodes (Table, Directory, Bag) maintain a list of the names
of all child nodes as part of their data. The rational behind this

CPU cores

RDMA NIC

User-mapped
network queues

RPC
processing

 Metadata

 Metadata
partitioning

Figure 3: Lightweight metadata plane in Crail.

design is that it allows us to implement container enumeration
efficiently in the data plane. We have seen use cases where
storing Spark shuffle data in Crail generated close to hundred
thousand File nodes in a Bag. Implementing enumeration at
the metadata server would lead to substantial data transfers
between clients and metadata servers and in many cases would
require multiple rounds of RPC to enumerate all of the nodes.

Crail’s file format for container nodes is structured as an
array of fixed-size records consisting of the children’s name
component along with a valid flag. Upon creating a new node,
the metadata server assigns a unique offset within the array
based on which the client writes the corresponding record.
During a delete operation, after the metadata server has re-
moved the node entry, a client clears the valid flag of the
corresponding record (by zeroing the valid bit in the record).
Note that the node record inside a container’s data is only
considered supplementary information. The metadata server
always serves as the authority for validating the existence of
a node. Thus, an enumerate operation running concurrently
with a delete operation may lead to a situation where a node’s
record in the directory file is still valid, but the node’s meta-
data state at the metadata server has already been deleted. In
that case, the node is considered deleted and no read or write
operations will be permitted.

4.2 Data plane
Crail implements two storage classes, one for DRAM and
one for NVMe-based SSDs. An implementation of a storage
class consists of a server part exporting a storage resource
(see Section 3.2.3), and a client part implementing efficient
data access.

RDMA storage class: A storage server in the RDMA stor-
age class exports large regions of RDMA registered memory
to the metadata server. Metadata for RDMA based storage
blocks contains the necessary RDMA credentials such as ad-
dress, length and stag and allows clients to directly read or
write a storage block using RDMA one-sided read/writes.

NVMe-over-Fabrics storage class: NVMe-over-Fabrics
(NVMf) is a recent extension to the NVMe standard that
enables access to remote NVMe devices over RDMA-capable

774 2019 USENIX Annual Technical Conference USENIX Association

networks. It eliminates unnecessary protocol translations
along the I/O path to a remote device, exposing the multi-
ple paired queue design of NVMe directly to clients. As with
RDMA, the queue pairs can directly be mapped into the ap-
plication context to avoid kernel overheads.

A Crail NVMf storage server acts as a control plane for
a NVMf controller by connecting to the controller and re-
porting its credentials like NVMe qualified name, size, etc.,
to the metadata server. With the credentials provided by the
metadata server, the clients can directly connect to the NVMf
controller and perform block read and write operations.

4.3 Failure semantics and persistence

Crail does not currently implement mechanisms for fault-
tolerance (see Section 3.2) and therefore does not protect
against machine or hardware failures. On a crash of a storage
server the corresponding data blocks are lost. On a crash of a
metadata server the correponding metadata partition is lost.
Metadata servers remove inaccessible storage servers from
the list of active servers based on keep-alive messages and
make sure only active servers are considered during block
allocation.

Crail provides optional mechanisms to persist data stored
in DRAM, shut down a Crail deployment and to start a Crail
deployment from a previously persisted state. Persistence is
implemented via operation logging at the metadata servers
and the use of memory mapped persistent storage at storage
servers.

4.4 Anatomy of data access

Figure 4 illustrates how a Crail client interacts with storage
and metadata servers on behalf of an application reading data
from a File or KeyValue node. The application first calls
lookup to retrieve a node handle, causing Crail to fetch the
necessary metadata via RPC from the metadata server. The
metadata contains information about the node such as the size
of the data and the location of the first block. Following a suc-
cessful lookup call, the application issues a read operation to
read a certain number of bytes from the node. The requested
number of bytes may be less than a block. In that case a single
RDMA or NVMf operation will be sufficient to complete the
request. If the requested number of bytes spawns multiple
blocks, as it is case in the example, Crail immediately issues
the data transfer for the first block, while in parallel requesting
the metadata for the next block. Under normal circumstances
– due to the low latency RDMA-based protocol between the
client and the metadata server – the metadata request will
complete ahead of the current block transfer and guarantee a
continued data transfer without the client ever having to wait
for missing metadata information.

RDMA/read

Metadata
Servers Client

<name=”n.dat”,offset=0>

Storage
Servers

NVMf/read

<nid=1,offset=512>

<nid=1,offset=1024>

metadata

metadata

metadata

DRAM
block

NVMe
block

lookup()

read()

client
buffer

read()

Figure 4: Anatomy of file read/write operations in Crail.

5 Evaluation

In our evaluation we assess if Crail meets the requirements
for a temporary storage platform discussed in Section 2.1.
Specifically we answer the following questions:

1. Does the unified abstraction of Crail, with its extra indi-
rection layer, perform well for a wide spectrum of data
sizes on high-performance devices? (Section 5.1)

2. How simple is it to map higher-level workloads (with
their temporary data accesses) to Crail? (Section 5.2)

3. How big are the performance and cost benefits of a
mixed-media storage system for data-processing frame-
works? (Section 5.3)

Cluster configuration: We use a cluster of eight x64 nodes
with two Intel(R) Xeon(R) CPU E5-2690 v1 @ 2.90GHz
CPUs, 96GB DDR3 DRAM and a 100 Gbit/s Mellanox
ConnectX-5 RoCE RDMA network card. For the client server
microbenchmarks, the server is configured with 4 Intel Op-
tane 900P SSDs, except for the IOPS experiments where we
only use 2 Optane drives per server. For the larger cluster
experiments, all 8 nodes are equipped with 4 Samsung 960
Pro SSDs. The nodes run Ubuntu 16.04.3 LTS (Xenial Xerus)
with Linux kernel version 4.10.0-33-generic and Java 8.

5.1 Microbenmarks
Small and medium-size values: We first start by evaluat-
ing Crail’s performance for storing small to medium size
values, a use case typically well served by key-value stores.
Consequently, we compare Crail’s performance (latency and
IOPS) with two state-of-the-art open-source key-value stores,
namely, RAMCloud (for DRAM storage) and Aerospike (for
NVM Optane). Figure 5 shows the performance for get and
put operations for different data sizes. In Crail, a put opera-
tion is implemented by creating a KeyValue node using the
create API call (see Table 2), followed by an append op-
eration. The get operation is implemented using a lookup
call followed by a read on the KeyValue node – similar to

USENIX Association 2019 USENIX Annual Technical Conference 775

1

10

100

1000

10000

4B 64K 1M

80Gb/s

87Gb/s

P
U

T
 l
a
te

n
cy

 [
u
s]

key size

RAMCloud
Crail/DRAM

Crail/Optane
Aerospike/Optane

16M 128M

80Gb/s

87Gb/s

key size

1

10

100

1000

10000

4B 64K 1M

80Gb/s

87Gb/s

G
E
T
 l
a
te

n
cy

 [
u
s]

key size

16M 128M

80Gb/s

87Gb/s

key size

Figure 5: Put/Get latencies in Crail, RAMCloud and
Aerospike for datasets of different sizes.

the scenario shown in Figure 4. For small datasets (4 bytes),
Crail performs slightly worse than RAMCloud for DRAM
storage (12 µs vs 6 µs), but outperforms Aerospike on Optane
NVM by a margin of 2−4× (23-40 µs for Crail vs. 100 µs
for Aerospike). The difference between Aerospike and Crail
comes from differences in their I/O execution. Aerospike uses
synchronous I/O and multiple I/O threads, which cause con-
tention and spend a significant amount of execution time in
synchronization functions [18]. Crail uses asynchronous I/O
and executes I/O requests in one context, avoiding context
switching and synchronization completely. The latency differ-
ence between Crail and RAMCloud is acceptable considering
that RAMCloud is a system optimized for small values. For
medium sized values (64KB-1MB), Crail outperforms RAM-
Cloud and Aerospike by a margin of 2−6.8×. For instance,
a 1MB Put on Crail takes around 590 µs, versus 4 ms in
Aerospike. These performance gains come from the efficient
use of RDMA one-sided operations (for both DRAM and
NVM), which eliminates data copies at both client and server
ends and generally reduces the code path that is executed
during put/get operations. While Crail natively supports arbi-
trary size datasets – by distributing the blocks over multiple
storage servers – storing such large values in systems like
RAMCloud or Aerospike is either difficult or prohibited. For
instance, Aerospike limits individual key/value pairs to 1MB.
RAMCloud does not have a strict size limitation but failed to
store values larger than 4MB.

For sake of completeness, Figure 5 also shows put/get la-

0

20

40

60

80

100

La
te

n
cy

 [
u
s]

DRAM Optane Flash

0

50

100

150

200

250

300

104 105 106 107

La
te

n
cy

 [
u
s]

IOPS

104 105 106 107

IOPS

Figure 6: Media-specific loaded latency profile. Top left: Put,
queue depth 1. Top right: Get, queue depth 1. Bottom left:
Put, queue depth 4. Bottom right: Get, queue depth 4.

tencies for extra large values of 16MB and 128MB. As we can
see, it takes around to 12 ms to store a 128MB value in Crail’s
DRAM tier, and 20 ms to store the same dataset in Crail’s
Optane tier. Storing such large values in Crail is entirely a
matter of throughput. Consequently, the remote DRAM la-
tency is limited by the 100 Gb/s network bandwidth, while
the NVM latency is the determined by the bandwidth of the
storage device. The aggregated bandwidth of the 4 Optane
drives is around 10-12 GB/s. Hence, the resulting data access
bandwidth for large datasets stored in Crail’s NVM tier is
80-87 Gb/s.
IOPS scaling: So far we have discussed unloaded latencies.
Figure 6 shows the latency profile for 256 bytes values for a
loaded Crail system for different media types. In this setup,
we increase the number of clients from 1 to 64. The clients
are running on 16 physical machines, issuing put/get oper-
ations in a tight loop. We use only one storage server and
one metadata server in this setup, configured either to serve
DRAM, Optane NVM or Flash. The top row in Figure 6 show
the case for a queue depth of 1, meaning, each client always
has only one operation in flight. As shown in the figure, Crail
delivers stable latencies up to a reasonably high throughput.
For DRAM, the get latencies (top right in Figure 6) stay at
12-15 µs up to 4M IOPS, at which point the metadata server
became the bottleneck. We ran the same experiment with mul-
tiple metadata servers and verified that the system throughput
was scaling linearly (shown later in Figure 7 on top). For the
Optane NVM configuration, latencies stay at 20 µs up until
almost 1M IOPS, which is very close to the device limit. The
Flash latencies are higher but the Samsung drives also have a
higher throughput limit. In fact, 64 clients with queue depth
1 cannot saturate the Samsung devices. In order to generate

776 2019 USENIX Annual Technical Conference USENIX Association

 0
 5

 10
 15
 20
 25
 30

 0 10 20 30 40 50 60 70

IO
P
S

 [
m

ill
io

n
s]

#Clients

2 Namenodes Crail
4 Namenodes Crail

Crail
Octopus

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000

B
a
n
d

w
id

th
 G

b
p

s

buffer size in KB

Alluxio Octopus Crail

Figure 7: Top: metadata performance in Crail compared to
Octopus (we could not run Octopus reliably after 36 clients).
Bottom: sequential read performance in Crail and Octopus
for large datasets and different buffer sizes.

a higher load, we measured throughput and latencies for the
case where each client always has four operations in flight
(queue depth 4, bottom row in Figure 6). As shown, queue
depth 4 generally achieves a higher throughput up to a point
where the hardware limit is reached, the device queues are
overloaded (e.g., for NVM Optane) and latencies sky rock.
For instance, at the point before the exponential increase in the
latencies, Crail delivers get latencies (Figure 6 bottom right)
of 30.1 µs at 4.2M IOPS (DRAM), 60.7 µs for 1.1M IOPS
(Optane), and 99.86 µs for 640.3K IOPS (Flash). The situation
for put is similar, though generally with lower performance.
Metadata performance: In Figure 7 (top), we benchmark
the performance of a simple lookup metadata operation
which is used to retrieve node metadata in Crail, and com-
pare it with the performance of a similar metadata operation
getattr in Octopus [23] (an RDMA-optimized NVM file
system running in DRAM). There are two main observa-
tions here. First, for the single namenode case, Crail outper-
forms Octopus by 1.7− 5.9×. A single namenode in Crail
peaks around 9.3M lookups/sec. Second, Crail can very ef-
ficiently scale the single namenode performance to multi-
namenode setups. The system can deliver up to 16.7M and
27.4M lookups/sec for 2 and 4 namenode configurations.

 1

 10

 100

 1000

 10000

 0 50 100 150 200

#
o
p

e
ra

ti
o
n
s

latency [us]

Crail - DRAM
Crail - Optane

Aerospike - Optane
RAMCloud

 0 50 100 150 200

 1

 10

 100

 1000

 0 50 100 150 200

#
o
p

e
ra

ti
o
n
s

latency [us]

Crail - DRAM
Crail - Optane

Aerospike - Optane
RAMCloud

 0 50 100 150 200

Figure 8: YCSB benchmark performance. Top: small value
(1K per KV pair) read (left) and update (right) latencies. Bot-
tom: large value (100K per KV pair) read and update laten-
cies.

Accessing large datasets: Figure 7 (bottom) shows the band-
width (y-axis) measured when reading large datasets of File
nodes in Crail, in comparison to file read operations in Octo-
pus and Alluxio. The x-axis in Figure 7 refers to the size of the
application buffer the client is using during read operations.
Crail with its efficient data and metadata plane, and overlap-
ping of lookup RPCs and data fetching quickly reaches the
network bandwidth limit even for relatively small buffer sizes
(just over 1kB). Alluxio performance is bottlenecked by the
CPU due to data copies and inefficiencies in the network stack
implementation. Octopus performs better than Alluxio, and
gradually for large buffers (close to 1MB) reaches the line
speed of 98 Gb/s. Note that Crail’s peak bandwidth (98 Gb/s)
in Figure 7 is better than the peak bandwidth (87 Gb/s) in Fig-
ure 5 because for the KV experiments each KeyValue node
is opened, read, and closed whereas for the file experiments
those accesses are amortized.

Summary: In this section we have shown that Crail can store
a large spectrum of values effectively while offering compa-
rable or superior performance than the other state-of-the-art
systems that are optimized for a particular data range.

USENIX Association 2019 USENIX Annual Technical Conference 777

 0

 20

 40

 60

 80

 100

 120

10
0/

0

10
0/

0

80
/2

0

60
/4

0

40
/6

0

20
/8

0

0/
10

0

Vanilla Spark
 (100% Memory)

R
u
n
ti

m
e
 (

se
co

n
d
s)

Memory to Flash Ratio

Reduce
Map

Figure 9: Spark Terasort with mixed DRAM-NVM.

5.2 Systems-level Benchmarks

5.2.1 NoSQL workloads

The Yahoo! Cloud Serving Benchmark (YCSB) is an open
standard designed to compare the performance of NoSQL
databases [10]. It comes with five workloads that stress dif-
ferent properties, e.g. workload A is update heavy whereas
workload C is read heavy. We choose workload B to compare
Crail to RAMCloud and Aerospike. Workload B has 95%
read and 5% update operations and the records are selected
with a Zipfian distribution. All systems run in a single namen-
ode/datanode configuration. The purpose of this experiment is
to evaluate the latency profile of Crail for a realistic workload
beyond microbenchmarks presented in the last section.

Figure 8 (top part) shows the read and update latency dis-
tributions for workload B using a single client for the default
setup of 10 fields of 100 bytes per record (1K per KV pair).
The left part of the figure shows the read performance, and
the right part shows the update performance. As shown for
this default setup, the largest number of read operations ob-
serve a latency of 14 µs (95% and 99% percentile are at 37
and 84 µs) and 26 µs (95% and 99% percentile are at 47 and
81 µs) for DRAM and Optane respectively. Crail on Optane
has an average latency of 38 µs and thus is only 15 µs slower
than Crail on DRAM. On the other hand, Aerospike with Op-
tane delivers an average latency of 108.7 µs, which is 2.84×
worse than the average Crail latency (38.03 µs). Comparing
Crail’s DRAM performance to RAMCloud shows that RAM-
Cloud is slightly faster than Crail. However, as we move to
larger values of 10 fields of 10KB each (100KB per KV pair)
in Figure 8 (bottom) Crail is almost 2.6− 4.8× better than
Aerospike and RAMCloud, respectively.

Summary: Our experiments using the YCSB benchmark
have demonstrated that (a) Crail can successfully translate the
raw DRAM/NVMe performance advantages into workload
level gains, and (b) Crail effectively deals with both small and
large datasets while RAMCloud and Aerospike perform their
best in a specific operating range.

5.2.2 Spark Integration

We present the evaluation of Crail with Spark, one of the most
popular data processing engines. Spark executes workloads as
a series of map-reduce steps while sharing performance criti-
cal data in each step. There are multiple points in the Spark
data processing pipeline where temporary datasets are gen-
erated. In this section, we show performance measurements
specifically for two: shuffle and broadcast. Both subsystems
can easily be implemented as plugin modules for Spark.
Broadcast: We implemented broadcast using Crail by stor-
ing broadcast data as KeyValue nodes in a non-enumerable
Table. A broadcast writer creates a new KeyValue node, ap-
pends the broadcast data to the node, and passes the node
“name” to the readers. Readers, which are distributed over
multiple machines inside Spark executors, do a lookup on the
“name” and read the data from Crail. Figure 10a shows the
result. The x-axis shows the latency as observed by different
broadcast readers in the Spark job, while the y-axis shows
the percentage of readers. The solid vertical line represent
the baseline latency of 12 µs, which we demonstrated in our
microbenchmarks. As shown, most of the Crail broadcast
readers observe latency very close to the minimum possible.
A few observe a latency lower than 12 µs because some of
these readers are co-located on the same physical machine
where the values are stored. For those nodes, even though
they still read the data using the local network interface, there
is no actual network transfer happening, hence, their read per-
formance is not limited by the network. In summary, Crail
broadcast performance is 1-2 orders of magnitude better than
the default Spark implementation.
Shuffle: In Spark, a shuffle writer continuously generates
shuffle data during the map phase as it processes the input
dataset and classifies data into different buckets that are later
read by reducers. Due to the large fan-in and fan-out access
pattern, we implemented shuffle using Crail Bag nodes. There
is one Bag node per reducer and each shuffle writer appends
data to an array of privately owned File nodes, one File
node per writer per bag. After the map phase, each reducer
reads its associated bag using the optimized read interface
available in the Bag node type (see Section 3.1). We gen-
erated a large amount of data (512 GB) and triggered the
shuffle operation using the GroupBy benchmark available in
the Spark source code. Figures 10b and 10c show the per-
formance (runtime on the x-axis) and the observed network
throughput (y-axis) for various configurations. The values 1,
4, or 8 represent the number of cores given to each Spark ex-
ecutor. A quick comparison of the two figures shows that the
Crail-accelerated Spark observes higher network throughput
(for a corresponding core count) and, thus, as a result better
runtimes (1 core 5x, 4 cores 2.5x and 8 cores 2x).
Summary: In this section we have demonstrated that Crail
is able to successfully accelerate temporary data access in
Spark for small values (e.g., broadcast) as well as large values

778 2019 USENIX Annual Technical Conference USENIX Association

 0

 20

 40

 60

 80

 100

1us 10us 100us 1ms 10ms100ms

C
D

F

read 128b broadcast latency

Crail
Spark

(a) Broadcast performance

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

T
h

ro
u

g
h

p
u

t
(G

b
it

/s
)

Elapsed time (seconds)

1 core
4 cores
8 cores

(b) Vanilla Spark GroupBy performance

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

T
h

ro
u

g
h

p
u

t
(G

b
it

/s
)

Elapsed time (seconds)

1 core
4 cores
8 cores

(c) Crail accelerated GroupBy performance

Figure 10: Spark broadcast and GroupBy performance, using Vanilla Spark vs. Crail temporary storage.

(e.g., shuffle) by taking advantage of the different node types
(KeyValue and Bag) in Crail.

5.3 Efficiency of hybrid DRAM/NVM setup

As the last part of our evaluation, we quantify how Crail’s
tiered data plane helps with regard to performance and cost
objectives. We consider the Terasort workload, which is one of
the most I/O intensive applications on Spark. We implement
Terasort as an external range-partition sort algorithm in two
stages. The first stage maps the incoming key-value pairs (10
bytes keys and 90 bytes value) into external buckets. These
buckets are then shuffled and sorted by individual reduce
tasks. For this evaluation we use the accelerated shuffle and
broadcast plugins that we previously developed.

In Figure 9, we explore the performance/cost trade-off of us-
ing NVM instead of DRAM to store shuffle data in a 200 GB
Spark sorting workload. For this we configure Crail with dif-
ferent storage limits for the DRAM and the Flash storage tiers.
The x-axis indicates what fraction of the total shuffle data is
stored in DRAM versus Flash. Note that in this experiment
we are using the Samsung Flash-based SSDs rather than the
Optane devices. A configuration of 10/90 means that 10% of
the data is held in DRAM, while 90% is held in Flash. The
figure also shows the performance of vanilla Spark (first bar
of the figure) that runs on its default shuffle engine completely
in DRAM (using tmpfs as a storage backend). There are two
key observations here. First, in comparison to vanilla Spark,
the use of Crail for the shuffle backend already reduces the
runtime by a factor of 3.4. This performance gain can be
attributed to the efficient use of high-performance network-
ing and storage hardware in Crail. For instance, during the
reduce phase we measured an all-to-all network throughput
of 70 Gb/s/machine. Second, as we decrease the fraction of
DRAM in Crail in favor of Flash, Spark graciously and auto-
matically spills shuffle data into the Flash tier. In the extreme
configuration, where all shuffle data is stored in Flash, the
performance degrades to 46.49 second (48% increase), while
to total cost for storage is reduced by 8× from 1,000$ to 126$
(to store 200 GB of data based on the numbers in Table 1).

The gradual spilling of data from DRAM to Flash happens
transparently. Even in the all-Flash configuration, the perfor-
mance of the Crail-integrated Spark Terasort is half of the
completely-in-DRAM vanilla Spark performance. These re-
sults validate the design choices we made in Crail that permit
trading performance for storage cost.

Summary: In this section, we demonstrated that the use
of Crail in Spark (i) leads to better performance due to its ef-
ficient I/O path; (ii) reduces the cost of storage, and increases
the performance due the hybrid DRAM-NVMe architecture.

6 Conclusion

Storing and accessing temporary data efficiently in data pro-
cessing workloads is critical for performance, yet challenging
due to complex storage demands that fall between the lines of
existing storage systems like file systems or key-value stores.
We presented NodeKernel, a novel storage architecture offer-
ing a new point in the storage design space by combining hi-
erarchical naming with scalability and excellent performance
for a wide range of data sizes and access patterns that are typi-
cal for temporary data. The NodeKernel architecture is driven
by opportunities of modern networking and storage hardware
that enabled us to reduce overheads that made such a design
impractical in the past. We showed that storing temporary
data in Crail, our concrete implementation of the NodeKernel
architecture leveraging RDMA networking and NVMe stor-
age, can improve NoSQL workloads by up to 4.8× and Spark
application performance by up to 3.4×. Crail’s use of NVMe
Flash further reduces storage cost by up to 8× compared to
storage systems that only use DRAM.

Acknowledgments

We thank our shepherd, Michael Swift, and the anonymous
Usenix ATC reviewers for their helpful feedback.

USENIX Association 2019 USENIX Annual Technical Conference 779

References

[1] Alluxio: Open source memory speed virtual distributed
storage. https://www.alluxio.org/.

[2] Apache Crail (Incubating). http://crail.apache.
org/.

[3] Apache Crail (Incubating) Source Code. https://
github.com/apache/incubator-crail.

[4] Memcached. http://memcached.org.

[5] Redis. https://redis.io/.

[6] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier
Deguillard, Jayneel Gandhi, Stanko Novaković, Arun
Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Ki-
ran Tati, Rajesh Venkatasubramanian, and Michael Wei.
Remote regions: a simple abstraction for remote mem-
ory. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 775–787, Boston, MA, 2018.

[7] Claude Barthels, Ingo Müller, Timo Schneider, Gustavo
Alonso, and Torsten Hoefler. Distributed join algorithms
on thousands of cores. Proc. VLDB Endow., 10(5):517–
528, January 2017.

[8] Matt Benjamin. Xiomessenger: Ceph transport abstrac-
tion based on accelio, a high-performance message-
passing framework by mellanox, at https://www.
cohortfs.com/ceph-over-accelio.

[9] Laurent Bindschaedler, Jasmina Malicevic, Nicolas
Schiper, Ashvin Goel, and Willy Zwaenepoel. Rock you
like a hurricane: Taming skew in large scale analytics.
In Proceedings of the Thirteenth EuroSys Conference,
EuroSys ’18, pages 20:1–20:15, New York, NY, USA,
2018. ACM.

[10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10, pages
143–154, New York, NY, USA, 2010.

[11] Aaron Davidson and Andrew Or. Optimiz-
ing shuffle performance in spark. In https:
//pdfs.semanticscholar.org/d746/
505bad055c357fa50d394d15eb380a3f1ad3.
pdf, 2013.

[12] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. Farm: Fast remote mem-
ory. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 401–414,
Seattle, WA, 2014.

[13] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter rpcs can be general and fast. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), Boston, MA, 2019.

[14] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Using rdma efficiently for key-value services. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM,
SIGCOMM ’14, pages 295–306, 2014.

[15] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Design guidelines for high performance rdma systems.
In Proceedings of the 2016 USENIX Conference on
Usenix Annual Technical Conference, USENIX ATC
’16, pages 437–450, Berkeley, CA, USA, 2016.

[16] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Fasst: Fast, scalable and simple distributed transactions
with two-sided (rdma) datagram rpcs. In 12th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 185–201, GA, 2016.

[17] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh
Trivedi, Jonas Pfefferle, and Christos Kozyrakis. Pocket:
Elastic ephemeral storage for serverless analytics. In
Proceedings of the 12th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’18,
pages 427–444, Berkeley, CA, USA, 2018.

[18] Kornilios Kourtis, Nikolas Ioannou, and Ioannis Kolt-
sidas. Reaping the performance of fast NVM storage
with uDepot. In 17th USENIX Conference on File and
Storage Technologies (FAST 19), pages 1–15, Boston,
MA, 2019. USENIX Association.

[19] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu,
Yongqiang Xiong, Andrew Putnam, Enhong Chen, and
Lintao Zhang. Kv-direct: High-performance in-memory
key-value store with programmable nic. In Proceedings
of the 26th Symposium on Operating Systems Principles,
SOSP ’17, pages 137–152, New York, NY, USA, 2017.

[20] Hyeontaek Lim, Bin Fan, David G. Andersen, and
Michael Kaminsky. Silt: A memory-efficient, high-
performance key-value store. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 1–13, New York, NY, USA,
2011.

[21] Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. Mica: A holistic approach to fast
in-memory key-value storage. In Proceedings of the
11th USENIX Conference on Networked Systems Design
and Implementation, NSDI’14, pages 429–444, Berke-
ley, CA, USA, 2014.

780 2019 USENIX Annual Technical Conference USENIX Association

http://crail.apache.org/
http://crail.apache.org/
https://github.com/apache/incubator-crail
https://github.com/apache/incubator-crail
https://www.cohortfs.com/ceph-over-accelio
https://www.cohortfs.com/ceph-over-accelio
https://pdfs.semanticscholar.org/d746/505bad055c357fa50d394d15eb380a3f1ad3.pdf
https://pdfs.semanticscholar.org/d746/505bad055c357fa50d394d15eb380a3f1ad3.pdf
https://pdfs.semanticscholar.org/d746/505bad055c357fa50d394d15eb380a3f1ad3.pdf
https://pdfs.semanticscholar.org/d746/505bad055c357fa50d394d15eb380a3f1ad3.pdf

[22] Feilong Liu, Lingyan Yin, and Spyros Blanas. Design
and evaluation of an rdma-aware data shuffling operator
for parallel database systems. In Proceedings of the
Twelfth European Conference on Computer Systems,
EuroSys ’17, pages 48–63, New York, NY, USA, 2017.

[23] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Oc-
topus: An rdma-enabled distributed persistent memory
file system. In Proceedings of the 2017 USENIX Confer-
ence on Usenix Annual Technical Conference, USENIX
ATC ’17, pages 773–785, Berkeley, CA, USA, 2017.

[24] Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I.
Jordan, Peter Richtárik, and Martin Takáč. Adding vs.
averaging in distributed primal-dual optimization. In
Proceedings of the 32nd International Conference on
Machine Learning - Volume 37, ICML’15, pages 1973–
1982, 2015.

[25] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih Eli-
bol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. Ray: A distributed framework for emerg-
ing AI applications. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 561–577, Carlsbad, CA,
2018.

[26] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita
Kejriwal, Collin Lee, Behnam Montazeri, Diego On-
garo, Seo Jin Park, Henry Qin, Mendel Rosenblum,
Stephen Rumble, Ryan Stutsman, and Stephen Yang.
The ramcloud storage system. ACM Trans. Comput.
Syst., 33(3):7:1–7:55, August 2015.

[27] Sriram Rao, Raghu Ramakrishnan, Adam Silberstein,
Mike Ovsiannikov, and Damian Reeves. Sailfish: A
framework for large scale data processing. In Proceed-
ings of the Third ACM Symposium on Cloud Computing,
SoCC ’12, pages 4:1–4:14, New York, NY, USA, 2012.

[28] Alexander Rasmussen, Vinh The Lam, Michael Conley,
George Porter, Rishi Kapoor, and Amin Vahdat. Themis:
An i/o-efficient mapreduce. In Proceedings of the Third
ACM Symposium on Cloud Computing, SoCC ’12, pages
13:1–13:14, New York, NY, USA, 2012.

[29] Kai Ren, Qing Zheng, Swapnil Patil, and Garth Gibson.
Indexfs: Scaling file system metadata performance with
stateless caching and bulk insertion. In Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’14,
pages 237–248, Piscataway, NJ, USA, 2014. IEEE Press.

[30] V. Srinivasan, Brian Bulkowski, Wei-Ling Chu, Sunil
Sayyaparaju, Andrew Gooding, Rajkumar Iyer, Ashish
Shinde, and Thomas Lopatic. Aerospike: Architecture

of a real-time operational dbms. Proc. VLDB Endow.,
9(13):1389–1400, September 2016.

[31] Patrick Stuedi, Animesh Trivedi, Bernard Metzler, and
Jonas Pfefferle. Darpc: Data center rpc. In Proceedings
of the ACM Symposium on Cloud Computing, SOCC
’14, pages 15:1–15:13, New York, NY, USA, 2014.

[32] Animesh Trivedi, Patrick Stuedi, Jonas Pfefferle, Adrian
Schuepbach, and Bernard Metzler. Albis: High-
performance file format for big data systems. In 2018
USENIX Annual Technical Conference (USENIX ATC
18), pages 615–630, Boston, MA, 2018.

[33] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. Hikv:
A hybrid index key-value store for dram-nvm memory
systems. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17), pages 349–362, Santa Clara, CA,
2017.

[34] Shuotao Xu, Sungjin Lee, Sang-Woo Jun, Ming Liu,
Jamey Hicks, and Arvind. Bluecache: A scalable dis-
tributed flash-based key-value store. Proc. VLDB En-
dow., 10(4):301–312, November 2016.

[35] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali
Ghodsi, Sue Ann Hong, Andy Konwinski, Siddharth
Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe,
Fen Xie, and Corey Zumar. Accelerating the machine
learning lifecycle with mlflow. In IEEE Bulletin of the
Technical Committee on Data Engineering, pages 39–45,
2018.

[36] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and
Implementation, NSDI’12, pages 2–2, Berkeley, CA,
USA, 2012.

[37] Haoyu Zhang, Brian Cho, Ergin Seyfe, Avery Ching,
and Michael J. Freedman. Riffle: Optimized shuffle
service for large-scale data analytics. In Proceedings of
the Thirteenth EuroSys Conference, EuroSys ’18, pages
43:1–43:15, New York, NY, USA, 2018.

Notes: IBM is a trademark of International Business Ma-
chines Corporation, registered in many jurisdictions world-
wide. Intel and Intel Xeon are trademarks or registered trade-
marks of Intel Corporation or its subsidiaries in the United
States and other countries. Linux is a registered trademark of
Linus Torvalds in the United States, other countries, or both.
Other products and service names might be trademarks of
IBM or other companies.

USENIX Association 2019 USENIX Annual Technical Conference 781

Evaluating File System Reliability on Solid State Drives

Shehbaz Jaffer∗

University of Toronto
Stathis Maneas∗

University of Toronto
Andy Hwang

University of Toronto
Bianca Schroeder

University of Toronto

Abstract
As solid state drives (SSDs) are increasingly replacing hard
disk drives, the reliability of storage systems depends on the
failure modes of SSDs and the ability of the file system lay-
ered on top to handle these failure modes. While the classical
paper on IRON File Systems provides a thorough study of
the failure policies of three file systems common at the time,
we argue that 13 years later it is time to revisit file system
reliability with SSDs and their reliability characteristics in
mind, based on modern file systems that incorporate jour-
naling, copy-on-write and log-structured approaches, and are
optimized for flash. This paper presents a detailed study, span-
ning ext4, Btrfs and F2FS, and covering a number of different
SSD error modes. We develop our own fault injection frame-
work and explore over a thousand error cases. Our results
indicate that 16% of these cases result in a file system that
cannot be mounted or even repaired by its system checker. We
also identify the key file system metadata structures that can
cause such failures and finally, we recommend some design
guidelines for file systems that are deployed on top of SSDs.

1 Introduction
Solid state drives (SSDs) are increasingly replacing hard disk
drives as a form of secondary storage medium. With their
growing adoption, storage reliability now depends on the
reliability of these new devices as well as the ability of the
file system above them to handle errors these devices might
generate (including for example device errors when reading or
writing a block, or silently corrupted data). While the classical
paper by Prabhakaran et al. [45] (published in 2005) studied
in great detail the robustness of three file systems that were
common at the time in the face of hard disk drive (HDD)
errors, we argue that there are multiple reasons why it is time
to revisit this work.

The first reason is that failure characteristics of SSDs differ
significantly from those of HDDs. For example, recent field
studies [39, 43, 48] show that, while their replacement rates

∗These authors contributed equally to this work.

(due to suspected hardware problems) are often by an order
of magnitude lower than those of HDDs, the occurrence of
partial drive failures that lead to errors when reading or writ-
ing a block or corrupted data can be an order of magnitude
higher. Other work argues that the Flash Translation Layer
(FTL) of SSDs might be more prone to bugs compared to
HDD firmware, due to their high complexity and less matu-
rity, and demonstrate this to be the case when drives are faced
with power faults [53]. This makes it even more important
than before that file systems can detect and deal with device
faults effectively.

Second, file systems have evolved significantly since [45]
was published 13 years ago; the ext family of file systems has
undergone major changes from the ext3 version considered
in [45] to the current ext4 [38]. New players with advanced
file-system features have arrived. Most notably Btrfs [46], a
copy-on-write file system which is more suitable for SSDs
with no in-place writes, has garnered wide adoption. The
design of Btrfs is particularly interesting as it has fewer total
writes than ext4’s journaling mechanism. Further, there are
new file systems that have been designed specifically for flash,
such as F2FS [33], which follow a log-structured approach to
optimize performance on flash.

The goal of this paper is to characterize the resilience of
modern file systems running on flash-based SSDs in the face
of SSD faults, along with the effectiveness of their recovery
mechanisms when taking SSD failure characteristics into ac-
count. We focus on three different file systems: Btrfs, ext4,
and F2FS. ext4 is an obvious choice, as it is the most com-
monly used Linux file system. Btrfs and F2FS include features
particularly attractive with respect to flash, with F2FS being
tailored for flash. Moreover, these three file systems cover
three different points in the design spectrum, ranging from
journaling to copy-on-write to log-structured approaches.

The main contribution of this paper is a detailed study, span-
ning three very different file systems and their ability to detect
and recover from SSD faults, based on error injection target-
ing all key data structures. We observe huge differences across
file systems and describe the vulnerabilities of each in detail.

USENIX Association 2019 USENIX Annual Technical Conference 783

Over the course of this work we experiment with more than
one thousand fault scenarios and observe that around 16% of
them result in severe failure cases (kernel panic, unmount-
able file system). We make a number of observations and file
several bug reports, some of which have already resulted in
patches. For our experiments, we developed an error injection
module on top of the Linux device mapper framework.

The remainder of this paper is organized as follows: Sec-
tion 2 provides a taxonomy of SSD faults and a description
of the experimental setup we use to emulate these faults and
test the reaction of the three file systems. Section 3 presents
the results from our fault emulation experiments. Section 4
covers related work and finally, in Section 5, we summarize
our observations and insights.

2 File System Error Injection
Our goal is to emulate different types of SSD failures and
check the ability of different file systems to detect and recover
from them, based on which part of the file system was affected.
We limit our analysis to a local file system running on top
of a single drive. Note that although multi-drive redundancy
mechanisms like RAID exist, they are not general substitutes
for file system reliability mechanisms. First, RAID is not
applicable to all scenarios, such as single drives on personal
computers. Second, errors or data corruption can originate
from higher levels in the storage stack, which RAID can
neither detect nor recover.

Furthermore, our work only considers partial drive fail-
ures, where only part of a drive’s operation is affected, rather
than fail-stop failures, where the drive as a whole becomes
permanently inaccessible. The reason lies in the numerous
studies published over the last few years, using either lab ex-
periments or field data, which have identified many different
SSD internal error mechanisms that can result in partial fail-
ures, including mechanisms that originate both from the flash
level [10, 12, 13, 16–19, 21, 23, 26, 27, 29–31, 34, 35, 40, 41,
47, 49, 50] and from bugs in the FTL code, e.g. when it is not
hardened to handle power faults correctly [52, 53].

Moreover, a field study based on Google’s data centers
observes that partial failures are significantly more common
for SSDs than for HDDs [48].

This section describes different SSD error modes and how
they manifest at the file system level, and also our experimen-
tal setup, including the error injection framework and how we
target different parts of a file system.

2.1 SSD Errors in the Field and their Manifes-
tation

This section provides an overview over the various mecha-
nisms that can lead to partial failures and how they manifest
at the file system level (all summarized in Table 1).

Uncorrectable Bit Corruption: Previous work [10, 12, 13,
16–19,21,26,27,29,34,35,41] describes a large number of er-

ror mechanisms that originate at the flash level and can result
in bit corruption, including retention errors, read and program
disturb errors, errors due to flash cell wear-out and failing
blocks. Virtually all modern SSDs incorporate error correct-
ing codes to detect and correct such bit corruption. However,
recent field studies indicate that uncorrectable bit corruption,
where more bits are corrupted than the error correcting code
(ECC) can handle, occurs at a significant rate in the field. For
example, a study based on Google field data observes 2-6 out
of 1000 drive days with uncorrectable bit errors [48]. Uncor-
rectable bit corruption manifests as a read I/O error returned
by the drive when an application tries to access the affected
data (“Read I/O errors” in Table 1).

Silent Bit Corruption: This is a more insidious form of bit
corruption, where the drive itself is not aware of the corruption
and returns corrupted data to the application (“Corruption” in
Table 1). While there have been field studies on the prevalence
of silent data corruption for HDD based systems [9], there is
to date no field data on silent bit corruption for SSD based
systems. However, work based on lab experiments shows that
3 out of 15 drive models under test experience silent data
corruption in the case of power faults [53]. Note that there
are other mechanisms that can lead to silent data corruption,
including mechanisms that originate at higher levels in the
storage stack, above the SSD device level.

FTL Metadata Corruption: A special case arises when
silent bit corruption affects FTL metadata. Among other
things, the FTL maintains a mapping of logical to physical
(L2P) blocks as part of its metadata [8]; metadata corruption
could lead to “Read I/O errors” or “Write I/O errors”, when
the application attempts to read or write a page that does not
have an entry in the L2P mapping due to corruption. Corrup-
tion of the L2P mapping could also result in wrong or erased
data being returned on a read, manifesting as “Corruption” to
the file system. Note that this is also a silent corruption - i.e.
neither the device nor the FTL is aware of these corruptions.

Misdirected Writes: This refers to the situation where dur-
ing an SSD-internal write operation, the correct data is being
written to flash, but at the wrong location. This might be due
to a bug in the FTL code or triggered by a power fault, as
explained in [53]. At the file system level this might manifest
as a “Corruption”, where a subsequent read returns wrong
data, or a “Read I/O error”. This form of corruption is silent;
the device does not detect and propagate errors to the storage
stack above until invalid data or metadata is accessed again.

Shorn Writes: A shorn write is a write that is issued by
the file system, but only partially done by the device. In [53],
the authors observe such scenarios surprisingly frequently
during power faults, even for enterprise class drives, while
issuing properly synchronized I/O and cache flush commands
to the device. A shorn write is similar to a “torn write", where
only part of a multi-sector update is written to the disk, but
it applies to sector(s) which should have been fully persisted
due to the use of a cache flush operation. One possible expla-

784 2019 USENIX Annual Technical Conference USENIX Association

nation is the mismatch of write granularities between layers.
The default block size for file systems is larger (e.g. 4KB
for ext4/F2FS, and 16KB for Btrfs) than the physical device
(e.g. 512B). A block issued from the file system is mapped
to multiple physical blocks inside the device. As a result,
during a power fault, only some of the mappings are updated
while others remain unchanged. Even if physical block sizes
match that of the file system, another possible explanation is
because SSDs include on-board cache memory for buffering
writes, shorn writes may also be caused by alignment and
timing bugs in the drive’s cache management [53]. Moreover,
recent SSD architectures use pre-buffering and striping across
independent parallel units, which do not guarantee atomicity
between them for an atomic write operation [11]. The increase
in parallelism may further expose more shorn writes.

At the file system level, a shorn write is not detected until
its manifestation during a later read operation, where the file
system sees a 4KB block, part of which contains data from
the most recent update to the block, while the remaining part
contains either old or zeroed out data (if the block was recently
erased). While this could be viewed as a special form of silent
bit corruption, we consider this as a separate category in terms
of how it manifests at the file system level (called “Shorn
Write” corresponding to column (d) in Table 1) as this form of
corruption creates a particular pattern (each sequence of 512
bytes within a 4KB block is either completely corrupted or
completely correct), compared to the more random corruption
event referred to by column (c).

In [53], the authors observe shorn writes manifesting in two
patterns, where only the first 3/8th or the first 7/8th of a block
gets written and the rest is not. Similarly in our experiments,
we keep only the first 3/8th of a 4KB block. We assume the
block has been successfully erased, so the rest of the block
remains zeroed out. Our module can be configured to test
other shorn write sizes and patterns as well.

Dropped writes: The authors in [53] observe cases where
an SSD internal write operation gets dropped even after an
explicit cache flush (e.g. in the case of a power fault when
the update was in the SSD’s cache, but not persisted to flash).
If the dropped write relates to FTL metadata, in particular to
the L2P mapping, this could manifest as a “Read I/O error”,
“Write I/O error” or “Corruption” on a subsequent read or
write of the data. If the dropped write relates to a file system
write, the result is the same as if the file system had never
issued the corresponding write. We create a separate cate-
gory for this manifestation which we refer to as “Lost Write”
(column (e) in Table 1).

Incomplete Program operation: This refers to the situation
where a flash program operation does not fully complete
(without the FTL noticing), so only part of a flash page gets
written. Such scenarios were observed, for example, under
power faults [53]. At the file system level, this manifests as a
“Corruption” during a subsequent read of the data.

Incomplete Erase operation: This refers to the situation

SSD/Flash Errors (a) (b) (c) (d) (e)
Uncorrectable Bit Corruption X
Silent Bit Corruption X
FTL Metadata Corruption X X X
Misdirected Writes X X
Shorn Writes X
Dropped Write X X X X
Incomplete Program Operation X X
Incomplete Erase Operation X

Table 1: Different types of flash errors and their manifestation
in the file system. (a) Read I/O error (b) Write I/O error (c)
Corruption (d) Shorn Write (e) Lost Write.

where a flash erase operation does not completely erase a flash
erase block (without the FTL detecting and correcting this
problem). Incomplete erase operations have been observed
under power faults [53]. They could also occur when flash
erase blocks wear-out and the FTL does not handle a failed
erase operation properly. Subsequent program operations to
the affected erase block can result in incorrectly written data
and consequently “Corruption”, when this data is later read
by the file system.

2.2 Comparison with HDD faults
We note that there are also HDD-specific faults that would
manifest in a similar way at the file system level. However, the
mechanisms that cause faults within each media are different
and can for example affect the frequency of observed errors.
One such case are uncorrectable read errors which have been
observed at a much higher frequency in production systems
using SSDs than HDDs [48] (a trend that will likely only get
worse with QLC). There are faults though whose manifesta-
tion does actually differ from HDDs to SSDs, due to inherent
differences in their overall design and operation. For instance,
a part affected by a shorn write may contain previously written
data in the case of an HDD block, but would contain zeroed
out data if that area within the SSD has been correctly erased.
In addition, the large degree of parallelism inside SSDs makes
correctness under power faults significantly more challenging
than for HDDs (for example, ensuring atomic writes across
parallel units). Finally, file systems might modify their behav-
ior and apply different fault recovery mechanisms for SSDs
and HDDs; for example, Btrfs turns off metadata duplication
by default when deployed on top of an SSD.

2.3 Device Mapper Tool for Error Emulation
The key observation from the previous section is that all SSD
faults we consider manifest in one of five ways, corresponding
to the five columns (a) to (e) in Table 1. This section describes
a device mapper tool we created to emulate all five scenarios.

In order to to emulate SSD error modes and observe each
individual file system’s response, we need to intercept the
block I/O requests between the file system and the block
device. We leverage the Linux device mapper framework to
create a virtual block device that intercepts requests between
the file system and the underlying physical device. This allows

USENIX Association 2019 USENIX Annual Technical Conference 785

Programs
mount, umount, open, creat, access, stat, lstat, chmod, chown,
utime, rename, read, write, truncate, readlink, symlink, unlink,
chdir, rmdir, mkdir, getdirentries, chroot

Table 2: The programs used in our study. Each one stresses a
single system call and is invoked several times under different
file system images to increase coverage.

us to operate on block I/O requests and simulate faults as if
they originate from a physical device, and also observe the file
system’s reaction without modifying its source code. In this
way, we can perform tracing, parse file system metadata, and
alter block contents online, for both read and write requests,
while the file system is mounted. For this study, we use the
Linux kernel version 4.17.

Our module can intercept read and write requests for se-
lected blocks as they pass through the block layer and re-
turn an error code to the file system, emulating categories
(a) “Read Error” and (b) “Write Error” in Table 1. Possible
parameters include the request’s type (read/write), block num-
ber, and data structure type. In the case of multiple accesses
to the same block, one particular access can be targeted. We
also support corruption of specific data structures, fields and
bytes within blocks, allowing us to emulate category (c) “Cor-
ruption”. The module can selectively shear multiple sectors
of a block before sending it to the file system or writing it
on disk, emulating category (d) “Shorn Write”. Our module
can further drop one or more blocks while writing the blocks
corresponding to a file system operation, emulating the last
category (e) “Lost Write”. The module’s API is generic across
file systems and can be expanded to different file systems. Our
module can be found at [6].

2.4 Test Programs
We perform injection experiments while executing test pro-
grams chosen to exercise different parts of the POSIX API,
similar to the “singlets” used by Prabhakaran et al. [45]. Each
individual program focuses on one system call, such as mkdir
or write. Table 2 lists all the test programs that we used in
our study. For each test program, we populate the disk with
different files and directory structures to increase code cover-
age. For example, we generate small files that are stored inline
within an inode, as well as large files that use indirect blocks.
All our programs pedantically follow POSIX semantics; they
call fsync(2) and close(2), and check the return values to
ensure that data and metadata has successfully persisted to
the underlying storage device.

2.5 Targeted Error Injection
Our goal is to understand the effect of block I/O errors and
corruption in detail depending on which part of a file system
is affected. That means our error injection testbed requires
the ability to target specific data structures and specific fields
within a data structure for error injection, rather than ran-
domly injecting errors. We therefore need to identify for each

ext4
Data Structure Approach
super block, group descriptor, inode
blocks, block bmap, inode bmap

dumpe2fs

dir_entry debugfs, get block inode, stat on in-
ode number, check file type

extent debugfs, check for extent of a file
or directory path

data debugfs, get block inode, stat on in-
ode number, check file type

journal debugfs, check if parent inode
number is 8

Btrfs
Data Structure Approach
fstree, roottree, csumtree, extentTree,
chunkTree, uuidTree, devTree, logTree

device mapper module check btrfs
node header fields at runtime

DIR_ITEM DIR_INDEX INODE_REF
INODE_DATA EXTENT_DATA

btrfs-debug-tree

F2FS
superblock, checkpoint, SIT, NAT, inode,
d/ind node, dir. block, data

device mapper module

Table 3: The approach to type blocks collected using either
blktrace or our own device mapper module.

program which data structures are involved and how the parts
of the data structure map to the sequence of block accesses
generated by the program.

Understanding the relationship between the sequence of
block accesses and the data structures within each file system
required a significant amount of work and we had to rely on a
combination of approaches. First, we initialize the file system
to a clean state with representative data. We then run a specific
test program (Table 2) on the file system image, capturing
traces from blktrace and the kernel to learn the program’s
actual accessed blocks. Reading the file system source code
also enables us to put logic inside our module to interpret
blocks as requests pass through it. Lastly, we use offline
tools such as dumpe2fs, btrfs-inspect, and dump.f2fs
to inspect changes to disk contents. Through these multiple
techniques, we can identify block types and specific data struc-
tures within the blocks. Table 3 summarizes our approach to
identify different data structures in each of the file systems.

After identifying all the relevant data structures for each
program, we re-initialize the disk image and repeat test pro-
gram execution for error injection experiments. We use the
same tools, along with our module, to inject errors to specific
targets. A single block I/O error or data corruption is injected
into a block or data structure during each execution. This
allows us to achieve better isolation and characterization of
the file system’s reaction to the injected error.

Our error injection experiments allow us to measure both
immediate and longer-term effects of device faults. We can
observe immediate effects on program execution for some
cases, such as user space errors or kernel panics (e.g. from
write I/O errors). At the end of each test program execution,
we unmount the file system and perform several offline tests to
verify the consistency of the disk image, regardless of whether
the corruption was silent or not (e.g. persisting lost/shorn
writes): we invoke the file system’s integrity checker (fsck),
check if the file system is mountable, and check whether

786 2019 USENIX Annual Technical Conference USENIX Association

Symbol Level Description
© DZero No detection.
– DErrorCode Check the error code returned from the lower levels.
\ DSanity Check for invalid values within the contents of a block.
/ DRedundancy Checksums, replicas, or any other form of redundancy.
| DFsck Detect error using the system checker.
© RZero No attempt to recover.
/ RRetry Retry the operation first before returning an error.
| RPropagate Error code propagated to the user space.
\ RPrevious File system resumes operation from the state exactly

before the operation occurred.
– RStop The operation is terminated (either gracefully or

abruptly); the file system may be mounted as read-only.
� RFsck_Fail Recovery failed, the file system cannot be mounted.
� RFsck_Partial The file system is mountable, but it has experienced

data loss in addition to operation failure.
� RFsck_Orig Current operation fails, file system restored to pre-

operation state.
� RFsck_Full The file system is fully repaired and its state is the same

with the one generated by the execution where the op-
eration succeeded without any errors.

Table 4: The levels of our detection and recovery taxonomy.

the program’s operations have been successfully persisted
by comparing the resultant disk image against the expected
one. We also explore longer-term effects of faults where the
test programs access data that were previously persisted with
errors (read I/O, reading corrupted or shorn write data).

In this study, we use btrfs-progs v4.4, e2fsprogs v1.42.13,
and f2fs-tools v1.10.0 for our error injection experiments.

2.6 Detection and Recovery Taxonomy
We report the detection and recovery policies of all three
file systems with respect to the data structures involved. We
characterize each file system’s reaction via all observable in-
terfaces: system call return values, changes to the disk image,
log messages, and any side-effects to the system (such as
kernel panics). We classify the file system’s detection and
recovery based on a taxonomy that was inspired by previous
work [45], but with some new extensions: unlike [45], we also
experiment with file system integrity checkers and their abil-
ity to detect and recover from errors that the file system might
not be able to deal with and as such, we add a few additional
categories within the taxonomy that pertain to file system
checkers. Also, we create a separate category for the case
where the file system is left in its previous consistent state
prior to the execution of the program (RPrevious). In particular,
if the program involves updates on the system’s metadata,
none of it is reflected to the file system. Table 4 presents our
taxonomy in detail.

A file system can detect the injected errors online by check-
ing the return value of the block I/O request (DErrorCode),
inspecting the incoming data and performing some sanity
checks (DSanity), or using redundancies, e.g. in the form of
checksums (DRedundancy). A successful detection should alert
the user via system call return values or log messages.

To recover from errors, the file system can take several
actions. The most basic action is simply passing along the
error code from the block layer (RPropagate). The file system
can also decide to terminate the execution of the system call,
either gracefully via transaction abort, or abruptly such as

crashing the kernel (RStop). Lastly, the file system can per-
form retries (RRetry) in case the error is transient, or use its
redundancy data structures to recover the data.

It is important to note that for block I/O errors, the actual
data stored in the block is not passed to the disk or the file
system. Hence, no sanity check can be performed and DSanity
is not applicable. Similarly, for silent data corruption experi-
ments, our module does not return an error code, so DErrorCode
is not relevant.

We also run each file system’s fsck utility and report on
its ability to detect and recover file systems errors offline,
as it may employ different detection and recovery strategies
than the online file system. The different categories for fsck
recovery are shown in Table 4.

3 Results
Tables 5 and 6 provide a high-level summary of the results
from our error injection experiments following the detection
and recovery taxonomy from Table 4. Our results are orga-
nized into six columns corresponding to the fault modes we
emulate. The six tables in each column represent the fault
detection and recovery results for each file system under a
particular fault. The columns (a-w) in each table correspond
to the programs listed in Table 2, which specify the opera-
tion during which the fault mode was encountered, and rows
correspond to the file system specific data structure, that was
affected by the fault.

Note that the columns in Tables 5 and 6 have a one-to-one
correspondence to the fault modes described in Section 2 (Ta-
ble 1), with the exception of shorn writes. After a shorn write
is injected during test program execution and persisted to the
flash device, we examine two scenarios where the persisted
partial data is accessed again: during fsck invocation (Shorn
Write + Fsck column) and test program execution (Shorn
Write + Program Read column).

3.1 Btrfs
We observe in Table 5 that Btrfs is the only file system that
consistently detects all I/O errors as well as corruption events,
including those affecting data (rather than only metadata). It
achieves this through the extensive use of checksums.

However, we find that Btrfs is much less successful in
recovering from any issues than the other two file systems. It is
the only file system where four of the six error modes can lead
to a kernel crash or panic and subsequently a file system that
cannot be mounted even after running btrfsck. It also has the
largest number of scenarios that result in an unmountable file
system after btrfsck (even if not preceded by a kernel crash).
Furthermore, we find that node level checksums, although
good for detecting block corruption, they remove an entire
node even if a single byte becomes corrupted. As a result,
large chunks of data are removed, causing data loss.

Before we describe the results in more detail below, we
provide a brief summary of Btrfs data structures. The Btrfs

USENIX Association 2019 USENIX Annual Technical Conference 787

Read I/O Error Write I/O Error Corruption

Bt
rfs

De
tec

tio
n fs tree

cksum tree
root tree
superblock
extent tree
chunk tree
dev tree
uuid tree
log tree
data

a b c d e f g h i j k l m n o p q r s t v w
–| –|

–| –| –|
–|
–|

©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| –| ©|
–|
–|
–|

–|

a b c d e f g h i j k l m n o p q r s t v w
–| –| –| –| –| –| –| –| –| –| –| –| –| –| –|

–| –|
–| –|

–| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –|

–| –| –|

–| –| –| –| –| –| –| –| –| –|

a b c d e f g h i j k l m n o p q r s t v w
| |

| | |
|
|

| |
|
|
|

Bt
rf

sR
ec

ov
er

y fs tree
cksum tree
root tree
superblock
extent tree
chunk tree
dev tree
uuid tree
log tree
data

a b c d e f g h i j k l m n o p q r s t v w
|– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– ©|– |– |– |– |–

| |– –
–
–

©©©©©©©©©©©©©©©©©©© |– ©
–
–
–

|–

a b c d e f g h i j k l m n o p q r s t v w
– – –© – – –© – – – – –

– – – – –© – – – – – – – – – – – – – – – –
© | © | | |– – –©©© – © – – – – |– –© –

© – © – – – – – – – – ©

– © –

| |– |– |– |– |– |– |– |– |–

a b c d e f g h i j k l m n o p q r s t v w
|– ©

© |– |–
|–
|–

©©©©©©©©©©©©©©©©©©© |– ©
|–
|–
|–

|–

ex
t4

De
te

ct
io

n superblock
inode
group desc
block bitmap
inode bitmap
directory
extent
journal
data

a b c d e f g h i j k l m n o p q r s t v w
–|

©–| ©–|
–|

–| –| –| –| –| –|
–| –| –| –| –| –|

–| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –|
–| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –|

–|
©

a b c d e f g h i j k l m n o p q r s t v w
©| ©| ©| ©| ©| ©| ©| © –|
–| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –|
–| –| –| –| –| –| –|
–| –| –| –| –| –| –|

–| –| –| –| –|
–| –| –| –| –| –|

–|
–| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –|

–

a b c d e f g h i j k l m n o p q r s t v w
|

| | | | | | | | | | | © | | | | | | | | |
|

| | | | | |
| © | |

| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |

|
©

ex
t4

R
ec

ov
er

y superblock
inode
group desc
block bitmap
inode bitmap
directory
extent
journal
data

a b c d e f g h i j k l m n o p q r s t v w
–

|– |– |– ©|– ©|– |– |– |– |– |– |– |– |– |– |– |– |– |– |– – |–
–

© ©© ©©©
©© ©©© ©

|– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |–
|– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |–

–
|–

a b c d e f g h i j k l m n o p q r s t v w
©© © ©© © © © |–
|– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |–
© ©© ©©© ©
– – – – – – –

– – – – –
|– |– |– |– |– |–

|–
|– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |–

©

a b c d e f g h i j k l m n o p q r s t v w
|–

|– |– |– |– |– |– |– |– |– |– |–© |– |– |– |– |– |– |– |– |–
|–

© ©© ©©©
©© ©©

|– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |–
|– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |–

|–
©

F2
FS

De
tec

tio
n superblock

checkpoint
NAT
SIT
inode
(d/ind) node
dir. entry
data

a b c d e f g h i j k l m n o p q r s t v w
–
–
–
–

– –
–

– – – – – – – – – – – – – – – – – – – –
–

a b c d e f g h i j k l m n o p q r s t v w

© ©© ©© © ©

©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©|
©| ©| ©| ©| ©|
©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©|

© ©

a b c d e f g h i j k l m n o p q r s t v w
©|

©|
©|

| |
©|

©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©|
©

F2
FS

Re
co

ve
ry superblock

checkpoint
NAT
SIT
inode
(d/ind) node
dir. entry
data

a b c d e f g h i j k l m n o p q r s t v w

|–
|–

|– |–
|–

|– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |–
|–

a b c d e f g h i j k l m n o p q r s t v w

© ©©©©© ©© ©©© © ©
© ©© © ©
© ©©©©© ©© ©©© © ©

© ©

a b c d e f g h i j k l m n o p q r s t v w
©
©
©
©

©©©©©©©©©©©©©©©©©©©© ©
©

©©©©©©©©©©©©©©©©©©© ©
©

Table 5: The results of our analysis on the detection and recovery policies of Btrfs, ext4, and F2FS for different read, write, and corruption
experiments. The programs that were used are: a: access b: truncate c: open d: chmod e: chown f: utimes g: read h: rename i: stat j: lstat k:
readlink l: symlink m: unlink n: chdir o: rmdir p: mkdir q: write r: getdirentries s: creat t: mount v: umount w: chroot. An empty box indicates
that the block type is not applicable to the program in execution. Superimposed symbols indicate that multiple mechanisms were used.

© DZero – DErrorCode \ DSanity / DRedundancy | DFsck

© RZero / RRetry | RPropagate \ RPrevious – RStop

� RFsck_Full � RFsck_Orig � RFsck_Partial � RFsck_Fail � Crash/Panic+RFsck_fail

788 2019 USENIX Annual Technical Conference USENIX Association

Shorn Write + Program Read Shorn Write + Fsck Lost Writes

Bt
rfs

De
tec

tio
n fs tree

cksum tree
root tree
superblock
extent tree
chunk tree
dev tree
uuid tree
log tree
data

a b c d e f g h i j k l m n o p q r s t v w
| | | | | | | | | © | | | | | | | | | © |

| | ©
©
©

©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| | ©|
©
©
©

|

a b c d e f g h i j k l m n o p q r s t v w
©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©|

©|
©| ©|
©| ©| ©| ©©©©©©| ©©| ©| ©| ©| ©| ©| ©| ©| ©| ©©| ©|

©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©|

©|

©| © ©| ©| ©| ©| ©| ©| ©| ©| ©|

a b c d e f g h i j k l m n o p q r s t v w
©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©|

©| ©|
©| ©|

©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©|

©| ©|

©| ©|

Bt
rf

sR
ec

ov
er

y fs tree
cksum tree
root tree
superblock
extent tree
chunk tree
dev tree
uuid tree
log tree
data

a b c d e f g h i j k l m n o p q r s t v w
|– |– |– |– |– |– |– |– |–© |– |– |– |– |– |– |– |– |– |– |–

|– |– ©
©
©

©©©©©©©©©©©©©©©©©©©– ©
©
©
©

|–

a b c d e f g h i j k l m n o p q r s t v w
– | –©© – –©© ©©©©© © |

©
©©©©©©©©©©©©©©©©©©©©©©
©©©©©©©©©©©©©©©©©©©©©©

– – –©© ©© © ©© – ©

©© ©

© © © ©©©©©©©©

a b c d e f g h i j k l m n o p q r s t v w
© ©©©©© ©©© ©©©©© ©

©©©©©©©©©©©©©©©©©©©©©©
©©© ©©©©©©©©©©©©©©©©©©

© ©©©© ©© © ©© ©

© ©

© © ©

ex
t4

De
te

ct
io

n superblock
inode
group desc
block bitmap
inode bitmap
directory
extent
journal
data

a b c d e f g h i j k l m n o p q r s t v w
©

| | | | | | | | | | | | | | | | | | |
©

©| ©| ©| ©| ©| ©|
©© ©© ©

©©©©©©©©©©©©©©©©©©© ©
©©©©©©©©©©©©©©©©©©© ©

©
© ©

a b c d e f g h i j k l m n o p q r s t v w
©©©©© ©© © © ©©

©©©©© ©©©©©© ©©©©© ©
©© ©©© ©©©©©©©© © ©
© ©© ©©© ©

©© ©© ©
© © ©© ©

©
©©©©©©©©©©©©©©©©©© ©©

©

a b c d e f g h i j k l m n o p q r s t v w
©| ©©©© ©© © © ©©

©©©©© ©©©©©©©©©©©© ©©
©| © ©© ©©©| ©| ©©| ©©©©©©| ©
© ©© ©©© ©

©© ©© ©
© © ©© ©

©©©©©©©©©©©©©©©©©© ©©
© ©© ©

ex
t4

R
ec

ov
er

y superblock
inode
group desc
block bitmap
inode bitmap
directory
extent
journal
data

a b c d e f g h i j k l m n o p q r s t v w
©

|– |–
©

© ©© ©©©
©© ©© ©

©© |– ©© |–©©© | | | | ©©©© | © ©
©©©©©©©©©©©©©©©©©©© ©

©
|

a b c d e f g h i j k l m n o p q r s t v w
©©©©© ©© © © ©©

©©©©© ©©©©©© ©©©©© ©
©© ©©© ©©©©©©©©©© ©©
© ©© ©©© ©

©© ©© ©
© | © ©

©
©©©©©© ©©©© ©©©©© ©

©

a b c d e f g h i j k l m n o p q r s t v w
©©©©© ©© © © ©©

©© ©© ©©©©©©©©©©©© ©©
©© ©© ©©©©©©©©©©©©©
© ©© ©©© ©

©© ©© ©
© © ©© ©

©©©©©©©©©©©©©©©©©© ©©
© ©© ©

F2
FS

De
tec

tio
n superblock

checkpoint
NAT
SIT
inode
(d/ind) node
dir. entry
data

a b c d e f g h i j k l m n o p q r s t v w
©|

©|
©|

| |
©|

©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©|
©

a b c d e f g h i j k l m n o p q r s t v w

© ©© ©© © ©

©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©|
©| ©| ©| ©| ©|
©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©|

© © ©

a b c d e f g h i j k l m n o p q r s t v w

© ©© ©© © ©

©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©|
©| ©| ©| ©| ©|
©| ©| ©| ©| ©| ©| ©| ©| ©|

© ©|

F2
FS

Re
co

ve
ry superblock

checkpoint
NAT
SIT
inode
(d/ind) node
dir. entry
data

a b c d e f g h i j k l m n o p q r s t v w
©
©
©
©

©©©©©©©©©©©©©©©©©©©© ©
©

©©©©©©©©©©©©©©©©©©© ©
©

a b c d e f g h i j k l m n o p q r s t v w

© ©©©©© ©© ©©© © ©
© ©© © ©
© ©©©©© ©© ©©© © ©

© © ©

a b c d e f g h i j k l m n o p q r s t v w

© ©©©©© ©© ©©© © ©
© ©© © ©
© © ©© ©©© © ©

© ©

Table 6: The results of our analysis on the detection and recovery policies of Btrfs, ext4, and F2FS for different shorn write + program read,
shorn write + fsck, and lost write experiments. The programs that were used are: a: access b: truncate c: open d: chmod e: chown f: utimes g:
read h: rename i: stat j: lstat k: readlink l: symlink m: unlink n: chdir o: rmdir p: mkdir q: write r: getdirentries s: creat t: mount v: umount w:
chroot. An empty box indicates that the block type is not applicable to the program in execution. Superimposed symbols indicate that multiple
mechanisms were used.

© DZero – DErrorCode \ DSanity / DRedundancy | DFsck

© RZero / RRetry | RPropagate \ RPrevious – RStop

� RFsck_Full � RFsck_Orig � RFsck_Partial � RFsck_Fail � Crash/Panic+RFsck_fail

USENIX Association 2019 USENIX Annual Technical Conference 789

file system arranges data in the form of a forest of trees,
each serving a specific purpose (e.g. file system tree (fstree)
stores file system metadata, checksum tree (csumtree) stores
file/directory checksums). Btrfs maintains checksums for all
metadata within tree nodes. Checksum for data is computed
and stored separately in a checksum tree. A root tree stores the
location of the root of all other trees in the file system. Since
Btrfs is a copy-on-write file system, all changes made on a
tree node are first written to a different location on disk. The
location of the new tree nodes are then propagated across the
internal nodes up to the root of the file system trees. Finally,
the root tree needs to be updated with the location of the other
changed file system trees.

3.1.1 Read errors

All errors get detected (DErrorCode) and registered in the op-
erating system’s message log, and the current operation is
terminated (RStop). btrfsck is able to run, detect and correct
the file system in most cases, with two exceptions. When the
fstree structure is affected, btrfsck removes blocks that are
not readable and returns an I/O error. Another exception is
when a read I/O error is encountered while accessing key
tree structures during a mount procedure: mount fails and
btrfsck is unable to repair the file system.

3.1.2 Corruption

Corruption of any B-tree node. Checksums inside each tree
node enable reliable detection of corruption; however, Btrfs
employs a different recovery protocol based on the type of
the underlying device. When Btrfs is deployed on top of a
hard disk, it provides recovery from metadata corruption us-
ing metadata replication. Specifically, reading a corrupted
block leads to btrfs-scrub being invoked, which replaces
the corrupted primary metadata block with its replica. Note
that btrfs-scrub does not have to scan the entire file sys-
tem; only the replica is read to restore the corrupted block.
However, in case the underlying device is an SSD, Btrfs turns
off metadata replication by default for two reasons [7]. First,
an SSD can remap a primary block and its replica internally
to a single physical location, thus deduplicating them. Sec-
ond, SSD controllers may put data written together in a short
time span into the same physical storage unit (i.e. cell, erase
block, etc.), which is also a unit of SSD failures. Therefore,
btrfs-scrub is never invoked in the case of SSDs, as there
is no metadata duplication. This design choice causes a sin-
gle bit flip of fstree to wipe out files and entire directories
within a B-Tree node. If a corrupted tree node is encountered
while mount reads in all metadata trees into memory, the con-
sequences are even more severe: the operation fails and the
disk is left in an inconsistent and irreparable state, even after
running btrfsck.

Directory corruption. We observe that when a node cor-
ruption affects a directory, the corruption could actually be
recovered, but Btrfs fails to do so. For performance reasons,

Btrfs maintains two independent data structures for a direc-
tory (DIR_ITEM and DIR_INDEX). If one of these two becomes
corrupted, the other data structure is not used to restore the
directory. This is surprising considering that the existing re-
dundancy could easily be leveraged for increased reliability.

3.1.3 Write errors

Superblock & Write I/O errors: Btrfs has multiple copies
of its superblock, but interestingly, the recovery policy upon
a write error is not identical for all copies. The superblocks
are located at fixed locations on the disk and are updated at
every write operation. The replicas are kept consistent, which
differs from ext4’s behavior. We observe that a write I/O error
while updating the primary superblock is considered severe;
the operation is aborted and the file system remounts as read-
only. On the other hand, write I/O errors for the secondary
copies of the superblock are detected, but the overall operation
completes successfully, and the secondary copy is not updated.
While this allows the file system to continue writing, this is
a violation of the implicit consistency guarantee between all
superblocks, which may lead to problems in the future, as the
system operates with a reduced number of superblock copies.

Tree Node & Write I/O errors: A write I/O error on a tree
node is registered in the operating system’s message log, but
due to the file system’s asynchronous nature, errors cannot be
directly propagated back to the user application that wrote the
data. In almost all cases, the file system is forced to mount as
read-only (RStop). A subsequent unmount and btrfsck run
in repair mode makes the device unreadable for extentTree,
logTree, rootTree and the root node of the fstree.

3.1.4 Shorn Write + Program Read

We observe that the behavior of Btrfs during a read of a shorn
block is similar to the one we observed earlier for corruption.
The only exception is the superblock, as its size is smaller
than the 3/8th of the block and it does not get affected.

3.1.5 Shorn Write + Fsck

Shorn writes on root tree cause the file system to become un-
mountable and unrecoverable even after a btrfsck operation.
We also find kernel panics during shorn writes as described
in Section 3.1.7.

3.1.6 Lost Writes

Errors get detected only during btrfsck. They do not get
detected or propagated to user space during normal operation.
btrfsck is unable to recover the file system, which is ren-
dered unmountable due to corruption. The only recoverable
case is a lost write to the superblock; for the remaining data
structures, the file system eventually becomes unmountable.

3.1.7 Bugs found/reported.

We submitted 2 bug reports for Btrfs. The first bug report is
related to the corruption of a DIR_INDEX key. The file system
was able to detect the corruption but deadlocks while listing

790 2019 USENIX Annual Technical Conference USENIX Association

the directory entries. This bug was fixed in a later version [1].
The second bug is related to read I/O errors specifically on
the root directory, which can cause a kernel panic for certain
programs. We encountered 2 additional bugs during a shorn
write that result in a kernel panic, both having the same root
cause. The first case involves a shorn write to the root of the
fstree, while the second case involves a shorn write to the root
of the extent tree. In both cases, there is a mismatch in the
leaf node size, which forces Btrfs to print the entire tree in
the operating system’s message log. While printing the leaf
block, another kernel panic occurs where the size of a Btrfs
item does not match the Btrfs header. Rebooting the kernel
and running btrfsck fails to recover the file system.

3.2 ext4
ext4 is the default file system for many widely used Linux dis-
tributions and Android devices. It maintains a journal where
all metadata updates are sequentially written before the main
file system is updated. First, data corresponding to a file sys-
tem operation is written to the in-place location of the file
system. Next, a transaction log is written on the journal. Once
the transaction log is written on the journal, the transaction
is said to be committed. When the journal is full or suffi-
cient time has elapsed, a checkpoint operation takes place
that writes the in-memory metadata buffers to the in-place
metadata location on the disk. On the event of a crash before
the transaction is committed, the file system transaction is
discarded. If the commit has taken place successfully on the
journal but the transaction has not been checkpointed, the file
system replays the journal during remount, where all meta-
data updates that were committed on the journal are recovered
from the journal and written to the main file system.

ext4 is able to recover from an impressively large range of
fault scenarios. Unlike Btrfs, it makes little use of checksums
unless metadata_csum feature is enabled explicitly during
file system creation. Further, it deploys a very rich set of
sanity checks when reading data structures such as directories,
inodes and extents1, which helps it deal with corruptions.

It is also the only one of the three file systems that is able
to recover lost writes of multiple data structures, due to its
in-place nature of writes and a robust file system checker.
However, there are a few exceptions where the correspond-
ing issue remains uncorrectable (see the red cells in Table 6
associated with ext4’s recovery).

Furthermore, we observe instances of data loss caused
by shorn and lost writes involving write programs, such as
create and rmdir. For shorn writes, ext4 may incur silent
errors, and not notify the user about the errors.

Before describing some specific issues below, we point out
that our ext4 results are very different from those reported for

1We report failure results for both directory and file extents together. Since
our pre-workload generation creates a number of files and directories in the
root directory, at least 1 extent block corresponding to the root directory gets
accessed by all programs.

ext3 in [45], where a large number of corruption events and
several read and write I/O errors were not detected or han-
dled properly. Clearly, in the 13 years that have passed since
then, ext developers have made improvements in reliability a
priority, potentially motivated by the findings in [45].

I/O errors, corruption and shorn writes of Inodes: The
most common scenario leading to data loss (but still a consis-
tent file system) is a fault, in particular read I/O error, corrup-
tion or shorn write, that affects an inode, which results in the
data of all files having their inode structure stored inside the
affected inode block becoming inaccessible.

Read I/O errors, corruption and shorn writes of Direc-
tory blocks: A shorn write involving a directory block is
detected by the file system and eventually, the correspond-
ing files and directories are removed. Empty files are com-
pletely removed by e2fsck by default, while non-empty files
are placed into the lost+found directory. However, the parent-
child relationship is lost, which we encode as RFsck_Partial.

Write I/O errors and group descriptors: There is only
one scenario where e2fsck does not achieve at least partial
success: When e2fsck is invoked after a write error on a
group descriptor, it tries to rebuild the group descriptor and
write it to the same on-disk location. However, as it is the
same on-disk location that generated the initial error, e2fsck
encounters the same write error and keeps restarting, running
into an infinite loop for 3 cases (see RFsck_Fail).

Read I/O error during mount: ext4 fails to complete the
mount operation if a read I/O error occurs while reading a
critical metadata structure. In this case, the file system cannot
be mounted even after invoking e2fsck. We observe similar
behavior for the other two file systems as well.

3.3 F2FS
F2FS is a log-structured file system designed for devices
that use an FTL. Data and metadata are separately written
into 6 active logs (default configuration), which are grouped
by data/metadata, files/directories, and other heuristics. This
multi-head logging allows similar blocks to be placed together
and increases the number of sequential write operations.

F2FS divides its logical address space into the metadata
region and the main area. The metadata region is stored at
a fixed location and includes the Checkpoint (CP), the Seg-
ment Information Table (SIT), and the Node Address Table
(NAT). The checkpoint stores information about the state of
the file system and is used to recover from system crashes.
SIT maintains information on the segments (the unit at which
F2FS allocates storage blocks) in the main area, while NAT
contains the block addresses of the file system’s nodes, which
comprise of file/directory inodes, direct, and indirect nodes.
F2FS uses a two-location approach for these three structures.
In particular, one of the two copies is “active” and used to
initialize the file system’s state during mount, while the other
is a shadow copy that gets updated during the file system’s
execution. Finally, each copy of the checkpoint points to its

USENIX Association 2019 USENIX Annual Technical Conference 791

corresponding copy of SIT and NAT.
F2FS’s behavior when encountering read/write errors or

corruption differs significantly from that of ext4 and Btrfs.
While read failures are detected and appropriately propagated
in nearly all scenarios, we observe that F2FS consistently
fails to detect and report any write errors, independently of
the operation that encounters them and the affected data struc-
ture. Furthermore, our results indicate that F2FS is not able
to deal with lost and shorn writes effectively and eventually
suffers from data loss. In some cases, a run of the file system’s
checker (called fsck.f2fs) can bring the system to a consis-
tent state, but in other cases, the consequences are severe. We
describe some of these cases in more detail below.

3.3.1 Read errors

Checkpoint / NAT / SIT blocks & read errors. During its
mount operation, if F2FS encounters a read I/O error while
trying to fetch any of the checkpoint, NAT, or SIT blocks, then
it mounts as read-only. Additionally, F2FS cannot be mounted
if the inode associated with the root directory cannot be ac-
cessed. In general, fsck.f2fs cannot help the file system
recover from the error since it terminates with an assertion
error every time it cannot read a block from the disk.

3.3.2 Write errors & Lost Writes

We observe that F2FS does not detect write errors (as injected
by our framework), leading to different issues, such as corrup-
tion, reading garbage values, and potentially data loss. As a
result, during our experiments, newly created or previously
existing entries have been completely discarded from the sys-
tem, applications have received garbage values, and finally,
the file system has experienced data loss due to an incomplete
recovery protocol (i.e. when fsck.f2fs is invoked). Consid-
ering that F2FS does not detect write I/O errors, lost writes
end up having the same effect, since the difference between
the two is that a lost write is silent (i.e. no error is returned).

3.3.3 Corruption

Data corruption is reliably detected only for inodes and check-
points, which are the only data structures protected by check-
sums, but even for those two data structures, recovery can be
incomplete, resulting in the loss of files (and the data stored in
them). The corruption of other data structures can lead to even
more severe consequences. For example, the corruption of the
superblock can go undetected and lead to an unmountable file
system, even if the second copy of the superblock is intact.
We have filed two bug reports related to the issues we have
identified and one has already resulted in a fix. Below we
describe some of the issues around corruption in more detail.

Inode block corruption. Inodes are one of only two F2FS
data structures that are protected by checksums, yet their
corruption can still create severe problems. One such scenario
arises when the information stored in the footer section of an
inode block is corrupted. In this case, fsck.f2fs will discard

the entry without even attempting to create an entry in the
lost_found directory, resulting in data loss.

Another scenario is when an inode associated with a di-
rectory is corrupted. Then all the regular files stored inside
that directory and its sub-directories are recursively marked
as unreachable by fsck.f2fs and are eventually moved to
the lost_found directory (provided that their inode is valid).
However, we observe that fsck.f2fs does not attempt to
recreate the structure of sub-directories. It simply creates an
entry in the lost_found directory for regular files in the sub-
directory tree, not sub-directories. As a result, if there are
different files with the same name (stored in different paths
of the original hierarchy), then only one is maintained at the
end of the recovery procedure.

Checkpoint corruption. Checkpoints are the other data
structure, besides inodes, that is protected by checksums. We
observe that issues only arise if both copies of a checkpoint
become corrupted, in which case the file system cannot be
mounted. Otherwise, the uncorrupted copy will be used during
the system’s mount operation.

Superblock corruption. While there are two copies of
the superblock, the detection of corruption to the superblock
relies completely on a set of sanity checks performed on
(most) of its fields, rather than checksums or comparison of
the two copies. If sanity checks identify an invalid value, then
the backup copy is used for recovery. However, our results
show that the sanity checks are not capable of detecting all
invalid values and thus, depending on the corrupted field, the
reliability of the file system can suffer.

One particularly dangerous situation is a corruption of the
offset field, which is used to calculate a checkpoint’s start-
ing address inside the corresponding segment, as it causes
the file system to boot from an invalid checkpoint location
during a mount operation and to eventually hang during its
unmount operation. We filed a bug report which has resulted
in a new patch that fixes this problem during the operation
of fsck.f2fs; specifically, the patch uses the (checksum-
protected) checkpoint of the system to restore the correct
value. Future releases of F2FS will likely include a patch that
enables checksums for the superblock.

Another problem with superblock corruption, albeit less
severe, arises when the field containing the counter of sup-
ported file extensions, which F2FS uses to identify cold data,
is corrupted. The corruption goes undetected and as a result,
the corresponding file extensions are not treated as expected.
This might lead to file system performance problems, but
should not affect reliability or consistency.

SIT corruption. SIT blocks are not protected against cor-
ruption through any form of redundancy. We find cases where
the corruption of these blocks severely compromises the con-
sistency of the file system. For instance, we were able to
corrupt a SIT block’s bitmap (which keeps track of the al-
located blocks inside a segment) in such a way that the file
system hit a bug during its mount operation and eventually,

792 2019 USENIX Annual Technical Conference USENIX Association

became unmountable.
NAT corruption. This data structure is not protected

against corruption and we observe several problems this can
create. First, the node ID of an entry can be corrupted and
thus, point to another entry inside the file system, to an invalid
entry or a non-existing one. Second, the block address of an
entry can be corrupted and thus, point to another entry in the
system or an invalid location. In both cases, the original entry
is eventually marked as unreachable by fsck.f2fs, since the
reference to it is no longer available inside the NAT copy, and
placed in the lost_found directory. As already mentioned, files
with identical names overwrite each other and eventually only
one is stored inside the lost_found directory.

Direct/Indirect Node corruption. These blocks are used
to access the data of large files and also, the entries of large
directories (with multiple entries). Direct nodes contain en-
tries that point to on-disk blocks, while indirect nodes contain
entries that point to direct nodes. Neither single nor double in-
direct nodes are protected against corruption. We observe that
corruption of these nodes is not detected by the file system.
Even when an invocation of fsck.f2fs detects the corrup-
tion problems can arise. For example, we find a case where
after the invocation of fsck.f2fs the system kept reporting
the wrong (corrupted) size for a file. As a result, when we tried
to create a copy of the file, we received a different content.

Directory entry corruption. Directory entries are stored
and organized into blocks. Currently, there is no mechanism
to detect corruption of such a block and we observe numerous
problems this can create. For example, when the field in a
directory entry that contains the length of the entry’s name is
corrupted the file system returns garbage information when
we try to get the file’s status. Moreover, the field containing
the node ID of the corresponding inode can be corrupted and
as a result point to any node currently stored in the system.
Finally, an entry can “disappear” by storing a zero value into
the corresponding index inside the directory’s bitmap.

In the last two cases, any affected entry is eventually
marked as unreachable by fsck.f2fs, since their parent di-
rectory does no longer point to it. As already mentioned, files
with identical names overwrite each other and eventually only
one is stored inside the lost_found directory.

3.3.4 Shorn Write + Program Read

The results when a program reads a block previously affected
by a shorn write are similar to those for corruption, since
shorn writes can be viewed as a special type of corruption.
The only exception is the superblock, as it is a small data
structure that happened not to be affected by our experiments.

3.3.5 Shorn Write + Fsck

Directory entries and shorn writes. Blocks that contain di-
rectory entries are not protected against corruption. Therefore,
a shorn write goes undetected and can cause several problems.
First, valid entries of the system “disappear” after invoking

fsck.f2fs, including the special entries that point to the
current directory and its parent. Second, in some cases, we
additionally observed that after re-mounting the file system,
an attempt to list the contents of a directory resulted in an
infinite loop. In both cases, the affected entries were eventu-
ally marked as unreachable by fsck.f2fs and were dumped
into the lost_found directory. As we have already mentioned,
files with identical names in different parts of the directory
tree conflict with each other and eventually, only one makes
it to the lost_found directory. In some cases, fsck.f2fs is
not capable of detecting the entire damage a shorn write has
caused; we ran into a case where after remounting the file
system, all the entries inside a directory ended up having the
same name, eventually becoming completely inaccessible.

3.3.6 Bugs found/reported

We have filed two bug reports related to the issues we have
identified around handling corrupted data and one has already
resulted in a fix [2, 4]. Moreover, we have reported F2FS’s
failure to handle write I/O errors [3].

4 Related Work
Our work is closest in spirit to the pioneering work by
Prabhakaran et al. [45], however our focus is very different.
While [45] was focused on HDDs, we are specifically inter-
ested in SSD-based systems and as such consider file systems
with features that are attractive for usage with SSDs, including
log-structured and copy-on-write systems. None of the file
systems in our study existed at the time [45] was written and
they mark a significant departure in terms of design principles
compared to the systems in [45]. Also, since we are focused
on SSDs, we specifically consider reliability issues that arise
from the use of SSDs. Additionally, we provide some ex-
tensions to the work in [45], such as exploring whether fsck
is able to detect and recover from those issues that the file
systems cannot handle during their online operation.

Gunawi et al. [28] make use of static analysis and explore
how file systems and storage device drivers propagate error
codes. Their results indicate that write errors are neglected
more often than read errors. Our study confirms that write
errors are still not handled properly in some file systems, espe-
cially when lost and shorn writes are considered. In [51], the
authors conduct a performance evaluation on the transaction
processing system between ext2 and NILFS2. In [42], the
authors explore how existing file systems developed for differ-
ent operating systems behave with respect to features such as
crash resilience and performance. Nonetheless, the provided
experimental results only present the performance of read and
write operations. Recently, two new studies presented their
reliability analysis of file systems in a context other than the
local file system. Ganesan et al. [25] present their analysis
on how modern distributed storage systems behave in the
presence of file-system faults. Cao et al. [20] present their
study on the reliability of high-performance parallel systems.

USENIX Association 2019 USENIX Annual Technical Conference 793

In contrast, in our work, we focus on local file systems and
explore the effect of SSD related errors.

Finally, different techniques involving hardware or modifi-
cations inside the FTL have been proposed to mitigate existing
errors inside SSDs [14, 15, 22, 35–37, 44].

5 Implications
• ext4 has significantly improved over ext3 in both detection
and recovery from data corruption and I/O injection errors.
Our extensive test suite generates only minor errors or data
losses in the file system, in stark contrast with [45], where
ext3 was reported to silently discard write errors.
• On the other hand, Btrfs, which is a production grade file
system with advanced features like snapshot and cloning, has
good failure detection mechanisms, but is unable to recover
from errors that affect its key data structures, partially due to
disabling metadata replication when deployed on SSDs.
• F2FS has the weakest detection against the various errors
our framework emulates. We observe that F2FS consistently
fails to detect and report any write errors, regardless of the
operation that encounters them and the affected data structure.
It also does not detect many corruption scenarios. The result
can be as severe as data loss or even an unmountable file
system. We have filed 3 bug reports; 1 has already been fixed
and the other 2 are currently under development.
• File systems do not always make use of the existing redun-
dancy. For example, Btrfs maintains two independent data
structures for each directory entry for enhanced performance,
but upon failure of one, does not use the other for recovery.
• We notice potentially fatal omissions in error detection and
recovery for all file systems except for ext4. This is concern-
ing since technology trends, such as continually growing SSD
drive capacities and increasing densities as QLC drives which
are coming on the market, all seem to point towards increas-
ing rather than decreasing SSD error rates in the future. In
particular for flash-focused file systems, such as F2FS, where
for a long time focus has been on performance optimization,
an emphasis on reliability is needed if they want to be a seri-
ous contender for ext4.
• File systems should make every effort to verify the correct-
ness of metadata through sanity checks, especially when the
metadata is not protected by a mechanism, such as check-
sums. The most mature file system in our study, ext4, does
a significantly more thorough job at sanity checks than for
example F2FS, which has room for improvement. There have
also been recent efforts towards this direction in the context
of a popular enterprise file system [32].
• Checksums can be a double-edged sword. While they help
increase error detection, coarse granularity checksums can
lead to severe data loss. For instance, manipulation of even 1
byte of the checksummed file system unit leads to discard of
the entire file system unit in the case for Btrfs. Ideally having
a directory or a file system level checksum that discards only
1 entity instead of all co-located files/directories should be

implemented. A step in this direction is File-Level Integrity
proposed for Android [5, 24]. The tradeoff of adding fine-
grained checksums is the space and performance overhead,
since a checksum protects a single inode instead of a block
of inodes. Finally, note that checksums can only help with
detecting corruption, but not with recovery (ideally a file sys-
tem can both detect corruption and recover from it). These
points have to be considered together when implementing
checksums inside the file system.
• One might wonder whether added redundancy as described
in the Iron file system paper [45] might resolve many of the
issues we observe. We hypothesize that for flash-based sys-
tems, redundancy can be less effective in those (less likely)
cases where both the primary and replica blocks land in the
same fault domain (same erase block or same flash chip), af-
ter being written together within a short time interval. Even
though modern flash devices keep multiple erase blocks open
and stripe incoming writes among them for throughput, this
does not preclude the scenario where both the primary and
replica blocks land in the same fault domain.
• Maybe not surprisingly, a few key data structures (e.g. the
journal’s superblock in ext4, the root directory inode in ext4
and F2FS, the root node of fstree in Btrfs) are responsible
for the most severe failures, usually when affected by a silent
fault (e.g. silent corruption or silently dropped write).It might
be worthwhile to perform a series of sanity checks for such
key data structures before persisting them to the SSD e.g.
during an unmount operation.

6 Limitations and Future Work
Some of the fault types we explore in our study are based on
SSD models that are several years old by now, whose internal
behavior could have changed since then. However, we observe
that some issues are inherent to flash and therefore likely to
persist in new generations of drives, such as retention and
disturb errors, which will manifest as read errors at the file
system level. The manifestation of other faults, e.g. those
related to firmware bugs or changes in page and block size,
might vary for future drive models. Our tool is configurable
and can be extended to test new error patterns.

File systems must remain consistent in the face of different
types of faults. As part of future work, we plan to extend
our device mapper module to emulate additional fault modes,
such as timeouts. Additionally, our work can be expanded to
include additional file systems, such as XFS, NTFS and ZFS.
Finally, another extension to our work could be exploring how
file systems respond to timing anomalies as those described
in [26], where I/Os related to some blocks can become slower,
or the whole drive is slow.

Acknowledgements
We thank our USENIX ATC ’19 reviewers and our shepherd,
Theodore Ts’o, for their detailed feedback and valuable sug-
gestions.

794 2019 USENIX Annual Technical Conference USENIX Association

References
[1] Btrfs Bug Report. https://bugzilla.kernel.org/

show_bug.cgi?id=198457.

[2] F2FS Bug Report. https://bugzilla.kernel.org/
show_bug.cgi?id=200635.

[3] F2FS Bug Report - Write I/O Errors. https://
bugzilla.kernel.org/show_bug.cgi?id=200871.

[4] F2FS Patch File. https://sourceforge.net/p/
linux-f2fs/mailman/message/36402198/.

[5] fs-verity: File System-Level Integrity Protec-
tion. https://www.spinics.net/lists/
linux-fsdevel/msg121182.html. [Online; ac-
cessed 06-Jan-2019].

[6] Github code repository. https://github.com/
uoftsystems/dm-inject.

[7] Btrfs mkfs man page. https://btrfs.wiki.kernel.
org/index.php/Manpage/mkfs.btrfs, 2019. [On-
line; accessed 06-Jan-2019].

[8] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber,
John D Davis, Mark S Manasse, and Rina Panigrahy.
Design tradeoffs for SSD performance. In USENIX An-
nual Technical Conference (ATC ’08), volume 57, 2008.

[9] Lakshmi N Bairavasundaram, Andrea C Arpaci-
Dusseau, Remzi H Arpaci-Dusseau, Garth R Goodson,
and Bianca Schroeder. An Analysis of Data Corruption
in the Storage Stack. ACM Transactions on Storage
(TOS), 4(3):8, 2008.

[10] Hanmant P Belgal, Nick Righos, Ivan Kalastirsky, Jeff J
Peterson, Robert Shiner, and Neal Mielke. A new reli-
ability model for post-cycling charge retention of flash
memories. In Proceedings of the 40th Annual Interna-
tional Reliability Physics Symposium, pages 7–20. IEEE,
2002.

[11] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet.
LightNVM: The Linux Open-Channel SSD Subsystem.
In Proceedings of the 15th USENIX Conference on File
and Storage Technologies (FAST ’17), pages 359–374,
Santa Clara, CA, 2017. USENIX Association.

[12] Simona Boboila and Peter Desnoyers. Write Endurance
in Flash Drives: Measurements and Analysis. In Pro-
ceedings of the 8th USENIX Conference on File and Stor-
age Technologies (FAST ’10), pages 115–128. USENIX
Association, 2010.

[13] Adam Brand, Ken Wu, Sam Pan, and David Chin. Novel
read disturb failure mechanism induced by FLASH cy-
cling. In Proceedings of the 31st Annual International

Reliability Physics Symposium, pages 127–132. IEEE,
1993.

[14] Yu Cai, Saugata Ghose, Erich F Haratsch, Yixin Luo,
and Onur Mutlu. Error characterization, mitigation, and
recovery in flash-memory-based solid-state drives. Pro-
ceedings of the IEEE, 105(9):1666–1704, 2017.

[15] Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur
Mutlu, and Erich F Haratsch. Vulnerabilities in MLC
NAND flash memory programming: experimental anal-
ysis, exploits, and mitigation techniques. In 23rd Inter-
national Symposium on High-Performance Computer
Architecture (HPCA), pages 49–60. IEEE, 2017.

[16] Yu Cai, Erich F Haratsch, Onur Mutlu, and Ken Mai.
Error patterns in MLC NAND flash memory: Measure-
ment, Characterization, and Analysis. In Proceedings
of the Conference on Design, Automation and Test in
Europe, pages 521–526. EDA Consortium, 2012.

[17] Yu Cai, Yixin Luo, Erich F Haratsch, Ken Mai, and Onur
Mutlu. Data retention in MLC NAND flash memory:
Characterization, optimization, and recovery. In 21st In-
ternational Symposium on High Performance Computer
Architecture (HPCA), pages 551–563. IEEE, 2015.

[18] Yu Cai, Onur Mutlu, Erich F Haratsch, and Ken Mai.
Program interference in MLC NAND flash memory:
Characterization, modeling, and mitigation. In 31st In-
ternational Conference on Computer Design (ICCD),
pages 123–130. IEEE, 2013.

[19] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F Haratsch,
Adrian Cristal, Osman S Unsal, and Ken Mai. Flash
correct-and-refresh: Retention-aware error management
for increased flash memory lifetime. In 30th Interna-
tional Conference on Computer Design (ICCD), pages
94–101. IEEE, 2012.

[20] Jinrui Cao, Om Rameshwar Gatla, Mai Zheng, Dong
Dai, Vidya Eswarappa, Yan Mu, and Yong Chen. PFault:
A General Framework for Analyzing the Reliability of
High-Performance Parallel File Systems. In Proceed-
ings of the 2018 International Conference on Supercom-
puting, pages 1–11. ACM, 2018.

[21] Paolo Cappelletti, Roberto Bez, Daniele Cantarelli, and
Lorenzo Fratin. Failure mechanisms of Flash cell in
program/erase cycling. In Proceedings of the IEEE
International Electron Devices Meeting, pages 291–294.
IEEE, 1994.

[22] Feng Chen, David A. Koufaty, and Xiaodong Zhang.
Understanding Intrinsic Characteristics and System Im-
plications of Flash Memory Based Solid State Drives.
In Proceedings of the 2009 ACM SIGMETRICS Inter-
national Conference on Measurement and Modeling of

USENIX Association 2019 USENIX Annual Technical Conference 795

https://bugzilla.kernel.org/show_bug.cgi?id=198457
https://bugzilla.kernel.org/show_bug.cgi?id=198457
https://bugzilla.kernel.org/show_bug.cgi?id=200635
https://bugzilla.kernel.org/show_bug.cgi?id=200635
https://bugzilla.kernel.org/show_bug.cgi?id=200871
https://bugzilla.kernel.org/show_bug.cgi?id=200871
https://sourceforge.net/p/linux-f2fs/mailman/message/36402198/
https://sourceforge.net/p/linux-f2fs/mailman/message/36402198/
https://www.spinics.net/lists/linux-fsdevel/msg121182.html
https://www.spinics.net/lists/linux-fsdevel/msg121182.html
https://github.com/uoftsystems/dm-inject
https://github.com/uoftsystems/dm-inject
https://btrfs.wiki.kernel.org/index.php/Manpage/mkfs.btrfs
https://btrfs.wiki.kernel.org/index.php/Manpage/mkfs.btrfs

Computer Systems (SIGMETRICS ’09), pages 181–192,
2009.

[23] Robin Degraeve, F Schuler, Ben Kaczer, Martino Loren-
zini, Dirk Wellekens, Paul Hendrickx, Michiel van Du-
uren, GJM Dormans, Jan Van Houdt, L Haspeslagh, et al.
Analytical percolation model for predicting anomalous
charge loss in flash memories. IEEE Transactions on
Electron Devices, 51(9):1392–1400, 2004.

[24] Jake Edge. File-level Integrity. https://lwn.net/
Articles/752614/, 2018. [Online; accessed 06-Jan-
2019].

[25] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Re-
dundancy Does Not Imply Fault Tolerance: Analysis
of Distributed Storage Reactions to Single Errors and
Corruptions. In Proceedings of the 15th USENIX Con-
ference on File and Storage Technologies (FAST ’17),
pages 149–166, Santa Clara, CA, 2017. USENIX Asso-
ciation.

[26] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson,
E. Yaakobi, P. H. Siegel, and J. K. Wolf. Characterizing
Flash Memory: Anomalies, Observations, and Applica-
tions. In 42nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pages 24–33, Dec
2009.

[27] Laura M Grupp, John D Davis, and Steven Swanson.
The bleak future of NAND flash memory. In Proceed-
ings of the 10th USENIX conference on File and Storage
Technologies (FAST ’12). USENIX Association, 2012.

[28] Haryadi S. Gunawi, Cindy Rubio-González, Andrea C.
Arpaci-Dusseau, Remzi H. Arpaci-Dussea, and Ben Li-
blit. EIO: Error Handling is Occasionally Correct. In
Proceedings of the 6th USENIX Conference on File and
Storage Technologies (FAST ’08), pages 14:1–14:16, San
Jose, CA, 2008.

[29] S Hur, J Lee, M Park, J Choi, K Park, K Kim, and K Kim.
Effective program inhibition beyond 90nm NAND flash
memories. Proc. NVSM, pages 44–45, 2004.

[30] Seok Jin Joo, Hea Jong Yang, Keum Hwan Noh,
Hee Gee Lee, Won Sik Woo, Joo Yeop Lee, Min Kyu
Lee, Won Yol Choi, Kyoung Pil Hwang, Hyoung Seok
Kim, et al. Abnormal disturbance mechanism of sub-
100 nm NAND flash memory. Japanese Journal of
Applied Physics, 45(8R):6210, 2006.

[31] Myoungsoo Jung and Mahmut Kandemir. Revisiting
Widely Held SSD Expectations and Rethinking System-
level Implications. In Proceedings of the 2013 ACM SIG-
METRICS International Conference on Measurement

and Modeling of Computer Systems (SIGMETRICS ’13),
pages 203–216, 2013.

[32] Harendra Kumar, Yuvraj Patel, Ram Kesavan, and Sum-
ith Makam. High Performance Metadata Integrity Pro-
tection in the WAFL Copy-on-Write File System. In
Proceedings of the 15th USENIX Conference on File
and Storage Technologies (FAST ’17), pages 197–212,
Santa Clara, CA, 2017. USENIX Association.

[33] Changman Lee, Dongho Sim, Jooyoung Hwang, and
Sangyeun Cho. F2FS: A New File System for Flash
Storage. In Proceedings of the 13th USENIX Conference
on File and Storage Technologies (FAST ’15), pages 273–
286, Santa Clara, CA, 2015. USENIX Association.

[34] Jae-Duk Lee, Chi-Kyung Lee, Myung-Won Lee, Han-
Soo Kim, Kyu-Charn Park, and Won-Seong Lee. A
new programming disturbance phenomenon in NAND
flash memory by source/drain hot-electrons generated by
GIDL current. In Non-Volatile Semiconductor Memory
Workshop, 2006. IEEE NVSMW 2006. 21st, pages 31–33.
IEEE, 2006.

[35] Ren-Shuo Liu, Chia-Lin Yang, and Wei Wu. Optimizing
NAND flash-based SSDs via retention relaxation. In
Proceedings of the 10th USENIX conference on File and
Storage Technologies (FAST ’12), page 11, San Jose,
CA, 2012. USENIX Association.

[36] Yixin Luo, Saugata Ghose, Yu Cai, Erich F Haratsch,
and Onur Mutlu. HeatWatch: Improving 3D NAND
Flash Memory Device Reliability by Exploiting Self-
Recovery and Temperature Awareness. In 24th Inter-
national Symposium on High Performance Computer
Architecture (HPCA), pages 504–517. IEEE, 2018.

[37] Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch,
and Onur Mutlu. Improving 3D NAND Flash Mem-
ory Lifetime by Tolerating Early Retention Loss and
Process Variation. Proceedings of the 2018 ACM SIG-
METRICS International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS ’18),
2(3):37:1–37:48, December 2018.

[38] Avantika Mathur, Mingming Cao, Suparna Bhat-
tacharya, Andreas Dilger, Alex Tomas, and Laurent
Vivier. The New ext4 Filesystem: Current Status and
Future Plans. In Proceedings of the Linux symposium,
volume 2, pages 21–33, 2007.

[39] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu.
A Large-Scale Study of Flash Memory Failures in the
Field. In Proceedings of the 2015 ACM SIGMETRICS
International Conference on Measurement and Mod-
eling of Computer Systems (SIGMETRICS ’15), pages
177–190, 2015.

796 2019 USENIX Annual Technical Conference USENIX Association

https://lwn.net/Articles/752614/
https://lwn.net/Articles/752614/

[40] Neal Mielke, Hanmant P Belgal, Albert Fazio, Qingru
Meng, and Nick Righos. Recovery Effects in the Dis-
tributed Cycling of Flash Memories. In Proceedings of
the 44th Annual International Reliability Physics Sym-
posium, pages 29–35. IEEE, 2006.

[41] Neal Mielke, Todd Marquart, Ning Wu, Jeff Kessenich,
Hanmant Belgal, Eric Schares, Falgun Trivedi, Evan
Goodness, and Leland R Nevill. Bit error rate in NAND
flash memories. In Proceedings of the 46th Annual
International Reliability Physics Symposium, pages 9–
19. IEEE, 2008.

[42] Keshava Munegowda, GT Raju, and Veera Manikandan
Raju. Evaluation of file systems for solid state drives. In
Proceedings of the Second International Conference on
Emerging Research in Computing, Information, Com-
munication and Applications, pages 342–348, 2014.

[43] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash
Sharma, Laura Caulfield, Anand Sivasubramaniam, Ben
Cutler, Jie Liu, Badriddine Khessib, and Kushagra Vaid.
SSD Failures in Datacenters: What? When? And Why?
In Proceedings of the 9th ACM International on Systems
and Storage Conference (SYSTOR ’16), pages 7:1–7:11,
2016.

[44] Nikolaos Papandreou, Thomas Parnell, Haralampos
Pozidis, Thomas Mittelholzer, Evangelos Eleftheriou,
Charles Camp, Thomas Griffin, Gary Tressler, and An-
drew Walls. Using Adaptive Read Voltage Thresholds
to Enhance the Reliability of MLC NAND Flash Mem-
ory Systems. In Proceedings of the 24th Edition of the
Great Lakes Symposium on VLSI (GLSVLSI ’14), pages
151–156, 2014.

[45] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram,
Nitin Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. IRON File
Systems. In Proceedings of the Twentieth ACM Sym-
posium on Operating Systems Principles (SOSP ’05),
pages 206–220, Brighton, United Kingdom, 2005.

[46] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS:
The Linux B-Tree Filesystem. ACM Transactions on
Storage (TOS), 9(3):1–32, August 2013.

[47] Marco AA Sanvido, Frank R Chu, Anand Kulkarni,
and Robert Selinger. NAND flash memory and its
role in storage architectures. Proceedings of the IEEE,
96(11):1864–1874, 2008.

[48] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant.
Flash Reliability in Production: The Expected and the
Unexpected. In Proceedings of the 14th USENIX Con-
ference on File and Storage Technologies (FAST ’16),
pages 67–80, Santa Clara, CA, 2016. USENIX Associa-
tion.

[49] Kang-Deog Suh, Byung-Hoon Suh, Young-Ho Lim, Jin-
Ki Kim, Young-Joon Choi, Yong-Nam Koh, Sung-Soo
Lee, Suk-Chon Kwon, Byung-Soon Choi, Jin-Sun Yum,
et al. A 3.3 V 32 Mb NAND flash memory with incre-
mental step pulse programming scheme. IEEE Journal
of Solid-State Circuits, 30(11):1149–1156, 1995.

[50] Hung-Wei Tseng, Laura Grupp, and Steven Swanson.
Understanding the Impact of Power Loss on Flash Mem-
ory. In Proceedings of the 48th Design Automation
Conference (DAC ’11), pages 35–40, San Diego, CA,
2011.

[51] Yongkun Wang, Kazuo Goda, Miyuki Nakano, and
Masaru Kitsuregawa. Early experience and evaluation
of file systems on SSD with database applications. In 5th
International Conference on Networking, Architecture,
and Storage (NAS), pages 467–476. IEEE, 2010.

[52] Mai Zheng, Joseph Tucek, Feng Qin, and Mark Lillib-
ridge. Understanding the Robustness of SSDs Under
Power Fault. In Proceedings of the 11th USENIX Con-
ference on File and Storage Technologies (FAST ’13),
pages 271–284, San Jose, CA, 2013. USENIX Associa-
tion.

[53] Mai Zheng, Joseph Tucek, Feng Qin, Mark Lillibridge,
Bill W. Zhao, and Elizabeth S. Yang. Reliability Analy-
sis of SSDs Under Power Fault. ACM Transactions on

Storage (TOS), 34(4):1–28, November 2016.

USENIX Association 2019 USENIX Annual Technical Conference 797

Alleviating Garbage Collection Interference

through Spatial Separation in All Flash Arrays∗

Jaeho Kim Kwanghyun Lim
‡

Young-Don Jung
†

Sungjin Lee
†

Changwoo Min Sam H. Noh
⋆

Virginia Tech
‡
Cornell University

†
DGIST

⋆
UNIST

Abstract

We present SWAN, a novel All Flash Array (AFA) manage-

ment scheme. Recent flash SSDs provide high I/O bandwidth

(e.g., 3-10GB/s) so the storage bandwidth can easily surpass

the network bandwidth by aggregating a few SSDs. How-

ever, it is still challenging to unlock the full performance

of SSDs. The main source of performance degradation is

garbage collection (GC). We find that existing AFA de-

signs are susceptible to GC at SSD-level and AFA software-

level. In designing SWAN, we aim to alleviate the perfor-

mance interference caused by GC at both levels. Unlike

the commonly-used temporal separation approach that per-

forms GC at idle time, we take a spatial separation approach

that partitions SSDs into the front-end SSDs dedicated to

serve write requests and the back-end SSDs where GC is per-

formed. Compared to temporal separation of GC and appli-

cation I/O, which is hard to be controlled by AFA software,

our approach guarantees that the storage bandwidth always

matches the full network performance without being inter-

fered by AFA-level GC. Our analytical model confirms this if

the size of front-end SSDs and the back-end SSDs are prop-

erly configured. We provide extensive evaluations that show

SWAN is effective for a variety of workloads.

1 Introduction

With the advent of the IoT and big data era, the amount of

data generated, manufactured, and processed is expected to

grow at rates that were previously unimaginable [20, 25, 36,

44, 52]. Such explosive growth of data will impose consid-

erable stress on storage systems in data centers. All Flash

Array (AFA) storage, which solely uses an array of SSDs,

seems to be a viable storage solution that is capable of satis-

fying such a high demand. AFA has been recently receiving

a lot of attention because of its high performance, low power

consumption, and high capacity per volume.

While flash SSD is relatively new and its characteristics

are different from HDD, the overall architecture of an AFA

system is not much different from traditional HDD-based

∗This work was initiated while Jaeho Kim was a postdoc at UNIST.

Figure 1: Performance of AFA consisting of eight SSDs un-

der random write workloads. Performance fluctuation starts

to occur (at around 1000 seconds) when the size of user write

request approaches the capacity of AFA, roughly 1 TB in this

configuration.

storage servers [9, 18, 21, 30, 35, 58]. This is because, in-

stead of architecting a new SSD-based storage server from

scratch, existing HDD-based storage servers have evolved to

embrace high-speed SSDs. For example, an array of SSDs

inside an AFA are grouped by variants of RAID architec-

tures (e.g., RAID4, RAID5, or Log-RAID, which is based

on log-structured writing that we describe in more detail in

Section 2).

This naive AFA design, which replaces HDDs with SSDs,

is not adequate to take full advantage of high-speed SSDs

in two reasons. First, we observe significant performance

drop as we run the FIO tool [6] that generates 8 KB ran-

dom writes. Figure 1 shows the throughput of AFA with

eight SATA SSDs (Samsung’s 850 PRO) grouped as Log-

RAID [9, 10, 21], where each SSD exhibits an effective

write throughput of 140 MB/s. We find that garbage collec-

tion (GC) of AFA interfere with user I/O. Specifically, for

the first 1,000 seconds, the system maintains high through-

put that is close to the accumulated throughput of the eight

SSDs. However, after 1,000 seconds, owing to interference

with GC, the throughput drops considerably and oscillates

between 300 MB/s and 750 MB/s, which is much lower than

its full performance for 8 KB random I/Os.

USENIX Association 2019 USENIX Annual Technical Conference 799

Table 1: Comparison of All-Flash-Array products

EMC NetApp HPE Hynix

XtremIO [1] SolidFire [4] 3PAR [2] AFA [22]

SSD Array
Capacity 36∼144TB 46TB 750TB 552TB

of SSDs 18∼72 12 120 (max) 576

Network
Network Ports 4∼8×10Gb iSCSI 2×25Gb iSCSI 4∼12×16Gb FC 3×Gen3 PCIe

Aggr. Network Throughput 5∼10 GB/s 6.25 GB/s 8∼24 GB/s 48 GB/s

Second, we find that storage bandwidth and network band-

width are unbalanced. Typically, AFA is composed of mul-

tiple bricks, which is a 1U storage node to scale out capac-

ity. As shown in Table 1, each brick is composed of a large

number of SSDs and multiple network ports. Given the stor-

age capacity and the number of installable SSDs, the aggre-

gated write throughput of SSDs easily surpasses the aggre-

gated network throughput. Taking EMC’s XtremIO in Ta-

ble 1 as an example, its 10GB/s network throughput can be

easily saturated with four high-end SSDs with 2.5GB/s write

throughput [48] out of the 18∼72 SSDs. This matches with

observations of other recent work [12, 15, 37, 40].

The above two observations lead us to propose a new ar-

chitecture for AFA systems. Given the maximum network or

user-required throughput, our goal is to derive a balanced

AFA system that satisfies the required throughput all the

time without being interfered with foreground GC. To this

end, we present SWAN, which stands for Spatial separation

Within an Array of SSDs on a Network. In contrast to RAID

that manages all the SSDs in parallel, SWAN manages the

SSDs through several spatially separated groups. That is,

only some spatially segregated SSDs out of all the SSDs, are

in use at a single point in time to serve write requests over

the network.

The rationale behind such segregated management is that,

even if a large number of SSDs are available in the system,

all the SSDs are not necessary to fully saturate the network

bandwidth of the AFA. Using more SSDs in parallel does not

help the clients in terms of performance. However, even with

such a small number of SSDs being used, providing ideal,

consistent performance is impossible with GC interference.

The only way to achieve such ideal performance is hiding the

GC effect. To hide the GC effect in SWAN, we partition the

SSDs in the array into two spatially exclusive groups, that

is, the front-end and the back-end SSDs, of which the front-

end is composed of enough SSDs to saturate the bandwidth

specification of an AFA. Then, SWAN manages these SSDs

such that all writes are sequentially written to the front-end

SSDs and those SSDs are never involved in GC. While the

front-end SSDs are busy handling the user writes, the back-

end SSDs perform GC in the background. Once the front-end

SSDs become full with user data, the cleaned back-end SSDs

become the new front-end to keep serving the user writes

without foreground GC. By so doing, performance interfer-

ence due to GC can be hidden.

This unique organization and operational behavior of

SWAN gives us insight in deriving its balanced design. The

number of SSDs belonging to the front-end SSDs should

be large enough to fully saturate the required throughput. If

not, users’ performance demand cannot be satisfied. To give

enough time for back-end SSDs to be completely cleaned up

before they become frond-end SSDs, we should provision

enough SSDs in the front-end and back-end SSD pool. Oth-

erwise, foreground GC becomes unavoidable. The number

of SSDs in the frond-end and back-end groups can be esti-

mated by referring to the required throughput and worst-case

GC cost models [31, 38, 53].

In summary, this paper makes the following contributions:

• We present a two-dimensional SSD organization as a

new AFA architecture, which we refer to as SWAN. We

show that such an organization allows for spatial sepa-

ration of arrays of SSDs so that consistent throughput

that is not influenced by GC can be provided.

• We provide an analytic model that decides the best

number of SSDs in the frond-end SSD group and in

the back-end SSD group. This provides guidance on de-

riving a balanced system when designing SWAN-based

AFAs.

• We conduct comprehensive evaluations using various

workloads, including both synthetic and realistic work-

loads, and demonstrate that SWAN outperforms exist-

ing storage management techniques such as RAID0,

RAID4, RAID5, and Log-RAID [9, 10, 21]

The remainder of this paper is organized as follows. In

the next section, we review existing AFA systems. Then, in

Section 3, we present the design of SWAN in detail and an

analytic model to completely hide the performance interfer-

ence by GC. After discussing the implementation issues of

SWAN in Section 4, we describe our experimental setup and

present detailed results with various workloads in Section 5.

We discuss the influence on SWAN on SSD design and other

relevant issues in Section 6, . We review prior studies related

to this work, comparing them with SWAN in Section 7. Fi-

nally, we conclude the paper with a summary in Section 8.

2 Background: All Flash Array

Existing AFA systems can be roughly categorized into two

types depending on their write strategies, in-place write

AFAs and log write AFAs, as summarized in Table 2.

800 2019 USENIX Annual Technical Conference USENIX Association

Table 2: Comparison of existing approaches for managing All-Flash-Array storage

Write Strategy GC Interference Media type Modification Disk Organization

Harmonia [30] In-place write SSDs Array controller RAID-0

HPDA [35] In-place write SSDs & HDDs Host layer RAID-4

GC-Steering [58] In-place write SSDs Host layer RAID-4/5

SOFA [9] Log write SSDs Host layer Log-RAID

SALSA [21] Log write SSDs & SMR Host layer Log-RAID

Purity [10] Log write SSDs Host layer Log-RAID

SWAN (proposed) Log write SSDs Host layer 2D Array

GC Interference: Interference between GC of SSD/AFA-level and user’s I/O : Heavy interference : Alleviated interference

In-place Write AFAs. Approaches with the in-place write

strategy heavily rely on the traditional RAID architecture,

but attempts have been made to improve performance by

modifying data placement and the GC mechanism. The most

well-known ones are Harmonia [30], HPDA [35], and GC-

Steering [58].

Harmonia is based on the RAID0 architecture that groups

all SSDs in an array in parallel without any parity disks [30].

To minimize high I/O fluctuation caused by SSD-level GC

that independently happens in individual SSDs, it proposes a

globally-coordinated GC algorithm that synchronizes the GC

invocations across all the SSDs in the array. If GC is invoked

in one SSD, it intentionally triggers GC in all the others, so

that all the SSDs in the array are garbage collecting. This

approach minimizes user-perceived I/O fluctuation through

frequent GC invocations, but cannot completely eliminate

performance interference by GC.

HPDA (Hybrid Parity-based Disk Array) takes an SSD-

HDD hybrid architecture based on RAID4 [35]. By using

a few HDDs as temporary storage to keep parity informa-

tion, it mitigates performance and lifetime degradations of

SSDs caused by frequent updates of parity data. While it is

effective in lowering parity overhead, it does not propose any

technique to hide GC interference.

GC-Steering is similar to SWAN [58]. It spatially ded-

icates few SSDs, called staging disks, to absorb the host

writes while the other SSDs are busy performing GC. Since

host writes can be served by staging disks, GC-Steering can

prevent clients from being influenced by GC. However, once

the staging disks become full and run out of free space to ser-

vice host writes, foreground GC becomes unavoidable. To be

more specific, it differs from SWAN in that it inherits the lim-

itation of a cache. The staging space is divided into read and

write regions, and hot data needs to be migrated to the space

for read requests. Space constraints in the staging space not

only make it impossible for all reads to avoid collision with

GC, but it also causes migration overhead.

Log Write AFAs. While using the traditional RAID archi-

tecture (e.g., RAID4 or 5) for the purpose of fault-tolerance,

some studies adopt log-structured writing, fundamentally

changing its storage management policy, so as to generate se-

quential write requests that are more suitable for flash-based

SSDs. To distinguish them from traditional ones, in this pa-

per, we call AFA systems with log writing a log-structured

RAID (Log-RAID).

SOFA is one of the first attempts to use the log-structured

approach for AFAs [9]. SOFA integrates volume manage-

ment, flash translation layer (FTL), and RAID logic together

and runs them all in the host level. This integration enables

global management of GC and wear-leveling, resulting in

overhead associated with storage maintenance tasks being

considerably reduced.

SALSA is similar to SOFA in that it offloads almost all of

the functions that are typically performed inside storage de-

vices to the host level [21]. However, unlike SOFA, SALSA’s

primary aim is in building a general-purpose storage plat-

form that supports various types of storage media that are

incapable of supporting in-place updates such as SSD and

SMR.

Purity is an AFA appliance developed by Pure Stor-

age [10]. Purity adopts log-structured indexes and data lay-

outs that are based on the LSM-tree algorithm [43] to en-

sure that data is written in large sequential chunks. For better

utilization of disk capacity, it also incorporates compression

and deduplication algorithms into their system.

SWAN shares the same advantages of the aforementioned

techniques as it runs its log-structured storage management

logic at the host level. However, SWAN takes it one step fur-

ther by minimizing the performance interference caused by

GC while considering an AFA design that balances storage

media and network interface performance.

3 Design of SWAN

3.1 Design Goal and Approach

The primary design goal of SWAN is to provide sustainable

high performance for All Flash Array (AFA). More specifi-

cally, so that storage does not become the bottleneck, we aim

to guarantee AFA storage performance to always be higher

than or equal to the network interface bandwidth of AFA.

At a glance, this looks easy to achieve by simply using a

RAID of multiple SSDs because even consumer-grade SSDs

provide more than 1 GB/s bandwidth. As shown in Fig-

ure 2(a), RAID can be used to improve performance and

reliability of AFA by composing multiple SSDs in parallel.

USENIX Association 2019 USENIX Annual Technical Conference 801

Garbage collection

(a) RAID

Garbage collection

(b) Log-structured writing on RAID (c) SWAN

SSD
write

operation

read

operation

frontend

R-group

read

request

backend

R-group

write

request

Application

IO

Management

IO

Figure 2: Comparison of All Flash Array (AFA) design. Existing AFA roughly follow either (a) RAID or (b) log-structured

writing on RAID (Log-RAID) approaches. We propose (c) SWAN, a spatial separation approach to AFA.

However, its design is susceptible to gradual performance

degradation due to high GC overhead inside SSDs. In fact,

it turns out that such SSD-level GC can significantly degrade

performance and incur latency spikes in AFA [30, 51].

To mitigate the internal SSD-level GC overhead, log-

structured writing on RAID (Log-RAID), as depicted in Fig-

ure 2(b), has been widely adopted in AFA [9, 10, 21]. It gen-

erates SSD-friendly write requests by transforming small,

random write requests to a bulk, sequential write stream

thereby reducing the internal GC overhead in SSDs. How-

ever, the I/O operations for AFA-level GC (not SSD-level)

may significantly interfere with application I/O and degrade

performance by constantly issuing read/write requests. In

particular, if an application tries to read a sector on an SSD

where AFA-level GC is in progress, read latency could in-

crease by several orders of magnitude [21, 23, 51]. A com-

mon approach to mitigate such interference is to perform

AFA-level GC at idle time by temporally separating appli-

cation I/O and AFA-level GC I/O, that is, segregate the two

I/Os in terms of time. However, temporal separation of appli-

cation I/O and AFA-level GC I/O is hard to control in reality

because high performance AFAs are designed to handle mul-

tiple concurrent clients.

The key idea of our approach is the spatial separation of

application I/O and AFA-level GC I/O to minimize such in-

terference by organizing the SSDs into a two-dimensional

array as depicted in Figure 2(c). Like Log-RAID, we adopt

log-structured writing on RAID to minimize the perfor-

mance degradation caused by heavy SSD-level GC while

providing high performance and reliability using RAID.

However, unlike Log-RAID, we spatially separate SSDs into

two pools, the front-end and back-end pools. The front-

end pool will serve write requests from applications in a

log-structured manner, while the back-end pool is used for

SWAN-level GC, which is GC that occurs only at the back-

end pool. Thus, SWAN-level GC does not interfere with ap-

plication write requests. When the front-end pool SSDs be-

come full, a pool of SSDs from the back-end becomes the

front-end and the old front-end SSDs return to the back-end.

This design also has the advantage that application read re-

quests are less interfered by SWAN-level GC operations. Re-

call that as SWAN uses commodity SSDs, it does not have

direct control over SSD-level GC. However, we take a best

effort approach given the conventional SSD interface.

3.2 Flash Array Organization

SWAN exposes linear 4KB logical blocks such that upper-

level software just considers SWAN as a large block device.

The SWAN software module is implemented as a part of the

Linux kernel in the block I/O layer, where a logical volume

manager or a software RAID layer is implemented. SWAN

groups multiple SSDs into a single physical volume, which is

then divided into fixed-size segments. It manages each seg-

ment in a log-structured manner, with new data always being

sequentially appended. A segment is the unit for writing a

chunk of data as well as for cleaning of obsolete data. Similar

to other log-structured systems, therefore, SWAN manages

mapping between logical blocks and segments, and, when

necessary, it performs GC to secure free segments.

The overall architecture of SWAN is like a big host-

level FTL supporting multiple SSDs, but it is the manage-

ment mechanism in SWAN that differs from typical sys-

tems. Typical RAID systems manage an SSD array in a one-

dimensional manner, that is, all the SSDs are arranged hor-

izontally and incoming writes are evenly striped over all of

them. Unlike RAID, in SWAN, an array of SSDs is orga-

nized as a two-dimensional array. Then, SSDs belonging to

the same column are grouped in a RAID manner and are

used in parallel. This group of SSDs is called a RAID group

(R-group) as this is where redundancy is manifested to pre-

vent data loss in the event of hardware or power failure. The

R-group is also where the size can be set such that its aggre-

gate throughput surpasses the network interface provided by

AFA. That is, for AFA providing higher network interface

bandwidth, we can increase the number of SSDs within the

802 2019 USENIX Annual Technical Conference USENIX Association

w
1

R-group 0

w
3

r
12

R-group 1 R-group 2

r
27

w
1

w
3

r
12

r
27

... ...

... ...

Logical

Volume

segment

w
3

w
1

Physical

Volume

SSD

Array

<w
1
, r

12
, w

3
, r

27
>

Logging

Block

Interface

Figure 3: Example of handling read/write requests in SWAN

where R-group 0 is the front-end R-group and R-groups 1

and 2 are in the back-end pool. SWAN appends writes to

the log and issues write requests to the front-end R-group in

segment units. Read requests will be served by any R-group

holding the requested blocks.

R-group to match the network bandwidth. We further discuss

optimizing the configuration of SWAN in Section 3.5.

3.3 Handling Application I/O Requests

As discussed, SWAN organizes SSDs into two or more R-

groups, and each R-group is either a front-end or belongs to

the back-end pool at a certain point in time. SWAN manages

the movement of the R-groups such that each R-group takes

turns being the front-end R-group, while the rest belong to

the back-end pool.

Only the front-end R-group serves the incoming writes in

a log-structured manner, consuming its free space. Once free

space of SSDs in the R-group in the front-end pool is ex-

hausted, SWAN moves this R-group to the back-end pool

and selects a new R-group in the back-end pool that has

enough free space to become the front-end R-group to serve

writes coming in from the network. Incoming read requests

are served by any SSD holding the requested blocks.

Figure 3 shows an example of how SWAN handles the

I/O sequence < w1,r12,w3,r27 > arriving from the network,

where wi and ri are the write and read of block i, respectively.

The writes are appended to a segment, but are actually dis-

tributed across SSDs in the front-end R-group and are writ-

ten in parallel. Reads, in contrast, will be served by any of

the three R-groups. To alleviate read delays due to GC, we

can employ methods such as RAIN as suggested by Yan et

al. [60], which we do not consider in this study and leave for

future work. However, as we show later, even without such

optimizations, SWAN read performance does not suffer from

delays as it is always given highest priority. Thus, read per-

formance is comparable with conventional methods, while

write performance is significantly improved.

3.4 Garbage Collection in SWAN

SWAN performs GC to secure free segments like other log-

structured systems. SWAN chooses victim segments from

one of the back-end R-groups and writes valid blocks within

the chosen R-group. That is, GC is performed internally

within a single back-end R-group. Also, while any victim

selection policy could be used [13, 16], in this paper, we use

the greedy policy that chooses a segment that has the least

number of valid blocks as the victim. Such GC creates a free

segment in the chosen R-group. When the front-end R-group

becomes full, SWAN chooses an R-group in the back-end to

be the next front-end, then moves the old front-end to the

back-end group. SWAN completely decouples normal I/O

from GC I/O by spatially separating SSDs into the front-end

R-group and the back-end R-groups, so as to eliminate inter-

ference by GC I/O upon user writes.

3.5 Optimizing SWAN Configuration

The key insight behind the SWAN design is that given the

many SSDs in AFA, only a portion of these SSDs (which

forms the R-group) are sufficient to saturate the network

interface bandwidth of an AFA. However, to realize and

achieve sustainable high performance in SWAN, it is impor-

tant to properly decide the configuration knobs: 1) the num-

ber of SSDs in an R-group and 2) the minimum number of

R-groups in an SSD array.

Determining the number of SSDs in an R-group. The

aggregated throughput of the SSDs in one R-group must

be high enough to fully saturate the AFA network interface

bandwidth. Thus, we determine the number of SSDs in an

R-group such that the aggregated write throughput1 of the

SSDs in an R-group is higher than the aggregated AFA net-

work interface bandwidth. For example, using an AFA con-

figuration such as the EMC XtremIO in Table 1, given the

aggregate network throughput of 10 GB/s and assuming the

maximum write throughput of an SSD to be 2.5 GB/s [48],

four SSDs (three for data and one for parity) must be as-

signed to the R-group to support RAID4 in SWAN.

Determining the minimum number of R-groups. Besides

the raw aggregated throughput of an R-group, another im-

portant factor to decide the maximum write throughput of

SWAN is GC overhead. If consuming a segment in a front-

end R-group is faster than generating a free segment in the

back-end R-groups, SWAN-level GC will be a performance

bottleneck, limiting its performance. Thus, the number of the

back-end R-groups should be large enough for SWAN-level

GC not to fall behind. We provide an analytic model to cal-

culate the minimum number of R-groups, which determines

the number of back-end R-groups, to avoid cases where GC

falls behind the front-end writing. In our analytic model, we

only consider operations that dominate the execution time

1We consider only the write throughput of an SSD because read is faster

than write.

USENIX Association 2019 USENIX Annual Technical Conference 803

such as read, write, and garbage collection and do not con-

sider SSD-level optimizations such as the write buffer in the

SSD that could further improve SSD performance.

Since SWAN manages the SSD array in a log-structured

fashion, it divides the SSD space into fixed-size segments,

and all the write and cleaning operations are done in segment

units. Let Tw and Tr denote the elapsed times for writing and

reading a segment to and from an SSD, respectively. Let Te

be the time for erasing flash blocks in a segment when all the

data in it are invalid.

SWAN writes new data over the network to a front-end R-

group. Once the front-end R-group fills up, it is moved to the

back-end. To perform GC for a segment that has both valid

and invalid pages in the back-end, the valid pages must first

be read and then written to a free segment. Of course, all

flash blocks in the free segment must be erased before writ-

ing valid pages. Therefore, time to finish GC of an R-group

is S · (Te + u · (Tr +Tw)) where S is the number of segments

in an R-group and u is the ratio of valid pages in a segment

(i.e., segment utilization). After finishing GC of an R-group,

we will have S · (1−u) free space for this R-group. That R-

group will be moved to the front-end later at some time. It

will take S · (1−u) ·Tw to completely consume the free seg-

ments in that R-group.

In SWAN, all R-groups are independent of each other; ei-

ther they service writes and reads as the one in the front-end

or they perform GC and reads as ones in the back-end. Once

an R-group is moved to the back-end pool, it will not be cho-

sen as a front-end R-group until all previous R-groups in the

back-end are consumed. This implies that, after an R-group

moves to the back-end pool, it will return as the front-end

R-group after (N − 1) · (S · (1− u) ·Tw) time at the earliest,

where N is the number of R-groups in a SWAN array. This is

when data are written to the front-end R-group SSDs at max-

imum throughput; it will take longer to return if the through-

put is lower.

This tells us that, if the GC time of an R-group is equal to

or shorter than the time that R-group is recycled, SWAN can

finish GC of an R-group before moving it to the front-end.

Conversely, if the above condition is not met, SSDs in the

front-end R-group may need to delay writes as it waits for

free segments to become available.

Consequently, the condition

S · (Te +u · (Tr +Tw))≤ (N −1) ·S · (1−u) ·Tw

must hold to guarantee that SWAN-level GC does not inter-

fere application writing at the front-end. This can be simpli-

fied as follows:

Te +u · (Tr +Tw)≤ (N −1) · (1−u) ·Tw

From here, we get

Te

Tw

·
1

1−u
+

(

Tr

Tw

+1

)

·
u

1−u
+1 ≤ N (1)

Note that Equation 1 is independent of the number of

SSDs per R-group and dependent on the specifications of

the SSDs and the utilization. Previous studies [31, 38, 53]

have shown that in a log-structured scheme, ud = u−1
lnu

holds,

where ud is the disk utilization. This tells us that even for

heavy loaded storage systems where the disk utilization (ud)

is 60% to 70%, u will be below 0.5.

Let us now consider applying the model. Given an array of

SSDs, let Te, Tw = tw ·B, and Tr = tr ·B be constants, where

Te, tw, tr, and B are the time to erase a segment, write a block,

read a block, and the number of blocks in a segment, respec-

tively. From our AFA prototype, our measurements show that

segment erase time is roughly 4 milliseconds, block read and

write time is 15.6 and 19.5 microseconds, respectively, and

the number of blocks per segment is 256. Taking these num-

bers and with a storage device that is (ud =) 60% utilized,

which results in roughly u = 0.33, then we can calculate

N to be roughly 1.89. This tells us that with SWAN com-

posed of two R-groups, we will be able to sustain the full

network interface bandwidth performance and see no GC af-

fects throughout its services. We believe that the modeling

results based on our measurement-based parameter estima-

tions effectively reflects the underlying system architecture

as the impact of realistic factors such as queuing delays and

resource contention are being reflected in the measured pa-

rameters.

Applying these results to a realistic setting, let us, once

again, take a configuration such as EMC’s XtremIO in Ta-

ble 1, assuming an SSD with 2.5 GB/s write bandwidth. If

we can configure each R-group to be of four SSDs, which

is enough to saturate the network bandwidth, then we have,

in the smallest configuration case (18 SSDs), three back-end

R-groups (plus two spare SSDs), which will be more than

sufficient to allow full sustained write performance.

One factor that we did not consider in our analysis is the

bandwidth consumed by read requests to the back-end R-

group. However, in reality, as the number of back-end R-

groups are sufficiently high, these reads will not have a real

effect on GC time needed to return as a front-end R-group.

Our analysis shows that with our SWAN approach, once

we have set the number of SSDs within the R-group to match

the network bandwidth, the total number of SSDs to maintain

high, sustained performance can be determined. Also, extra

SSDs for larger capacity will further ensure that SWAN-level

GC will not interfere user writes at the front-end.

4 Implementation

We implement SWAN and Log-RAID in the block I/O layer,

where the I/O requests are redirected from the host to the

storage devices, in Linux kernel-3.13.0. For our implemen-

tation, we extend the SSD RAID Cache implementation in

the Device Mapper (DM) [42] to accommodate AFA storage.

To implement RAID0, RAID4, and RAID5, we use mdadm,

which is a GNU/Linux utility used to manage and monitor

804 2019 USENIX Annual Technical Conference USENIX Association

software RAID devices [54].

4.1 Metadata Management

SWAN and Log-RAID maintain basically the same meta-

data. They manage two types of metadata: 1) a mapping ta-

ble from the logical volume to the physical volume mapping

table (L2P) for address translation, and 2) the segment sum-

mary information. Each entry in the table, which takes up 5

bytes, corresponds to a 4 KB block in an SSD array. Thus,

the metadata size for the mapping table is roughly 0.12% of

the total storage capacity (i.e., 5 bytes per 4 KB).

The segment summary metadata contains information

about each segment such as the segment checksum, sequence

number, and the physical to logical mapping (P2L) for GC.

It is located in the last block of a segment taking up 4 KB

per segment. The metadata overhead for segment summary

depends on SWAN’s configuration. For example, for a 1 MB

segment size, which is the size used in our experiments, seg-

ment summary takes up 0.39% of the storage space (i.e.,

4 KB per 1 MB).

In the SWAN and Log-RAID prototypes, we maintain the

entire metadata structures in DRAM, assuming that their

contents are backed up by built-in batteries in the server. Ow-

ing to their huge size, however, keeping all of the data struc-

tures in DRAM could be burdensome, in terms of cost and

energy. To address this, on-demand mapping that only keeps

popular mapping entries in DRAM while storing the rest in

SSDs can be considered. However, we do not consider this

in this study.

4.2 Optimizing GC using TRIM

TRIM is used to further optimize GC. Once valid pages in a

victim segment are written back to the new segment, then the

victim segment is TRIMmed. This is efficient as the writing

of the segments occur in a sequential manner and also, as the

TRIM unit is large. With large segments being TRIMmed,

the SSD firmware will perform erasures in an efficient man-

ner. Thus, it helps SWAN achieve high performance regard-

less of SSD manufacturer.

5 Evaluation

In this section, we first present the evaluation results of

micro-benchmarks to see how our design choices affect the

behavior of SWAN and help to avoid GC interference. We

then present the evaluation results of real-world workloads

and compare the performance of SWAN to the traditional

RAID0, RAID4, RAID5, and Log-structured management

schemes (Log-RAID0 and 4) for an array of SSDs.

We evaluate SWAN on a Dell R730 server equipped with

two Xeon E5-2609 CPUs and 64GB DRAM. We use 120GB

Samsung 850 PRO SSDs of which measured peak read and

write throughput is roughly 500MB/s and 400MB/s, respec-

tively. The number of SSDs used differ from experiment to

experiment as we describe later. We measure performance

at the host system. Before any experiments for a particular

0

200

400

600

800

1000

RAID0 Log-RAID0 SWAN0

T
h
ro

u
g
h
p
u
t

(M
B
/s

)

(a)

0

200

400

600

800

1000

Log-RAID0 SWAN0

T
h
ro

u
g
h
p
u
t

(M
B
/s

)

3 SSDs 6 SSDs 9 SSDs

(b)

Figure 4: (a) Performance comparison of RAID0, Log-

RAID0 and SWAN0 with 8 SSDs with SWAN0 configured

as 4R-2SSD and (b) performance trend for Log-RAID0 and

SWAN0 with 3, 6, 9 SSDs with SWAN configured as 3 R-

groups with 1, 2, and 3 SSDs.

configuration, we go through a systematic cleaning and ag-

ing process; each SSD is first cleaned through formatting and

TRIMming, and then the SSD is aged by making random

writes to roughly 60% of the storage capacity.

5.1 Micro-benchmarks

We compare the performance of SWAN with two other AFA

schemes, RAID and Log-RAID, all with RAID0 configura-

tions. We denote each of these configurations as SWAN0,

RAID0, and Log-RAID0, and the convention of attaching

the suffix number representing the RAID type to the con-

figuration will be used throughout hereafter. To understand

their behavior especially under heavy GC, we make use of

the FIO [6] benchmark issuing 8 KB random write (only)

requests. To observe the raw performance, we disable any

caching layers and directly issue writes to each scheme. Each

experiment is conducted for two hours and its total footprint

is roughly 12 TBs. Each experiment is performed more than

3 times and all results are within 6% of each other.

Figure 4(a) shows the results with 8 SSDs and SWAN

configured as 4 R-groups of 2 SSDs each, which we denote

as 4R-2SSD. Hereafter, this numbering convention will be

used to represent SWAN configurations. The results show

that RAID0 shows worst performance because it generates

random writes and incurs high GC overhead inside the SSD.

While Log-RAID0 transforms random writes to bulk, se-

quential writes, its performance is slower than SWAN0. The

reason is Log-RAID0 requires GC to reuse log space, which

issues read and write operations to all SSDs as illustrated in

Figure 2. These GC related operations significantly degrade

normal I/O operations. In contrast, SWAN0 shows close to

full SSD throughput.

We then compare the performance of Log-RAID0 and

SWAN0 with varying number of SSDs to understand how

our partial aggregation of SSDs affects performance. We

make use of 3, 6, 9 SSDs to configure Log-RAID0 and

SWAN0, which, in turn, is configured as 3R-1SSD, 3R-

2SSDs, and 3R-3SSDs using 3, 6, and 9 SSDs, respectively.

As Figure 4(b) shows, surprisingly, the throughput of Log-

USENIX Association 2019 USENIX Annual Technical Conference 805

(a) Log-RAID0 (8-SSD) (b) SWAN0 (4R-2SSD)

Figure 5: Throughput of Log-RAID0 and SWAN0 over time

RAID0 degrades as more SSDs are used, while performance

of SWAN0 improves. The reason behind this can be ex-

plained by the results shown in Figure 5, which shows (a)

8 SSDs configured as Log-RAID0 and (b) SWAN0 as 4R-

2SSD. The results in this figure show that even with only

2 SSDs for SWAN, performance is actually better than Log-

RAID0 with 8 SSDs. Furthermore, it shows that the through-

put of Log-RAID0 fluctuates significantly, while SWAN0

shows high, sustained write performance that is proportional

to the 2 SSDs in the R-group. The reason for throughput

degradation with Log-RAID is that normal I/O and GC I/O

interfere with each other. When normal I/O and GC I/O re-

quests are being served by the same SSD, the latency of

each I/O operation increases. As more SSDs get involved,

the throughput of Log-RAID0 degrades because GC perfor-

mance is limited by the slowest SSD [18].

5.2 Analysis of GC Behavior

We further analyze the performance degradation caused by

AFA-level GC. For the random write workload of Figure 5,

we plot the read/write throughput of each SSD for Log-

RAID0 and SWAN0 in Figure 6. Note that all reads here are

those issued for GC, and thus, we can observe the negative

effect on overall performance due to such read operations.

Figure 6(a) shows the results for Log-RAID0. We see that

all SSDs are involved in write operations throughout its ex-

ecution. GC operations of Log-RAID begins from a in the

figure, and performance starts to fluctuate from that point.

This is also the point where read maintains a steady band-

width overhead. (Though there is a line for read before this

point, the value is 0.) The total amount of write requests up

to this point closely coincides with the total RAID capacity.

Once disk space becomes exhausted, GCs are triggered, and

we observe performance deterioration and fluctuation. This

observation lasts until the end of our experiment.

Figure 6(b) shows the performance for SWAN0. Here, in

contrast to those of Figure 6(a), we see that the throughput

of SSDs 1 and 2 that comprise the front-end R-group is close

to 400MB/s, the maximum throughput of the SSD, as they

are the ones receiving the write requests. The performance

offered to the user is the aggregate of the two SSDs, which

is roughly 800MB/s. Once the free segments in the first two

SSDs are exhausted, SSD 3 and 4 become the front-end R-

Table 3: I/O characteristics of YCSB benchmark

YCSB Load
Run

A B C D

Read - 32GB 60GB 64GB 60GB

Update - 32GB 3GB - -

Insert 64GB - - - 3GB

R:W ratio 0:100 50:50 95:5 100:0 95:5

group and the old front-end R-group becomes the back-end.

When SSD 7 and 8 become the front-end R-group, SWAN

starts performing GC by selecting the SSDs with victim seg-

ments based on the greedy policy. In the figure, the R-group

denoted by b is the front-end and the one denoted c is

the selected back-end R-group that is performing GC. Note

from c (and the magnified circle) that only SSDs performing

garbage collection is incurring reads. All other SSDs nei-

ther incur reads or writes (except the ones of the front-end

R-group). These front-end and back-end transitions are re-

peated throughout the experiments.

To quantitatively understand how SWAN GC behaves in

runtime, we analyze the utilization of victim segments (i.e.,

the ratio of valid pages in a victim segment) and the num-

ber of free segments in the SWAN array for 80 minutes. Re-

call that as our workload continuously writes to the front-end

R-group and GC on the back-end must continuously be per-

formed in the background to maintain stable performance.

From Figure 6(b), we observe that starting from around 800

seconds, GC starts to occur. Figure 7 shows that initially the

utilization of the selected victim segments are 0, but then

start to increase. The results show that, eventually, the uti-

lization of the victim segment and the number of free seg-

ments are converging. This is because data is being overwrit-

ten and thus, the back-end R-group is likely to have many ob-

solete data. Such convergence shows that free segment gen-

eration through GC in SWAN is stable and does not interfere

with the writes occurring in the front-end R-group.

5.3 Real-world Workload

To see how effective SWAN is in a real-world setting, we ex-

periment with the YCSB benchmark [11] on RocksDB [5].

For these experiments, we use RAID4 and 5 configurations,

which is different from previous sections, to test SWAN in

a more realistic setting. In particular, we use 9 SSDs with

RAID4, RAID5, Log-RAID4, and SWAN4, which is config-

ured as 3R-3SSD with 2 data SSDs and 1 parity SSD per

R-group.

The workload characteristics of YCSB is summarized in

Table 3, which includes the amount of data accessed by three

different operations, Read, Update, and Insert, as well as the

read/write ratios. Note that all the YCSB benchmarks con-

sist of two phases: load and run phases. The load phase is re-

sponsible for creating the entire data set in the database, thus

involves a large number of Insert operations. The run phase

806 2019 USENIX Annual Technical Conference USENIX Association

a

T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c)

Time (Sec)

600 1200 1800 2400 3000 3600

(a) Log-RAID0

b

c

T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c)

Time (Sec)

SSD 1

SSD 2

SSD 3

SSD 4

SSD 5

SSD 6

SSD 7

SSD 8

USER

600 1200 1800 2400 3000 3600

(b) SWAN0

Figure 6: Throughput of Log-RAID0 and SWAN0 for random write workload used in Figure 5. Top eight rows are the write

throughput for each SSD and they include not only user requests but also GC incurred by each scheme. The bottom row shows

the aggregate throughput of each scheme. The blue (upper) line denotes write throughput and the red (lower) line denotes the

read incurred by GC. The SWAN configuration here is the same as that of Figure 5.

(a) Utilization of a victim segment (b) Number of free segments

Figure 7: Utilization of a victim segment and the number

of free segments for SWAN0 with 8KB size random write

workload for 80 minutes

executes a specific workload (YCSB-A through YCSB-D)

with different I/O patterns on the created data set.

Overall Performance: Figure 8 shows the overall through-

put results. The results show that SWAN4 outperforms

RAID4, RAID5, and Log-RAID for all the workloads. In

the Load phase where almost all of the requests are writes,

SWAN exhibits over 4× higher throughput compared to

RAID-4/5 and even performs 17% better than Log-RAID.

This is due to the fact that SWAN4 maintains sufficient free

space to serve incoming writes immediately without interfer-

ence by GC. In particular, for the YCSB-A workload where

the workload is composed of reads and updates, SWAN4 per-

forms significantly better than the other schemes, including

Log-RAID4. Even in the other workloads, which are read

dominant, SWAN4 performs slightly better or similar com-

0

10

20

30

40

50

60

70

80

YCSB-Load YCSB-A YCSB-B YCSB-C YCSB-D

T
h

ro
u

g
h

p
u

t
(K

o
p

s
/s

e
c
)

RunLoad

Figure 8: Throughput comparison for RAID4, RAID5, Log-

RAID4, and SWAN4 for YCSB benchmark.

pared to the other schemes. As read is more latency-sensitive,

we now further analyze read latency.

Read Latency: We now consider the effect of SWAN on

read latency. As shown in Figure 9, the average read la-

tency of SWAN is similar to or better than the other schemes.

Moreover, as illustrated in Figure 10, SWAN exhibits much

shorter tail latency compared to others across all of the

YCSB benchmarks. This is because, in RAID4/5 and Log-

RAID4, read requests are often blocked by AFA-level or

SSD-level GC. In particular, we find that even under read-

dominant workloads (YCSB-C and YCSB-D), SWAN4 ex-

hibits shorter read latency. The reason for this is due to back-

ground GC. More specifically, recall that in all our experi-

ments we include a systematic cleaning and aging process

for the array of SSDs. We find that AFA-level GC (for Log-

RAID4 and SWAN4) continues for a considerable length of

time (roughly 15 minutes), while SSD-level GC [55] contin-

USENIX Association 2019 USENIX Annual Technical Conference 807

0

0.2

0.4

0.6

0.8

1

1.2

YCSB-Load YCSB-A YCSB-B YCSB-C YCSB-D

A
v
g

.
re

a
d

la
te

n
c
y
 (

m
s
e

c
) RunLoad

Figure 9: Average read latency comparison for RAID4,

RAID5, Log-RAID4 and SWAN4 for YCSB benchmark

Table 4: Read requests in SWAN for YCSB-A workload

of requests (million) Avg. latency (usec)

Front-end 20.3 98

Back-end (Idle) 25.9 88

Back-end (GC) 3.93 103

ues even further, which interfere with read requests. Fortu-

nately, SWAN spatially separates GC so that it occurs only

in one R-group, which enables us to effectively hide inter-

ference by GC. This argument is supported by Figure 11,

which depicts the latency distribution of read requests for

YCSB-C. Unlike the other schemes where we observe high

latency spikes, SWAN shows fairly stable and consistent read

latency.

To further understand SWAN’s impact on read latency in

more detail, we measure the latency of reads served by three

different types of R-groups in SWAN: the frond-end, the idle

back-end (that does not perform GC), and the busy back-

end (that is performing GC), as shown in Table 4. As ex-

pected, the idle back-end provides the shortest read latency.

The frond-end, on the other hand, is responsible for handling

user writes, and thus it provides longer read latency than the

idle back-end. Finally, the read latency on the busy back-end

shows worst performance as it is more likely to be delayed

by the erase and the write operations incurred by GC.

Table 4 also shows the number of reads handled by the

three R-groups with the YCSB-A workload. We observe that

92% of the read requests are serviced by the idle back-end

(52%) and the front-end (40%). Only 8% of the reads are

destined for the busy back-end group that is performing GC.

This skewed data access is due to YCSB’s I/O pattern model

that is based on the Zipf distribution, which is typically ob-

served in many data-center applications [8, 14]. We find that,

under the Zipf distribution with temporal locality, the front-

end and the idle back-end R-groups are likely to receive more

reads because they hold recently written data as we delay GC

of R-groups as much as possible (as depicted in Figure 6).

The frond-end receives a relatively smaller number of read

requests than the idle back-end because many read requests

are hit and served by the OS page cache holding data that

were recently written but have not yet been evicted to the

front-end R-group. The busy back-end contains old data, so

only few read requests are directed to that R-group.

5.4 Analysis with an open-channel SSD

In AFA systems with RAID, I/O requests can be unexpect-

edly delayed if SSD-level GC is triggered. In particular, GC-

blocked read I/Os are considered to be the root cause of long

tail latency [60]. Unlike existing AFA systems, SWAN suf-

fers less from SSD-level GC because it writes all the data in

an append-only manner, thereby avoiding valid page copies

for GC inside an SSD.

In this section, we quantitatively analyze the benefits of

SWAN on individual SSDs, in terms of tail latency. Since

we cannot modify and analyze the internals of off-the-shelf

SSDs, we implement a custom page-level FTL scheme on

an open-channel SSD [34]. From two different settings,

SWAN0 and RAID0 with six SSDs, we collect block I/O

traces of FIO random read/write workloads, and then replay

the traces atop our open-channel SSD. We integrate a perfor-

mance profiler with the custom FTL and monitor and collect

detailed FTL activity statistics including page reads/writes,

block erasures, as well as elapsed times for serving host reads

and writes.

Figure 12 depicts the latency CDF measured in the open-

channel SSD. The read and write latencies of NAND chips

in the open-channel SSD is around 100us and 500us, respec-

tively. SWAN0 shows shorter latency and shorter tail com-

pared to RAID0 throughout its execution. This indicates that

I/O performance of RAID0 is deteriorated by the extra page

copies for internal GC. Consequently, the results confirms

that SWAN is effective in reducing SSD-level GC overhead.

6 Discussion
Benefits with simpler SSDs: The main design principle of

SWAN is minimizing the performance interference caused

by SSD-level GC and AFA-level GC. We think this opens

opportunities to save cost and power consumption without

compromising performance by adopting SSDs with simpler

design. We expect that the main benefits of the simpler SSD

will come from 1) smaller DRAM size, 2) FTL implemented

on a low-power ARM core or hardware, and 3) smaller over-

provisioning space (OPS).

A high-end modern SSD today requires an FTL (SSD

firmware), a large amount of DRAM (e.g., 0.5-16 GB for

mapping tables [45, 49]), high-end processors to run its

space management and garbage collection algorithm (e.g.,

multi-core ARM processor [19]) along with additional over-

provisioning space (OPS) (e.g., extra 6.7% to 28% of flash

capacity just for OPS [46, 47]) to reduce garbage collection

overhead. However, SWAN does not rely on such a sophisti-

cated, powerful FTL. SWAN sequentially writes data to seg-

ments and TRIMs a large chunk of data in the same segment

at once. This implies that an SSD receives sequential write

808 2019 USENIX Annual Technical Conference USENIX Association

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

C
D

F

Time (msec)

SWAN4
RAID5

RAID4
Log-RAID4

 0.9995

 0.9996

 0.9997

 0.9998

 0.9999

 1

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00

(a) YCSB-A read

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

Time (msec)

SWAN4
RAID5

RAID4
Log-RAID4

 0.9995

 0.9996

 0.9997

 0.9998

 0.9999

 1

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00

(b) YCSB-B read

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

Time (msec)

SWAN4
RAID5

RAID4
Log-RAID4

 0.9995

 0.9996

 0.9997

 0.9998

 0.9999

 1

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00

(c) YCSB-C read

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

Time (msec)

SWAN4
RAID5

RAID4
Log-RAID4

 0.9995

 0.9996

 0.9997

 0.9998

 0.9999

 1

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00

(d) YCSB-D read

Figure 10: CDF of read latency for YCSB benchmark. The tail latency of SWAN is shortest in all workloads. In particular, at

99.9th or higher latency, SWAN shows much shorter latency than others.

(a) RAID4 (b) RAID5

(c) Log-RAID4 (d) SWAN4

Figure 11: Read latency distribution of YCSB-C

streams all the time from the host, which will be obsolete to-

gether later. Under such workloads, it is only necessary for

an SSD to carry out block erasures to reclaim fully invali-

dated flash blocks, and thus complicated media management

algorithms like address remapping and garbage collection

are not needed. On the SSD side, actually, a simple block-

level FTL is sufficient to support SWAN’s workloads. By

making the design of FTL simpler, we can reduce cost for

DRAM and the processor inside the SSD and save power

consumption as well. For example, a page-level FTL scheme

requires roughly 1 GB of memory for a 1 TB SSD to manage

the mapping information [45]. However, in our experience of

implementing the block-level FTL for SWAN, only 8 MB of

DRAM is required for address mapping. Also, for SSDs de-

ployed with SWAN, they do not require a powerful processor

to run sophisticated FTL algorithms such as hot-cold sepa-

ration and multi-streamed I/O management [27] that are de-

signed to reduce GC overhead. We expect a single low-power

ARM core or even hardware logic to be enough to manage

NAND flash with SWAN. Finally, SSDs used in SWAN do

not need to reserve large OPS, which is critical to reduce

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 50 100 150 200
C

D
F

Time (msec)

SWAN0 RAID0

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0 10 20 30 40 50

(a) Read

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 50 100 150 200 250 300 350 400

C
D

F

Time (msec)

SWAN0 RAID0

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0 20 40 60 80 100

(b) Write

Figure 12: Latency CDF of FIO random read/write work-

loads measured in open-channel SSD for RAID0 and

SWAN0

GC overhead. This has the benefit of improving the effective

storage capacity provided to users.

Effect of NVRAM: As a remedy for GC overhead,

one might argue that NVRAM could be used as a write

buffer to accommodate incoming writes while the underly-

ing SSDs are busy doing GC. Using NVRAM, however, is

costly because it requires expensive battery-backed DRAM.

Thus, even high-end AFA controllers have only few GBs

of NVRAM (e.g., 8-64 GB [3]) and use it to improve data

persistence and consistency, for example, by keeping user

data for a few seconds before a new consistency point

starts [56]. However, considering various factors such as

cost of NVRAM, the high bandwidth of the AFA network,

the ever-increasing working-set size, as well as the lim-

ited DIMM slots, we think using NVRAM to buffer large

amounts of user data for an extended period of time to main-

tain high throughput and hide SSD-level GC is not an easily

acceptable solution.

7 Related Work

Reducing GC overhead: Considerable effort have been

made at various layers in the storage stack to reduce GC

overhead in flash storage, including at the file system [32,

39, 41], the I/O scheduler [24, 29], buffer replacement [26],

and the SSD itself [17, 27, 28]. These efforts, likewise, alle-

viate GC overhead through reduced write amplification, but

USENIX Association 2019 USENIX Annual Technical Conference 809

do not completely remove or hide GC overhead.

The recently proposed TTFlash almost eliminates GC

overhead by exploiting a combination of current SSD tech-

nologies including a powerful flash controller, the Redundant

Array of Independent NAND (RAIN) scheme, and the large

RAM buffer in SSD internals [60]. By making use of the

timely technologies in SSD, Tiny-tail handles I/O requests

with almost no-GC scenario, with the caveat that the copy-

back operation must be supported. While Tiny-tail is an SSD

internal approach, it is different from what we propose as,

first, we target an array of SSDs and second, we can make use

of any commodity SSD, though a SWAN optimized, simpler

SSDs would be most efficient.

GC preemption: Preemption is another way to decouple

GC impact from user requests. GC preemption is a means

of virtually postponing GC to avoid conflicts between GC

and user requests. A number of studies, including an industry

standard, have been conducted in this direction [33, 57, 59].

However, GC preemption is prone to failure for various rea-

sons such as excessive write requests or ill-chosen GC poli-

cies [60].

Array of Flash/SSDs: There have been studies to address

GC impact in arrays of SSDs. Flash on Rails [51] and Har-

monia [30] are SSD-based array schemes suggested to re-

solve the GC problem. Flash on Rails separates read and

write requests on different physical disks to separate the read

request handling SSD from the GC handling SSD. This is a

similar approach as our work, with the difference being that

we consider a large scale, network connected storage system

while Flash on Rails maintain at least one replica SSD for

servicing read requests. It basically differs from SWAN in

physical data placement and redundancy level. In large ca-

pacity storage devices such as an AFA system, this doubling

of space is subject to deployment constraints. In contrast, in

Harmonia, the host OS synchronizes the GC of all SSDs to

prevent request blocking from unaligned GC for an array of

SSDs. This approach does not remove or hide GC, but syn-

chronizes GC to reduce its negative effect.

Gecko: The work most similar to ours is Gecko, which was

designed for an array of HDDs [50]. Gecko is similar to

SWAN in that it views the chain of HDDs as a log with new

writes being made to the tail of the log to reduce disk con-

tention by GC. SWAN advances this idea especially in the

context of AFA, which is SSD-based. The key differences

between Gecko and SWAN in terms of storage media can be

summarized are as follows. 1) SWAN provides a guide to or-

ganizing of an array of SSDs based on the analytical model

that reflects the characteristics of commercial SSD devices.

2) SWAN introduce the most efficient way to use SSDs in

AFA through writing large amount of data sequentially and

trimming, which is an SSD-only feature. 3) GC preemption

is employed for serving read requests. 4) SWAN provides

implications for a cost effective SSD design for AFA.

In terms of system organization, unlike Gecko, which uses

a one-dimensional array of HDDs, SWAN manages SSDs

in two dimensions to spatially separate GC writes from

first-class writes and to achieve higher aggregated storage

throughput than the network throughput. Also, Gecko has

to prevent interference by read operations because it targets

HDDs, where a read operation can also move the disk head.

Exposing flash to host: LightNVM [7] and Application-

managed Flash [34] attempt to eliminate GC overhead by

letting the host software manage the exposed flash channel.

These approaches are similar to our method in that GC is

being managed by the host, but they are different in that they

do not decouple the I/Os for GC and those requested by user

applications. Hence, even though these approaches reduce

GC impact by directly controlling the flash devices from the

host, GC is required in managing the flash device. SWAN, on

the other hand, hides GC overhead through host controlled

GC in an array of SSDs.

8 Conclusion

We presented a novel all flash array management scheme,

named SWAN (Spatial separation Within an Array of SSDs

on a Network). Our work was motivated by key observations

that aggregating a number of SSDs is sufficient to surpass

the network bandwidth. However, burdensome garbage col-

lection together with all flash array software prevented us

from realizing optimal performance by making it difficult

to fully saturate the peak network bandwidth. In an attempt

to overcome this problem, SWAN decoupled GC I/Os from

normal ones by partitioning the SSD array into two mutu-

ally exclusive groups and by using them for different pur-

poses in a serial manner: 1) serving incoming writes or 2)

performing GC in the background. This spatial separation

of SSDs enabled us to hide costly GC overheads, provid-

ing GC free performance to the applications. Moreover, us-

ing an analytical model, we confirmed that SWAN guaran-

teed no GC interference I/Os at all times if two mutually

exclusive groups were properly partitioned. Our evaluation

results showed that SWAN offered consistent I/O throughput

at close to the maximum network bandwidth and that read

latency also improved.

Acknowledgment

We would like to thank our shepherd Patrick P. C. Lee and

the anonymous reviewers for their constructive comments.

This work was supported by in part by the National Research

Foundation of Korea(NRF) grant funded by the Korea gov-

ernment(MSIT) (No. 2019R1A2C2009476), by the Institute

for Information & communications Technology Promotion

(IITP) grant funded by the Korea government (MSIT) (No.

2014-3-00035), and by the National Research Foundation of

Korea (NRF) grant funded by the Korea government (MSIT)

(NRF-2017R1E1A1A01077410). Sam H. Noh is the corre-

sponding author.

810 2019 USENIX Annual Technical Conference USENIX Association

References

[1] EMC XtremIO X2 Specification.

https://www.dellemc.com/resources/en-us/asset/data-

sheets/products/storage-2/h16094-xtremio-x2-specification-sheet-

ss.pdf.

[2] HPE 3PAR StoreServ Specification.

https://h20195.www2.hpe.com/V2/GetDocument.aspx?docname=4AA3-

2542ENW.

[3] NetApp All Flash FAS. https://goo.gl/1D9dmT.

[4] NetApp SolidFire Specification. https://www.netapp.com/us/

media/ds-3773.pdf.

[5] RocksDB: A persistent key-value store. https://rocksdb.org/.

[6] AXBOE, J. FIO: Flexible I/O Tester. https://github.com/axboe/

fio.

[7] BJÃŽRLING, M., GONZALEZ, J., AND BONNET, P. LightNVM: The

Linux Open-Channel SSD Subsystem. In Proceedings of the USENIX

Conference on File and Storage Technologies (FAST) (2017), pp. 339–

353.

[8] CHEN, Y., ALSPAUGH, S., AND KATZ, R. Interactive Analytical Pro-

cessing in Big Data Systems: A Cross-industry Study of MapReduce

Workloads. Proceedings of the VLDB Endowment 5, 12 (Aug. 2012),

1802–1813.

[9] CHIUEH, T.-C., TSAO, W., SUN, H.-C., CHIEN, T.-F., CHANG, A.-

N., AND CHEN, C.-D. Software Orchestrated Flash Array. In Pro-

ceedings of International Conference on Systems and Storage (SYS-

TOR) (2014), pp. 14:1–14:11.

[10] COLGROVE, J., DAVIS, J. D., HAYES, J., MILLER, E. L., SANDVIG,

C., SEARS, R., TAMCHES, A., VACHHARAJANI, N., AND WANG,

F. Purity: Building Fast, Highly-Available Enterprise Flash Storage

from Commodity Components. In Proceedings of the ACM SIGMOD

International Conference on Management of Data (2015), pp. 1683–

1694.

[11] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN, R.,

AND SEARS, R. Benchmarking Cloud Serving Systems with YCSB.

In Proceedings of the ACM Symposium on Cloud Computing (SoCC)

(2010), pp. 143–154.

[12] DAVIS, R. The Network is the New Storage Bot-

tleneck. https://www.datanami.com/2016/11/10/

network-new-storage-bottleneck/, 2016.

[13] DESNOYERS, P. Analytic Models of SSD Write Performance. ACM

Transactions on Storage 10, 2 (Mar. 2014), 8:1–8:25.

[14] DI, S., KONDO, D., AND CAPPELLO, F. Characterizing Cloud Ap-

plications on a Google Data Center. In Proceedings of International

Conference on Parallel Processing (ICPP) (2013), pp. 468–473.

[15] EDSALL, T., KASER, R., MEYER, D., SEQUEIRA, A.,

AND WARFIELD, A. Networking is Fast Becoming the

Bottleneck for Storage and Compute, How Do We Fix

It? https://www.onug.net/town-hall-meeting-\

networking-is-fast-becoming-the-bottleneck-for-\

storage-and-compute-how-do-we-fix-it/, Open Network

User Group, 2016.

[16] GAL, E., AND TOLEDO, S. Algorithms and Data Structures for Flash

Memories. ACM Computing Survey 37, 2 (2005), 138–163.

[17] GUPTA, A., KIM, Y., AND URGAONKAR, B. DFTL: a Flash Transla-

tion Layer Employing Demand-based Selective Caching of Page-level

Address Mappings. In Proceedings of the International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS) (2009), pp. 229–240.

[18] HAO, M., SOUNDARARAJAN, G., KENCHAMMANA-HOSEKOTE,

D., CHIEN, A. A., AND GUNAWI, H. S. The Tail at Store: A Reve-

lation from Millions of Hours of Disk and SSD Deployments. In Pro-

ceedings of the USENIX Conference on File and Storage Technologies

(FAST) (2016), pp. 263–276.

[19] HITACHI. Hitachi Accelerated Flash 2.0. https:

//www.hitachivantara.com/en-us/pdf/white-paper/

hitachi-white-paper-accelerated-flash-storage.pdf.

[20] IDC. The Digital Universe of Opportunities: Rich Data and the In-

creasing Value of The Internet of Things. https://www.emc.com/

leadership/digital-universe/2014iview/index.htm, 2014.

[21] IOANNOU, N., KOURTIS, K., AND KOLTSIDAS, I. Elevating com-

modity storage with the SALSA host translation layer. In Proceedings

of the 26th IEEE International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems (MASCOTS)

(2018), pp. 277–292.

[22] JIN, Y. T., AHN, S., AND LEE, S. Performance Analysis of NVMe

SSD-Based All-flash Array Systems. In Proceedings of the IEEE In-

ternational Symposium on Performance Analysis of Systems and Soft-

ware (ISPASS) (2018), pp. 12–21.

[23] JUNG, M., CHOI, W., SHALF, J., AND KANDEMIR, M. T. Triple-A:

A Non-SSD Based Autonomic All-flash Array for High Performance

Storage Systems. In Proceedings of the 19th International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS) (2014), pp. 441–454.

[24] JUNG, M., CHOI, W., SRIKANTAIAH, S., YOO, J., AND KAN-

DEMIR, M. T. HIOS: A Host Interface I/O Scheduler for Solid State

Disks. In Proceedings of the Annual International Symposium on

Computer Architecuture (ISCA) (2014), pp. 289–300.

[25] KAISLER, S., ARMOUR, F., ESPINOSA, J. A., AND MONEY, W.

Big Data: Issues and Challenges Moving Forward. In Proceedings of

the 46th Hawaii International Conference on System Sciences (ICSS)

(2013), pp. 995–1004.

[26] KANG, D. H., MIN, C., AND EOM, Y. I. An Efficient Buffer Re-

placement Algorithm for NAND Flash Storage Devices. In Proceed-

ing of the 22nd IEEE International Symposium on Modelling, Anal-

ysis, and Simulation of Computer and Telecommunication Systems

(MASCOTS) (2014), pp. 239–248.

[27] KANG, J.-U., HYUN, J., MAENG, H., AND CHO, S. The Multi-

streamed Solid-State Drive. In Proceedings of the USENIX Workshop

on Hot Topics in Storage and File Systems (HotStorage) (2014).

[28] KIM, H., AND AHN, S. BPLRU: A Buffer Management Scheme for

Improving Random Writes in Flash Storage. In Proceedings of the

USENIX Conference on File and Storage Technologies (FAST) (2008),

pp. 16:1–16:14.

[29] KIM, J., OH, Y., KIM, E., CHOI, J., LEE, D., AND NOH, S. H. Disk

Schedulers for Solid State Drives. In Proceedings of the Seventh ACM

International Conference on Embedded Software (EMSOFT) (2009),

pp. 295–304.

[30] KIM, Y., ORAL, S., SHIPMAN, G. M., LEE, J., DILLOW, D. A.,

AND WANG, F. Harmonia: A Globally Coordinated Garbage Collec-

tor for Arrays of Solid-State Drives. In Proceedings of the IEEE Sym-

posium on Mass Storage Systems and Technologies (MSST) (2011),

pp. 1–12.

[31] KWON, H., KIM, E., CHOI, J., LEE, D., AND NOH, S. H. Janus-

FTL: Finding the Optimal Point on the Spectrum between Page and

Block Mapping Schemes. In Proceedings of the International Confer-

ence on Embedded Software (EMSOFT) (2010), pp. 169–178.

[32] LEE, C., SIM, D., HWANG, J., AND CHO, S. F2FS: A New File

System for Flash Storage. In Proceedings of the USENIX Conference

on File and Storage Technologies (FAST) (2015), pp. 273–286.

[33] LEE, J., KIM, Y., SHIPMAN, G. M., ORAL, S., AND KIM, J. Pre-

emptible I/O Scheduling of Garbage Collection for Solid State Drives.

IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems 32, 2 (2013), 247–260.

[34] LEE, S., LIU, M., JUN, S., XU, S., KIM, J., AND ARVIND.

Application-Managed Flash. In Proceedings of the USENIX Confer-

ence on File and Storage Technologies (FAST) (2016), pp. 339–353.

USENIX Association 2019 USENIX Annual Technical Conference 811

[35] MAO, B., JIANG, H., WU, S., TIAN, L., FENG, D., CHEN, J., AND

ZENG, L. HPDA: A Hybrid Parity-based Disk Array for Enhanced

Performance and Reliability. ACM Transactions on Storage 8, 1 (Feb.

2012), 4:1–4:20.

[36] MARJANI, M., NASARUDDIN, F., GANI, A., KARIM, A., HASHEM,

I. A. T., SIDDIQA, A., AND YAQOOB, I. Big IoT Data Analytics:

Architecture, Opportunities, and Open Research Challenges. IEEE

Access 5 (2017), 5247–5261.

[37] MARRIPUDI, G., AND LLKER CEBELI. How Networking Affects

Flash Storage Systems. Flash memory summit 2016.

[38] MENON, J. A Performance Comparison of RAID-5 and Log-

structured Arrays. In Proceedings of the IEEE International Sympo-

sium on High Performance Distributed Computing (HPDC) (1995),

pp. 167–178.

[39] MIN, C., KIM, K., CHO, H., LEE, S.-W., AND EOM, Y. I. SFS: Ran-

dom Write Considered Harmful in Solid State Drives. In Proceedings

of the USENIX Conference on File and Storage Technologies (FAST)

(2012), pp. 139–154.

[40] NANAVATI, M., SCHWARZKOPF, M., WIRES, J., AND WARFIELD,

A. Non-volatile storage. ACM Queue 13, 9 (2015), 20:33–20:56.

[41] OH, Y., KIM, E., CHOI, J., LEE, D., AND NOH, S. H. Optimizations

of LFS with Slack Space Recycling and Lazy Indirect Block Update.

In Proceedings of the Annual Haifa Experimental Systems Conference

(SYSTOR) (2010), pp. 2:1–2:9.

[42] OH, Y., LEE, E., HYUN, C., CHOI, J., LEE, D., AND NOH, S. H.

Enabling Cost-Effective Flash Based Caching with an Array of Com-

modity SSDs. In Proceedings of the Annual Middleware Conference

(Middleware) (2015), pp. 63–74.

[43] O’NEIL, P., CHENG, E., GAWLICK, D., AND O’NEIL, E. The Log-

structured Merge-tree (LSM-tree). Acta Informatica 33, 4 (1996),

351–385.

[44] REINSEL, D., GANTZ, J., AND RYDNING, J. Data Age 2025: The

Evolution of Data to Life-Critical. https://www.seagate.com/

our-story/data-age-2025/, 2017.

[45] SAMSUNG. 960PRO SSD Specification. https://www.samsung.

com/semiconductor/minisite/ssd/product/consumer/

ssd960/.

[46] SAMSUNG. Over-provisioning: Maximize the Lifetime and Per-

formance of Your SSD with Small Effect to Earn More. http://

www.samsung.com/semiconductor/minisite/ssd/downloads/

document/Samsung_SSD_845DC_04_Over-provisioning.pdf.

[47] SAMSUNG. Samsung NVMe SSD. http://www.samsung.

com/semiconductor/minisite/ssd/downloads/document/

SAMSUNG_Memory_NVMe_Brochure_web.pdf.

[48] SAMSUNG. SSD 970 EVO NVMe M.2

1TB. https://www.samsung.com/us/

computing/memory-storage/solid-state-drives/

ssd-970-evo-nvme-m-2-1tb-mz-v7e1t0bw/.

[49] SAMSUNG. PM1633a NVMe SSD. https://goo.gl/PkRpKf,

2016.

[50] SHIN, J.-Y., BALAKRISHNAN, M., MARIAN, T., AND WEATHER-

SPOON, H. Gecko: Contention-oblivious Disk Arrays for Cloud Stor-

age. In Proceedings of the USENIX Conference on File and Storage

Technologies (FAST) (2013), pp. 285–298.

[51] SKOURTIS, D., ACHLIOPTAS, D., WATKINS, N., MALTZAHN, C.,

AND BRANDT, S. Flash on Rails: Consistent Flash Performance

through Redundancy. In Proceedings of the USENIX Annual Tech-

nical Conference (ATC) (2014), pp. 463–474.

[52] THE ECONOMIST. Data is giving rise to a new econ-

omy. https://www.economist.com/news/briefing/

21721634-how-it-shaping-up-data-giving-rise-new-economy,

2017.

[53] WANG, W., ZHAO, Y., AND BUNT, R. HyLog: A High Performance

Approach to Managing Disk Layout. In Proceedings of the USENIX

Conference on File and Storage Technologies (FAST) (2004), pp. 145–

158.

[54] WIKIPEDIA. mdadm. https://en.wikipedia.org/wiki/Mdadm.

[55] WIKIPEDIA. Write amplification. https://en.wikipedia.org/

wiki/Write_amplification.

[56] WOODS, M. Optimizing Storage Performance and

Cost with Intelligent Caching (NetApp’s White Paper).

https://logismarketpt.cdnwm.com/ip/elred-netapp-virtual-storage-

tier-optimizing-storage-performance-and-cost-with-intelligent-

caching-929870.pdf, 2010.

[57] WU, G., AND HE, X. Reducing SSD Read Latency via NAND Flash

Program and Erase Suspension. In Proceedings of the USENIX Con-

ference on File and Storage Technologies (FAST) (2012), pp. 10–10.

[58] WU, S., ZHU, W., LIU, G., JIANG, H., AND MAO, B. GC-Aware

Request Steering with Improved Performance and Reliability for SSD-

Based RAIDs. In Proceedings of IEEE International Parallel and

Distributed Processing Symposium (IPDPS) (2018), pp. 296–305.

[59] WU, W., TRAISTER, S., HUANG, J., HUTCHISON, N., AND

SPROUSE, S. Pre-emptive Garbage Collection of Memory Blocks,

Jan. 7 2014. US Patent 8,626,986.

[60] YAN, S., LI, H., HAO, M., TONG, M. H., SUNDARARAMAN,

S., CHIEN, A. A., AND GUNAWI, H. S. Tiny-Tail Flash: Near-

Performance Elimination of Garbage Collection Tail Latencies in

NAND SSDs. In Proceedings of the USENIX Conference on File and

Storage Technologies (FAST) (2017), pp. 15–28.

812 2019 USENIX Annual Technical Conference USENIX Association

Practical Erase Suspension for Modern Low-latency SSDs

Shine Kim†‡, Jonghyun Bae†, Hakbeom Jang*, Wenjing Jin†, Jeonghun Gong†

Seungyeon Lee‡, Tae Jun Ham†, Jae W. Lee†

†Seoul National University, *Sungkyunkwan University, ‡Samsung Electronics

Abstract
As NAND flash technology continues to scale, flash-based
SSDs have become key components in data-center servers.
One of the main design goals for data-center SSDs is low read
tail latency, which is crucial for interactive online services
as a single query can generate thousands of disk accesses.
Towards this goal, many prior works have focused on mini-
mizing the effect of garbage collection on read tail latency.
Such advances have made the other, less explored source of
long read tails, block erase operation, more important. Prior
work on erase suspension addresses this problem by allowing
a read operation to interrupt an ongoing erase operation, to
minimize its effect on read latency. Unfortunately, the erase
suspension technique attempts to suspend/resume an erase
pulse at an arbitrary point, which incurs additional hardware
cost for NAND peripherals and reduces the lifetime of the
device. Furthermore, we demonstrate this technique suffers a
write starvation problem, using a real, production-grade SSD.
To overcome these limitations, we propose alternative prac-
tical erase suspension mechanisms, leveraging the iterative
erase mechanism used in modern SSDs, to suspend/resume
erase operation at well-aligned safe points. The resulting de-
sign achieves a sub-200µs 99.999th percentile read tail latency
for 4KB random I/O workload at queue depth 16 (70% reads
and 30% writes). Furthermore, it reduces the read tail latency
by about 5× over the baseline for the two data-center work-
loads that we evaluated with.

1 Introduction

NAND flash-based SSDs offer superior throughput and av-
erage latency compared to those of hard disks and thus have
become the de-facto standard for storage devices. However,
SSDs have much greater performance variability than that
of hard disks [11]. While SSDs can achieve very low aver-
age read latency (e.g., under 15µs [5]), their tail latency (e.g.,
99.999th percentile) can be very long (e.g., over 10ms). Fig-
ure 1 demonstrates this issue with a real low-latency SSD.

One can mistakenly think that long tail read latency is a rare
event that affects very few requests. However, such tail latency
can play a considerable role in data-center computing because
a single query (e.g., web search) may require thousands of
disk reads across the data-center [2,7]. In such a case, a single
long-latency disk access can lead to an increase in the overall
query response time. Also, the chance of a query experiencing

10
100

1000
10000

100000

1% 5% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

95
%

99
%

99
.9

%
99

.9
9%

99
.9

99
%

M
ax

.

La
te

nc
y

(𝜇
s)

Figure 1: Read latency distribution of a PCIe 3×4 NVMe
low-latency SSD [5] running 4KB random reads (70%) and
writes (30%) workload with a queue depth of 16.

long disk tail latency is continuously increasing with the trend
of ever-increasing data size.

To avoid such performance degradation in a data-center
induced by SSD tail latency, minimizing the tail latency of
a read operation is very important. Naturally, this requires
tackling two significant sources of long read tails: garbage
collection (GC) and erase operations. Recent prior works
have already explored ways to minimize the effect of GC on
read tail latency [6, 14, 37]. Furthermore, production-level
low-latency SSDs — such as Samsung Z-SSD [38], which
we base our work on — have already minimized the effect of
GC on read operation [38] by allowing the user-initiated read
to be processed between operations in a GC (i.e., read and
program to copy valid pages from one block to another) [4,
20]. In contrast, much less attention has been paid to the
effect of erase operation on read tail latency, primarily because
erase latency is relatively small (e.g., 5ms) compared to the
effect of GC on tail latency (e.g., can exceed 100ms without
any optimization). However, with techniques minimizing this
effect, erase latency is now becoming the most dominant
component of read tail latency.

To control the effect of erase on tail latency, Wu et al. [35]
proposed an erase suspension technique, which suspends an
ongoing erase (and verify) pulse when a read request is issued
to the same flash die. After processing the read request, the
erase pulse resumes from the exact point at which it was
suspended. However, the commodity NAND flash business is
known to be extremely cost-sensitive, and this technique may
increase the cost of NAND peripherals to generate an erase
pulse of an arbitrary length and track the exact state of every
erase. Furthermore, it can cause a serious NAND reliability
problem and write starvation.

To address these limitations, we present practical erase
suspension schemes for modern low-latency SSDs. Instead

USENIX Association 2019 USENIX Annual Technical Conference 813

of suspending/resuming an erase pulse at an arbitrary point,
our work focuses on suspending/resuming the erase operation
at well-aligned safe points by either i) aborting an ongoing
erase operation immediately and resuming from the last safe
point or ii) deferring the suspension of erase operation until
the next safe point. Exploiting their trade-offs, we also intro-
duce a timeout-based switching mechanism between the two
mechanisms, to adapt to workload changes dynamically. This
scheme enables modern low-latency SSDs to offer extremely
low read tail latency on a wide range of workloads without
causing any NAND reliability problem or write starvation.

Our contributions are summarized as follows:

• We are the first to identify the problems of NAND re-
liability and write starvation in the existing erase sus-
pension scheme and demonstrate the latter on a real,
production-grade SSD.

• We propose two practical erase suspension mechanisms,
immediate erase suspension and deferred erase suspen-
sion. We also analyze the trade-offs between the two
mechanisms and introduce a timeout-based switching
policy between the two, to take the best of both as the
workload changes.

• We demonstrate a significant reduction in read tail la-
tency with the proposed erase suspension mechanisms
on various workloads including Aerospike Certification
Tool (ACT) [1] and TPC-C benchmark workloads [31].

2 Practical Erase Suspension

2.1 Motivation
To perform a NAND block erase, the incremental step pulse
erasing scheme is a standard feature in modern SSDs [18].
Instead of utilizing a single, very high voltage pulse (e.g., 14V)
for an erase, which has negative impact on NAND lifetime [12,
25, 29], this scheme performs an erase operation with several,
discrete pulses (typically 5 or fewer), and each pulse has
a higher nominal voltage than the previous one. Figure 2
illustrates this scheme. By verifying the set of erased cells
between erase pulses and by applying higher voltage pulses
to cells that are not erased yet, this scheme minimizes damage
on NAND cells [12]. A single erase pulse consists of the
following 3 stages: 1© voltage ramping stage in which the
erase pulse reaches the desired voltage, 2© erase execution
stage during which the voltage is stabilized and maintained,
and 3© voltage recovery stage in which the erase voltage is
reset for the erase-verify operation.

The erase suspension mechanism has been proposed to
provide tight read tail latency by suspending an ongoing erase
pulse at the arrival of a read request to be resumed later [35].
While effective in reducing read tail latency, this mechanism
poses several implementation challenges in terms of NAND

Time (ms)

Vo
lta

ge

: Erase pulse : Verify pulse

Arrival of read request
(a) (b) ① Voltage ramping

② Erase execution
③ Voltage recovery

An erase pulse① ③②

1 2 3 4 5

. . .

Figure 2: Incremental step pulse erase and practical erase
suspension mechanisms: (a) Immediate erase suspension (I-
ES) and (b) Deferred erase suspension (D-ES).

reliability and cost. First, an erase suspension adds to the
cost of an erase an extra pair of voltage recovery (3©) and
ramping (1©) stages for suspending and resuming the erase
pulse. These additional stresses caused by ramping up and
down the voltage degrade the endurance of NAND [12,25,29].
For example, a recent case study using sub-20nm TLC NAND
shows that the raw bit error rate (RBER) is increased by 14.4%
with only 1000 erase suspensions [26]. The increased RBER
leads to an increase in uncorrectable bit error rate (UBER)
even with error correction, to eventually reduce the lifetime
of SSD [3].

Another limitation of the existing erase suspension scheme
is that it requires the capability to suspend and resume an
erase pulse at an arbitrary point. This increases the cost for
NAND peripherals to generate a pulse of an arbitrary length,
track the exact state of each suspended erase, and recover the
peripheral state to resume. As NAND cells continue to scale
with the introduction of 3D NAND, NAND peripherals are be-
coming a scalability bottleneck to a greater extent [19,24,27].
Considering the extreme cost sensitivity of the commodity
NAND business, this is a significant drawback.

Instead, our erase suspension scheme allows erase suspen-
sion only at the beginning or the end of each erase step. When
a read request arrives while an erase pulse is still asserted, our
scheme asserts an erase suspension command that either i)
aborts the ongoing erase pulse and forfeits the current erase
step progress to serve the read request immediately (named
immediate erase suspension) or ii) finishes the ongoing erase
step and serves the read request (named deferred erase sus-
pension). The next subsections discuss each option in detail
and also present an adaptive switching scheme between our
two proposed mechanisms.

2.2 Immediate Erase Suspension (I-ES)

One way to serve an incoming read request during the erase
pulse is to immediately terminate the ongoing erase step and
to forfeit the progress (Figure 2(a)). Then, after serving the
read request(s), the erase operation can resume from the be-
ginning point of the current erase step. We call this scheme
Immediate Erase Suspension (I-ES) since it immediately can-
cels the ongoing erase step.

In effect, I-ES is a practical variant of the original erase
suspension [35] with the following two changes. To improve
NAND reliability, a verify pulse is applied before resum-
ing a suspended erase pulse, exploiting the incremental step

814 2019 USENIX Annual Technical Conference USENIX Association

10
100

1000
10000

100000

1% 5% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

95
%

99
%
99

.9%

99
.99

%

99
.99

9%Max
.

Baseline Erase Suspension I-ES

La
te

nc
y (
!s

) >10s

Figure 3: Write starvation experiment results. This workload
consists of two threads where one thread continuously gener-
ates 128KB read requests, while another thread continuously
generates 128KB write requests (QD 1 for both). Baseline and
I-ES use real low-latency SSD [5], and Erase Suspension [35]
uses an SSD simulator [33].

pulse erasing scheme in Section 2.1. As each NAND cell in a
NAND block has different erase timing, some NAND cells
get erased more quickly than others [12,25,26,29]. Therefore,
applying the same pulse to all NAND cells when resuming
the erase pulse results in over-erasure of some cells, which
puts unnecessary stress on already erased cells and harms
the reliability of NAND. A verify pulse, before resuming the
erase pulse, detects already erased cells to not inflict unneces-
sary stress on these cells in a NAND block. Furthermore, to
keep the cost of NAND peripherals low, a whole step pulse
is asserted at every resumption, instead of the remaining step
pulse time. To generate an erase pulse of an arbitrary length, a
variable-length pulse generator with fine-grained control must
be placed on a NAND device. However, today’s commodity
NAND does not provide such a mechanism. In contrast, I-ES
does not require such changes keeping the cost of NAND low.
Advantages and Disadvantages. Since the erase step is can-
celed immediately, the read command can always be guaran-
teed the highest priority. The read command does not experi-
ence any other delay caused by an erase operation except for
a fixed latency (e.g., ∼100µs) that tries to cancel the ongoing
erase pulse (3© in Figure 2).

However, this scheme is problematic. With the continuous
incoming read requests, an erase step may be repeatedly can-
celed, preventing write requests (which are dependent on the
erase requests) from completion. To confirm this behavior,
we modified the firmware of the real, production-grade low-
latency SSD [5] to implement this scheme. Figure 3 shows
the outcome of this experiment. As expected, a few write
operations cannot finish for a long time because the preceding
erase operation is continuously canceled by incoming read
requests. As a result, its tail latency keeps increasing until the
end of the workload.

The erase (and write) starvation problem occurs because
the latency of erase suspension/resuming operation is longer
than the incoming rate of read requests on the NAND chip. For
example, if the throughput of PCIe Gen 3×4 NVMe interface
is 3.2GB/s (i.e., the incoming read rate is 1.19µs/4KB) and the
erase suspension/resuming overhead is 100µs, it is possible
for a read request to arrive while the erase suspension/resump-

tion is happening. In such cases, the erase will immediately
suspend again without making any forward progress, and
thus the erase (and write) operation will starve. Note that the
same problem manifests with the original erase suspension
scheme [35], which differs from I-ES only for the duration
of the asserted pulse at resumption, as shown in Figure 3.
NVMe and PCIe specifications require the host to reset both
hardware and software at write starvation (i.e., user’s write
requests timeout) [23, 28], which adversely affects system
performance [22] and may eventually lead to a fatal system
failure if repeated.

2.3 Deferred Erase Suspension (D-ES)
Another way to serve an incoming read request during the
erase pulse is to let the read request wait until the current erase
step finishes (Figure 2(b)). After that, in lieu of proceeding to
the next erase step, the read request(s) is (are) served. Then,
the erase operation resumes and continues to the next erase
step. We call this Deferred Erase Suspension (D-ES) as it
defers erase suspension until the end of the current erase step.
Advantages and Disadvantages. This mechanism lets the
erase operation finish without incurring the write starvation
problem. By guaranteeing a single erase step to be performed
once the erase step is initiated, this mechanism guarantees
forward progress for the erase operation.

Although this mechanism does not incur erase (and write)
starvation, it can harm read tail latency by making read re-
quests wait until the end of the current erase step (i.e., 1ms in
our low-latency NAND). This scheme can also show worse
read latency for bursty reads as D-ES adds extra latency to
reads. However, such situations could be avoided by batching
backlogged erases after serving the bursty reads first. This is-
sue is addressed by T-ES, which switches adaptively between
I-ES and D-ES.

2.4 Timeout-based Erase Suspension (T-ES)
Timeout-based Erase Suspension Policy. If it is possible
to know the request pattern of an application a priori, one
should use I-ES when the application is expected to have a
phase with sparse read requests as in this case erase (and
write) starvation does not occur as an erase is likely to make
progress during the upcoming sparse read period. On the other
hand, if an application is expected to have a steady stream
of incoming read requests, the user should use D-ES as in
this case, employing I-ES leads to an exponential increase in
write tail latency (i.e., write starvation).

Unfortunately, in reality, it is not easy to predict future
I/O access patterns without profiling runs. Thus, we propose
a Timeout-based Erase Suspension (T-ES) scheme, which
performs I-ES until the erase operation is delayed for Nms. If
the erase operation is delayed for Nms (i.e., timeout happens),
this scheme switches to D-ES mode to avoid potential erase
(and write) starvation. Hopefully, this scheme finds a period
to perform an erase operation without being interrupted by a

USENIX Association 2019 USENIX Annual Technical Conference 815

Table 1: Parameters used to model our low-latency SSD [5].
PCIe Gen 3×4 Lane, 240GB, NVMe SSD Device

NAND Configurations 4 channels, 4 chips/channel, 1 die/chip

DRAM, Flash Speed Rate
1600MT/s, 1200MT/s

(MT/s: Mega Transfers per Second [9])
FTL Schemes Page Mapping, Preemptible GC [20]
Over-provisioning Ratio 7%

NAND Structure
128Gb die capacity, 8 planes per die,

683 blocks per plane, 768 pages per block, 4KB page
NAND Latency

Read: 3µs, Program: 100µs, Block Erase: 1ms per step (5 steps),
Erase Suspension Penalty: 100µs

Table 2: Throughput and average latency of low-latency SSD
prototype and MQSim running various I/O pattern workloads.

Low-Latency SSD / MQSim
Seq. read (256KB) 3300 / 3250 MiB/s
Seq. write (256KB) 2700 / 3100 MiB/s

Kilo I/O per seconds Average latency
Rnd. read (4KB, QD 1) 59 / 65 KIOPS 16.9 / 15.3µs
Rnd. write (4KB, QD 1) 61 / 66 KIOPS 16.4 / 15.2µs
Rnd. read (4KB, QD 32) 790 / 790 KIOPS 40.5 / 40.5µs
Rnd. write (4KB, QD 32) 61 / 66 KIOPS 524 / 484µs

read operation.
Choice of Erase Timeout Delay. T-ES covers a spectrum
of policies between I-ES and D-ES, controlled by the value
of N. If we set it to 0, this is equivalent to the base D-ES
scheme. In contrast, if we set it to infinite, this is equivalent
to I-ES scheme prone to erase (and write) starvation problem.
In general, choosing a higher value offers more chance to
provide better read tail latency by delaying an erase operation,
but this choice leads to an increase in maximum write tail
latency. On the other hand, choosing a smaller N makes it
behave more like a D-ES, which provides smaller maximum
write tail latency at the expense of an increased number of
reads experiencing erase latency. T-ES provides a knob for
the user to choose N based on her willingness to trade-off
the maximum write tail latency for potential improvement in
read tail latency. For example, if the user wants to achieve
sub-100ms write tail latency and the maximum write delay
occurring from a GC scheme (e.g., GC policy [6, 13–15, 17,
37], over-provisioning ratio [30]) is 35ms, the user should
set N to be 64ms so that the total maximum write latency
remains under 100ms. By default, we set N to 64ms for our
experiments.

3 Evaluation

3.1 Methodology

Evaluation Framework. Although we utilized a real, proto-
type low-latency SSD [5] with modified firmware to perform
some experiments (Figure 1 and Figure 3), it is not possible
to utilize the real device to evaluate our presented schemes
such as D-ES and T-ES since implementations of such policy
require an extension to the interface between the SSD con-
troller and NAND flash chips (e.g., new commands). For this

100

1000

10000

99.9% 99.99% 99.999% Max.

Baseline ES I-ES D-ES T-ES Ideal-ES

100

1000

10000

100000

99.9% 99.99% 99.999% Max.

(a) Read tail latency (b) Write tail latency

La
te

nc
y

(!
s)

Figure 4: Read/write tail latency on 4KB random reads (70%)
and writes (30%) workload.

reason, we use MQSim [33] for our experiments, which we
extend so that it can accurately model low-latency NAND
flash chips. In particular, we i) allow data cache manager and
FTL to use strict 8 plane program so that it can achieve higher
write throughput, ii) enable I/O scheduler to process the user
read request as the highest priority, and iii) modify NAND
flash controller and memory logic to model our practical erase
suspension mechanisms. Table 1 summarizes the parameters
used for our MQSim, while Table 2 compares the simulation
results against those of a real low-latency SSD [5] for vari-
ous I/O patterns as validation of the simulator. The average
read/write latency and throughput from the simulator demon-
strate only a 6% error on average (with 13% in the worst case)
compared to measurements from the real device.
Evaluated Configurations. Throughout this section, we
present evaluation results for the following configurations
across different benchmarks (i.e., random 4KB access,
ACT [1], and TPC-C [34]). Also, we use for all experiments
the steady state pre-condition [32] in which the space of an
SSD including the over-provisioning (OP) [30] area is full;
this pre-condition helps evaluate the latency behaviors that
can happen under the worst-case condition of read and write
requests. Section 2 discusses three practical erase suspension
mechanisms: I-ES, D-ES, and T-ES. We add the following
three configurations to our evaluation for comparison:

• Baseline: Erase operations do not get preempted by an
incoming read request.

• Erase Suspension (ES): The scheme can suspend and re-
sume an erase pulse from an arbitrary point as proposed
by Wu et al. [35].

• Ideal Erase Suspension (Ideal-ES): This scheme can sus-
pend and resume an erase operation from any arbitrary
point with zero erase suspension penalty.

3.2 Random Access Benchmark
Workload. We first evaluate our erase suspension policies
using a microbenchmark that generates a mixture of 4KB
random reads (70%) and writes (30%) at queue depth 16. We
utilize Flexible I/O Tester (FIO) [8] to generate such disk
access patterns. This workload is widely used to evaluate
an SSD’s latency performance [10, 38]. Figure 4 shows the
results of this experiment.
Read Tail Latency. In the baseline, when an erase happens,

816 2019 USENIX Annual Technical Conference USENIX Association

10

100

1000

10000

95% 99% 99.9%

Baseline ES I-ES D-ES T-ES Ideal-ES

10

100

1000

10000

95% 99% 99.9%
(b) Write tail latency(a) Read tail latency

La
te

nc
y

(!
s)

D
id

no

t
 fi

ni
sh

D
id

no

t
 fi

ni
sh

D
id

no

t
 fi

ni
sh

D
id

no

t
 fi

ni
sh

D
id

no

t
 fi

ni
sh

D
id

no

t
 fi

ni
sh

Figure 5: Read/Write tail latency on ACT workload (30×
workload multiplier).

Table 3: Performance and stress test results using ACT.
Baseline ES I-ES D-ES T-ES Ideal-ES

Stress 32× 22× 22× 30× 30× 32×
Performance 14× 22× 22× 30× 30× 32×

the subsequent read requests are simply delayed for the du-
ration of the remaining erase time (up to 5ms). As a result,
baseline policy shows around 5ms read tail latency. With
ES and I-ES such an erase operation is repeatedly aborted
by the incoming read requests. As a result, incoming read
requests do not experience an extra delay caused by the on-
going erase operation except for the 100µs latency required
for erase suspension/resumption. For this reason, both ES and
I-ES policies have very low read tail latency. Note that they
are prone to experience erase (and write) starvation as pointed
out in Section 2.2. However, it does not happen here because
this workload has a period when read requests are not sent out
for some time (i.e., all 16 outstanding requests in the queue
are write requests waiting for an erase to proceed). During
this period, erase operation successfully finishes. The read
tail latency of D-ES is around 1ms because it always lets the
ongoing erase step (not the whole erase) finish, making a read
request wait. T-ES behaves similarly to I-ES in this workload
as the timeout is rarely triggered.
Write Tail Latency. Baseline, ES, D-ES, and Ideal-ES have
a lower write tail latency because their erase operation is
finished in a relatively short period of time without canceling
an existing erase pulse. Notably, the write tail latency of the
baseline policy is the maximum GC latency (35ms) of our
model without erase suspension. On the other hand, both I-ES
and T-ES abort the erase multiple times, and thus delays write
operations significantly. As a result, they tend to have a longer
write tail latency.

3.3 Database Benchmark

Workload. ACT models the Aerospike database servers’ real-
time I/O access patterns. In essence, ACT consists of three
threads: one issuing 2K small (1.5KB) read requests per sec-
ond, another issuing 24 large (128KB) read requests per sec-
ond, and the third one issuing 24 large (128KB) write requests
per second. ACT gradually increases this rate in integer multi-
ples (e.g., ACT 4× workload means 8K small read requests/s,
96 large read requests/s, 96 large write requests/s) and consid-
ers that the device has passed the performance test if it meets
the following conditions for a long time (e.g., 24hrs): i) 95%
of transactions finish in 1ms, ii) 99% of transactions finish in

100

1000

10000

99.9% 99.99% 99.999% Max.

Baseline ES I-ES D-ES T-ES Ideal-ES

100

1000

10000

100000

99.9% 99.99% 99.999% Max.

La
te

nc
y

(!
s)

(a) Read tail latency (b) Write tail latency

D
id

 n
ot

 f
in

is
h

D
id

 n
ot

 f
in

is
h

D
id

 n
ot

 f
in

is
h

D
id

 n
ot

 f
in

is
h

D
id

 n
ot

 f
in

is
h

D
id

 n
ot

 f
in

is
h

D
id

 n
ot

 f
in

is
h

D
id

 n
ot

 f
in

is
h

Figure 6: Read/Write tail latency on TPC-C.

8ms, iii) 99.9% of transactions finish in 64ms, and iv) aver-
age transaction time for each type of requests is smaller than
ACT workload’s I/O request period. If a device satisfies only
the fourth condition but fails to satisfy one of the first three
conditions, that device is said to pass the stress test but not
the performance test. The maximum ACT multiplier that an
SSD can satisfy is that particular SSD’s performance rating.
ACT Results. Table 3 shows the maximum multiplier in
which each configuration passed the performance and stress
tests. Figure 5 shows the tail latency of 95%, 99%, and 99.9%
accesses at 30× workload multiplier. As shown in Table 3,
the baseline has a good average response time and thus can
successfully run ACT with 32× multiplier. On the other hand,
it has the worst read tail latency since the part of erase la-
tency (up to 5ms) is exposed to read requests. This leads
to a relatively poor performance test result for the baseline.
ES and I-ES have good read tail latency behavior. However,
continuous read requests cause erase (and write) starvation,
which leads to a failure in the stress test (fourth condition) at
the workload multiplier whose value is above 22×. On the
other hand, both D-ES and T-ES demonstrate strong results
for both stress and performance tests. Both D-ES and T-ES
can maintain low read tail latency while avoiding erase (and
write) starvation.

3.4 Transaction Processing Benchmark

Workload. TPC-C [34] is a popular benchmark for online
transaction processing frameworks. We utilize a published
disk trace of the system running TPC-C from SNIA [31], to
evaluate our erase suspension mechanisms.
TPC-C Results. Figure 6 shows the results from this exper-
iment. The baseline policy generally observes a noticeably
higher read tail latency than the other schemes since latency
is exposed to many read requests queued behind the erase
operation. Neither ES or I-ES runs to completion as they suf-
fer from a severe erase (and write) starvation and cause the
simulator to exit prematurely after failing to serve many write
requests for a long time. As in the ACT workload, this is be-
cause continuous read requests prevent the completion of an
erase operation. Both T-ES and D-ES achieve much lower tail
latency than the baseline. In particular, both achieve around
1ms max tail latency, which indicates that a read request only
experiences about a single erase step delay at most.

The write tail latency of the baseline, D-ES, and Ideal-ES
is similar to each other. In contrast, ES and I-ES suffer write
starvation, and T-ES records the longest write tail latency. The

USENIX Association 2019 USENIX Annual Technical Conference 817

L
a

te
n

c
y
 (
!s

)

T-ES Timeout:

L
a

te
n

c
y
 (
!s

)

(a) Read Latency Distribution

(b) Average Read Latency

136 132 128
115

100 94

0

50

100

150

4ms 16ms 64ms 256ms 1024ms 4096ms

0

500

1000

70% 80% 90% 95% 99% 99.9% 99.99% 99.999% Max.

4ms 16ms 64ms 256ms 1024ms 4096ms

Figure 7: (a) Read latency distribution and (b) average read
latency with varying T-ES timeout values for TPC-C.

Table 4: Maximum write latency for TPC-C.
T-ES Timeout 4ms 16ms 64ms 256ms 1.02s 4.09s
Write Latency
(Maximum) 27ms 40ms 86ms 280ms 1.04s 4.1s

T-ES scheme delays erase (and following writes) for up to the
timeout value hoping to find a period in which it can perform
an erase without blocking reads. In this case, T-ES does not
find such a period and hence ends up triggering the D-ES
mechanism after delaying the write requests; as expected, the
maximum write latency converges within 90ms (i.e., the sum
of GC latency (24ms) and the T-ES timeout value (64ms)).

3.5 Sensitivity to T-ES Timeout Threshold (N)

If an erase operation is delayed for Nms, T-ES switches
from I-ES to D-ES to avoid erase (and hence write) starvation.
We perform a sensitivity study, using TPC-C with varying N
to provide an insight into the tradeoff with selection of this
parameter.

Figure 7(a) shows the read latency distribution with differ-
ent values of N from 4ms to 4096ms. At around the 80th per-
centile we start to observe a gradual transition of read latency
from more of I-ES (about 200µs) to D-ES (about 1ms). In-
creasing N generally i) lowers frequency of both high-latency
read (i.e., over-200µs) and ii) average read latency, but iii) in-
creases the maximum write latency. As N increases, T-ES has
a greater chance of running in I-ES mode to lower the chance
for a read request to experience a 1ms delay for finishing an
ongoing erase pulse. Fewer long-latency reads lead to a lower
average read latency as shown in Figure 7(b).

However, increasing N negatively affects the maximum
write latency. Table 4 summarizes the maximum write latency
with varying N. As discussed in Section 2.4, the maximum
write latency of T-ES is the sum of GC latency and the T-ES
timeout value. This is because GC operations, which need an
erase operation to produce a free block for user data write,
may be interfered while running in I-ES mode. Once T-ES
timeout is triggered, it switches to D-ES to allow GC oper-

ations to produce the free blocks to write user’s data. The
maximum GC latency of the TPC-C workload (with steady
state pre-condition) is 24ms. Thus, the measured maximum
write latency is not far off from the estimated value (i.e., GC
latency plus N).

4 Related Work

Garbage Collection Optimization. There are several prior
works on alleviating the effect of GC on tail latency [6, 13–
15, 17, 37]. While these optimizations can effectively reduce
the effect of coarse-grained GCs on read tail latency, they
do not address the effect of long erase operation on read tail
latency, which becomes more important with optimized GC.
Thus, these techniques are orthogonal or complementary to
our presented erase suspension schemes.
I/O Scheduling Optimization. Another way to optimize tail
latency is to schedule a read/write request in an intelligent
way [16, 20, 21, 36, 39, 40]. These proposals are effective
when there are multiple devices available. On the other hand,
our work focuses on tail latency reduction without requiring
multiple devices. Still, if multiple devices are available, our
technique can be applied jointly with these optimizations.

5 Conclusion

This paper introduces practical erase suspension mechanisms
to limit the impact of erase operation on long read tail la-
tency. Leveraging the iterative erase mechanism commonly
employed by today’s flash devices, the proposed mechanisms
minimize the impact of erase operation on read tail latency,
while requiring only minor extensions to the flash interface.
With the proposed erase suspension mechanisms, our proposal
enables flash-based SSDs to achieve very low read tail latency,
while avoiding erase (and write) starvation and endurance
degradation of NAND. For example, our results demonstrate
the feasibility of a sub-200µs 99.999th percentile read tail
latency for 4KB random access workloads, which is com-
petitive with an emerging non-flash NVM-based SSD [10].
This will harness the full potential of flash-based SSDs as the
primary storage platform for future data-centers that will be
required to run a variety of latency-sensitive online services.

Acknowledgments

We thank Sam H. Noh for shepherding this paper and the
anonymous reviewers for their feedback. We also thank Adel
Choi, Heesoo Kim, Donghyeon Kwon, and Daejoong Jung
for their support. This work was supported by Research Re-
settlement Fund for the new faculty of Seoul National Univer-
sity, a research grant from Samsung Electronics, and Institute
for Information & communications Technology Promotion
(IITP) grant funded by the Korea Government (MSIT) (No.
2014-0-00035, Research on High Performance and Scalable
Manycore OS). Jae W. Lee is the corresponding author.

818 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Aerospike Certification Tool. https://github.com/
aerospike/act.

[2] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle.
The datacenter as a computer: an introduction to the
design of warehouse-scale machines. Synthesis lectures
on computer architecture, 8(3):Morgan & Claypool Pub-
lishers, 1–154, 2013.

[3] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch,
Adrian Cristal, Osman S. Unsal, and Ken Mai. Flash
correct-and-refresh: Retention-aware error management
for increased flash memory lifetime. In Proceedings of
the IEEE 30th International Conference on Computer
Design, ICCD’12, pages 94–101. IEEE, 2012.

[4] Li-Pin Chang, Tei-Wei Kuo, and Shi-Wu Lo. Real-time
garbage collection for flash-memory storage systems
of real-time embedded systems. ACM Trans. Embed.
Comput. Syst., 3(4):ACM, 837–863, November 2004.

[5] Wooseong Cheong, Chanho Yoon, Seonghoon Woo,
Kyuwook Han, Daehyun Kim, Chulseung Lee, Youra
Choi, Shine Kim, Dongku Kang, Geunyeong Yu, Jae-
hong Kim, Jaechun Park, Ki-Whan Song, Ki-Tae Park,
Sangyeun Cho, Hwaseok Oh, Daniel DG Lee, Jin-Hyeok
Choi, and Jaeheon Jeong. A flash memory controller for
15µs ultra-low-latency SSD using high-speed 3D NAND
flash with 3µs read time. In Proceedings of the IEEE
International Solid-State Circuits Conference, ISSCC
’18, pages 338–340. IEEE, 2018.

[6] Wonil Choi, Myoungsoo Jung, Mahmut Kandemir, and
Chita Das. Parallelizing garbage collection with I/O to
improve flash resource utilization. In Proceedings of
the 27th International Symposium on High-Performance
Parallel and Distributed Computing, HPDC ’18, pages
243–254. ACM, 2018.

[7] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Communications of the ACM, 56(2):ACM, 74–80, 2013.

[8] Flexible I/O Tester. https://github.com/axboe/
fio.

[9] Alan Freedman. MT/sec. The Computer Desktop En-
cyclopedia. https://www.computerlanguage.com/
results.php?definition=MT/sec.

[10] Frank T. Hady, Annie Foong, Bryan Veal, and Dan
Williams. Platform storage performance with 3D XPoint
technology. Proceedings of the IEEE, 105(9):IEEE,
1822–1833, 2017.

[11] Mingzhe Hao, Gokul Soundararajan, Deepak
Kenchammana-Hosekote, Andrew A. Chien, and

Haryadi S. Gunawi. The tail at store: A revelation from
millions of hours of disk and SSD deployments. In
Proceedings of the 14th USENIX Conference on File
and Storage Technologies, FAST ’16, pages 263–276.
USENIX Association, 2016.

[12] Jaeyong Jeong, Sangwook Shane Hahn, Sungjin Lee,
and Jihong Kim. Lifetime improvement of NAND flash-
based storage systems using dynamic program and erase
scaling. In Proceedings of the 12th USENIX Conference
on File and Storage Technologies, FAST ’14, pages 61–
74. USENIX Association, 2014.

[13] Myoungsoo Jung, Wonil Choi, Shekhar Srikantaiah,
Joonhyuk Yoo, and Mahmut T. Kandemir. HIOS: A host
interface I/O scheduler for solid state disks. In Proceed-
ings of the 41st ACM/IEEE International Symposium
on Computer Architecture, ISCA ’14, pages 289–300.
ACM/IEEE, 2014.

[14] Wonkyung Kang, Dongkun Shin, and Sungjoo Yoo.
Reinforcement learning-assisted garbage collection to
mitigate long-tail latency in SSD. ACM Transactions
on Embedded Computing Systems, 16(5s):ACM, 134:1–
134:20, 2017.

[15] Wonkyung Kang and Sungjoo Yoo. Dynamic manage-
ment of key states for reinforcement learning-assisted
garbage collection to reduce long tail latency in SSD.
In Proceedings of the 55th Annual Design Automation
Conference, DAC ’18, pages 8:1–8:6. ACM, 2018.

[16] Bryan S. Kim, Hyun Suk Yang, and Sang Lyul Min. Au-
toSSD: an autonomic SSD architecture. In Proceedings
of the USENIX Annual Technical Conference, ATC’18,
pages 677–690. USENIX Association, 2018.

[17] Jaeho Kim, Donghee Lee, and Sam H. Noh. Towards
SLO complying SSDs through OPS isolation. In
Proceedings of the 13th USENIX Conference on File
and Storage Technologies, FAST’15, pages 183–189.
USENIX Association, 2015.

[18] Dong Wook Lee, Sunghoon Cho, Byung Woo Kang,
Sukkwang Park, Byoungjun Park, Myoung Kwan Cho,
Kun-Ok Ahn, Ye Seok Yang, and Sung Wook Park. The
operation algorithm for improving the reliability of TLC
(triple level cell) NAND flash characteristics. In Pro-
ceedings of the 3rd IEEE International Memory Work-
shop, pages 1–2. IEEE, 2011.

[19] Jaeduk Lee, Jaehoon Jang, Junhee Lim, Yu Gyun Shin,
Kyupil Lee, and Eunseung Jung. A new ruler on the
storage market: 3D-nand flash for high-density memory
and its technology evolutions and challenges on the
future. In Proceeding of the 2016 IEEE International
Electron Devices Meeting (IEDM), pages 11.2.1–11.2.4,
Dec 2016.

USENIX Association 2019 USENIX Annual Technical Conference 819

https://github.com/aerospike/act
https://github.com/aerospike/act
https://github.com/axboe/fio
https://github.com/axboe/fio
https://www.computerlanguage.com/results.php?definition=MT/sec
https://www.computerlanguage.com/results.php?definition=MT/sec

[20] Junghee Lee, Youngjae Kim, Galen M. Shipman, Sarp
Oral, and Jongman Kim. Preemptible I/O scheduling of
garbage collection for solid state drives. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits
and Systems, 32(2):IEEE, 247–260, 2013.

[21] Christopher R. Lumb, Arif Merchant, and Guillermo A.
Alvarez. Façade: virtual storage devices with perfor-
mance guarantees. In Proceedings of the 2nd USENIX
Conference on File and Storage Technologies, FAST’03,
pages 131–144. USENIX Association, 2003.

[22] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash
Sharma, Laura Caulfield, Anand Sivasubramaniam, Ben
Cutler, Jie Liu, Badriddine Khessib, and Kushagra Vaid.
SSD failures in datacenters: What? When? and Why?
In Proceedings of the 9th ACM International Systems
and Storage Conference, SYSTOR’16, pages 7:1–7:11.
ACM, 2016.

[23] NVM Express 1.3a. http://nvmexpress.org/.

[24] Krishna Parat and Chuck Dennison. A floating gate
based 3D NAND technology with CMOS under array.
In Proceeding of the 2015 IEEE International Electron
Devices Meeting (IEDM), pages 3.3.1–3.3.4, Dec 2015.

[25] Byoungjun Park, Sunghoon Cho, Milim Park, Sukkwang
Park, Yunbong Lee, Myoung Kwan Cho, Kun-Ok Ahn,
Gihyun Bae, and Sungwook Park. Challenges and limita-
tions of NAND flash memory devices based on floating
gates. In Proceeding of the 2012 IEEE International
Symposium on Circuits and Systems, pages 420–423,
2012.

[26] Jisung Park, Jaehoon Lee, Myungsuk Kim, Myungjun
Chun, and Jihong Kim. Reducing read latency fluctu-
ations of flash storage systems using preemptible pro-
grams and erases. In Proceedings of the 16th USENIX
Conference on File and Storage Technologies, Work-in-
Progress Reports (WiPs), FAST ’18. USENIX Associa-
tion, 2018.

[27] Sung-Kye Park. Technology scaling challenge and fu-
ture prospects of DRAM and NAND flash memory. In
Proceeding of the 2015 IEEE International Memory
Workshop (IMW), pages 1–4, May 2015.

[28] PCI Express 3.1. https://pcisig.com/
specifications/.

[29] C. Sandhya, Apoorva B. Oak, Nihit Chattar, Udayan
Ganguly, C. Olsen, S. M. Seutter, L. Date, R. Hung,
Juzer Vasi, and Souvik Mahapatra. Study of P/E cycling
endurance induced degradation in SANOS memories
under NAND (FN/FN) operation. IEEE Transactions
on Electron Devices, 57(7):1548–1558, July 2010.

[30] Kent Smith. Understainding SSD overprovisioning. In
Proceedings of the Flash Memory Summit (2012), Flash
Memory Summit’12, 2012.

[31] SNIA IOTTA repository. TPC-C traces. http://iotta.
snia.org/traces/131.

[32] SNIA Solid State Storage Performance Test Specifi-
cation. https://www.snia.org/sites/default/
files/HoEasen_SNIA_Solid_State_Storage_Per_
Test_1_0.pdf.

[33] Arash Tavakkol, Juan Gómez-Luna, Mohammad
Sadrosadati, Saugata Ghose, and Onur Mutlu. MQSim:
A framework for enabling realistic studies of modern
multi-queue SSD devices. In Proceedings of the 16th
USENIX Conference on File and Storage Technologies,
FAST ’18, pages 49–66. USENIX Association, 2018.

[34] TPC-C benchmark. http://www.tpc.org/tpcc/.

[35] Guanying Wu and Xubin He. Reducing SSD read la-
tency via NAND flash program and erase suspension.
In Proceedings of the 10th USENIX Conference on File
and Storage Technologies, FAST’12, pages 117–123.
USENIX Association, 2012.

[36] Suzhen Wu, Weidong Zhu, Guixin Liu, Hong Jiang, and
Bo Mao. GC-aware request steering with improved
performance and reliability for SSD-based RAIDs. In
Proceedings of the IEEE International Parallel and Dis-
tributed Processing Symposium, IPDPS’18, pages 296–
305. IEEE, 2018.

[37] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao
Tong, Swaminatahan Sundararaman, Andrew A. Chien,
and Haryadi S. Gunawi. Tiny-tail flash: Near-perfect
elimination of garbage collection tail latencies in NAND
SSDs. In Proceedings of the 15th USENIX Conference
on File and Storage Technologies, FAST’17, pages 15–
28. USENIX Association, 2017.

[38] Samsung Z-SSD SZ985. https://www.samsung.
com/semiconductor/global.semi.static/
Brochure_Samsung_S-ZZD_SZ985_1804.pdf.

[39] Jianyong Zhang, Alma Riska, Anand Sivasubramaniam,
Qian Wang, and Erik Riedel. Storage performance vir-
tualization via throughput and latency control. In Pro-
ceedings of the 13th IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, MASCOTS’05, pages 135–
142. IEEE, 2005.

[40] Quan Zhang, Dan Feng, Fang Wang, and Yanwen Xie.
An efficient, QoS-aware I/O scheduler for solid state
drive. In Proceedings of the 10th IEEE International
Conference on High Performance Computing and Com-
munications, HPCC’13, pages 1408–1415. IEEE, 2013.

820 2019 USENIX Annual Technical Conference USENIX Association

http://nvmexpress.org/
https://pcisig.com/specifications/
https://pcisig.com/specifications/
http://iotta.snia.org/traces/131
http://iotta.snia.org/traces/131
https://www.snia.org/sites/default/files/HoEasen_SNIA_Solid_State_Storage_Per_Test_1_0.pdf
https://www.snia.org/sites/default/files/HoEasen_SNIA_Solid_State_Storage_Per_Test_1_0.pdf
https://www.snia.org/sites/default/files/HoEasen_SNIA_Solid_State_Storage_Per_Test_1_0.pdf
http://www.tpc.org/tpcc/
https://www.samsung.com/semiconductor/global.semi.static/Brochure_Samsung_S-ZZD_SZ985_1804.pdf
https://www.samsung.com/semiconductor/global.semi.static/Brochure_Samsung_S-ZZD_SZ985_1804.pdf
https://www.samsung.com/semiconductor/global.semi.static/Brochure_Samsung_S-ZZD_SZ985_1804.pdf

Track-based Translation Layers for Interlaced Magnetic Recording

Mohammad Hossein Hajkazemi?, Ajay Narayan Kulkarni†, Peter Desnoyers?, Timothy R Feldman†

Northeastern University?, Seagate Technology†

Abstract
Interlaced magnetic recording (IMR) is a state-of-the-art
recording technology for hard drives that makes use of
heat-assisted magnetic recording (HAMR) and track overlap
to offer higher capacity than conventional and shingled
magnetic recording (CMR and SMR). It carries a set of write
constraints that differ from those in SMR: “bottom” (e.g.
even-numbered) tracks cannot be written without data loss
on the adjoining “top” (e.g. odd-numbered) ones. Previously
described algorithms for writing arbitrary (i.e. bottom) sectors
on IMR are in some cases poorly characterized, and are either
slow or require more memory than is available within the
constrained disk controller environment.

We provide the first accurate performance analysis of the
simple read-modify-write (RMW) approach to IMR bottom
track writes, noting several inaccuracies in earlier descriptions
of its performance, and evaluate it for latency, throughput and
I/O amplification on real-world traces. In addition we propose
three novel memory-efficient, track-based translation layers
for IMR—track flipping, selective track caching and dynamic
track mapping, which reduce bottom track writes by moving
hot data to top tracks and cold data to bottom ones in different
ways. We again provide a detailed performance analysis using
simulations based on real-world traces.

We find that RMW performance is poor on most traces
and worse on others. The proposed approaches perform much
better, especially dynamic track mapping, with low write
amplification and latency comparable to CMR for many traces.

1 Introduction

Magnetic recording technology has made enormous strides
over the last several decades, reaching densities of about a
terabit per square inch, higher than that of any but the most
modern and densest solid-state storage technologies. Yet
in recent years density improvements have run up against
the superparamagnetic limit [17]—as bits get smaller, the
magnetic media coercivity (resistance to being magnetized)

must go up, to avoid bit flips from thermal noise, while as heads
get smaller their magnetic field becomes weaker, requiring
lower coercivity media. In other words, smaller bits require
smaller track sizes, requiring smaller write heads, requiring
lower-coercivity media, resulting in larger minimum bit sizes.
When the minimum bit size becomes as large as the write head,
further density improvements require new approaches. We are
currently at or near this limit; increases in disk capacity in the
past 5 years or more have relied more on increasing the number
of platters per drive rather than increases in areal density.

New strategies allow further increases in areal density by
sidestepping one or both sides of this trade-off, i.e. either
breaking the link between bit size and write head size /
magnetic field strength, or between bit reliability and media
coercivity. Shingled Magnetic Recording (SMR) [1] overlaps
adjacent tracks, reducing the effective track width without
reducing the write head size. Yet, this increase in density
comes at a cost: random writes are not allowed, as overwriting
a sector will also overwrite the corresponding sector in the
adjacent “downstream” track, and therefore the data could be
lost. Heat-Assisted Magnetic Recording [12] takes advantage
of the fact that the coercivity of a material goes down with
temperature, and uses a laser to heat the media to near the
Curie point1 before writing. This allows use of a medium with
much higher room-temperature coercivity and smaller grain
size (and thus minimum bit size), and also allows an effective
track width narrower than the write head by narrowing the
width of the heated domain, by controlling the laser current.

Interlaced Magnetic Recording (IMR) [9] uses both heat-
assisted recording and track overlap. This is in contrast to SMR,
which uses track overlap but conventional room-temperature
recording. As shown in Figure 1, tracks are written in an
“interlaced” fashion, with a “bottom” layer of tracks written
first, after which a “top” layer is written between (and partly
overlapping) these bottom tracks. To avoid total overwrite
of the bottom tracks, top tracks are written with a narrower
width and thus slightly lower capacity, roughly 90% that of the

1The temperature above which the material will no longer retain its
magnetic properties.

USENIX Association 2019 USENIX Annual Technical Conference 821

1 3

0 2 4 n-4 n-2 n

n-3 n-1

Bottom track Top track

Figure 1: IMR technology: tracks are written in an interlaced
fashion; top tracks are written between and over bottom tracks.
Top track i partially overlaps bottom track i-1 and i+1.

bottom tracks. The result is a drive with write constraints, but
ones that are far less strict (and thus less performance-limiting)
than those for SMR. Where SMR writes must be limited to
a single track per zone (a group of a few hundred of tracks)
to avoid data loss, in IMR nearly half of the sectors (i.e. those
on the top tracks) can be re-written safely. Moreover whereas
moving valid data in SMR requires reading and/or writing an
entire (typically 256 MB) zone, for IMR in the worst case only
two tracks (less than 5 MB) must be moved.

IMR is a very new technology, with the first descriptions of
its physical feasibility dating to 2016 [4,9]; with one exception,
Wu et al. [20] that is discussed in Section 5 the publications
to date have focused on the magnetic and physical aspects
of IMR, rather than system implications and algorithms. We
provide the first thorough performance analysis of the naive
read-modify-write (RMW) strategy described in the first IMR
proposals [4], correcting several mistaken assumptions, and
quantifying the performance degradation of IMR with RMW
for real workloads. We offer three algorithms for improved
management of IMR writes, track flipping, selective track
caching and dynamic track mapping, all of which (unlike the
approach of Wu et al.) may be readily implemented in disk
firmware with limited memory and compute resources. We
provide detailed performance models of these algorithms,
and evaluate them in simulation on real workloads, show-
ing substantial improvement over RMW in all cases and
near-conventional-drive performance for some workloads.

In particular, the contributions of this paper are:

1. a thorough performance analysis of naive read-modify-
write for IMR disk—i.e. as proposed in Hwang et
al. [9]—showing a performance overhead of more than
2x that assumed by prior work,

2. three novel track-based translation layers—track flipping,
selective track caching and dynamic track mapping—
which mitigate most of the IMR performance penalty at
a sufficiently modest cost in memory that they may be
implemented within today’s on-board disk controllers,

3. evaluation of conventional (“CMR”) disk, RMW and

the three proposed algorithms on real-world traces,
demonstrating (a) significant costs to RMW vs. CMR,
and (b) substantial improvements for all proposed
algorithms particularly dynamic track mapping.

2 Algorithms for IMR

As with SMR, IMR write limitations maybe addressed from
the host or within the device; however the complexity of the
IMR track-to-track write restrictions makes it preferable to
employ a device-based block translation layer rather than
expose restrictions to the host.

We describe in detail four algorithms: naive read-modify-
write [9], track flipping, selective track caching and dynamic
track mapping. For each algorithm we estimate memory usage,
describe the data copies and logging of mapping changes
needed to prevent data loss in the case of a crash, and analyze
the performance of the algorithm’s operations.

2.1 Read-modify-write
The simplest IMR translation layer is what we term naive
read-modify-write (RMW). Sectors on disk are assigned
fixed logical addresses, as in conventional drives, and before
performing any write to some sector S on a bottom track T ,
the drive (1) reads the adjacent top track sectors (ST−1 on
T −1 and ST+1 on T +1) and (2) copies them to a “backup
region”, then (3) performs the bottom-track write, and finally
(4) re-writes the adjacent top track sectors.

When numbering tracks T − 1, T , T + 1 we are referring
to physical position, which may not directly correspond to
logical block numbering. In particular IMR is expected to use
a serpentine or zig-zag layout [10], where LBAs are numbered
sequentially across N adjacent bottom tracks, and then across
the corresponding N top tracks. The result is that sectors in
physically adjacent top and bottom tracks will be separated
by a distance of N track sizes either in all cases (zig-zag) or
on average (serpentine).

Memory usage: Other than buffers for copying, no
additional memory is required beyond that needed for standard
LBA to physical location translation in a conventional drive.

Safety and crash consistency: We first note that to avoid
data loss, host writes to the affected top tracks must be blocked
during the RMW operation, as they would be overwritten when
data is copied back to the tracks. The duration of this locking
determines a phase, which is atomic with respect to user I/O,
and mapping updates need only be persisted once per phase.

Copying sectors ST−1 and ST+1 to the backup region forms
a single phase, and the temporary location of the sectors is
logged to the backup region just before the phase completes. If
a crash occurs before restoring the top tracks, a startup scan of
the log will locate the saved data, which may be copied back
to its proper location. The length of the log is determined by
the number of simultaneous RMW operations allowed; if this

822 2019 USENIX Annual Technical Conference USENIX Association

is 1, then no log trimming is needed as it will just be replaced
by the log from the next operation.

When logging data to the backup region, we can write ad-
ditional metadata with negligible overhead, much like journal
entries in a file system. Efficiently persisting the fact that ST−1
and ST+1 have been restored is more difficult, however; if this
is not done, then future writes to these locations may be lost if
stale backup data is copied back on restart. A straightforward
way to do this is to clear the backup region; however this
requires an additional seek and possibly lost rotation. Instead
we clear the backup region lazily, if we detect a write to ST−1
or ST+1. Since any RMW operation will clear the previous
contents of the backup region, in most cases this lazy cleaning
may be omitted, as until ST−1 or ST+1 are modified, the backup
data is not stale and may be copied back safely on startup.

Timing: The performance of this approach may be
analyzed by examining the steps above. We assume a random
single-sector write to sector S on bottom track T , and assume
as well that sectors ST−1 and ST+1 on tracks T−1 and T +1
respectively must be moved to avoid data loss. The time taken
is thus at least:

1. 0.5trot+tseek to reach and read sector ST−1, where trot is
the rotation time, assuming an average 0.5-rotation delay
for random access.

2. A missed rotation, trot , to reach and read sector ST+1.
3. tseek+0.5trot to reach the backup region, plus negligible

transfer time to write sector ST−1 and ST+1.
4. tseek+0.5trot (see below) to reach and write sector S on

track T .
5. a missed rotation (trot) plus negligible transfer time to

reach and write ST−1 on track T−1.
6. a missed rotation (trot) plus negligible transfer time to

reach and write ST+1 on track T+1.

Steps 3 and 4 together will take an integral number of
rotations, either 1 or 2, depending on whether the disk is able
to seek to the safe track, wait until the write location passes
under the head, and seek back within a single rotation (trot).
Based on discussions with disk vendors we assume the two
steps will take 2trot to complete, for a random write latency
of tseek+5.5trot . The same operation would take tseek+0.5trot
on a CMR drive, for a RMW overhead of 5 rotations

Performance is even worse for sequential write, as the
previous write finishes just after writing sector S, so that step 1
will require an entire missed rotation, for a total latency of 6trot .
Note that multiple writes to the same track may be coalesced
into a single RMW operation, whether via command queuing
or the use of write caching on the drive; however it will still
take 5 or 6 rotations longer than writing a full track on a
conventional drive.

We note that in our analysis, the actual performance of
RMW will be significantly worse than that implied by Hwang
et al. [9], where they state that writes to bottom tracks will
require two rewrites, for a mean of one extra rewrite per host

Figure 2: Track write count CDF (the first 3000 hottest tracks)
for traces w17, w46, w84, w106 (See Section 3 for trace
description); tracks are sorted from the hottest (i.e. track 0)
to the coldest (i.e. track 3000).

write request. We attribute the inaccuracy of their analysis2 to
several factors: (1) the significance of missed rotations in the
rewrite process, each of which is far more costly than all but
the largest write requests; (2) the need to read top-track data
so that it can be re-written, and (3) the need to persist top-track
data in a secondary location, to avoid data loss from failure
in the middle of a RMW operation.

2.2 Track flipping
Real workloads show high locality, with typically a small
number of hot sectors being overwritten frequently, and
the remaining sectors receiving few if any writes; the same
phenomena is found at the track level, as shown in Figure 2 (an
illustration of the first 3000 hottest tracks in a few workloads).
For instance, a significant portion of writes (80%) are received
by a small number (100) of tracks in w106. We can take
advantage of this locality by moving data between tracks
to maximize the amount of hot data stored on re-writable
top tracks. Our first algorithm, track flipping, locates bottom
tracks containing hot sectors (i.e. hot tracks) and swaps them
with adjacent top tracks, moving the hot data to the top, where
additional writes can be performed directly, and (hopefully)
moving cold data to the bottom track. In particular, we track
the number of writes to each track, periodically identify
candidates for flipping—i.e. hot bottom tracks which are
adjacent to cold top tracks—and swap them. The actual swap
of tracks T (bottom) and T+1 (top) is straightforward:

1. read tracks T−1, T , and T+1
2. write T−1 and T contents to a backup region3

3. write T+1 contents to T
4. write T contents to T+1
5. rewrite T−1

Implementation of this algorithm must take into account
several real-world factors. Top and bottom tracks hold

2To be fair, their analysis is a minor paragraph in the middle of a magnetics
paper.

3The backup region must accommodate at least two tracks.

USENIX Association 2019 USENIX Annual Technical Conference 823

1

2

3 5

4 6

2 3 4

(a) Before (b) After

0

Nb

0

Nt
1

0

Nt

Nb 65

Figure 3: Track flipping: hot bottom tracks 1 and 5 (red) are
swapped with cold top tracks 2 and 4. Since top tracks (Nt
sectors) are smaller than bottom tracks (Nb sectors), only the
first or last Nt sectors of hot bottom tracks are moved.

differing amounts of data, with top tracks estimated to have
90% the capacity of bottom tracks. In addition, neighboring
top tracks or bottom tracks may vary slightly in capacity, due
to the presence of bad sectors hidden by slip sparing [10]—i.e.
the LBA numbering skips a bad sector, resulting in a track
containing fewer sectors than if it were perfect. We note that
there are other variations in track capacity due to the use of
zone bit recording [10] and adaptive formatting [11]; however
in all but a negligible number of cases these will not result in
differing capacities for adjacent tracks.

Our solution to differing track capacities is to swap most of
the bottom track with the top track contents, as shown in Fig-
ure 3. If a bottom and adjacent top track hold Nb and Nt sectors
respectively, then we can swap the first Nt sectors of the bottom
track with the entire contents of the top track (tracks 4 and 5 in
Figure 3). In the case where hot sectors are located at the “end”
of the bottom track, we instead swap the last Nt sectors of the
bottom track with the contents of the top track (tracks 1 and
2 Figure 3). Given the original location of a sector (i.e. sector
position S on track T) the sector can be located precisely in the
flipped configuration given knowledge of which flip (low LBA
or high LBA) has been performed and the exact track sizes Nt
and Nb, which are already known by the firmware as part of the
LBA translation process. Note that once two tracks have been
flipped, data cannot migrate any further; if tracks T and T+1
have been flipped, then flipping T − 1 and T , or T + 1 and
T+2, is not allowed until T and T+1 have been flipped back.

Memory usage: The track mapping may be represented
in a very concise fashion, as each bottom track T is in one of
five states: (1) unmoved, (2) its low LBAs flipped with track
T−1, (3) its high LBAs flipped with T−1, or (4) and (5), its
high or low LBAs flipped with T+1. The resulting track map
requires 3 bits per bottom track, or 1.5 bits per track; assuming
a mean track size of 1.5 MB, this would require a map of about
2.5 MB for a 20 TB drive.

Memory requirements for hot track detection can be modest,
as well. The total number of tracks is large, 1.3×107 for our
20 TB drive; however the number of tracks written in the
period between iterations of the track flipping algorithm is
much smaller (e.g. 20K in our experiments). Logging these

track numbers in memory (using data structures such as an
array or a list) will take less than 0.25 MB, and they may then
be sorted and counted to determine track write frequency
during that interval.

Safety and crash consistency: For track flipping we need
to persist not only the state of the flipping process, but also
updates to the track mapping. The flip process involves one
more copy than RMW, but may be handled in the same way,
by keeping an update log in the backup region, and marking
sectors when they are copied back to their home (or flipped)
locations. Backup region metadata can include a small log
of map updates which can be appended to the track map
in batches. To persist changes to the track map we keep a
copy of the map on disk, and a log of updates to the map in
the “checkpoint location”. The checkpoint can be rewritten
periodically and the log recycled, resulting in a negligible
amortized cost for persisting map changes.

Timing: Assuming the head starts in an arbitrary location,
the time required to flip bottom track T and top track T+1 will
be:

1. tseek to reach track T
2. 3trot to read tracks T−1, T and T+14

3. tseek to reach a backup region
4. 2trot to write backup copies of track T−1 and T
5. tseek to return to track T
6. trot to write the contents of T+1 into track T
7. trot to write the contents of track T into T+1
8. trot to rewrite the contents of track T-1

for a total cost of 3tseek + 8trot . Since all accesses are to
entire tracks, we assume that existing disk scheduling and
buffering mechanisms allow reading or writing to begin
immediately after reaching a track, rather than incurring
additional rotational delay. Note, however, that track flipping is
a background operation, and can be interrupted at any point in
time—resuming an interrupted flip is very similar to the crash
recovery scenario, except that in-memory state is still available.
The primary performance impacts of track flipping are thus
a reduction in overall throughput, from the background
flipping process, in combination with RMW latency for those
bottom-track writes to tracks which have not been flipped.

For track flipping to be effective, hot bottom tracks must be
paired with neighboring cold top tracks, as there would be no
advantage to flipping the two tracks of the same “temperature”.
Although one can easily construct synthetic workloads (e.g.
uniform random) which lack neighboring hot/cold track pairs,
we wish to determine whether they are found in real-world
workloads. To address this question we analyze one of our
experimental workloads (w17, described in the Section 3
below), assuming a constant track size of 2 MB. In Figure 4 we
see write counts for the 20 hottest tracks and their neighbors.

4Seeks due to track switches as well as short seeks from track T −1 to
track T+1 and vice versa are not included in our calculations.

824 2019 USENIX Annual Technical Conference USENIX Association

Figure 4: Write count of 20 hottest tracks and their neighbors, trace w17. This workload is seen to be “track flipping-friendly”.

In only a few cases (e.g. track 5187) do hot tracks have a hot
neighbor; however even in those cases the other neighbor is
cold. Similar results are seen in many—but not all—other
workload traces. However we note that results may vary with
file systems other than the ones found in our traces, i.e. ext4
and NTFS, and will certainly vary with differing track sizes.

Real-world workloads are time-varying, with the identity
of hot locations changing over time. We see this in Figure 5,
which shows the write frequency over time for a range of 4
tracks. Not only does write frequency to a given track vary,
but relative write frequency between tracks changes as well:
e.g. track 3854 is much hotter than 3857 for a significant
period, while later in the trace track 3857 is hotter. By using
time-limited write counts, which are periodically reset after
each search for hot tracks to flip, we are able to adapt to these
changes in access frequency. In Algorithm 1 we see the full
track-flipping algorithm: every N writes (e.g. 20,000) we
select the hottest k bottom tracks over the last interval and, if
possible, switch them with cold neighbors.

2.3 Selective track caching

With track flipping—as with RMW—every track on the disk
except for the two “backup region” tracks is filled with user
data, requiring significant “data shuffling” to move data. If we
instead reserve a small number of tracks for translation layer
use, we can achieve additional gains in performance. Selective

Figure 5: Track write frequency for tracks 3054-3057, trace
w106. Y axis is the number of writes to a track out of 100,000
total writes.

Algorithm 1: track flipping
parameter :updateFrequency, flipThreshold, maxFlips
variable :ioDirection (read/write), trackPosition

(bottom/top), trackNumber, writeCount,
flipCount, trackIdLog [], trackCounts []

1 ioDirection, trackPosition, trackNumber← ReceiveIO()
2 if ioDirection==write then
3 writeCount ++
4 trackIdLog.append(trackNumber)
5 if writeCount mod updateFrequency== 0 then
6 trackCounts []← Count (trackIdLog)
7 for every track in Hottest (trackCounts) do
8 flipCount ++
9 middleCounter = trackCounts [track]

10 leftCounter = trackCounts [track-1]
11 rightCounter = trackCounts [track +1]
12 selected = Min (leftCounter, rightCounter)
13 temperatureDiff = middleCounter- selected
14 if temperatureDiff > flipThreshold then
15 TrackFlip (track, selected) maxFlips ++
16 end
17 if flipCount>=maxFlips then
18 Break ()
19 end
20 end
21 end
22 end

track caching does precisely this, reserving a small range of
non-interlaced bottom-only tracks as a persistent cache for
holding data from hot bottom tracks. Whereas track flipping
is not able to move a hot bottom track if both of its neighbors
are also hot or if both of its neighbors are already flipped with
another bottom track, selective track caching is able to move
any hot bottom track, at any time.

More specifically, we reserve k bottom tracks as a random-
write region (much like an SMR persistent cache), either at
the outer diameter to maximize track size and transfer rate, or
distributed in smaller groups across the disk to minimize seek
time to the nearest cache. We note that tracks in the persistent
cache will not be precisely the size of tracks that are cached
there; instead we allocate “logical tracks” within the cache,
where each logical track is a range of LBAs long enough to

USENIX Association 2019 USENIX Annual Technical Conference 825

hold a full track and a metadata header. As seen in Algorithm 2,
we again monitor track write counts, and periodically select
the hottest bottom tracks to be moved to persistent cache, while
moving the coldest cached tracks back to their home location.

Memory usage: For this algorithm, memory is needed for
monitoring track write counts and for keeping a map of the
cached tracks. The requirements for track write monitoring
are the same as they are for track flipping, and thus the
same approaches may be used with identical memory usage:
hundreds of KB for logging the track numbers written in the
period between iterations, or negligible usage if write tracking
already performed by the drive is adequate. If the cache map
is structured as a look-aside list of exceptions to the standard
map, then its memory usage is proportional to the size of the
persistent cache, not the drive itself. In our experiments a cache
of 100 tracks was used, requiring a trivial amount of memory;
however for a cache of several tens of thousands of tracks,
memory usage should still remain in the range of a few MB.

Safety and crash consistency: The same approach may be
used for maintaining a consistent copy of the map as for track
flipping: updates are logged, and a full checkpoint written
periodically. Alternately if the cache size is sufficiently small
we can exhaustively scan the cache and rebuild the map on
startup; however this requires trot per track, and starts to
become impractical at cache sizes of less than 100 tracks.

Timing: The actual data movement portion of this algo-
rithm is straightforward. Promotion of a bottom track to the
cache merely requires seeking to it (tseek), reading it (trot),
seeking to the cache (tseek), and writing it (trot), for a total of
2tseek+2trot . However track eviction takes longer as it requires
a full-track RMW operation; the time taken will be:

1. tseek to reach track C in the cache
2. trot to read track C

Algorithm 2: selective track caching
parameter :updateFrequency, cacheSize
variable :ioDirection, trackPosition,

trackNumber, writeCount, trackIdLog
[], cachedTracks [], trackCounts [], victim

1 ioDirection, trackPosition, trackNumber← ReceiveIO()
2 if ioDirection==write then
3 writeCount ++
4 trackIdLog.append(trackNumber)
5 if writeCount mod updateFrequency== 0 then
6 trackCounts []← Count (trackIdLog)
7 for every track in Hottest (trackCounts) do
8 if track not in cache then
9 victim← Coldest (cachedTracks)

10 TrackSwap (track, victim)
11 end
12 end
13 end
14 end

3. tseek to reach track T−1
4. 2trot to read track T−1 and T+1
5. tseek to reach to the backup region
6. 2trot to write backup copies of track T−1 and T+1
7. tseek to seek back to track T
8. trot to write the contents of track C into T
9. 2trot to re-write track T−1 and T+1

for a total cost of 4tseek+8trot . In steady state one track will be
evicted for every track promoted, for a total cost of 7tseek+8trot
per track promoted. Batching of promotions and evictions may
remove several seek times from this total, but will not make
great improvements due to the scattered locations of tracks
being promoted or evicted. Again we note that promotions and
evictions are interruptible background operations; the impact
on host I/O will be a loss of throughput due to these operations,
plus RMW latency for writes to non-promoted tracks.

2.4 Dynamic track mapping
Dynamic track mapping is another strategy for addressing
the track flipping key limitations: (1) only neighboring tracks
could be switched and (2) a small portion of bottom track
must remain unflipped. It achieves this by allowing arbitrary
permutations of tracks within zones (groups of small numbers
of tracks).

To address unequal track sizes, in dynamic mapping we
concatenate all bottom-track LBAs and group them in fixed-
sized pseudo-tracks of approximately one physical track in size
(except for the last pseudo-track). We similarly group all top-
track LBAs into pseudo-tracks of the same size. These equal-
sized pseudo-tracks may then be arbitrarily switched with each
other. Algorithm 3 describes dynamic track mapping in more
detail; as seen, we periodically check for hot bottom pseudo-
tracks and swap the hottest bottom with the coldest top tracks.

Memory usage: If zones are sized to hold 256 pseudo-
tracks, only 8 bits are needed for each map entry; for our
20 TB drive with almost 13M tracks this would require about
12.5 MB of memory: more than that needed for track flipping,
but still modest.

Safety and crash consistency: Similar to track flipping
and track caching, to persist the changes, dynamic track
mapping logs the updates to the map and also writes a full
checkpoint periodically.

Timing: The time required to swap a hot bottom track T with
a cold top track T ′ in dynamic track mapping is very similar to
that of track flipping. However, since pseudo-track size is not
equal to physical track size, it is possible that a track cannot
be read immediately after the head is placed resulting in a half
rotation on average. The time required for a single swap will be:

1. tseek+0.5trot to reach track T
2. 3trot to read tracks T−1, T , and T+1
3. tseek to reach a backup region

826 2019 USENIX Annual Technical Conference USENIX Association

4. 3trot to write backup copies of track T−1, T and T+1
5. tseek+0.5trot to reach track T ′

6. trot to read track T ′

7. tseek+0.5trot to return to track T
8. 3trot to write the contents of T ′ into track T and write

back the contents of T−1 and T+1
9. tseek+0.5trot to return to track T ′

10. trot to write the contents of T into track T ′

Thus, the expected total cost is 5tseek+13trot .

3 Methodology

We evaluate the four IMR translation algorithms—naive read-
modify-write (RMW), track flipping, selective track caching
and dynamic track mapping— in addition to conventional disk
(CMR) via trace-driven simulation. We use the CloudPhysics
traces [18], a recent set of block traces from virtual machines
running Linux and Windows with modern file systems and
large storage volumes. The LBA ranges covered in the traces
varied from tens of gigabytes to 1.5TB.

Prior work [6] has shown that older traces (e.g. the
widely-used MSR Cambridge traces [13] from c. 2007)
display fine-grained behavior which is very different from that
exhibited by modern file systems; although this difference in
behavior may not be significant in block-level systems (e.g.
FTLs) that ignore spatial locality, it has been demonstrated

Algorithm 3: dynamic track mapping
parameter :updateFrequency, swapThreshod
variable :ioDirection (read/write), trackPosition,

trackNumber, writeCount, trackIdLog
[], trackCounts [], cldstTrk, hotstTrk

1 ioDirection, trackPosition, trackNumber← ReceiveIO()
2 Function RemapTracks() is
3 trackCounts []← Count (trackIdLog)
4 for every cldstTrk in Coldest (trackCounts)

and hotstTrk in Hottest (trackCounts) do
5 temperatureGap= hotstTrkCntr- cldstTrkCntr
6 if temperatureGap> swapThreshod then
7 TrackSwap (cldstTrk, hotstTrk)
8 end
9 end

10 end
11 if ioDirection==write then
12 writeCount ++
13 trackIdLog.append(trackNumber)
14 if writeCount mod updateFrequency== 0 then
15 for every zone do
16 RemapTracks()
17 end
18 end
19 end

to result in significant differences in the performance of
disk-based systems. The CloudPhysics corpus comprises 106
different traces; we sampled this set and selected a collection
that represents different levels of read/write intensity and
spatial locality. A summary of the selected workloads is shown
in Table 1. The workloads range in size from about 3 to 44
million I/Os, and range from read-heavy (w08, 09% writes)
to very write-heavy (w39, 95% writes).

Disk model: Our simulation assumes a 6000 RPM disk
(Trot = 10ms) with equal-sized 2 MB tracks; although crude,
we argue that this model is fairly accurate in the absence
of real IMR disks for comparison. Based on current trends,
2 MB is a reasonable estimate of the mean track size for a
next-generation drive; however real disks have decreasing
track sizes towards the inner radius of the platter, with roughly
a factor of two difference between the largest and smallest
tracks. Since the majority of sectors lie in the larger outer
tracks, the actual variance from the mean is less than this factor
of two would imply, and as modern file systems (ext4 and
NTFS) do not consider track location (as opposed to locality) in
placement, errors in either direction are expected to cancel out.

The primary inaccuracy introduced by this model is in track
flipping: the model assumes that top and bottom tracks are
of equal size, so that no remainder of the bottom track is left
behind after flipping. If top tracks in a real drive have 90%
the capacity of bottom tracks, this would result in up to 10%
of writes to this track being classified by the simulator as
top-track writes, rather than bottom-track RMW writes. Since
the colder end of the track is left behind, we expect that the
misclassification rate be less than 10%. However, if both track
ends are equally hot, the misclassification rate will be higher.
Our observation of hot-track LBA access patterns suggests
that either one end is extremely hot or all LBAs are accessed
evenly. At present we neither know the actual ratio of top to
bottom track size in a specific real IMR drive, nor the practical
range of this parameter for feasible drives; therefore this 90%
figure is highly speculative. Given this uncertainty, the choice
of a uniform track size is simple and not unreasonable.

Trace playback: The traces used were collected in a
virtualized environment, with a high-performance multi-disk
(or SSD) back-end storage system. The resulting I/O rates may
be seen in the inter-arrival time CDFs in Figure 6, where half of
inter-arrival times for one trace (w84) are in the 100 µS range
(up to 10,000 IOPS), while 80% of writes for another trace
(w35) are below 500 µS (2000 IOPS). Several approaches may
be taken in adapting such a trace to a single-disk simulation.
One method is to run the simulation “flat-out”, ignoring
inter-arrival times and launching (or queuing) each I/O as soon
as possible. However since our IMR translation algorithms
include background work, the resulting behavior would not
be representative of system behavior for real applications.

Our goal instead is to simulate what system behavior would
be if the application that produced the original trace were
run against the simulated (and much slower) I/O device.

USENIX Association 2019 USENIX Annual Technical Conference 827

Table 1: Statistical summary of selected workloads.

workload w08 w09 w17 w24 w26 w28 w31 w34 w39 w43 w46 w48 w56 w61 w84 w87 w106
I/O count (M) 44.3 49.6 31.3 27.1 26.5 19.7 21.1 19.5 17.9 15.6 11.5 14 10.8 9.8 4.8 3.7 3.2
write ratio 0.09 0.55 0.78 0.11 0.58 0.33 0.16 0.23 0.97 0.51 0.62 0.42 0.95 0.50 0.86 0.79 0.82

Figure 6: CDF of I/O inter-interval times in a few workloads.

Figure 7: “Stretching” of original trace timestamps for IMR
simulation.

Accurate simulation of such behavior requires information
on application CPU usage and I/O dependencies which are
not available in the original traces. Although recent work [5]
provides mechanisms for inferring I/O dependencies given a
trace containing both initiation and completion times for I/Os,
very few of the traces we used contained this information.

Instead we consider a fixed-queue model, with a queue
size of 64; based on inspection of the traces we believe this
is an intermediate point between the lower effective queue
depths seen with many application-initiated I/Os, and the
very high degree of parallelism with which I/Os are initiated
by the virtual memory system. I/O inter-arrival times are
preserved when inserting items into the queue until it is filled,
and then further I/Os are blocked until a position in the queue
opens; in other words, the inter-arrival time between I/Os N
and N+1 is the maximum of the original trace inter-arrival
time and the time for the queue to drain by 1. The resulting
I/O performance reflects a combination of individual I/Os
and queuing delays due to device throughput limitations. As
an example, in Figure 7 we see this “time dilation” for two
workloads with naive RMW—in one case trace completion
is delayed by about 150s, and in the other by over 1440s.

3.1 Disk model details
I/O latency: In our simulation, I/O latency includes host and
device queuing, seek time, rotational delay and transfer time.
Seek time (Tseek) is calculated from the source and destination
track locations using the following equation proposed by
Shafaei [16], assuming minimum and maximum seek times
of 2 and 20 ms and calculating α accordingly:

tseek(trksrc,trkdes)=α∗
√
|trksrc−trkdes|+tseekmin (1)

Rotational delay for I/Os on different tracks is assumed to
be uniformly distributed between 0 and 1 rotation (Trotation);
for deterministic simulation we assume a constant value of
a half rotation, giving a total I/O latency of:

tI/O= tseek+
1
2

trotation+ttrans f er (2)

We note that IOs are split at boundaries in case they touch
more than a track. The full list of drive specifications and
experiment configurations is shown in Table 2.

4 Evaluation

In this section we evaluate five alternatives—conventional
disk (CMR), IMR with naive read-modify-write (RMW),
IMR with track flipping, IMR with selective track caching
and IMR with dynamic track mapping—by measuring I/O
latencies and write amplification factor (WAF). Summary
results for all traces and algorithms are shown in Figure 8
(write amplification) and Figure 9 (latency).

All track flipping, selective track caching and dynamic track
mapping are seen to give substantial improvements in write

Table 2: Experimental parameters and drive specification.

drive specification
track size drive cache size rotation delay

2MB 100MB 10 ms
dynamic track mapping and flipping configuration

update frequency hot/cold threshold max flips
20K write ops 50 50

selective track caching configuration
update frequency track cache size cache location

20K write ops 100 tracks OD

828 2019 USENIX Annual Technical Conference USENIX Association

Figure 8: IMR write amplification by workload and translation layer.

(a) Mean latency

(b) 90th percentile latency

Figure 9: Mean and tail latency for 17 workloads: CMR, RMW, track flipping, track caching and dynamic track mapping.

amplification when compared to naive read-modify-write,
by a factor of 2 or more in over half of the cases; in no
case is performance degraded. As expected, dynamic track
mapping shows the best performance in most cases as it has
the minimum limitations among the proposed approaches.
For several workloads it reduces the write amplification by
a factor of 2 or more; in some cases (e.g., w56, w39 and w106)
write amplification is nearly eliminated.

Results for mean latency are more mixed. In several
cases (e.g., w09, w17, w39, w46, w56, w61 and w87) IMR
read-modify-write latencies were noticeably higher than
for the conventional drive. For w56 this excess latency
was virtually eliminated by track flipping, track caching or
dynamic track mapping. For some others (e.g., w17, w39,
w46) at least one of the approaches gave a significant reduction
(more than 2x) in IMR latency, while still remaining about
twice that of conventional. For w09 and w87, however, latency
improvements from dynamic track mapping were modest,
with performance still significantly worse than CMR.

Figure 10: CDF of track write counts for workloads with
highest (w106 and w39) and lowest (w87 and w87) WAF
improvement with track flipping and/or selective track caching.

In Figure 10 we explore one possible reason for lower
improvement for traces w09 and w87: the overall number
of hot tracks. We compare these traces with w106 and w39,
the traces that show the greatest improvements in write
amplification when track flipping or track caching is used (see

USENIX Association 2019 USENIX Annual Technical Conference 829

Figure 8). We see that a high fraction of writes in w106 are to
the hottest 100 tracks, and that half of the writes in w39 are to a
handful of tracks. In contrast the “working set” of hot tracks for
w09 and w87 appears to be very large, with only around 20%
and 15% of writes going to the hottest 100 tracks, respectively.
The track cache used in our experiments (100 tracks) would
do almost nothing to help in this case, and if many writes are
to tracks which are written only a few times at most, then the
gain from flipping them will not outweigh the cost.

As with mean latency, results for tail latency (Figure 9b) are
also mixed, although worse. In a few cases (e.g., w39 and w56)
RMW increases tail latency by a factor of tens of thousands.
That is because with CMR most writes in these cases appear
to complete in the write cache which results in a mean latency
of about 0.1ms, and there is just enough idle time for them
to be flushed to disk; however with RMW the disk cannot
keep up during idle time, so the queue fills and stays that way
causing mean latency of about 2.4s. Overall tail latency is
increased by more than 4x across majority of the workloads. In
the worst cases (w39, w56) the proposed algorithms limit the
relative increase in tail latency to double digits, but is still very
high. In about half the cases tail latency with dynamic track
mapping is similar to that of CMR; however in the remainder
it is significantly worse.

For both mean and tail latency, there are a few workloads
(w08, w24, w31 and w43) that are not affected by IMR and
accordingly no improvement is observed when the proposed
algorithms are applied. Besides w43 with almost 51% of write
operations, the rest of the workloads are read-heavy traces and
therefore are less prone to significant performance penalty due
to IMR.

To examine further, in Figure 12 we see CDFs of I/O
latencies for traces w46 and w28. In each case IMR read-
modify-write results in high-latency I/Os due to a combination
of operation latency and queuing delays due to reduced
throughput; roughly 2/3 of writes were slowed in both cases.
We note that there are some other cases e.g., w56 with fewer
writes (roughly 10%) being affected. Track flipping, track
caching and dynamic track mapping are all able to improve
the w28 and w46 performance considerably, but a significant
fraction of writes (roughly 25%) still suffer excessive latency.
Our observations show that for the case w56 the three improved
algorithms are all able to eliminate the excess latencies,
resulting in performance comparable to a conventional drive.

The impact of IMR overhead on throughput can be
approximated by looking at the issue time expansion during
the simulation run; this indicates the periods at which the
device was unable to keep up with the I/O trace, and by how
much. In Figure 13 we see issue time disparity vs. I/O count
for traces w46 and w28. We note that for w46 all dynamic
track mapping, and to a slightly lesser extent track caching
and track flipping, result in significantly improved throughput.
For w28, dynamic track mapping shows a considerable
throughput improvement; track caching and track flipping

show a smaller improvement. We also note that throughput of
the simulated algorithms would increase with larger I/Os, as
read-modify-writes would be amortized over larger I/O sizes.

Track flipping only works if hot tracks are adjacent to cold
tracks; if hot regions on the disk are substantially larger than a
track, this might not be the case. In Figure 4 of Section 2.2 we
saw that this was the case for trace 17; however in Figure 11
we see the same analysis for w87; although the hottest few
tracks stand alone, many tracks with very high write counts
are surrounded by tracks of similar hotness.

5 Related work

Interlaced Magnetic Recording [9] is a new storage technology
using HAMR (Heat assisted magnetic recording) [4, 12] and
track overlap (the technique on which SMR [19] is based)
to achieve higher areal density than possible with either
approach alone [3]. Numerous works have characterized [1]
and modeled [15, 16] SMR performance; however due to
fundamental differences in track layout and write constraints
such work is not directly applicable to IMR.

While only a limited number of translation layers and data
management techniques have been proposed for IMR in the
two years since the original work became public [20], a wide
range of file systems and translation layers have been proposed
for SMR, such as Cassuto’s indirection system [2], SMaRT [8]
from He and Du, Shafaei’s Virtual Guard [14], and FSTL [7].
Cassuto et al. propose a set associative persistent cache to hold
updated sectors. SMaRT [8] proposes using a track-based dy-
namic mapping. Shafaei et al. propose a track-based static map-
ping translation layer which caches tracks containing at-risk
data, rather than the track targeted by the I/O. Hajkazemi et al.
[7] propose an LBA-based translation layer based on dynamic
mapping. Since the write restrictions in SMR are a strict super-
set of IMR restrictions, SMR translation layers could in fact be
applied to IMR; however this would ignore the performance
improvements possible due to lessened write restrictions.

To the best of our knowledge, the data management design
introduced by Wu et al. [20] is the only published work
on IMR translation layers to date. The authors propose
Top-Buffer, a technique utilizing unallocated top tracks of
each track-group (a small set of tracks interlaced with top
tracks) as a buffer to store LBA updates corresponding to
bottom tracks. Moreover they suggest Block Swapping, a
technique to swap bottom hot LBAs with cold ones within a
track-group. Our work differs in that it is targeted for in-disk
implementation, in a restricted-memory environment, while
the memory requirements for Wu et al.’s algorithm are beyond
the capabilities of a drive controller.

830 2019 USENIX Annual Technical Conference USENIX Association

Figure 11: Write count of 20 hottest tracks and their neighbors, trace 87. This trace is seen to be “track flipping-unfriendly”.

(a) w46

(b) w28

Figure 12: I/O latency distribution: workloads w46 (a) and
w28 (b), for CMR, IMR/RMW, IMR/track flipping, IMR/track
caching.

6 Conclusion

Interlaced magnetic recording is still a new—or even
speculative—technology, and we cannot be sure of its precise
characteristics until real prototypes are available. However,
when such prototypes arrive, algorithms will be needed to cope
with the IMR write restrictions, and due to the track-based
nature of the restrictions, those algorithms will need to run
in the memory-limited environment of the drive controller.

We quantify the performance of the naive read-modify-write
algorithm for IMR bottom track writes, showing that it is
significantly more costly than assumed in prior work, and
show via trace-driven simulations that for some workloads
its performance is comparable to that of a conventional disk,
but that it is worse, sometimes catastrophically so, for others.
We present three algorithms to reduce the frequency of IMR
bottom-track writes: track flipping, selective track caching

(a) w46

(b) w28

Figure 13: Issue time disparity (I/O issue time gap between
CMR and other studied approaches) of traces w46 and w28.

and dynamic track mapping, with sufficiently modest memory
requirements to be readily implemented in drive controllers.
These algorithms are shown to improve I/O amplification
significantly for almost all workloads examined, and to
improve latency for some—but not all—of the workloads
which performed poorly with IMR read-modify-write. Further
research is needed to determine whether extensions of this
work (e.g. track flipping+caching) will yield conventional
drive-level performance for IMR with acceptable memory cost.

Acknowledgment

We would like to thank Irfan Ahmad and CloudPhysics for
the use of their traces, our shepherd William Jannen, and the
anonymous reviewers for their valuable suggestions.

USENIX Association 2019 USENIX Annual Technical Conference 831

References
[1] AGHAYEV, A., SHAFAEI, M., AND DESNOYERS, P. Skylight—a win-

dow on shingled disk operation. ACM Transactions on Storage (TOS)
11, 4 (2015), 16.

[2] CASSUTO, Y., SANVIDO, M. A. A., GUYOT, C., HALL, D. R., AND
BANDIC, Z. Z. Indirection systems for shingled-recording disk drives.
In Proceedings of the 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST) (Washington, DC, USA, 2010), MSST
’10, IEEE Computer Society, pp. 1–14.

[3] GRANZ, S., JURY, J., REA, C., JU, G., THIELE, J., RAUSCH, T., AND
GAGE, E. C. Areal density comparison between conventional, shingled,
and interlaced heat-assisted magnetic recording with multiple sensor
magnetic recording. IEEE Transactions on Magnetics 55, 3 (March
2019), 1–3.

[4] GRANZ, S., ZHU, W., SENG, E. C. S., KAN, U. H., REA, C., JU, G.,
THIELE, J.-U., RAUSCH, T., AND GAGE, E. C. Heat-assisted interlaced
magnetic recording. IEEE Transactions on Magnetics 54, 2 (2018), 1–4.

[5] HAGHDOOST, A., HE, W., FREDIN, J., AND DU, D. H. C. On the
Accuracy and Scalability of Intensive I/O Workload Replay. In 15th
USENIX Conference on File and Storage Technologies (FAST 17) (Santa
Clara, CA, Feb. 2017), USENIX Association, pp. 315–328.

[6] HAJKAZEMI, M. H., ABDI, M., AND DESNOYERS, P. Minimizing
read seeks for smr drives. In Proceedings of the 2018 IEEE International
Symposium on Workload Characterization (2018), IEEE.

[7] HAJKAZEMI, M. H., ABDI, M., SHAFAEI, M., AND DESNOYERS, P.
Fstl: A framework to design and explore shingled magnetic recording
translation layers. In Proceedings of the 26th IEEE International Sym-
posium on the Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS ’18) (Oct. 2018), IEEE.

[8] HE, W., AND DU, D. H. SMaRT: An approach to shingled magnetic
recording translation. In Proceedings of the 6th USENIX Conference
on File and Storage Technologies (Santa Clara, CA, 2017), USENIX
Association, pp. 121–134.

[9] HWANG, E., PARK, J., RAUSCHMAYER, R., AND WILSON, B. In-
terlaced magnetic recording. IEEE Transactions on Magnetics 53, 4
(2017), 1–7.

[10] JACOB, B., NG, S., AND WANG, D. Memory Systems: Cache, DRAM,
Disk. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2007.

[11] KREVAT, E., TUCEK, J., AND GANGER, G. R. Disks Are Like
Snowflakes: No Two Are Alike. In Proceedings of the 13th USENIX
Conference on Hot Topics in Operating Systems (Berkeley, CA, USA,
2011), HotOS XIII, USENIX Association, pp. 14–14.

[12] KRYDER, M. H., GAGE, E. C., MCDANIEL, T. W., CHALLENER,
W. A., ROTTMAYER, R. E., JU, G., HSIA, Y.-T., AND ERDEN, M. F.
Heat assisted magnetic recording. Proceedings of the IEEE 96, 11 (2008),
1810–1835.

[13] NARAYANAN, D., DONNELLY, A., AND ROWSTRON, A. Write off-
loading: practical power management for enterprise storage. In Proceed-
ings of the 6th USENIX Conference on File and Storage Technologies
(San Jose, California, 2008), USENIX Association, pp. 1–15.

[14] SHAFAEI, M., AND DESNOYERS, P. Virtual Guard: A Track-Based
Translation Layer for Shingled Disks. In 9th USENIX Workshop on Hot
Topics in Storage and File Systems (HotStorage 17) (Santa Clara, CA,
2017), USENIX Association.

[15] SHAFAEI, M., HAJKAZEMI, M. H., DESNOYERS, P., AND AGHAYEV,
A. Modeling smr drive performance. In Proceedings of the 2016 ACM
SIGMETRICS International Conference on Measurement and Modeling
of Computer Science (New York, NY, USA, 2016), SIGMETRICS ’16,
ACM, pp. 389–390.

[16] SHAFAEI, M., HAJKAZEMI, M. H., DESNOYERS, P., AND AGHAYEV,
A. Modeling drive-managed smr performance. ACM Transactions on
Storage (TOS) 13, 4 (2017), 38.

[17] THOMPSON, D., AND BEST, J. The future of magnetic data storage
techology. IBM Journal of Research and Development 44, 3 (May 2000),
311–322.

[18] WALDSPURGER, C. A., PARK, N., GARTHWAITE, A., AND AHMAD,
I. Efficient MRC Construction with SHARDS. In 13th USENIX Con-
ference on File and Storage Technologies (FAST 15) (Santa Clara, CA,
2015), USENIX Association, pp. 95–110.

[19] WOOD, R., WILLIAMS, M., KAVCIC, A., AND MILES, J. The feasibil-
ity of magnetic recording at 10 terabits per square inch on conventional
media. IEEE Transactions on Magnetics 45, 2 (2009), 917–923.

[20] WU, F., ZHANG, B., CAO, Z., WEN, H., LI, B., DIEHL, J., WANG,
G., AND DU, D. H. C. Data Management Design for Interlaced Mag-
netic Recording. In 10th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage 18) (Boston, MA, Feb. 2018), USENIX
Association.

832 2019 USENIX Annual Technical Conference USENIX Association

Your Co�ow Has Many Flows: Sampling Them for Fun and Speed

Akshay Jajoo
ajajoo@purdue.edu

Y. Charlie Hu
ychu@purdue.edu
Purdue University

Xiaojun Lin
linx@purdue.edu

Abstract
Co�ow scheduling improves data-intensive application per-
formance by improving their networking performance. State-
of-the-art online co�ow schedulers in essence approximate
the classic Shortest-Job-First (SJF) scheduling by learning the
co�ow size online. In particular, they use multiple priority
queues to simultaneously accomplish two goals: to sieve long
co�ows from short co�ows, and to schedule short co�ows
with high priorities. Such a mechanism pays high overhead
in learning the co�ow size: moving a large co�ow across
the queues delays small and other large co�ows, and moving
similar-sized co�ows across the queues results in inadvertent
round-robin scheduling.

We propose Philae, a new online co�ow scheduler that
exploits the spatial dimension of co�ows, i.e., a co�ow has
many �ows, to drastically reduce the overhead of co�ow size
learning. Philae pre-schedules sampled �ows of each co�ow
and uses their sizes to estimate the average �ow size of the
co�ow. It then resorts to Shortest Co�ow First, where the no-
tion of shortest is determined using the learned co�ow sizes
and co�ow contention. We show that the sampling-based
learning is robust to �ow size skew and has the added bene�t
of much improved scalability from reduced coordinator-local
agent interactions. Our evaluation using an Azure testbed,
a publicly available production cluster trace from Facebook
shows that compared to the prior art Aalo, Philae reduces
the co�ow completion time (CCT) in average (P90) cases by
1.50× (8.00×) on a 150-node testbed and 2.72× (9.78×) on a
900-node testbed. Evaluation using additional traces further
demonstrates Philae’s robustness to �ow size skew.

1 Introduction

1.1 Motivation
In big data analytics jobs, speeding up the communication
stage where the data is transferred between compute nodes
is important to speed up the jobs. However, improving net-
work level metrics such as �ow completion time may not
translate into improvements at the application level metrics
such as job completion time. The co�ow abstraction [18] was
proposed to bridge such a gap. The abstraction captures the
collective network requirements of applications, as reduced
co�ow completion time (CCT) can directly lead to faster job
completion time [20, 24].

There have been a number of e�orts on network designs
for co�ows [7, 21, 27] that assume complete prior knowledge
of co�ow sizes (The co�ow size is de�ned as the total size of
its constituent �ows.). However, in many practical settings,
co�ow characteristics are not known a priori. For example,
multi-stage jobs pipeline data from one stage to the next
as soon as the data is generated, which makes it di�cult
to know the size of each �ow [22, 40]. A recent study [40]
shows various other reasons why it is not very plausible to
learn �ow sizes from applications, for example, learning �ow
sizes from applications requires changing either the network
stack or the applications.

Scheduling co�ows in such non-clairvoyant settings, how-
ever, is challenging. The major challenge in developing an
e�ective non-clairvoyant co�ow scheduling scheme has cen-
tered around how to learn the co�ow sizes online quickly
and accurately, as once the co�ow sizes (bytes to be trans-
ferred) can be estimated, one can apply variations of the
classic Shortest-Job-First (SJF) algorithm such as Shortest
Co�ow First [21] or apply an LP solver (e.g., [7]).

State-of-the-art online non-clairvoyant schedulers such as
Saath [30], Gravtion [29] and Aalo [19] in essence learn
co�ow sizes and approximate SJF using discrete priority
queues, where all newly arriving co�ows start from the high-
est priority queue, and move to lower priority queue as they
send more data (without �nishing), i.e., cross the per-queue
thresholds. In this way, the smaller co�ows �nish in high
priority queues, while the larger co�ows gradually move to
the lower priority queues where they �nish after smaller
co�ows.

To realize the above idea in scheduling co�ows which have
�ows at many network ports, i.e., in a distributed setting, Aalo
uses a global coordinator to assign co�ows to logical priority
queues, and uses the total bytes sent by all �ows of a co�ow as
its logical “length” in moving co�ows across the queues. The
logical priority queues are mapped to local priority queues
at each port, and the individual local ports then schedule the
�ows in its local priority queues, e.g., by enumerating �ows
from the highest to lowest priority queues and using FIFO
to order the �ows within each queue.

In essence, Aalo learns co�ow sizes by actually scheduling
the co�ow, a “try and miss” approach to approximate SJF. As
co�ow sizes are not known, in each queue, Aalo schedules
each co�ow for a �xed amount of data (try). If the co�ow
does not �nish (miss), it is demoted to a lower priority queue.

USENIX Association 2019 USENIX Annual Technical Conference 833

Afterwards, such a co�ow will no longer block co�ows in
higher priority queues.

Using multiple priority queues to learn the relative co�ow
sizes of co�ows this way, however, negatively a�ects the
average CCT and the scalability of the coordinator:

(1) Intrinsic queue-transit overhead: Every co�ow
that Aalo transits through the queues before reaching its
�nal queue worsens the average CCT because during transi-
tions, such a co�ow e�ectively blocks other shorter co�ows in
the earlier queues it went through, which would have been
scheduled before this co�ow starts in a perfect SJF.

(2) Overhead due to inadvertent round-robin: Al-
though Aalo attempts to approximate SJF, it inadvertently
ends up doing round-robin for co�ows of similar sizes as it
moves them across queues. Aalo assigns a �xed threshold of
data transfer for each co�ow in each queue. Assume there
are “N” co�ows in a queue that do not �nish in that queue.
Aalo schedules one co�ow (chosen using FIFO) and demotes
it to a lower priority queue when the co�ow reaches the
data threshold. At that point, the next co�ow from the same
queue is scheduled, which joins the previous co�ow at a
lower priority queue after exhausting its quantum, and this
cycle continues as co�ows of similar sizes move through
the queues. E�ectively, these co�ows experience the round-
robin scheduling which is known to have the worst average
CCT [39], when jobs are of similar sizes.

(3) Limited scalability from frequent updates from
local ports: To support the try-and-error style learning, the
coordinator requires frequent updates from all local ports
of the bytes sent for each co�ow in order to move co�ows
across multiple queues timely. This results in high load on
the central coordinator from receiving frequent updates and
calculating and sending new rate allocations, which limits
the scalability of the overall approach.
Empirical measurement We quantify the co�ow size
learning overhead of Aalo, de�ned as the portion of the bytes
of a co�ow that has been transferred (or the fraction of its
CCT spent in doing so) before reaching its correct queue,
using a trace from Facebook clusters [4] (see detailed method-
ology in §8). Figure 1 shows that 40% of the co�ows that
moved beyond the initial queue reached the correct priority
queue after spending more than 20% of their CCT moving
across early queues.

1.2 Our Contribution
We propose Philae, a new non-clairvoyant co�ow scheduler
with a dramatically di�erent approach to learning co�ow
sizes to enable online SJF. To leverage optimal scheduling
SJF in co�ow scheduling, it is vital to learn the co�ow sizes
quickly and accurately. Philae achieves this objective by
exploiting the spatial dimension of co�ows, i.e., a co�ow typ-
ically consists of many �ows, via sampling, a highly e�ective
technique used in large-scale surveys [34]. In particular, Phi-
lae pre-schedules sampled �ows, called pilot �ows, of each

10−3 10−2 10−1 100

Learning time/Total time

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Philae
Aalo

Figure 1: CDF of learning overhead per co�ow, i.e., the time
to reach the correct priority queue as a fraction of CCT,
excluding co�ows directly scheduled by Philae or �nish in
Aalo’s �rst queue.
co�ow and uses their measured size to estimate the co�ow
size. It then resorts to SCF using the estimated job size.

Intuitively, such a sampling scheme avoids all three
sources of overhead in Aalo – Once the co�ow sizes are
learned, the co�ows are assigned to the correct queues, which
avoids the intrinsic queue-transit and round-robin e�ects.
Further, a sampling-based design has an important bene�t –
it o�ers much higher scalability than priority-queue-based
learning in Aalo. This is because unlike Aalo, after estimating
the co�ow size, Philae clients do not need to send periodic
updates of bytes sent-so-far to the centralized coordinator.

Developing a complete non-clairvoyant co�ow scheduler
based on the simple sampling idea raises three questions:
(1) Why is sampling more e�cient than the priority-queue-
based co�ow size learning? (2) Will sampling be e�ective in
the presence of skew of �ow sizes? (3) How to design the
complete scheduler architecture? We systematically address
these questions with design rational, theoretical analysis,
system design, prototyping, and extensive evaluation.

In summary, this paper makes the following contributions:
(1) Using a production datacenter trace from Facebook, we
show that the prior art scheduler Aalo spends substantial
amount of time and network bandwidth in learning co�ow
sizes, which negatively a�ects the CCT of co�ows.
(2) We propose the novel idea of applying sampling in the
spatial dimension of co�ow to signi�cantly reduce the over-
head of online learning co�ow sizes.
(3)We present theoretical underpinning explaining why sam-
pling remains e�ective in the presence of �ow size skew.
(4) We present the design and implementation of Philae.
(5) We extensively evaluate Philae via simulations and
testbed experiments, and show that compared to the prior
art, the new design reduces the average CCT by 1.51× for
the Facebook co�ow trace and by 1.36× for a trace with
properties similar to a Microsoft production cluster.
(6) The CCT improvement mainly stems from reduced co�ow
size learning overhead. Philae reduces the median latency
and data sent in �nding the right queue for co�ows in Aalo
by 19.0× and 20.0×, respectively (§8.2).

834 2019 USENIX Annual Technical Conference USENIX Association

2 Background and Problem Statement

We start with a brief review of the co�ow abstraction and the
need for non-clairvoyant co�ow scheduling. We then state
the network model and problem formulation.

Co�ow abstraction In data-parallel applications such as
Hadoop [1] and Spark [2], the job completion time heav-
ily depends on the completion time of the communication
stage [12, 20]. The co�ow abstraction [18] was proposed to
speed up the communication stage to improve application
performance. A co�ow is de�ned as a set of �ows between
several nodes that accomplish a common task. For example,
in map-reduce jobs, the set of all �ows from all map to all
reduce tasks in a single job forms a typical co�ow. The co�ow
completion time (CCT) is de�ned as the time duration be-
tween when the �rst �ow arrives and the last �ow completes.
In such applications, improving CCT is more important than
improving individual �ows’ completion time (FCT) for im-
proving the application performance [19, 21, 24, 29, 30].

Non-clairvoyant co�ows Data-parallel directed acyclic
graphs (DAGs) typically have multiple stages which are rep-
resented as multiple co�ows with dependencies between
them. Recent systems (e.g., [3, 22, 28, 36]) employ optimiza-
tions that pipeline the consecutive computation stages which
removes the barrier at the end of each co�ow, making know-
ing �ow sizes of each co�ow beforehand di�cult. Thus in
this paper, we focus on non-clairvoyant co�ow scheduling
which do not assume knowledge about co�ow characteristics
such as �ow sizes upon co�ow arrival.

Non-blocking network fabric We assume the same non-
blocking network fabric model in recent network designs for
co�ows [7,19,21,29,30], where the datacenter network fabric
is abstracted as a single non-blocking switch that intercon-
nects all the servers, and each server (computing node) is
abstracted as a network port that sends and receives �ows. In
such a model, the ports, i.e., server uplinks and downlinks, are
the only source of contention as the network core is assumed
to be able to sustain all tra�c injected into the network. We
note that the abstraction is to simplify our description and
analysis, and is not required or enforced in our evaluation.

Problem statement Our goal is to develop an e�cient non-
clairvoyant co�ow scheduler that optimizes the communication
performance, in particular the average CCT, of data-intensive
applications without prior knowledge, while guaranteeing star-
vation freedom and work conservation and being resilient
to the network dynamics. The problem of non-clairvoyant
co�ow scheduling is NP-hard because co�ow scheduling
even assuming all co�ows arrive at time 0 and their size are
known in advance is already NP-hard [21]. Thus practical
non-clairvoyant co�ow schedulers are approximation algo-
rithms. Our approach is to dynamically prioritize co�ows by
e�ciently learning their �ow sizes online.

3 Key Idea

Our new non-clairvoyant co�ow scheduler design, Philae, is
based on a key observation about co�ows that a co�ow has a
spatial dimension, i.e., it typically consists of many �ows. We
thus propose to explicitly learn co�ow sizes online by using
sampling, a highly e�ective technique used in large-scale sur-
veys [34]. In particular, Philae preschedules sampled �ows,
called pilot �ows, of each co�ow and uses their measured
sizes to estimate the co�ow size. It then resorts to SJF or
variations using the estimated co�ow sizes.

Developing a complete non-clairvoyant co�ow scheduler
based on the simple sampling idea raises three questions:

(1) Why is sampling more e�cient than the priority-queue-
based co�ow size learning? Would scheduling the remaining
�ows after sampled pilot �ows are completed adversely a�ect
the co�ow completion time?

(2) Will sampling be e�ective in the presence of skew of �ow
sizes?

(3) How to design the complete scheduler architecture?
We answer the �rst two questions below, and present the

complete architecture design in §4.

3.1 Why is sampling more e�cient?

Scheduling pilot �ows �rst before the rest of the �ows can
potentially incur two sources of overhead. First, schedul-
ing pilot �ows of a newly arriving co�ow consumes port
bandwidth which can delay other co�ows (with already esti-
mated sizes). However, compared to the multi-queue based
approach, the overhead is much smaller for two reasons: (1)
Philae schedules only a small subset of the �ows (e.g., fewer
than 1% for co�ows with many �ows). (2) Since the CCT of a
co�ow depends on the completion of its last �ow, some of its
earlier �nishing �ows could be delayed without a�ecting the
CCT. Philae exploits this observation and schedules pilot
�ows on the least-busy ports to increase the odds that it only
a�ects earlier �nishing �ows of other co�ows.

Second, scheduling pilot �ows �rst may elongate the CCT
of the newly arriving co�ow itself whose other �ows cannot
start until the pilot �ows �nish. This is again typically in-
signi�cant for two reasons: (1) A co�ow (e.g., from a MapRe-
duce job) typically consists of �ows from all sending ports
to all receiving ports. Conceptually, pre-scheduling one out
of multiple �ows from each sender may not delay the co�ow
progress at that port, because all �ows at that port have to
be sent anyway. (2) Co�ow scheduling is of high relevance
in a busy cluster (when there is a backlog of co�ows in the
network), in which case the CCT of co�ow is expected to
be much higher than if it were the only co�ow in the net-
work, and hence the piloting overhead is further dwarfed by
a co�ow’s actual CCT.

USENIX Association 2019 USENIX Annual Technical Conference 835

3.2 Why is sampling e�ective in the pres-
ence of skew?

The �ow sizes within a co�ow may vary (skew). Intuitively,
if the skew across �ow sizes is small, sampling even a small
number of pilot �ows will be su�cient to yield an accurate
estimate. Interestingly, even if the skew across �ow sizes is
large, our experiment indicates that sampling is still highly
e�ective. In the following, we give both the intuition and
theoretical underpinning for why sampling is e�ective.

Consider, for example, two co�ows and the simple setting
where both co�ows share the same set of ports. In order to
improve the average CCT, we wish to schedule the shorter
co�ow ahead of the longer co�ow. If the total sizes of the
two co�ows are very di�erent, then even a moderate amount
of estimation error of the co�ow sizes will not alter their
ordering. On the other hand, if the total sizes of the two
co�ows are close to each other, then indeed the estimation
errors will likely alter their ordering. However, in this case
since their sizes are not very di�erent anyway, switching the
order of these two co�ows will not signi�cantly a�ect the
average CCT.
Analytic results. To illustrate the above e�ect, we show
that the gap between the CCT based on sampling and assum-
ing perfect knowledge is small, even under general �ow size
distributions. Speci�cally, co�ows C1 and C2 have cn1 and
cn2 �ows, respectively. Here, we assume that n1 and n2 are
�xed constants. Thus, by taking c to be larger, we will be
able to consider wider co�ows. Assume that each �ow of C1
(correspondingly, C2) has a size that is distributed within a
bounded interval [a1,b1] ([a2,b2]) with mean µ1 (µ2), i.i.d.
across �ows. However, the exact distributions can be arbi-
trary. Let T c be the total completion time when the exact
�ow sizes are known in advance. Let T̃ c be the average CCT
by sampling m1 and m2 �ows from C1 and C2, respectively.
Without loss of generality, we assume that n2µ2≥ n1µ1. Then,
using Hoe�ding’s Inequality, we can show that,

lim
c→∞

T̃ c−T c

T c ≤ 4exp

− 2(n2µ2−n1µ1)
2(

n2(b2−a2)√
m2

+ n1(b1−a1)√
m1

)2

 n2µ2−n1µ1

n2µ2 +2n1µ1

(1)
(Note that here we have used the fact that, since both co�ows
share the same set of ports and c is large, the CCT is asymp-
totically proportional to the co�ow size.)

Equation (1) can be interpreted as follows. First, due to
the �rst exponential term, the relative gap between T̃ c and
T c decreases as b1−a1 and b2−a2 decrease. In other words,
as the skew of each co�ow decreases, sampling becomes
more e�ective. Second, when b1−a1 and b2−a2 are �xed,
if n2µ2 − n1µ1 is large (i.e., the two co�ow sizes are very
di�erent), the value of the exponential function will be small.
On the other hand, if n2µ2− n1µ1 is close to zero (i.e., the
two co�ow sizes are close to each other), the numerator on

the second term on the right hand side will be small. In both
cases, the relative gap between T̃ c and T c will also be small,
which is consistent with the intuition explained earlier. The
largest gap occurs when n2µ2− n1µ1 is on the same order
as n2(b2−a2)√

m2
+ n1(b1−a1)√

m1
. Finally, although these analytical

results assume that both co�ows share the same set of ports,
similar conclusions on the impact of estimation errors due
to sampling also apply under more general settings.

The above analytical results suggest that, when c is large,
the relative performance gap for CCT is a function of the
number of pilot �ows sampled for each co�ow, but is indepen-
dent of the total number of �ows in each co�ow. In practice,
large co�ows will dominate the total CCT in the system.
Thus, these results partly explain that, while in our experi-
ments the number of pilot �ows is never larger than 1% of
the total number of �ows, the performance of our proposed
approach is already very good.

Finally, the above analytical results do not directly tell
us how to choose the number of pilot �ows, which likely
depends on the probability distribution of the �ow size. In
practice, we do not know such distribution ahead of time.
Further, while choosing a larger number of pilot �ows re-
duces the estimation errors, it also incurs higher overhead
and delay. Therefore, our design (§4) needs to have practical
solutions that carefully address these issues.

4 Philae Design

In this section, we present the detailed design of Philae,
which addresses three design challenges: (1) Co�ow size es-
timation: How to choose and schedule the pilot �ows for
each newly arriving co�ow? (2) Starvation avoidance: How
to schedule co�ows after size estimation using variations
of SJF that avoid starvation? (3) Co�ow scheduling: How to
schedule among all the co�ows with estimated sizes?

4.1 Philae architecture

Fig. 2 shows the Philae architecture. Philae models the
entire datacenter as a single big-switch with each computing
node as an individual port. The scheduling task in Philae is
divided among (1) a central coordinator, and (2) local agents
that run on individual ports. A computing framework such
as Spark [42] �rst registers (removes) a co�ow when a job
arrives (�nishes). Upon a new co�ow arrival, old co�ow com-
pletion, or pilot �ow completion, the coordinator calculates
a new co�ow schedule, which includes (1) co�ows that are to
be scheduled in the next time slot, and (2) �ow rates for the
individual �ows of a co�ow, and pushes this information to
the local agents which use this information to allocate their
bandwidth. The local agents will follow the current schedule
until they receive a new schedule.

836 2019 USENIX Annual Technical Conference USENIX Association

Pilot flow queue

Priority queues

Framework

Local Agent

Coordinator CoFlow operations

Task 1

Task N

…

Port

Set priority

Figure 2: Philae architecture.

4.2 Sampling pilot �ows

As discussed in §3, Philae estimates the size of a co�ow
online by actually scheduling a subset of its �ows (pilot �ows)
at their ports. We do not schedule the �ows of a co�ow other
than the pilot �ows until the completion of the pilot �ows in
order to avoid unnecessary extra blocking of other potentially
shorter co�ows.
How many pilot �ows? When a new co�ow arrives, Phi-
lae �rst needs to determine the number of pilot �ows. As
discussed at the end of §3, the number of pilot �ows a�ects the
trade-o� between the co�ow size estimation accuracy and
scheduling overhead. For co�ows with skewed �ow sizes, ac-
curately estimating the total co�ow size potentially requires
sampling the sizes of many pilot �ows. However, scheduling
pilot �ows has associated overhead, i.e., if the co�ow turns
out to be a large co�ow and should have been scheduled to
run later under SJF.

We explore several design options for choosing the number
of pilot �ow. Two natural design choices are using a constant
number of pilot �ows or a �xed fraction of the total number of
�ows of a co�ow. In addition, we observe that typical co�ows
consist of �ows between a set of senders (e.g., mappers) and
a set of receivers (e.g., reducers) [23]. We thus include a third
design choice of a �xed fraction of sending ports. This design
also spreads the pilot �ows to avoid having multiple pilot
�ows contending for the same sending ports. We empirically
found that (§8.2) limiting the pilot �ows to 5% to 10% of the
number of its sending ports (e.g., mappers in a MapReduce
co�ow) strikes a good balance between estimation accuracy
and overhead. We note the total number of �ows sampled in
this case is still under 1%.

Finally, we estimate the total co�ow size as S = fi ·N, where
N is the number of �ows in a co�ow, and fi is the average
size of the sampled pilot �ows.
Which �ows to probe? Second, Philae needs to decide
which ports to schedule the chosen number of probe �ows
for a co�ow. For this, we use a simple heuristic where, upon
the arrival of a new co�ow, we select the ports for its pilot

�ows that are least busy, i.e., having pilot �ows from the least
number of other co�ows. Philae starts with the least busy
sending port and iterates over receiving ports starting with
the least busy receiving port and assigns the �ow if it exists.
It then updates the statistics for the number of pilot �ows
scheduled at each port and repeats the above process. Such
a choice will likely delay fewer co�ows when the pilot �ows
are scheduled and hence reduce the elongation on their CCT.
We note that such an online heuristic may not be optimal;
more sophisticated algorithms can be derived by picking
ports for multiple co�ows together. However, we make this
design choice for its simplicity and low time complexity to
ensure that the coordinator makes fast decisions.
How to schedule pilot �ows? In Philae, we prioritize the
pilot �ows of a new co�ow over existing �ows to accelerate
learning the size of the new co�ow. In particular, at each port,
pilot �ows have high priority over non-pilot �ows. If there
are multiple outstanding pilot �ows (of di�erent co�ows) at
a port, Philae schedules them in the FIFO order.

4.3 Co�ow scheduling with starvation
avoidance

Once the sizes of co�ows are learned, we can apply variations
of the SJF policy to schedule them. However, it is well known
that such policies can lead to starvation.

There are many ways to mitigate the starvation issue.
However, a subtlety arises where even slight di�erence in
how starvation is addressed can result in di�erent performance.
For example, the multiple priority queues in Aalo has the
bene�t of ensuring progress of all co�ows, but assigning
di�erent time-quanta to di�erent priority queues can result
in di�erent average CCT for the same workload. To ensure
the fairness of performance comparison with Aalo, we need
to ensure that both Philae and Aalo provide the same level
of starvation freedom (or progress measure).

For this reason, in this paper, we inherit the multiple pri-
ority queue structure from Aalo for co�ow scheduling. As
in Aalo, Philae sorts the co�ows among multiple priority
queues. In particular, Philae uses N queues, Q0 to QN−1, with
each queue having lower queue threshold Qlo

q and higher
threshold Qhi

q , where Qlo
0 = 0, Qhi

N−1 = ∞, Qlo
q+1 = Qhi

q , and the
queue thresholds grow exponentially, i.e., Qhi

q+1 = E · Qhi
q .

The overall co�ow scheduling in Philae works as follows.
After the co�ow size is estimated using pilot �ows, Philae
assigns the co�ow to the priority queue using inter-co�ow
policies discussed in §4.4. Within a queue, we use FIFO to
schedule co�ows. Lastly, we use weighted sharing of net-
work bandwidth among the queues, where a priority queue
receives a network bandwidth based on its priority. As in
Aalo, the weights decrease exponentially with decrease in
the priority of the queues.

Using FIFO within the priority queue and weighted fair
sharing among the queues together ensure the same starva-

USENIX Association 2019 USENIX Annual Technical Conference 837

tion freedom and thus meaningful performance comparison
between Philae and Aalo [19].

4.4 Inter-co�ow scheduling policies
In Philae, we explore four di�erent scheduling policies based
on di�erent combinations of co�ow size and contention, two
size-based policies (A, B) as in Aalo, a contention-based, sim-
ilar to the intra-queue policy used in Saath [30] (C), and a
new contention-and-length-based policy (D):
(A) Smallest job �rst:Co�ows are sorted based on co�ow

size (l ·n).
(B) Smallest remaining data �rst: Co�ows are sorted

based on remaining data (l ·n−d).
(C) Least contention �rst: Co�ows are sorted based on

their contention (c).
(D) Least length-weighted total-port contention

�rst: Co�ows are sorted based on the sum of port-wise con-
tention times estimated �ow length ∑

p
cp · l.

We use the following parameters of a co�ow to de�ne the
metrics in scheduling algorithms: (1) average �ow length (l)
from piloting, (2) number of �ows (n), (3) number of sender
and receiver ports (s,r), (4) total amount of data sent so
far (d), (5) contention (c), de�ned as the number of other
co�ows sharing any ports with the given co�ow, and (6)
port-wise contention (cp), de�ned as the number of other
co�ows blocked at a given port p.
Philae uses Policy D by default, as it results in the least

average CCT (§8). For all policies, we continue to use the
priority-queue based scheduling, and the algorithms only
di�er in what metric they use in assigning co�ows to the pri-
ority queues. In contrast, Aalo does not handle inter-co�ow
contention, and uses the total bytes sent so far (d) to move
co�ows across multiple priority queues.

4.5 Rate allocation
Once the scheduling order of the co�ows is determined, we
need to determine the rates for the individual �ows at each
port. First, since we want to quickly �nish the pilot �ow,
at any port that has pilot �ows, Philae assigns the entire
port bandwidth to the pilot �ows. For the remaining ports,
as discussed in §4.3, across multiple queues, Philae assigns
weighted shares of the port bandwidth, by assigning them
varying numbers of scheduling intervals according to the
weights assigned to each priority queues.

Second, at each scheduling interval, Philae assigns rates
for the �ows of the co�ow in the head of the FIFO queue as
follows. It assigns equal rates at all the ports containing its
�ows as there is no bene�t in speeding-up its �ows at certain
ports when its CCT depends on the slowest �ow. At each port,
we could use max-min fairness to schedule the individual
�ows of the co�ow (to di�erent receivers), and then assign
the rate of the slowest �ow to all the �ows in the co�ow.
Afterwards, the port-allocated bandwidths are incremented

accordingly at the coordinator, which then allocates rates
for the next co�ow in the same FIFO queue, and so on.

Though the above max-min approach has the advantage of
minimizing bandwidth wastage, it slows down the coordina-
tor which has to iterate over many �ows. In our experiments,
we used a simple scheme where we assign the entire band-
width at the sender and receiver ports to one �ow of the
co�ow at the head of the FIFO queue at a time. We found
that this simple scheme has very marginal e�ect on CCTs
but makes the rate assignment process considerably faster.

4.6 Additional design issues

Thin co�ow bypass Recall that, in Philae, when a new
co�ow arrives, Philae only schedules its pilot �ows. All other
�ows of that co�ow are delayed until the pilot �ows �nish
and co�ow size is known. However, such a design choice can
inadvertently lead to higher CCTs for co�ows, particularly for
thin co�ows, e.g., a two-�ow co�ow would end up serializing
scheduling its two �ows, one for the piloting purpose.

To avoid CCT degradations for thin co�ows, we schedule
all �ows of a co�ow if its width is under a threshold (set to 7
in Philae; §8.6 provides sensitivity analysis for thresholds).
Failure tolerance and recovery Cluster dynamics such
as stragglers or node failure can delay some of the �ows
of a co�ow or start new �ows, increasing their CCT. The
Philae design automatically self-adjusts to speed up co�ows
that are a�ected by cluster dynamics using the following
mechanisms: (1) It adjusts the co�ow size as the amount of
data left by the co�ow, which is essentially the di�erence
between the size calculated using pilot �ows and amount
of data already sent. (2) It calculates contention only on the
ports that have un�nished �ows.
WorkConservationBy default, Philae schedules non-pilot
�ows of a co�ow only after all its pilot �ows are over. This
can lead to some ports being idle where the non-pilot �ows
are waiting for the pilot �ows to �nish. In such cases, Philae
schedules non-pilot �ows of co�ows which are still in the
sampling phase at those ports. In work conservation, the
co�ows are scheduled in the FIFO order of arrival of co�ows.

5 Scalability Analysis

Compared to learning co�ow sizes using priority queues (PQ-
based) [19,30], learning co�ow sizes by sampling Philae not
only reduces the learning overhead as discussed in §3.1 and
shown in §8.2, but also signi�cantly reduces the amount of
interactions between the coordinator and local agents and
thus makes the coordinator highly scalable, as summarized
in Table 1.

First, PQ-based learning requires much more frequent up-
date from local agents. PQ-based learning estimates co�ow
sizes by incrementally moving co�ows across priority queues

838 2019 USENIX Annual Technical Conference USENIX Association

Table 1: Comparison of frequency of interactions between
the coordinator and local agents.

Update Update of Rate
of data sent �ow completion calculation

Philae No Yes Event triggered
Aalo Periodic (δ) Yes Periodic (δ)

according to the data sent by them so far. As such, the sched-
uler needs frequent updates (every δ ms) of data sent per
co�ow from the local agents. In contrast, Philae directly
estimates a co�ow’s size upon the completion of all its pilot
�ows. The only updates Philae needs from the local agents
are about the �ow completion which is needed for updating
contentions and removing �ows from active consideration..

Second, PQ-based learning results in much more frequent
rate allocation. In sampling-based approach, since co�ow
sizes are estimated only once, co�ows are re-ordered only
upon co�ow completion or arrival events or in the case of
contention based policies only when contention changes,
which is triggered by completion of all the �ows of a co�ow
at a port. In contrast, in PQ-based learning, at every δ interval,
co�ow data sent are updated and co�ow priority may get
updated, which will trigger new rate assignment.

Our scalability experiments in §9.3 con�rms that Philae
achieves much higher scalability than Aalo.

6 Implementation

We implemented both Philae and Aalo scheduling policies
in the same framework consisting of the global coordinator
and local agents (Fig. 2), in 5.2 KLoC in C++.

Coordinator: The coordinator schedules the co�ows
based on the operations received from the registering frame-
work. The key implementation challenge for the coordinator
is that it needs to be fast in computing and updating the
schedules. The Philae coordinator is optimized for speed
using a variety of techniques including pipelining, process
a�nity, and concurrency whenever possible.

Local agents: The local agents update the global coordi-
nator only upon completion of a �ow, along with its length if
it is a pilot �ow. Local agents schedule the co�ows based on
the last schedule received from the coordinator. They comply
to the last schedule until a new schedule is received. To inter-
cept the packets from the �ows, local agents require the com-
pute framework to replace datasend(), datarecv()
APIs with the corresponding Philae APIs, which incurs very
small overhead.

Co�ow operations: The global coordinator runs inde-
pendently from, and is not coupled to, any compute frame-
work, which makes it general enough to be used with any
framework. It provides RESTful APIs to the frameworks for
co�ow operations: (a) register() for registering a new
co�ow when it enters, (b) deregister() for removing a

co�ow when it exits, and (c) update() for updating co�ow
status whenever there is a change in the co�ow structure,
e.g., during task migration and restarts after node failures.

7 Evaluation Highlights

We evaluated Philae using a 150-node and a 900-node
testbed cluster in Azure and using large scale simulations
by utilizing a publicly available Hive/MapReduce trace col-
lected from a 3000-machine, 150-rack Facebook production
cluster [4] and multiple derived traces with varying degrees
of �ow size skew to measure Philae’s robustness to skew.

• Facebook (FB) trace: The trace contains 150 ports and
526 (> 7×105 �ows) co�ows, that are extracted from
Hive/MapReduce jobs from a Facebook production clus-
ter. Each co�ow consists of pair-wise �ows between a
set of senders and a set of receivers.

Due to the lack of other publicly available co�ow trace1, we
derived three additional traces using the original Facebook
trace in order to more thoroughly evaluate Philae under
varying co�ow size skew:

• Low-skew-�ltered: Starting with the FB trace, we �l-
tered out co�ows that have skew (max �ow length/min
�ow length) less than a constant k. We generated �ve
traces in this class with k = 1,2,3,4,5. The �ltered
traces have 142, 100, 65, 51 and 43 co�ows, respectively.

• Mantri-like: Starting with the FB trace, we adjusted the
sizes of the �ows sent by the mappers, keeping the total
reducer data the same as given in the original trace, to
match the skew of a large Microsoft production cluster
trace as described in Mantri [12]. In particular, the sizes
are adjusted so that the coe�cients of variation across
mapper data are about 0.34 in the 50th percentile case
and 3.1 in the 90th percentile case. This trace has the
same numbers of co�ows and ports as the FB trace.

• Wide-co�ows-only: We �ltered out all the co�ows in
the FB trace with the total number of �ows ≤ 7, the
default thin co�ow bypass threshold (thinLimit) in Phi-
lae. The �ltered trace has 269 co�ows spreading over
150 ports.

The primary performance metrics used in the evaluation
are CCT or CCT speedup, de�ned as the ratio of a CCT un-
der other baseline algorithms and under Philae, piloting
overhead, and co�ow size estimation accuracy.

The highlights of our evaluation results are:
(1) Philae signi�cantly improves the CCTs. In simulation

using the FB trace, the average CCT is improved by 1.51×
over the prior art, Aalo. Individual CCT speedups are 1.78×
in the median case (P90 = 9.58×). For the Mantri-like trace,

1A challenge that has also been faced by previous work on co�ow
scheduling such as [19, 27, 29, 44].

USENIX Association 2019 USENIX Annual Technical Conference 839

Table 2: Performance improvement over Aalo for varying pilot �ow selection schemes.

Constant Proportional to number of senders Proportional to number of �ows
2 5% 10% 20% 50% 100% 1% 10%

Avg. error 13.21% 6.14% 5.42% 4.94% 5.53% 4.25% 4.15% 2.90%
Avg. CCT 1.27x 1.51x 1.45x 1.50x 1.50x 1.50x 1.43x 0.49x

P50 speedup 1.75x 1.78x 1.76x 1.71x 1.52x 1.40x 1.33x 0.69x
P90 speedup 9.00x 9.58x 9.00x 9.15x 8.33x 8.45x 8.23x 8.23x

the average CCT is improved by 1.36× and individual CCT
speedups are 1.75× in the median case (P90 = 12.0×).
(2) The CCT improvement mainly stems from the reduc-

tion in the learning overhead (in terms of latency and amount
of data sent) in determining the right queue for the co�ows.
Compared to Aalo, median reduction in the absolute latency
in �nding the right queue for co�ows in Philae is 19.0×,
and in absolute amount of data sent is 20.0× (§8.2).
(3) Philae improvements are consistent when varying the

skew among the �ow sizes in a co�ow (§8.5).
(4) Philae improvements are consistent when varying its

parameters (§8.6).
(5) The Philae coordinator is much more scalable than

that of Aalo (§9.3).

8 Simulation

We present detailed simulation results in this section, and
the testbed evaluation of our prototype in §9.
Experimental setup: Our simulated cluster uses the same
number of nodes (sending and receiving network ports) as in
the trace. As in [19], we assume full bisection bandwidth is
available, and congestion can happen only at network ports.

The default parameters for Aalo and Philae in the experi-
ments are: starting queue threshold (Qhi

0) is 10MB, exponen-
tial threshold growth factor (E) is 10, number of queues (K) is
set to 10, the weights assigned to individual priority queues
decrease exponentially by a factor of 10, and the new schedule
calculation interval δ is set to 8ms for the 150-node cluster 2,
the default suggested in its publicly available simulator [19].
In Philae, a new schedule is calculated on demand, upon
arrival of a new co�ow, completion of a co�ow, or completion
of all pilot �ows of a co�ow. Finally, in Philae the threshold
for thinLimit (T) is set to 7, the number of pilot �ows assigned
to wide co�ows are max(1,0.05 ·S), where S is the number
of senders, and the default inter-co�ow scheduling policy in
Philae is Least length-weighted total-port contention.

8.1 Pilot �ow selection policies
We start by evaluating the impact of di�erent policies in
choosing the pilot �ows for a co�ow in Philae. Table 2 sum-
marizes the improvement in average CCT of Philae over

28ms is the time to send 1MB of data.

Aalo and average error in size estimation normalized to the
actual co�ow size, when varying the pilot �ow selection pol-
icy while keeping other parameters as the default in Philae,
using the FB trace.

Unsurprisingly, the estimation accuracy increases when
increasing the number of pilot �ows across the three selec-
tion schemes: constant, fraction of senders, and fraction of
total �ows. However, as the number of pilot �ows increases
(over the range of parameter choices), the CCT speedup (P50
and P90 of individual co�ow CCT speedups) decreases. This
is because the bene�t from size estimation accuracy improve-
ment from using additional pilot �ows does not o�set the
added overhead from completing the additional pilot �ows
and the delay they incur to other co�ows.

We �nd sampling 5% of the number of senders per co�ow
strikes a good trade-o� between piloting overhead and size
estimation accuracy leading to the best CCT reduction. We
thus set it (0.05 ·S) as the default pilot �ow selection policy.

8.2 Piloting overhead and accuracy

101 102 103 104 105 106 107

Actual size (MB)

101

102

103

104

105

106

107

Es
tim

at
ed

 si
ze

 (M
B)

Figure 3: Philae co�ow size learning accuracy. Co�ows that
did not go through the piloting phase (48%) are not shown.

Next, using the default pilot selection policy, we evaluate
Philae’s e�ectiveness in estimating co�ow sizes by sampling
pilot �ows. Fig. 3 shows a scatter plot of the actual co�ow
size vs. estimated size from running Philae under the default
settings. We observe that Philae co�ow’s size estimation is
highly accurate except for a few outliers. Overall, the average
and standard deviation of relative estimation error are 0.06
and 0.15, respectively, and for the top 99% and 95% co�ows
(in terms of estimation accuracy), the average (standard de-
viation) of relative error are only 0.05 (0.12) and 0.03 (0.07)
respectively. Interestingly, a few co�ows experience large
estimation errors, and we found they all have very high skew

840 2019 USENIX Annual Technical Conference USENIX Association

in their �ow lengths; the mean standard deviation in �ow
lengths, normalized by the average length, of the bottom 1%
(in terms of accuracy) ranges between 4.6 and 6.8.

Fig. 1 shows the cost of estimating the correct queue for
each co�ow in Philae and Aalo, measured as the time in
learning the co�ow size as a fraction of the co�ow’s CCT in
Philae and Aalo. We see that under Philae, about 63% of
the co�ows spent less than 1% of their CCT in the learning
phase, while under Aalo, 63% co�ows reached the correct
priority queue after spending up to 22% of their CCT moving
across other queues. Compared to Aalo, Philae in the median
case sends 20× less data in determining the right queue and
reduces the latency in determining the right queue by 19×.

8.3 Inter-co�ow scheduling policies
Philae di�ers from Aalo in two ways: online size estima-
tion and inter-�ow scheduling policy. Here, we evaluate the
e�ectiveness of the four inter-co�ow scheduling policies of
Philae discussed in §4.4, keeping the remaining parameters
as the default. Such evaluation allows us to decouple the
contribution of sampling-based learning from the e�ect of
scheduling policy di�erence.

Table 3 shows the CCT improvement of Philae under the
four inter-�ow scheduling policies over Aalo. We make the
following observations.

First, Philae with the purely sized-based policy, Smallest
job �rst (A), which uses the same inter-queue and intra-
queue scheduling policy as Aalo and only di�ers from Aalo
in co�ow size estimation, reduces the average CCT (P50) of
Aalo by 1.40x (1.48x).

In contrast, the default Philae uses Least length-
weighted total-port contention (D), which uses the sum
of size-weighted port contention to assign co�ows to priority
queues, and slightly outperforms the size-based policy A; it
reduces the average CCT (P50) of Aalo by 1.51x (1.78x). This
is because it captures the diversity of contention at di�erent
ports, which happens often in real distributed settings, and
at the same time accounts for the co�ow size by using length-
weighted sum of the port-wise contention. The above results
for policy A and policy D indicate that the primary improve-
ment in Philae comes from its sampling-based co�ow size
estimation scheme.

Shortest remaining time �rst (B) performs similarly as
smallest job �rst. This is because the preemptive nature of
SRTF will kick in only on arrival of new co�ows. Also, al-
though SRTF is advantageous for small co�ows, since Philae
already schedules thin co�ows at high priority, many thin
and thus small co�ows are anyways being scheduled at high
priority under both policies A and B, and as a result they
perform similarly.

Finally, Least contention �rst (C) performs poorly. This
is because contention for a co�ow is de�ned as the unique
number of other co�ows that share ports, and as a result such
a policy completely ignores the size (length) of the co�ows.

Table 3: CCT speedup in Philae under di�erent inter-co�ow
scheduling policies (§4.4) over Aalo.

Priority estimation metric P50 P90 Avg. CCT
Estimated size (A) 1.48x 8.27x 1.40x
Remaining size (B) 1.54x 8.34x 1.37x

Global Contention (C) 0.75x 8.26x 0.13x
Length-weighted total-port contention (D) 1.78x 9.58x 1.51x

(Philae)

8.4 Average CCT improvement

We now compare the CCT speedups of Philae against 5 well-
known co�ow scheduling policies: (1) Aalo, (2) Aalo-Oracle,
which is an oracle version of Aalo where the scheduler knows
the �nal queue of a co�ow upon its arrival time and directly
starts the co�ow from that queue, (3) SEBF in Varys [21]
which assumes the knowledge of co�ow sizes apriori and
uses the Shortest E�ective Bottleneck First policy, where the
co�ow whose slowest �ow will �nish �rst is scheduled �rst.
(4) FIFO, which is a single queue FIFO based co�ow scheduler,
and (5) FAIR, which uses per-�ow fair sharing. We do not
include Saath [30] in the comparison as it does not provide
the same liveliness guarantees as Philae which as discussed
in §4.3 can obscure the comparison result. All experiments
use the default parameters discussed in the setup, including
K,E,S, unless otherwise stated. The results are shown in
Fig. 4(a). We make the following observations.

First, we compare CCT under Philae against under Aalo-
Oracle, where Aalo-Oracle starts all co�ows at the correct
priority queues (i.e., no learning overhead). Philae im-
proves the average CCT by 1.18× and P50 CCT by 1.40×,
respectively. Since Aalo-Oracle pays no overhead for co�ow
size estimation, its worse performance suggests that using
length-weighted total-port contention in assigning co�ows
to the priority queues in Philae outperforms Aalo’s size-
based, contention-oblivious policy in assigning co�ows to
the queues.

Second, Philae improves the average CCT over Aalo by
1.51× (median) and P50 by 1.78. The signi�cant additional
improvement on top of the gain over Aalo-Oracle comes
from fast and accurate estimation of the right queues for the
co�ows (Fig. 1).

Third, Philae, which requires no co�ow size knowledge
a priori, achieves comparable performance as SEBF [21]; it
reduces the average CCT by 1.16×. Again this is because
its total-port contention policy outperforms the contention-
oblivious SEBF.

Finally, Philae signi�cantly outperforms the single-queue
FIFO-based co�ow scheduler, with a median (P90) CCT
speedup of 3.00 (77.96)× and average CCT speedup of 3.16×,
and the un-coordinated �ow-level fair-share scheduler, with
a median (P90) CCT speedup of 70.82× (1947×) and average
CCT speedup of 5.66×.

To gain insight into how di�erent co�ows are a�ected by
Philae over Aalo, we group the co�ows in the trace into

USENIX Association 2019 USENIX Annual Technical Conference 841

AaloAalo(Oracle)FAIR FIFO SEBF
Other schedulers

10−1

100

101

102

103

CC
T

Sp
ee

du
p

1.51 1.18

5.67 3.16
1.16

P10-P90
P50
Average

(a) Using original FB trace.

AaloAalo(Oracle)FAIR FIFO SEBF
Other schedulers

10−1

100

101

CC
T

Sp
ee

du
p

1.54 1.15 3.7 2.83
1.12

P10-P90
P50
Average

(b) Using Wide-co�ows-only trace.

> 1 > 2 > 3 > 4 > 5
Skew

10−1

100

CC
T

Sp
ee

du
p

1.45 1.44 1.44 1.4 1.38

P10-P90
P50
Average

(c) Using 5 Low-skew-�ltered traces.

AaloAalo(Oracle)FAIR FIFO SEBF
Other schedulers

10−1

100

101

102

103

CC
T

Sp
ee

du
p

1.36 1.14
4.24 2.64

1.07

P10-P90
P50
Average

(d) Using the Mantri-like trace.

Figure 4: CCT speedup using Philae compared to using other co�ow schedulers on di�erent traces. In Fig. 4(c), the x-axis
denotes the minimum skew in the 5 Low-skew-�ltered traces.

Bin-1 Bin-2 Bin-3 Bin-4
Bins

100

101

CC
T

Sp
ee

du
p

2.88

0.59

1.67 1.52

P10-P90
P50
Average

Figure 5: Performance
breakdown into bins shown
in Table 4.

10−2 10−1 100 101 102

Speedup

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

JCT
CCT

Figure 6: [Testbed] Distribution
of speedup in CCT and JCT in
Philae using the FB trace.

Table 4: Bins based on total co�ow size and width (number
of �ows). The numbers in brackets denote the fraction of
co�ows in that bin.

width ≤ 7(thin) width > 7(wide)
size ≤ 100MB (small) bin-1 (44.3%) bin-2 (24.1%)
size > 100MB (large) bin-3 (4.5%) bin-4 (27.1%)

four bins de�ned in Table 4, and show in Fig. 5 the CCT
speedups for each bin. We see that Philae improves CCT
for all co�ows in bin 1 and 3 and for large fraction in bin-4.
Most of the underperforming co�ows fall in bin-2. Co�ows
in bin-2 have width > 7 and size < 100MB, i.e., the �ows
are short but wide. Because the width exceeds the thinLimit,
Philae schedules the pilot �ows to estimate the co�ow size
�rst (§4). Thus, although the remaining �ows are short, they
get delayed until the completion of the pilot �ows, which
results in CCT increase.

Finally, since thin co�ows bene�t from Philae’s scheme of
bypassing probing for thin co�ows, we also compare Philae
with other schemes using the Wide-co�ows-only trace which
consists of all co�ows wider than the default thinLimit (7)
in Philae. Fig. 4(b) shows that Philae continues to perform
well, reducing the average CCT by 1.54×, 1.15×, and 1.12×
over Aalo, Aalo-Oracle, and SEBF, respectively.

8.5 Robustness to co�ow data skew

Next, we evaluate Philae’s robustness to �ow size skew by
comparing it against Aalo using traces with varying degrees
of skew. First, we evaluate Philae using the Mantri-like
trace. Fig. 4(d) shows that Philae consistently outperforms
prior-art co�ow schedulers. In particular, Philae reduces the
average CCT by 1.36x compared to Aalo. Second, we evalu-

ate Philae using the Low-skew-�ltered traces which have
low skew co�ows �ltered out. Fig. 4(c) shows that Philae
performs better than Aalo even with highly skewed traces
and reduces the average CCT by 1.45×, 1.44×, 1.44×, 1.40×
and 1.38× for the �ve Low-skew-�ltered traces containing
co�ows with skew of at least 1, 2, 3, 4 and 5, respectively.

8.6 Sensitivity analysis
Compared to Aalo, Philae has only two additional para-
maters: thinLimit and �ow sampling rate. We already dis-
cussed the choice of sampling rate in §8.1. Below, we evaluate
the sensitivity of Philae to thinLimit and other design pa-
rameters common to Aalo by varying one parameter at a
time while keeping the rest as the default.
Thin co�ow bypassing limit (T) In this experiment, we
vary thinLimit (T) in Philae for bypassing co�ows from
the probing phase. The result in Fig. 7(a) shows that the
average CCT remains almost the same as T increases. This
is because the average CCT is dominated by wide and large
co�ows, which are not a�ected by thinLimit. However, the
P50 speedup increases till T = 7 and tapers o� after T = 7.
The reason for the CCT improvement until T = 7 is that
all �ows of thin co�ows (with width ≤ 7) are scheduled
immediately upon arrival which improves their CCT, and
the number of thin co�ows is signi�cant.
Start queue threshold (Qhi

0) We next vary the threshold for
the �rst priority queue from 2 MB to 64 MB. Fig. 7(b) shows
the average CCT of Philae over Aalo. Overall, Philae is
not very sensitive to the threshold of �rst priority queue
and the CCT speedup over Aalo is within 8% of the default
Philae (10 MB). The speedup appears to oscillate with a
periodicity of 5x to 10x. For example, the speedups for 2 MB
and 64 MB are close to that of the default (10 MB), while
for 4 MB and 32 MB are lower. This can be explained by
the impact of the �rst queue threshold on job segregation;
with the default queue threshold growth factor of 10, every
time the �rst queue threshold changes by close to 10x, the
distribution of jobs across the queues become similar.
Multiplication factor (E) In this experiment, we vary the
queue threshold growth factor from 2 to 64. Recall that the
queue thresholds are computed as Qhi

q = Qhi
q−1 ·E . Thus, as E

grows, the number of queues decreases. As shown in Fig. 7(c),

842 2019 USENIX Annual Technical Conference USENIX Association

(a) Thin co�ow bypass threshold (b) First queue capacity (Qhi
0) (c) Exponent (E)

Figure 7: [Simulation] Philae sensitivity analysis. We vary one parameter of Philae keeping rest same as default and compare
it with Aalo.

smaller queue threshold multiplication factor which leads to
more queues performs better because of �ne-grained priority
segregation.

9 Testbed Evaluation

Next, we deployed Philae in a 150-machine Azure cluster
and a 900-machine cluster to evaluate its performance and
scalability.

Testbed setup: We rerun the FB trace on a Spark-like
framework on a 150-node cluster in Microsoft Azure [5].
The coordinator runs on a Standard DS15 v2 server with
20-core 2.4 GHz Intel Xeon E5-2673 v3 (Haswell) processor
and 140GB memory. The local agents run on D2v2 with
the same processor as the coordinator with 2-core and 7GB
memory. The machines on which local agents run have 1
Gbps network bandwidth. Similarly as in simulations, our
testbed evaluation keeps the same �ow lengths and �ow ports
in trace replay. All the experiments use default parameters
K,E,S and the default pilot �ow selection policy.

9.1 CCT Improvement
In this experiment, we measure CCT improvements of Phi-
lae compared to Aalo. Fig. 6 shows the CDF of the CCT
speedup of individual co�ows under Philae compared to
under Aalo. The average CCT improvement is 1.50× which
is similar to the results in the simulation experiments. We
also observe 1.63× P50 speedup and 8.00× P90 speedup.

We also evaluated Philae using the Wide-co�ow-only
trace. Table 5 shows that Philae achieves 1.52× improve-
ment in average CCT over Aalo, similar to that using the full
FB trace. This is because the improvement in average CCT
is dominated by large co�ows, Philae is speeding up large
co�ows, and the Wide-co�ow-only trace consists of mostly
large co�ows.

9.2 Job Completion Time
Next, we evaluate how the improvement in CCT a�ects the
job completion time (JCT). In data clusters, di�erent jobs

Table 5: [Testbed] CCT improvement in Philae as compared
to Aalo.

P50 P90 Avg. CCT
FB Trace 1.63× 8.00× 1.50×

Wide-co�ow-only 1.05× 2.14× 1.49×

Table 6: [Testbed] Average (standard deviation) coordinator
CPU time (ms) per scheduling interval in 900-port runs. Phi-
lae did not have to calculate and send new rates in 66% of
intervals, which contributes to its low average.

Rate Calc. New Rate Send Update Recv. Total
Philae 2.99 (5.35) 4.90 (11.25) 6.89 (17.78) 14.80 (28.84)

Aalo 4.28 (4.14) 17.65 (20.9) 10.97 (19.98) 32.90 (34.09)

spend di�erent fractions of their total job time in data shu�e.
In this experiment, we used 526 jobs, each corresponding
to one co�ow in the FB trace. The fraction of time that the
jobs spent in the shu�e phase follows the same distribution
used in Aalo [19], i.e., 61% jobs spent less than 25% of their
total time in shu�e, 13% jobs spent 25-49%, another 14% jobs
spent 50-74%, and the remaining spent over 75% of their total
time in shu�e. Fig. 6 shows the CDF of individual speedups
in JCT. Across all jobs, Philae reduces the job completion
time by 1.16× in the median case and 7.87× in the 90th

percentile. This shows that improved CCT translates into
better job completion time. As expected, the improvement
in job completion time is smaller than the improvement in
CCT because job completion time depends on the time spent
in both compute and shu�e (communication) stages, and
Philae improves only the communication stage.

9.3 Scalability

Finally, we evaluate the scalability of Philae by comparing
its performance with Aalo on a 900-node cluster. To drive
the evaluation, we derive a 900-port trace by replicating the
FB trace 6 times across ports, i.e., we replicated each job 6
times, keeping the arrival time for each copy the same but
assigning sending and receiving ports in increments of 150
(the cluster size for the original trace). We also increased the

USENIX Association 2019 USENIX Annual Technical Conference 843

Table 7: [Testbed] Percentage of scheduling intervals where
synchronization and rate calculation took more than δ for
150-port and δ′(= 6×δ) for 900-port runs.

150 ports 900 ports
Philae 1% 10%

Aalo 16% 37%

scheduling interval δ by 6 times to δ′ = 6×δ.
Philae achieved 2.72× (9.78×) speedup in average (P90)

CCT over Aalo. The higher speedup compared to the 150-
node runs (1.50×) comes from higher scalability of Philae.
In 900-node runs, Aalo was not able to �nish receiving up-
dates, calculating new rates and updating local agents of new
rates within δ′ in 37% of the intervals, whereas Philae only
missed the deadline in 10% of the intervals. For 150-node
runs these values are 16% for Aalo and 1% for Philae. The
21% increase in missed scheduling intervals in 900-node runs
in Aalo resulted in local agents executing more frequently
with outdated rates. As a result, Philae achieved even higher
speedup in 900-node runs.

As discussed in§5, Aalo’s poorer coordinator scalability
comes from more frequent updates from local agents and
more frequent rate allocation, which result in longer coordi-
nator CPU time in each scheduling interval. Table 6 shows
the average coordinator CPU usage per interval and its break-
down. We see that (1) on average Philae spends much less
time than Aalo in receiving updates from local agents, be-
cause Philae does not need updates from local agents at
every interval – on average in every scheduling interval
Philae receives updates from 49 local agents whereas Aalo
receives from 429 local agents, and (2) on average Philae
spends much less time calculating new rates and send new
rates. This is because rate calculation in Philae is triggered
by events and Philae did not have to �ush rates in 66% of
the intervals.

10 Related Work
Co�ow scheduling: In this paper, we have shown Philae
outperforms prior-art non-clairvoyant co�ow scheduler Aalo
from more e�cient learning of co�ow sizes online. Saath [30]
and Graviton [29] also learn co�ow sizes online using prior-
ity queues and hence su�ers the same ine�ciency as Aalo.
Graviton [29] uses the number of ports a co�ow is present at,
as an additional indicator of its size. In [19], Aalo was shown
to outperform previous non-clairvoyant co�ow schedulers
Baraat [24] by using global coordination, and Orchestra [20]
by avoiding head-of-line blocking.

Clairvoyant co�ow schedulers such as Varys [21] and Sin-
cronia [7] assume prior knowledge of co�ows upon arrival.
Varys runs a shortest-e�ective-bottleneck-�rst heuristic for
inter-co�ow scheduling and performs per-�ow rate alloca-
tion at the coordinator. Sincronia improves the scalability of
the centralized coordinator of Varys by only calculating the
co�ow ordering at the coordinator (by solving an LP) and

o�oading �ow rate allocation to individual local agents. Sin-
cronia is orthogonal to Philae; once co�ow sizes are learned
through sampling, ideas from Sincronia can be adopted in
Philae to order co�ows and o�oad rate allocation to local
ports. CODA [44] tackles an orthogonal problem of identify-
ing �ows of individual co�ows online.

However, recent studies [19, 40] have shown various rea-
sons why it is not very plausible to learn �ow sizes from
applications beforehand. For example, many applications
stream data as soon as data are generated and thus the appli-
cation does not know the �ow sizes until �ow completion,
and learning �ow sizes from applications requires changing
either the network stack or the applications.

Flow scheduling: There exist a rich body of prior work
on �ow scheduling. E�orts to minimize �ow completion time
(FCT), both with prior information (e.g., PDQ [26], pFab-
ric [9]) and without prior information (e.g., Fastpass [35],
PIAS [13], [14]), fall short in minimizing CCTs which depend
on the completion of the last �ow [21]. Similarly, Hedera [8]
and MicroTE [15] schedule the �ows with the goal of reduc-
ing the overall FCT, which again is di�erent from reducing
the overall CCT of co�ows.

Speculative scheduling Recent works [16, 33] use the
idea of online requirement estimation for scheduling in data-
center. In [31], recurring big data analytics jobs are scheduled
using their history.

Job scheduling: There have been much work on schedul-
ing in analytic systems and storage at scale by improving
speculative tasks [11, 12, 43], improving locality [10, 41], and
end-point �exibility [17, 38]. The co�ow abstraction is com-
plimentary to these work, and can bene�t from them. Com-
bining co�ow with these approaches remains a future work.
Scheduling in parallel processors: Co�ow schedul-

ing by exploiting the spatial dimension bears similarity to
scheduling processes on parallel processors and multi-cores,
where many variations of FIFO [37], FIFO with back�ll-
ing [32] and gang scheduling [25] have been proposed.

11 Conclusion

State-of-the-art online co�ow schedulers approximate the
classic SJF by implicitly learning co�ow sizes and pay a high
penalty for large co�ows. We propose the novel idea of sam-
pling in the spatial dimension of co�ows to explicitly and
e�ciently learn co�ow sizes online to enable e�cient on-
line SJF scheduling. Our extensive simulation and testbed
experiments show the new design o�ers signi�cant perfor-
mance improvement over prior art. Further, the sampling-in-
spatial-dimension technique can be generalized to other dis-
tributed scheduling problems such as cluster job scheduling.
We have made our simulator publicly available at https:
//github.com/coflowPhilae/simulator [6].
Acknowledgement We thank our shepherd Patrick Stuedi
and the anonymous reviewers for their insightful comments.

844 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/coflowPhilae/simulator
https://github.com/coflowPhilae/simulator

References

[1] Apache hadoop. http://hadoop.apache.org.

[2] Apache spark. http://spark.apache.org.

[3] Apache tez. http://tez.apache.org.

[4] Co�ow trace from facebook datacenter.
https://github.com/co�ow/co�ow-benchmark.

[5] Microsoft azure. http://azure.microsoft.com.

[6] Philae simulator. https://github.com/
coflowPhilae/simulator.

[7] Saksham Agarwal, Shijin Rajakrishnan, Akshay
Narayan, Rachit Agarwal, David Shmoys, and Amin
Vahdat. Sincronia: Near-optimal network design for
co�ows. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’18, pages 16–29, New York, NY, USA, 2018.
ACM.

[8] Mohammad Al-Fares, Sivasankar Radhakrishnan,
Barath Raghavan, Nelson Huang, and Amin Vahdat.
Hedera: Dynamic �ow scheduling for data center
networks. In Proceedings of the 7th USENIX Conference
on Networked Systems Design and Implementation,
NSDI’10, pages 19–19, Berkeley, CA, USA, 2010.
USENIX Association.

[9] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar, and
Scott Shenker. pfabric: Minimal near-optimal datacen-
ter transport. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM ’13, pages
435–446, New York, NY, USA, 2013. ACM.

[10] Ganesh Ananthanarayanan, Sameer Agarwal, Srikanth
Kandula, Albert Greenberg, Ion Stoica, Duke Harlan,
and Ed Harris. Scarlett: Coping with skewed content
popularity in mapreduce clusters. In Proceedings of
the Sixth Conference on Computer Systems, EuroSys ’11,
pages 287–300, New York, NY, USA, 2011. ACM.

[11] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker,
and Ion Stoica. E�ective straggler mitigation: Attack
of the clones. In Proceedings of the 10th USENIX Con-
ference on Networked Systems Design and Implementa-
tion, nsdi’13, pages 185–198, Berkeley, CA, USA, 2013.
USENIX Association.

[12] Ganesh Ananthanarayanan, Srikanth Kandula, Albert
Greenberg, Ion Stoica, Yi Lu, Bikas Saha, and Edward
Harris. Reining in the outliers in map-reduce clusters

using mantri. In Proceedings of the 9th USENIX Con-
ference on Operating Systems Design and Implementa-
tion, OSDI’10, pages 265–278, Berkeley, CA, USA, 2010.
USENIX Association.

[13] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian,
and Weicheng Sun. Pias: Practical information-agnostic
�ow scheduling for data center networks. In Proceedings
of the 13th ACM Workshop on Hot Topics in Networks,
HotNets-XIII, pages 25:1–25:7, New York, NY, USA, 2014.
ACM.

[14] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian,
and Hao Wang. Information-agnostic �ow scheduling
for commodity data centers. In 12th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 15), pages 455–468, Oakland, CA, 2015. USENIX
Association.

[15] Theophilus Benson, Ashok Anand, Aditya Akella, and
Ming Zhang. Microte: Fine grained tra�c engineering
for data centers. In Proceedings of the Seventh COnfer-
ence on Emerging Networking EXperiments and Tech-
nologies, CoNEXT ’11, pages 8:1–8:12, New York, NY,
USA, 2011. ACM.

[16] Inho Cho, Keon Jang, and Dongsu Han. Credit-
scheduled delay-bounded congestion control for data-
centers. In Proceedings of the Conference of the ACM Spe-
cial Interest Group on Data Communication, SIGCOMM
’17, pages 239–252, New York, NY, USA, 2017. ACM.

[17] Mosharaf Chowdhury, Srikanth Kandula, and Ion Sto-
ica. Leveraging endpoint �exibility in data-intensive
clusters. In Proceedings of the ACM SIGCOMM 2013 Con-
ference on SIGCOMM, SIGCOMM ’13, pages 231–242,
New York, NY, USA, 2013. ACM.

[18] Mosharaf Chowdhury and Ion Stoica. Co�ow: A net-
working abstraction for cluster applications. In Pro-
ceedings of the 11th ACMWorkshop on Hot Topics in Net-
works, HotNets-XI, pages 31–36, New York, NY, USA,
2012. ACM.

[19] Mosharaf Chowdhury and Ion Stoica. E�cient co�ow
scheduling without prior knowledge. In Proceedings of
the 2015 ACM Conference on Special Interest Group on
Data Communication, SIGCOMM ’15, pages 393–406,
New York, NY, USA, 2015. ACM.

[20] Mosharaf Chowdhury, Matei Zaharia, Justin Ma,
Michael I. Jordan, and Ion Stoica. Managing data trans-
fers in computer clusters with orchestra. In Proceedings
of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11,
pages 98–109, New York, NY, USA, 2011. ACM.

USENIX Association 2019 USENIX Annual Technical Conference 845

https://github.com/coflowPhilae/simulator
https://github.com/coflowPhilae/simulator

[21] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. Ef-
�cient co�ow scheduling with varys. In Proceedings of
the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14,
pages 443–454, New York, NY, USA, 2014. ACM.

[22] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M.
Hellerstein, Khaled Elmeleegy, and Russell Sears.
Mapreduce online. In Proceedings of the 7th USENIX
Conference on Networked Systems Design and Implemen-
tation, NSDI’10, pages 21–21, Berkeley, CA, USA, 2010.
USENIX Association.

[23] Je�rey Dean and Sanjay Ghemawat. Mapreduce: Sim-
pli�ed data processing on large clusters. volume 51,
pages 107–113, New York, NY, USA, January 2008. ACM.

[24] Fahad R. Dogar, Thomas Karagiannis, Hitesh Ballani,
and Antony Rowstron. Decentralized task-aware
scheduling for data center networks. In Proceedings
of the 2014 ACM Conference on SIGCOMM, SIGCOMM
’14, pages 431–442, New York, NY, USA, 2014. ACM.

[25] Dror G. Feitelson and Morris A. Jette. Improved uti-
lization and responsiveness with gang scheduling. In
Proceedings of the Job Scheduling Strategies for Parallel
Processing, IPPS ’97, pages 238–261, London, UK, UK,
1997. Springer-Verlag.

[26] Chi-Yao Hong, Matthew Caesar, and P. Brighten God-
frey. Finishing �ows quickly with preemptive schedul-
ing. In Proceedings of the ACM SIGCOMM 2012 Con-
ference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, SIGCOMM ’12,
pages 127–138, New York, NY, USA, 2012. ACM.

[27] Xin Sunny Huang, Xiaoye Steven Sun, and T.S. Eugene
Ng. Sun�ow: E�cient optical circuit scheduling for
co�ows. In Proceedings of the 12th International on
Conference on Emerging Networking EXperiments and
Technologies, CoNEXT ’16, pages 297–311, New York,
NY, USA, 2016. ACM.

[28] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,
and Dennis Fetterly. Dryad: Distributed data-parallel
programs from sequential building blocks. In Proceed-
ings of the 2Nd ACM SIGOPS/EuroSys European Con-
ference on Computer Systems 2007, EuroSys ’07, pages
59–72, New York, NY, USA, 2007. ACM.

[29] Akshay Jajoo, Rohan Gandhi, and Y. Charlie Hu. Gravi-
ton: Twisting space and time to speed-up co�ows. In
8th USENIXWorkshop on Hot Topics in Cloud Computing
(HotCloud 16), Denver, CO, 2016. USENIX Association.

[30] Akshay Jajoo, Rohan Gandhi, Y. Charlie Hu, and Cheng-
Kok Koh. Saath: Speeding up co�ows by exploiting

the spatial dimension. In Proceedings of the 13th Inter-
national Conference on Emerging Networking EXperi-
ments and Technologies, CoNEXT ’17, pages 439–450,
New York, NY, USA, 2017. ACM.

[31] Virajith Jalaparti, Peter Bodik, Ishai Menache, Sriram
Rao, Konstantin Makarychev, and Matthew Caesar.
Network-aware scheduling for data-parallel jobs: Plan
when you can. In Proceedings of the 2015 ACM Confer-
ence on Special Interest Group on Data Communication,
SIGCOMM ’15, pages 407–420, New York, NY, USA, 2015.
ACM.

[32] David A. Lifka. The anl/ibm sp scheduling system. In
Proceedings of the Workshop on Job Scheduling Strategies
for Parallel Processing, IPPS ’95, pages 295–303, London,
UK, UK, 1995. Springer-Verlag.

[33] Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. Trumpet: Timely and precise triggers in
data centers. In Proceedings of the 2016 ACM SIGCOMM
Conference, SIGCOMM ’16, pages 129–143, New York,
NY, USA, 2016. ACM.

[34] Stanley Lemeshow Paul S. Levy. Sampling of Popula-
tions: Methods and Applications. Wiley, 4 edition, Jun
2012.

[35] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan,
Devavrat Shah, and Hans Fugal. Fastpass: A centralized
"zero-queue" datacenter network. In Proceedings of the
2014 ACM Conference on SIGCOMM, SIGCOMM ’14,
pages 307–318, New York, NY, USA, 2014. ACM.

[36] Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-
Philippe Martin, and Dennis Fetterly. Dandelion: A
compiler and runtime for heterogeneous systems. In
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, pages 49–68,
New York, NY, USA, 2013. ACM.

[37] Uwe Schwiegelshohn and Ramin Yahyapour. Analysis
of �rst-come-�rst-serve parallel job scheduling. In Pro-
ceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’98, pages 629–638, Philadel-
phia, PA, USA, 1998. Society for Industrial and Applied
Mathematics.

[38] David Shue, Michael J. Freedman, and Anees Shaikh.
Performance isolation and fairness for multi-tenant
cloud storage. In Proceedings of the 10th USENIX Con-
ference on Operating Systems Design and Implementa-
tion, OSDI’12, pages 349–362, Berkeley, CA, USA, 2012.
USENIX Association.

[39] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne.
Process Scheduling. Operating System Concepts. John
Wiley & Sons, 8 edition, 2010.

846 2019 USENIX Annual Technical Conference USENIX Association

[40] Vojislav Ðukić, Sangeetha Abdu Jyothi, Bojan Karlas,
Muhsen Owaida, Ce Zhang, and Ankit Singla. Is ad-
vance knowledge of �ow sizes a plausible assump-
tion? In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19), pages 565–580,
Boston, MA, 2019. USENIX Association.

[41] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma,
Khaled Elmeleegy, Scott Shenker, and Ion Stoica. Delay
scheduling: A simple technique for achieving locality
and fairness in cluster scheduling. In Proceedings of the
5th European Conference on Computer Systems, EuroSys
’10, pages 265–278, New York, NY, USA, 2010. ACM.

[42] Matei Zaharia, Mosharaf Chowdhury, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster
computing with working sets. In Proceedings of the

2Nd USENIX Conference on Hot Topics in Cloud Com-
puting, HotCloud’10, pages 10–10, Berkeley, CA, USA,
2010. USENIX Association.

[43] Matei Zaharia, Andy Konwinski, Anthony D. Joseph,
Randy Katz, and Ion Stoica. Improving mapreduce per-
formance in heterogeneous environments. In Proceed-
ings of the 8th USENIX Conference on Operating Sys-
tems Design and Implementation, OSDI’08, pages 29–42,
Berkeley, CA, USA, 2008. USENIX Association.

[44] Hong Zhang, Li Chen, Bairen Yi, Kai Chen, Mosharaf
Chowdhury, and Yanhui Geng. Coda: Toward automati-
cally identifying and scheduling co�ows in the dark. In
Proceedings of the 2016 ACM SIGCOMM Conference, SIG-
COMM ’16, pages 160–173, New York, NY, USA, 2016.

.

USENIX Association 2019 USENIX Annual Technical Conference 847

PostMan: Rapidly Mitigating Bursty Traffic by Offloading Packet Processing

Panpan Jin1, Jian Guo1, Yikai Xiao1, Rong Shi2, Yipei Niu1, Fangming Liu1⇤, Chen Qian3, Yang Wang2

1National Engineering Research Center for Big Data Technology and System,
Key Laboratory of Services Computing Technology and System, Ministry of Education,

School of Computer Science and Technology, Huazhong University of Science and Technology, China
2The Ohio State University, USA

3University of California Santa Cruz, USA

Abstract

Unexpected bursty traffic due to certain sudden events, such
as news in the spotlight on a social network or discounted
items on sale, can cause severe load imbalance in backend ser-
vices. Migrating hot data—the standard approach to achieve
load balance—meets a challenge when handling such unex-
pected load imbalance, because migrating data will slow down
the server that is already under heavy pressure.

This paper proposes PostMan, an alternative approach
to rapidly mitigate load imbalance for services processing
small requests. Motivated by the observation that process-
ing large packets incurs far less CPU overhead than process-
ing small ones, PostMan deploys a number of middleboxes
called helpers to assemble small packets into large ones for
the heavily-loaded server. This approach essentially offloads
the overhead of packet processing from the heavily-loaded
server to others. To minimize the overhead, PostMan acti-
vates helpers on demand, only when bursty traffic is detected.
To tolerate helper failures, PostMan can migrate connections
across helpers and can ensure packet ordering despite such
migration. Our evaluation shows that, with the help of Post-
Man, a Memcached server can mitigate bursty traffic within
hundreds of milliseconds, while migrating data takes tens of
seconds and increases the latency during migration.

1 Introduction

Modern distributed systems usually scale by partitioning data
and assigning these partitions to different servers [4, 10, 11,
14,15,17,33,37,41,50]. In such an architecture, some servers
may experience a higher load than others, creating a classic
load imbalance problem [11, 16].

Many works have studied how to mitigate load imbalance
by better data partitioning and placement strategies [4, 10,
11, 14, 16, 17, 41], which work well for long-term and stable

⇤The corresponding author is Fangming Liu (fmliu@hust.edu.cn).

load imbalance. For load imbalance caused by unexpected
bursty traffic, however, these approaches meet an additional
challenge: to adapt to such unexpected load imbalance, we
need to adjust the data partitioning or placement strategies
online by migrating hot data to less busy servers, but migrating
hot data will inevitably slow down the server hosting hot data—
this is the server we want to accelerate. This means to alleviate
load imbalance, these approaches will first exacerbate load
imbalance for a while, which is a risk that production systems
are often unwilling to afford. For example, Amazon Dynamo
runs data migration at the lowest priority, and finds that during
a busy shopping season, data migration can take almost a day
to complete [16]. Unfortunately, unexpected bursty traffic is
frequently reported in practice, for various reasons such as a
sudden event drawing public attention on a social network [9]
or a hot item on sale [18, 34, 39, 40].

This paper proposes PostMan, an alternative approach to
mitigate load imbalance for services that are processing small
packets, which usually incur a high overhead for packet pro-
cessing. Typical examples of such services include key-value
stores and metadata servers. For example, Facebook reported
that in its caching layer, most key sizes are under 40 bytes and
median value size is 135 bytes [5, 38]; metadata servers, such
as NameNode in HDFS [50], are usually processing packets
with a size of tens to a few hundred bytes.

The key idea of PostMan is motivated by the observation
that there is a significant gap between the overhead of process-
ing small and large packets, because the networking stack has
to pay a constant overhead for each packet, such as interrupt
handling and system call. For example, when processing 64B
packets on 10Gb Ethernet, Linux can achieve a throughput
of 2.4 Gbps with a CPU utilization of 800%. On the con-
trary, when processing 64KB packets, Linux can achieve a
throughput of 9.1Gbps with a CPU utilization of only 220%.
Newer networking stacks, such as mTCP [24] and IX [7], have
mitigated this problem, but first, the gap still exists, though
smaller, and second, a wide deployment of a new networking
stack requires a big effort, because the networking stack is a
critical component of the whole system, which may affect all

USENIX Association 2019 USENIX Annual Technical Conference 849

other components.
Motivated by this observation, PostMan incorporates a

number of middleboxes called helpers, which batch small
packets for the server experiencing bursty traffic (called
“helpee” in the rest of the paper), so that the helpee can enjoy
the low overhead of processing large packets. This approach
essentially offloads the constant overhead associated with
each small packet from the helpee to the helpers.

This approach brings several benefits: first, PostMan does
not require the time-consuming data migration. Instead, it
only requires the clients to re-connect to the helpers, which
can be completed within hundreds of milliseconds as shown
in our evaluation. Second, PostMan can incrementally deploy
new networking stacks on helpers and allow other servers to
still use traditional stacks. Third, PostMan can use multiple
helpers to accelerate one helpee, which means its capabil-
ity is not limited by the power of a single machine. Finally,
offloading batching opens up new opportunities for further
optimization: we observe that packets to the same destination
have significant redundancy in their packet headers (e.g., same
destination IP and port). By removing such redundancy, Post-
Man is able to achieve a considerable reduction in bandwidth
consumption at the helpee.

Of course, PostMan has its own limitation: if load imbal-
ance lasts long, PostMan will be more expensive than data
migration because incorporating helpers incurs additional
data transfer and extra server resource. Therefore, we expect
PostMan and data migration to be complementary to mitigate
load imbalance: for unexpected bursty traffic, we can activate
PostMan to accelerate the heavily-loaded server first; if such
burst continues to happen regularly, we can migrate data when
the machine is less busy; after data migration is completed,
we can disable PostMan to minimize cost. As a result, the
helpers would not be active for a long time. Moreover, since
PostMan only targets the servers experiencing bursty traffic,
we can use a few helpers for a large cluster to further reduce
cost.

The idea of batching small requests to improve perfor-
mance is certainly not novel. The key novelty of PostMan
lies in its observation that, for the purpose of mitigating un-
expected load imbalance, batching should be performed re-
motely and on demand: remote batching allows PostMan to
accelerate a heavily-loaded server with the help of resource
from other servers; on-demand batching allows PostMan to
minimize the overhead by only helping those servers experi-
encing bursty traffic. To realize these ideas, PostMan includes
three main components:

• We provide an efficient implementation of the helpers. By
utilizing state-of-the-art techniques like DPDK and effi-
ciently parallelizing work among multiple cores, a single
helper node can assemble and disassemble around 9.6 mil-
lion small packets per second. By removing redundancy in
headers, PostMan can reduce packet header size from 46

bytes to 7 bytes: for 64-byte packets, this means about 50%
higher bandwidth utilization at the helpee.

• To ensure packet ordering despite migrating connections
across helpee and helpers and despite helper failures, Post-
Man keeps helpers stateless by maintaining sufficient in-
formation at the clients and servers to detect out-of-order
packets and retransmit packets when necessary. While we
find many applications already implement similar function-
alities, we provide a library to those which do not.

• We present an adaptive batching mechanism to decide how
many packets to assemble. It can increase batch size for
higher throughput under heavy traffic and decrease batch
size for lower latency under light traffic.

Our evaluation on Memcached and Paxos shows that, with
the help of PostMan, the service can mitigate bursty traffic
within hundreds of milliseconds, while migrating data can
take tens of seconds. Further investigation shows that this is
because PostMan can improve the goodputs of Memcached
and Paxos by 3.3⇥ and 2.8⇥, respectively.

2 Related work

Load balancing. Load balancing is a classic topic of dis-
tributed systems. Most existing systems use an adaptive
approach to achieve load balancing: they can monitor the
load of each machine and place new data on less busy
machines [4, 10, 11, 14, 16, 17, 20, 41]; some of them can
split, merge, and migrate existing data partitions online (e.g.,
Bigtable [11], RAMCloud [41] and ElMem [20]).

Despite the support from such mechanisms, how to mitigate
load balancing caused by unexpected bursty traffic is still a
challenge: since these mechanisms will put more pressure on
the machine that is already heavily loaded, the administrator
is facing a painful trade-off between the short-term loss and
the long-term gain of migrating hot data.
Batching small packets. A classic method to improve the
performance of processing small packets is to batch them to
amortize the constant overhead across multiple packets. For
example, TCP has the Nagle’s algorithm to batch small pack-
ets. Modern NICs often use Generic Receive Offload (GRO)
to re-segment the received packets. However, the power of
such per-connection batching mechanisms is limited by the
number of outstanding packets per client. In many cases, a
client may have to wait for replies before it can issue new
ones and thus the number of packets that can be batched is
limited.

Comet [21] batches the received data before batched stream
processing at the server side. KV-direct [29] first batches mul-
tiple KV operations at the client side to increase bandwidth
utilization, and then at the server side, it batches memory
accesses by clustering computation together.

850 2019 USENIX Annual Technical Conference USENIX Association

A few systems incorporate a number of nodes to batch
packets for other nodes. For example, Facebook has built
mcrouter to batch packets for its Memcached service [38].
NetAgg aggregates traffic along network traffics for applica-
tions following a partition/aggregation pattern [35]. MPI has
a collective I/O mode to batch I/Os from multiple processes
before writing them to disks [36].

Compared to these systems, PostMan uses batching for
a different goal—mitigating unexpected load imbalance. To
achieve this goal, PostMan offloads the overhead of batching
from the heavily-loaded server to others and only performs
such offloading when a server is under heavy pressure. These
techniques allow PostMan to use extra resource to accelerate
a server experiencing bursty traffic and minimize the overhead
when there is no such bursty traffic.
Efficient network stack. There is a continuous effort to
develop more efficient network stacks for high-speed net-
works: mTCP [24] moves the TCP stack to the user space
to reduce system call overhead and further improves perfor-
mance by batching I/Os; DPDK [1] asks a network card to
transfer data to the user space directly and applies a series
of optimizations like CPU affinity, huge page, and polling
to get close to bare-metal speed; IX [8] and Arrakis [43]
design new operating systems to separate data transfer and ac-
cess control to achieve both high speed and good protection;
Netmap [46] improves networking performance by reduc-
ing memory allocation, system call, and data copy overhead;
many works [12, 22, 25, 26, 30–32, 44, 48, 49, 51] exploit the
RDMA technique and FPGA to improve networking perfor-
mance.

Although these works have significantly improved the net-
work performance, the performance gap between small and
large packets persists (Table 1). Taking IX [8] as an example,
it can achieve almost 10Gbps bandwidth even with 64-byte
packets, which is significantly better than Linux. However,
first, it needs to consume a considerable amount of CPU
resource (see Section 6.2); second, there is still a gap be-
tween goodput (bandwidth used for payload) and throughput,
because packet headers consume a large portion of band-
width. Such per-packet overhead exists in RDMA systems as
well [27].

Furthermore, the deployment of new networking stacks
is usually a slow procedure, because networking service is
critical and production systems are unwilling to pay any risk.
On the other hand, PostMan allows administrators to incre-
mentally deploy such new techniques on a few servers to
accelerate a large number of legacy servers.
Others. The architecture of PostMan is similar to existing
proxies (e.g., NGINX [45] and mcrouter [38]), which are also
deployed between clients and servers. The key difference
is that PostMan dynamically enables and disables helpers
according to the load of servers.

The design of PostMan may seem to be similar to that
of the split TCP approach [19, 42, 47], which also deploys

64 bytes 64KB
10Gb Linux 2.4Gpbs 9.1Gbps
10Gb IX [8] 5.0Gbps 9Gbps

Table 1: Goodput of processing big and small packets. Good-
put excludes bandwidth used for headers.

Helper

Postman helper
Node

Servers

packets

Helper

...

...
...

Clients

APP

APP

APP

APP

APP

Server experiencing
bursty traffic (helpee)

APP Server with normal
load

PostMan library

Figure 1: Overview of PostMan.

helper nodes in the network. However, their goals and internal
mechanisms are totally different: split TCP is designed to
reduce latency in a network with large round-trip delays, by
letting helper nodes send acks to the sender directly; PostMan,
on the other hand, is designed to improve the throughput of
transferring small packets by letting helper nodes batch small
packets. For the purpose of tolerating helper failures, Post-
Man’s helpers actually delay sending acks to the sender, until
the helpers receive acks from the helpee (see Section 4.2).

3 Overview of PostMan

In this paper, we propose PostMan, a distributed service to of-
fload the overhead of packet processing from a heavily-loaded
server (called helpee in the rest of this paper). Motivated by
the observation that processing large packets incurs far less
overhead than processing small packets, PostMan deploys
a number of helper nodes in the network to assemble small
packets for the helpee. By doing so, PostMan essentially of-
floads the constant overhead associated with each packet from
a helpee to the helpers. With the help of PostMan, a helpee
node only needs to process large packets.

Figure 1 shows the organization of PostMan. The core of
PostMan consists of: 1) a number of helper nodes that assem-
ble small packets for the helpees, and 2) a PostMan library that
provides the applications with the functionalities of packet
re-direction, assembly, and disassembly. Furthermore, Post-
Man library provides functions to detect out-of-order packets
and re-transmit packets when necessary. These functions al-
low PostMan to achieve fault tolerance and load balance by
migrating connections across helpers.

As shown in Figure 1, in a large scale distributed system,

USENIX Association 2019 USENIX Annual Technical Conference 851

PostMan will only activate helpers to accelerate servers expe-
riencing unexpectedly high load, which causes their latency
to be higher than their service level agreement (SLA). For
servers with normal load, their clients should communicate
with the servers directly. Accelerating these normal servers
with PostMan, though possible, is not cost effective. Essen-
tially PostMan offloads overhead instead of reducing over-
head: in fact, PostMan increases overall overhead because it
needs to perform additional work to assemble and disassem-
ble packets. Therefore, PostMan tries to keep such overhead
low by only helping nodes with trouble.

4 PostMan Design

PostMan is designed for the scenario that, suddenly, a large
number of clients are sending small requests to a few servers
(i.e., helpees). PostMan deploys helper nodes to assemble
the clients’ small packets to the helpee and disassemble the
helpee’s small packets to the clients, so that the helpee only
needs to process large packets. To differentiate these two
directions, we use “request” to refer to a packet from a client
to a server and “reply” to refer to a packet from a server to a
client.

In the rest of this section, we discuss how to assemble and
disassemble packets efficiently at helper nodes, what APIs
PostMan provides and how to apply them, and how to adap-
tively balance throughput and latency.

4.1 Assembling and disassembling packets

Format of assembled packet: For small packets, the size
of their headers (at least 20 bytes for IP and TCP header re-
spectively, 6 bytes for MAC header) is comparable to the size
of their payloads, and that is one major reason why network
throughput cannot reach bare-metal bandwidth, even with new
techniques like DPDK. However, when considering packets
to the same destination, their headers contain a significant
amount of redundancy: packet assembly at the helper nodes
can remove such redundancy and further improve throughput
at the helpee. For example, since packets to be assembled
have the same destination, PostMan only needs to maintain
one copy of destination IP and port in the assembled packet.
PostMan can shrink source IP as well for small to medium
clusters by maintaining a mapping from IP to a shorter identi-
fication number at each node (e.g., 2 bytes for clusters with
less than 64K machines). Moreover, since the connections
from the clients to the helper and the connections from the
helper to the helpee are separate, they perform congestion
control independently, which means the helper can simply
discard related information in the original packets.

As shown in Figure 2, a helper node can assemble packets
from multiple connections, and when doing so, the helper
discards their TCP/IP/MAC headers and only sends their pay-
loads, together with one TCP/IP/MAC header for all payloads,

m 7
...

PostMan helper node

Client 2 Server

Payload
7

TCP/IP/MAC header
PostMan Header

5

m

9 ...

Payload of assembled packet

59

Client n

Client 1

Figure 2: PostMan assembles packets from different clients
by using a short header for each payload.

Type Length (bytes) Description
ID code 1 Message type
Len 2 Message length
Sender 2* + 2 Src IP/port

Table 2: The format of PostMan header. (*: for a cluster with
less than 64K machines, the helper extracts the lower 16 bits
from a source IP and then hashes them into a 2-byte identifier)

so that the helpee does not need to pay the header overhead
for each packet. However, to ensure that the helpee can cor-
rectly disassemble packets, the helper node must encapsulate
necessary information for each payload, which is called a
“PostMan header”.

A PostMan header is a 3-tuple structure (Table 2): 1) an
identification code to identify the packet type, 2) a length
field to record the length of one payload, and 3) the source
IP and port of the payload to locate the sender. A packet can
have one of the following three types: 1) request, i.e., a packet
sent by a client, 2) reply, i.e., a packet sent by a server, and 3)
connect, i.e., a command to create a connection (see Section
4.2). As a result, compared to a TCP/IP/MAC header that
takes at least 46 bytes, a PostMan header only takes 7 bytes:
this is a significant saving when processing small packets.

Workflow of assembling and disassembling packets:

When assembling packets from the clients to the helpee, a
helper node fetches all pending packets in its network stack,
replaces their TCP/IP/MAC headers with corresponding Post-
Man headers, concatenates all of them, and adds its own
TCP/IP/MAC header. By doing so, both the PostMan headers
and the payloads of the original small packets become the
payload of the assembled packet.

On the opposite direction, when a helpee sends replies to
clients, it will first send the assembled reply to the helper
node, which will disassemble the replies and dispatch them
to the clients. The format of the assembled reply is similar to
that in Figure 2.

Each helper node can create multiple connections to the
helpee, so that one helpee can utilize multiple cores and
threads to receive packets concurrently.

852 2019 USENIX Annual Technical Conference USENIX Association

4.2 PostMan library

A traditional networking library provides a number of APIs,
such as bind, connect, send, and recv to the application. Post-
Man library provides a few additional ones: pm_connect al-
lows a client to create a connection to a helper node; com-
pose and decompose assemble and disassemble packets as
described in Section 4.1; get_info allows the application to
retrieve connection information. A developer should use these
additional APIs together with traditional APIs to build the
application. Next, we show how these functions work and
how to modify an application to utilize these functions.
Establish connections. A server should bind to a port and
wait for new connections, like using a traditional network
library. Of course here a server may accept new connections
from the helper nodes. A client can use the traditional network
library when the latency is low and switch to PostMan when
the latency is high by calling pm_connect. pm_connect will
choose a helper (see Section 5.1) and connect to the helper.
Then it sends a special “connect” packet to the helper node.
This packet contains the destination IP and port of the helpee
and the source IP and port of the client. The helper node will
connect to the corresponding helpee, if there is no connection
yet, and forward this packet. At the same time the helper
creates a mapping from the client’s socket to the server’s
socket. When the server application reads data from a helper
connection, it should call decompose, which will identify the
special “connect” packet and notify the server application that
a new client tries to connect. Finally, the server library will
return a “success” packet to the client through the helper node,
telling the application pm_connect succeeds.
Transfer data. When PostMan is activated, a client should
send packets through the connection to the helper. The helper
node assembles multiple small packets and sends the assem-
bled packet to the server. When the server application reads
a packet, it calls decompose to disassemble the packet into
small packets and process them. On the opposite direction,
when a server sends replies, it should buffer multiple replies
and assemble them by calling compose. Then it can send the
assembled reply to the connection to the helper. The helper
node disassembles the replies and sends them to the corre-
sponding clients based on the PostMan headers. The clients
can read packets using a recv or read system call.
Ensure packet ordering. Applications often need to en-
sure packets are not lost, duplicated, or re-ordered. Since
PostMan uses TCP connections between the clients and the
helper nodes, and between the helper nodes and the helpees,
one can easily verify that these properties hold when there
is no migration of connections. However, PostMan may mi-
grate connections for several reasons: if a client is connecting
directly to a server and finds the latency is high, it will call
pm_connect to migrate its connection to a helper; when a
helper is heavily loaded, PostMan will instruct its clients to
migrate to other helpers; finally if a helper fails, its clients

must migrate to other helpers as well. As a result, PostMan
needs additional mechanisms to ensure packet ordering de-
spite such connection migration. For the first two cases, where
migration is executed gracefully, a simple solution is to ask
a client to wait for replies of all its pending requests before
migrating its connection. For the helper failure case, how-
ever, this problem becomes challenging, because a client is
uncertain about which packets are delivered.

In distributed systems, two approaches are widely used to
achieve fault tolerance: one is to replicate the nodes that can
be faulty, and the other is to re-direct requests to another node.
Replication can fully hide faults from upper layers, at the cost
of increased overhead. The re-direction approach has lower
overhead, but it requires the faulty node to be stateless, i.e., it
does not have any important state that will affect execution.

We use the re-direction approach because of its low over-
head. To ensure packet ordering even if the system loses all
information on the faulty helper node, PostMan needs to main-
tain sufficient information at the senders and receivers. Its
basic idea is similar to that of TCP: a sender should buffer a
packet until it gets acknowledged and re-send a packet if it
does not get acknowledgement in a given amount of time; a
receiver should check the sequence numbers in the packets
to ensure they are in order. Unlike TCP that implements this
mechanism in one connection, PostMan needs to implement
this mechanism across different connections because when a
helper fails, the client needs to re-connect to a new helper.

On one hand, we observe that many applications have al-
ready implemented such mechanism. The fundamental reason
they choose to do so instead of relying on TCP is that they
are designed to tolerate machine failures: in this case, a node
needs to connect to other nodes and face the same problem as
PostMan. For these systems, PostMan can utilize the applica-
tion’s mechanism directly.

On the other hand, for applications that do not have this
mechanism, PostMan provides a general solution. To ensure
packets will not be lost, PostMan library at senders1 will
buffer packets until it receives acks from receivers, like the
TCP protocol does. Since the underlying layer maintains sep-
arate TCP connections between the senders and the helper
nodes, and between the helper nodes and the receivers, the key
to avoid data loss is to coordinate the underlying ack mecha-
nisms: after receiving a packet from a sender, the helper node
should not send the ack to the sender until it has got ack from
the receiver. We modify the TCP implementation at the helper
nodes to realize this mechanism. Since Postman targets small
packets, delaying acks and sending them in burst should have
little impact on congestion control.

When a helper fails, a sender may not receive acks for its
outgoing packets, so it may decide to reconnect to another
helper and retransmit those packets through the new helper.

1Note that senders and receivers are different concepts compared to clients
and servers: when a server is receiving packets from a client, it is the receiver;
when a server is sending a reply to a client, it is the sender.

USENIX Association 2019 USENIX Annual Technical Conference 853

Lib client Helper 1 Helper 2 Lib server
Client ServerMaintaining Virtual Connection

pm_send

failure
timeout

pm_readRelease: <n

Figure 3: Maintaining a virtual connection by redirecting and
re-sending requests when a helper node fails.

In this case, since the receiver may have already received
these packets (acks may be lost due to helper failure), these
packets may be duplicated or re-ordered. To prevent such
abnormality, PostMan libraries at the sender and the receiver
maintain additional information to detect duplicate or out-of-
order packets.

To be specific, the library will keep track of how many bytes
are already sent and received on each connection; for each
buffered outgoing packet, the library will record its offset in
the stream. As shown in Figure 3, when a helper node fails, the
client library, which is the sender in this example, will connect
to another helper node and sends a “reconnect” message to
the server through the new helper node, which contains the
number of sent and received bytes at the client side. When
the server library receives this command, it will first stop
receiving packets from the old connection and then respond
with the number of sent and received bytes at the server side.
By exchanging the number of sent and received bytes and
comparing them to the offsets of buffered packets, both sides
can determine which packets should be re-transferred.
Further optimization. So far we assume an application
server needs to disassemble packets before processing them.
However, this may not be necessary for some applications.
A typical example is a server that needs to forward or broad-
cast packets (e.g., proxy server, leader replica in replication
protocols, etc). For such servers, since they do not care about
the content of payload, they can forward or broadcast the as-
sembled packets directly, instead of disassembling them first.
Note that when sending assembled packets, the application
should not use PostMan, since these packets are large.
Using PostMan library. To apply PostMan to existing ap-
plications, the developer needs to modify its code: at the
client side, the client should call pm_connect to switch to
PostMan when it observes a high latency and switch back to
traditional sockets when the latency drops back to normal;
at the server side, the server should call decompose when it

receives a packet from a helper (get_info can tell whether a
connection is from a client or from a helper) and should as-
semble a number of replies by calling compose when it sends
packets through helpers. If the application needs PostMan’s
help to ensure packet ordering, it should notify PostMan when
a packet is sent or received, so that PostMan can buffer and
release packets and update corresponding metadata.

It is possible to hide all the mechanisms mentioned above
in the library and provide the applications with an illusion
that they are using direct connections between clients and
servers. We have implemented a library to achieve such trans-
parency. However, we find it can incur up to 50% overhead
for additional operations like memory copy, synchronization,
context switch, etc. Considering the main goal of this work is
to improve the performance of the heavily-loaded server, we
decide to give up transparency for better performance.

4.3 Adaptive batching

Batching can affect system latency in two opposite ways: on
one hand, to assemble packets, a helper node must wait for a
certain amount of time to accumulate enough small packets,
which will increase the latency of the system. On the other
hand, according to queuing theory, when the load is close to or
higher than the system’s capacity, queuing delay will become
a dominant factor for latency. Since batching can improve a
system’s capacity, it can reduce queuing delay and thus can
reduce latency.

PostMan partially avoids such trade-off by only activating
helpers for heavily-loaded servers. In addition, PostMan in-
corporates an adaptive batching algorithm to balance latency
and throughput when helpers are enabled. Like many systems
using batching, PostMan defines a maximum batch interval
(T) and a preferred batch size (S): if the helper has waited for
T (condition 1) or if its assembled packet has reached size S
(condition 2), the helper will send the assembled packet to the
helpee. Then the question turns to how to set T and S: large
T and S lead to unnecessary waiting when traffic load is light;
small T and S reduce the chance of assembling packets when
traffic load is heavy.

To address this problem, PostMan uses an adaptive batch
size and interval to increase throughput under heavy loads
and decrease latency under light loads, as shown in Algorithm
1. PostMan records the batch size (s) and waiting time (t)
of the last batch: if s is significantly different from S or t
is significantly different from t, PostMan updates S and T
accordingly. Furthermore, it sets a lower bound of S and T to
ensure efficiency. Note that although T is the maximum batch
interval, the actual interval t can be much larger than T when
the helper does not receive any packets for a long time; s can
be much larger than S as well when the helper receives many
packets at the same time.

This algorithm has a few parameters: we set the lower
bound of S to be 1500 because that is the MTU size; the lower

854 2019 USENIX Annual Technical Conference USENIX Association

Algorithm 1 Adaptive batching algorithm
Input: the size (s) and waiting time (t) of last batch

1: procedure Update S and T
2: Sl 0.75S
3: Su 1.25S
4: if (s < Sl _ s > Su)^ (s� 1500) then

5: S s
6: end if

7: Tl 0.5T
8: Tu 1.5T
9: if (t < Tl _ t > Tu)^ (t � 10µs) then

10: T t
11: end if

12: end procedure

bound of T should be set according to the SLA requirement;
we set other parameters based on empirical experiments.

5 Implementation

In this section, we present how to achieve efficiency and
scalability for PostMan.

5.1 Efficient helper

Fast I/O and user-level stack: Each helper node needs
to assemble requests from the clients, and disassemble the
replies from the servers. To efficiently process the small
packets on the helper nodes, we implement PostMan upon
DPDK [1], which is a set of libraries and drivers for fast packet
processing. DPDK minimizes the overhead of packet process-
ing by transferring packets from NICs directly to user space
programs and thus can achieve a throughput of hundreds of
millions packets per second. Upon DPDK, we use mTCP [23]
to handle TCP protocol and connections. DPDK provides a
poll mode I/O model, which can transfer a batch of packets
in one I/O operation. This I/O model not only avoids the
overhead caused by frequent interrupts in per-packet based
processing in Linux, but also naturally fits the assembling
requirements of our helper nodes: a helper can simply add all
the payload data from these packets to the assembling buffer,
instead of performing the read operation several times.
In-stack processing: Since the assembling logic only in-
volves simple operations for request/response headers, Post-
Man implements these operations in the network layer to
accelerate the identification and pre-processing of the origi-
nal packets. PostMan uses direct data exchange between the
server and the client streams so as to avoid redundant memory
copy and improve the performance of fragmented data opera-
tion. By implementing everything in the network stack, Post-
Man eliminates the interaction and context switching between
the applications and the stack to further improve assembling

efficiency. All necessary assembling and disassembling oper-
ations are queued in the stack, so that PostMan can perform
them after finishing processing the incoming packet in the
TCP protocol. Furthermore, PostMan only keeps the neces-
sary procedures for receiving and sending packets in a TCP
stream. Other operations, like the ICMP protocol, are aban-
doned, either because they have nothing to do with packet
assembly, or they should be performed in the helpee’s stack.
Independent per-core context: PostMan leverages per-
core thread (affiliated to a hardware thread) and independent
per-core context to avoid synchronization among different
assembling threads. On each helper node, we enable the Re-
ceive Side Scaling (RSS) [3] function of NIC—this is widely
supported by today’s NICs—to hash flows into different phys-
ical queues in hardware, where each queue is assigned to a
dedicated CPU thread. PostMan does not share any global
information, hence the connection can be locally processed on
each core. PostMan sets up at least one queue for each thread,
such that the flows in each RSS group can be processed inde-
pendently without exchanging any information between CPU
cores. Consequently, PostMan can scale well on today’s multi-
core system. Note that RSS will reduce a helper’s chance to
batch packets, but since PostMan is enabled only when the
server is under high load, there are still plenty of chances
for a helper to batch packets as shown in our evaluation. For
each thread, PostMan uses hugepages to store raw packet data,
similar as many DPDK based applications, so as to reduce
the number of TLB misses; PostMan uses hardware-based
CRC instruction for flow hashing to accelerate the assembling
process.

5.2 Scalability and load balancing

As presented in the previous section, PostMan is designed
for hardware thread and RSS built-in NIC. Hence, PostMan
scales well with the number of cores.

For helper nodes, their stateless nature, which allows con-
nections to be migrated freely across helpers, significantly
simplifies scaling and load balancing: when a client connects
to helpers, it picks up one with a low load; whenever some
helper nodes are overloaded, they can simply disconnect some
clients and those clients will automatically re-connect to other
helper nodes. To achieve this, PostMan uses a standard load-
balancing technique: each helper monitors its own CPU and
network utilization; when a client establishes a connection,
either for a new connection or for re-connecting, it randomly
chooses a number of helpers; each helper will reply with its
resource utilization, so that the client can choose the helper
with the lowest utilization; when a helper finds its resource
utilization is too high, it disconnects existing connections, so
that the corresponding clients can connect to other helpers.

PostMan has no inherent scalability bottleneck: since a
client can connect to any helper, PostMan does not need a
centralized master node to map clients to helpers.

USENIX Association 2019 USENIX Annual Technical Conference 855

5.3 When to enable and disable helpers?

PostMan provides a mechanism to enable and disable helpers
on demand, but in practice, we still need to answer the policy
question about when to enable and disable helpers. In prin-
ciple, both the clients and the servers can make the decision
and we observe the following trade-offs:

A client can monitor its perceived latency to the server and
make decisions accordingly: this approach brings minimal
overhead to the server side, but since a client cannot gain the
overall load statistics of the server, it may not be able to make
the best decisions in certain cases. On the other hand, a server
certainly has more information to make a better decision, but
to execute the decision, the server must pay the overhead of
notifying corresponding clients and helpers, which could be
problematic if the server is already under heavy load.

Therefore, the current implementation of PostMan uses a
hybrid approach: a client will decide to enable helpers (i.e.,
the client disconnects from the server and connects to a helper)
if it detects its perceived latency is higher than SLA—this
could minimize the overhead at the server side when the
server is busy; a server will decide to disable helpers when
its throughput becomes low—the overhead is fine in this case
since the server is not too busy.

6 Evaluation

The goal of PostMan is to quickly mitigate the bursty traffic
directed to one or a few servers. To assess whether PostMan
achieves this goal, we evaluate the performance of PostMan
using various applications and workloads. In particular, our
evaluation answers the following questions:

• How well can PostMan help a service reduce the load
caused by bursty traffic?

• How is PostMan’s capability affected by packet size?

• How much resource does PostMan need to achieve such
benefit?

• How does the system perform when there are helper fail-
ures?

To answer the first question, we run benchmarks on Mem-
cached and Paxos, and emulate the case of bursty traffic by
drastically increasing the load during the middle of the ex-
periment; we enable PostMan after such burst to measure 1)
whether it can reduce the latency of the target service and 2)
how long it takes to enable PostMan. We compare the results
of PostMan to those of the data migration approach.

To answer the following three questions, we use a ping-
pong microbenchmark to measure the performance of Post-
Man under different parameters.

Memcached. Memcached is a key-value based memory ob-
ject caching system [2]. It is used widely in the data centers
to cache data to speed up the lookups of frequently accessed
data. As reported in [5], Memcached is often used to store
small but hot data. We have modified 454 lines of code in
Memcached 1.4.32 to apply PostMan. The benchmark gen-
erates GET/SET commands with a fixed key size (32 bytes)
and different value sizes.

Paxos. Paxos is an asynchronous replication protocol to
achieve consensus in a network of unreliable processors [28].
Paxos needs 2 f +1 replicas to tolerate f machine crashes and
asynchronous events (e.g inaccurate timeout caused by net-
work partitions). A number of systems, such as Megastore [6],
Windows Azure [10] and Spanner [14], are using Paxos for
fault tolerance and since they use many Paxos groups, one for
each data partition, it is possible that a few of them experience
bursty traffic.

In Paxos, one replica is elected as leader, and it needs to
broadcast the received requests to other non-leader replicas.
It is a typical example of applications that do not care about
the contents of packets. Therefore, the leader can read the
assembled packets from PostMan and broadcast the assem-
bled packets directly. After the non-leader replicas receive the
assembled packets, they will disassemble them. Such mecha-
nism can avoid the redundant disassembling and assembling
operations at the leader replica, which is the bottleneck in
the system. To exploit such opportunities, we implement our
own version of Paxos using PostMan and compare it to a
vanilla version that reads individual packets from the clients,
assembles them, and then broadcasts the assembled packets.
For simplicity, we only implement the Paxos protocol in the
failure-free case, which is enough to evaluate the performance
benefit of PostMan.

Ping-pong benchmark. This benchmark [8] can test net-
work performance with configurable packet sizes. To avoid the
inaccuracy caused by TCP merging packets, this benchmark
asks each client to perform a ping-pong like communication
with the server: the client sends a packet to the server and
then waits for the server to send the packet back. By doing so,
since a client has only one outstanding packet, TCP has no
chance to merge packets.

Experiment Setup. We run all experiments on Cloud-
Lab [13] with 15 machines. Each machine is equipped with
an Intel Xeon E5-2660 v3 @ 2.60GHz CPU, with 10 phys-
ical cores and hyper-threading, and an Intel 82599ES 10-
Gigabit NIC. These severs run Ubuntu 16.0.2 LTS with Linux
4.8.0 kernel, and use DPDK 16.07.2 for the helper nodes. For
DPDK Poll Mode Driver, we set the batch size to 64, which
is the maximum number of packets received/transmitted in
each iteration. For Paxos and Ping-pong experiments, we use
IX [8], a state-of-the-art network stack built upon DPDK, at
the client side, so that we can stress-test the server with a
limited number of client nodes. We also add 17 LoC to count

856 2019 USENIX Annual Technical Conference USENIX Association

Times(s)
0 2 4 6 8 10 12 14 16 18 20 22 24 26

L
a
te

n
cy

(µ
 s

)

0

100

200

300

400

500

600

700

800

Increase load

PostMan finishes

re-connecting

Data migration

starts

PostMan starts

re-connecting

Data migration

finishes

Figure 4: Mitigating bursty traffic in Memcached (PostMan
enables two helpers).

the RX/TX bytes and packets in the data plane of IX, whose
impact on the performance is negligible in our experiments.
For Memcached experiments, since the Linux stack is suffi-
cient to saturate the server, we do not switch to IX. By default,
the application server of our benchmarks runs on 16 cores
(8 real cores with hyperthreading). Note that in all experi-
ments, when enabling PostMan, our reported goodput does
not include the PostMan header and the TCP/IP/MAC header
added by the helper nodes, which allows a fair comparison
with the goodput without PostMan. When using PostMan,
a client enables helpers if its observed 99 percentile latency
(p99) is higher than 500 µs [7].

6.1 Effectiveness of PostMan

To measure the effectiveness of PostMan, we emulate the case
of bursty traffic on both Memcached and Paxos.
Memcached. We measure p99 latency of Memcached using
a read workload with 32B keys and 64B values. As shown
in Figure 4, we first use a light load, which incurs a latency
of 200 µs, till time 5. Then we increase the load drastically,
which increases the latency to more than 500 µs. At about time
9, we enable PostMan, which asks clients to re-connect to
helpers. Such re-connection involves 660 client connections
and finishes within 550 ms. Afterwards, the latency is reduced
to around 300 µs.

As a comparison, we emulate the data migration approach
by assuming 50% of the clients are accessing 10% of the
data (i.e., 6.4GB) in the Memcached server. Therefore, we
start a thread in the Memcached server to copy the data to an-
other server at time 9. Normally such a thread needs to access
the internal data structure of Memcached, which may incur
additional CPU overhead and may contend with the client’s
requests. Our emulation avoids such overhead by letting the
migration thread copy dummy data to another server, which
is in favor of the data migration approach. After data copy
is complete, we remove half of the clients since they should

Times(s)
0 2 4 6 8 10 12 14 16 18 20 22

L
a
te

n
cy

(µ
 s

)

0

100

200

300

400

500

600

Increase load

Data migration starts

PostMan starts

re-connecting

PostMan finishes re-connecting

Data migration

finishes

Figure 5: Mitigating bursty traffic in Paxos (PostMan enables
two helpers).

be re-directed to another server. As one can see, the data mi-
gration takes about 13 seconds and during this procedure, the
latency of the service further increases, because the migra-
tion traffic and the client’s traffic compete for resource. One
can of course limit the rate of migrating data to reduce such
interference, but that will further increase the length of data
migration.
Paxos. We run a similar set of experiments on Paxos. We
measure the p99 latency of Paxos using a workload with 64B
requests (Paxos does not execute the request, so the content of
the request does not matter). As shown in Figure 5, we first use
a light load, which incurs a latency of 200 µs, till time 5. Then
we increase the load, which increases the latency to about 500
µs. At about time 9, we enable PostMan, which asks clients
to re-connect to helpers. Such re-connection involves 960
client connections and finishes within 750 ms. Afterwards,
the latency is reduced to around 220 µs.

Similarly, we emulate the data migration approach by as-
suming 50% of the clients are accessing 10% of the data.
Therefore, we start a thread in the non-leader server to copy
the data to another server at time 9. Since the leader has the
highest overhead in Paxos, copying data from a non-leader
server should incur less interference on the clients’ requests.
After data copy is complete, we remove half of the clients
since they should be re-directed to another server. As one
can see, the data migration takes about 8 seconds. During
this procedure, unlike the Memcached experiments, data mi-
gration has little impact on the clients’ requests, because it
is performed from a non-leader server. Note that after miti-
gating bursty traffic, the performance of the two systems is
different because they have different workloads: with Post-
Man, the server is processing full load with big packets; after
data migration, the server is processing half load with small
packets. Which one has better performance depends on the
actual workload: in Figure 5 the system with PostMan has
lower latency while in Figure 4 the system with PostMan has
slightly higher latency.

USENIX Association 2019 USENIX Annual Technical Conference 857

0 1000 2000 3000 4000 5000 6000 7000

Messages/s (103)

0

100

200

300

400

500

600

L
a

te
n

cy
 (

 s
)

set

set+PostMan

get+PostMan

get

Figure 6: The latency with different load for Memcached and
Memcached + PostMan (64-byte payloads; PostMan enables
up to five helper nodes).

Messages/s (103)

0 1000 2000 3000 4000 5000 6000

L
a
te

n
cy

 (
µ

 s
)

0

50

100

150

200

250

300

350

400

Paxos Paxos+PostMan

Figure 7: The latency with different load for Paxos and Paxos
+ PostMan (64-byte payloads; PostMan enables up to six
helper nodes).

Both the Memcached and the Paxos experiments have con-
firmed the effectiveness of PostMan: for services processing
small packets, PostMan can quickly mitigate the long latency
caused by unexpected bursty traffic, because it can offload the
overhead of packet processing to helpers; data migration, on
the other hand, takes much longer to achieve the same goal,
and may further increase the latency during data migration
when data migration competes for resource with processing
clients’ requests.
Capabilities of PostMan. To understand in what circum-
stances can PostMan help to mitigate bursty traffic, we mea-
sure how Memcached’s and Paxos’ tail latency grow with the
load and how PostMan changes such trend.

As shown in Figure 6 and Figure 7, both Memcached get
experiment and Paxos experiment show the same trend: when
the load is low (i.e., lower than 2000K messages/s in Mem-
cached and 500K messages/s in Paxos), using PostMan will

Size(B)
0 300 600 900 1200 1500

M
e
ss

a
g
e
s/

s

105

106

107

108

Linux + PM with 8 cores

Linux with 8 cores

Linux + PM with 1 core

Linux with 1 core

size = 400B size = 1460B

Figure 8: The throughput with different payload sizes for
Linux and Linux + PostMan (PostMan enables up to six helper
nodes).

Size(B)
0 100 200 300 400 500 600 700 800 900 1000

M
e
ss

a
g
e
s/

s

105

106

107

108

IX + PM with 8 cores

IX with 8 cores

IX + PM with 1 core

IX with 1 core

size = 260B size = 920B

Figure 9: The throughput with different payload sizes for IX
and IX + PostMan (PostMan enables up to six helper nodes).

actually introduce extra latency, because of the additional
processing at the helper; when the load grows, the latency of
the original systems will grow as well due to queuing delay
and when these systems are close to saturation, their latency
jumps, which is what happens when the service experiences
bursty traffic. PostMan can offload their overhead of packet
processing to helpers and thus can improve their maximum
throughput, which reduces their queuing delay in a range of
loads: for Memcached get experiments, PostMan can reduce
the latency if the load is between 2000K and 6000K mes-
sages/s; for Paxos, PostMan can reduce its latency if the load
is between 500K and 5000K messages/s. Memcached set ex-
periments do not benefit from PostMan, because as shown
in our profiling, its bottleneck is lock contention, which has
nothing to do with packet processing. This set of experiments
show that PostMan is effective for a wide range of loads, but
it does have its limits: that’s why it is complementary to data
migration, which does not have such limits but requires a
longer time to be effective.

858 2019 USENIX Annual Technical Conference USENIX Association

Number of helpers
0 1 2 3 4 5 6 7 8

M
e
ss

a
g
e
s/

s
(1

0
6
)

0

4

8

12

16

20

24

28

64 Bytes

32 Bytes

Bandwidth saturated 8.8Gbps

Bandwidth saturated 9.0Gbps

Figure 10: The performance scale linearly when increasing
the number of helpers nodes.

0 2 4 6 8 10 12
Time (10-1s)

0

0.5

1.0

1.5

2.0

2.5

M
e

ss
a

g
e

s/
s

(1
06

)

Response timeout

Re-connection finishedKill helper service

Figure 11: The performance when PostMan recovers the con-
nections by mapping them to another active helper.

6.2 Effects of packet size

The capability of PostMan is affected by the packet size be-
cause PostMan’s key idea of assembling packets naturally
works well with smaller packets. To quantitatively under-
stand how PostMan’s capability is affected by this factor, we
use the ping-pong microbenchmark to measure the through-
put of PostMan, since as shown in Section 6.1, the maximal
throughput of PostMan determines the range of loads in which
PostMan might be helpful. We compare the throughput of
PostMan to those of Linux and IX [7]. Since we fail to run an
IX server with more than nine cores, we reduce the number
of cores to eight in this set of experiments. Since IX shows it
can outperform mTCP [24], another popular network stack,
we do not further compare PostMan with mTCP.

Figure 8 shows the throughput of Linux under different
packet sizes, with and without PostMan. As shown in this
figure, when the server can utilize 8 cores for packet process-
ing, PostMan can improve throughput when the payload size
is less than 400 bytes. However, for CPU-intensive applica-
tions, this may not be a fair comparison because PostMan

can reduce CPU utilization as well as improving throughput.
Therefore, we also show the comparison when the server can
utilize only one core for packet processing. In this case, Post-
Man can improve throughput when payload size is smaller
than 1460 bytes.

Figure 9 shows the throughput of IX under different packet
sizes, with and without PostMan. It shows a similar trend as
the Linux experiment, though the turning points are smaller,
260B and 920B respectively. The benefit of PostMan still
exists although becomes smaller than that in the Linux ex-
periment. This is because IX, with an optimized networking
stack, pays less overhead per packet compared to Linux.

Comparing Figure 8 and Figure 9, one can see that
Linux+Postman can even outperform IX when the packet
size is small, despite the fact that the former approach does
not require installing a new OS on all servers.

6.3 Performance of helper nodes

So far we have measured the performance gain at the server
side. A natural question is how much resource we need to
pay at the helper side to achieve such performance gain. To
answer this question, we measure how much throughput a
single helper can provide and whether PostMan scales with
the number of helpers.

In this set of experiment, we use IX as the server side to
ensure the server will not become the bottleneck. As Fig-
ure 10 shows, a single helper node can process about 9.6
million small messages (assembling 4.8 million requests and
disassembling 4.8 million responses) per second. When in-
creasing the number of helper nodes, the overall throughput
of PostMan scales almost linearly, till the helpee’s bandwidth
is saturated.

Such results have demonstrated that PostMan does need
a number of helper nodes to improve the throughput at the
server side: this is as expected because PostMan offloads
overhead instead of reducing overhead. Therefore, we expect
a small-scale deployment of PostMan to help a few heavily
loaded servers.

6.4 Fault tolerance

To test whether PostMan can tolerate failures of helper nodes,
we set up a simple scenario, in which two active helper nodes
are connected to the server. A Linux client running on Post-
Man client library is performing request-reply communication
to the server, with 10 threads and 1000 connections in total.
To examine the failure recovery of helper nodes, we first let all
clients connect to one helper, record the throughput (measured
every 100ms) of the clients and manually kill the connected
helper node. As shown in Figure 11, the library waits until
a timeout on receiving the reply message, and then recon-
nects to the other helper node. The re-connection takes about

USENIX Association 2019 USENIX Annual Technical Conference 859

0 100 200 300 400 500 600 700 800 900

Batch ID

0

500

1000

1500

0

1000

2000

3000

4000

5000

6000

B
a

tc
h

 S
iz

e
 (

B
)

Batch Size

Batch Interval

Decrease loadIncrease load

Figure 12: Adaptively changing batch size and interval.

0.4s to recover all 1000 connections. After that, the message
exchange reaches the previous rate.

Note that PostMan’s correctness does not rely on the cor-
rectness of timeout: even if the timeout is inaccurate (i.e., a
timeout is triggered when the previous helper node is still
alive), PostMan can still guarantee all its properties because
clients and servers will close the old connection and exchange
necessary information when establishing a new connection
(Section 4.2). This means in practice, the developers can use
a shorter timeout to improve availability. In this experiment,
we simply use an arbitrary 1-second timeout to show that
PostMan can function correctly despite failures.

6.5 Adaptive batching

To test the effectiveness of our adaptive batching algorithm,
we change the load of our system and see how PostMan re-
acts. As shown in Figure 12, with the load increasing, the
batch interval decreases, implying that the helper nodes batch
packets more frequently. Although the size variation seems
noisy, the batch sizes are mostly larger than those with low
load. When the load decreases, the helper nodes can reduce
the batch size and increase the batch interval. As a result, we
can conclude that the batch size and batch interval are well
adapted to fluctuating load.

7 Conclusion

In this paper, we present PostMan, a distributed service to
mitigate load imbalance caused by bursty traffic, by offloading
the overhead of packet processing from heavily-loaded servers
and reducing data redundancy in packet headers. By batching
small packets remotely and on demand, PostMan can utilize
multiple nodes to help a heavily-loaded server when bursty
traffic occurs and can minimize the overhead when there is no
such bursty traffic. Experiments with Memcached and Paxos
show that, compared to data migration, PostMan can quickly
mitigate the extra latency caused by bursty traffic.

8 Acknowledgment

We thank our shepherd Boris Grot and other anonymous re-
viewers for their insightful comments. This work was sup-
ported in part by the NSFC under Grant 61761136014 (and
392046569 of NSFC-DFG) and 61722206 and 61520106005,
in part by National Key Research & Development (R&D)
Plan under grant 2017YFB1001703, in part by the Fundamen-
tal Research Funds for the Central Universities under Grant
2017KFKJXX009 and 3004210116, in part by the National
Program for Support of Top-notch Young Professionals in Na-
tional Program for Special Support of Eminent Professionals,
and in part by the NSF grant CNS-1566403.

References

[1] Dpdk (data plane development kit). https://www.

dpdk.org/.

[2] Memcached. http://memcached.org.

[3] Receive side scaling on intel network adapters.
https://www.intel.com/content/www/us/en/

support/network-and-i-o/ethernet-products/

000006703.html.

[4] Apache HBASE. http://hbase.apache.org/.

[5] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a large-
scale key-value store. In Proceedings of SIGMETRICS,
2012.

[6] Jason Baker, Chris Bond, James C. Corbett, JJ Fur-
man, Andrey Khorlin, James Larson, Jean-Michel Leon,
Yawei Li, Alexander Lloyd, and Vadim Yushprakh.
Megastore: Providing Scalable, Highly Available Stor-
age for Interactive Services. In Proceedings of CIDR,
2011.

[7] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
Ix: A protected dataplane operating system for high
throughput and low latency. In Proceedings of OSDI,
2014.

[8] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
Ix: A protected dataplane operating system for high
throughput and low latency. In Proceedings of OSDI,
2014.

[9] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov,
Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat

860 2019 USENIX Annual Technical Conference USENIX Association

Venkataramani. Tao: Facebook’s distributed data store
for the social graph. In Proceedings of ATC, 2013.

[10] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakan-
tan, Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shash-
wat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev
Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew
Edwards, Vaman Bedekar, Shane Mainali, Rafay Ab-
basi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad
Ikram ul Haq, Deepali Bhardwaj, Sowmya Dayanand,
Anitha Adusumilli, Marvin McNett, Sriram Sankaran,
Kavitha Manivannan, and Leonidas Rigas. Windows
Azure Storage: a highly available cloud storage service
with strong consistency. In Proceedings of SOSP, 2011.

[11] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:
A Distributed Storage System for Structured Data. In
Proceedings of OSDI, 2006.

[12] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and
Haibo Chen. Fast and general distributed transactions
using rdma and htm. In Proceedings of EuroSys, 2016.

[13] CloudLab. https://cloudlab.us.

[14] James C. Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, J. J. Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eu-
gene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-
nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh
Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford.
Spanner: Google’s Globally-Distributed Database. In
Proceedings of OSDI, 2012.

[15] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Sim-
plified data processing on large clusters. In Proceedings
of OSDI, 2004.

[16] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s Highly Avail-
able Key-value Store. In Proceedings of SOSP, 2007.

[17] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The google file system. In Proceedings of SOSP,
2003.

[18] Glastonbury ticket website crashes. https:

//www.theguardian.com/music/2016/oct/09/

glastonbury-ticket-website-crashes, 2016.

[19] Chamara Gunaratne, Ken Christensen, and Bruce Nord-
man. Managing energy consumption costs in desktop
pcs and lan switches with proxying, split tcp connec-
tions, and scaling of link speed. International Journal
of Network Management, 15(5):297–310, 2005.

[20] Ubaid Ullah Hafeez, Muhammad Wajahat, and Anshul
Gandhi. Elmem: Towards an elastic memcached system.
In Proceedings of ICDCS, 2018.

[21] Bingsheng He, Mao Yang, Zhenyu Guo, Rishan Chen,
Bing Su, Wei Lin, and Lidong Zhou. Comet: batched
stream processing for data intensive distributed com-
puting. In Proceedings of ACM symposium on Cloud
computing, 2010.

[22] N. Islam, W. Rahman, X. Lu, and D. Panda. High Per-
formance Design for HDFS with Byte-Addressability
of NVM and RDMA. In Proceedings of ICS, 2016.

[23] Eun Young Jeong, Shinae Woo, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and Ky-
oungSoo Park. mtcp: A highly scalable user-level tcp
stack for multicore systems. In Proceedings of NSDI,
2014.

[24] EunYoung Jeong, Shinae Wood, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and Ky-
oungSoo Park. mTCP: a Highly Scalable User-level
TCP Stack for Multicore Systems. In Proceedings of
NSDI, 2014.

[25] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Design guidelines for high performance rdma systems.
In Proceedings of ATC, 2016.

[26] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Fasst: Fast, scalable and simple distributed transactions
with two-sided (rdma) datagram rpcs. In Proceedings
of OSDI, 2016.

[27] Anuj Kalia Michael Kaminsky and David G Andersen.
Design guidelines for high performance rdma systems.
In Proceedings of ATC, 2016.

[28] Leslie Lamport. Paxos Made Simple. ACM SIGACT
News (Distributed Computing Column), 32(4):51–58,
December 2001.

[29] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu,
Yongqiang Xiong, Andrew Putnam, Enhong Chen, and
Lintao Zhang. Kv-direct: high-performance in-memory
key-value store with programmable nic. In Proceedings
of SOSP, 2017.

[30] Xiaoyao Li, Xiuxiu Wang, Fangming Liu, and Hong Xu.
Dhl: Enabling flexible software network functions with
fpga acceleration. In Proceedings of ICDCS, 2018.

USENIX Association 2019 USENIX Annual Technical Conference 861

[31] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K. Panda.
High performance rdma-based mpi implementation over
infiniband. Int. J. Parallel Program., 32(3):167–198,
June 2004.

[32] X. Lu, D. Shankar, S. Gugnani, and D. Panda. High-
Performance Design of Apache Spark with RDMA and
Its Benefits on Various Workloads. In Proceedings of
IEEE International Conference on Big Data, 2016.

[33] John MacCormick, Nick Murphy, Marc Najork, Chan-
dramohan A. Thekkath, and Lidong Zhou. Boxwood:
Abstractions as the Foundation for Storage Infrastruc-
ture. In Proceedings of OSDI, 2004.

[34] Macy’s Web Site Buckles Under Heavy Traffic on
Black Friday. http://fortune.com/2016/11/25/

macys-black-traffic/, 2016.

[35] Luo Mai, Lukas Rupprecht, Abdul Alim, Paolo Costa,
Matteo Migliavacca, Peter Pietzuch, and Alexander L.
Wolf. NetAgg: Using Middleboxes for Application-
specific On-path Aggregation in Data Centres. In Pro-
ceedings of CoNEXT, 2014.

[36] Introduction to Parallel I/O. https://www.olcf.ornl.
gov/wp-content/uploads/2011/10/Fall_IO.pdf.

[37] Edmund B. Nightingale, Jeremy Elson, Jinliang Fan,
Owen Hofmann, Jon Howell, and Yutaka Suzue. Flat
Datacenter Storage. In Proceedings of OSDI, 2012.

[38] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling
memcache at facebook. In Proceedings of NSDI, 2013.

[39] Yipei Niu, Fangming Liu, Xincai Fei, and Bo Li. Han-
dling flash deals with soft guarantee in hybrid cloud. In
Proceedings of INFOCOM, 2017.

[40] Yipei Niu, Bin Luo, Fangming Liu, Jiangchuan Liu, and
Bo Li. When hybrid cloud meets flash crowd: Towards
cost-effective service provisioning. In Proceedings of
INFOCOM, 2015.

[41] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman,
John Ousterhout, and Mendel Rosenblum. Fast Crash
Recovery in RAMCloud. In Proceedings of SOSP, 2011.

[42] Abhinav Pathak, Y. Angela Wang, Cheng Huang, Al-
bert Greenberg, Y. Charlie Hu, Randy Kern, Jin Li, and
Keith W. Ross. Measuring and evaluating tcp splitting
for cloud services. In Proceedings of International Con-
ference on Passive and Active Measurement, 2010.

[43] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,
Doug Woos, Arvind Krishnamurthy, Thomas Anderson,
and Timothy Roscoe. Arrakis: The operating system is
the control plane. In Proceedings of OSDI, 2014.

[44] W. Rahman, X. Lu, N. Islam, R. Rajachandrasekar, and
D. Panda. High-Performance Design of YARN MapRe-
duce on Modern HPC Clusters with Lustre and RDMA.
In Proceedings of IPDPS, 2015.

[45] Will Reese. Nginx: the high-performance web server
and reverse proxy. Linux Journal, 2008(173):2, 2008.

[46] Luigi Rizzo. netmap: A Novel Framework for Fast
Packet I/O. In Proceedings of USENIX Security Sympo-
sium, 2012.

[47] Marcel-Catalin Rosu and Daniela Rosu. An evaluation
of tcp splice benefits in web proxy servers. In Proceed-
ings of WWW, 2002.

[48] D. Shankar, X. Lu, N. Islam, W. Rahman, and D. Panda.
High-Performance Hybrid Key-Value Store on Modern
Clusters with RDMA Interconnects and SSDs: Non-
blocking Extensions, Designs, and Benefits. In Proceed-
ings of IPDPS, 2016.

[49] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and
Feifei Li. Fast and concurrent rdf queries with rdma-
based distributed graph exploration. In Proceedings of
OSDI, 2016.

[50] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The Hadoop Distributed File Sys-
tem. In Proceedings of MSST, 2010.

[51] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast in-memory transaction processing

using rdma and htm. In Proceedings of SOPS, 2015.

862 2019 USENIX Annual Technical Conference USENIX Association

R2P2: Making RPCs first-class datacenter citizens

Marios Kogias George Prekas Adrien Ghosn Jonas Fietz Edouard Bugnion

EPFL, Switzerland

Abstract
Remote Procedure Calls are widely used to connect data-

center applications with strict tail-latency service level objec-
tives in the scale of µs. Existing solutions utilize streaming
or datagram-based transport protocols for RPCs that impose
overheads and limit the design flexibility. Our work exposes
the RPC abstraction to the endpoints and the network, mak-
ing RPCs first-class datacenter citizens and allowing for in-
network RPC scheduling.

We propose R2P2, a UDP-based transport protocol specif-
ically designed for RPCs inside a datacenter. R2P2 exposes
pairs of requests and responses and allows efficient and scal-
able RPC routing by separating the RPC target selection from
request and reply streaming. Leveraging R2P2, we imple-
ment a novel join-bounded-shortest-queue (JBSQ) RPC load
balancing policy, which lowers tail latency by centralizing
pending RPCs in the router and ensures that requests are only
routed to servers with a bounded number of outstanding re-
quests. The R2P2 router logic can be implemented either in a
software middlebox or within a P4 switch ASIC pipeline.

Our evaluation, using a range of microbenchmarks, shows
that the protocol is suitable for µs-scale RPCs and that its
tail latency outperforms both random selection and classic
HTTP reverse proxies. The P4-based implementation of R2P2
on a Tofino ASIC adds less than 1µs of latency whereas the
software middlebox implementation adds 5µs latency and
requires only two CPU cores to route RPCs at 10 Gbps line-
rate. R2P2 improves the tail latency of web index searching
on a cluster of 16 workers operating at 50% of capacity by
5.7× over NGINX. R2P2 improves the throughput of the
Redis key-value store on a 4-node cluster with master/slave
replication for a tail-latency service-level objective of 200µs
by more than 4.8× vs. vanilla Redis.

1 Introduction

Web-scale online data-intensive applications such as search,
e-commerce, and social applications rely on the scale-out ar-
chitectures of modern, warehouse-scale datacenters to meet

service-level objectives (SLO) [7, 17]. In such deployments,
a single application can comprise hundreds of software com-
ponents, deployed on thousands of servers organized in mul-
tiple tiers and connected by commodity Ethernet switches.
The typical pattern for web-scale applications distributes the
critical data (e.g., the social graph) in the memory of hun-
dreds of data services, such as memory-resident transactional
databases [26, 85, 87–89], NoSQL databases [62, 78], key-
value stores [22,54,59,67,93], or specialized graph stores [14].
Consequently, online data-intensive (OLDI) applications are
deployed as 2-tier applications with root servers handling
end-user queries and leaf servers holding replicated, sharded
data [8, 58]. This leads to a high fan-in, high fan-out connec-
tion graph between the tiers of an application that internally
communicates using RPCs [11]. Each client must (a) fan-out
an RPC to the different shards and (b) within each shard,
choose a server from among the replica set. Moreover, each
individual task can require from only few microseconds (µs)
of user-level execution time for simple key-value requests [54]
to a handful of milliseconds for search applications [35].

To communicate between the tiers, applications most com-
monly layer RPCs on top of TCP, either through RPC frame-
works (e.g., gRPC [31] and Thrift [86]) or through application-
specific protocols (e.g., Memcached [59]). This leads to a mis-
match between TCP, which is a byte-oriented, streaming trans-
port protocol, and message-oriented RPCs. This mismatch
introduces several challenges, one of which is RPC load dis-
tribution. In one approach, root nodes randomly select leaves
via direct connections or L4-load balancing. This approach
leads to high fan-in, high fan-out communication patterns,
load-imbalance and head-of-line blocking. The second ap-
proach uses a L7 load balancer or reverse proxy [1, 16, 25]
to select among replicas on a per request basis, e.g., using a
Round-Robin or Join-Shortest-Queue (JSQ) algorithm. While
such load balancing policies improve upon random selection,
they do not eliminate head-of-line blocking. Furthermore, the
load balancer can become a scalability bottleneck.

This work proposes a new communication abstraction for
datacenter applications that exposes RPCs as first-class citi-

USENIX Association 2019 USENIX Annual Technical Conference 863

zens of the datacenter not only at the client and server end-
points, but also in the network. Endpoints have direct control
over RPC semantics, do not suffer from head-of-line blocking
because of connection multiplexing, and can limit buffering at
the endpoints. The design also enables RPC-level processing
capabilities for in-network software or hardware middleboxes,
including scheduling, load-balancing, straggler-mitigation,
consensus and in-network aggregation.

As a first use case, we show how to use our network
protocol to implement efficient, scalable, tail-tolerant, high-
throughput routing of RPCs. Our design includes an RPC
router that can be implemented efficiently either in software
or within a programmable switch ASIC such as P4 [12]. In
addition to classic load balancing policies, we support Join-
Bounded-Shortest-Queue (JBSQ(n)), a new RPC scheduling
policy that splits queues between the router and the servers,
allowing only a bounded number of outstanding requests per
server, which significantly improves tail-latency.

We make the following contributions :

• The design of Request-Response Pair Protocol (R2P2), a
transport protocol designed for datacenter µs-RPCs that
exposes the RPC abstraction to the network and the end-
points, breaks the point-to-point RPC communication as-
sumptions, and separates request selection from message
streaming, nearly eliminating head-of-line blocking.

• The implementation of the R2P2 router on a software
middlebox that adds only 5µs to end-to-end unloaded
latency and is capable of load balancing incoming RPCs
at line rate using only 2 cores.

• The implementation of the R2P2 router within a P4-
programmable Tofino dataplane ASIC, which eliminates
the I/O bottlenecks of a software middlebox and reduces
latency overhead to 1µs.

• The implementation of JBSQ(n), a split-queue schedul-
ing policy that utilizes a single in-network queue and
bounded server queues and improves tail-latency even
for µs-scale tasks.

Our evaluation with microbenchmarks shows that our R2P2
deployment with a JBSQ(3) router achieves close to the the-
oretical optimal throughput for 10µs tasks across different
service time distributions for a tail-latency SLO of 150µs
and 64 independent workers. Running Lucene++ [56], an
open-source websearch library over R2P2, shows that R2P2
outperforms conventional load balancers even for coarser-
grain, millisecond-scale tasks. Specifically, R2P2 lowers the
99th percentile latency by 5.7× at 50% system load over NG-
INX with 16 workers. Finally, running Redis [78], a popular
key-value store with built-in master-slave replication, over
R2P2 demonstrates an increase of 4.8×– 5.6× in throughput
vs. vanilla Redis (over TCP) at a 200µs tail-latency SLO for

different read:write ratios. The Redis improvements are
due to the cumulative benefits of a leaner protocol, kernel
bypass, and scheduling improvements.

The paper is organized as follows: §2 provides the
necessary background. §3 describes the R2P2 protocol
and §4 its implementation. §5 is the experimental eval-
uation of R2P2. We discuss related work in §6 and
conclude in §7. The R2P2 source code is available at
https://github.com/epfl-dcsl/r2p2.

2 Background

2.1 Datacenter RPCs
TCP has emerged as the main transport protocol for latency-
sensitive, intra-datacenter RPCs running on commodity hard-
ware, as its reliable stream semantics provide a convenient
abstraction to build upon. Such use is quite a deviation from
the original design of a wide-area, connection-oriented proto-
col for both interactive (e.g., telnet) and file transfer appli-
cations. TCP’s generality comes with a certain cost as RPC
workloads usually consist of short flows in each direction. In
many cases, the requests and replies are small and can fit in a
single packet [5,63]. Although RDMA is an alternative, it has
specific hardware requirements and can be cumbersome to
program, leading to application-specific solutions [22, 42, 43].

Overall, the requirements of RPCs differ from the assump-
tions made by TCP in terms of failure semantics, connection
multiplexing, API scalability, and end-point buffering:

RPC semantics: Some datacenter applications choose weak
consistency models [18] to lower tail latency. These applica-
tions typically decompose the problem into a series of inde-
pendent, often idempotent, RPCs with no specific ordering
guarantees. Requests and responses always come in pairs that
are semantically independent from other pairs. Thus, the reli-
able, in-order stream provided by TCP far stronger than the
applications needs and comes with additional network and
system overheads.

Connection multiplexing: To amortize the setup cost of TCP
flows, RPCs are typically layered on top of persistent con-
nections, and most higher-level protocols support multiple
outstanding RPCs on a flow, e.g., HTTP/2, memcache, etc.
Multiplexing different RPCs on the same flow implies order-
ing the requests that share a socket, even though the individ-
ual RPCs are semantically independent. This ordering limits
scheduling choices and can lead to Head-of-Line-Blocking
(HOL). HOL appears when fast requests are stuck behind a
slower request and when a single packet drop affects multiple
pending requests.

Connection scalability: The high fan-in, high fan-out pat-
terns of datacenter applications lead to large number of con-
nections and push commodity operating systems beyond their

864 2019 USENIX Annual Technical Conference USENIX Association

16xM/G/1 PL(2) JSQ JBSQ(2) M/G/16

0.0 0.2 0.4 0.6 0.8 1.0

System Load (rho)

0

2

4

6

8

10

9
9
th

 L
a
te

n
c
y

(a) Fixed

0.0 0.2 0.4 0.6 0.8 1.0

System Load (rho)

0

2

4

6

8

10

(b) Exponential

0.0 0.2 0.4 0.6 0.8 1.0

System Load (rho)

0

2

4

6

8

10

(c) Bimodal

Figure 1: Simulation results for the 99th percentile latency across 3 service time distributions with S = 1

efficiency point. Recent work has addressed the issue either
by deviating from the POSIX socket interface while main-
taining TCP as the transport [9] or by developing custom
protocols, e.g., to deploy memcached on a combination of
connection-less UDP for RPC get and router proxy for RPC
set [67].

Endpoint bufferbloat: Prior work has addressed network-
specific issues of congestion management and reliability
within the network [2, 3]. Unfortunately, the use of TCP via
the POSIX socket API leads to buffering in both endpoints
over which applications have little control or visibility [45].
Applications willing to trade-off harvest vs. yield [29] would
ideally never issue RPCs with no chance of returning by the
deadline due to buffering in the network stack.

2.2 Load balancing
The problem of spreading out load extends to load balanc-
ing across servers within a distributed, scale-out environment.
Load balancers encapsulate a set of servers behind a single
virtual IP address and improve the availability and capacity of
applications. Load balancing decisions, however, can severely
affect throughput and tail-latency; thus, a significant amount
of infrastructure is dedicated to load balancing [23, 60]. Load
balancers can be implemented either in software [23, 64, 69]
or in hardware [1, 16, 25, 60] and fall into two broad cate-
gories: (1) Layer-4 (“network”) load balancers that use the
5-tuple information of the TCP or UDP flow to select a des-
tination server. The assignment is static and independent of
the load; (2) Layer-7 (“application”) load balancers come in
the form of HTTP reverse proxies as well as protocol-specific
routers implemented in software middleboxes [67] or SDN
switches [13, 15]. These load balancers terminate the client
TCP connections, use dynamic policies to select a target, and
reissue the request to the server on a different connection.

Layer-7 load balancers support many policies to decide the
eventual RPC target, including random, power-of-two [61],
round-robin, Join-Shortest-Queue (JSQ), and Join-Idle-Queue
(JIQ) [55]. Layer-7 load balancers are ubiquitous at the web
tier and can theoretically mitigate tail-latency better, due to

their dynamic policies. However, they are less commonly de-
ployed within tiers of applications to support µs-scale RPCs.
The reasons for this are (i) the increased latency due to the ex-
tra hop (ii) the scalability issues introduced when all requests
and responses flow through a proxy.

2.3 As a queuing theory problem

In this section, we approach the problem of RPC load bal-
ancing from a theoretical point of view by abstracting away
system aspects using basic queuing theory. We show the ben-
efits of request-level load balancing over random-selection
among distributed queues (which is equivalent to L4 load bal-
ancing) in improving tail-latency, and we evaluate different
request-level load balancing policies.

Fortunately, the theoretical answers are clear: single-queue,
multi-worker models (i.e., M/G/k according to Kendall’s no-
tation) perform better than distributed multi-queue models
(i.e., k×M/G/1, with one queue per worker) because they are
work-conserving and guarantee that requests are processed in
order [49, 90].

Between those two extremes, there are other models that
improve upon random selection and are practically imple-
mentable through L7 load balancing. Power-of-two [61]
(PL(2)), or similar schemes, are still in the realm of random-
ized load balancing, but perform better than a blind random
selection. JSQ performs close to a single queue model for
low-variability service times [55].

We define Join-Bounded-Shortest-Queue JBSQ(n) as a
policy that splits queues between a centralized component
with an unbounded queue and distributed bounded queues
of maximum depth n for each worker (including the task
currently processed). The single-queue model is equivalent to
JBSQ(1) whereas JSQ is equivalent to JBSQ(∞).

Figure 1 quantifies the tail-latency benefit, at the 99th per-
centile, for these queuing models observed in a discrete event
simulation. We evaluate a configuration with a Poisson arrival
process, k = 16 workers, and three well-known distributions
with the same service time S̄ = 1. These distributions are:
deterministic, exponential and bimodal-1 (where 90% of re-

USENIX Association 2019 USENIX Annual Technical Conference 865

quests execute in .5 and 10% in 5.5 units) [55].
From the simulation results, we conclude that: (1) there is

a dramatic gap in performance between the random, multi-
queue model and the single-queue approach, which is optimal
among FCFS queuing systems. (There is no universally op-
timal scheduling strategy for tail-latency [90].) (2) PL(2)
improves upon random selection, but these benefits diminish
as service time variability increases. JSQ performs close to the
optimal for low service time variability. (3) JBSQ(2), while it
deviates from the single queue model, outperforms JSQ under
high load as the service time variability increases.

These results are purely theoretical and in particular as-
sume perfect global knowledge by the scheduler or load bal-
ancer. This global view would be the result of communication
between the workers and the load balancer in a real deploy-
ment. Any practical system must consider I/O bottlenecks
and additional scheduling delays because of this communica-
tion. In this paper, we make the claim that JBSQ(n) can be
implemented in a practical system and can deliver maximal
throughput with small values of n even for µs-scale tasks, thus
minimizing tail latency and head-of-line blocking.

3 R2P2: A transport protocol for RPCs

We propose R2P2 (Request-Response Pair Protocol), a UDP-
based transport protocol specifically targeting latency-critical
RPCs within a distributed infrastructure, i.e., a datacenter.
R2P2 exposes the RPC abstraction to the network, thus al-
lowing for efficient in-network request-level load balancing.

R2P2 is a connectionless transport protocol capable of sup-
porting higher-level protocols such as HTTP without protocol-
level modifications. Unlike traditional multiplexing of the
RPC onto a reliable byte-oriented connection, R2P2 is an
inherently request/reply-oriented protocol that maintains no
state across requests. The R2P2 request-response pair is ini-
tiated by the client and is uniquely identified by a triplet of
< src_IP,src_port,req_id >. This design choice decouples
the request destination (set by the client) from the actual
server that will reply, thus breaking the point-to-point RPC
communication semantics and enabling the implementation
of any request-level load balancing policy.

Figure 2 describes the interactions and the packets ex-
changed in sending and receiving an RPC within a distributed
infrastructure that uses a request router to load balance re-
quests across the servers. We illustrate the general case of a
multi-packet request and a multi-packet response.

1. A REQ0 message opens the RPC interaction, uniquely
defined by the combination of source IP, UDP port, and
an RPC sequence number. The datagram may contain
the beginning of the RPC request itself.

2. The router identifies a suitable target server and directs
the message to it. If there is no available server, requests
can temporarily queue up in the router.

Clients Router Server

N

REQRDY

REQ0

REQ0

REQN

REPLY
R2P2-FEEDBACK

1 2

3

4

5
6

Figure 2: The R2P2 protocol for a request-reply exchange.
Each message is carried within a UDP packet. Single arrows
represent a single packet whereas double arrows represent a
stream of datagrams.

3. If the RPC request exceeds the size of data in the REQ0
payload, then the server uses a REQready message to
inform the client that it has been selected and that it will
process the request.

4. Following (3), the client directly sends the remainder of
the request as REQn messages.

5. The server replies directly to the client with a stream of
REPLY messages.

6. The servers send R2P2-FEEDBACK messages to the router
to signal idleness, availability, or health, depending on
the load balancing policies.

We note a few obvious consequences and benefits of the
design: (i) Given that an RPC is identified by the triplet, re-
sponses can arrive from a different machine than the original
destination. Responses are sent directly to the client, bypass-
ing the router; (ii) there is no head-of-line blocking resulting
from multiplexing RPCs on a socket, since there are no sock-
ets and each request-response pair is treated independently;
(iii) there are no ordering guarantees across RPCs; (iv) the
protocol is suited for both short and long RPCs. By avoiding
the router for REQn message and replies, the router capacity
is only limited by its hardware packet processing rate, not by
the overall amount of size of the messages.

Unlike protocols that blindly provide reliable message de-
livery, R2P2 exposes failures and delays to the application.
R2P2 follows the end-to-end argument in systems design [80].
A client application initiates a request-response pair and deter-
mines the failure policy of each RPC according to its specific
needs and SLOs. By propagating failures to the application,
the developer is free to choose between at-least-once and at-
most-once semantics by re-issuing the same request that failed.
Unlike TCP, failures affect only the RPC in question, not
other requests. This is useful in cases with fan-out replicated

866 2019 USENIX Annual Technical Conference USENIX Association

Header Size

PacketId/Packet Count

F

0 16

ReqId

Magic

MessageType ReservedPolicy L

Figure 3: R2P2 Header Format

requests, where R2P2 can provide system support for the
implementation of tail-mitigation techniques, such as hedged
requests [17].

While novel in the context of µs-scale, in-memory comput-
ing, the connection “pair” is similar in spirit to the “exchange”
that is the core of the SCSI/Fibre Channel protocol (FCP [27]).
For example, a single-packet-request-multi-packet-response
RPC over R2P2 would be similar to SCSI read within a
single fibre channel exchange. Equivalently, an R2P2 multi-
packet-request-single-packet-response would be similar to a
SCSI write.

3.1 Transport considerations
Figure 3 describes a proposed R2P2 header, while Table 1
includes the different R2P2 messages. All R2P2 messages
are UDP datagrams. R2P2 supports a 16-bit request id whose
scope is local to the (src_ip, src_port) pair. As such,
each client ((src_ip, src_port) pair) can have up to
65536 outstanding RPCs, well beyond any practical limi-
tations. The R2P2 header also includes a 16-bit packet id
meaning that each R2P2 message can consist of up to 65536
MTU-sized packets. The above two fields can be extended, if
necessary, without changing the protocol semantics. Currently
R2P2 uses two flags (F, L) to denote the first and last packet
of a request.

Finally, the R2P2 header contains a Policy field, which
allows client applications to directly specify certain policies
to the router, or any other intermediate middlebox, for this
specific RPC. Currently, the only implemented policies are
unrestricted, which allows the router to direct REQ0 packet
to any worker in the set, and sticky, which forces the router
to direct the message to the master worker among the set. This
mechanism is central to our implementation of a tail-tolerant
Redis, based on a master/slave architecture. It is used to direct
writes to the master, but balances reads according to the load
balancing policy. Additional policies, e.g., session-stickiness,
or policies implementing different consistency models, can
be implemented in R2P2 middleboxes and will be identified
by this header field, thus showcasing the benefits of R2P2’s
in-network RPC awareness.

Deployment assumptions: We assume that R2P2 is de-
ployed within a datacenter, i.e., the clients, router and servers
are connected by a high-bandwidth, low-latency Ethernet fab-
ric. We make no assumptions about the core network that

Message Description
REQUEST A message carrying an RPC request
REPLY A message carrying an RPC reply
REQRDY Sent by the server to the client to

ack the REQ0 of a multi-packet re-
quest

R2P2-FEEDBACK Sent by the server to the router
DROP Sent by the router or the server to a

client to explicitly drop a request
SACK Sent by the client or the server to

ask for missing packets in a request
or reply

Table 1: The R2P2 message types

can depend either on ECMP flow hashing or packet spray-
ing [30, 32, 63]. R2P2 tolerates packet reordering within the
same message and reconstructs the message at the end-point.
By design, though, there is no ordering guarantee across RPCs,
even if they are sent by the same client.

Timer management: Given that the assumed deployment
model allows for packet reordering, packet loss detection
depends on timers. There is one retransmission timeout RTO
timer used for multi-packet requests or responses. It is in the
order of milliseconds and triggers the transmission of a SACK
message request for the missing packets. Servers garbage
collect RPCs with failed multi-packet requests or multi-packet
replies after a few RTOs. On the client side there is a timer
set by the client application when sending the request. This
timer is disarmed when the whole reply is received, and can
be as aggressive as the application SLO. Based on this timer
applications can implement tail-mitigation techniques [17] or
early drop requests based on their importance.

Congestion management: R2P2 focuses on reducing queu-
ing on the server side; we do not make any explicit contribu-
tion in congestion control. Instead, R2P2 can utilize existing
solutions for congestion control, including (1) Homa [63],
whose message semantics easily map to R2P2’s request-
response semantics and (2) ECN-based schemes such as
DCTCP [2] and DCQCN [94]. Congestion control will be
necessary only for multi-packet requests and replies (REQN
and REPLY), and is independent of the interactions described
in Fig 2.

Flow Control: R2P2 implements two levels of flow control,
one between the client and the middlebox and one between
the middlebox and the servers. R2P2 middleboxes can drop
individual requests, either randomly or based on certain prior-
ity policies, if they become congested, without affecting other
requests, thus implementing the first level of flow control.
Based on the functionality and the policy, the middlebox is
in charge of implementing the second level of flow control
to the servers. In the JBSQ case, JBSQ limits the number of

USENIX Association 2019 USENIX Annual Technical Conference 867

outstanding requests on each server, thus servers can not be
overwhelmed.

3.2 API
R2P2 exposes a non-POSIX API specifically designed for
RPC workloads. Making RPCs first class citizens and expos-
ing the request-response abstraction through the networking
stack significantly simplifies writing client-server applica-
tions. Application code that traditionally implements the RPC
logic on top of a byte stream abstraction is now part of the
R2P2 layer of the networking stack.

Table 2 summarizes the corresponding application calls
and callbacks for the client and server application. The
API has an asynchronous design that allows applications to
easily send and receive independent RPCs. When calling
r2p2_send_req the client application sets the timer timeout
and callback functions independently for each RPC request.
The client and server applications are notified only when the
entire response or request messages have arrived through the
req_success and req_recv callbacks, equivalently.

3.3 JBSQ router design considerations
R2P2 exposes the request-response abstraction to the network
as a first-class citizen. It is expected that a software or hard-
ware middlebox will manipulate client requests to implement
a certain policy, e.g., scheduling, load balancing, admission
control, or even application logic, e.g., routing requests to
the right server in a distributed hash table. In this section, we
discuss the design choices regarding an R2P2 request router
implementing the JBSQ scheduling policy. Similar ideas can
be applied to other middleboxes with alternative functionality.

The choice of JBSQ: As seen in § 2.3 JSQ and JBSQ per-
form closer to the optimal single queue model. JBSQ though
offers several practical benefits over JSQ. It implements router-
servers flow control and can be implemented within a Tofino

Application Calls
Type Description

r2p2_poll Poll for incoming req/resp
r2p2_send_req Send a request
r2p2_send_response Send a response
r2p2_message_done Deallocate a request or response

Callbacks
Type Description

req_recv Received a new request
req_success Request was successful
req_timeout Timer expired
req_error Error condition

Table 2: The r2p2-lib API

ASIC. JSQ requires finding the minimum among a number of
values, which is hard to implement in a hardware dataplane.
Also, JBSQ achieves better latency under high load and ser-
vice time dispersion. That is because JSQ uses the queue size
as a proxy for queuing time, which can be misleading in the
presence of service-time dispersion.

R2P2-FEEDBACK messages: To implement the JBSQ(n)
policy we leverage the R2P2-FEEDBACK messages provided
by the R2P2 specification. These messages, sent by the
servers back to the router after completing the service of
a request, specify: (i) The maximum number of outstanding
RPCs the server is willing to serve (the “n” in JBSQ(n)). By
sending the current “n” in every R2P2-FEEDBACK message,
servers can dynamically change the number of outstanding
requests based on the application SLOs. (ii) The number of
requests this server has served including the last request. The
router uses this information to track the current number of
outstanding requests in the server’s bounded queue. This field
makes the message itself idempotent and the protocol robust
to R2P2-FEEDBACK drops.

We note that this approach puts each server in charge
of controlling its own lifecycle by sending unsolicited
R2P2-FEEDBACK messages, e.g., to join a load balancing
group, leave it, adjust its bounded queue size based on its
idle time, or to periodically signal its idleness.

Direct client request - direct server return: R2P2 imple-
ments direct server return (DSR) [34, 65] since the replies do
not go through the router. This is a widely-used technique
in L4 load balancers with static policies [65]. R2P2 uses
DSR while implementing request-level load balancing. In
addition, R2P2 implements direct client request, where the
router handles only the first packet of a multi-packet request,
while the rest is streamed directly to the corresponding server,
thus avoiding router IO bottlenecks.

Deployment: A software R2P2 router is deployed as a mid-
dlebox and traffic is directed to its IP address. The hardware
R2P2 router is also deployed as an IP-addressed middle-
box. The same hardware can also be a Top-of-Rack switch
serving traffic to servers within the rack, following a “rack-
scale” deployment pattern. In such a pattern, the router has
full visibility on the RPC traffic to the rack and all packets go
through the ToR switch. This could enable simplifications to
the packet exchange, e.g., using R2P2-FEEDBACK messages
only for changing the depth of the bounded queues; the ToR
can estimate their current size by tracking the traffic.

Router high availability: The router itself is nearly state-
less and a highly-available implementation of the router is
relatively trivial. Upon a router failure, only soft state re-
garding the routing policy is lost, including the current size
of the per-worker bounded queue and the queue of pending
RPCs. Clients simply failover to the backup router using a
virtual IP address and reissue RPCs upon timeout, using the

868 2019 USENIX Annual Technical Conference USENIX Association

exact same mechanism used to handle a REQ0 packet loss.
Servers reconstruct the relationship with the router with their
R2P2-FEEDBACK message to the new router.

Server membership: Servers behind the R2P2 router can
fail and new servers can join the load balancing group.
R2P2-FEEDBACK messages implicitly confirm to the router
that a server is alive. In case of a failure, the lack of
R2P2-FEEDBACK messages will prevent the router from send-
ing requests to the failed server, and the bounded nature
of JBSQ(n) limits the number of affected RPCs. Similarly,
newly-added servers can send R2P2-FEEDBACK messages to
the router informing about their availability to serve requests.

The choice of JBSQ(n): The choice of n in JBSQ is crucial.
A small n will behave closer to a single-queue model, but
will restrict throughput. The rationale behind the choice of
n is similar to the Bandwidth Delay Product. On each queue
there should be enough outstanding requests so that the server
does not stay idle during the server-router communication.
For example, for a communication delay of around 15 µs and
a fixed service time of 10 µs, n=3 is enough to achieve full
throughput. Shorter service times will require higher n values.
High service time dispersion and batching on the server will
also require higher values than what predicted by the heuristic.
Servers can even dynamically adjust the value of n based on
their processing rate and minimal idle time between requests.

4 Implementation

We implement (1) r2p2-lib as userspace Linux library on
top of either UDP sockets or DPDK [21] (§4.1); (2) the soft-
ware R2P2 router on top of DPDK (§4.2) and (3) the hardware
solution in the P414 programming language [72] to run within
a Barefoot Tofino ASIC [6] (§4.3).

4.1 r2p2-lib

The library links into both client and server application code.
It exposes the previously described API and abstracts the
differences between the Linux socket and the DPDK-based
implementations. The current implementation is non-blocking
and rpc_poll is typically called in a spin loop. To do so, we
depend on epoll for Linux, while for DPDK we implemented
a thin ARP, IP, and UDP layer on top of DPDK’s polling mode
driver, and exposed that to r2p2-lib. Our C implementation
of r2p2-lib consists of 1300 SLOC.

R2P2 does not impose any threading model. Given the
callback-based design, threads in charge of sending or receiv-
ing RPCs operate in a polling loop mode. The library sup-
ports symmetric models, where threads are in charge of both
network and application processing, by having each thread
manage and expose a distinct worker queue through a specific
UDP destination port. The DPDK implementation further
manages a distinct Tx and Rx queue per thread, and uses

Flow Director [36] to steer traffic based on the UDP des-
tination port. In an asymmetric model, a single dispatcher
thread links with r2p2-lib, and the other worker threads are
in charge of application processing only. This model exposes
one worker queue via one UDP destination port.

4.2 Router - software implementation
We implemented a Random, a Round-Robin, a JSQ and a
JBSQ(n) policy on the software router. The main implemen-
tation requirements for the router are (1) it should add the
minimum possible latency overhead, and (2) it should be
able to process short REQ0 and R2P2-FEEDBACK messages at
line rate. While the router processes only those two types
of packets, the order in which it processes them matters.
Specifically for JBSQ, the ideal design separates REQ0 from
R2P2-FEEDBACK messages into two distinct ingress queues
and processes R2P2-FEEDBACKs with higher priority to ensure
that the server state information is up-to-date and minimize
queuing delays.

Our DPDK implementation uses two different UDP ports,
one for each message type, using Flow Director for queue
separation. Given the strict priority of control messages
and the focus on scalability, we chose a multi-threaded
router implementation with split roles for REQ0 threads and
R2P2-FEEDBACK threads, with each thread having its own Rx
and Tx queues.
JBSQ(n) requires a counter per worker queue that counts

the outstanding requests. To minimize cache-coherency traffic,
the router maintains two single-writer arrays, one updated on
every REQ0 and the other on every R2P2-FEEDBACK, with one
entry per worker.

The implementation of the R2P2-FEEDBACK thread is com-
putationally very cheap and embarrassingly scalable. Process-
ing REQ0 messages requires further optimizations to reduce
cache-coherency traffic, e.g., maintain the list of known idle
workers, cache the current queue sizes, etc. Our implemen-
tation relies on adaptive bounded batching [9] to amortize
the cost of PCIe I/O operations, as well as that of the cache-
coherency traffic (the counters are read once per iteration).
We limit the batch size to 64 packets.

Finally, we implement a tweak to the JBSQ(n) policy with
n ≥ 2: when no idle workers are present, up to 32 packets
are held back for a bounded amount of time on the optimistic
view that an R2P2-ACK message may announce the next idle
worker. This optimization helps absorb instantaneous conges-
tion and approximate the single-queue semantics in medium
load situations.

4.3 P4/Tofino implementation
We built a proof-of-concept P4 implementations of R2P2
router for Tofino [6] using P414 [72]. Similar to the soft-
ware implementation, the switch only processes REQ0 and

USENIX Association 2019 USENIX Annual Technical Conference 869

R2P2-FEEDBACK messages and leverages P4 registers to keep
soft state. P4 registers are locations in the ASIC SRAM, which
can be read and updated from both the control and dataplane.

We focus our description on the implementation of
JBSQ(n) for the Tofino dataplane, as the others are trivial
in comparison. It consists of 480 lines of P4 source, including
header descriptions. Unlike the software implementation that
can easily buffer the outstanding REQ0 messages if there is no
available server queue, high-performance pipelined architec-
tures, such as Tofino, do not allow buffering in the dataplane.
Thus, our P4 logic executes as part of the ingress pipeline
of the switch and relies heavily on the ability to recirculate
packets through the dataplane via a virtual port. The imple-
mentation leverages an additional header that is added to the
packet to carry metadata through the various recirculation
rounds and is removed before forwarding the packet to the
target server.

The logic for REQ0 tries to find a server with≤ i outstanding
packets in round i. There is one register instance correspond-
ing to each server, holding the number of outstanding requests.
If a suitable server is found, the register value is increased by
one, the packet destination is changed to the address of the
equivalent server, and the packet is directed to the egress port.
We start with i = 0 and we increase till i = n from JBSQ(n).
When i reaches n and there is still no available server, we
keep recirculating the packet without increasing i further. As
an optimization to reduce the number of recirculations, the
dataplane keeps the i for the last forwarded request and starts
from that.

To overcome the Tofino limitation of only being able to
compare a limited number of registers in one pass, we also
leverage recirculation to inspect the outstanding requests of
each bounded queue in each round. Register instances that
correspond to different queues are organized in groups that
can be checked in one pass. If no available queue is found in
the first group, the packet is recirculated (without increasing
i) and the second group of queues is checked, etc. When a
REQ0 arrives, it is initially assigned to a group in a round-robin
fashion to further reduce the amount of recirculations.

The logic for R2P2-FEEDBACK decrements the outstanding
count for the specific server based on the packet source and
consumes the packet without forwarding it.

The use of recirculation has two side-effects: (1) the order
of RPCs cannot be guaranteed as one packet may be recircu-
lated while another one is not; (2) the atomicity of the full set
of comparisons is not guaranteed as R2P2-FEEDACK packet
may be processed while an REQ0 packet is being recirculated.
Non-optimal decisions may occur as the result of this race
condition.

5 Evaluation

To evaluate the performance and the efficacy of the R2P2
protocol, the two implementations of the router, as well as

the trade-offs in using JBSQ(n) over other routing policies,
we run a series of synthetic microbenchmarks and two real
applications in a distributed setup with multiple servers. The
microbenchmarks depend on an RPC service with config-
urable service time and response size. All our experiments are
open-loop [83] and clients generate requests with a Poisson
inter-arrival time. We use two baselines and compare them
against different configurations for R2P2 with and without
the router: (1) vanilla NGINX [66] serving as reverse proxy
for HTTP requests; and (2) ZygOS [76], a state-of-the-art
work-conserving multicore scheduler. As a load generator we
use an early version of Lancet [46].

Our experimental setup consists of cluster of 17 machines
connected by a Quanta/Cumulus 48x10GbE switch with a
Broadcom Trident+ ASIC. The machines are a mix of Xeon
E5-2637 @ 3.5 GHz with 8 cores (16 hyperthreads), and
Xeon E5-2650 @ 2.6 GHz with 16 cores (32 hyperthreads).
All machines are configured with Intel x520 10GbE NICs
(82599EB chipset). To reduce latency and jitter, we config-
ured the machine that measures latency to direct all UDP
packets to the same NIC queue via Flow Director. The Bare-
foot Tofino ASIC runs within a Edgecore Wedge100BF-32X.
The Edgecore is directly connected to the Quanta switch via
a 40Gbps link and therefore operates as a 1-port router.

5.1 Router characterization
We use the synthetic RPC service to evaluate the latency
overhead of the router, the maximal throughput and the op-
timal request load balancing policy. We configure a setup of
4 servers with 16 threads (64 independent workers), running
the synthetic RPC service over DPDK.

Throughput: We first evaluate the sustainable throughput
of the software router. We run a synthetic RPC service with
8-byte requests and we configure the size of the response.

Figure 4 shows the achieved goodput as a function of the
response size, and compares a configuration with R2P2 mes-
sages handled by a JBSQ load balancing policy, with a NGINX
configured as reverse proxy for HTTP messages. For small
response sizes, the router is bottlenecked by the router’s NIC’s
packets per second (PPS), or the number of outstanding re-
quests in each queue, n in JBSQ(n). JBSQ(3) was enough to
achieve maximum throughput. As the response size increases
though, the application goodput converges to 4×10GbE, the
NIC bottleneck of the 4 servers with payloads as small as 2048.
Obviously, this is made possible by the protocol itself, which
bypasses the router for all REPLY messages. Note that because
R2P2 leverages both Direct Server Return and Direct Client
Request, even in cases of large requests the router would not
be the bottleneck, unlike traditional L4 DSR-enabled load bal-
ancing. In contrast, the NGINX I/O bottleneck limits goodput
to the load balancer’s 10Gbps NIC.

870 2019 USENIX Annual Technical Conference USENIX Association

SW-JBSQ(1) SW-JBSQ(3) NGINX-JSQ

0 2000 4000 6000 8000

Response size (bytes)

0

10

20

30

G
o
o
d
p
u
t
(G

b
p
s
)

Figure 4: Achieved Goodput as a function of the response
size for the JBSQ policy on the software router managing 4
servers connected with 10GbE NICs compared to NGINX
configured as HTTP reverse proxy loadbalancing the same 4
servers using a JSQ policy.

Latency overheads and saturation: Figure 5 uses a zero-
cost (“echo”) RPC service with 8-byte requests and responses,
to measure the 99th percentile tail latency as a function of
the load for the software middlebox and the Tofino router
with the JBSQ policy. As a baseline, we use a DIRECT con-
figuration where clients bypass the router and send requests
directly to the servers after a random choice. The figure shows
that the latency added by the router is 5µs for the software
middlebox and 1µs for the Tofino solution. The software
latency is consistent with the characteristics of one-way for-
warding performance of the Intel x520 chipset using DPDK.
The hardware latency is consistent with the behavior of an
ASIC solution that processes and rewrites packet headers in
the dataplane. Figure 5 also shows the point of saturation,
which corresponds to 7 MRPS for the software middlebox.
Given that for every request forwarded the router receives one
R2P2-FEEDBACK message, the router handles more than 14M
PPS, which is the hardware limit. We were unable to char-
acterize the maximal per-port capability of the Tofino ASIC
running the R2P2 logic beyond >8 MRPPS with tiny requests
and replies, simply for lack of available client machines. We
also observe that the hardware implementation, as expected,
requires a smaller n for JBSQ(n). In the figure we show the
smallest value of n that achieved maximum throughput.

Comparison of scheduling policies: Figure 6 uses a syn-
thetic S̄ = 25µs workload to evaluate the different request
load balancing policies, implemented on the software router.
We evaluate the following policies: DIRECT, where clients by-
pass the router by making a random server selection, RANDOM
where clients talk to the router and the router makes a random
selection among the servers, RR where the router selects a tar-
get server in a round-robin manner, SW-JBSQ(n) which is the
software implementation for the bounded shortest queue with
n outstanding requests, and JSQ which is the R2P2 router’s
implementation of the join-shortest-queue policy. We also
compare R2P2 with using NGINX as an HTTP reverse proxy
implementing a JSQ policy, which is a vanilla, widely-used

0 1 2 3 4 5 6 7 8

Load (MRPS)

0

10

20

30

40

50

9
9
th

 L
a
te

n
c
y
 (

µ
s
)

SW-JBSQ(3)

P4-JBSQ(2)

DIRECT

Figure 5: Tail-latency as a function of throughput for a zero
service time synthetic RPC service for the software (SW-JBSQ)
and the Tofino (P4-JBSQ) implementation of JBSQ compared
to DIRECT. In DIRECT clients bypass the router and talk di-
rectly to servers by making a random server choice.

NGINX-JSQ

RANDOM

DIRECT

RR

SW-JBSQ(1)

SW-JBSQ(2)

JSQ

SW-JBSQ(3)

0.0 0.5 1.0 1.5 2.0 2.5

Load (MRPS)

0

100

200

300

400

500

9
9
th

 L
a
te

n
c
y
 (

µ
s
)

Figure 6: Evaluation of different load balancing policies for
an exponential service time workload with S̄ = 25µs.

deployment for request-level load balancing.
We make the following observations: (i) NGINX overheads

prevent throughput scalability; (ii) DIRECT and RAND configu-
rations perform similarly for R2P2, which is the result of a
random choice (in the client or the router equivalently); (iii)
RR performs better than random choice, but worse than JBSQ,
given the service time dispersion; (iv) JBSQ(n ≥ 3) achieves
maximum throughput. Given that the communication time
between the server and the router is ∼ 15µs and the exponen-
tial service time dispersion, this is on par with our analysis in
§ 3.3. (v) JSQ performs similarly to JBSQ(3) for this service
time.

5.2 Synthetic Time Microbenchmarks
Figure 7 evaluates JBSQ(n) performance with an aggressive
S̄ = 10µs mean service time and three different service time
distributions: Fixed, Exponential and Bimodal where 10%
of the request are 10x slower than the rest [55]. We present
results for both the software and Tofino implementation, for
JBSQ(1) and the optimal n choice for each configuration.
Requests and the responses are 8 bytes. We observe:

• For all experiments, all JBSQ(n) variants approximate
the optimal single-queue approach (M/G/64) until the
saturation point for JBSQ(1).

USENIX Association 2019 USENIX Annual Technical Conference 871

RANDOM SW-JBSQ(1) P4-JBSQ(1) SW-JBSQ(5) P4-JBSQ(3) M/G/64

0 1 2 3 4 5 6

Load (MRPS)

0

50

100

150

9
9
th

 L
a
te

n
c
y
 (

µ
s
)

(a) Fixed (64 workers)

0 2 4 6

Load (MRPS)

0

50

100

150

(b) Exponential (64 workers)

0 1 2 3 4 5 6

Load (MRPS)

0

50

100

150

(c) Bimodal (64 workers)

Figure 7: Synthetic Service Time Microbenchmarks. Service time S̄ = 10µs.

• Beyond the saturation point of JBSQ(1), an increase in
the tail latency as the system configuration trades off
higher throughput (i.e., JBSQ(n > 1)) against the use of
a theoretically-optimal approach.

• A comparison between the software and hardware im-
plementation shows that more outstanding requests are
required for the software implementation; this is because
the communication latency between the server and the
hardware router is ∼5µs faster.

• JBSQ achieves the optimal performance, as predicted by
the M/G/64 model, both for the software and the hard-
ware implementation within the 150µs SLO.

• Reducing n can have a considerable impact on tail-
latency especially in cases with high service time dis-
persion, as it can be seen in Figure 7c (SW-JBSQ(5) vs.
P4-JBSQ(3))

5.3 Multi-packet Requests Microbenchmark

R2P2 implements the following logic in splitting requests to
packets. If the request fits in a single packet, the whole request
payload is transferred with REQ0. In the case of a multi-packet
request, REQ0 is a 64-byte packet, carrying only the first part
of the request and the rest of the payload is transferred with
the REQN packets directly to the server. This way the router
does not become a throughput bottleneck in the case of large
requests, while the extra round-trip is avoided in the case of
small requests.

To evaluate the extra round-trip that R2P2 introduces in
the case of multi-packet requests with the distinction between
REQ0 and REQN, we ran a synthetic microbenchmark with
larger requests. Based on the above logic, a 1464-byte request
is the biggest request that fits in a single packet given the size
of protocol headers. Equivalently, a 1465-byte request is the
smallest request that requires 2 packets, and consequently an
extra round-trip. We run the synthetic service time RPC server
with the bimodal service time distribution of S̄ = 10 and the 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Load (MRPS)

0

50

100

150

9
9
th

 L
a
te

n
c
y
 (

µ
s
)

DIRECT-1465

P4-JBSQ(5)-1465

DIRECT-1464

Figure 8: Bimodal service time with S̄ = 10µs and 64 work-
ers with single and multi-packet requests. DIRECT-1464 cor-
responds to an 1-packet request, while DIRECT-1465 and
P4-JBSQ(5) correspond to 2-packet requests.

different request sizes. We compare the DIRECT deployment
with one using the router with the JBSQ policy.

Figure 8 summarizes the result of the experiment. We
observe that there is a fixed gap of around 15µs between
DIRECT-1464 and DIRECT-1465 curves that corresponds to
the extra round-trip between the client and the server. We,
also, run the multi-packet request scenario while using the P4
router with the JBSQ policy. We show that despite the extra
round-trip, the intermediate hop, and the increased number of
packets to process, the 99th percentile latency is close to the
single-packet scenario in the DIRECT case, which justifies our
design decision to pay an extra round-trip to achieve better
scheduling.

5.4 Using R2P2 for server work conservation
We now demonstrate how the use of network-based load bal-
ancing, e.g., using R2P2, can increase the efficiency of a
single server scheduling tasks. For this, we compare R2P2
with JBSQ with the performance of ZygOS [76], a state-of-
the-art system optimized for µs-scale, multicore computing
that includes a work-conserving scheduler within a special-
ized operating system. ZygOS relies on work-stealing across
idle cores and makes heavy use of inter-processor interrupts.
Both ZygOS and JBSQ(n) offer a work-conserving solution
to dispatch requests across the multiple cores of a server: Zy-

872 2019 USENIX Annual Technical Conference USENIX Association

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Load (MRPS)

0

50

100

150

9
9
th

 L
a
te

n
c
y
 (

µ
s
)

M/M/16

ZygOS

P4-JBSQ(3)

Figure 9: Comparison of R2P2 with the ZygOS [76] work-
conserving scheduler: Exponential workload with S̄ = 10µs.

gOS does it within the server in a protocol-agnostic manner,
whereas R2P2 implements the policy in the network.

Figure 9 compares ZygOS with the Tofino implementation
of JBSQ(3) for the 10µs exponentially-distributed service
time workload using a single Xeon server. As in the pre-
vious configurations, for the R2P2 implementation each of
the 16 Xeon cores, is exposed as a worker with a distinct
queue to the router, listening to a different UDP port. In this
experiment, the theoretical lower bound is therefore deter-
mined by M/M/16. We observe that JBSQ(3) exceeds the
throughput performance of ZygOS, with no visible impact
on tail latency despite the additional hop and that JBSQ(3) is
sufficient to achieves the maximum throughput. For a service-
level objective set at 150µs, R2P2 with JBSQ(3) outperforms
ZygOS by 1.26×. The explanation is that the R2P2 server
operates on a set of cores in parallel without synchronization
or cache misses, whereas ZygOS has higher overheads due
to protocol processing, boundary crossings, task stealing, and
inter-processor interrupts.

5.5 Lucene++
Web search is a replicated, read-only workload with variability
in the service time coming from the different query types, thus
it is an ideal use-case for R2P2-JBSQ. For our experiments we
used Lucene++ [56], which is a search library ported to serve
queries via either HTTP or R2P2. A single I/O thread dis-
patches one request at a time to 16 Lucene++ worker threads,
each of them searching part of the dataset. The experimental
setup relies on 16 disjoint indices created from the English
Wikipedia page articles dump [91], yielding an aggregated
index size of 3.5MB. All indices are loaded in memory at
the beginning of the execution to avoid disk accesses. The
experimental workload is a subset of the Lucene nightly re-
gression query list, with 10K queries that comprise of simple
term, Boolean combinations of terms, proximity, and wild-
card queries [57]. The median query service time is 750µs,
with short requests taking less than 450µs and long ones over
10ms.

Figure 10 summarizes the experiment results for running
Lucene++ on a 16-server cluster, each using 16 threads. The
NGINX-JSQ and HTTP-DIRECT experiments rely on 1568

HTTP-DIRECT

RANDOM

NGINX-JSQ

SW-JBSQ(1)

0 2500 5000 7500 10000 12500 15000 17500

Load (RPS)

0

10000

20000

30000

9
9
th

 L
a
te

n
c
y
 (

µ
s
)

Figure 10: Lucene++ running on 16 16-threaded workers

persistent TCP client connections. First, we observe that
HTTP-DIRECT over TCP and RANDOM over R2P2 which are
multi-queue models, have higher tail-latency. Then, we see
that NGINX-JSQ and SW-JBSQ(1) on R2P2 deliver the same
throughput; system and network protocol overheads are irrel-
evant for such coarse-grain workload. Also, n = 1 is enough
to get maximum throughput, given the longer average service
time. SW-JBSQ(1) delivers that throughput via the optimal
single-queue implementation, with a significant impact on tail
latency. As a result, R2P2 lowers the 99th percentile latency
by 5.7× at 50% system load over nginx.

5.6 Redis
Redis [78] supports a master/slave replication scheme with
read-only slaves. We ported Redis on R2P2 and ran it on
DPDK for the Facebook USR workload [5]. We used the
sticky R2P2 policy (see §3) to direct writes to the master
node and we load balance reads across the master and slave
nodes, based on the RANDOM and the JBSQ policy. Redis has
sub-µs service times. Thus, to achieve maximum throughput
we had to increase the number of tokens to 20 per worker
(SW-JBSQ(20)), for the software router. For the vanilla Redis
over TCP clients randomly select one of the servers for read
requests, while they only send write requests to the master.

Figure 11a shows that R2P2, for an SLO of 200µs
at the 99th percentile, achieves 5.30× better through-
put for the USR workload over vanilla Redis over TCP
(TCP-DIRECT) because of reduced protocol and system over-
heads, while SW-JBSQ(20) achieves slightly better through-
put than RANDOM for the same SLO. Figure 11b increases the
write percentage of the workload from 0.2% to 2%, which
increases service time variability: R2P2 RANDOM has 4.09×
better throughput than TCP-DIRECT. SW-JBSQ(20) further
improves throughput by 18%, for a total speedup of 4.8×, as
a result of better load balancing decisions.

6 Related work

RPCs can be transported by different IP-based protocols in-
cluding HTTP2 [10], QUIC [48], SCTP [84], DCCP [47],

USENIX Association 2019 USENIX Annual Technical Conference 873

TCP-DIRECT RANDOM SW-JBSQ(20)

0.0 0.5 1.0 1.5 2.0 2.5

Load (MRPS)

0

100

200

300

9
9
th

 L
a
te

n
c
y
 (

µ
s
)

(a) Standard USR workload [5] (0.2% writes)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Load (MRPS)

0

100

200

300

(b) Modified USR with 2% writes

Figure 11: 99th percentile latency vs. throughput for Redis in a 4-node master/slave configuration.

or similar research approaches [4, 28, 30, 32, 63] that iden-
tify the TCP limitations and optimize for flow-completion
time. Libraries such as gRPC [31] and Thrift [86] abstract
away the underlying transport stream into request-reply pairs.
Approaches such as eRPC [41] aim at end-host system opti-
mizations and are orthogonal to R2P2. Load balancers proxy
RPC protocols such as HTTP in software [23, 66, 69] or in
hardware [1, 16, 25, 60]. R2P2 exposes the RPC abstraction
to the network to achieve better RPC scheduling, and to the
application to hide the complexity of the underlying transport.

Load dispatching, direct or through load balancers, typi-
cally pushes requests to workers, requiring tail-mitigation
techniques [17, 33]. In Join-Idle-Queue [55], workers pull
requests whenever they are idle. R2P2 additionally sup-
ports JBSQ(n), which exposes the tradeoff between maximal
throughput and minimal tail latency explicitly.

Task scheduling in distributed big data systems is largely
aimed at taming tail-latency and sometimes depends on split-
queue designs [19, 20, 44, 71, 75, 77, 92], typically operating
with millisecond-scale or larger tasks. R2P2 provides the
foundation for scheduling of µs-scale tasks.

Multi-core servers are themselves distributed systems with
scheduling and load balancing requirements. This is done by
distributing flows using NIC mechanisms [79] in combina-
tion with operating systems [24, 73] or dataplane [9, 37, 74]
support. Zygos [76] and Shinjuku [40] are an intra-server,
work-conserving schedulers for short tasks that rely on task
stealing and inter-processor interrupts. R2P2 eliminates the
need for complex task stealing strategies by centralizing the
logic in the router.

Recent work has focused on key-value stores [54,59,70,78].
MICA provide concurrent-read/exclusive-access (CREW)
within a server [54] by offloading the routing decisions to the
client, while hardware and software middleboxes [39, 53, 67]
or SDN switches [13, 15] enhance the performance and func-
tionality of key-value stores in-network. RackOut extended
the notion of CREW to rack-scale systems [68]. R2P2 sup-
ports general-purpose RPCs not limited to key-value stores,
together with a mechanisms for steering policies which can

be used to implement CREW both within a single server and
across the datacenter.

Finally, R2P2 adheres and encourages the in-network
compute research path by increasing the network visibility
to application logic and implementing in-network schedul-
ing. Approaches leveraging in-network compute include
caching [39, 53], replicated storage [38], network sequenc-
ing [51, 52], DNN training [81, 82], and database accelera-
tion [50].

7 Conclusion

We revisit the requirements to support µs-scale RPCs across
tiers of web-scale applications and propose to solve the prob-
lem in the network by making RPCs true first-class citizens of
the datacenter. We design, implement and evaluate a proof-of-
concept transport protocol developed specifically for µs-scale
RPCs that exposes the RPC abstraction to the network and at
the endpoints. We showcase the benefits of the new design
by implementing efficient, tail-tolerant µs-scale RPC load-
balancing based on a software router or a programmable P4
ASIC. Our approach outperforms standard load balancing
proxies by an order of magnitude in throughput and latency,
achieves close to the theoretical optimal behavior for 10µs
tasks, reduces the tail latency of websearch by 5.7× at 50%
load, and increases the scalability of Redis in a master-slave
configuration by more than 4.8×.

Acknowledgements

We would like to thank Katerina Argyraki, Jim Larus, the
anonymous reviewers, and our shepherd Mahesh Balakrishnan
on providing valuable feedback on the paper. Also, we would
like to thank Irene Zhang, Dan Ports and Jacob Nelson for
their insights on R2P2. This work was funded in part by a
VMWare grant and by the Microsoft Swiss Joint Research
Centre. Marios Kogias is supported in part by an IBM PhD
Fellowship.

874 2019 USENIX Annual Technical Conference USENIX Association

References

[1] A10 Networks. https://www.a10networks.com/.

[2] Mohammad Alizadeh, Albert G. Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center
TCP (DCTCP). In Proceedings of the ACM SIGCOMM
2010 Conference, pages 63–74, 2010.

[3] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Bal-
aji Prabhakar, Amin Vahdat, and Masato Yasuda. Less
Is More: Trading a Little Bandwidth for Ultra-Low La-
tency in the Data Center. In Proceedings of the 9th
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 253–266, 2012.

[4] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar, and
Scott Shenker. pFabric: minimal near-optimal datacen-
ter transport. In Proceedings of the ACM SIGCOMM
2013 Conference, pages 435–446, 2013.

[5] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a large-
scale key-value store. In Proceedings of the 2012 ACM
SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems, pages 53–64,
2012.

[6] Barefoot Networks. Tofino product brief. https://
barefootnetworks.com/products/brief-tofino/,
2018.

[7] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle.
The Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines, Second Edition.
Synthesis Lectures on Computer Architecture. Morgan
& Claypool Publishers, 2013.

[8] Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. Web
Search for a Planet: The Google Cluster Architecture.
IEEE Micro, 23(2):22–28, 2003.

[9] Adam Belay, George Prekas, Mia Primorac, Ana
Klimovic, Samuel Grossman, Christos Kozyrakis, and
Edouard Bugnion. The IX Operating System: Com-
bining Low Latency, High Throughput, and Efficiency
in a Protected Dataplane. ACM Trans. Comput. Syst.,
34(4):11:1–11:39, 2017.

[10] M. Belshe, R. Peon, and M. Thomson. Hypertext Trans-
fer Protocol Version 2 (HTTP/2). RFC 7540 (Proposed
Standard), May 2015.

[11] Andrew Birrell and Bruce Jay Nelson. Implementing
Remote Procedure Calls. ACM Trans. Comput. Syst.,
2(1):39–59, 1984.

[12] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard,
Nick McKeown, Jennifer Rexford, Cole Schlesinger,
Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. P4: programming protocol-independent
packet processors. Computer Communication Review,
44(3):87–95, 2014.

[13] Anat Bremler-Barr, David Hay, Idan Moyal, and Liron
Schiff. Load balancing memcached traffic using soft-
ware defined networking. In Proceedings of the 2017
IFIP Networking Conference, pages 1–9, 2017.

[14] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, An-
thony Giardullo, Sachin Kulkarni, Harry C. Li, Mark
Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song,
and Venkateshwaran Venkataramani. TAO: Facebook’s
Distributed Data Store for the Social Graph. In Proceed-
ings of the 2013 USENIX Annual Technical Conference
(ATC), pages 49–60, 2013.

[15] Eyal Cidon, Sean Choi, Sachin Katti, and Nick McK-
eown. AppSwitch: Application-layer Load Balancing
within a Software Switch. In Proceedings of the 1st
Asia-Pacific Workshop on Networking (APNet), pages
64–70, 2017.

[16] Citrix Netscaler ADC. https://www.citrix.com/
products/netscaler-adc/.

[17] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Commun. ACM, 56(2):74–80, 2013.

[18] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: amazon’s highly available
key-value store. In Proceedings of the 21st ACM Sym-
posium on Operating Systems Principles (SOSP), pages
205–220, 2007.

[19] Pamela Delgado, Diego Didona, Florin Dinu, and Willy
Zwaenepoel. Job-aware Scheduling in Eagle: Divide
and Stick to Your Probes. In Proceedings of the 2016
ACM Symposium on Cloud Computing (SOCC), pages
497–509, 2016.

[20] Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec,
and Willy Zwaenepoel. Hawk: Hybrid Datacenter
Scheduling. In Proceedings of the 2015 USENIX Annual
Technical Conference (ATC), pages 499–510, 2015.

[21] Data plane development kit. http://www.dpdk.org/.

[22] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast Remote Mem-
ory. In Proceedings of the 11th Symposium on Net-
worked Systems Design and Implementation (NSDI),
pages 401–414, 2014.

USENIX Association 2019 USENIX Annual Technical Conference 875

https://www.a10networks.com/
https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/
https://www.citrix.com/products/netscaler-adc/
https://www.citrix.com/products/netscaler-adc/
http://www.dpdk.org/

[23] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A Fast and Reliable Soft-
ware Network Load Balancer. In Proceedings of the
13th Symposium on Networked Systems Design and Im-
plementation (NSDI), pages 523–535, 2016.

[24] Epollexclusive kernel patch. https://lwn.net/
Articles/667087/, 2015.

[25] F5 Networks, INC. https://f5.com/.

[26] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof
Bornhövd, Stefan Sigg, and Wolfgang Lehner. SAP
HANA database: data management for modern business
applications. SIGMOD Record, 40(4):45–51, 2011.

[27] Fibre channel protocol. https://en.wikipedia.org/
wiki/Fibre_Channel_Protocol.

[28] Bryan Ford. Structured streams: a new transport ab-
straction. In Proceedings of the ACM SIGCOMM 2007
Conference, pages 361–372, 2007.

[29] Armando Fox and Eric A. Brewer. Harvest, Yield and
Scalable Tolerant Systems. In Proceedings of The 7th
Workshop on Hot Topics in Operating Systems (HotOS-
VII), pages 174–178, 1999.

[30] Peter Xiang Gao, Akshay Narayan, Gautam Kumar,
Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.
pHost: distributed near-optimal datacenter transport over
commodity network fabric. In Proceedings of the 2015
ACM Conference on Emerging Networking Experiments
and Technology (CoNEXT), pages 1:1–1:12, 2015.

[31] gRPC. http://www.grpc.io/.

[32] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W. Moore, Gianni Antichi, and
Marcin Wójcik. Re-architecting datacenter networks
and stacks for low latency and high performance. In
Proceedings of the ACM SIGCOMM 2017 Conference,
pages 29–42, 2017.

[33] Mingzhe Hao, Huaicheng Li, Michael Hao Tong,
Chrisma Pakha, Riza O. Suminto, Cesar A. Stuardo,
Andrew A. Chien, and Haryadi S. Gunawi. MittOS:
Supporting Millisecond Tail Tolerance with Fast Reject-
ing SLO-Aware OS Interface. In Proceedings of the
26th ACM Symposium on Operating Systems Principles
(SOSP), pages 168–183, 2017.

[34] HAProxy DSR. https://www.haproxy.com/
blog/layer-4-load-balancing-direct-server-
return-mode/.

[35] Md. E. Haque, Yong Hun Eom, Yuxiong He, Sameh
Elnikety, Ricardo Bianchini, and Kathryn S. McKinley.
Few-to-Many: Incremental Parallelism for Reducing
Tail Latency in Interactive Services. In Proceedings
of the 20th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS-XX), pages 161–175, 2015.

[36] Intel Corp. Intel 82599 10 GbE Controller Datasheet.
http://www.intel.com/content/dam/www/public/
us/en/documents/datasheets/82599-10-gbe-
controller-datasheet.pdf.

[37] Muhammad Asim Jamshed, YoungGyoun Moon,
Donghwi Kim, Dongsu Han, and KyoungSoo Park.
mOS: A Reusable Networking Stack for Flow Moni-
toring Middleboxes. In Proceedings of the 14th Sympo-
sium on Networked Systems Design and Implementation
(NSDI), pages 113–129, 2017.

[38] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion
Stoica. NetChain: Scale-Free Sub-RTT Coordination. In
Proceedings of the 15th Symposium on Networked Sys-
tems Design and Implementation (NSDI), pages 35–49,
2018.

[39] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. NetCache: Balancing Key-Value Stores with
Fast In-Network Caching. In Proceedings of the 26th
ACM Symposium on Operating Systems Principles
(SOSP), pages 121–136, 2017.

[40] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazières, and Christos Kozyrakis.
Shinjuku: Preemptive scheduling for µs-scale tail la-
tency. In Proceedings of the 16th Symposium on Net-
worked Systems Design and Implementation (NSDI),
2019.

[41] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be General and Fast. In Proceed-
ings of the 16th Symposium on Networked Systems De-
sign and Implementation (NSDI), 2019.

[42] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Using RDMA efficiently for key-value services. In
Proceedings of the ACM SIGCOMM 2014 Conference,
pages 295–306, 2014.

[43] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
FaSST: Fast, Scalable and Simple Distributed Transac-
tions with Two-Sided (RDMA) Datagram RPCs. In
Proceedings of the 12th Symposium on Operating Sys-
tem Design and Implementation (OSDI), pages 185–201,
2016.

876 2019 USENIX Annual Technical Conference USENIX Association

https://lwn.net/Articles/667087/
https://lwn.net/Articles/667087/
https://f5.com/
https://en.wikipedia.org/wiki/Fibre_Channel_Protocol
https://en.wikipedia.org/wiki/Fibre_Channel_Protocol
http://www.grpc.io/
https://www.haproxy.com/blog/layer-4-load-balancing-direct-server-return-mode/
https://www.haproxy.com/blog/layer-4-load-balancing-direct-server-return-mode/
https://www.haproxy.com/blog/layer-4-load-balancing-direct-server-return-mode/
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf

[44] Konstantinos Karanasos, Sriram Rao, Carlo Curino,
Chris Douglas, Kishore Chaliparambil, Giovanni Mat-
teo Fumarola, Solom Heddaya, Raghu Ramakrishnan,
and Sarvesh Sakalanaga. Mercury: Hybrid Centralized
and Distributed Scheduling in Large Shared Clusters.
In Proceedings of the 2015 USENIX Annual Technical
Conference (ATC), pages 485–497, 2015.

[45] Marios Kogias and Edouard Bugnion. Flow Control
for Latency-Critical RPCs. In Proceedings of the 2018
SIGCOMM Workshop on Kernel Bypassing Networks,
KBNets’18, pages 15–21. ACM, 2018.

[46] Marios Kogias, Stephen Mallon, and Edouard Bugnion.
Lancet: A self-correcting Latency Measuring Tool. In
Proceedings of the 2019 USENIX Annual Technical Con-
ference (ATC), 2019.

[47] E. Kohler, M. Handley, and S. Floyd. Datagram Con-
gestion Control Protocol (DCCP). RFC 4340 (Proposed
Standard), March 2006. Updated by RFCs 5595, 5596,
6335, 6773.

[48] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio
Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor
Kouranov, Ian Swett, Janardhan R. Iyengar, Jeff Bailey,
Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik
Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton,
Victor Vasiliev, Wan-Teh Chang, and Zhongyi Shi. The
QUIC Transport Protocol: Design and Internet-Scale
Deployment. In Proceedings of the ACM SIGCOMM
2017 Conference, pages 183–196, 2017.

[49] Jean-Yves Le Boudec. Performance Evaluation of Com-
puter and Communication Systems. EPFL Press, Lau-
sanne, Switzerland, 2010.

[50] Alberto Lerner, Rana Hussein, and Philippe Cudré-
Mauroux. The Case for Network Accelerated Query
Processing. In Proceedings of the 9th Biennial Con-
ference on Innovative Data Systems Research (CIDR),
2019.

[51] Jialin Li, Ellis Michael, and Dan R. K. Ports. Eris:
Coordination-Free Consistent Transactions Using In-
Network Concurrency Control. In Proceedings of the
26th ACM Symposium on Operating Systems Principles
(SOSP), pages 104–120, 2017.

[52] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana
Szekeres, and Dan R. K. Ports. Just Say NO to Paxos
Overhead: Replacing Consensus with Network Order-
ing. In Proceedings of the 12th Symposium on Operat-
ing System Design and Implementation (OSDI), pages
467–483, 2016.

[53] Xiaozhou Li, Raghav Sethi, Michael Kaminsky,
David G. Andersen, and Michael J. Freedman. Be Fast,
Cheap and in Control with SwitchKV. In Proceedings
of the 13th Symposium on Networked Systems Design
and Implementation (NSDI), pages 31–44, 2016.

[54] Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. MICA: A Holistic Approach to
Fast In-Memory Key-Value Storage. In Proceedings of
the 11th Symposium on Networked Systems Design and
Implementation (NSDI), pages 429–444, 2014.

[55] Yi Lu, Qiaomin Xie, Gabriel Kliot, Alan Geller, James R.
Larus, and Albert G. Greenberg. Join-Idle-Queue: A
novel load balancing algorithm for dynamically scalable
web services. Perform. Eval., 68(11):1056–1071, 2011.

[56] Lucene++. https://github.com/luceneplusplus/
LucenePlusPlus.

[57] Lucene nightly benchmarks. https://
home.apache.org/~mikemccand/lucenebench.

[58] David Meisner, Christopher M. Sadler, Luiz André Bar-
roso, Wolf-Dietrich Weber, and Thomas F. Wenisch.
Power management of online data-intensive services.
In Proceedings of the 38th International Symposium on
Computer Architecture (ISCA), pages 319–330, 2011.

[59] Memcached. https://memcached.org/.

[60] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. SilkRoad: Making Stateful Layer-4
Load Balancing Fast and Cheap Using Switching ASICs.
In Proceedings of the ACM SIGCOMM 2017 Confer-
ence, pages 15–28, 2017.

[61] Michael Mitzenmacher. The Power of Two Choices
in Randomized Load Balancing. IEEE Trans. Parallel
Distrib. Syst., 12(10):1094–1104, 2001.

[62] In-memory mongodb. https://docs.mongodb.com/
manual/core/inmemory/.

[63] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John K. Ousterhout. Homa: a receiver-driven low-
latency transport protocol using network priorities. In
Proceedings of the ACM SIGCOMM 2018 Conference,
pages 221–235, 2018.

[64] Nginx. https://www.nginx.com/.

[65] NGINX DSR: IP Transparency and Direct Server Return
with NGINX and NGINX Plus as Transparent Proxy.
https://www.nginx.com/blog/.

[66] NGINX Reverse Proxy. https://docs.nginx.com/
nginx/admin-guide/web-server/reverse-
proxy/.

USENIX Association 2019 USENIX Annual Technical Conference 877

https://github.com/luceneplusplus/LucenePlusPlus
https://github.com/luceneplusplus/LucenePlusPlus
https://home.apache.org/~mikemccand/lucenebench
https://home.apache.org/~mikemccand/lucenebench
https://memcached.org/
https://docs.mongodb.com/manual/core/inmemory/
https://docs.mongodb.com/manual/core/inmemory/
https://www.nginx.com/
https://www.nginx.com/blog/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/

[67] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing Memcache at Facebook. In Proceedings of the 10th
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 385–398, 2013.

[68] Stanko Novakovic, Alexandros Daglis, Dmitrii Ustiu-
gov, Edouard Bugnion, Babak Falsafi, and Boris Grot.
Mitigating Load Imbalance in Distributed Data Serving
with Rack-Scale Memory Pooling. ACM Trans. Comput.
Syst., 36(2):6:1–6:37, 2019.

[69] Vladimir Andrei Olteanu, Alexandru Agache, Andrei
Voinescu, and Costin Raiciu. Stateless Datacenter Load-
balancing with Beamer. In Proceedings of the 15th
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 125–139, 2018.

[70] John K. Ousterhout, Arjun Gopalan, Ashish Gupta,
Ankita Kejriwal, Collin Lee, Behnam Montazeri, Diego
Ongaro, Seo Jin Park, Henry Qin, Mendel Rosenblum,
Stephen M. Rumble, Ryan Stutsman, and Stephen Yang.
The RAMCloud Storage System. ACM Trans. Comput.
Syst., 33(3):7:1–7:55, 2015.

[71] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and
Ion Stoica. Sparrow: distributed, low latency scheduling.
In Proceedings of the 24th ACM Symposium on Operat-
ing Systems Principles (SOSP), pages 69–84, 2013.

[72] The P4 Language Specification. https://p4.org/
p4-spec/p4-14/v1.0.4/tex/p4.pdf. Accessed on
20.09.2018.

[73] Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich,
and Robert Tappan Morris. Improving network connec-
tion locality on multicore systems. In Proceedings of
the 2012 EuroSys Conference, pages 337–350, 2012.

[74] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,
Doug Woos, Arvind Krishnamurthy, Thomas E. Ander-
son, and Timothy Roscoe. Arrakis: The Operating Sys-
tem Is the Control Plane. ACM Trans. Comput. Syst.,
33(4):11:1–11:30, 2016.

[75] Russell Power and Jinyang Li. Piccolo: Building Fast,
Distributed Programs with Partitioned Tables. In Pro-
ceedings of the 9th Symposium on Operating System
Design and Implementation (OSDI), pages 293–306,
2010.

[76] George Prekas, Marios Kogias, and Edouard Bugnion.
ZygOS: Achieving Low Tail Latency for Microsecond-
scale Networked Tasks. In Proceedings of the 26th ACM
Symposium on Operating Systems Principles (SOSP),
pages 325–341, 2017.

[77] Jeff Rasley, Konstantinos Karanasos, Srikanth Kandula,
Rodrigo Fonseca, Milan Vojnovic, and Sriram Rao. Ef-
ficient queue management for cluster scheduling. In
Proceedings of the 2016 EuroSys Conference, pages
36:1–36:15, 2016.

[78] Redis. https://redis.io/.

[79] Microsoft corp. receive side scaling. http:
//msdn.microsoft.com/library/windows/
hardware/ff556942.aspx.

[80] Jerome H. Saltzer, David P. Reed, and David D. Clark.
End-To-End Arguments in System Design. ACM Trans.
Comput. Syst., 2(4):277–288, 1984.

[81] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan,
Marco Canini, and Panos Kalnis. In-Network Com-
putation is a Dumb Idea Whose Time Has Come. In
Proceedings of The 16th ACM Workshop on Hot Topics
in Networks (HotNets-XVI), pages 150–156, 2017.

[82] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nel-
son, Panos Kalnis, Changhoon Kim, Arvind Krishna-
murthy, Masoud Moshref, Dan R. K. Ports, and Peter
Richtárik. Scaling Distributed Machine Learning with
In-Network Aggregation. CoRR, abs/1903.06701, 2019.

[83] Bianca Schroeder, Adam Wierman, and Mor Harchol-
Balter. Open Versus Closed: A Cautionary Tale. In
Proceedings of the 3rd Symposium on Networked Sys-
tems Design and Implementation (NSDI), 2006.

[84] R. Stewart. Stream Control Transmission Protocol. RFC
4960 (Proposed Standard), September 2007. Updated
by RFCs 6096, 6335, 7053.

[85] Michael Stonebraker, Samuel Madden, Daniel J. Abadi,
Stavros Harizopoulos, Nabil Hachem, and Pat Helland.
The End of an Architectural Era (It’s Time for a Com-
plete Rewrite). In Proceedings of the 33rd International
Conference on Very Large DataBases (VLDB), pages
1150–1160, 2007.

[86] Apache thrift. https://thrift.apache.org/.

[87] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy transactions in
multicore in-memory databases. In Proceedings of the
24th ACM Symposium on Operating Systems Principles
(SOSP), pages 18–32, 2013.

[88] Voltdb. https://www.voltdb.com/.

[89] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast in-memory transaction processing us-
ing RDMA and HTM. In Proceedings of the 25th ACM
Symposium on Operating Systems Principles (SOSP),
pages 87–104, 2015.

878 2019 USENIX Annual Technical Conference USENIX Association

https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf
https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf
https://redis.io/
http://msdn.microsoft.com/library/windows/hardware/ff556942.aspx
http://msdn.microsoft.com/library/windows/hardware/ff556942.aspx
http://msdn.microsoft.com/library/windows/hardware/ff556942.aspx
https://thrift.apache.org/
https://www.voltdb.com/

[90] Adam Wierman and Bert Zwart. Is Tail-Optimal
Scheduling Possible? Operations Research, 60(5):1249–
1257, 2012.

[91] The english wikipedia page article dump. https://
dumps.wikimedia.org/enwiki/20180401.

[92] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tatha-
gata Das, Michael Armbrust, Ankur Dave, Xiangrui
Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker,
and Ion Stoica. Apache Spark: a unified engine for big
data processing. Commun. ACM, 59(11):56–65, 2016.

[93] Heng Zhang, Mingkai Dong, and Haibo Chen. Efficient
and Available In-memory KV-Store with Hybrid Erasure
Coding and Replication. In Proceedings of the 14th
USENIX Conference on File and Storage Technologie
(FAST), pages 167–180, 2016.

[94] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion Control for Large-Scale RDMA
Deployments. In Proceedings of the ACM SIGCOMM

2015 Conference, pages 523–536, 2015.

USENIX Association 2019 USENIX Annual Technical Conference 879

https://dumps.wikimedia.org/enwiki/20180401
https://dumps.wikimedia.org/enwiki/20180401

Lancet: A self-correcting Latency Measuring Tool

Marios Kogias1 Stephen Mallon2 Edouard Bugnion1

1EPFL, Switzerland 2University of Sydney

Abstract

We present LANCET, a self-correcting tool designed to mea-
sure the open-loop tail latency of µs-scale datacenter appli-
cations with high fan-in connection patterns. LANCET is self-
correcting as it relies on online statistical tests to determine
situations in which tail latency cannot be accurately measured
from a statistical perspective. The workload configuration,
the client infrastructure, or the application itself could, un-
der circumstances, prevent accurate measurement. Because
of its design, LANCET is also extremely easy to use. In fact,
the user is only responsible for (i) configuring the workload
parameters, i.e., the mix of requests and the size of the client
connection pool, and (ii) setting the desired confidence inter-
val for a particular tail latency percentile. All other parameters,
including the length of the warmup phase, the measurement
duration, and the sampling rate, are dynamically determined
by the LANCET experiment coordinator.

When available, LANCET leverages NIC-based hardware
timestamping to measure RPC end-to-end latency. Otherwise,
it uses an asymmetric setup with a latency-agent that leverages
busy-polling system calls to reduce the client bias.

Our evaluation shows that LANCET automatically identi-
fies situations in which tail latency cannot be determined
and accurately reports the latency distribution of workloads
with single-digit µs service time. For the workloads studied,
LANCET can successfully report, with 95% confidence, the
99th percentile tail latency within an interval of ≤ 10µs. In
comparison with state-of-the-art tools such as Mutilate and
Treadmill, LANCET reports a latency cumulative distribution
that is ∼20µs lower when the NIC timestamping capability is
available and ∼10µs lower when it is not.

1 Introduction

Today’s webscale datacenter applications such as search,
social networking, and e-commerce all rely extensively on
the decomposition of online, data-intensive queries into
smaller subqueries that process data directly from the memory

of hundreds or thousands of tightly-interconnected servers
to ensure service-level objectives, scalability and availabil-
ity [4,11,12,33,34]. The combined advancements in hardware
technology (e.g., 10-100Gbps NICs, cut-through switches,
NVMe), system software (e.g., dataplanes [6, 49]), and data
management systems (e.g., in-memory databases and key-
value stores [17, 47, 48, 55]) now allow µs-scale interactions
between application components [5]. The increased number
of components involved in a single query and the extensive
use of high fan-in, high fan-out patterns have shifted the per-
formance focus to tail-latency considerations [11].

This emerging µs-scale computing era is characterized by
new key performance metrics such as the tail-latency service-
level objective (SLO), e.g., 99th percentile ≤ 500µs [6, 29].
To put this into perspective, 500µs is one order of magnitude
longer than an in-memory relational database processing TPC-
C [55] and two-to-three orders of magnitude longer than basic
operations on a key-value store [17, 35, 48]. Yet, it is shorter
than an operating system quantum, a TCP retransmission time-
out, or the DVFS governor’s reaction time [36]. This requires
complete rethinking of traditional assumptions about systems,
stacks, protocols, and applications [5,17,48,53]. A large body
of research focuses on the systematic characterization and
reduction of tail latency effects [6,13,14,23,27–29,34,36,50].

While throughput can easily be measured, tail latency is
harder to capture and characterize in a statistically meaning-
ful manner, as it depends on a number of factors beyond the
workload itself. These factors include the choice of a tool with
overheads and biases, its precise configuration, and the exper-
imental methodology. The literature describes many pitfalls
specific to latency, e.g., Treadmill [58] discusses situations in
which: (i) the inter-arrival request distribution does not match
the production environment; (ii) the measuring methodology
silently masks some tail behaviors; (iii) the measuring tool
affects the measured end-to-end latency because the measur-
ing granularity is too coarse-grained or because the clients
are overloaded.

This matches our own experience in building and evaluat-
ing multiple research systems for µs-scale computing [6, 30,

USENIX Association 2019 USENIX Annual Technical Conference 881

50, 51], which used either modified versions of Mutilate [33]
or home-grown latency-measurement and load-generation
tools. While these tools measured the tail latency of our sys-
tems as a function of the load, we were required to unsci-
entifically tweak a large number of workload and system
parameters in an ad-hoc manner by: (i) repeatedly increasing
the number of load-generating clients until stability; (ii) re-
peatedly increasing the number of outstanding requests (e.g.,
number of connections) until the tail-latency diverges at satu-
ration, as expected in an open-loop process; (iii) and last, but
not least, running each experiment “longer” with the hope of
reducing result jitter.

This paper introduces LANCET, a self-correcting latency
measurement tool designed to measure, in a statistically sound
manner, the end-to-end tail latency of remote procedure calls
in a testing environment. LANCET is self-correcting as it relies
on on-line statistical tests to determine situations in which tail
latency cannot be accurately measured. This includes situa-
tions when (i) the workload configuration, and in particular
the number of client connections, leads to closed-loop behav-
ior; (ii) the infrastructure (e.g., number of machines) cannot
generate the desired load without introducing client bias; (iii)
the service time of the workload itself is heavy-tailed dis-
tributed.

Because it relies on statistical methods within its control
system, LANCET is also easier to use than existing tools.
While the scientist specifies the infrastructure used for an
experiment (e.g., number of client machines), and the work-
load itself (e.g., mix reads and writes, distribution of keys
and values, number of client connections, maximum number
of outstanding requests per connection etc.), LANCET then
automatically determines, using statistical tests, what can be
measured and at which confidence interval. LANCET’s con-
trol system internally sets additional experimental parameters
such as the duration of the experiment and its warmup phase.

Finally, LANCET relies on state-of-the-art, hardware-based
measurement techniques that combine NIC timestamping in
hardware and userlevel matching of packets to RPCs. This
approach noticeably eliminates the client bias, and increases
the accuracy of individual measurements without creating a
long-term dependency on immature kernel-bypass protocols
stacks and libraries.

This paper contributes the methodology, design, and imple-
mentation of LANCET, with the following novel features:

• LANCET measures the open-loop tail latency of a work-
load using only two user-provided parameters: the target
load level and the desired confidence interval at the tar-
get tail percentile. For this, it relies on proven statistical
methods such as hypothesis testing to configure the ex-
periment methodology parameters.

• LANCET is self-correcting and reports “N/A” when no
statistically-sound tail latency can be measured. This can
be due to limitations in workload specification, client

infrastructure, or because the service time distribution
has high variability.

• LANCET clearly separates (i) the methodological con-
siderations, implemented by the LANCET controller, (ii)
the measurement tool, implemented by a combination
of agents, and (iii) the workloads and application-level
protocol support, implemented in an extensible manner
by the LANCET agent’s internal API.

• LANCET is designed with stability and production de-
ployment in mind, with a focus on Ethernet-based pro-
tocols. It therefore uses exclusively the standard Linux
kernel-based implementations of networking protocols.
For applicable NICs, LANCET supports hardware-based
timestamping to measure TCP-based RPC latencies
for improved measurement accuracy. Our work demon-
strates that kernel-bypass is not necessary to achieve
precise µs-scale client-side measurements.

Our evaluation of LANCET with workloads with synthetic
service times demonstrates that it (i) automatically identifies
the right number of samples necessary for the target experi-
ment accuracy and result convergence; (ii) accurately reports
the latency distributions for workloads with service time as
short as S̄ = 1µs; and (iii) provides substantially more accu-
rate results than Treadmill [58] and Mutilate [33], state-of-
the-art tail latency measurement tools.

LANCET is open-source and can be found at
https://github.com/epfl-dcsl/lancet-tool. The
rest of the paper is structured as follows. We discuss the
necessary background (§2), analyze a latency experiment
(§3), and discuss the design (§4) and implementation of
LANCET (§5). We then evaluate LANCET (§6) and compare
our methodology to existing tools (§7), and conclude (§8).

2 Background

The accurate measurement of the latency of any software ap-
plication serving RPCs requires the appropriate combination
of metrics, tools, workloads and experimental methodology:
(i) the metrics determine which type of latency is being mea-
sured for a certain load, whether mean, median, tail (e.g., 99th

percentile), or the empirical cumulative distribution function
(ECDF); (ii) the choice of tool determines the precision of the
benchmark; (iii) the choice of workload determines the degree
of realism, generality, and relevance of the experiment; (iv)
the choice of methodology determines the overall soundness
of the results, their accuracy, and reproducibility.

The high-level process is straightforward: the tool acts as an
RPC client which generates requests for the system(s) under
test. The tool timestamps requests and corresponding replies
to determine the end-to-end latency. The requests themselves
are determined in a workload-specific manner (e.g., a mix of

882 2019 USENIX Annual Technical Conference USENIX Association

get and set with a specific distribution of keys). The indi-
vidual request inter-arrival time typically follows a Poisson
process for a given rate λ. For a fixed rate λ, scientists typi-
cally report the full ECDF or the complementary cumulative
distribution or tail distribution (CCDF), often on a log scale,
to highlight the tail latency levels (99th, 999th, etc.). To study
the impact of load on latency, scientists repeat the fixed-rate
experiment for different λ and report the tail latency as a func-
tion of the load [6, 14, 22, 29, 29, 33, 37, 50, 58]. Finally, for
dynamic experiments that mimic daily datacenter patterns,
the tool dynamically adjusts λ according to a diurnal (or ac-
celerated) time pattern [4, 6, 51, 56].

2.1 Taxonomy of tools

We attempt to make a taxonomy of the existing tools for
generating load and measuring latency, the techniques used
and the main design decision.

Packet vs. RPC generators: At the highest level, latency
measuring tools can be easily classified into packet generators,
which measure a network device or a network function, and
application RPC generators, which measure a server.

Packet generators use stateless network packets to measure
the throughput and the latency of datacenter network equip-
ment such as switches and routers as defined in RFCs [7, 39].
These tools can be implemented to achieve different levels of
precision in software. For example, MoonGen [19], TRex [8],
and netperf [46], rely on hardware timestamping facilities
in modern NICs (e.g., MoonGen) or use custom hardware
appliances such as Spirent [54] or IXIA [24].

Application RPC generators measure the latency of client-
server interactions using protocols such as http or mem-
cached’s binary protocol, typically implemented on top
of TCP or RDMA connections. These tools provide ad-
vanced workload-generation capabilities. For example, Muti-
late [33, 45] can model Facebook’s various uses of key-value
stores [4], YCSB [10, 57] can generate a Zipfian distribution
of keys, and CloudSuite [9, 20] offers a mix of applications.
For the rest of the paper, we will focus on RPC generators.

Open-loop vs. Closed loop: There are two main ways to con-
trol the flow of requests to the target. An open-loop system
models n=∞ clients that send requests to the target according
to a rate λ and an inter-arrival distribution, e.g., Poisson. A
closed-loop system bounds the maximum number of possi-
ble outstanding requests at any given time. The distinction
between an open and a closed loop system is a property of
a specific deployment and the same system can be deployed
under different scenarios, e.g., a key-value store may serve
only a few blocking clients (i.e., closed-loop) or thousands
of application servers, which is best modelled as open-loop.
Testing for the right scenario is crucial because open-loop sys-
tems can lead to large queuing, and thus longer tail latencies,

whereas closed-loop tail latencies are typically bounded by
the number of possible outstanding requests. Tools such as
Treadmill and Mutilate are open-loop systems, while others
such as YCSB are closed-loop systems.

Generating the necessary load: Precise tools are typically
used to evaluate the benefit of innovations in new hard-
ware, protocol designs, kernel bypass architectures, network-
ing stacks, operating system configurations, or applications.
Leading research systems today can deliver high-throughput
solutions that easily scale to millions of requests per sec-
ond, even on commodity hardware. As a consequence, the
load-generation and latency-measuring tools, which typically
run on reference vanilla Linux infrastructure, must be dis-
tributed on multiple client machines to saturate a single
server [6, 33, 50].

Multi-machine setups follow two basic design patterns.
First, in symmetric generators, all client machines generate
load and measure latency. Then, an external agent accumu-
lates and processes the collected results to report the ag-
gregated verdict. This category includes YCSB [10], Tread-
mill [58], CloudSuite [20], memaslap [43], etc. Unfortunately
the open-source versions of these tools provide no coordinator
or aggregator script to run them in a distributed fashion.

Second, the asymmetric design splits the client machines
between load-generating and latency-measuring. The bulk of
the load is generated by client machines that generate requests
according to a specific inter-arrival distribution, e.g., Poisson,
in an open-loop manner without measuring latency, while a
separate, dedicated client machine makes closed-loop requests
to the same server and measures its latency. By reducing
the system load on the latency-generating thread, such tools
reduce client bias in the measurement. Mutilate [33] is the
most well-known tool in that category.

Point of measurement: Latency can be measured at different
points in the system resulting in different levels of accuracy.
This includes the actual wire, the NIC, the Ethernet driver,
the in-kernel socket layer, or the application itself. The point
of measurement has a large impact on precision. Accord-
ing to Primorac et al. [52], (i) the packet generators using
hardware-based NIC timestamping such as MoonGen can ac-
curately measure the latency of stateless network functions up
to the 99.99th percentile whereas (ii) the best software solu-
tion relying on kernel bypass can only measure up to the 99th

percentile, and (iii) the solutions relying on the traditional
networking stack should not be used at all for µs-scale latency
measurements.

NIC-based timestamping is available on mainstream NICs.
Intel NICs, such as 10Gbe 82599 and x54, or 40Gbe x710,
implement hardware timestamping only to support IEEE 1588
Precision Time Protocol [18]. This restricts the type and
amount of packets that can be hardware-timestamped. The
MoonGen packet generator takes advantage of this precise, yet

USENIX Association 2019 USENIX Annual Technical Conference 883

restrictive mechanism. The Mellanox NICs, e.g., ConnectX-
4 [42] or newer, offer general-purpose hardware timestamping
support to all incoming and outgoing packets. The Linux ker-
nel provides support for hardware timestamping via the Linux
socket interface, yet deriving RPC timestamps from packet
timestamps is challenging, as later described.

Another way to increase precision and reduce jitter is to
leverage kernel bypass and NIC polling at the client. Tools
such as MoonGen and T-Rex use the DPDK [16] toolkit
for better performance and precision. Unfortunately, kernel
bypass limits application and protocol support, and requires
using less-proven protocol stacks as part of the experiment.

Reporting results: From a methodology perspective, most
tools depend on histograms to compute latency percentiles,
thus avoiding keeping all the recorded latency samples. His-
tograms with fixed bucket sizes, as used by Mutilate, can
affect the reported results by masking tail phenomena, if not
configured properly. Some tools such as Treadmill [58] pro-
pose a user-defined calibration phase to determine the bucket
allocation. Other tools, such as TailBench [29], use dynamic
histograms, whose bucket sizes change over the execution of
the experiment. Finally, few tools, e.g., Mutilate, allow col-
lecting all latency samples and save them in a file to be used
for plotting the ECDF.

2.2 Configuration burden

Load generators put the methodological burden on the scien-
tist who configures it. For example, a scientist using Mutilate
must first determine the time for each load experiments (de-
fault=5s), which must be long enough to be statistically sound;
then specify the number of machines, threads and overall num-
ber connections for the load-generating agents, and the max-
imum number of outstanding requests per connection; and
finally specify the configuration of the latency-measurement
agent, which operates as a closed-loop with one outstanding
request a time.

This configuration setup has subtle implications as (i) in-
creasing the number of machines reduces client bias [58]; (ii)
increasing the number of open sockets reduces the through-
put of the server because of operating system overheads [6];
(iii) increasing the maximum number of outstanding requests
per socket allows for batching and increases throughput; (iv)
the product of the number of connections × the number of
outstanding requests must be larger than the bandwidth-delay
product of the workload if the scientist wishes to measure the
open-loop tail latency of the service.

Figure 1 illustrates the challenge via the study of an out-
of-the-box memcached/Linux deployment with Mutilate con-
figured with 320 and 144 connections with one outstanding
request each. We report the 99th tail latency as a function of
the load. The orange curve (144 Connections) operates as a
closed-loop, with the clients unable to generate the target rate,

0 200 400 600 800 1000 1200

kRPS

0

200

400

600

800

1000

9
9
th

-L
a

te
n
c
y
 (

u
s
) 320 Connections

144 Connections

Figure 1: 99th percentile latency for memcached USR mea-
sure with Mutilate with 144 and 320 connections with 1 out-
standing request per connection.

and without ever saturating the server. The lower reported
tail latency is merely a reflection of the limited number of
outstanding requests. This experiment can lead to false con-
clusions, e.g., on the maximum throughput that meets a SLO
(e.g., ≤ 300µs).

2.3 Statistics Background

This section provides the sufficient background to understand
our use of statistical methods in LANCET.

Hypothesis testing: Statistical testing follows a specific
thought process. Initially, the statistician formulates a null
hypothesis implying that there is no relation between two pop-
ulations and the observations are the results of pure chance.
She then identifies a test statistic that can assess the truth of
the null hypothesis and computes the p-value. p-value gives
the probability of the given test statistic resulting in the ob-
served value if the null hypothesis is true. The smaller the
p-value, the stronger the evidence against the null hypothesis.
Finally, she compares the p-value to the α value, which cor-
responds to the level of confidence. If the p-value is less than
α, she rejects the hypothesis and therefore conclude that the
effect she observed was not due to random chance.

LANCET uses the following tests. First, the Anderson-
Darling test checks whether a group of samples comes from
a certain probability distribution and was chosen because
it is less sensitive to outliers compared to similar tests, e.g.,
the Kolmogorov-Smirnov test [31]. We use that to validate
the inter-arrival request distribution. Second, the Augmented
Dickey Fuller test [15] checks a series of samples for station-
arity. We use the ADF test to determine the duration of the
warm-up phase and whether the experiment results change
over time. Finally, we use the Spearman rank correlation
coefficient and the associated p-value to check if a series of
samples is autocorrelated when checking for iid-data.

IID-data: Most types of hypothesis testing or general sta-
tistical processing, such as the calculation of confidence in-
tervals, require samples that are independent and identically
distributed (iid). When running a latency experiment, latency

884 2019 USENIX Annual Technical Conference USENIX Association

Latency Experiment Concerns
Workload Methodology Measuring Tool

transport protocol connection balance system stability workload-compliant
application protocol open/closed queueing unbiased result processing methodology-compliant
request types and ratio outstanding requests/connection result convergence measuring bias free
connection count inter-arrival distribution distribution coverage

Table 1: Classification of concerns related to running a latency experiment into workload, methodology, and measuring tool-
specific components. We advocate that the Workload column has to be user defined, while Methodology and Measuring Tool
columns have to be handled systematically by the measuring framework.

samples are naturally identically distributed since they come
from the same target server. Sample independence, though, is
challenging to meet because of queuing effects. The end-to-
end latencies of two requests that are queued back-to-back are
dependent because the latency of the latter request includes
the service time of the prior. While independence cannot be
taken for granted, it can be tested, with autocorrelation be-
ing the standard way to check independence for a series of
samples.

Confidence Intervals: We focus here on the confidence in-
tervals for tail latency of a single execution, assuming that
the system environment remains identical and stable during
the entire experiment. The confidence intervals for a distri-
bution’s percentiles can be computed in closed form when
the data are iid. The formula identifies, with a certain level of
confidence, two threshold values that belong to the collected
samples, between which the value for the specific percentile
is expected to be found. Formulas 1, 2 give the indices of
those two threshold values in the sorted of collection of sam-
ples [31] for a certain confidence level γ.

j ≈ bnp−η
√

np(1− p)c (1)

k ≈ dnp+η
√

np(1− p)e+1 (2)

where n is the number of samples, p is the percentile, and η

is defined as N0,1 =
1+γ

2 . For example, for 10,000 iid samples
(n = 10000), the confidence interval for the 99-th percentile
with 95% confidence (γ = 0.95, so η = 1.96) will be between
the values with indices j = 9880 and k = 9921.

Note that determining confidence across different execu-
tions of the same experiment is challenging as the system’s
boot-time and application initialization can have a persistent
effect on performance, leading to the hysteresis problem de-
scribed in Treadmill [58].

3 Experiment Decomposition

Our goal is to build a latency-measuring tool that is precise
and simplifies the configuration burden discussed in §2.2,
with the explicit objective to identify situations in which the
configuration cannot lead to a statistically meaningful result.

Table 1 classifies concerns related to a latency experiment
into three main categories: workload, methodology, and mea-
suring tool. These concerns often correspond to user-defined
parameters in most of the existing tools and can be easily
misconfigured. This decomposition will guide the design of
modular, self-correcting latency-measuring tools. We claim
that the workload-specific parameters have to be user de-
fined, otherwise the experiment is insufficiently described.
The methodology and measuring tool concerns have to be sys-
tematically managed by the measuring framework to reduce
the pitfalls induced by the user misconfiguration.

Workload: The first aspect of a latency experiment is the ac-
tual workload and a large set of the configuration parameters
refer to the workload specification. The experiment workload
is both application- and deployment-specific, meaning that
the same application should be tested differently if the deploy-
ment environment is also different. The workload includes the
application specific parameters (e.g., get:set ratio, request
size distributions, TPC-C request mix, etc.), the application-
level protocol (e.g., HTTP, binary memcached, etc.) and the
network-level protocol (e.g., UDP vs. TCP). The definition
of the workload also includes the client assumptions, i.e., the
number of expected client connections, the maximum number
of outstanding requests per connection, and whether clients
operate in an open- or a closed-loop system.

Critically, the specification of the workload is independent
of the measuring tool , but affects the results, which could lead
to unrealistic or wrong conclusions. For example, one cannot
meaningfully report the open-loop tail latency of a workload
with an insufficient number of connections, or insufficient
outstanding requests per connection.

Measuring methodology: The second aspect of a latency ex-
periment is the methodology, which describes how the latency
samples are collected and processed. Examples of configura-
tion parameters that are relevant to the methodology are the
experiment duration, the number of collected samples, and
the number and size of the histogram buckets. Reducing the
number of configuration parameters related to methodology
is a major goal of our design.

Regarding the latency sample collection, a good method-

USENIX Association 2019 USENIX Annual Technical Conference 885

Target

ServerCoordinator

Throughput

Agent

Latency

Agent

Symmetric

Agent
…

…

…

Figure 2: Lancet’s architecture depicting a coordinator (C),
throughput agents (TA), latency agents (LA), symmetric
agents (SA), and the target server under test. The dashed
arrows correspond to the LANCET API while the solid ones
are application RPCs

ology should first ensure that the system under test is in a
steady state to avoid measuring transient phenomena. Then it
should ensure that the collected results converge and that all
desired tail behaviors are covered. Finally, during the result
processing, it should avoid adding statistical bias, e.g., by the
misconfiguration of histograms.

Measuring tool: Finally, the last part of a latency experi-
ment is the actual client software used to collect the latency
samples. Examples of parameters related to the tool are the
number of client machines or threads used in the experiment,
and whether hardware or software timestamping is used. The
tool should be able to implement the specific methodology,
generate the target workload accurately, and measure latency
without adding too much client bias.

4 Design

4.1 LANCET infrastructure

Figure 2 shows the basic LANCET overview, which splits
the methodology from the actual measuring tool and work-
load generator according to §3. LANCET is a by-design dis-
tributed tool that consists of a coordinator (C) and various
measuring agents. The coordinator is in charge of the exper-
iment methodology (see §4.3) and communicates with the
agents over the LANCET API (Table 2). The measuring agents
drive the workload via application RPCs generated based on
application-specific random distributions. The agents also
measure latency precisely, identify cases of workload viola-
tions, and run statistical tests.

Figure 3 describes a typical agent state transitions triggered
by the coordinator via the API for a fixed-load experiment.
From an idle state (Idle), the agent transitions into the loading
phase (Load), where it attempts to issue l requests per second
to the server. During that period the agent does not record
latency. The agent eventually transitions into the measure-
ment phase (Measure) specified by a sampling rate (sr) and
a number of latency samples to collect (s). The agent can

Request Type Request Params Reply
start_load load (rps) ACK

start_measure
#samples
sampling rate(sr) ACK

get_throughput None
Throughput (rps)
Correct IA (T/F)

get_latency None
Latency CI
Stationary (T/F)
IID (T/F, sr)

exit None ACK

Table 2: The LANCET coordinator API with the information
returned by the agents on each call. For the get_throughput
and get_latency requests, the agents also reply information
related to the Inter-Arrival distribution (IA), the latency Con-
fidence Intervals (CI), and whether the collected samples are
stationary and iid. If they are not iid, the reply contains the
target sampling rate necessary to get iid data.

Idle

Measure
Load

Terminate

load(l)

exit

measure(s,sr)

measure(s,sr)

exit

Figure 3: Lancet agent’s state transition. Arrows represent
messages from the coordinator.

stay in that state while the sr and s parameters can change.
Finally, the coordinator decides to terminate the experiment
(Terminate) via an exit message. At any point in time, while
the agent is in the Load or Measure phase the coordinator can
ask for the current throughput and latency.

4.2 Measurement options

Figure 2 shows that LANCET implements three agent types,
selected to match the capabilities of the available hardware,
the measuring methodology and the target experiment granu-
larity. This way LANCET can support both symmetrical and
asymmetrical deployments described in § 2.1.

LANCET uses the asymmetrical model when the latencies
are captured in software. This model reduces jitter by dedi-
cating cores and even machines to only measure latency. The
drawback is that the experiment collects fewer samples per
time period. Furthermore, special care must be taken to ensure
that the collected samples are representatives of the workload.
For example, a latency agent should open multiple connec-
tions (i.e., emulate multiple clients) to ensure that a server
configured with an RSS NIC will use all cores.

LANCET uses the symmetrical model when the NIC offers
the capability to timestamp all incoming and outgoing Ether-
net frames and the Linux operating system exposes the infor-

886 2019 USENIX Annual Technical Conference USENIX Association

mation to userspace (v4.14+ kernels). LANCET associates the
hardware timestamping of packets to the end-to-end latency
of RPCs. This is not straightforward because of the inherent
mismatch between the stream-oriented TCP protocol and the
message-oriented RPCs. Implementation details follow in §5.

4.3 LANCET’s self-correcting methodology
LANCET’s primary contribution is its novel, self-correcting
methodology which follows the experiment decomposition
and split of concerns described in Table 1, and tries to system-
atically and based on statistics, identify: (i) when the server
is in a stable state to start measuring latency (managed by
the user-defined warm-up time in other tools); (ii) if the col-
lected latency samples converge and whether tail phenomena
are fully covered (controlled by the user-defined experiment
duration in other tools); (iii) how to process the collected
samples and report latency without introducing statistical bias
(histograms are mainly used for that purpose in other tools);
(iv) the confidence intervals of the latency results (unlike most
tools which simply report latency percentiles).

Figure 4 illustrates the state machine transitions of the
coordinator when measuring the open-loop tail-latency of a
server under a certain load. To run such an experiment, the
scientist needs to provide, apart from the necessary workload
specification (first column in Table 1), the following:

• the target load (l).

• the target confidence interval for a specific latency per-
centile, e.g., 10µs interval for the 99th percentile with
95% confidence.

The output of such an experiment will be either the tail-
latency percentiles with the corresponding confidence inter-
vals or an indication that the specific experiment cannot be
executed because some of the assumptions are violated, e.g.,
the target load cannot be reached, the service time has high
variability and the computed latency confidence interval is
wider than the target, the client does not respect the workload
specifications, etc.

System Stability: Initially, the methodology ensures that the
target load can actually be reached before starting measur-
ing latency, thus eliminating transient phenomena. Then, the
methodology ensures that agents load the server while respect-
ing the workload’s specified inter-arrival distribution. This
second confirmation is essential to avoid reporting misleading
latencies. For this, every agent records the inter-transmission
intervals of requests by recording request transmissions, ide-
ally in hardware, but if necessary at the socket interface. Ev-
ery agent runs an Anderson-Darling test to check whether the
inter-transmission intervals follow the target inter-arrival dis-
tribution, e.g., exponential in the case of Poisson inter-arrival.
The controller exits the system stability step only when the

load is reached according to the correct inter-arrival distribu-
tion.

Unbiased Result Processing: Each agent collects, according
to the parameters (s,sr) set by the controller, s samples, each
randomly sampled among the RPCs at rate of sr, e.g., collect-
ing 10,000 samples with a 1:20 sampling rate would require
∼200K RPCs. Sampling is necessary because the collected
samples need to be iid to compute the confidence interval
correctly. Computing confidence intervals on non-iid data
will underestimate their size.

The iid-ness is confirmed or rejected by computing the
autocorrelation of the collected latency samples sorted by
their transmission time. To do so, latency-measuring agents
compute the Spearman correlation of the collected latency
samples shifted over time. We leverage the associated p-value
to determine whether the correlation is significant or not. This
correlation being significant implies that data that are close in
time depend on each other, which is the result of them being
queued back to back in the servers queue.

A way to reduce the autocorrelation is to decrease the
sampling rate. The LANCET built-in parameters initialize the
measuring phase with 10,000 collected samples with a first
sampling rate of 1:5. If the autocorrelation is non-significant,
the latency measuring agents report that the samples are iid.
Otherwise, they report how much to reduce the sampling rate
to achieve non-significant correlation. The latency measuring
agents report the Pearson correlation co-efficient back to the
coordinator as part of their latency results. To do so, the agents
compute the autocorrelation for different lags and report the
one that leads to a non-significant correlation. Based on the
agents’ replies, the coordinator decides whether to proceed
to the next state or reduce the sampling rate accordingly if it
fails to confirm iid-ness.

Result Stationarity: The methodology needs to identify
whether the number of samples collected is sufficient for
the results to converge to a stable distribution of latencies
that does not change over time. To ensure stationarity, the
methodology leverages an Augmented Dickey Fuller test [15].
Each latency-measuring agent sorts the collected latency re-
sults based on their transmission timestamp and runs the test.
Again, the latency measuring agents report the result of the
test to the coordinator. In cases where lack of stationarity is
detected, the coordinator decides to increase the number of
samples by 10,000 and retry. Otherwise it proceeds with the
next check.

Determine the confidence interval: Finally, the methodol-
ogy has to check if the results converge within the target
confidence interval size. For that, we use the Formulas 1 and
2. Each latency measuring agent reports the confidence in-
tervals for the latency percentiles to the coordinator. The
coordinator ensures that the intervals from different agents

USENIX Association 2019 USENIX Annual Technical Conference 887

Load(l)
Measure(s, sr)

target

load

achieved

?

correct

inter-

arrival

?

check iid-

ness

Reduce(sr)

check
stationarity

Increase(s)

Report resultsYes

No

No Yes

No

No

Yes

Yes

retries

< N

Yes

Report N/A

No

retries

< N

Yes

check CI

Yes

No

No
START

Figure 4: LANCET’s experiment methodology implemented by the coordinator. Dark grey boxes correspond to messages from
the coordinator to the agents. Light grey boxes show the experiment end.

are overlapping and computes their average. If the final con-
fidence interval is wider than the user-selected target, the
coordinator increases the number of samples by 10,000 and
continues the experiment.

Termination: If the target confidence is reached, the coor-
dinator finishes the experiment and reports the final latency
percentiles with the equivalent confidence intervals. If the
coordinator cannot reach the target confidence after a fixed
number of failed retries, or if the experiment duration is above
a certain threshold, it terminates the experiment, and reports
that the specific experiment is not conclusive, the reasons why,
along with the collected results so far.

5 Implementation

In addition to the design goals of §4, LANCET was imple-
mented with robustness and long-term relevance in mind.
LANCET is therefore built purely on functionality provided
by the Linux kernel, using built-in drivers and protocol stacks.
During development we identified some inconsistencies re-
garding hardware timestamping in the Linux kernel; our patch
was merged in Linux kernel 4.19.4 [38].

The LANCET coordinator (Figure 2) is in charge of deploy-
ing the agents, communicating with them over sockets, driving
their state machine according to Figure 3, and implementing
the methodology of Figure 4. The coordinator is implemented
in Golang. It relies on goroutines for easy distributed co-
ordination and failure management, and consists of ∼1000
lines of code. From those lines, ∼300 of them implement
the methodology described in § 4.3 and the rest implemented
the LANCET API to communicate with the agents, manage
collected results, etc. Thus, implementing a new coordina-

tor logic for different experiment methodologies is relatively
easy.

We implemented three different agents that can be used
according to the available hardware, the measuring methodol-
ogy, and the necessary experiment granularity. Our agents can
achieve better measuring granularity compared to previous
tools and can be used in both a symmetrical and asymmetrical
deployment, independently of the available hardware. The
agents are implemented in a combination of C and Python,
and can be easily extended with new transport and application
protocols.

Figure 5 depicts the structure of a multi-threaded LANCET
agent. Each agent is split between a Python control plane
and a C data plane communicating over shared memory. The
Python control plane is in charge of communicating with
the coordinator and performing the statistical computations.
The choice of Python allowed us to take advantage of the
rich Python ecosystem using libraries such as NumPy and
SciPy. The choice of C for dataplane gave us direct access
to low level socket APIs and reduced the client overhead.
LANCET lancet currently supports TCP, UDP, and R2P2 [30]
as transports, and Memcached, Redis, and HTTP as applica-
tion protocols.

Throughput Agent: This agent leverages epoll_wait to
manage connections and is in charge of loading the server
without measuring latencies. It is used only in asymmetrical
deployments in cooperation with one of the two following
agents that can measure RPC latency.

Latency SW-timestamping Agent: This agent depends on
software timestamping and does not have any hardware
dependencies. It improves the measuring precision over

888 2019 USENIX Annual Technical Conference USENIX Association

Manager
rand_gen app_proto

Transport
S

H

M

Figure 5: The structure of a LANCET agent. The grey part
corresponds to the Python control plane, while the white part
corresponds to the C dataplane communicating over shared
memory (SHM).

other software-based tools, though, by leveraging the busy
polling functionality introduced in Linux 3.11. Specifically,
the SO_BUSY_POLL socket option allows blocking system
calls to poll the NIC instead of depending on interrupts. While
still dependent on userspace timestamping, this agent reduces
client bias and measures latency with similar accuracy to
kernel-bypass approaches. The blocking nature of this agent
limits the load and the inter-arrival distribution of requests the
agent can achieve. Consequently, this agent can only be used
in asymmetric setups in conjunction with throughput agents
that generate the necessary target system load according to
the expected inter-arrival distribution.

Symmetric HW-timestamping Agent: Finally, we imple-
mented a symmetric agent that leverages hardware timestamp-
ing to measure RPC end-to-end latency. This agent depends
on the Linux kernel functionality for hardware timestamp-
ing added in kernel 4.14 for TCP. It also requires a NIC
that timestamps all the incoming and outgoing packets, e.g.,
the Mellanox ConnectX-4 [42]. The preferred deployment
is based on symmetric HW-timestamping agents, as they im-
prove on the latency agent in terms of precision and they
can scale throughput while the coordinator can symmetrically
collect results from all client machines, thus increasing the
experiment accuracy.

The most challenging part of the implementation was the
attribution of RPC latencies when requests and replies are
layered on top of the stream-based TCP protocol, as used in
the popular protocols, such as Memcached.

For TX timestamps, the Linux kernel provides an asyn-
chronous API to collect timestamps, returning asynchronously
one timestamp for each sendmsg system call. The notification
is propagated to the userspace through an EPOLERR for the
equivalent socket that is handled by epoll_wait. Along with
the timestamp, the kernel also returns the number of the last
transmitted byte this timestamp corresponds to. For example,
if the first request has a size of 20 bytes, the notification will
mention that this timestamp is associated with byte 20. For the
second request of the same size, the notification will mention
byte 40, etc. The same information is maintained by LANCET
in userspace for validation purposes, and to deal with cases
of coalescing or resubmissions.

The kernel provides a synchronous API to retrieve the RX

timestamp: the RX timestamp is part of the metadata to the
recvmsg system call, and corresponds to the receive times-
tamp of the frame that carried the last byte returned by the
system call. The LANCET application-parsing logic leverages
this information to associate timestamps to replies of vari-
able sizes: if the content returned by recvmsg consists of an
incomplete reply, that timestamp is ignored; if the content
contains the replies to multiple requests (which is possible be-
cause of TCP’s streaming nature and coalescing in the socket
layer), LANCET only considers the timestamp for the last reply
returned in that call. The Linux kernel coalesces sk_buffs
internally and keeps a single timestamp per sk_buff corre-
sponding to the last arrival. Consequently, earlier received
responses might appear to have later receive timestamps.

Our contribution to the kernel 4.19.4 [38] guarantees that
each recvmsg system call will return the hardware timestamp
that corresponds to the last byte read. Previously, this was
only the case for software in-kernel timestamping.

6 Evaluation

Our evaluation aims to answer three fundamental questions:
(i) how does LANCET compare with existing RPC load-
generating tools such as Mutilate and Treadmill (ii) how does
LANCET’s self-correcting methodology work in practice (iii)
how LANCET performs in characterizing a server’s behavior
across different loads.

We answer these questions using a methodology in which
the server’s execution time is explicitly controlled. Doing
so enables comparing the client-side measurements made
by the tools to an idealized queueing theoretic model. We
leverage an RPC server with synthetic service times follow-
ing well-known distributions. Specifically, we tried a fixed,
an exponential, and a bimodal distribution where 10% of
the requests take ∼10× longer to execute. To further reduce
server-side overheads, our server uses the open-source IX
operating system [6] configured with 1 CPU and adaptive
batching disabled. The operating system overhead is ∼1µs
of CPU execution time per request, which includes driver
and network processing overheads. As baselines we use the
opensource versions of Mutilate [1] and Treadmill [3]. For
Treadmill, we had to make changes in order to build it for our
setup.

To be able to compare with other tools, our synthetic server
uses the ascii-memcached protocol. Clients submit get
requests with for a 19-byte key (similarly to Facebook’s
USR [4]), the server spins for a configurable amount of
time, and replies that that key was not found. We chose
ascii-memcached because it is the only protocol supported
by both Treadmill and Mutilate.

The idealized models correspond to the expected latency
distribution, as determined by a discrete event simulation, as-
suming zero operating system overheads, zero network prop-
agation delays, and zero client-side measurement overheads.

USENIX Association 2019 USENIX Annual Technical Conference 889

M/D/1 Lancet-Sym-HW Lancet-Asym-SW Mutilate Treadmill

0 10 20 30 40 50 60 70

Latency(us)

10-3

10-2

10-1

100

C
C

D
F

QPS = 200000

(a) S̄ = 1µs

0 20 40 60 80

Latency(us)

10-3

10-2

10-1

100

QPS = 20000

(b) S̄ = 10µs

0 100 200 300 400

Latency(us)

10-3

10-2

10-1

100

QPS = 2000

(c) S̄ = 100µs

Figure 6: Latency ECDF for an M/D/1 model and three deterministic workloads at 20% load.

For all of our experiments, we configure each client ma-
chine with 15 threads and 4 connections per thread with 1
outstanding request per connection. Also, we consider a Pois-
son inter-arrival distribution of requests.

6.1 Experimental setup
Our experimental setup uses 5 clients and one server machine
connected by a Quanta/Cumulus 48x10GbE switch with a
Broadcom Trident+ ASIC. The client machines are equipped
with a Xeon E5-2637 @ 3.5 GHz and a Mellanox Connect-X4
NIC. The machines run an Ubuntu LTS 16.04 distribution
running Linux kernel version 4.19.4. The systems are tuned
to reduce jitter: all power management features, including
CPU frequency governors and TurboBoost, and support for
transparent huge pages, are disabled. The server is a Xeon
E5-2665 @ 2.4 GHz with an Intel x520 NIC running the IX
operating system.

6.2 Benefits of hardware timestamping
First, we compare the measuring granularity of LANCET with
the measuring granularity achieved by Mutilate and Treadmill.
For LANCET we consider both the hardware timestamping,
symmetrical setup and the asymmetrical one based on the
busy-polling agent. LANCET and Mutilate provide a way to
run an experiment based on multiple machines, but for Tread-
mill there is no opensource coordinator script. Thus, we run
one Treadmill instance on each client that contributes 1/5 of
the load. Also, we modified Treadmill to save the collected
latencies at the end of the experiment.

From a methodology perspective, we plot the latency CCDF
for a deterministic service time distribution with different
average service times. The load is set at 20% of the theoretical
saturation, we range the average service time from S̄ = 1µs
to S̄ = 100µs. We collected 1M samples for each tool.

Figure 6 summarizes the experiment results. We observe
that LANCET, for both configurations and in all three exper-
iments, achieves lower measuring granularities when com-
pared to the other tools because it reduces the client measuring

overheads. Specifically, for S̄ = 1µs hardware timestamping
measures a 99th percentile tail of 14.1µs and the LANCET
polling agent one of 27.3µs. Mutilate measures 40µs and
Treadmill reports 63µs. Figure 6a also shows that Mutilate’s
line is not smooth because of the µs reported granularity, as
opposed to nanoseconds reported by the other tools. Also,
we see that LANCET aligns better with the theoretic results.
For example, with S̄ = 10µs, the blue line nicely tracks the
model; the offset between the two (∼10µs) is essentially due
to the operating system overhead and the propagation delay.
Finally, Figure 6c shows that the tools make a difference even
for coarser grain tasks (S̄ = 100), where the operating system
and propagation delay overheads are comparatively small.

For the rest of our evaluation we will focus on the sym-
metric hardware-timestamping agent as it reports the most
accurate results.

6.3 LANCET self-controlling dynamics

In the next series of benchmarks, we want to identify the
impact of the self-correcting methodology and how the co-
ordinator controls the experiment parameters based on the
different service time distributions and the system load. To
do so, we run the three different service time distributions
across a variety of loads and we collect the necessary level
of sampling to achieve iid-ness, and the number of samples
necessary for a target confidence interval size of 10µs.

Figure 7a shows the sampling rate that is necessary to the
unbiased processing of the results caused by queuing effects.
We observe that high-dispersion workloads (e.g., bimodal)
and higher load levels require lower sampling rates. This is
expected as increasing either service time dispersion or load
level leads to more queuing, thus more dependent samples.

In Figure 7b, we set the size of the target confidence in-
terval for the 99th percentile latency to be 10µs with 95%
confidence. The figure shows the number of collected sam-
ples, as decided by the coordinator, that are required to satisfy
the result target. We observe that more samples are neces-
sary to fulfill the constraint as the load increases, since higher

890 2019 USENIX Annual Technical Conference USENIX Association

10 20 30 40 50 60 70 80

%-System-Load

101

102

103

%
-S

a
m

p
lin

g

Bimodal

Exponential

Fixed

(a) Required level of sampling to guarantee iid-ness

10 20 30 40 50 60 70 80

%-System-Load

20000

40000

60000

#
S

a
m

p
le

s

Bimodal

Exponential

Fixed

(b) Required number of samples to achieve the target CI of 10µs

Figure 7: Dynamics of LANCET’s self-correcting methodology based on load for three service time distributions with S̄ = 10µs

system load leads to higher latency variability.
The bimodal distribution shows an interesting behavior of

the tool: With load> 70%, execution stops after the maximum
number iterations (N = 10) but the target CI expectations can
not be met. Our experiment logs showed that the collected
99th percentile latency at 75% load is 411.333µs [-5.87µs,
7.56µs] at 95% confidence; this interval is > 10µs.

We also tested LANCET’s self-correcting behavior with the
lognormal distribution, which is a heavy tailed distribution.
LANCET terminates without ever being able to confirm results
convergence(CI < 10µs for the 99-th percentile latency), even
at a low load of 20%. Thus, LANCET is effective in detecting
heavy-tailed service time distributions.

6.4 Inter-Arrival distribution Impact
In the following experiment we try to showcase the impact
of the inter-arrival distribution on the latency results and how
LANCET identifies cases of inter-arrival distribution violations.
We use the fixed synthetic time distribution with S̄ = 10µs and
we run a latency experiment across a variety of loads with dif-
ferent number of connections. We disable LANCET’s checks
for inter-arrival distribution and we only report whether there
is a workload violation. To eliminate any system interference
we configure LANCET with one connection per thread, and
add connections by adding client machines.

Figure 8 shows the 99-th percentile latency as a function
of throughput for the different connection count configura-
tions. The vertical lines correspond to the load level that the
equivalent configuration started violating the inter-arrival dis-
tribution. We observe that once LANCET reports a violation
the curves start deviating. This experiment shows that cases
as the one described in Figure 1 can be avoided by LANCET’s
self-correcting methodology.

6.5 Server characterization
Figure 9 shows the 99th-percentile tail latency as a function
of the load for three workloads. We compare LANCET with
Mutilate as well as the idealized, zero-overhead theoretical
model. Both tools use 5 machines – necessary to achieve the

45 connections 30 connections 15 connections

10 20 30 40 50 60 70 80 90

kRPS

0

20

40

60

80

100

9
9
th

 L
a
te

n
c
y
 (

u
s
)

Figure 8: Impact of the inter-arrival distribution to tail-latency
for a fixed with S̄ = 10µs. Vertical lines correspond to the
load levels where Lancet reports inter-arrival distribution vio-
lations

high loads required. For LANCET, we additionally report the
confidence interval of each measurement. This experiment
does not include Treadmill as Treadmill’s open-source dis-
tribution does not support multi-machine deployments. Note
that because of system overheads, the IX server cannot get
close to the expected maximum load for Figure 9a which
would be 1M RPS, thus we do not plot the theoretic curve.

We observe that LANCET reports latencies that closely
match the idealized model across the entire load spectrum, to
the point that it accurately reflects the two inflection points of
the binomial distribution. We also observe how the size of the
confidence intervals change across different distributions and
system loads. For low loads and low service time dispersion,
the interval is shorter than the maximum configured (10µs).
For the bimodal distribution, the reported confidence interval
is at its maximum configuration even for low loads.

7 Related Work

LANCET is one of the many contributions towards enabling
reproducibility and accurate experimentation in systems re-
search [25, 40].

µs-scale computing: Recent research focuses on µs-scale

USENIX Association 2019 USENIX Annual Technical Conference 891

M/G/1 Mutilate Lancet-Sym-HW

0 100 200 300 400 500

kRPS

0

50

100

150

9
9
th

 L
a
te

n
c
y
 (

u
s
)

(a) Deterministic, S̄ = 1µs

0 20 40 60 80 100

kRPS

0

100

200

300

9
9
th

 L
a
te

n
c
y
 (

u
s
)

(b) Deterministic, S̄ = 10µs

0 20 40 60 80 100

kRPS

0

100

200

300

9
9
th

 L
a
te

n
c
y
 (

u
s
)

(c) Bimodal, S̄ = 10µs

Figure 9: Latency vs throughput graphs for a 5-client experiment with average service time of S̄ = 1 and S̄ = 10

computing [5] both in operating systems and networking and
either aim to optimize [6,26,35,49,50], or attribute the sources
of tail-latency [29, 33, 34, 52, 58]. LANCET does not attempt
to attribute the sources of the jitter. Instead, it provides a tool
to measure µs tail latency precisely on an end-to-end basis to
be used in similar research efforts.

Precise measurements: RPC generators [10, 20, 33, 43, 58]
use software timestamping. However, researchers need more
accurate tools to evaluate system’s latency, e.g., ZygOS used
a modified version of Mutilate based on DPDK [16], and
MICA [35] used a custom version of YCSB on DPDK.
Software-based packet generators [8, 19, 46] also used DPDK
for increased precision [52]. Hardware-based packet gener-
ators [24, 54] provide sub µs-scale precision with little jit-
ter [52]. Some tools repurposed the IEEE PTP feature of stan-
dard NICs to measure packet latencies [19,32,44]. LANCET is
the first tool that leverages hardware-based NIC timestamping
for capturing latency for RPCs over TCP with even higher
precision. In addition, LANCET uses the standard Linux net-
working stack for all experiments, proving a more realistic
simulation environment. While we used Mellanox ConnectX-
4 NICs in our experiments, hardware timestamping of all
packets is also available on Solarflare NICs [2].

Methodology: Although tail-latency is a widely used system
metric, there is no widely accepted experiment methodology
for measuring it, and usually tools are bounded to specific
methodologies. LANCET attempts to split the methodology
from the actual tool and reason about them separately. Mea-
surement bias from non-determinism can be avoided via setup
randomization [21, 41, 58]. Repeated runs eliminate hystere-
sis effects in systems [58]. Distributed benchmarking tools
seek to minimize client side queuing bias by reducing the
client load, in asymmetric e.g., Mutilate [33], or symmetric
setups [58]. LANCET’s use of hardware timestamping elimi-
nates client bias in the point of measurement. Treadmill [58]
avoids issues of imbalance by leveraging a symmetric mea-
surement model, and bias from outliers by computing inter-
ested metrics on individual instances and combining them

using aggregation functions. LANCET also supports the sym-
metric setup to detect imbalance across client machines. Most
tools use histograms to capture latencies. Treadmill deter-
mines bucket ranges during a calibration phase. YCBS [10]
and Tailbench [29] have dynamic range histograms. LANCET
relies on on-line sampling but keeps all sampled results to
determine both the CCDF and the confidence intervals. Con-
fidence intervals can also be used to determine statistical
convergence of results [21,41]. LANCET’s self-correcting con-
troller relies on statistical tests to ensure stability and results
convergence similarly to [40].

8 Conclusion

LANCET is a new latency-measuring tool designed with the ex-
plicit goal to accurately measure µs-scale tail-latencies while
reducing methodological pitfalls in a principled manner. Its
self-correcting methodology uses proven statistical methods
to detect situations where application tail latency cannot be
reliably measured. LANCET’s agents uniquely leverage NIC-
based timestamping to measure the end-to-end latency of
TCP-based applications, completely eliminating client bias.
LANCET measures latency distributions with more accuracy
than popular tools such as Mutilate and Treadmill. Our eval-
uation with µs-scale workloads shows that it robustly self-
corrects as a function of the load for workloads with challeng-
ing service time distributions.

Acknowledgements

We would like to thank our shepherd Charlie Curtsinger, Vin-
cent Gramoli, Guillaume Jourjon, and the anonymous review-
ers for their valuable comments on the paper, Prodomos Koly-
vakis for his insights on the experiment methodology, Mikael
Gonzalez Morales for implementing hardware timestamping
for R2P2, and Christos Kozyrakis for the early discussions on
the topic. This work was funded in part by a VMWare grant
and by the Microsoft Swiss Joint Research Centre. Marios
Kogias is supported in part by an IBM PhD Fellowship.

892 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Mutilate codebase (commit d65c6ef). https://
github.com/leverich/mutilate.

[2] SolarFlare networking interfaces. https:
//www.solarflare.com/.

[3] Treadmill codebase (commit 1bf2082). https://
github.com/facebook/treadmill.

[4] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a large-
scale key-value store. In Proceedings of the 2012 ACM
SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems, pages 53–64,
2012.

[5] Luiz André Barroso, Mike Marty, David A. Patterson,
and Parthasarathy Ranganathan. Attack of the killer
microseconds. Commun. ACM, 60(4):48–54, 2017.

[6] Adam Belay, George Prekas, Mia Primorac, Ana
Klimovic, Samuel Grossman, Christos Kozyrakis, and
Edouard Bugnion. The IX Operating System: Com-
bining Low Latency, High Throughput, and Efficiency
in a Protected Dataplane. ACM Trans. Comput. Syst.,
34(4):11:1–11:39, 2017.

[7] S. Bradner and J. McQuaid. Benchmarking Method-
ology for Network Interconnect Devices. RFC 2544
(Informational), March 1999. Updated by RFCs 6201,
6815.

[8] Cisco Systems. T-Rex: Cisco’s realistic traffic generator.
https://trex-tgn.cisco.com.

[9] CloudSuite Benchmarking Suite. http:
//cloudsuite.ch/.

[10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of the 2010
ACM Symposium on Cloud Computing (SOCC), pages
143–154, 2010.

[11] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Commun. ACM, 56(2):74–80, 2013.

[12] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: amazon’s highly available
key-value store. In Proceedings of the 21st ACM Sym-
posium on Operating Systems Principles (SOSP), pages
205–220, 2007.

[13] Christina Delimitrou and Christos Kozyrakis. Quality-
of-Service-Aware Scheduling in Heterogeneous Data
centers with Paragon. IEEE Micro, 34(3):17–30, 2014.

[14] Christina Delimitrou and Christos Kozyrakis. Quasar:
resource-efficient and QoS-aware cluster management.
In Proceedings of the 19th International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-XIX), pages 127–144,
2014.

[15] David Dickey and Wayne A Fuller. Likelihood ratio
statistics for autoregressive time series with a unit root.
Econometrica, 49(4):1057–72, 1981.

[16] Data plane development kit. http://www.dpdk.org/.

[17] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast Remote Mem-
ory. In Proceedings of the 11th Symposium on Net-
worked Systems Design and Implementation (NSDI),
pages 401–414, 2014.

[18] John Eidson and Kang Lee. IEEE 1588 standard for a
precision clock synchronization protocol for networked
measurement and control systems. In Sensors for Indus-
try Conference, 2002. 2nd ISA/IEEE.

[19] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer,
Florian Wohlfart, and Georg Carle. MoonGen: A Script-
able High-Speed Packet Generator. In Proceedings of
the 15th ACM SIGCOMM Workshop on Internet Mea-
surement (IMC), pages 275–287, 2015.

[20] Michael Ferdman, Almutaz Adileh, Yusuf Onur Koçber-
ber, Stavros Volos, Mohammad Alisafaee, Djordje Jevd-
jic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia
Ailamaki, and Babak Falsafi. Clearing the clouds: a
study of emerging scale-out workloads on modern hard-
ware. In Proceedings of the 17th International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-XVII), pages
37–48, 2012.

[21] Andy Georges, Dries Buytaert, and Lieven Eeckhout.
Statistically rigorous java performance evaluation. In
Proceedings of the 22nd Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), pages 57–76,
2007.

[22] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog,
Robert N. M. Watson, Andrew W. Moore, Steven Hand,
and Jon Crowcroft. Queues Don’t Matter When You Can
JUMP Them! In Proceedings of the 12th Symposium on
Networked Systems Design and Implementation (NSDI),
pages 1–14, 2015.

USENIX Association 2019 USENIX Annual Technical Conference 893

https://github.com/leverich/mutilate
https://github.com/leverich/mutilate
https://www.solarflare.com/
https://www.solarflare.com/
https://github.com/facebook/treadmill
https://github.com/facebook/treadmill
https://trex-tgn.cisco.com
http://cloudsuite.ch/
http://cloudsuite.ch/
http://www.dpdk.org/

[23] Chang-Hong Hsu, Yunqi Zhang, Michael A. Lauren-
zano, David Meisner, Thomas F. Wenisch, Jason Mars,
Lingjia Tang, and Ronald G. Dreslinski. Adrenaline:
Pinpointing and reining in tail queries with quick voltage
boosting. In Proceedings of the 21st IEEE Symposium
on High-Performance Computer Architecture (HPCA),
pages 271–282, 2015.

[24] Ixia. Ixia traffic generator. https://www.ixiacom.com.

[25] Ivo Jimenez, Michael Sevilla, Noah Watkins, Carlos
Maltzahn, Jay F. Lofstead, Kathryn Mohror, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. The
Popper Convention: Making Reproducible Systems
Evaluation Practical. In Proceedigns of the 2017 IEEE
International Parallel and Distributed Processing Sym-
posium Workshops, pages 1561–1570, 2017.

[26] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazières, and Christos Kozyrakis.
Shinjuku: Preemptive scheduling for µs-scale tail la-
tency. In Proceedings of the 16th Symposium on Net-
worked Systems Design and Implementation (NSDI),
2019.

[27] Svilen Kanev, Kim M. Hazelwood, Gu-Yeon Wei, and
David M. Brooks. Tradeoffs between power manage-
ment and tail latency in warehouse-scale applications. In
Proceedings of the 2014 IEEE International Symposium
on Workload Characterization (IISWC), pages 31–40,
2014.

[28] Harshad Kasture and Daniel Sánchez. Ubik: efficient
cache sharing with strict qos for latency-critical work-
loads. In Proceedings of the 19th International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-XIX), pages
729–742, 2014.

[29] Harshad Kasture and Daniel Sánchez. Tailbench:
a benchmark suite and evaluation methodology for
latency-critical applications. In Proceedings of the 2016
IEEE International Symposium on Workload Character-
ization (IISWC), pages 3–12, 2016.

[30] Marios Kogias, George Prekas, Adrien Ghosn, Jonas
Fietz, and Edouard Bugnion. R2P2: Making RPCs first-
class datacenter citizens. In Proceedings of the 2019
USENIX Annual Technical Conference (ATC), 2019.

[31] Jean-Yves Le Boudec. Performance Evaluation of Com-
puter and Communication Systems. EPFL Press, Lau-
sanne, Switzerland, 2010.

[32] Changhyun Lee, Chunjong Park, Keon Jang, Sue B.
Moon, and Dongsu Han. Accurate Latency-based Con-
gestion Feedback for Datacenters. In Proceedings of

the 2015 USENIX Annual Technical Conference (ATC),
pages 403–415, 2015.

[33] Jacob Leverich and Christos Kozyrakis. Reconciling
high server utilization and sub-millisecond quality-of-
service. In Proceedings of the 2014 EuroSys Conference,
pages 4:1–4:14, 2014.

[34] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and
Steven D. Gribble. Tales of the Tail: Hardware, OS, and
Application-level Sources of Tail Latency. In Proceed-
ings of the 2014 ACM Symposium on Cloud Computing
(SOCC), pages 9:1–9:14, 2014.

[35] Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. MICA: A Holistic Approach to
Fast In-Memory Key-Value Storage. In Proceedings of
the 11th Symposium on Networked Systems Design and
Implementation (NSDI), pages 429–444, 2014.

[36] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André
Barroso, and Christos Kozyrakis. Towards energy pro-
portionality for large-scale latency-critical workloads.
In Proceedings of the 41st International Symposium on
Computer Architecture (ISCA), pages 301–312, 2014.

[37] David Lo, Liqun Cheng, Rama Govindaraju,
Parthasarathy Ranganathan, and Christos Kozyrakis.
Heracles: improving resource efficiency at scale. In
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), pages 450–462, 2015.

[38] Stephen Mallon. tcp: Fix
sof_timestamping_rx_hardware to use the
latest timestamp during tcp coalescing.
https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/commit/?id=
cadf9df27e7cf40e390e060a1c71bb86ecde798b,
2018.

[39] R. Mandeville and J. Perser. Benchmarking Methodol-
ogy for LAN Switching Devices. RFC 2889 (Informa-
tional), August 2000.

[40] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez,
Carlos Maltzahn, Ryan Stutsman, Robert Ricci, and Ana
Klimovic. Taming Performance Variability. In Proceed-
ings of the 13th Symposium on Operating System Design
and Implementation (OSDI), pages 409–425, 2018.

[41] David Meisner, Junjie Wu, and Thomas F. Wenisch. Big-
House: A simulation infrastructure for data center sys-
tems. In Proceedings of the 2012 IEEE International
Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 35–45, 2012.

[42] Mellanox Corporation. ConnectX-4 NIC.

894 2019 USENIX Annual Technical Conference USENIX Association

https://www.ixiacom.com
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=cadf9df27e7cf40e390e060a1c71bb86ecde798b
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=cadf9df27e7cf40e390e060a1c71bb86ecde798b
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=cadf9df27e7cf40e390e060a1c71bb86ecde798b

[43] Memaslap Load Generator. https://
libmemcached.org/libMemcached.html.

[44] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily R. Blem, Hassan M. G. Wassel, Monia Ghobadi,
Amin Vahdat, Yaogong Wang, David Wetherall, and
David Zats. TIMELY: RTT-based Congestion Control
for the Datacenter. In Proceedings of the ACM SIG-
COMM 2015 Conference, pages 537–550, 2015.

[45] Mutilate Load Generator. https://github.com/
leverich/mutilate.

[46] Netperf. http://www.netperf.org/netperf/.

[47] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing Memcache at Facebook. In Proceedings of the 10th
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 385–398, 2013.

[48] John K. Ousterhout, Arjun Gopalan, Ashish Gupta,
Ankita Kejriwal, Collin Lee, Behnam Montazeri, Diego
Ongaro, Seo Jin Park, Henry Qin, Mendel Rosenblum,
Stephen M. Rumble, Ryan Stutsman, and Stephen Yang.
The RAMCloud Storage System. ACM Trans. Comput.
Syst., 33(3):7:1–7:55, 2015.

[49] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,
Doug Woos, Arvind Krishnamurthy, Thomas E. Ander-
son, and Timothy Roscoe. Arrakis: The Operating Sys-
tem Is the Control Plane. ACM Trans. Comput. Syst.,
33(4):11:1–11:30, 2016.

[50] George Prekas, Marios Kogias, and Edouard Bugnion.
ZygOS: Achieving Low Tail Latency for Microsecond-
scale Networked Tasks. In Proceedings of the 26th ACM
Symposium on Operating Systems Principles (SOSP),
pages 325–341, 2017.

[51] George Prekas, Mia Primorac, Adam Belay, Christos
Kozyrakis, and Edouard Bugnion. Energy proportional-
ity and workload consolidation for latency-critical ap-
plications. In Proceedings of the 2015 ACM Symposium
on Cloud Computing (SOCC), pages 342–355, 2015.

[52] Mia Primorac, Edouard Bugnion, and Katerina J. Ar-
gyraki. How to Measure the Killer Microsecond. In
Proceedings of the 2017 Workshop on Kernel-Bypass
Networks (KBNETS@SIGCOMM), pages 37–42, 2017.

[53] Stephen M. Rumble, Diego Ongaro, Ryan Stutsman,
Mendel Rosenblum, and John K. Ousterhout. It’s Time
for Low Latency. In Proceedings of The 13th Workshop
on Hot Topics in Operating Systems (HotOS-XIII), 2011.

[54] Spirent Communications. Spirent test modules
and chassis. https://www.spirent.com/Products/
TestCenter/Platforms/Modules.

[55] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy transactions in
multicore in-memory databases. In Proceedings of the
24th ACM Symposium on Operating Systems Principles
(SOSP), pages 18–32, 2013.

[56] Guido Urdaneta, Guillaume Pierre, and Maarten van
Steen. Wikipedia workload analysis for decentralized
hosting. Computer Networks, 53(11):1830–1845, 2009.

[57] YCSB Load Generator. https://github.com/
brianfrankcooper/YCSB.

[58] Yunqi Zhang, David Meisner, Jason Mars, and Lingjia
Tang. Treadmill: Attributing the Source of Tail Latency
through Precise Load Testing and Statistical Inference.
In Proceedings of the 43rd International Symposium on

Computer Architecture (ISCA), pages 456–468, 2016.

USENIX Association 2019 USENIX Annual Technical Conference 895

https://libmemcached.org/libMemcached.html
https://libmemcached.org/libMemcached.html
https://github.com/leverich/mutilate
https://github.com/leverich/mutilate
http://www.netperf.org/netperf/
https://www.spirent.com/Products/TestCenter/Platforms/Modules
https://www.spirent.com/Products/TestCenter/Platforms/Modules
https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB

Pangolin: A Fault-Tolerant Persistent Memory Programming Library

Lu Zhang
University of California, San Diego

luzh@eng.ucsd.edu

Steven Swanson
University of California, San Diego

swanson@cs.ucsd.edu

Abstract
Non-volatile main memory (NVMM) allows programmers to
build complex, persistent, pointer-based data structures that
can offer substantial performance gains over conventional
approaches to managing persistent state. This programming
model removes the file system from the critical path which
improves performance, but it also places these data structures
out of reach of file system-based fault tolerance mechanisms
(e.g., block-based checksums or erasure coding). Without
fault-tolerance, using NVMM to hold critical data will be
much less attractive.

This paper presents Pangolin, a fault-tolerant persistent
object library designed for NVMM. Pangolin uses a combina-
tion of checksums, parity, and micro-buffering to protect an
application’s objects from both media errors and corruption
due to software bugs. It provides these protections for ob-
jects of any size and supports automatic, online detection of
data corruption and recovery. The required storage overhead
is small (1% for gigabyte-sized pools of NVMM). Pangolin
provides stronger protection, requires orders of magnitude
less storage overhead, and achieves comparable performance
relative to the current state-of-the-art fault-tolerant persistent
object library.

1 Introduction

Emerging non-volatile memory (NVM) technologies (e.g.,
battery-backed NVDIMMs [31] and 3D XPoint [30]) provide
persistence with performance comparable to DRAM. Non-
volatile main memory (NVMM), is byte-addressable, cache-
coherent NVM that resides on the system’s main memory
bus. The combination of NVMM and DRAM enables hybrid
memory systems that offer the promise of dramatic increases
in storage performance and a more flexible programming
model.

A key feature of NVMM is support for direct access, or
DAX, that lets applications perform loads and stores di-
rectly to a file that resides in NVMM. DAX offers the

lowest-possible storage access latency and enables program-
mers to craft complex, customized data structures for spe-
cific applications. To support this model, researchers and
industry have proposed various persistent object systems
[3, 5, 12, 20, 25, 28, 39, 47].

Building persistent data structures presents a host of chal-
lenges, particularly in the area of crash consistency and
fault tolerance. Systems that use NVMM must preserve
crash-consistency in the presence of volatile caches, out-of-
order execution, software bugs, and system failures. To ad-
dress these challenges, many groups have proposed crash-
consistency solutions based on hardware [33, 34, 37, 40],
file systems [4, 10, 48, 49], user-space data structures and
libraries [3, 5, 12, 39, 43, 47, 50], and languages [9, 38].

Fault tolerance has received less attention but is equally im-
portant: To be viable as an enterprise-ready storage medium,
persistent data structures must include protection from data
corruption. Intel processors report uncorrectable memory me-
dia errors via a machine-check exception and the kernel for-
wards it to user-space as a SIGBUS signal. To our knowledge,
Xu et al. [49] were the first to design an NVMM file system
that detects and attempts to recover from these errors. Among
programming libraries, only libpmemobj provides any sup-
port for fault tolerance, but it incurs 100% space overhead,
only protects against media errors (not software “scribbles”),
and cannot recover corrupted data without taking the object
store offline.

Xu et al. also highlighted a fundamental conflict between
DAX-mmap() and file system-based fault tolerance: By de-
sign, DAX-mmap() leaves the file system unaware of updates
made to the file, making it impossible for the file system to
update the redundancy data for the file. Their solution is to
disable file data protection while the file is mapped and restore
it afterward. This provides well-defined protection guarantees
but leaves file data unprotected when it is in use.

Moving fault-tolerance to user-space NVMM libraries
solves this problem, but presents challenges since it requires
integrating fault tolerance into persistent object libraries that
manage potentially millions of small, heterogeneous objects.

USENIX Association 2019 USENIX Annual Technical Conference 897

To satisfy the competing requirements placed on NVMM-
based, DAX-mapped object store, a fault-tolerant persistent
object library should provide at least the following character-
istics:

1. Crash-consistency. The library should provide the
means to ensure consistency in the face of both system
failures and data corruption.

2. Protection against media and software errors. Both
types of errors are real threats to data stored to NVMM,
so the library should provide protection against both.

3. Low storage overhead. NVMM is expensive, so mini-
mizing storage overhead of fault tolerance is important.

4. Online recovery. For good availability, detection and re-
covery must proceed without taking the persistent object
store offline.

5. High performance. Speed is a key benefit of NVMM.
If fault-tolerance incurs a large performance penalty,
NVMM will be much less attractive.

6. Support for diverse objects. A persistent object system
must support objects of size ranging from a few cache
lines to many megabytes.

This paper describes Pangolin, the first persistent object
library to satisfy all these criteria. Pangolin uses a combi-
nation of parity, replication, and object-level checksums to
provide space-efficient, high-performance fault tolerance for
complex NVMM data structures. Pangolin also introduces a
new technique for accessing NVMM called micro-buffering
that simplifies transactions and protects NVMM data struc-
tures from programming errors.

We evaluate Pangolin using a suite of benchmarks and com-
pare it to libpmemobj, a persistent object library that offers
a simple replication mode for fault tolerance. Compared to
libpmemobj, performance is similar, and Pangolin provides
stronger protection, online recovery, and greatly reduced stor-
age overhead (1% instead of 100%).

The rest of the paper is organized as follows: Section 2
provides a primer on NVMM programming and NVMM er-
ror handling in Linux. Section 3 describes how Pangolin
organizes data, manages transactions, and detects and repairs
errors. Section 4 presents our evaluations. Section 5 discusses
related work. Finally, Section 6 concludes.

2 Background

Pangolin lets programmers build fault-tolerant, crash-
consistent data structures in NVMM. This section first in-
troduces NVMM and the DAX mechanism applications use
to gain direct access to persistent data. Then, we describe the
NVMM error handling mechanisms that Intel processors and

Linux provide. Finally, we provide a brief primer on NVMM
programming using libpmemobj [39], the library on which
Pangolin is based.

2.1 Non-volatile Main Memory and DAX

Several technologies are poised to make NVMM common
in computer systems. 3D XPoint [30] is the closest to wide
deployment. Phase change memory (PCM), resistive RAM
(ReRAM), and spin-torque transfer RAM (STT-RAM) are
also under active development by memory manufacturers.
Flash-backed DRAM is already available and in wide use.
Linux and Windows both have support for accessing NVMM
and using it as storage media.

The performance and cost parameters of NVMM lie be-
tween DRAM and SSD. Its write latency is longer than
DRAM, but it will cost less per bit. From the storage per-
spective, NVMM is faster but more expensive than SSD.

The most efficient way to access NVMM is via direct ac-
cess (DAX) [15] memory mapping (i.e., DAX-mmap()). To
use DAX-mmap(), applications map pages of a file in an
NVMM-aware file system into their address space, so the
application can access persistent data from the user-space
using load and store instructions, without the file system in-
tervening.

2.2 Handling NVMM Media Errors

To recover from data corruption, Pangolin relies on error de-
tection and media management facilities that the processor
and operating system provide together. Below, we describe
these facilities available on Intel and Linux platforms. Win-
dows provides similar mechanisms.

Hardware Error Correction Memory controllers for
commercially available NVMMs (i.e., battery-backed DRAM
and 3D XPoint) implement error-correction code (ECC) in
hardware to detect and correct media errors when they can,
and they report uncorrectable (but detectable) errors with a
machine check exception (MCE) [14] that the operating sys-
tem can catch and attempt to handle.

Pangolin provides a layer of protection in addition to the
ECC hardware provides, but it does not require hardware
ECC. Pangolin uses checksums to detect errors that hardware
cannot detect. This mechanism also catches software bugs
(which are invisible to hardware ECC). ECC does, however,
improve performance by transparently handling many media
errors.

Regardless of the ECC algorithm hardware provides, field
studies of DRAM and SSDs [13, 29, 35, 41, 42, 45] have
shown that detectable but uncorrectable media errors occur
frequently enough to warrant additional software protection.
Furthermore, file systems [23, 49, 51] apply checksums to

898 2019 USENIX Annual Technical Conference USENIX Association

Address Space

Zone

Heap

Zone

next nextval val

mmap'd NVMM

mmap("/dax/pool");

Meta Meta MetaChunk Chunk Chunk... ...Log

Figure 1: DAX-mapped NVMM as an object store –
Libpmemobj divides the mapped space into zones and chunks
for memory management. The val field is a 64-bit integer
and the next field is a persistent pointer (PMEMoid) pointing
to the next node object in the pool.

their data structures to protect against scribbles.

Repairing Errors When the hardware detects an uncor-
rectable error, the Linux kernel marks the region surrounding
the failed load as “poisoned,” and future loads from the region
will fail with a bus error. Pangolin assumes an error poisons a
4 KB page since Linux currently manages memory failures at
page granularity.

If a running application causes an MCE (by loading from a
poisoned page), the kernel sends it a SIGBUS and the applica-
tion can extract the affected address from the data structure
describing the signal.

The software can repair the poisoned page by writing new
data to the region. In response, the operating system and
NVDIMM firmware work together to remap the poisoned
addresses to functioning memory cells. The details of this
process are part of the Advanced Configuration and Power
Interface (ACPI) [46] for NVDIMMs.

Recent kernel patches [6–8, 26] and NVMM library [39]
provide utilities for user-space applications to restore lost
data by re-writing affected pages with recovered contents (if
available).

2.3 NVMM Programming
In this section, we describe libpmemobj’s programming
model. Libpmemobj is a well-supported, open-source C
library for programming with DAX-mapped NVMM. It
provides facilities for memory management and software
transactions that let applications build a persistent object
store. Pangolin’s interface and implementation are based on
libpmemobj from PMDK v1.5.

Linux exposes NVMM to the user-space as memory-
mapped files (Figure 1). Libpmemobj (and Pangolin) refer
to the mapped file as a pool of persistent objects. Each pool
spans a continuous range of virtual addresses.

Within a pool, libpmemobj reserves a metadata region that
contains information such as the pool’s identification (64-

1 PMEMobjpool *pool = pmemobj_open("/dax/pool");
2 ...
3 struct node *n = pmemobj_direct(node_oid);
4 n->val = value;
5 pmemobj_persist(pool , &n->val, 8);
6 ...
7 TX_BEGIN(pool) {
8 n = pmemobj_direct(node_oid);
9 pmemobj_tx_add_range(node_oid , 0, sizeof(*n));

10 n->next = pmemobj_tx_alloc (...);
11 } TX_ONABORT {
12 /* handling transaction aborts */
13 } TX_END
14 ...
15 pmemobj_close(pool);

Listing 1: A libpmemobj program - First modify a node value
in a linked list, and later allocate and link a new node from
the pool.

bit UUID) and the offset to a “root object” from which all
other live objects are reachable. Next, is an area reserved for
transaction logs. Libpmemobj uses redo logging for its meta-
data updates and undo logging for application object updates.
Transaction logs reside in one of two locations depending
on their sizes. Small log entries live in the provisioned “Log”
region, as shown in Figure 1. Large ones overflow into the
“Heap” storage area.

The rest of the pool is the persistent heap. Libpmemobj’s
NVMM allocator (a persistent variant of malloc/free) man-
ages it. The allocator divides the heap’s space into several
“zones” as shown in Figure 1. A zone contains metadata and a
sequence of “chunks.” The allocator divides up a chunk for
small objects and coalesces adjacent chunks for large objects.
By default, a zone is 16 GB, and a chunk is 256 KB.

Listing 1 presents an example to highlight the key concepts
of NVMM programming. The code performs two independent
operations on a persistent linked list: one is to modify a node’s
value, and another is to allocate and link a new node.

This example demonstrates two styles of crash-consistent
NVMM programming: atomic-style (lines 3-5) for a simple
modification that is 8 bytes or smaller, and transactional-style
(lines 7-13) for arbitrary-sized NVMM updates.

Building data structures in NVMM using libpmemobj (or
any other persistent object library) differs from conventional
DRAM programming in several ways:

Memory Allocation Libpmemobj provides crash-
consistent NVMM allocation and deallocation functions:
pmemobj_tx_alloc/pmemobj_tx_free. They let the
programmer specify object type and size to allocate and
prevent orphaned regions in the case of poorly-time crashes.

Addressing Scheme Persistent pointers within a pool must
remain valid regardless of at what virtual address the pool
resides. Libpmemobj uses a PMEMoid data structure to ad-
dress an object within a pool. It consists of a 64-bit file ID

USENIX Association 2019 USENIX Annual Technical Conference 899

and a 64-bit byte offset relative to the start of the file. The
pmemobj_direct() function translates a PMEMoid into a na-
tive pointer for use in load or store instructions.

Failure-atomic Updates Modern x86 CPUs only guaran-
tee that 8-byte, aligned stores atomically update NVMM [16].
If applications need larger atomic updates, they must man-
ually construct software transactions. Libpmemobj provides
undo log-based transactions. The application executes stores
to NVMM between the TX_BEGIN and TX_END macros, and
snapshots (pmemobj_tx_add_range) a range of object data
before modifying it in-place.

Persistence Ordering Intel CPUs provide cache
flush/write-back (e.g., CLFLUSH(OPT) and CLWB) and mem-
ory ordering (e.g., SFENCE) instructions to make guarantees
about when stores become persistent. In Listing 1, the
pmemobj_persist function and TX macros integrate these
instructions to flush modified object ranges.
Libpmemobj supports a replicated mode that requires a

replica pool, doubling the storage the object store requires.
Libpmemobj applies updates to both pools to keep them syn-
chronized.

Replicated libpmemobj can detect and recover from media
errors only when the object store is offline, and it cannot
detect or recover from data corruption caused by errant stores
to NVMM – so-called “scribbles,” that might result from a
buffer overrun or dereferencing a wild pointer.

3 Pangolin Design

Pangolin allows programmers to build complex, crash-
consistent persistent data structures that are also robust in
the face of media errors and software “scribbles” that corrupt
data. Pangolin satisfies all of the criteria listed in Section 1.
This section describes its architecture and highlights the key
challenges that Pangolin addresses to meet those requirements.
In particular, Pangolin provides the following features unseen
in prior works.

• It provides fast, space-efficient recovery from media er-
rors and scribbles.

• It uses checksums to protect object integrity and supports
incremental checksum updates.

• It integrates parity and checksum updates into an
NVMM transaction system.

• It periodically scrubs data to identify corruption.

• It detects and recovers from media errors and scribbles
online.

Pangolin guarantees that it can recover from the loss of
any single 4 KB page of data in a pool. In many cases, it can
recover from the concurrent loss of multiple pages.

We begin by describing how Pangolin organizes data to
protect user objects, library metadata, and transaction logs us-
ing a combination of parity, replication, and checksums. Next,
we describe micro-buffers and explain how they allow Pan-
golin to preserve a simple programming interface and protect
against software scribbles. Then, we explain how Pangolin
detects and prevents NVMM corruption and elaborate on Pan-
golin’s transaction implementation with support for efficient,
concurrent updates of object parity. Finally, we discuss how
Pangolin restores data integrity after corruption and crashes.

3.1 Pangolin’s Data Organization

Pangolin uses replication for its internal metadata and RAID-
style parity for user objects to provide redundancy for corrup-
tion recovery. The MCE mechanism described in Section 2.2
and object checksums in Pangolin detect corruption.

Pangolin views a zone’s chunks as a two-dimensional array
as shown in the middle of Figure 2. Each chunk row contains
multiple, contiguous chunks and the chunks “wrap around”
so that the last chunk of a row and the first chunk of the next
are adjacent. Pangolin reserves the last chunk row for parity.

In our description of Pangolin, we define a page column as
a one page-wide, aligned column that cuts across the rows of
a zone. A range column is similar, but can be arbitrarily wide
(no more than a chunk row’s size).

Initializing a parity-coded NVMM pool requires zeroing
out all the bytes in the file. This is a one-time overhead when
creating a pool file and does not affect run-time performance.
We report this latency in Section 4.

To detect corruption in user objects, Pangolin adds a 32-bit
checksum to the object’s header. The header also contains
the object’s size (64-bit) and type (32-bit). The compiler
determines type values according to user-defined object types.
Pangolin inherits this design from libpmemobj and changes
the type identifier from 64-bit to 32-bit for the checksum.

Pangolin’s object placement is independent of chunk and
row boundaries. Objects can be anywhere within a zone, and
they can be of any size (up to the zone size).

In addition to user objects, the library maintains metadata
for the pool, zones, and chunks, including allocation bitmaps.
Pangolin checksums these data structures to detect corruption
and replicates the pool’s and zones’ metadata for fault tol-
erance. These structures are small (less than 0.1% for pools
larger than 1 GB), so replicating them is not expensive. Pan-
golin uses zone parity to support recovery of chunk metadata.

Pangolin checksums transaction logs and replicates them
for redundancy. It treats log entries in zone storage as zeros
during parity calculations. This prevents parity update con-
tention between log entries and user objects (see Section 3.5).

Fault Tolerance Guarantees Pangolin can tolerate a sin-
gle 4 KB media error anywhere in the pool, regardless of
whether it is a data page or a parity page. Based on the bad

900 2019 USENIX Annual Technical Conference USENIX Association

PM (Primary)
ZM (Primary)

Transaction

Chunk

...

Chunk

Parity

...

...

...

...

Chunk

...

Chunk

Parity
Object Parity

PM (Replica)
ZM (Replica) CM

CM

CM

ObjA

ObjC

ObjD

ObjE

Chunk Column Range Column
Chunk Row

ObjB

ObjF

ObjG

Log (Primary)

Log (Replica)

Zone

Zone

D

C

A

E

P

CSUM

CSUM
CSUM

REDO

REDO

CSUM
CSUM

CSUM

CSUM

A'A' C'C'

ObjA'Header

Micro-buffers

Header ObjC'

Pobj
Cnry

Rngs
Flag

DRAM

NVMM

A' C'

CSUM

CSUM

Page Column

4 KB

Figure 2: Data protection scheme in Pangolin – Pangolin protects pool metadata (PM), zone metadata (ZM), and chunk metadata
(CM). In the highlighted range column, P = A⊕C⊕D⊕E. One thread’s transaction is modifying ranges A and C of two objects.
Pangolin keeps modified data in redo log entries (checksummed and replicated) when the transaction commits. The DRAM part
shows micro-buffers for the two objects.

page’s address Pangolin can locate its page column and re-
store its data using other healthy pages.

Faults affecting two pages of the same page column may
cause data loss if the corrupted ranges overlap. If an appli-
cation demands more robust fault tolerance, it can increase
the chunk row size, reducing the number of rows and, conse-
quently, the likelihood that two corrupt pages overlap.

Pangolin can recover from scribbles (contiguous overwrites
caused by software errors) on NVMM data up to a chunk-row
size. By default, Pangolin uses 100 chunk rows, and parity
consumes ∼1% of a pool’s size (e.g., 1 GB for a 100 GB
pool).

3.2 Micro-buffering for NVMM Objects

Pangolin introduces micro-buffering to hide the complexity
of updating checksums and parity when modifying NVMM
objects. Adding checksums to objects and protecting them
with parity makes updates more complex, since all three –
object data, checksum, and parity – must change at once to
preserve consistency. This challenge is especially acute for
the atomic programming model as shown in Listing 1 (line
3-5) because a single 8-byte NVMM write cannot host all
these updates.

Micro-buffering creates a shadow copy of an NVMM ob-
ject in DRAM, which separates an object’s transient and per-
sistent versions (Figure 2). In Listing 2, pgl_open creates
a micro-buffer for the node object by allocating a DRAM
buffer and copying the node’s data from NVMM. It also veri-

1 struct node *n = pgl_open(node_oid);
2 n->val = value;
3 pgl_commit(pool , n);

Listing 2: A Pangolin transaction for a single-object - This
snippet corresponds to line 3-5 of Listing 1.

fies the object’s checksum and performs corruption recovery
if necessary.

The application can modify the micro-buffered object with-
out concern for its checksum, parity, and crash-consistency
because changes exist only in the micro-buffer. When the
updates finish, pgl_commit starts a transaction that atomi-
cally updates the NVMM object, its checksum, and parity
(described below). Compared to line 3-5 of Listing 1, Pan-
golin retains the simple, atomic-style programming model for
modifying a single NVMM object, and it supports updates
within an object beyond 8 bytes.

Each micro-buffer’s header contains information such as
its NVMM address, modified ranges, and status flags (e.g.,
allocated or modified). We elaborate on Pangolin’s program-
ming interface and how to construct complex transactions
with micro-buffering in Section 3.4.

Another important consideration for micro-buffering is
to prevent misbehaving software from corrupting NVMM.
If an application’s code can directly write to NVMM, as
libpmemobj allows to, software bugs such as buffer over-
flows and using dangling pointers can easily cause NVMM

USENIX Association 2019 USENIX Annual Technical Conference 901

Function Semantics

pgl_tx_begin()/commit()/end(), etc. Control the lifetime of a Pangolin transaction.
pgl_tx_alloc()/free() Allocate or deallocate an NVMM object.
pgl_tx_open(PMEMoid oid, ...) Create a thread-local micro-buffer for an NVMM object. Verify (and restore)

the object integrity, and return a pointer to the micro-buffered user object.
pgl_tx_add_range(PMEMoid oid, ...) Invoke pgl_tx_open and then mark a range of the object that will be modified.
pgl_get(PMEMoid oid) Get access to an object, either directly in NVMM or in its micro-buffer,

depending on the transaction context. By default, it does not verify the checksum.

pgl_open(PMEMoid oid, ...) Create a micro-buffer for an NVMM object without a transaction. Check the
object integrity, and return a pointer to the micro-buffered user object.

pgl_commit(void *uobj) Automatically start a transaction and commit the modified user object in a
micro-buffer to NVMM.

Table 1: The Pangolin API - Pangolin’s interface mirrors libpmemobj’s except that Pangolin does not allow direct writing
to NVMM. Pangolin provides single-object transactions using pgl_open and pgl_commit to convert application code using
libpmemobj’s atomic updates.

corruption. Conventional debugging tools for memory safety,
such as Valgrind [36] and AddressSanitizer [44], insert inac-
cessible bytes between objects as “redzones” to trap illegal
accesses. This approach fails to work for directly accessed
NVMM objects because once they are allocated, there is no
guarantee for spacing between them, and thus, redzones may
land on a nearby, accessible object. One viable approach to
using these tools is to let the NVMM allocator insert redzones.
However, the presence of redzone bytes will pollute the pool
and may exacerbate fragmentation.

Using micro-buffers isolates transient writes from persis-
tent data, and since micro-buffers are dynamically allocated
using malloc(), they are compatible with existing memory
debugging tools. Without using debugging tools, Pangolin
also protects micro-buffers by inserting a 64-bit “canary”
word in each micro-buffer’s header and checks its integrity
before writing back to NVMM. On transaction commit, if
Pangolin detects a canary mismatch, it aborts the transaction
to avoid propagating the corruption to NVMM. Pangolin uses
checksums to detect corruptions that may bypass the canary
protection.

3.3 Detecting NVMM Corruption

Pangolin uses three mechanisms to detect NVMM corruption.
First, it installs a handler for SIGBUS (see Section 2.2) that
fires when the Linux kernel receives an MCE. A signal han-
dler has access to the address the offending load accessed, and
Pangolin can determine what kind of data (i.e., metadata or a
user object) lives there and recover appropriately. This mech-
anism detects media failures, but it cannot discover corrupted
data caused by software “scribbles.”

To detect scribbles, Pangolin verifies the integrity of user
objects using their checksums. Verifying checksums on every
access can be expensive. To limit this cost, by default Pan-
golin only verifies checksums during micro-buffer creation

before any object is modified in a transaction. This keeps
Pangolin from recalculating a new checksum based on cor-
rupt data. For read-only objects that are accessed by pgl_get
without micro-buffering, by default Pangolin does not verify
checksums. To protect them, Pangolin provides two alterna-
tive operation modes: “Scrub” mode runs a scrubbing thread
that verifies and restores the whole pool’s data integrity when
a preset number of transactions have completed, and “Conser-
vative” mode verifies the checksum for every object access
(including pgl_get). We evaluate the impact of different
checksum verification policies in Section 4.

Finally, Linux keeps track of known bad pages of NVMM
across reboots. When opening a pool or during its scrubbing,
Pangolin can extract this information and recover the data in
the reported pages (not currently implemented).

3.4 Fault-Tolerant Transactions

Failure-atomic transactions are central to Pangolin’s interface,
and they must include verification of data integrity and up-
dates to the checksums and parity data that protect objects.
Table 1 summarizes Pangolin’s core functions.

Pangolin supports arbitrary-sized transactions and we have
made similar APIs and macros as libpmemobj’s. The pro-
gram in Listing 1 can be easily transformed to Pangolin using
equivalent functions. One subtle difference is in the handling
of atomic-style updates, as shown in Listing 2.

In Pangolin, each thread can execute one transaction or
nested transactions (same as libpmemobj). Concurrent trans-
actions can execute if each one is associated with a different
thread. Currently, Pangolin does not allow concurrent trans-
actions to modify the same NVMM object. Concurrently
modifying a shared object may cause data inconsistency if
one transaction has to abort. Libpmemobj has the same limi-
tation [17].

Each transaction manages its own micro-buffers using a

902 2019 USENIX Annual Technical Conference USENIX Association

thread-local hashmap [24], indexed by an NVMM object’s
PMEMoid. Therefore, in a transaction, calling pgl_tx_open
for the same object either creates or retrieves its micro-buffer.
Multiple micro-buffers opened in one transaction form a
linked list as shown in Figure 2. Micro-buffers for one transac-
tion are not visible in other transactions, providing isolation.

If a transaction modifies an object, Pangolin copies it to a
micro-buffer, performs the changes there, and then propagates
the changes to NVMM during commit. Since changes occur in
DRAM (which does not require undo information), Pangolin
implements redo logging.

At transaction commit, Pangolin recomputes the check-
sums for modified micro-buffers, creates and replicates redo
log entries for the modified parts of the micro-buffers and
writes these ranges back to NVMM objects. Then, it updates
the affected parity bits (see Section 3.5) and marks the trans-
action committed. Finally, Pangolin garbage-collects its logs
and closes thread-local micro-buffers.

If a transaction aborts, either due to unrecoverable data
corruption or other run-time errors, Pangolin discards the
transaction’s micro-buffers without touching NVMM.

A transaction can also allocate and deallocate objects. Pan-
golin uses redo logging to record NVMM allocation and free
operations, just as libpmemobj does.

For read-only workloads, repeatedly creating micro-buffers
and verifying object checksums can be very expensive. There-
fore, Pangolin provides pgl_get to gain direct access to an
NVMM object without verifying the object’s checksum. The
application can verify an object’s integrity manually as needed
or rely on Pangolin’s periodic scrubbing mechanism. Inside a
transaction context, pgl_get returns a pointer to the object’s
micro-buffer to preserve isolation.

3.5 Parity and Checksum Updates
Objects in different rows can share the same range of parity,
and we say these objects overlap. Object overlap leads to a
challenge for updating the shared parity because updates from
different transactions must serialize but naively locking the
whole parity region sacrifices scalability.

For instance, using ObjA and ObjC in Figure 2, suppose two
different transactions modify them, replacing A with A′ and
C with C′, respectively. After both transactions update P, the
parity should have the value P′ = A′⊕C′⊕D⊕E regardless
of how the two transaction commits interleave.

Pangolin uses a combination of two techniques that ex-
ploit the commutativity of XOR and fine-grained locking to
preserve correctness and scalability.

Atomic parity updates The first approach uses the atomic
XOR instruction (analogous to an atomic increment) that
modern CPUs provide to perform incremental parity updates
for changes to each overlapping object.

In our example, we can compute two parity patches: ∆A =
A⊕A′, ∆C = C⊕C′ and then rewrite P′ as P⊕∆A⊕∆C. Since

XOR commutes and is a bit-wise operation, the two threads
can perform their updates without synchronization.

Hybrid parity updates Atomic XOR is slower than nor-
mal or vectorized XOR. For small updates, the latency dif-
ference between them is not significant, and Pangolin prefers
atomic XOR instructions to update parity without the need for
locks. But for large parity updates, atomic XOR can be ineffi-
cient. Therefore, Pangolin’s hybrid parity scheme switches to
vectorized XOR for large transfers.

To coordinate large and small parity updates, Pangolin uses
parity range-locks, that work similarly as reader/writer locks
(or shared mutex): Small writes take shared ownership of a
range lock and update parity with atomic XOR instructions.
Large updates using vectorized XORs take exclusive owner-
ship of a range-lock, and only one thread can modify parity in
a locked range. If one update involves multiple range-locks,
serialization happens on a per-range-lock basis.

The managed size of a parity range-lock depends on the
performance trade-off between Pangolin’s parity mode and
libpmemobj’s replication mode. We discuss this in Section 4.

Pangolin refreshes an object’s checksum in its micro-buffer
before updating parity, and it considers the checksum field
as one of the modified ranges of the object. Checksums like
CRC32 requires recomputing the checksum using the whole
object. This can become costly with large objects. Thus, Pan-
golin uses Adler32 [23], a checksum that allows incremental
updates, to make the cost of updating an object’s checksum
proportional to the size of the modified range rather than the
object size.

We implement Pangolin’s parity and checksum updates
using the Intelligent Storage Acceleration Library (ISA-L)
[18], which leverages SIMD instructions of modern CPUs for
these data-intensive tasks.

Protections for other transaction systems Other NVMM
persistent object systems could apply Pangolin’s techniques
for parity and checksum updates. For example, consider an
undo logging (as opposed to Pangolin’s redo logging) system
that first stores a “snapshot” copy of an object in the log before
modifying the original in-place. In this case, the system could
compute a parity patch using the XOR result between the
logged data (old) and the object’s data (new). Then, it can
apply the parity patch using the hybrid method we described
in this section.

3.6 Recovering from Faults
In this section, we discuss how Pangolin recovers data in-
tegrity from both NVMM corruption and system crashes.

Corruption recovery Pangolin uses the same algorithm
to recover from errors regardless of how it detects them (i.e.,
via SIGBUS or a checksum mismatch).

The first step is to pause the current thread’s transaction,
and to wait until all other outstanding transactions have com-

USENIX Association 2019 USENIX Annual Technical Conference 903

pleted. Meanwhile, Pangolin prevents the initialization of new
transactions by setting the pool’s “freeze” flag. This is neces-
sary because, during transaction committing, parity data may
be inconsistent.

Once the pool is frozen, Pangolin uses the parity bits and
the corresponding parts of each row in the page column to
recover the missing data.

Pangolin preserves crash-consistency during repair by mak-
ing persistent records of the bad pages under recovery. Recov-
ery is idempotent, so it can simply re-execute after a crash.

Pangolin’s current implementation only allows one thread
to perform any online corruption recovery, and if the thread
is executing a transaction, online recovery only works if the
thread has not started committing. If two threads encounter
faults simultaneously, Pangolin kills the application and per-
forms post-crash recovery (see below) when it restarts. Sup-
porting multi-threaded online recovery, and allowing it to
work when threads have partially written NVMM is possible,
but it requires complex reasoning about how to restore the
data and its parity to a consistent state.

Crash recovery Pangolin handles recovery from a crash
using its redo logs. It must also protect against the possibility
that the crash occurred during a parity update.

To commit a transaction, Pangolin first ensures its redo logs
are persistent and replicated, and then updates the NVMM
objects and their parity. If a crash happens before redo logs are
complete, Pangolin discards the redo logs on reboot without
touching the objects or parity. If redo logs exist, Pangolin
replays them to update the objects and then recomputes any
affected parity ranges using the data written during replay
(which is now known to be correct) and the data from the
other rows.

Pangolin does not log parity updates because it would dou-
ble the cost of logging. This does raise the possibility of data
loss if a crash occurs during a parity update and a media error
then corrupts data of the same page column before recovery
can complete. This scenario requires the simultaneous loss of
two pages in the same page column due to corruption and a
crash, which we expect to be rare.

4 Evaluation

In this section, we evaluate Pangolin’s performance and the
overheads it incurs by comparing it to normal libpmemobj
and its replicated version. We start with our experimental
setup and then consider its storage requirements, latency im-
pact, scalability, application-level performance, and corrup-
tion recovery.

4.1 Evaluation Setup

We perform our evaluation on a dual-socket platform with
Intel’s Optane DC Persistent Memory [19]. The CPUs are

Pmemobj libpmemobj baseline from PMDK v1.5
Pangolin Pangolin baseline w/ micro-buffering only
Pangolin-ML Pangolin + metadata and redo log replication
Pangolin-MLP Pangolin-ML + object parity
Pangolin-MLPC Pangolin-MLP + object checksums
Pmemobj-R libpmemobj w/ one replication in another file

Table 2: Library operation modes for evaluation - In the fig-
ures, we abbreviate Pangolin as pgl.

24-core engineering samples of the Cascade Lake genera-
tion. Each socket has 192 GB DDR4 DRAM and 1.5 TB
NVMM. We configure the persistent memory modules in Ap-
pDirect mode and run experiments on one socket using its
local DRAM and NVMM. A recent report [21] studying this
platform provides more architectural details.

The CPU provides the CLWB instruction for writing-back
cache lines to NVMM, non-temporal store instructions to
bypass caches, and the SFENCE instruction to ensure persis-
tence and memory ordering. It also has atomic XOR and AVX
instructions that our parity and checksum computations use.

The evaluation machine runs Fedora 27 with a Linux kernel
version 4.13 built from source with the NOVA [48] file system.
We run experiments with both Ext4-DAX [27] and NOVA,
and applications use mmap() to access NVMM-resident files.
The performance is similar on the two file systems because
DAX-mmap() essentially bypasses them.

On our evaluation machine, we found that updating parity
with atomic XORs becomes worse than libpmemobj’s repli-
cation mode when the modified parity range is greater than
8 KB, so we set 8 KB as the threshold to switch between those
parity calculation strategies (see Section 3.5).

Table 2 describes the operation modes for our evaluations.
The Pangolin baseline implements transactions with micro-
buffering. It uses buffer canaries to prevent corruption from
affecting NVMM, but it does not have parity or checksum for
NVMM data.

We evaluate versions of Pangolin that incrementally
add metadata and log replication (“+ML”), object parity
(“+MLP”), and checksums (“+MLPC”). We combine the im-
pact of metadata updates with log replication because meta-
data updates are small and cheap in our evaluation.

Pmemobj-R is the replication mode of libpmemobj that
mirrors updates to a replica pool during transaction commit.
Comparing Pangolin-MLP and Pmemobj-R is especially use-
ful because the two configurations protect against the same
types of data corruption: media errors but not scribbles.

4.2 Memory Requirements
We discuss and evaluate Pangolin’s memory requirements for
both NVMM and DRAM.

NVMM All our Pangolin experiments use a single pool of
100 GB that contains 6× 16 GB zones. Pangolin replicates

904 2019 USENIX Annual Technical Conference USENIX Association

Figure 3: Transaction performance – Each transaction allocates, overwrites, or frees one object of varying sizes. Pangolin’s
latencies are similar to Pmemobj’s. Pangolin-MLP is mostly better than Pmemobj-R because updating parity using atomic XOR
and CLWB instructions is faster than mirroring data in a separate file.

all the pool’s metadata in the same file, which occupies a
fixed ∼20 MB. The rest of the space is for user objects and
their protection data. By default, Pangolin uses 100 chunk
rows, so each zone has about 160 MB parity, and that totally
occupies ∼1% of the pool’s capacity. Pmemobj-R uses a
second 100 GB file as the replica, doubling the cost of NVMM
space requirement.

When using parity, Pangolin has to zero out the whole pool
to ensure all zones are initially parity-coded. This takes about
130 seconds. It is a one-time overhead for creating the pool
and excluded from the following evaluations.

DRAM Pangolin uses malloc()’d DRAM to construct
micro-buffers. The required DRAM space is proportional to
ongoing transaction sizes. Table 3 summarized the transac-
tion sizes for the evaluated key-value store data structures.
Pangolin automatically recycles them on transaction commits.
In our evaluation experiments, micro-buffering never exceeds
using 50 MB of DRAM.

4.3 Transaction Performance

Figure 3 illustrates the transaction latencies for three basic
operations on an NVMM object store: object allocation, over-
write, and deallocation. Each transaction operates on one
object, and we vary the size of the object.

For allocation, latency grows with object size for all five
configurations, due to constructing the object and cache line
write-back latency. Pangolin incurs 2% - 13% lower latencies
than Pmemobj due to its use of non-temporal stores for write
backs. An allocation operation does not involve object log-
ging, so Pangolin-ML shows performance similar to Pangolin.
Pangolin-MLP adds overhead to update the parity data. It out-
performs Pmemobj-R by between 1.2× and 1.9×. We found
this is because updating parity using atomic XORs and CLWBs
incurs less latency than mirroring data in a separate file, as

Pmemobj-R does.
Adding checksum (Pangolin-MLPC) incurs less than 7%

overhead compared to Pangolin-MLP. Parity’s impact is larger
than checksum’s because updating a parity range demands
values from three parts: the micro-buffer, the NVMM object,
and the old parity data, while computing a checksum only
needs data in a DRAM-based micro-buffer. Moreover, Pan-
golin needs to flush the modified parity range to persistence,
which is the same size as the object. In contrary, updating a
checksum only writes back a single cache line that contains
the checksum value.

Overwriting an NVMM object involves transaction logging
for crash consistency. Pangolin and Pmemobj store the same
amount of logging data in NVMM, although they use redo
logging and undo logging for this purpose, respectively. Since
log entry size is proportional to an object’s modified size,
which is the whole object in this evaluation, this cost grows
with the object. With Pangolin, log replication accounts for
between 7% to 25% of the latency. Parity updates consume
between 8% to 27% of the extra latency, depending on ob-
ject size, and checksum updates account for less than 5%.
Pangolin-MLP’s performance for overwrites is 12% worse
than Pmemobj-R for 64 B object updates and is between 1.1×
and 1.5× better than Pmemobj-R for objects larger than 64 B.

Deallocation transactions only modify metadata, so their
latencies do not change much.

4.4 Scalability

Figure 4 measures Pangolin’s scalability by randomly over-
writing existing NVMM objects and varying the object sizes
and the number of concurrent threads.

Pangolin uses reader/writer locks to implement the hybrid
parity update scheme described in Section 3.5. The number
of rows in a zone and the zone size determine the granularity

USENIX Association 2019 USENIX Annual Technical Conference 905

Figure 4: Scalability – Concurrent workloads randomly overwrite objects of varying sizes. Pangolin-MLP scales as well as
Pmemobj-R or better for objects larger than 64 B. For 64 B objects, Pangolin-MLP is worse than Pmemobj-R by between 6%
and 25% due to synchronization overhead for online recovery.

ctree rbtree btree skiplist rtree hashmap
Object size 56 80 304 408 4136 10 M (table), 40 (entry)

Insert New 56 (1.00) 80 (1.00) 65.9 (0.22) 408 (1.00) 4502 (1.09) 60.9 (1.00)
Mod 127.6 (3.28) 330.2 (5.13) 381.2 (1.47) 33.9 (2.50) 200.0 (5.05) 331.1 (4.21)

Remove New 0 0 0 0 184.1 (0.05) 10.5 (1×10–5)
Mod 28.0 (0.50) 202.8 (2.65) 268.3 (0.90) 16.9 (0.75) 98.6 (2.52) 254.3 (2.16)

Table 3: Data structure and transaction sizes - “Insert” and “Remove” show average transaction sizes for insertions and removals,
respectively. “New” and “Mod” indicate average allocated and modified sizes. Value in parentheses is the average number of
objects involved in the transaction.

of these locks: For a fixed zone size, more rows means fewer
columns and fewer parity range-locks.

There is no lock contention in the results because the trans-
actions use atomic XOR instructions and can execute con-
currently (only taking the reader locks). Our configuration
with 1% parity (160 MB parity per 16 GB zone) has 20 K
range-locks per zone, so the chance of lock contention is slim
even with large updates (more than 8 KB) and many cores.

The graphs also show how each Pangolin’s fault-tolerance
mechanisms affect performance. Pangolin’s throughput is
very close to Pmemobj. Pangolin-MLP mostly outperforms
Pmemobj-R for object updates that are 256 B or larger, up
to 1.5×. But for 64 B object updates, it performs worse
than Pmemobj-R by between 6% and 25%. This is because
when enabling parity, every Pangolin transaction checks the
pool freeze flag (an atomic variable), incurring synchroniza-
tion overhead. This overhead is noticeable for short trans-
actions with 64 B objects but becomes negligible for larger
updates. Pangolin-MLPC only performs marginally worse
than Pangolin-MLP.

Scaling degrades for all configuration as update size and
thread count grow because the sustainable bandwidth of the
persistent memory modules becomes saturated.

4.5 Impacts on NVMM Applications

To evaluate Pangolin in more complex applications, we use
six data structures included in the PMDK toolkit: crit-bit tree
(ctree), red-black tree (rbtree), btree, skiplist, radix tree (rtree),
and hashmap. They have a wide range of object sizes and use a
diverse set of algorithms to insert, remove, and lookup values.
We rewrite these benchmarks with Pangolin’s programming
interface as described in Section 3.4.

Table 3 summarizes the object and transaction sizes for
each workload. The tree structures and the skiplist have a
single type of object, which is the tree or list node. Hashmap
has two kinds of objects. One is the hash table that contains
pointers to buckets. The hash table grows as the application
inserts more key-value pairs. Each bucket is a linked list of
fixed-sized entry objects.

Each insertion or removal is a transaction processing a key-
value pair. The workloads involve a mix of object allocations,
overwrites, and deallocations. Table 3 shows, on average, the
number of bytes and objects (in parentheses) involved in each
data structure’s transaction. Deallocated sizes are not shown
because they marginally affect the performance differences
(see Figure 3).

An average allocation size (“New” rows in the table)
smaller than the object size means the data structure does not
allocate a new object for every insert operation (e.g., btree).

906 2019 USENIX Annual Technical Conference USENIX Association

Figure 5: Key-value store performance – Each transaction either inserts or removes one key-value pair from the data store.
Pangolin performs similarly to Pmemobj except for cases when a transaction’s modified size is much less than an object’s size
(e.g., skiplist and rtree) due to micro-buffering overhead. Pangolin-MLP’s performance is 95% of Pmemobj-R on average.

Figure 6: Checksum verification impact – Pangolin-MLPC
bars are the same as those in Figure 5 for 1M Inserts. The
cost of different policies depends strongly on data structures.

The average modified sizes (“Mod” rows) determine the log-
ging size and affect the performance drop between Pangolin
and Pangolin-ML. Note that a transaction does not necessarily
modify (and log) the whole range of an involved object. The
performance difference between Pangolin-ML and Pangolin-
MLP is a consequence of both allocated and modified sizes.

For insert transactions, Pangolin is faster than Pmemobj
for ctree and btree, but slower than Pmemobj for other data
structures. This is because the slower applications have rel-
atively small modified sizes compared to the object sizes,
and Pangolin’s data movement from NVMM to micro-buffers
overshadows its advantage for whole-object updates, as shown
in Figure 3. For remove transactions, Pangolin is marginally
faster than Pmemobj except for the case of skiplist, which is
also because of the data movement caused by micro-buffering.

Pangolin-MLP’s performance is 95% of Pmemobj-R on
average, and it saves orders of magnitude NVMM space by
using parity data as redundancy. Pangolin-MLPC adds scrib-
ble detection and performance drops by between 1.5% to 15%
relative to Pangolin-MLP. Adding object checksums impacts
rtree’s transactions the most because the allocated object size
is large, which requires more checksum computing time.

Pangolin does not impact the lookup performance because

ctree rbtree btree sklist rtree hmap
Pmemobj 1.0 1.0 1.0 1.0 1.0 1.0
Pgl-MLPC 0.92 0.84 0.87 0.96 0.42 0.42
Scrub 100K 0.10 0.09 0.09 0.10 0.04 0.05
Scrub 50K 0.05 0.04 0.05 0.05 0.02 0.02
Conservative 0 0 0 0 0 0

Table 4: Vulnerability evaluation - Each row shows object
bytes (normalized to Pmemobj) accessed without checksum
verification.

it performs direct NVMM reads without constantly verifying
object checksums. Pangolin ensures data integrity with its
checksum verification policy, as discussed in Section 3.3.

Figure 6 illustrates the impact of different strategies for
checksum verification. We compare Pangolin’s default mode
(Pangolin-MLPC) with two “Scrub” modes and a “Conser-
vative” mode. The default mode only verifies checksums for
micro-buffered objects. In “Scrub” mode, a scrubbing thread
verifies data integrity of the whole object pool when a preset
number (indicated by legends in Figure 6) of transactions
have completed. The “Conservative” mode verifies the check-
sum for every object access (including those read by pgl_get
without micro-buffering).

Table 4 quantifies the vulnerability using the amount of
object data that is accessed without checksum verification.
The data accumulates across all transactions for Pmemobj,
Pangolin-MLPC, and “Conservative” modes. For “Scrub”
modes, we count the vulnerable data between two scrubbing
runs. Numbers in Table 4 are normalized to Pmemobj, which
does not have any checksum protection for object data.

The cost of verifying checksums for every object access
depends strongly on the data structure size and its insertion al-
gorithm. For small objects, such as ctree, rbtree, and hashmap,
the cost is negligible. But for btree, skiplist, and rtree, due
to their large object sizes, the cost is significant. Thus, a
scrubbing-based policy could be faster, with more data subject

USENIX Association 2019 USENIX Annual Technical Conference 907

to corruption between two successive runs.

4.6 Error Detection and Correction

Pangolin provides error injection functions to emulate both
hardware-uncorrectable NVMM media errors and hardware-
undetectable scribbles.

We initially developed Pangolin using conventional DRAM
machines that lack support for injecting NVMM errors at the
hardware level. Therefore, we use mprotect() and SIGSEGV
to emulate NVMM media errors and SIGBUS. When an
NVMM file is DAX-mapped, the injector can randomly
choose a page that contains user-allocated objects, erase it,
and call mprotect(PROT_NONE) on the page. Later, when
the application reads the corrupted page, Pangolin intercepts
SIGSEGV, changes the page to read/write mode, and restores
the page’s data. The injector function can also randomly cor-
rupt a metadata region or a victim object to emulate software-
induced, scribble errors.

In both test cases, we observe Pangolin can successfully
repair a victim page or an object and resume normal program
execution. In our evaluation using a 100 GB pool and 1 GB
parity, we measured 180 µs to repair a page of a page column.

We also intentionally introduce buffer overrun bugs in our
applications and observe that Pangolin can successfully detect
them using micro-buffer canaries. The transaction then aborts
to prevent any NVMM corruption. We have also verified Pan-
golin is compatible with AddressSanitizer for detecting buffer
overrun bugs (when updating a micro-buffered object exceeds
its buffer’s boundary), if both Pangolin and its application
code are compiled with support.

5 Related Work

In this section, we place Pangolin in context relative to previ-
ous projects that have explored how to use NVMM effectively.

Transaction Support All previous libraries for using
NVMMs to build complex objects rely on transactions
for crash consistency. Although we built Pangolin on
libpmemobj, its techniques could be applied to another per-
sistent object system. NV-Heaps [3], Atlas [1], DCT [22], and
libpmemobj [39] provide undo logging for applications to
snapshot persistent objects before making in-place updates.
Mnemosyne [47], SoftWrAp [11], and DUDETM [25] use
variations of redo logging. REWIND [2] implements both
undo and redo logging for fine-grained, high-concurrent trans-
actions. Log-structured NVMM [12] makes changes to ob-
jects via append-only logs, and it does not require extra log-
ging for consistency. Romulus [5] uses a main-back mecha-
nism to implement efficient redo log-based transactions.

None of these systems provide fault tolerance for NVMM
errors. We believe they can adopt Pangolin’s parity and check-
sum design to improve their resilience to NVMM errors at low

storage overhead. In Section 3.5 we described how to apply
the hybrid parity updating scheme to an undo logging-based
system. Log-structured and copy-on-write systems can adopt
the techniques in similar ways.

Fault Tolerance Both Pangolin and libpmemobj’s replica-
tion mode protect against media errors, but Pangolin provides
stronger protection and much lower space overhead. Further-
more, libpmemobj can only repair media errors offline, and
it does not detect or repair software corruption to user objects.

NVMalloc [32] uses checksums to protect metadata. It
does not specify whether application data is also checksum-
protected, and it does not provide any form of redundancy to
repair the corruption. NVMalloc uses mprotect() to protect
NVMM pages while they are not mapped for writing. Pan-
golin could adopt this technique to prevent an application
from scribbling its own persistent data structures.

The NOVA file system [48, 49] uses parity-based protec-
tion for file data. However, it must disable these features
for NVMM pages that are DAX-mapped for writing in user-
space, since the page’s contents can change without the file
system’s knowledge, making it impossible for NOVA to keep
the parity information consistent if an application modifies
DAX-mapped data. As a result, Pangolin’s and NOVA’s fault
tolerance mechanisms are complementary.

6 Conclusion

This work presents Pangolin, a fault-tolerant, DAX-mapped
NVMM programming library for applications to build com-
plex data structures in NVMM. Pangolin uses a novel, space-
efficient layout of data and parity to protect arbitrary-sized
NVMM objects combined with per-object checksums to de-
tect corruption. To maintain high performance, Pangolin uses
micro-buffering, carefully-chosen parity and checksum up-
dating algorithms. As a result, Pangolin provides stronger
protection, better availability, and much lower storage over-
head than existing NVMM programming libraries.

Acknowledgments

This work was supported in part by Toshiba, and we are thank-
ful for their continued sponsorship. We thank our shepherd,
Kimberly Keeton and the anonymous USENIX ATC review-
ers for their insightful comments and suggestions. We are also
thankful for Intel to provide us early access to platforms with
Intel’s Optane DC Persistent Memory Modules.

References

[1] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud
Bhandari. Atlas: Leveraging Locks for Non-volatile
Memory Consistency. In Proceedings of the 2014 ACM

908 2019 USENIX Annual Technical Conference USENIX Association

International Conference on Object Oriented Program-
ming Systems Languages & Applications, OOPSLA’14,
pages 433–452. ACM, 2014.

[2] Andreas Chatzistergiou, Marcelo Cintra, and Stratis D
Viglas. REWIND: Recovery Write-ahead System for
In-Memory Non-volatile Data-Structures. Proceedings
of the VLDB Endowment, 8:497–508, 2015.

[3] Joel Coburn, Adrian M. Caulfield, Ameen Akel,
Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and
Steven Swanson. NV-Heaps: Making Persistent Ob-
jects Fast and Safe with Next-generation, Non-volatile
Memories. In Proceedings of the Sixteenth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS’11, pages
105–118. ACM, 2011.

[4] Jeremy Condit, Edmund B Nightingale, Christopher
Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Der-
rick Coetzee. Better I/O through Byte-addressable, Per-
sistent Memory. In Proceedings of the ACM SIGOPS
22nd Symposium on Operating systems principles,
SOSP’09, pages 133–146. ACM, 2009.

[5] Andreia Correia, Pascal Felber, and Pedro Ramalhete.
Romulus: Efficient Algorithms for Persistent Transac-
tional Memory. In Proceedings of the 30th on Sympo-
sium on Parallelism in Algorithms and Architectures,
SPAA’18, pages 271–282. ACM, 2018.

[6] Dan Williams. libnvdimm for 4.12, 2017. https://lkml.
org/lkml/2017/5/5/620.

[7] Dan Williams. libnvdimm for 4.13, 2017. https://lkml.
org/lkml/2017/7/6/843.

[8] Dan Williams. use memcpy_mcsafe() for copy_to_iter(),
2018. https://lkml.org/lkml/2018/5/1/708.

[9] Joel E. Denny, Seyong Lee, and Jeffrey S. Vetter. NVL-
C: Static Analysis Techniques for Efficient, Correct Pro-
gramming of Non-Volatile Main Memory Systems. In
Proceedings of the 25th ACM International Symposium
on High-Performance Parallel and Distributed Comput-
ing, HPDC’16, pages 125–136. ACM, 2016.

[10] Subramanya R Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,
and Jeff Jackson. System Software for Persistent Mem-
ory. In Proceedings of the Ninth European Conference
on Computer Systems, EuroSys ’14, pages 15:1–15:15,
New York, NY, USA, 2014. ACM.

[11] Ellis R Giles, Kshitij Doshi, and Peter Varman. Soft-
WrAP: A Lightweight Framework for Transactional
Support of Storage Class Memory. In Mass Storage
Systems and Technologies (MSST), 2015 31st Sympo-
sium on, MSST’16, pages 1–14. IEEE, 2015.

[12] Qingda Hu, Jinglei Ren, Anirudh Badam, Jiwu Shu,
and Thomas Moscibroda. Log-Structured Non-Volatile
Main Memory. In Proceedings of the USENIX An-
nual Technical Conference, ATC’17, pages 703–717.
USENIX Association, 2017.

[13] Andy A. Hwang, Ioan A. Stefanovici, and Bianca
Schroeder. Cosmic Rays Don’t Strike Twice: Under-
standing the Nature of DRAM Errors and the Implica-
tions for System Design. In Proceedings of the Seven-
teenth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, ASPLOS’12, pages 111–122. ACM, 2012.

[14] Intel. Intel Architecture Instruction Set Extensions Pro-
gramming Reference, 2017. https://software.intel.com/
en-us/isa-extensions.

[15] Intel. Introduction to Programming
with Persistent Memory from Intel, 2017.
https://software.intel.com/en-us/articles/
introduction-to-programming-with-persistent\
-memory-from-intel.

[16] Intel. Persistent Memory Programming - Frequently
Asked Questions, 2017. https://software.intel.com/
en-us/articles/persistent-memory-programming-\
frequently-asked-questions.

[17] Intel. Discover Persistent Memory Pro-
gramming Errors with Pmemcheck, 2018.
https://software.intel.com/en-us/articles/discover-\
persistent-memory-programming-errors-with-\
pmemcheck.

[18] Intel. Intelligent Storage Acceleration Library, 2018.
https://software.intel.com/en-us/storage/isa-l.

[19] Intel. Intel R© OptaneTM DC persistent mem-
ory, 2019. https://www.intel.com/content/
www/us/en/architecture-and-technology/
optane-dc-persistent-memory.html.

[20] Joseph Izraelevitz, Terence Kelly, and Aasheesh
Kolli. Failure-Atomic Persistent Memory Updates via
JUSTDO Logging. In Proceedings of the Twenty-First
International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS’16, pages 427–442. ACM, 2016.

[21] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao
Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan
Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and
Steven Swanson. Basic Performance Measurements of
the Intel Optane DC Persistent Memory Module, 2019.
https://arxiv.org/abs/1903.05714.

USENIX Association 2019 USENIX Annual Technical Conference 909

https://lkml.org/lkml/2017/5/5/620
https://lkml.org/lkml/2017/5/5/620
https://lkml.org/lkml/2017/7/6/843
https://lkml.org/lkml/2017/7/6/843
https://lkml.org/lkml/2018/5/1/708
https://software.intel.com/en-us/isa-extensions
https://software.intel.com/en-us/isa-extensions
https://software.intel.com/en-us/articles/introduction-to-programming-with-persistent\-memory-from-intel
https://software.intel.com/en-us/articles/introduction-to-programming-with-persistent\-memory-from-intel
https://software.intel.com/en-us/articles/introduction-to-programming-with-persistent\-memory-from-intel
https://software.intel.com/en-us/articles/persistent-memory-programming-\frequently-asked-questions
https://software.intel.com/en-us/articles/persistent-memory-programming-\frequently-asked-questions
https://software.intel.com/en-us/articles/persistent-memory-programming-\frequently-asked-questions
https://software.intel.com/en-us/articles/discover-\persistent-memory-programming-errors-with-\pmemcheck
https://software.intel.com/en-us/articles/discover-\persistent-memory-programming-errors-with-\pmemcheck
https://software.intel.com/en-us/articles/discover-\persistent-memory-programming-errors-with-\pmemcheck
https://software.intel.com/en-us/storage/isa-l
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://arxiv.org/abs/1903.05714

[22] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen,
and Thomas F. Wenisch. High-Performance Transac-
tions for Persistent Memories. In Proceedings of the
Twenty-First International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS’16, pages 399–411. ACM, 2016.

[23] Harendra Kumar, Yuvraj Patel, Ram Kesavan, and Sum-
ith Makam. High Performance Metadata Integrity Pro-
tection in the WAFL Copy-on-Write File System. In
15th USENIX Conference on File and Storage Technolo-
gies, FAST’17, pages 197–212. USENIX Association,
2017.

[24] Xiaozhou Li, David G. Andersen, Michael Kaminsky,
and Michael J. Freedman. Algorithmic Improvements
for Fast Concurrent Cuckoo Hashing. In Proceedings of
the Ninth European Conference on Computer Systems,
EuroSys’14, pages 27:1–27:14. ACM, 2014.

[25] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai
Qian, Yongwei Wu, Weimin Zheng, and Jinglei Ren.
DudeTM: Building Durable Transactions with Decou-
pling for Persistent Memory. In Proceedings of the
Twenty-Second International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, ASPLOS’17, pages 329–343. ACM, 2017.

[26] Tony Luck. Patchwork mm/hwpoison: Clear PRESENT
Bit for Kernel 1:1 Mappings of Poison Pages, 2017.
https://patchwork.kernel.org/patch/9793701.

[27] LWN. Add Support for NV-DIMMs to Ext4, 2014. https:
//lwn.net/Articles/613384.

[28] Amirsaman Memaripour, Anirudh Badam, Amar Phan-
ishayee, Yanqi Zhou, Ramnatthan Alagappan, Karin
Strauss, and Steven Swanson. Atomic In-place Updates
for Non-volatile Main Memories with Kamino-Tx. In
Proceedings of the Twelfth European Conference on
Computer Systems, EuroSys’17, pages 499–512. ACM,
2017.

[29] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu.
A Large-Scale Study of Flash Memory Failures in the
Field. In Proceedings of the 2015 ACM SIGMETRICS
International Conference on Measurement and Mod-
eling of Computer Systems, SIGMETRICS’15, pages
177–190. ACM, 2015.

[30] Micron. 3D XPoint Technology, 2017.
http://www.micron.com/products/advanced-solutions/
3d-xpoint-technology.

[31] Micron. Hybrid Memory: Bridging the Gap Between
DRAM Speed and NAND Nonvolatility, 2017. http:
//www.micron.com/products/dram-modules/nvdimm.

[32] Iulian Moraru, David G Andersen, Michael Kaminsky,
Niraj Tolia, Parthasarathy Ranganathan, and Nathan
Binkert. Consistent, Durable, and Safe Memory Manage-
ment for Byte-addressable Non Volatile Main Memory.
In Proceedings of the First ACM SIGOPS Conference on
Timely Results in Operating Systems, TRIOS’13. ACM,
2013.

[33] Sanketh Nalli, Swapnil Haria, Mark D Hill, Michael M
Swift, Haris Volos, and Kimberly Keeton. An Analysis
of Persistent Memory Use with WHISPER. In Proceed-
ings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS’17, pages 135–148. ACM,
2017.

[34] Dushyanth Narayanan and Orion Hodson. Whole-
system Persistence. In Proceedings of the Seventeenth
International Conference on Architectural Support for
Programming Languages and Operating Systems, ASP-
LOS’12, pages 401–410. ACM, 2012.

[35] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash
Sharma, Laura Caulfield, Anand Sivasubramaniam, Ben
Cutler, Jie Liu, Badriddine Khessib, and Kushagra Vaid.
SSD Failures in Datacenters: What? When? And Why?
In Proceedings of the 9th ACM International on Systems
and Storage Conference, SYSTOR’16, pages 7:1–7:11.
ACM, 2016.

[36] Nicholas Nethercote and Julian Seward. Valgrind: A
Framework for Heavyweight Dynamic Binary Instru-
mentation. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI’07, pages 89–100. ACM, 2007.

[37] Matheus Almeida Ogleari, Ethan L Miller, and Jishen
Zhao. Steal but No Force: Efficient Hardware
Undo+Redo Logging for Persistent Memory Systems.
In High Performance Computer Architecture (HPCA),
2018 IEEE International Symposium on, HPCA’18,
pages 336–349. IEEE, 2018.

[38] Christian Perone and David Murray. pynvm: Non-
volatile memory for Python, 2017. https://github.com/
pmem/pynvm.

[39] pmem.io. Persistent Memory Development Kit, 2017.
http://pmem.io/pmdk.

[40] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi,
Yongwei Wu, and Onur Mutiu. ThyNVM: Enabling
software-transparent crash consistency in persistent
memory systems. In Proceedings of the 48th Inter-
national Symposium on Microarchitecture, MICRO’15,
pages 672–685. IEEE, 2015.

910 2019 USENIX Annual Technical Conference USENIX Association

https://patchwork.kernel.org/patch/9793701
https://lwn.net/Articles/613384
https://lwn.net/Articles/613384
http://www.micron.com/products/advanced-solutions/3d-xpoint-technology
http://www.micron.com/products/advanced-solutions/3d-xpoint-technology
http://www.micron.com/products/dram-modules/nvdimm
http://www.micron.com/products/dram-modules/nvdimm
https://github.com/pmem/pynvm
https://github.com/pmem/pynvm
http://pmem.io/pmdk

[41] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill.
Understanding Latent Sector Errors and How to Pro-
tect Against Them. In Proceedings of the 8th USENIX
Conference on File and Storage Technologies, volume 6,
pages 9:1–9:23, New York, NY, USA, September 2010.
ACM.

[42] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich
Weber. DRAM Errors in the Wild: A Large-scale Field
Study. In Proceedings of the Eleventh International
Joint Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS’09, pages 193–204.
ACM, 2009.

[43] Jihye Seo, Wook-Hee Kim, Woongki Baek, Beomseok
Nam, and Sam H Noh. Failure-Atomic Slotted Paging
for Persistent Memory. In Proceedings of the Twenty-
Second International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, ASPLOS’17, pages 91–104. ACM, 2017.

[44] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitry Vyukov. AddressSanitizer:
A Fast Address Sanity Checker. In Proceedings of
the USENIX Annual Technical Conference, ATC’12.
USENIX Association, 2012.

[45] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard,
Kurt B. Ferreira, Jon Stearley, John Shalf, and Sudhanva
Gurumurthi. Memory Errors in Modern Systems: The
Good, The Bad, and The Ugly. In Proceedings of the
Twentieth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS’15, pages 297–310. ACM, 2015.

[46] UEFI Forum. Advanced configuration
and power interface specification, 2017.

http://www.uefi.org/sites/default/files/resources/
ACPI_6_2.pdf.

[47] Haris Volos, Andres Jaan Tack, and Michael M. Swift.
Mnemosyne: Lightweight Persistent Memory. In Pro-
ceedings of the Sixteenth International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS’11, pages 91–104. ACM,
2011.

[48] Jian Xu and Steven Swanson. NOVA: A Log-structured
File System for Hybrid Volatile/Non-volatile Main
Memories. In Proceedings of the 14th USENIX Confer-
ence on File and Storage Technologies, FAST’16, pages
323–338. USENIX Association, 2016.

[49] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha
Gangadharaiah, Amit Borase, Tamires Brito Da Silva,
Steven Swanson, and Andy Rudoff. NOVA-Fortis: A
Fault-Tolerant Non-Volatile Main Memory File System.
In Proceedings of the 26th Symposium on Operating
Systems Principles, SOSP’17, pages 478–496. ACM,
2017.

[50] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,
Khai Leong Yong, and Bingsheng He. NV-Tree: Re-
ducing Consistency Cost for NVM-based Single Level
Systems. In Proceedings of the 13th USENIX Confer-
ence on File and Storage Technologies, FAST’15, pages
167–181. USENIX Association, 2015.

[51] Yupu Zhang, Abhishek Rajimwale, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. End-to-end
Data Integrity for File Systems: A ZFS Case Study. In
Proceedings of the 8th USENIX Conference on File and
Storage Technologies, FAST’10. USENIX Association,
2010.

USENIX Association 2019 USENIX Annual Technical Conference 911

Pisces: A Scalable and Efficient Persistent Transactional Memory

Jinyu Gu, Qianqian Yu, Xiayang Wang, Zhaoguo Wang,

Binyu Zang, Haibing Guan, Haibo Chen

Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University

Institute of Parallel and Distributed Systems (IPADS), Shanghai Jiao Tong University

Abstract

Persistent transactional memory (PTM) programming

model has recently been exploited to provide crash-

consistent transactional interfaces to ease programming atop

NVM. However, existing PTM designs either incur high

reader-side overhead due to blocking or long delay in the

writer side (efficiency), or place excessive constraints on per-

sistent ordering (scalability).

This paper presents Pisces, a read-friendly PTM that ex-

ploits snapshot isolation (SI) on NVM. The key design of

Pisces is based on two observations: the redo logs of transac-

tions can be reused as newer versions for the data, and an intu-

itive MVCC-based design has read deficiency. Based on the

observations, we propose a dual-version concurrency control

(DVCC) protocol that maintains up to two versions in NVM-

backed storage hierarchy. Together with a three-stage com-

mit protocol, Pisces ensures SI and allows more transactions

to commit and persist simultaneously. Most importantly, it

promises a desired feature: hiding NVM persistence over-

head from reads and allowing nearly non-blocking reads.

Experimental evaluation on an Intel 40-thread (20-core)

machine with real NVM equipped shows that Pisces outper-

forms the state-of-the-art design (i.e., DUDETM) by up to

6.3× for micro-benchmarks and 4.6× for TPC-C new order

transaction, and also scales much better. The persistency cost

is from 19% to 50% for 40 threads.

1 Introduction

Non-volatile memory (NVM) such as phase-change mem-

ory (PCM) [46, 67, 78], resistive random-access memory

(ReRAM) [9, 45], and Intel/Micron’s 3D-XPoint [2, 4], is

revolutionizing the storage hierarchy thanks to the promis-

ing features like byte-addressability and non-volatility with a

close-to-DRAM speed. By supporting persistent data access

via CPU load/store instructions, these technologies bring am-

ple opportunities for applications to achieve optimal perfor-

mance as well as efficient crash consistency [20, 62].

To efficiently program on NVM with a balance among

good programmability, high performance, and low soft-

ware overhead, persistent transactional memory (PTM), also

known as durable (memory) transactions, has been exploited

by prior work [21, 37, 44, 49, 56, 74, 76]. Through com-

bining transactional memory [29, 34, 66, 68, 70] and NVM,

PTM offers the properties of atomicity, consistency, isolation,

durability (ACID) to applications on NVM.

To ensure the durability for transactions, some prior de-

signs [21, 44, 56, 74] need to persist a transaction’s log

while holding the locks of the data being modified or ex-

plicitly track the dependencies among transactions through

locks. This, however, may block concurrent read operations

on the same data. The long blocking duration may become

a severe performance bottleneck due to the amplified persis-

tence overhead incurred by high write latency of NVM (usu-

ally 10× compared to DRAM) (low read efficiency). This is

especially true when read operations dominate in many work-

loads [15, 19, 52, 63]. In contrast, another design [49] elim-

inates the persistence latency from a transaction’s critical

path through relaxing the durability semantics, i.e., making

a transaction’s modifications visible before its log reaches

NVM. However, such a design sacrifices the durability guar-

antee and requires to apply logs back to the durable data ac-

cording to a total order. Unfortunately, such a strict persis-

tence ordering may be the bottleneck of scalability since it

is hard to parallelize the persistence operations. Overall, it

is challenging to design a PTM system that insulates read-

ers from being affected by high NVM persistence overhead

while enforcing strong durability as well as avoids overly-

constrained persistence ordering simultaneously.

We notice that snapshot isolation (SI) [8, 12] can avoid

read-write conflicts and suffices for many real-world applica-

tions [6, 11, 26, 28, 33, 47, 48, 61, 68, 77], which makes

it possible to design a PTM that allows a transaction to

persist its log in its critical path (no sacrifice the durabil-

ity), while hiding the high persistence overhead from con-

current read operations. Multi-version concurrency control

(MVCC) [13, 28] is a common choice to achieve SI. We

observe that the (redo) logs which will be finally applied to

the durable data (old) can be regarded as a new data version,

which enables us to efficiently introduce MVCC to PTM.

However, after a deep analysis, we find that a straightfor-

USENIX Association 2019 USENIX Annual Technical Conference 913

ward MVCC-based PTM design not only brings high reader-

side overhead due to read-indirection problems (challenge-

1), i.e., locating the consistent objects in the version lists, but

also still leaves the readers affected by the NVM persistence

overhead (challenge-2). So, we further present Pisces, a read-

friendly PTM design that also embraces SI while solving the

above two problems and achieves both high read efficiency

and good scalability.

Specifically, Pisces proposes dual-version concurrency

control (DVCC) inspired by MVCC and scalable synchro-

nization primitives [18, 51, 54, 55], to solve challenge-1.

DVCC still avoids read-write conflicts and thus allows high

parallelism for transaction execution, but only keeps one or

two versions (using the log as the newer version) for each

data object, which minimizes the high cost for maintaining

multiple versions in NVM as well as searching in the version

lists. To solve challenge-2, Pisces hides the NVM persistence

overhead from readers through three-stage commit that sepa-

rates the durable point and the visible point of a (read-write)

transaction and minimizes the possible read-blocking time to

the duration of two DRAM stores. This blocking rarely hap-

pens since the possible blocking time is extremely short. A

transaction persists its logs (new versions for objects) into

NVM in a persist stage (durable) and makes its logs read-

able to other transactions in a following concurrency com-

mit stage (visible). Note that the potential blocking period

resides in the latter stage. Hence, the NVM persistence over-

head can be hidden from readers. Besides, a transaction ea-

gerly reclaims the old versions of objects and overrides them

with new versions in the last write-back stage, which is for

avoiding indirect reads. Furthermore, Pisces also enables

flush-diff (persist modifications only) to prevent excessive

NVM persistence operations and leverages group-commit to

reduce the overhead for write transactions.

In all, Pisces hides the NVM persistence overhead from

readers and promises almost non-blocking reads. Pisces guar-

antees snapshot isolation (a formal proof is also provided),

and promises crash consistency that can restore the system

to a consistent snapshot after crashes. In essence, Pisces ex-

plores a trade-off between isolation and performance by loos-

ening the isolation level for better performance.

We have implemented and evaluated Pisces on a 40-

thread machine. Evaluation results show that Pisces has a

notably higher throughput and better scalability compared

with the state-of-the-art design (i.e., DUDETM [49]). Specif-

ically, Pisces achieves up to 6.3× throughput improvement in

micro-benchmarks and can improve the throughput of TPC-

C new order transaction [24] and TATP benchmark [72] by

460% and 64%, respectively.

In summary, this paper makes the following contributions:

• An observation that redo logs can be used as newer

data versions and an intuitive MVCC-based PTM de-

sign with the observation. A careful analysis of the read-

inefficiency of the MVCC-based design.

• A first PTM with snapshot isolation (Pisces), which

leverages DVCC and three-stage commit to benefit read-

ers most.

• An implementation and evaluation on a real machine

with NVM that demonstrate Pisces’s efficiency and scal-

ability.

2 Background & Overview

Comparing with database transaction, Transactional memory

(TM) [38] ensures atomicity, isolation and consistency (ACI),

but lacks the important property of durability. However, the

emergence of non-volatile memory provides an opportunity

to equip TM with durability [44, 49, 56, 74, 76]. This section

first introduces the backgrounds of NVM and PTM, then pro-

vides an overview of our system.

2.1 Background

NVM. The recent release of Intel Optane DC Persistent

Memory [2] marks the transition of non-volatile memory

(NVM) technology from research prototypes to mainstream

products. NVM promises to provide fast data persistency. Ac-

cording to current studies [47, 79, 81], NVM has the fol-

lowing three features. First, most NVM designs are byte-

addressable. This is one major reason why we can di-

rectly replace DRAM with NVM. Second, NVM has close-

to-DRAM read latency, but about 10× write latency com-

paring with DRAM. For example, PCM’s write latency is

150∼1000ns and ReRAM’s is 500ns, while DRAM has only

60ns write latency [47, 79]. Third, special instructions [3] are

provided to help persist the data: 1). pflush (e.g., clwb) will

flush a cache line from CPU cache to NVM. 2). pfence (e.g.,

mfence) ensures all previous pflush instructions finish.

PTM. There are already various researches which build

Persistent Transactional Memory (PTM) systems by leverag-

ing NVM [21, 23, 44, 49, 56, 74]. However, most of them

focus on optimizing the persistence overhead [21, 44, 56, 74].

For example, Kamino-tx [56] removes the overhead of data

copy in a transaction’s critical path by maintaining a backup

of all the data. However, in these systems, an on-going write

operations usually block conflicting read operations to en-

sure the consistency. As a result, these read operations will

also suffer from NVM’s high write latency.

A state-of-the-art design, called DUDETM [49], tries to

address this issue with a decoupled PTM design: it temporar-

ily buffers the running transaction’s updates and its redo

log in DRAM, then a number of threads will flush the log

to NVM asynchronously. Furthermore, a dedicated thread

(named reproduce thread) will replay the log to apply the up-

dates to the persistent objects in NVM. However, once the

log buffer becomes full because the reproduce thread cannot

timely replay and clean the logs, the system needs to stall to

wait for the reproduce thread to catch up. To ensure the con-

sistency of the persistent state, the reproduce thread needs

to replay the operations in the log sequentially. As a result,

914 2019 USENIX Annual Technical Conference USENIX Association

the reproduce thread harms the system scalability. Figure 1-

(a) shows the scalability issue of DUDETM: its performance

can only scale up to 8 cores, after which the performance will

be bottlenecked by the reproduce thread.

 1

 10

1 10 20 30 40

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

Number of threads
 0

 1

 2

 3

 4

 5

 6

 7

Linked-list Hash table

N
o

rm
a

liz
e

d
 L

a
te

n
c
y

MVCC Design
Native

Fig. 1: (a) A hash table benchmark with 40% update rate. (b) A

comparison on read-only transaction latency.

2.2 Overview

Goal. Comparing with existing works, Pisces is a PTM sys-

tem with a read-friendly design, since lots of workloads us-

ing transactions are read-dominated [15, 19, 22, 30, 52, 63]:

for example, the read-write ratio in the update operation of

an 8 layer (8-15 keys per node) B+-tree is about 80:1; In

the TPC-E and TATP [25, 72] benchmarks, about 80% of the

transactions are read-only.

Strawman. Pisces is based on the intuition that snapshot

isolation (SI) [8, 12] is able to avoid blocking reads by con-

flicting writes. At the same time, SI is applicable not only to

database workloads [6, 11, 26, 28, 33, 47, 77], but also to TM

workloads [48, 61, 68]. For example, Lu et al. [53, 68] prove

that SI is enough to support a concurrent skip list. Thus, both

database and STM systems have begun to use SI to improve

concurrency [48, 61, 68].

However, is an intuitive SI implementation good enough to

achieve our goal, a read oriented PTM? To answer this ques-

tion, we implement a prototype system to provide SI based

on multi-version concurrency control. Each object maintains

a list of multiple versions and is identified by an ID. Each ver-

sion has a timestamp to indicate its committed point-in-time.

When a transaction starts, it sets a start timestamp based on

the global timestamp kept by the system. During execution,

to read an object, a transaction finds the most recent version

which has a smaller timestamp than the transaction’s start

timestamp by traversing the object’s list. For write, a trans-

action buffers updates in the write set and records the opera-

tion in a redo log. To commit its updates, a transaction first

acquires the locks of all objects it tries to update. Then it de-

tects write-write conflicts by checking the latest timestamp

of these objects. If any object’s latest timestamp is larger

than the transaction’s start timestamp, then the transaction

is aborted. After passing the validation, the transaction re-

trieves its commit timestamp and updates the global times-

tamp. Then, the transaction flushes its log and the commit

timestamp from CPU cache into the NVM, then flushes the

updates in the write set to the persistent objects in NVM. At

last, it releases all locks.

Issues. To analyze the efficiency of this design, we use it

to implement concurrent data structures and compare with

their native (single-threaded) implementations. Figure 1-(b)

shows the evaluation results: the intuitive design has consid-

erable overhead on read requests’ latency because of the fol-

lowing problems:

 …

S(6) T1 block

D D0D3 Object

 Time

A B C

A0 B1

B0

C0

ID

(a) (b) RD

 T2 commit phaseLD UD

Fig. 2: (a) An ordered linked list structure in our MVCC-based

PTM. Black arrows represent pointers in different version lists,

while the gray arrows indicate the pointers in the linked list. (b)

Read operations get blocked in MVCC.

First, traversing the multi-version list of each object in-

creases the latency. This is not only because a transaction

with small start timestamp may need to perform multiple

indirect memory accesses, but also because the random ac-

cesses may harm the cache locality and get blocked due to

the cache line being evicted to NVM. Figure 2 (b) gives a

simple example: if a transaction traverses this 3-object list, it

actually needs to traverse a much longer list which at least

contains three objects and three object IDs.

Second, read operations may still be blocked by the NVM

persist operations. Specifically, when a reader accesses an ob-

ject which is locked by a writer, the reader may be blocked

until the writer commits. The reason is the reader is not sure

if the writer will have a smaller commit timestamp than its

start timestamp or not. Unfortunately, the writer cannot com-

mit until it flushes all its logs into NVM and applies the up-

dates in its write set. Figure 2 (b) gives a simple example: T1

starts with timestamp 6. When it reads object D, it finds D is

locked by T2. Then, it has to be blocked, as T2 may update

D with a timestamp smaller than 6.

Basic idea. We develop Pisces to solve above issues based

on the following basic designs:

Dual-version concurrency control (DVCC). To reduce

the cost of traversing an object’s list, Pisces keeps up to

two versions for each object: original object and object copy.

When a transaction tries to write an object, it creates and

links a new copy to the original object. When the transaction

commits, it writes the object copy back to the original object.

Concurrent transactions update the same object exclusively

by acquiring a lock. Read transactions are able to directly ac-

cess either version based on their timestamps. Furthermore,

to reduce unnecessary NVM writes, we reuse the updates in

the redo log as object copy. However, the challenge to im-

plement DVCC is how to ensure an original object won’t be

overwritten when it may still be needed by some outstanding

USENIX Association 2019 USENIX Annual Technical Conference 915

transactions with smaller start timestamps.

Three-stage commit protocol. To reduce the blocking

overhead in the MVCC design, Pisces proposes a three-stage

commit protocol: the commit phase is divided into concur-

rency commit stage, and write-back stage. In the persist

stage, a transaction flushes its log into NVM. In the con-

currency commit stage, the transaction updates its end times-

tamp (commit timestamp) and the timestamps of all the ob-

ject copies in the redo log atomically. In the write-back stage,

the transaction writes all object copies back to their original

objects. By decoupling different functionalities of the com-

mit phase, Pisces allows nearly non-blocking reads. But the

challenge lies in how to atomically update both the end times-

tamp and the timestamps of object copies efficiently.

Limitation. The main limitation of Pisces is it only pro-

vides SI which does not work for all applications, and SI suf-

fers from the well-known write skew anomaly1 under certain

conditions. However, there is a long line of research [16, 33,

48, 53] on how to detect or eliminate write skew anomalies

for SI. Moreover, making SI serializable is also well stud-

ied [59, 64, 69, 75]. Leveraging these techniques to provide

a stronger isolation level is future work. Currently, careful

programming on Pisces is required.

3 Design

next (lock)

object

content writer

copy

content

source

persistTS
startTS

endTS

log
other

copies

the original object
home location

(NVM)

tx log
(NVM)

tx info (DRAM)

status

inCritical

Fig. 3: The memory layout of an object, per-transaction log and per-

thread metadata. Arrows represent pointers.

Layout. Figure 3 shows the memory layout of three crit-

ical components (data object, per-transaction log and per-

thread metadata) in Pisces. Pisces attaches each object with

a pointer (named next and initialized as 0) which may point

to a next version of this object and is also used as a write

lock that needs to be exclusively acquired by a writer. Pisces

pre-allocates log area for each thread and each transaction

gets its log from the log area of the execution thread when it

begins. Pisces also keeps per-thread metadata to record the

metadata of the running transaction in each thread (a thread

executes at most one running transaction at a time). Object

copies as the next (newer) versions of objects reside in the

transactions’ log and each object copy contains two pointers.

One is named as source and points to the original object. The

other is named as writer and points to the running transaction

that owns this log (creates this copy).

1A typical write skew example is: One transaction reads A and writes B

while another concurrent transaction reads B and writes A.

For the challenges mentioned in the above section, we

provide simple but efficient solutions accordingly: First, to

prevent an original version from being falsely overwritten,

we leverage an RCU-similar design (grace period detection)

to block the writer in the write-back phase until the origi-

nal version in home location is safe to be overwritten. Note

that the blocking time will not be exposed to readers. Sec-

ond, to atomically update a transaction’s end timestamp and

each copy’s version timestamp in an efficient way, we do not

explicitly maintain the version timestamp for each copy. In-

stead, each copy contains the writer pointer and reuses the

transaction’s end timestamp as its version timestamp. As a

result, atomicity is guaranteed by simply updating the end

timestamp of the write transaction. Next, we discuss the de-

tails about the algorithm whose pseudo code is provided in

Algorithm 1 and the correctness argument.

3.1 Algorithm

TM_Start begins a transaction. A transaction marks its status

as ACTIVE first, executes a fence instruction and reads the

global timestamp (globalTS) as its start timestamp (startTS).

The fence instruction ensures line 2 is executed before line 4.

TM_Read returns a pointer for reading an object. It first reads

the value of next pointer in the original object and returns

the original object directly if next is zero. This is the fast

path: accessing the pointer located just before the object in-

troduces nearly-zero overhead because the CPU will prefetch

adjacent cache lines. If next is non-zero, which means there

exists an object copy, TM_Read returns the object copy when

it is created by the current transaction (line 12) or its version

is no greater than the current transaction’s start timestamp

(line 15). There is only one rare case in which TM_Read

needs to wait (line 14). We discuss this later when introduc-

ing TM_Commit.

TM_Write returns a pointer for writing an object. A trans-

action can directly write a copy created by itself (line 21

to 23). When writing an object for the first time, a transac-

tion reserves an area for the object copy in its log and tries

to acquire the object’s write lock (i.e., next pointer) with a

compare-and-swap instruction (line 25). If fails to lock, the

transaction aborts and restarts after a random delay, which

also avoids deadlocks. Otherwise, it copies the original ob-

ject’s content to the object copy and can directly read or write

the copy now. Pisces makes copies (redo log) at object gran-

ularity, which mitigates the read-indirection problem of redo

logging at byte granularity. Pisces chooses encounter-time

locking to detect conflicts early and thus can avoid unneces-

sary NVM writes. Also, an object’s write lock ensures that it

can only be updated sequentially.

TM_Commit always successfully commits a transaction. A

transaction marks its status as INACTIVE, indicating it no

longer reads any object. It commits directly if it is a read-only

transaction. A read-write transaction needs to go through

916 2019 USENIX Annual Technical Conference USENIX Association

Algorithm 1: Pseudo code of Pisces

1:Function TM_START(tx)
2: tx.status = ACTIVE
3: fence
4: tx.startTS = globalTS
5: tx.endTS = INF

6:

7:Function TM_READ(tx, p_obj)
8: next = p_obj.next

9: if next is EMPTY then
10: return p_obj // fast path

11: wtx = next.writer

12: if wtx is tx then
13: return next

14: wait until wtx.inCritical is FALSE
15: if wtx.endTS ≤ tx.startTS then
16: return next

17: else
18: return p_obj

19:

20:Function TM_WRITE(tx, p_obj)
21: if p_obj.next is NON-EMPTY
22: and p_obj.next.writer is tx then
23: return p_obj.next

24: copy = tx.log.alloc(p_obj)
25: copy.writer = tx

26: if CAS(p_obj.next, EMPTY, copy) fails then
27: abort()

28: copy.source = p_obj
29: memcpy_content(copy, p_obj) // p_obj -> copy
30: return copy

31:

32:Function TM_COMMIT(tx)
33: tx.status = INACTIVE
34: // stage 1: persist stage

35: if tx.log is EMPTY then
36: return

37: pflush(tx.log)
38: pfence
39: tx.log.persistTS = globalTS
40: pflush(tx.log.persistTS)
41: pfence
42: // stage 2: concurrency commit stage
43: tx.inCritical = TRUE
44: fence
45: tx.endTS = globalTS + 1
46: tx.inCritical = FALSE
47: AtomicInc(globalTS)
48: // stage 3: write-back stage
49: WRITEBACK(tx)

50:

51:Function WRITEBACK(tx)
52: while exists an ACTIVE transaction t do
53: if t.startTS < tx.endTS then
54: wait

55: for each copy in tx.log do
56: memcpy_content(copy.source, copy)
57: pflush(copy.source.content)
58: copy.source.next = EMPTY

59: pfence // not necessary for correctness

three stages. In the persist stage, a transaction persists2 all

the object copies in its log into NVM (line 37-38). After

that, it retrieves the value of the global timestamp as its log’s

persist timestamp (line 39) and makes the persistTS persis-

tent (line 40-41). The pfence instruction in line 38 guaran-

tees the log’s content reaches NVM before its persistTS, and

the pfence instruction in line 41 ensures both the log and its

persistTS reaches NVM. A checksum can be appended to

reduce the two fences to one [65]. A transaction’s updates

become durable once its persistTS reaches NVM (durable

point). After a crash, a recovery procedure will replay trans-

actions according to the redo logs and in persistTS order.

In the concurrency commit stage, the transaction updates

its timestamp atomically by updating the 64 bit endTS with

the globalTS (line 45). A boolean flag inCritical is used to

protect this update to make sure the updated endTS is even-

tually visible to concurrent reads. For example, T1 may read

the globalTS and update its endTS. However, the updated

endTS may be kept in the CPU store buffer and waits to be

flushed to CPU cache. As a result, a concurrent transaction

T2 whose startTS is not less then T1’s endTS may fail to ob-

serve T1’s update. With the inCritical flag, T1 will be blocked

until inCritical is disabled before it tries to read T2’s endTS

(line 14, 15). This ensures T2’s updates on endTS is even-

tually visible to T1. As TSO architecture may reorder read-

/write instructions, one fence3 (line 44) is needed to ensure

the execution order of line 43 and 45.

In the write-back stage, the transaction first waits for all

active transactions whose startTS is less than its endTS to

finish (line 52-54). This period actually is the grace period.

It avoids falsely overwriting an original object which may

be needed by transactions with small startTS. Because after

this period, all threads are either in an inactive state (not exe-

cuting transactions) or executing transactions with a startTS

larger than the original object’s timestamp. Therefore, the

original object is dead which means it is no longer needed

by any transactions. At the same time, this period also helps

to detect write-write conflicts. Considering another conflict-

ing transaction with smaller startTS, but access the same ob-

ject after this transaction. This transaction will be blocked at

the write-back stage and cannot release the lock. So, the con-

flicting transaction will abort since it fails to acquire the lock

when accessing the object (line 26). At the end of the write-

back stage, it writes each next object to the original object

(line 56-57) and releases locks by clearing next fields (line

58).

Programming: Each transaction should be surrounded

by TM_Start and TM_Commit. For reading/writing an ob-

ject, it first uses TM_Read/TM_Write to achieve the ob-

2In the current implementation on Intel CPU, Pisces uses clwb to flush

cacheline and MFENCE to ensure previous flushed cachelines reach NVM.
3Currently, Pisces uses MFENCE [3] instructions which ensures the

CPU store buffer is always drained besides serializing load and store op-

erations.

USENIX Association 2019 USENIX Annual Technical Conference 917

ject pointer and then directly accesses that object with the

pointer. Pisces also offers helper functions (TM_Read_Field

and TM_Write_Field) to ease programming.

3.2 Log Recycle

Pisces stores logs in per-thread ring buffers and lets each

thread recycle its own logs. Generally speaking, there are two

principles for log recycle in Pisces for snapshot isolation and

crash consistency, separately.

0A

T1

1A

1B

1

T1 Stage2

1A

T1

1B

1A

1B

1

…
1A

T2

1B

3A

3

T1

1A

1B

3A

T2

1B

3A

3

T1

1A

1B

R
C
U

R
C
U

0B

T1 Stage3 T2 Stage2 T2 Stage3

Fig. 4: T1 and T2 are two read-write transactions in one thread. T2

happens after T1. Colored rectangles represent transactions’ logs.

P-1: A transaction log can only be recycled after all the

copies in it are dead. A transaction creates new versions

of objects in its log and exposes them to other transactions.

As shown in Figure 4, after a transaction T1 writes the new

versions back to the original objects, it is possible that the

transaction’s log is still required. For example, another trans-

action can read T1’s log if it starts before T1 unlocks the

objects and its startTS is no smaller than A’s endTS. So,

a transaction will not reclaim its own log. Instead, when a

following read-write transaction (T2) finishes, the execution

thread marks the log of the previous read-write transaction

(T1) as reclaimable. Similar to how RCU grace periods can

help safely overwriting original objects, the end of the grace

period in T2’s write-back stage can ensure other transactions

no longer access T1’s log. Specifically, the end of this grace

period ensures (recall line 52-54 in Algorithm 1): previous

transactions that may access A1 and B1 in T1’s log due to

smaller startTS are finished. Therefore, Pisces guarantees all

the copies in a log are dead before recycling the log, which

achieves P-1.

P-2: A transaction log can only be recycled no earlier than

all the logs with smaller persist timestamps are recycled. Sup-

pose a transaction A updates an object before another trans-

action B. If B’s log is recycled before A and a crash happens,

B’s updates will lose after recovery because A will be redone

according to its log. To enforce P-2, Pisces uses an epoch-

based mechanism for recycling logs. It logically distributes

logs to epochs according to their persist timestamps. First,

an execution thread marks a transaction’s log as reclaimable

through recording the transaction’s persist timestamp as the

thread’s reclaim timestamp (a per-thread variable). Second,

an execution thread will atomically advance the global epoch

when it finds that all the threads’ reclaim timestamp exceeds

the current global epoch. Once the global epoch increases,

the logs belong to the previous epoch are no longer required,

and the corresponding log area can be reused.

3.3 Proof Sketch of Snapshot Isolation

A formal proof can be found in [1]. According to the speci-

fication of snapshot isolation [8], we prove Pisces is correct

by proving the following two theorems are correct.

THEOREM 1 (SNAPSHOT WRITE).

If two transactions update the same object, then one trans-

action’s start TS (short for timestamp) should be greater than

another’s end TS.

PROOF. Based on the fact that, because of locking (line 26,

58), the conflicting transactions update the same object se-

quentially, we only need to prove the latter’s start TS is al-

ways larger than the former’s end TS. Pisces ensures this in-

variant by aborting the latter one when it gets a smaller (ille-

gal) start TS: let’s assume both of Ti and T j access object x

and Ti is before T j . If T j’s start TS is smaller than Ti’s end

TS, Ti will be blocked by the active T j at the write back phase

(line 52-54). T j must be active because, by the assumption,

it will access x after Ti. Thus, when T j accesses x, it will find

the lock is held by Ti and abort itself.

Before giving Theorem 2, we first define the TS of an ob-

ject as the end TS of its last writer.

THEOREM 2 (SNAPSHOT READ).

If a transaction Tr reads an object x with timestamp TSx,

then: 1) Tr’s start TS is not less than TSx; and 2) There does

not exist a transaction Tw that updates x and its end TS is

larger than TSx, but not greater than Tr’s start TS.

PROOF. To prove Pisces holds the first invariant, we show

that the x’s copy returned by TM_READ must be committed

by a transaction whose end TS is not greater than Tr’s start

TS. First, considering the case TM_READ returns x’s origi-

nal version (line 10, 18). On the one hand, Pisces ensures that,

when Tr starts, all objects’ original versions have timestamp

which is not greater than Ti’s start TS. On the other hand,

Pisces also forbids any transaction whose end TS is greater

than Ti’s start TS to overwrite the original version (line 52-

54). Next, we consider the case that TM_READ returns x’s

the next version (line 13, 16). Pisces ensures the invariant by

adding an extra constraint that the writer’s end TS must be

not greater than Tr’s start TS (line 15). 4

Instead of directly showing Pisces holds the second invari-

ant, we prove a variant: if Tw’s end TS is not larger than Tr’s

start TS (assumption), then it is also not larger than TSx. By

the assumption above, we can have Tr starts (line 4) after

Tw reads the global TS in commit phase (line 45). Now, let’s

consider two cases: 1). Tr reads x before Tw unlinks the next

version from the object (line 58). Thus Tr is able to get the

next version updated by Tw. Because the TSO architecture

does not reorder the updates/reads on endTS and inCritical

in TM_COMMIT/TM_READ, thus if Tr finds Tw’s inCriti-

cal is false then it must be able to observe Tw’s endTS. As a

4The detail proof of the consistency between the next copy and its writer

pointer can be found in [1].

918 2019 USENIX Annual Technical Conference USENIX Association

result, Tw’s end TS should be equal to TSx 2). Tr reads x after

Tw writes back and unlinks the next copy. For this case, Tr

will read the version committed by Tw or the transaction ac-

cessing x after TSw. Then, we can have TSx that must be less

than Tw’s end TS by simply deriving from Theorem 1.

3.4 Crash Consistency

A recovery procedure will start after a crash and redo the

durable transactions in a non-decreasing order of their logs’

persistTS. The recovery time is affected by the length of the

log which is decided by the log recycling frequency. By de-

fault, each execution thread in Pisces tries to recycle the logs

after executing 3 (the default threshold) read-write transac-

tions, so Pisces does not suffer from a high recovery cost.

Also, Pisces provides a persistent allocator based on SSMal-

loc [50], which can recover the allocation information.

The key to ensuring crash consistency is that dependent

transactions are (i) persisted and (ii) redone (after a crash) in

the correct order that corresponds to their commit order. Two

transactions are dependent if the read set or write set of the

subsequent one overlaps with the write set of the previous

one. In this subsection, we explain how Pisces achieves both

(i) and (ii).

Achieving (i): Pisces guarantees the persistence ordering

of dependent transactions by deferring the visibility of the

updates of a transaction. Specifically, a transaction reaches

its durable point (the end of persist stage) before it is visible

(the end of concurrency commit stage). If transaction B ob-

serves (depends on) transaction A’ updates (visible), A must

already be persisted (durable). So, the persistence ordering of

two dependent transactions must correspond to their commit

order, as shown in Figure 5.

<persistTS endTS endTS<< persistTS

A.persist A.visible B observes A B.persist B.visible

Fig. 5: Transaction B depends on A. Arrows mean happen-before.

Achieving (ii): On one hand, Pisces guarantees that if a

transaction B depends on another transaction A, B’s persist

timestamp must be greater than A’s (see Figure 5). On the

other hand, Pisces’s recovery procedure redoes the transac-

tions’ logs in a non-decreasing order of their persist times-

tamps after a crash. Therefore, transaction B that depends

on A will be redone after A, which also corresponds to their

commit order (B’s endTS is greater than A’s.) Besides, in-

dependent transactions that have the same persist timestamp

can be redone in any order.

4 Optimizations

Flush-diff. Creating redo logs in the granularity of whole ob-

jects can avoid searching for new values in the address-value

pairs. But it is quite expensive when the modification to an

object is much smaller than the object size because the whole

log (entire copy) has to be persisted into NVM. Therefore,

we give an optimization named flush-diff that only persists

the modifications. A transaction creates the object copies

in DRAM instead of NVM and only records the updates

(address-value pairs) in NVM. In the first commit stage, a

transaction only needs to flush those updates into NVM; In

the second commit stage, it lets the in-DRAM object copies

(new versions) become readable; In the third commit stage,

it only needs to apply the logged updates to the original ob-

jects in the NVM. Therefore, flush-diff can still embrace the

advantage of logging a whole object (i.e., directly read/write

the copy without the overhead of indirection) by keeping the

volatile object copy in DRAM, and significantly reduce the

amount of NVM persistence operations.

It is worth mentioning that DRAM footprint in Pisces is

limited and not related to the amount of NVM in use. This is

because Pisces only temporarily buffers the new object ver-

sions in DRAM and timely recycles the transactions’ logs.

Therefore, the DRAM needed for flush-diff is only related to

the working set size of the transactions whose newly created

copies may still be referenced.

Group Commit. Pisces chooses to eagerly write a new ver-

sion back to an object’s home location, which is for benefit-

ing readers but makes the last commit stage for write transac-

tions heavier. As mentioned in Section 3.1, a read-write trans-

action uses the RCU-like waiting mechanism to overwrite

the objects in the home location. Besides, it is also costly to

update globalTS with atomic instruction like fetch_and_add

in a high-contention workload.

To amortize the overhead of both RCU reclamation and

updating globalTS, Pisces batches and commits several write

transactions together. An execution thread delays the com-

mitment of a write transaction till the number of pending

transactions (wait for commit) reaches a threshold or another

transaction needs to update the same object with T. Then, the

thread commits the pending transactions together, i.e., exe-

cute RCU mechanism and update the globalTS for one time.

Thus, the overhead is amortized by these transactions.

5 Evaluation

5.1 Experimental Setup

Basic Setup. We conduct the experiments on a server pro-

vided by Intel. The server has two sockets, each containing

a 10-core Intel Xeon Gold 5215M CPU, 128GB DRAM and

128GB Intel Optane DC Persistent Memory (NVM). We en-

able hyper-threading and bind each software thread to each

hyper-thread (40 hyper-threads in all) that runs at 2.5GHz.

The Linux kernel version is 4.19.32, and the GCC version is

8.3.1. Without an explicit statement, we use clwb instructions

to persist data into NVM.

System for Comparison. DUDETM [49] maps persistent

data in NVM to DRAM and uses TinySTM [35] which is a

word-based STM to execute transactions in DRAM. A trans-

action only needs to write logs in a per-thread volatile log

USENIX Association 2019 USENIX Annual Technical Conference 919

buffer, and the background persist threads flush these volatile

logs into persistent log buffer. DUDETM also requires an-

other reproduce thread to write logs back to the persistent

data. When evaluating DUDETM, we set the size of pre-

allocated DRAM area the same as pre-allocated NVM area

to make it able to cache all the NVM data in DRAM, which

avoids the potential high overhead of page swapping. The

volatile log buffer for each thread can hold 1 million log en-

tries (default configuration), and we double the default size of

persistent log buffer to make it able to hold 32 million log en-

tries. In all the experiments for DUDETM, we wait for only

foreground threads and not for background threads to finish.

Thus, the committed transaction may be not durable yet. Be-

sides, the background threads are not counted into the thread

number. Currently, DUDETM does not implement multiple

background persistent threads, but the support can be added

without changing its design. However, the background repro-

duce thread needs to replay transactions’ logs according to

the unique transaction ID, i.e., a total order (hard to utilize

multi-threading), which will become the bottleneck in some

scenarios. To avoid the single persist thread becoming the

bottleneck in the experiments, we allocate the persistent log

buffer (should be in NVM actually) in DRAM.

Benchmarks. Generally speaking, to develop SI-safe appli-

cations, programmers need to analyze whether write skew

anomalies may happen in some cases and then avoid the

potential anomalies through making write-write conflicts in

such cases. We manually ensure the presented benchmarks

are SI-safe. referring to [48, 53, 54]. For examples, a transac-

tion on a linked list (used in the following hash tables) adds

all the modified nodes including the nodes to be removed into

its write set in which each node object will be locked before

updated; a transaction on the following tree structures tra-

verses from the root node to some node in one way and also

adds all the to-be-modified nodes into its write set.

5.2 Micro-benchmarks

Hash Table. Each hash table contains 10K buckets (imple-

mented as linked lists) and initially contains 100K key-value

pairs. We create different numbers of threads to execute

search and insert/remove transactions. Figure 6 presents the

evaluation results with various update rates. Note that the y-

axis uses log-scale. Every test runs 30 seconds.

When the update rate is low, such as 0% and 2%, both

Pisces and DUDETM scale well. Although Pisces’s read-

only transactions may load data from NVM when the data

does not reside in CPU cache, they are still faster than that in

DUDETM. It is because DUDETM requires a software page

table mechanism for translating NVM addresses to DRAM

addresses and validation for read operations. Different from

DUDETM which incurs software overhead for read opera-

tions, Pisces embraces a read-friendly design, and thus its

throughput is much higher and grows faster.

When the update rate is 20%, Pisces still scales well within

 1

 10

 100

 0 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

)

Number of threads

Hash table 0% update

Pisces
DUDETM

 1

 10

 100

 0 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

)

Number of threads

Hash table 2% update

 1

 10

 100

 0 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

)

Number of threads

Hash table 20% update

 1

 10

 100

 0 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

)

Number of threads

Hash table 40% update

Fig. 6: The throughput of hash table (8-byte key and 64-byte value)

at various update rates (legends in the first figure).

20 threads, i.e., a single NUMA (non-uniform memory ac-

cess) node. The throughput of Pisces increases from ∼1.9

Mops/s to ∼26 Mops/s when the thread number increases

from 1 to 20. However, there is an obvious performance

drop when the thread number changes from 20 to 22. The

main cause is cross-NUMA memory accesses. First, a global

timestamp is updated in read-write transactions in Pisces,

and a large number of read-write transactions incur high con-

tention on that timestamp. Second, the grace period detec-

tion is another overhead for the read-write transactions, and

its cost can be enlarged by frequent remote memory accesses.

Recall that Pisces uses the RCU/RLU grace period detection

mechanism (line 52-54 in Algorithm 1) to avoid overwriting

in-use objects’ versions. Therefore, while the total through-

put of Pisces still grows as the thread number increases from

22 to 40, the growth speed is much slower than that within a

single NUMA node.

The throughput of DUDETM grows from ∼1.5 Mops/s

to ∼15 Mops/s as the thread number increases from 1 to

16. However, DUDETM’s throughput cannot keep growing

or even decreases a little when the thread number becomes

larger. The reason is that the background threads fails to

timely clean up the logs of transactions. Note that the repro-

duce thread has to modify the persistent objects according

to the logs in the order of transaction execution, and make

the modifications persistent with cacheline flush instructions.

In contrast, Pisces lets each execution thread to persist and

write-back the transactions’ logs, which can better utilize the

NVM write bandwidth.

Table 1: The average cost of a read-write transaction and one grace

period detection in Pisces’s hash table. The update rate is 40%.

#Thread 10 20 30 40

RW TX Latency (cycles) 2902 3986 7180 8496

Grace Period (cycles) 357 790 1689 2140

The performance of DUDETM and Pisces at 40% update

rate shows similar trends with those at 20% update rate. Nev-

920 2019 USENIX Annual Technical Conference USENIX Association

 1

 10

 100

 0 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

)

Number of threads

B-tree 0% update

 1

 10

 100

 0 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

)

Number of threads

B-tree 2% update

 1

 10

 100

 0 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

)

Number of threads

B-tree 20% update

 1

 10

 100

 0 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

)

Number of threads

B-tree 40% update

Pisces
DUDETM

DUDETM-ideal

Fig. 7: The throughput of B+-tree whose node size is 256 bytes with

various update rates (legends in the last figure).

ertheless, the throughput of DUDETM only grows within 8

threads because a higher update rate means more read-write

transactions (generate more logs and fill the log buffer ear-

lier). For Pisces, the growth speed of throughput becomes

lower when the thread number exceeds 20. As presented in

Table 1, the cost of grace period increases as the thread num-

ber increases. The reason is one thread has to check other

threads’ status for detecting the grace period.

In the case of 40 threads, Pisces’s throughput is about

1.8× and 2.7× of DUDETM’s when the update rate is 20%

and 40%, respectively. And, its persistency cost is 19% at

40% update rate. Besides, the abort rates of both Pisces and

DUDETM (if no blocking) are nearly zero since the hashing

mitigates the contention among different threads. However,

DUDETM’s abort rate increases (up to 9%) if blocking hap-

pens because a thread may get blocked with holding locks.

We also evaluate the hash table with an occupancy of 0.75,

i.e., 10K buckets and 7.5K key-value pairs. The evaluation

results show similar trends. Specifically, at 20% update ra-

tio, the throughput of DUDETM grows from ∼3.3 Mops/s to

∼15.9 Mops/s as the thread number increases from 1 to 16.

As before, its throughput cannot grow when the thread num-

ber is larger than 16. Pisces’s throughput grows from ∼2.7

Mops/s to ∼35.9 Mops/s as the thread number increases

from 1 to 20. Nevertheless, when the thread number is 1 or

2, DUDETM has a higher throughput than Pisces for two

reasons: first, DUDETM leverages extra CPUs (background

threads) for persisting data; second, each transaction reads

fewer data due to lower occupancy, which mitigates the ben-

efits of read-friendly design in Pisces.

B+-tree. We construct B+-trees in which each node contains

at most 16 children and randomly insert about 1 million key-

value pairs at the beginning of each test. Figure 7 shows the

evaluation results of executing search and insert transactions

(an insert transaction will modify the target key-value pair if

the pair already exists) on B+-trees. Each transaction goes

down from the root node to some leaf node. For an insert

transaction, before going down to some node, it first checks

if the node is full. If the node is full, it splits the node for

creating space. Since we only implement delete operations

as marking the target node as deleted, we run every test for

10 seconds in case the trees get too large.

Similar to the results of hash table benchmark, both Pisces

and DUDETM can scale well to 40 threads when the up-

date rate is low such as 0% and 2%, because the number of

NVM writes is small. Owing to the read-friendly designs,

Pisces shows a better performance than DUDETM. Never-

theless, the performance gap between Pisces and DUDETM

decreases when the update rate changes from 0% to 2% be-

cause Pisces synchronously persists data into NVM while

DUDETM hides the persistence overhead through asyn-

chronously persisting the data in the background.

At 20% update rate, DUDETM’s throughput is almost the

same as Pisces’s when there is a single execution thread.

However, DUDETM can only scale to two threads while

Pisces has much better scalability. The scalability issue of

DUDETM arises earlier in B+-tree benchmark than in hash

table benchmark because the read-write transactions in B+-

tree generates more log and thus burden the reproduce thread

more. Enlarging the size of log buffer can mitigate/hide the

problem to some extent but cannot eliminate/solve this prob-

lem. At 40% update rate, DUDETM actually outperforms

Pisces when the thread number is 1. However, its scalability

issue gets worse because of the higher update rate.

At 40% update rate, DUDTEM’s throughput grows from

763 Kops to 1370 Kops as the thread number increases from

1 to 40. The reason is each execution thread has one volatile

log buffer. Therefore, the total throughput grows a little when

adding more threads (more buffer). Nevertheless, longer run-

ning time will further flatten the throughput.

To clearly show that the reproduce thread blocks the exe-

cution threads and restricts the overall performance, we also

evaluate the performance of DUDETM-ideal in which the

background reproduce thread directly marks the persistent

log area as free without writing back the logs in it to per-

sistent objects in NVM. In fact, DUDETM-ideal emulates

the performance of DUDETM with an infinite persistent log

buffer. As shown in the last sub-figure in Figure 7, DUDETM-

ideal scales very well to 38 threads. The reason for the per-

formance drop in 40 threads is the total thread number (40 ex-

ecution threads together with 2 background threads) exceeds

the hardware thread number (40 hyper-threads). Since the

only difference between DUDETM-ideal with DUDETM is

whether the background reproduce thread really flushes data

to NVM, we can conclude the centralized reproduce thread

severely harms the system’s scalability.

When the update rate is 20% or 40%, the throughput of

Pisces almost keeps growing as the thread number increases

to 40. And, the persistency cost is 36% at 40% update rate.

The NUMA problem in B+-tree is less severe than that in

the hash table since the total throughput is lower in B+-tree

USENIX Association 2019 USENIX Annual Technical Conference 921

Table 2: The average cost of a read-write transaction and one grace

period detection in Pisces’s B+-tree. The update rate is 40%.

#Thread 10 20 30 40

RW TX Latency (cycles) 9,374 12,024 15,210 16847

Grace Period (cycles) 1,162 2,021 2,915 3528

(less read-write transactions). Nevertheless, the performance

growth speed still becomes slower when the thread number

exceeds 20. Table 2 presents the cost of grace period detec-

tion in Pisces’s B+-tree.

5.3 Real-world Benchmarks

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t
(K

o
p

s
/s

)

Number of threads

(a) TPCC

Pisces
DUDETM

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

)

Number of threads

(b) TATP

Pisces
DUDETM

Fig. 8: (a) TPC-C new-order transactions and (b) TATP.

We also evaluate macro-benchmarks (i.e., TPC-C and

TATP) which are tested in DUDETM. Besides, we fur-

ther evaluate Pisces and DUDETM on kmeans, ssca2, and

vacation which are popular transactional memory bench-

marks [57, 58].

TPC-C. TPC-C is an online transaction processing (OLTP)

benchmark. We implement its new-order transaction [24]

with B+trees whose nodes contain at most 32 children as the

tables. In this experiment, each execution thread works on

its corresponding warehouse and executes new-order transac-

tions (the update rate is 100%). On average, each transaction

involves inserting over 10 new objects into different tables as

well as modifying over 10 existing objects, which generates

much more logs than the transactions in the previous micro-

benchmarks.

Figure 8-(a) gives the evaluation results. Since there

is no conflict among transactions from different execu-

tion threads, the throughput of Pisces continues to grow

with the increase of thread number. There are no transac-

tion aborts in this experiment for Pisces. For fairness, we

also modify the TinySTM used by DUDETM (enlarge the

LOCK_ARRAY_LOG_SIZE) to avoid false sharing of ad-

dress locks and reduce the abort rate in DUDETM to zero.

However, the throughput of DUDETM at 40 threads is only

twice of that at 1 thread.

The evaluation results clearly demonstrate that Pisces

utilizes the NVM bandwidth in a much better way than

DUDETM. A centralized log-reproducing thread can hardly

catch up with the progress of multiple execution threads.

So the execution threads fill the log buffers in DUDETM.

Once the log buffers are full, all the execution threads are

blocked, and then the whole system’s progress relies on the

background log-reproducing thread. Instead of flushing data

to NVM in a centralized way, Pisces lets each thread make

the transactions’ persistent and thus allows more parallelism

in the NVM persistence operations. Since NVM device can

serve the memory operation requests from different CPUs at

the same time, the throughput of Pisces grows from ∼28 Kop-

s/s to ∼252 Kops/s as the thread number increases from 1 to

40. The NVM hardware bandwidth limit is still not reached,

inferred from the growth in throughput.

Compared with DUDETM, Pisces can achieve about 4.6×

speedup when the thread number is 40. And, the persistency

cost is about 50%.

TATP. TATP benchmark [72] is another OLTP application.

We implement three read-only transactions and three read-

write transactions of it. We use the same B+Tree in the TPC-

C experiments as the data structure of tables, set the update

ratio to 18% and initialize the population size to 200,000.

Different from the new-order transactions in TPC-C, the

read-write transactions in TATP are much smaller. For ex-

ample, the update-location transaction that occupies 14% of

the total transactions only update one single existing object.

So, each TATP read-write transaction involves less NVM

writes than TPC-C transactions and even less than the B+-

tree micro-benchmark in which most read-write transactions

insert a new object. Thus, DUDETM can scale to 22 threads.

However, its scalability issue still comes up when the thread

number gets larger.

For Pisces, the throughput grows from ∼0.7 Mops/s to

∼14 Mops/s as the thread number increases from 1 to

40. Pisces’s peak performance is about 64% higher than

DUDETM’s. And, the persistency cost is 26%. The NUMA

issue also appears in this benchmark. The RCU grace period

detection cost is higher if the total throughput of read-write

transactions is higher because of the higher (cross NUMA

nodes) cacheline contention (i.e., checking other thread’s sta-

tus). This is also why the NUMA issue is not obvious in the

TPC-C benchmark. The NUMA issue also leads to a slower

growth speed of the throughput after the thread number ex-

ceeds 20.

TM Applications. Referring to [7], we implement and

evaluate kmeans, ssca2, and vacation in both Pisces and

DUDETM. Currently, we only persist data that are surround-

ed/protected by TM interfaces.

Table 3: The execution time of kmeans (shorter is better).

#Threads 1 2 4 8 16 32

DUDETM (s) 5.5 5.0 3.8 2.6 0.25 0.54

Pisces (s) 3.2 2.4 1.3 0.8 0.7 1.2

Kmeans is a machine learning application and this exper-

iment test it with low contention and medium data set. Ta-

ble 3 shows the execution time. In this benchmark, both

DUDETM and Pisces scale to 16 threads. However, there is a

performance drop for both systems when the thread number

922 2019 USENIX Annual Technical Conference USENIX Association

increases from 16 threads to 32 threads, because they both

suffer from high abort rates (84% for DUDETM and 77%

for Pisces). The performance of Pisces is also bottlenecked

by grace periods’ cost which is enlarged by NUMA. It is also

worth mentioning that the foreground threads in DUDETM

get blocked by full volatile logs (slow background threads)

when the thread number is less than 8. As a result, DUDETM

has an obvious performance improve when the thread num-

ber increases from 8 to 16. For the same reason, DUDETM

performs worse than Pisces with no more than 8 threads.

When there are more than 8 threads, DUDETM has better

performance than Pisces because the foreground threads in

DUDETM neither need to persist write transactions nor get

blocked by background threads.

In this benchmark, with the increase of thread number,

foreground threads in DUDETM are less likely to get

blocked by the reproduce thread. The reason is that kmeans

evenly distribute a specific amount of work to the foreground

execution threads and thus each thread executes less transac-

tions when there are more threads. Specifically, to finish this

benchmark, all the threads need to commit 1M transactions

in total and generate 40M log entries. When the thread num-

ber is more than 16, the foreground threads in DUDETM

do not get blocked since each of them has a volatile buffer

with 1M log entries. Nevertheless, when testing with large

data set (10M transactions and 400M log entries), the fore-

ground threads in DUDETM still get blocked when there are

32 threads.

Table 4: The execution time of ssca2 (shorter is better).

#Threads 1 2 4 8 16 32

DUDETM (s) 17.2 13.1 12.0 11.6 9.3 9.3

Pisces (s) 18.8 13.8 8.4 5.4 3.6 3.7

Scalable Synthetic Compact Applications (ssca2) simu-

lates the computation on graphs. Table 4 gives the evalua-

tion result of ssca2 with medium data set (218 nodes). Differ-

ent from kmeans, ssca2 involves a larger number of transac-

tions and DUDETM cannot scale well since the background

reproduce thread cannot timely consume the logs. So for

DUDETM, 32 threads cannot finish this benchmark faster

than 16 threads since the execution threads get blocked. Nev-

ertheless, if evaluating ssca2 benchmark with the small data

set (213 nodes), DUDETM can scale well but the perfor-

mance of Pisces also gets much better.

Pisces scales better than DUDETM in this benchmark.

However, the execution time of Pisces is longer than that

of DUDETM when the thread number is 1 and 2. This is

because foreground threads in DUDETM do not make the

transactions’ updates persistent, and we only calculate the

runtime of the foreground threads. Similar to previous ex-

periments, Pisces suffers from NUMA problem again. Since

the throughput in this benchmark is high (executes ∼11M

transactions in total) and the update rate is 100%, the NUMA

problem is more severe and thus causes the performance to

drop when threads number changes from 16 to 32.

Table 5: The execution time of vacation (shorter is better).

#Threads 1 2 4 8 16 32

DUDETM (s) 10.0 5.2 2.5 1.2 0.8 0.4

Pisces (s) 8.2 4.7 2.7 1.6 0.9 0.6

Vacation is an OLTP system which emulates a travel reser-

vation system. The vacation benchmark has 100% update ra-

tio, and each transaction has bigger read/write sets. We use

hash tables to implement tables in the benchmark. Table 5

shows the evaluation result of this benchmark with medium

data set and low contention.

As shown in Table 5, the execution time of both DUDETM

and Pisces decreases as the thread number increases in this

benchmark. In the case of 1 and 2 threads, Pisces performs

better than DUDETM. The reason is that DUDETM intro-

duces software overhead for the read operations in the trans-

actions. Since the read sets are large, the software overhead

such as read validation is non-negligible. But DUDETM

scales well since this workload (executes 400K transactions

in total) does not cause the full log problem.

Overall, Pisces does not scale as well as DUDETM. As

the benchmark is update-only and the average transaction

latency is long (big transaction), the grace period detection

mechanism in Pisces becomes more time-consuming and

brings high overhead. Hence, with the increase of thread

number, transactions spend more time in the grace period

detection mechanism, which leads to dissatisfactory perfor-

mance. On average, the mechanism costs each transaction

30,433 cycles and 46,070 cycles when the thread number is

16 and 32, respectively. And the average transaction latency

is about 168,000 cycles when there are 32 threads.

5.4 Other Performance Analysis

 0

 5

 10

 15

 20

 25

 30

Hash table B+-tree

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

)

(a) 20 threads with 20% update

Flush Whole
Flush Diff

Group Commit

 0

 500

 1000

 1500

 2000

Hash table B+-treeA
v
e

ra
g

e
d

 r
e

a
d

 l
a

te
n

c
y
 (

c
y
c
le

s
) (b) single thread with 0% update rate

DUDETM
MVCC Design
DVCC Design

 0

 2

 4

 6

 8

 10

 0 100 200 300 400 500 600

N
o

rm
a

liz
e

d
 r

e
a

d
 l
a

te
n

c
y

NVM write latency

(c) 20 threads with 20% update

Linked List
Hash Table

B+-tree

 0

 2

 4

 6

 8

 10

1 2 4 8 16N
o

rm
a

liz
e

d
 R

e
a

d
 L

a
te

n
c
y

NVM write bandwidth (GB/s)

(d) 20 threads with 20% update

Linked List
Hash Table

B+-tree

Fig. 9: (a) The performance gain break down. (b) The performance

of read-only transactions. Read latency in Pisces with (c) increased

NVM write latency and (d) increased NVM write bandwidth.

Figure 9-(a) shows step-wise performance gain from the

USENIX Association 2019 USENIX Annual Technical Conference 923

optimizations in Pisces. Flush Diff improves the throughput

of hash table and B+-tree by 52% and by 11%, respectively,

because it effectively reduces the number of NVM writes.

Since a write transaction on a hash table changes a small

portion of the nodes, there is more data that does not need

to be logged and written back. However, a transaction on a

B+-tree usually involves more data modification, especially,

when node splitting is required. So Flush Diff benefits hash

table more in the presented settings. Group Commit (setting

group number as 3) brings a performance gain of 30% for

hash table and 12% for B+-tree, through reducing the num-

ber of grace period detection and fetch_and_add instructions

on the global timestamp. The performance improvement in

hash table is larger for two reasons. First, Pisces has a higher

throughput in the hash table benchmark which means higher

contention on the global timestamp. Second, the grace period

detection in hash table takes a higher percentage of cost in a

write transaction than that in B+-tree. Note that the current

Group Commit implementation will increase the latency of

write transactions. Nevertheless, Pisces can only batch the

write-back stages instead of the whole commit phases to mit-

igate this issue.

Figure 9-(b) compares the average latency of read-

only transactions in micro-benchmarks. Compared with our

MVCC-based design, the DVCC design in Pisces signifi-

cantly reduces the read latency (about 2× faster). The rea-

son is that each read operation in the MVCC-based design

involves locating the version list of an object and traversing

the list, leading to at least one more random memory access

(i.e., read indirection). Compared with DUDETM (needs ad-

dress translation and read validation), Pisces’s read opera-

tions are also faster owing to the read-friendly design. For the

hash table benchmark, the read-only transaction in Pisces is

faster than DUDETM’s by 472 cycles. While for the B+-tree

benchmark, the read-only transaction in Pisces is faster than

DUDETM’s by 605 cycles. This is because a read transaction

in B+-tree contains more read operations.

Different persistent memory technologies may have differ-

ent persistent cost. We further use an NVM emulator which

explicitly add delays to the NVM flush operations accord-

ing to the NVM write latency and bandwidth (similar to

prior work [17, 37, 49, 49]). As shown in Figure 9-(c) and

Figure 9-(d), the average latency5 of read-only transactions,

each of which searches for an element in the corresponding

data structure, is stable with various NVM write latency and

bandwidth. The reason is that Pisces avoids writers block-

ing readers. Although the NVM write latency and bandwidth

affect the latency of write operations in Pisces, the latency

of read-only transactions is insensitive to that of write oper-

ations. Therefore, Pisces produces a stable average latency

of read-only transactions with increased NVM write latency

and bandwidth. Other experiments with different thread num-

5We set the read latency in hash table in the case of zero NVM write

latency to 1. Other results are normalized against it.

bers or different update rates give similar results.

6 Related Work

Compared with most PTM designs (Mnemosyne [74], NV-

Heaps [21], Kamino-Tx [56], and DCT [44]) which reduce

the persistence latency of write transactions through vari-

ous novel techniques but may expose NVM persist overhead

to readers, Pisces focuses on benefiting read operations and

can always hide NVM persist latency from readers. A most

recent PTM named Romulus [23] promises never blocking

read-only transactions through maintaining twin copies of

the durable data. Pisces shares a similar idea to avoid block-

ing read-only transactions and further exploits SI to avoid

blocking any read operation. Romulus instruments loads

and stores to NVM through programming language feature,

which is elegant and can be borrowed to Pisces. Besides,

Romulus chooses a single writer design which can reduce

the average number of fences for write transactions, how-

ever, limits the concurrency of NVM persistence. Some re-

cent studies [42, 60, 71] leverage hardware modifications to

implement efficient PTM systems. NVM is also exploited

by in-memory database systems [27, 43] and new file sys-

tems [31, 32, 80]. Others [5, 37, 40, 41, 47] provide libraries

for applications to utilize NVM.

Transactional Memory (TM) has been well studied [10,

14, 29, 34, 39, 66, 68, 70]. Some studies [36, 73] propose

non-blocking designs and some others also investigate snap-

shot isolation to TM [48, 68], which significantly reduces the

abort rates. But they do not consider crash consistency under

NVM. Matveev et al. [54] propose a novel and lightweight

synchronization mechanism (RLU) for concurrent program-

ming. DVCC in Pisces is inspired by both MVCC and RLU.

Thus, Pisces and RLU share a couple of similarities includ-

ing maintaining two versions and allowing readers to read

the write sets of writers. However, RLU neither provides a

transactional programming semantic (no snapshot isolation)

nor considers NVM (no durability and crash consistency).

7 Summary

This paper presents Pisces, a read-friendly PTM that provides

transactional memory APIs for programming on NVM. With

several techniques such as DVCC and three-stage commit,

Pisces achieves both high throughput and good scalability

while ensuring snapshot isolation and crash consistency.

8 Acknowledgement

We sincerely thank our shepherd Michael Swift and the

anonymous reviewers for their insightful suggestions. Also,

we sincerely thank the authors of DUDETM for giving guid-

ance. This work is supported in part by China National Nat-

ural Science Foundation (No. 61672345). Zhaoguo Wang is

the corresponding author.

924 2019 USENIX Annual Technical Conference USENIX Association

References

[1] The formal proof on the snapshot isolation guar-

antee. https://ipads.se.sjtu.edu.cn/_media/

publications/guatc19_proof.pdf.

[2] Intel 3dxpoint technology. https://

www.intel.com/content/www/us/

en/architecture-and-technology/

intel-optane-technology.html.

[3] Intel 64 and ia-32 architectures software developer’s

manual. https://software.intel.com.

[4] Micron 3dxpoint technology. https://www.

micron.com/products/advanced-solutions/

3d-xpoint-technology.

[5] Persistent memory development kit, nvml. http://

pmem.io/pmdk/.

[6] Redis. https://redis.io/.

[7] The stanford transactional applications for multi-

processing; a benchmark suite for transactional mem-

ory research. https://github.com/kozyraki/

stamp.

[8] Atul Adya. Weak consistency: a generalized theory and

optimistic implementations for distributed transactions.

1999.

[9] Hiroyuki Akinaga and Hisashi Shima. Resistive ran-

dom access memory (reram) based on metal oxides.

Proceedings of the IEEE, 98(12):2237–2251, 2010.

[10] Mohammad Ansari, Mikel Luján, Christos Kotselidis,

Kim Jarvis, Chris Kirkham, and Ian Watson. Steal-on-

abort: Improving transactional memory performance

through dynamic transaction reordering. In Interna-

tional Conference on High-Performance Embedded Ar-

chitectures and Compilers, pages 4–18. Springer, 2009.

[11] Peter Bailis, Alan Fekete, Michael J Franklin, Ali Gh-

odsi, Joseph M Hellerstein, and Ion Stoica. Feral con-

currency control: An empirical investigation of modern

application integrity. In Proceedings of the 2015 ACM

SIGMOD International Conference on Management of

Data, pages 1327–1342. ACM, 2015.

[12] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton,

Elizabeth O’Neil, and Patrick O’Neil. A critique of

ansi sql isolation levels. In ACM SIGMOD Record, vol-

ume 24, pages 1–10. ACM, 1995.

[13] Philip A Bernstein and Nathan Goodman. Multiversion

concurrency control—theory and algorithms. ACM

Transactions on Database Systems (TODS), 8(4):465–

483, 1983.

[14] Jayaram Bobba, Neelam Goyal, Mark D Hill,

Michael M Swift, and David A Wood. Tokentm:

Efficient execution of large transactions with hardware

transactional memory. In ACM SIGARCH Computer

Architecture News, volume 36, pages 127–138. IEEE

Computer Society, 2008.

[15] Nathan Bronson, Zach Amsden, George Cabrera,

Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris, An-

thony Giardullo, Sachin Kulkarni, Harry C Li, et al.

Tao: Facebook’s distributed data store for the social

graph. In USENIX Annual Technical Conference, pages

49–60, 2013.

[16] Michael J Cahill, Uwe Röhm, and Alan D Fekete. Se-

rializable isolation for snapshot databases. ACM Trans-

actions on Database Systems (TODS), 34(4):20, 2009.

[17] Andreas Chatzistergiou, Marcelo Cintra, and Stratis D

Viglas. Rewind: Recovery write-ahead system for in-

memory non-volatile data-structures. Proceedings of

the VLDB Endowment, 8(5):497–508, 2015.

[18] Haibo Chen, Heng Zhang, Ran Liu, Binyu Zang, and

Haibing Guan. Fast consensus using bounded staleness

for scalable read-mostly synchronization. IEEE Trans-

actions on Parallel & Distributed Systems, (12):3485–

3500, 2016.

[19] Shimin Chen, Anastasia Ailamaki, Manos Athanas-

soulis, Phillip B Gibbons, Ryan Johnson, Ippokratis

Pandis, and Radu Stoica. Tpc-e vs. tpc-c: character-

izing the new tpc-e benchmark via an i/o comparison

study. ACM SIGMOD Record, 39(3):5–10, 2011.

[20] Vijay Chidambaram, Thanumalayan Sankaranarayana

Pillai, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-

Dusseau. Optimistic crash consistency. In Proceedings

of the Twenty-Fourth ACM Symposium on Operating

Systems Principles, pages 228–243. ACM, 2013.

[21] Joel Coburn, Adrian M Caulfield, Ameen Akel,

Laura M Grupp, Rajesh K Gupta, Ranjit Jhala, and

Steven Swanson. Nv-heaps: making persistent objects

fast and safe with next-generation, non-volatile memo-

ries. ACM Sigplan Notices, 46(3):105–118, 2011.

[22] James C Corbett, Jeffrey Dean, Michael Epstein,

Andrew Fikes, Christopher Frost, Jeffrey John Fur-

man, Sanjay Ghemawat, Andrey Gubarev, Christopher

Heiser, Peter Hochschild, et al. Spanner: Google’s glob-

ally distributed database. ACM Transactions on Com-

puter Systems (TOCS), 31(3):8, 2013.

[23] Andreia Correia, Pascal Felber, and Pedro Ramalhete.

Romulus: Efficient algorithms for persistent transac-

tional memory. In Proceedings of the 30th on Sympo-

sium on Parallelism in Algorithms and Architectures,

pages 271–282. ACM, 2018.

[24] Transaction Processing Performance Council.

http://www.tpc.org/tpcc/. TPC Benchmark C.

[25] Transaction Processing Performance Council.

http://www.tpc.org/tpce. TPC Benchmark E.

[26] Khuzaima Daudjee and Kenneth Salem. Lazy database

replication with snapshot isolation. In Proceedings of

the 32nd international conference on Very large data

bases, pages 715–726. VLDB Endowment, 2006.

[27] Justin DeBrabant, Joy Arulraj, Andrew Pavlo, Michael

USENIX Association 2019 USENIX Annual Technical Conference 925

https://ipads.se.sjtu.edu.cn/_media/publications/guatc19_proof.pdf
https://ipads.se.sjtu.edu.cn/_media/publications/guatc19_proof.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
http://pmem.io/pmdk/
http://pmem.io/pmdk/
https://github.com/kozyraki/stamp
https://github.com/kozyraki/stamp

Stonebraker, Stan Zdonik, and Subramanya Dulloor.

A prolegomenon on oltp database systems for non-

volatile memory. ADMS@ VLDB, 2014.

[28] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-

Ake Larson, Pravin Mittal, Ryan Stonecipher, Nitin

Verma, and Mike Zwilling. Hekaton: Sql server’s

memory-optimized oltp engine. In Proceedings of the

2013 ACM SIGMOD International Conference on Man-

agement of Data, pages 1243–1254. ACM, 2013.

[29] Dave Dice, Ori Shalev, and Nir Shavit. Transactional

locking ii. In International Symposium on Distributed

Computing, pages 194–208. Springer, 2006.

[30] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino,

and Philippe Cudre-Mauroux. Oltp-bench: An ex-

tensible testbed for benchmarking relational databases.

Proceedings of the VLDB Endowment, 7(4):277–288,

2013.

[31] Mingkai Dong and Haibo Chen. Soft updates made sim-

ple and fast on non-volatile memory. In 2017 USENIX

Annual Technical Conference (ATC 17), pages 719–731.

USENIX Association, 2017.

[32] Subramanya R Dulloor, Sanjay Kumar, Anil Keshava-

murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,

and Jeff Jackson. System software for persistent mem-

ory. In Proceedings of the Ninth European Conference

on Computer Systems, page 15. ACM, 2014.

[33] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil,

Patrick O’Neil, and Dennis Shasha. Making snapshot

isolation serializable. ACM Transactions on Database

Systems (TODS), 30(2):492–528, 2005.

[34] Pascal Felber, Christof Fetzer, Patrick Marlier, and Tor-

vald Riegel. Time-based software transactional mem-

ory. IEEE Transactions on Parallel and Distributed

Systems, 21(12):1793–1807, 2010.

[35] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dy-

namic performance tuning of word-based software

transactional memory. In Proceedings of the 13th ACM

SIGPLAN Symposium on Principles and practice of

parallel programming, pages 237–246. ACM, 2008.

[36] Keir Fraser and Tim Harris. Concurrent programming

without locks. ACM Transactions on Computer Sys-

tems (TOCS), 25(2):5, 2007.

[37] Ellis R Giles, Kshitij Doshi, and Peter Varman. Soft-

wrap: A lightweight framework for transactional sup-

port of storage class memory. In Mass Storage Sys-

tems and Technologies (MSST), 2015 31st Symposium

on, pages 1–14. IEEE, 2015.

[38] Maurice Herlihy and J Eliot B Moss. Transactional

memory: Architectural support for lock-free data struc-

tures, volume 21. ACM, 1993.

[39] Nathaniel Herman, Jeevana Priya Inala, Yihe Huang,

Lillian Tsai, Eddie Kohler, Barbara Liskov, and Liuba

Shrira. Type-aware transactions for faster concurrent

code. In Proceedings of the Eleventh European Confer-

ence on Computer Systems, page 31. ACM, 2016.

[40] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy,

Kimberly Keeton, and Patrick Eugster. Nvthreads:

Practical persistence for multi-threaded applications. In

Proceedings of the Twelfth European Conference on

Computer Systems, pages 468–482. ACM, 2017.

[41] Qingda Hu, Jinglei Ren, Anirudh Badam, and Thomas

Moscibroda. Log-structured non-volatile main mem-

ory. In Proceedings of 2017 USENIX Annual Techni-

cal Conference (USENIX ATC’17). Santa Clara, CA.

http://jinglei. ren. systems/files/lsnvmm_slides_atc17.

pptx, 2017.

[42] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and

Stratis Viglas. Dhtm: Durable hardware transactional

memory. In Proceedings of the International Sympo-

sium on Computer Architecture, 2018.

[43] Hideaki Kimura. Foedus: Oltp engine for a thousand

cores and nvram. In Proceedings of the 2015 ACM

SIGMOD International Conference on Management of

Data, pages 691–706. ACM, 2015.

[44] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M Chen,

and Thomas F Wenisch. High-performance transac-

tions for persistent memories. ACM SIGPLAN Notices,

51(4):399–411, 2016.

[45] Emre Kültürsay, Mahmut Kandemir, Anand Sivasub-

ramaniam, and Onur Mutlu. Evaluating stt-ram as

an energy-efficient main memory alternative. In Per-

formance Analysis of Systems and Software (ISPASS),

2013 IEEE International Symposium on, pages 256–

267. IEEE, 2013.

[46] Benjamin C Lee, Ping Zhou, Jun Yang, Youtao Zhang,

Bo Zhao, Engin Ipek, Onur Mutlu, and Doug Burger.

Phase-change technology and the future of main mem-

ory. IEEE micro, 30(1), 2010.

[47] Herwig Lejsek, Friðrik Heiðar Ásmundsson, Jónsson,

and Laurent Amsaleg. Nv-tree: An efficient disk-

based index for approximate search in very large high-

dimensional collections. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 31(5):869–883,

2009.

[48] Heiner Litz, David Cheriton, Amin Firoozshahian,

Omid Azizi, and John P Stevenson. Si-tm: reducing

transactional memory abort rates through snapshot iso-

lation. ACM SIGARCH Computer Architecture News,

42(1):383–398, 2014.

[49] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai

Qian, Yongwei Wu, Weimin Zheng, and Jinglei Ren.

Dudetm: Building durable transactions with decou-

pling for persistent memory. In Proceedings of the

Twenty-Second International Conference on Architec-

tural Support for Programming Languages and Oper-

ating Systems, pages 329–343. ACM, 2017.

926 2019 USENIX Annual Technical Conference USENIX Association

[50] Ran Liu and Haibo Chen. Ssmalloc: a low-latency,

locality-conscious memory allocator with stable perfor-

mance scalability. In Proceedings of the Asia-Pacific

Workshop on Systems, page 15. ACM, 2012.

[51] Ran Liu, Heng Zhang, and Haibo Chen. Scalable read-

mostly synchronization using passive reader-writer

locks. In USENIX Annual Technical Conference, pages

219–230, 2014.

[52] Haonan Lu, Christopher Hodsdon, Khiem Ngo, Shuai

Mu, and Wyatt Lloyd. The snow theorem and latency-

optimal read-only transactions. In OSDI, pages 135–

150, 2016.

[53] Shiyong Lu, Arthur Bernstein, and Philip Lewis. Cor-

rect execution of transactions at different isolation lev-

els. IEEE Transactions on Knowledge and Data Engi-

neering, 16(9):1070–1081, 2004.

[54] Alexander Matveev, Nir Shavit, Pascal Felber, and

Patrick Marlier. Read-log-update: A lightweight syn-

chronization mechanism for concurrent programming.

In Proceedings of the 25th Symposium on Operating

Systems Principles, pages 168–183. ACM, 2015.

[55] Paul E McKenney and John D Slingwine. Read-copy

update: Using execution history to solve concurrency

problems. In Parallel and Distributed Computing and

Systems, pages 509–518, 1998.

[56] Amirsaman Memaripour, Anirudh Badam, Amar Phan-

ishayee, Yanqi Zhou, Ramnatthan Alagappan, Karin

Strauss, and Steven Swanson. Atomic in-place updates

for non-volatile main memories with kamino-tx. In Eu-

roSys, pages 499–512, 2017.

[57] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis,

and Kunle Olukotun. Stamp: Stanford transactional

applications for multi-processing. In 2008 IEEE In-

ternational Symposium on Workload Characterization,

pages 35–46. IEEE, 2008.

[58] Sanketh Nalli, Swapnil Haria, Mark D Hill, Michael M

Swift, Haris Volos, and Kimberly Keeton. An analy-

sis of persistent memory use with whisper. In ACM

SIGARCH Computer Architecture News, volume 45,

pages 135–148. ACM, 2017.

[59] Thomas Neumann, Tobias Mühlbauer, and Alfons Kem-

per. Fast serializable multi-version concurrency control

for main-memory database systems. In Proceedings of

the 2015 ACM SIGMOD International Conference on

Management of Data, pages 677–689. ACM, 2015.

[60] Matheus Almeida Ogleari, Ethan L Miller, and Jishen

Zhao. Steal but no force: Efficient hardware undo+ redo

logging for persistent memory systems. In High Per-

formance Computer Architecture (HPCA), 2018 IEEE

International Symposium on, pages 336–349. IEEE,

2018.

[61] Lois Orosa and Rodolfo Azevedo. Logsi-htm: Log

based snapshot isolation in hardware transactional

memory.

[62] Steven Pelley, Peter M Chen, and Thomas F Wenisch.

Memory persistency. In ACM SIGARCH Computer

Architecture News, volume 42, pages 265–276. IEEE

Press, 2014.

[63] Hasso Plattner. The impact of columnar in-memory

databases on enterprise systems: implications of elimi-

nating transaction-maintained aggregates. Proceedings

of the VLDB Endowment, 7(13):1722–1729, 2014.

[64] Dan RK Ports and Kevin Grittner. Serializable snap-

shot isolation in postgresql. Proceedings of the VLDB

Endowment, 5(12):1850–1861, 2012.

[65] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram,

Nitin Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-

Dusseau, and Remzi H. Arpaci-Dusseau. Iron file

systems. In Proceedings of the Twentieth ACM Sym-

posium on Operating Systems Principles, SOSP ’05,

pages 206–220, New York, NY, USA, 2005. ACM.

[66] Hany E Ramadan, Christopher J Rossbach, and Em-

mett Witchel. Dependence-aware transactional mem-

ory for increased concurrency. In Proceedings of the

41st annual IEEE/ACM International Symposium on

Microarchitecture, pages 246–257. IEEE Computer So-

ciety, 2008.

[67] Simone Raoux, Geoffrey W Burr, Matthew J Bre-

itwisch, Charles T Rettner, Y-C Chen, Robert M Shelby,

Martin Salinga, Daniel Krebs, S-H Chen, H-L Lung,

et al. Phase-change random access memory: A scal-

able technology. IBM Journal of Research and Devel-

opment, 52(4.5):465–479, 2008.

[68] Torvald Riegel, Christof Fetzer, and Pascal Felber.

Snapshot isolation for software transactional memory.

In First ACM SIGPLAN Workshop on Languages, Com-

pilers, and Hardware Support for Transactional Com-

puting (TRANSACT’06), pages 1–10. Association for

Computing Machinery (ACM), 2006.

[69] Ankur Sharma, Felix Martin Schuhknecht, and Jens Dit-

trich. Accelerating analytical processing in mvcc using

fine-granular high-frequency virtual snapshotting. In

Proceedings of the 2018 International Conference on

Management of Data, pages 245–258. ACM, 2018.

[70] Nir Shavit and Dan Touitou. Software transactional

memory. Distributed Computing, 10(2):99–116, 1997.

[71] Seunghee Shin, Satish Kumar Tirukkovalluri, James

Tuck, and Yan Solihin. Proteus: a flexible and fast

software supported hardware logging approach for nvm.

In Proceedings of the 50th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, pages 178–

190. ACM, 2017.

[72] Neuvonen Simo, Wolski Antoni, manner Markku, and

Raatikka Vilho. http://tatpbenchmark.sourceforge.net/.

Telecom Application Transaction Processing Bench-

mark.

USENIX Association 2019 USENIX Annual Technical Conference 927

[73] Fuad Tabba, Mark Moir, James R Goodman, Andrew W

Hay, and Cong Wang. Nztm: Nonblocking zero-

indirection transactional memory. In Proceedings of the

twenty-first annual symposium on Parallelism in algo-

rithms and architectures, pages 204–213. ACM, 2009.

[74] Haris Volos, Andres Jaan Tack, and Michael M Swift.

Mnemosyne: Lightweight persistent memory. In ACM

SIGARCH Computer Architecture News, volume 39,

pages 91–104. ACM, 2011.

[75] Tianzheng Wang, Ryan Johnson, Alan Fekete, and Ip-

pokratis Pandis. Efficiently making (almost) any con-

currency control mechanism serializable. The VLDB

Journal, 26(4):537–562, 2017.

[76] Zhaoguo Wang, Han Yi, Ran Liu, Mingkai Dong, and

Haibo Chen. Persistent transactional memory. IEEE

Computer Architecture Letters, 14(1):58–61, 2015.

[77] Wikipedia. https://en.wikipedia.org/wiki/

Snapshot_isolation. Snapshot isolation, 2017.

[78] H-S Philip Wong, Simone Raoux, SangBum Kim, Jiale

Liang, John P Reifenberg, Bipin Rajendran, Mehdi

Asheghi, and Kenneth E Goodson. Phase change

memory. Proceedings of the IEEE, 98(12):2201–2227,

2010.

[79] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun.

Hikv: A hybrid index key-value store for dram-nvm

memory systems. In 2017 USENIX Annual Technical

Conference (ATC 17), pages 349–362. USENIX Asso-

ciation, 2017.

[80] Jian Xu and Steven Swanson. Nova: A log-structured

file system for hybrid volatile/non-volatile main memo-

ries. In FAST, pages 323–338, 2016.

[81] Yiying Zhang and Steven Swanson. A study of applica-

tion performance with non-volatile main memory. In

2015 31st Symposium on Mass Storage Systems and

Technologies (MSST), pages 1–10. IEEE, 2015.

928 2019 USENIX Annual Technical Conference USENIX Association

https://en.wikipedia.org/wiki/Snapshot_isolation
https://en.wikipedia.org/wiki/Snapshot_isolation

EDGEWISE: A Better Stream Processing Engine for the Edge

Xinwei Fu

Virginia Tech

Talha Ghaffar

Virginia Tech

James C. Davis

Virginia Tech

Dongyoon Lee

Virginia Tech

Abstract

Many Internet of Things (IoT) applications would ben-

efit if streams of data could be analyzed rapidly at the

Edge, near the data source. However, existing Stream

Processing Engines (SPEs) are unsuited for the Edge be-

cause their designs assume Cloud-class resources and

relatively generous throughput and latency constraints.

This paper presents EDGEWISE, a new Edge-friendly

SPE, and shows analytically and empirically that

EDGEWISE improves both throughput and latency. The

key idea of EDGEWISE is to incorporate a congestion-

aware scheduler and a fixed-size worker pool into an SPE.

Though this idea has been explored in the past, we are

the first to apply it to modern SPEs and we provide a new

queue-theoretic analysis to support it. In our single-node

and distributed experiments we compare EDGEWISE to

the state-of-the-art Storm system. We report up to a 3x

improvement in throughput while keeping latency low.

1 Introduction

Internet of Things (IoT) applications are growing rapidly

in a wide range of domains, including smart cities, health-

care, and manufacturing [33, 43]. Broadly speaking, IoT

systems consist of Things, Gateways, and the Cloud.

Things are sensors that “read” from the world and actua-

tors that “write” to it, and Gateways orchestrate Things

and bridge them with the Cloud.

At the moment, IoT systems rely on the Cloud to pro-

cess sensor data and trigger actuators. In principle, how-

ever, Things and Gateways could perform some or all

data analysis themselves, moving the frontier of compu-

tation and services from the network core, the Cloud [17],

to its Edge [21, 67], where the Things and Gateways re-

side. In this paper we explore the implications of this

paradigm in a promising use case: stream processing.

Stream processing is well suited to the IoT Edge com-

Figure 1: The Edge connects Things to the Cloud, and

can perform local data stream processing.

puting setting. Things generate continuous streams of

data that often must be processed in a timely fashion;

stream processing performs analysis on individual data

points (tuples) rather than batches [24, 69]. As shown in

Figure 1, stream processing is described by a directed

acyclic graph, called a topology, whose vertices are data

processing operations and edges indicate data flow.

Modern Stream Processing Engines (SPEs) such as

Storm [15], Flink [13], and Heron [49] have mostly been

designed for the Cloud, assuming powerful computing

resources and plenty of memory. However, these assump-

tions do not hold at the Edge. In particular, these SPEs

use a simple One Worker Per Operation Architecture

(OWPOA). Given a dataflow topology and the degree

of parallelism of each operation, OWPOA-style SPEs

assign a dedicated worker thread to each operation in-

stance, and link the worker-operation pairs with queues.

Then, they rely on the operating system (OS) scheduler

to choose which worker (operation) to schedule next,

leading to lost scheduling opportunities: data propagates

haphazardly through the topology because the schedul-

ing of worker threads is left to the congestion-oblivious

OS. With Cloud-scale resources these inefficiencies are

amortized, but at the Edge they cannot be.

The database community studied efficient operation

scheduling about a decade before modern SPEs came into

vogue [18, 25]. Sadly, however, lessons learned from this

USENIX Association 2019 USENIX Annual Technical Conference 929

early research were not carried into the design of modern

SPEs, leading to a sub-optimal performance when the

existing OWPOA-style SPEs are used at the Edge setting.

Existing IoT computing literature (e.g. [58, 64]) has ig-

nored this history and has been building Edge computing

platforms based on unmodified modern SPEs. This paper

explores the impact of applying to modern SPEs these

“lost lessons” of operation scheduling.

We present EDGEWISE, an Edge-friendly SPE that

revives the notion of engine-level operation scheduling

to optimize data flows in a multiplexed (more operations

than processor cores) and memory-constrained Edge en-

vironment. EDGEWISE re-architects SPE runtime design

and introduces an engine-level scheduler with a fixed-size

worker pool where existing profiling-guided scheduling

algorithms [18, 25] may be used. EDGEWISE also pro-

poses a queue-length-based congestion-aware scheduler

that does not require profiling yet achieves equivalent (or

better) performance improvement. EDGEWISE monitors

the numbers of pending data in queues, and its sched-

uler determines the highest-priority operation to process

next, optimizing the flow of data through the topology.

In addition, the EDGEWISE’s worker pool avoids unnec-

essary threading overheads and decouples the data plane

(operations) from the control plane (workers).

We show analytically and empirically that EDGEWISE

outperforms Apache Storm [15], the exemplar of modern

SPEs, on both throughput and latency. EDGEWISE is a

reminder of both the end-to-end design principle [65] and

the benefits of applying old lessons in new contexts [61].

This paper provides the following contributions:

• We study the software architecture of existing SPEs

and discuss their limitations in the Edge setting (§3).

To the best of our knowledge, this paper is the first to

observe the lack of operation scheduling in modern

SPEs, a forgotten lesson from old SPE literature.

• We present EDGEWISE, a new Edge-friendly SPE.

EDGEWISE learns from past lessons to apply an

engine-level scheduler, choosing operations to opti-

mize data flows and leveraging a fixed-size worker

pool to minimize thread contention (§4).

• Using queuing theory, we argue analytically that our

congestion-aware scheduler will improve both through-

put and latency (§5). To our knowledge, we are the

first to mathematically show balancing the queue sizes

lead to improved performance in stream processing.

• We demonstrate EDGEWISE’s throughput and latency

gains on IoT stream benchmarks (§7).

2 Background: Stream Processing

This section provides background on the stream process-

ing programming model (§2.1) and two software archi-

tectures used in existing SPEs (§2.2).

2.1 Dataflow Programming Model

Stream processing uses the dataflow programming model

depicted in the center of Figure 1 [24, 69]. Data tuples

flow through a directed acyclic graph (topology) from

sources to sinks. Each inner node is an operation that

performs arbitrary computation on the data, ranging from

simple filtering to complex operations like ML-based

classification algorithms. In the Edge context a source

might be an IoT sensor, while a sink might be an IoT

actuator or a message queue to a Cloud service.

Though an operation can be arbitrary, the preferred

idiom is outer I/O, inner compute. In other words, I/O

should be handled by source and sink nodes, and the

inner operation nodes should perform only memory and

CPU-intensive operations [3, 41]. This idiom is based on

the premise that the more unpredictable costs of I/O will

complicate the scheduling and balancing of operations.

After defining the topology and the operations, data

engineers convert the logical topology into a physical

topology that describes the number of physical instances

of each logical operation. In a distributed setting engi-

neers can also indicate preferred mappings from opera-

tions to specific compute nodes. An SPE then deploys the

operations onto the compute node(s), instantiates queues

and workers, and manages the flow of tuples from one

operation to another.

2.2 Stream Processing Engines

Starting from the notion of active databases [55, 76],

early-generation SPEs were proposed and designed

by the database community in the early 2000s: e.g.

Aurora [24], TelegraphCQ [27], Stream [16], and Bo-

realis [7, 28]. Interest in SPEs led to work on per-

formance optimization techniques such as operation

scheduling [18, 25] and load shedding [35, 70]. We will

revisit these works shortly (§3.4).

The second generation of “modern SPEs” began with

Apache Storm [15] (2012) as part of the democratiza-

tion of big data. Together with Apache Flink [13] and

Twitter’s Heron [49], these second-generation SPEs have

been mainly developed by practitioners with a focus on

scalable Cloud computing. They have achieved broad

adoption in industry.

Under the hood, these modern SPEs are based on the

One Worker Per Operation Architecture (OWPOA, Fig-

ure 2). In the OWPOA, the operations are connected

by queues in a pipelined manner, and processed by its

930 2019 USENIX Annual Technical Conference USENIX Association

Figure 2: One Worker Per Operation Architecture (OW-

POA). It assigns a worker thread for each operation. The

example shows the case with N operations. Q represents

a queue where a gray box means a pending data.

Figure 3: EDGEWISE Architecture (§4). The scheduler

picks which operation to run. In this example, operation

2 and operation N had the longest queues, so they were

scheduled.

own workers. Some operations may be mapped onto

different nodes for distributed computing or to take ad-

vantage of heterogeneous resources (GPU, FPGA, etc.).

In addition, the OWPOA monitors the health of the topol-

ogy by checking the lengths of the per-operation queues.

Queue lengths are bounded by a backpressure mecha-

nism [32, 49], during which the source(s) buffer input

until the operation queues clear.

3 Edge SPE Requirements Analysis

Stream processing is an important use case for Edge com-

puting, but as we will show, existing SPEs are unsuited

for the Edge. This section discusses our Edge SPE re-

quirements analysis and the drawbacks of existing SPEs.

3.1 Our Edge Model

We first present our model for the Edge.

Hardware. Like existing IoT frameworks (e.g.

Kura [36], EdgeX [2], and OpenFog [5]), we view

the Edge as a distributed collection of IoT Gateways

that connect Things to the Cloud. We consider Edge

stream processing on IoT Gateways that are reasonably

stable and well connected, unlike mobile drones or

vehicles. We further assume these IoT Gateways have

limited computing resources compared to the Cloud:

few-core processors, little memory, and little permanent

storage [17, 67]. However, they have more resources

than those available to embedded, wireless sensor

networks [50], and thus can afford reasonably complex

software like SPEs. For example, Cisco’s IoT Gateways

come with a quad-core processor and 1GB of RAM [31].

Applications. Edge topologies consume IoT sensor data

and apply a sequence of reasonably complex operations:

e.g. SenML [44] parsers, Kalman filters, linear regres-

sions, and decision tree classifications. For example,

FarmBeats [72], a smart farm platform, uses IoT Gate-

ways to collect data from various sensors and drones, to

create summaries before sending them to the Cloud for

long-term and cross-farm analytics, and to perform time-

sensitive local data processing. We therefore assume a

diverse set of workloads ranging from simple extraction-

transform-load (ETL) and statistical summarization to

predictive model training and classification.

3.2 Edge SPE Requirements

Every SPE aims for high throughput, and Edge SPEs are

no exception. In addition, we see the following unique

requirements for the Edge:

(1) Multiplexed. An Edge SPE must support an arbitrary

topology on limited resources. We particularly focus on

supporting a single topology in which there are more

operations than processors, such that operation execu-

tions must be multiplexed on limited processors. Where

a server-class machine can use threads unconcernedly, an

Edge-class machine must be wary of unnecessary over-

heads.

(2) Low latency. An Edge SPE must offer low latency,

else system architects should simply transmit raw data to

the Cloud for analysis.

(3) No backpressure. The backpressure mechanism in

Cloud SPEs is inadvisable at the Edge for two reasons.

First, it is a “stop the world” scheme that destroys system

latency, but latency is critical for Edge workloads. Sec-

ond, it assumes that a data source can buffer pending data.

While the Cloud can assume a persistent data source such

as Kafka [4], at the Edge there is nowhere to put this data.

Modern “real-time” SPEs such as Storm and Flink do

not support file I/O based buffering. As a result the SPE

must be congestion-aware to ensure queue lengths do not

exceed available memory.

USENIX Association 2019 USENIX Annual Technical Conference 931

(4) Scalable. The SPE must permit scaling across multi-

processors within an IoT Gateway and across multiple

Gateways, especially to take advantage of locality or

heterogeneity favorable to one operation or another.

3.3 Shortcomings of OWPOA-style SPEs

The OWPOA naturally takes advantage of intra-node

and inter-node parallelism, especially when data engi-

neers make a good logical-to-physical mapping. In the

OWPOA, however, multiplexing becomes challenging

in complex topologies, because each logical operation

must have at least one worker and there may be more

workers than cores on a compute node. If there are too

many workers assigned to one compute node the poor

scheduling of workers will artificially limit performance.

Let us explain the issue in detail. The OWPOA relies

on the OS scheduler to decide which worker-operation

pair to schedule next. If the input rate is low enough that

most queues are empty (i.e. the SPE is over-provisioned),

there is no harm in such an approach. Only some opera-

tions will have work to do and be scheduled, while the

remainder will sleep.

But if the input rate rises (equivalently, if the SPE

becomes less provisioned) then the SPE will become

saturated, i.e. most or all queues will contain tuples. In

this case any operation might be scheduled by the OS.

As some operations take longer than others, a typical

round-robin OS scheduler will naturally imbalance the

queue lengths and periodically trigger backpressure. For

example, in Figure 2, although Queue 2 is full, the OS

may unwisely schedule the other worker-operation pair

first, triggering backpressure unnecessarily and leading

to significantly high latency.

3.4 A Lost Lesson: Operation Scheduling

As noted earlier (§2.2), the database community has stud-

ied different profiling-guided priority-based operation

scheduling algorithms [18, 25] in the context of multi-

ple operations and a single worker, before the modern

OWPOA-style SPEs were born. For instance, Carney

et al. [25] proposed a “Min-Latency” algorithm which

assigns higher (static) priority on latter operations than

earlier operations in a topology and processes old tuples

in the middle of a topology before newly arrived tuples,

with a goal to minimize average latency. For a topology

with multiple paths, the tie is broken by the profiled ex-

ecution time and input-output ratio of each operation.

With a goal to minimize queue memory sizes, Babcock

et al. [18] proposed a “Min-Memory” algorithm (called

Chain) which favors operations with higher input-output

reduction and short execution time (e.g., faster filters).

Unfortunately, however, modern OWPOA-style SPEs

(e.g. Storm [15], Flink [13], Heron [49]) have not adopted

these research findings when designing multi-core multi-

worker SPEs and simply relied on the congestion-

oblivious OS scheduler. This paper argues that Edge

SPEs should be rearchitected to regain the benefits of

engine-level operation scheduling to optimize data flows

in a multiplexed Edge environment. In particular, we com-

pare the effectiveness of both profiling-based (old) and

dynamic balancing (new) scheduling algorithms, and re-

port that all offer significant throughput and latency im-

provements over modern SPEs.

4 Design of EDGEWISE

This section presents EDGEWISE, an Edge-friendly SPE,

that leverages a congestion-aware scheduler (§4.1) and a

fixed-size worker pool (§4.2), as illustrated in Figure 3.

EDGEWISE achieves higher throughput and low latency

by balancing the queue lengths, with the effect of push-

ing the backpressure point to a higher input rate. Thus

EDGEWISE achieves higher throughput without degrad-

ing latency (no backpressure). We later analyze the im-

proved performance mathematically in §5.

4.1 Congestion-Aware Scheduler

EDGEWISE addresses the scheduling inefficiency of the

OWPOA by incorporating a user-level scheduler to make

wiser choices. In the OWPOA design, physical operations

are coupled to worker threads and are scheduled accord-

ing to the OS scheduler policy. The EDGEWISE sched-

uler separates the threads (execution) from the operations

(data). Prior work has proposed using profiling-based

operation scheduling algorithms [18, 25]. Instead, we

propose a profiling-free dynamic approach that balances

queue sizes by assigning a ready thread to the operation

with the most pending data.

The intuition behind EDGEWISE is shown in Figure 4,

which compares the behavior of an OWPOA-style SPE

to EDGEWISE in a multiplexed environment. Figure 4(a)

shows the unwise choice that may be made by the random

scheduler of the OWPOA, leading to backpressure (high

latency). Figure 4(b) contrasts this with the choice made

by EDGEWISE’s congestion-aware scheduler, evening

out the queue lengths to avoid backpressure.

We believe EDGEWISE’s congestion-aware scheduler

would be beneficial to the Cloud context, as an intra-

node optimization. In practice, however, we expect that

EDGEWISE will have greater impact in the Edge setting,

where (1) with few cores, there are likely more operators

than cores, (2) latency is as critical as throughput, and (3)

memory is limited.

932 2019 USENIX Annual Technical Conference USENIX Association

Figure 4: A scheduling example with two operations, multiplexed on a single core. The Q(ueue) size is two. Initially, Q1

has one tuple and Q2 is full. (a) The random OS scheduler in OWPOA lets Op(eration) 1 process tuples ③ and (newly

coming) ④ first, overflowing Q2 and triggering unnecessary backpressure. (b) EDGEWISE knows Q2 has more pending

data, and thus schedules the more critical Op2 first, avoiding congestion.

4.2 Fixed-size Worker Pool

EDGEWISE’s scheduler decouples data from execution,

requiring some changes in how EDGEWISE realizes the

physical topology supplied by data engineers. Rather

than dedicating a worker to each operation as in the OW-

POA, EDGEWISE processes data on a fixed set of work-

ers in the worker pool (Figure 3). These workers move

from operation to operation as assigned by the sched-

uler. EDGEWISE could in principle work solely from

the logical topology, in effect dynamically rearranging

the physical topology (# workers assigned to each op-

eration). However, this would violate any assumptions

about thread safety or physical topology embedded in

the logical topology. Thus, EDGEWISE uses the exist-

ing physical topology to bound the number of workers

assigned to any operation at one time.

The worker pool size is configurable. By default it is

set to the number of processors, because we assume that

most operations are CPU-intensive per the recommended

stream programming model (§2.1). If there are many

I/O-bound operations, a fixed-size worker pool may lead

to sub-optimal performance, requiring users to tune the

pool size.

Putting it together. The scheduler dynamically chooses

which operation a worker should perform. When a worker

is ready, it asks the scheduler for an assignment, and

the scheduler directs it to the operation with the longest

pending data queue. Without work, it sleeps. When new

data arrives, the scheduler wakes up the worker. The

worker non-preemptively1 completes the operation, and

EDGEWISE directs the output to the downstream opera-

tion queue(s). Different operations may run in parallel:

e.g., operations 2 and N in Figure 3. However, for FIFO

guarantees, EDGEWISE schedules at most one worker to

any operation instance (i.e. to any queue).

EDGEWISE supports three different data consumption

policies for each scheduling turn: (1) All consumes all

1More precisely, it is non-preemptive at the engine level.

EDGEWISE can still be preempted by the underlying OS scheduler.

the tuples in the queue; (2) Half consumes half of the

tuples in the queue; and (3) At-most-N consumes at most

N tuples in the queue. Intuitively, in a saturated system,

consuming a small constant number in each quantum

will cause the scheduler to make more decisions overall.

As our scheduler is fast, the more decisions it makes the

better it should approximate the ideal schedule (evaluated

in §7.4). Such consumption policies are not possible in

OWPOA-style SPEs.

EDGEWISE meets the Edge SPE design goals, listed

in §3.2. EDGEWISE retains the achievements of the OW-

POA, and to these it adds the multiplexed, low-latency,

and no-backpressure requirements. EDGEWISE’s sched-

uler allows it to balance queue lengths, improving aver-

age latency and avoiding the need for backpressure by

keeping heavier operations from lagging behind.

5 Performance Analysis of EDGEWISE

This section shows analytically that EDGEWISE will

achieve higher throughput (§5.1) and lower latency (§5.2)

than OWPOA. Lastly, in §5.3 we discuss how to measure

relevant runtime metrics for the performance analysis.

To the best of our knowledge, we are the first to apply

queueing theory to analyze the improved performance in

the context of stream processing. Prior scheduling works

in stream processing either provide no analysis [25] or

focus only on memory optimization [18].

5.1 Higher Throughput

First we show that maximum end-to-end throughput de-

pends on scheduling heavier operations proportionally

more than lighter operations. This is impossible to guar-

antee in the scheduler-less modern SPEs, but easy for

EDGEWISE’s scheduler to accomplish.

Our analysis interprets a dataflow topology as a queu-

ing network [38, 46]: a directed acyclic graph of stations.

Widgets (tuples) enter the network via the queue of the

first station. Once the widget reaches the front of a sta-

tion’s queue, a server (worker) operates on it, and then it

advances to the next station. The queuing theory model

USENIX Association 2019 USENIX Annual Technical Conference 933

allows us to capture the essential differences between

EDGEWISE and the OWPOA. In the rest of this section

we draw heavily on [38, 46], and we discuss the model’s

deviations from real topology behavior at the end.

Modeling. Given the input rate λi and the service rate µi

of a server i, the server utilization ρi (fraction of time it

is busy) is defined as:

ρi =
λi

µi

(1)

A queuing network is stable when ρi < 1 for all servers

i. If there is a station to which widgets arrive more quickly

than they are serviced, the queue of that station will grow

unbounded. In an SPE, unbounded queue growth triggers

the backpressure mechanism, impacting system latency.

Suppose we want to model a topology with M opera-

tions in this way. We can represent the input and server

rates of each operation as a function of λ0 and µ0, the

input and service rates of the first operation, respectively.

We are particularly interested in λ0 as it is the input rate

to the system; higher λ0 means higher throughput. Ex-

pressing the input scaling factors and relative operation

costs for an operation i as qi and ri, we can write the

input rate λi and the service rate µi for operation i as:

λi = qi ·λ0 µi = ri ·µ0

In queuing theory, each node is assumed to have an

exclusive server (worker). However, in the Edge, there

may be fewer servers (processor cores) than stations (op-

erations). If there are C processor cores, we can model

processor contention by introducing a scheduling weight

wi, subject to ∑M
i wi =C, yielding the effective service

rate µi
′:

µi
′ = wi ·µi = wi · (ri ·µ0)

For instance, when one core is shared by two oper-

ations, a fair scheduler halves the service rate (w1 =
w2 =

1
2
) as the execution time doubles. The constraint

∑M
i wi = C reflects the fact that C processor cores are

shared by M operations.

Similarly, the effective server utilization ρi
′ can be re-

defined based on µi
′. To keep the system stable (eliminate

backpressure), we want ρi
′ to be less than one:

∀i, ρi
′ =

λi

µi
′ =

qi ·λ0

wi · ri ·µ0
< 1 (2)

which can be rearranged as

∀i, λ0 < wi ·
ri

qi

·µ0 (3)

Optimizing. Remember, λ0 represents the input rate to

the system and is under our control; a higher input rate

means higher throughput (e.g. the system can sample

sensors at a higher rate). Assuming that µ0, ri, and qi are

constants for a given topology, the constraint of Equa-

tion (3) implies that the maximum input rate λ0 that an

SPE can achieve is upper-bounded by the minimum of

wi ·
ri
qi

over all i. Thus, our optimization objective is to:

maximize min
i
(wi ·

ri

qi

)

subject to
M

∑
i

wi =C

(4)

It is straightforward to show that the maximum input

rate can be achieved when wi ·
ri
qi

are equal to each other

for all i: i.e.,

w1 : w2 : · · · : wN =
q1

r1
:

q2

r2
: · · · :

qM

rM

In other words, the scheduling weight wi should be

assigned proportional to
qi

ri
. This is indeed very intuitive.

An operation becomes heavy-loaded when it has a higher

input rate (higher qi) and/or a lower service rate (lower

ri). Such an operation should get more turns.

Scheduling. EDGEWISE’s scheduler dynamically identi-

fies heavily loaded operations and gives them more turns.

The queue of an operation with higher input rate and

higher compute time (lower service rate) grows faster

than the others. By monitoring queue sizes, we can iden-

tify and favor the heavy-loaded operations with more

frequent worker assignments.

Compare this behavior to that of the OWPOA. There,

the “fair” OS scheduler blindly ensures that wi is the same

for each operation, unaware of relative input and service

rates, leading to suboptimal throughput. Once saturated,

one of the heavy operations will reach the utilization cap

of ρi = 1, become a bottleneck in the topology, and even-

tually trigger backpressure and latency collapse. Data

engineers can attempt to account for this by profiling

their topologies and specifying more workers for heavier

operations. Fundamentally, however, this is an ad hoc

solution: the OS scheduler remains blind.

In our evaluation (§7.3.1) we show that EDGEWISE

achieves wi ·
ri
qi

equality across operations at runtime,

leading to an optimal balanced effective server utilization

ρi
′. In contrast, we report that in the OWPOA approach,

increasing the input rate leads to increasingly unbalanced

ρi
′ across operations.

Runtime deviations from the model. Our queuing the-

ory model captures real SPE behavior in the essentials,

but it deviates somewhat in the particulars. We give two

prominent examples. The first deviation is that our queu-

ing theory model assumes predictable widget fan-in and

fan-out ratios at each operator (i.e. constant qi and ri).

In reality these are distributions. For example, an op-

eration that splits a sentence into its constituent words

934 2019 USENIX Annual Technical Conference USENIX Association

Figure 5: A per-operation latency breakdown example of (a) OWPOA, and (b) EDGEWISE. Incoming data tuples ①, ②,

and ③ are being queued. When scheduled (dark gray box), the operation i processes a pending tuple. A tuple j can be in

one of three states: waiting in the middle of the queue (TQ), at the head of the queue waiting to be scheduled (TS), or

being computed (TC). Later in §7.3.2, we show that TQ dominates the per-operation latency in a saturated system.

will emit one tuple for “Please”, two tuples for “Please

accept”, and so on. The second deviation is that we as-

sumed that operations have constant costs. In reality it

will take such a sentence-splitting operation more time

to process longer sentences.

Considering these deviations, the difficulty data en-

gineers face when generating physical topologies for a

OWPOA SPE is clear: it is difficult to identify a single in-

teger quantity of workers to assign to each operation, and

even then balance will only be achieved probabilistically

over many scheduling cycles. In contrast, EDGEWISE

automatically balances the assignment of workers to op-

erations.

5.2 Lower Latency

Now we show that EDGEWISE can achieve lower end-

to-end latency than the OWPOA without compromising

throughput. Our analysis hinges on the observation that

unbalanced queue lengths have an outsized effect on la-

tency, so that balancing queue lengths leads to an overall

improvement in latency.

The total latency for a completed tuple equals the sum

of the latencies paid at each operation it visited on its

way from source to sink, plus communication latencies

outside of our control:

Latency =
M

∑
i

(Li +Comm.)≈
M

∑
i

Li (5)

In stream processing, the per-operation latency con-

sists of (1) the queue time TQ, waiting in the queue; (2)

the schedule time TS, waiting for a turn at the head of

the queue; and (3) the (pure) compute time TC, being

processed. As illustrated in Figure 5, these times come

at a different form. In OWPOA (a), the preemptive OS

scheduler makes TS and TC interleaved. In EDGEWISE

(b), the non-preemptive scheduler makes clear distinction

because an operation is not scheduled until a worker is

available, and when scheduled, it completes its work.

In a saturated system, we treat TS and TC as constants,

while TQ will grow with the input rate to dominate Li.

Li = TQ +(TS +TC)≈ TQ (6)

Assuming that the input and service rates, λ and µ, can

be modeled as exponential random variables2, Gross et

al. [38] show that the queue time TQ can be expressed as

TQ =
ρ

µ−λ
=

λ

µ(µ−λ)
(7)

Note that TQ has a vertical asymptote (approaches ∞)

at µ= λ, and a horizontal asymptote (approaches 0) when

µ >> λ. In other words, for a given λ, a tuple will wait

longer in the queues of heavier operations, and crucially

the growth in wait time is non-linear (accelerates) as µ

approaches λ. This means that heavier operations have

a much larger TQ and thus Li (Equation (6)) than lighter

operations, and an outsized impact on overall latency

(Equation (5)).

Though the effect of heavy operations may be

dire when using the OWPOA’s random scheduler,

EDGEWISE’s congestion-aware scheduler can avoid this

problem by giving more hardware resources (CPU

turns) to heavier operations over lighter ones. In effect,

EDGEWISE balances the TQ of different operations, re-

ducing the TQ of tuples waiting at heavy operations but

increasing the TQ of tuples waiting at lighter operations.

According to Gross et al.’s model this balancing act is

not a zero-sum game: we expect that the lighter opera-

tions sit near the horizontal asymptote while the heavier

operations sit near the vertical asymptote, and balancing

queue times will shift the entire latency curve towards

the horizontal asymptote. In our evaluation we support

this analysis empirically (§7.3.2).

2For λ and µ with general distributions, the curve in the λ< µ region

is similar. The exponential model simplifies the presentation.

USENIX Association 2019 USENIX Annual Technical Conference 935

5.3 Measuring Operation Utilization

In our evaluation we compare EDGEWISE with a state-

of-the-art OWPOA. For a fine-grained comparison, in

addition to throughput and latency we must compare

the operation utilization ρ = λ
µ

discussed in §5.1. This

section describes how we can fairly compare EDGEWISE

against a baseline OWPOA system in this regard.

We want to compare the server (operation) utilization

of EDGEWISE and the baseline. As argued in §5.1, an

ideal result is a balanced utilization vector consisting

of equal values 1− ε, with ε chosen based on latency

requirements. As operation utilization may change over

the lifetime of an SPE run (e.g. as it reaches “steady-

state”), we incorporate a time window Tw into the metric

given in Equation (1).

During a time window Tw, an operation might be per-

formed on N tuples requiring a total of TE CPU time.

The input rate for this operation during this window is

λw = N
Tw

and the service rate is µw = 1
TE

, so we have

windowed utilization ρw as:

ρw =
λw

µw

= TE ·
N

Tw

(8)

Unsurprisingly, we found that this is the utilization

metric built into Storm [15]3, the baseline system in our

evaluation.

In the OWPOA, computing ρw is easy. Tw is fixed, N

is readily obtained, and TE can be calculated by moni-

toring the beginning and ending time of performing the

operation on each tuple:

TE =
1

N

N

∑
j

(Tend(j)−Tbegin(j)) (9)

Equation (9) would suffice to measure ρw for the OW-

POA, but for a fair comparison between the OWPOA

and EDGEWISE we need a different definition. Note that

Tend(j)−Tbegin(j) captures the total time a worker spends

applying an operation to a tuple, and in the OWPOA (Fig-

ure 5 (a)) this calculation includes both TC (pure computa-

tion) and TS (worker contention). As EDGEWISE’s sched-

uler is non-preemptive (Figure 5 (b)), measuring TE in

this way would capture only EDGEWISE’s TC. Doing so

would ignore its TS, the time during which EDGEWISE’s

scheduler decides not to schedule an operation with a

non-empty queue in favor of another operation with a

longer queue. This would artificially decrease TE and

thus ρw for this operation.

To capture TS for an operation in EDGEWISE, we can

instead amortize the schedule time TS across all com-

pleted tuples, and describe the operation’s time during

3In Apache Storm this metric is called the operation’s capacity.

this window as spent either executing or idling with an

empty queue:

Tw = TE ·N +TemptyQ (10)

Solving Equation (10) for TE and substituting into

Equation (8), we can compute ρw in EDGEWISE:

ρw = 1−
TemptyQ

Tw

(11)

The windowed utilization metric ρw given in Equa-

tion (11) applies equally well to SPEs that use the OW-

POA or EDGEWISE.

6 Implementation

We implemented EDGEWISE on top of Apache

Storm [15] (v1.1.0). Among modern SPEs, Storm was

the most popular for data science in 2018 [20] and has

the lowest overall latency [29]. We made three major

modifications: (1) We implemented the congestion-aware

scheduler (§4.1), and added two data structures: a list of

operations with non-empty queues as scheduling candi-

dates; and a list of running operations to ensure FIFO

per queue; (2) We removed the per-operation worker

threads, and added one worker pool of (configurable)

K worker threads (§4.2); and (3) We introduced two

queuing-related metrics, TemptyQ and TQ, for server uti-

lization and latency breakdown analysis (§5.3).

EDGEWISE can be applied to other OWPOA-style

SPEs such as Flink [13] and Heron [49]. In Flink, mul-

tiple operators may be grouped in a single Task Slot,

but each operator (called “subtask”) still has its own

worker thread. Task Slot separates only the managed

“memory” of tasks, but there is no CPU isolation. As a

result, worker threads will still contend and cause con-

gestion if there are more operators than CPUs. Thus,

EDGEWISE’s congestion-aware scheduler and fixed-size

worker pool will be equally beneficial for Flink.

The EDGEWISE prototype is available at https:

//github.com/VTLeeLab/EdgeWise-ATC-19. It adds

1500 lines of Java and Clojure across 30 files.

7 Evaluation

Our evaluation first shows EDGEWISE’s throughput-

latency performance on representative Edge stream pro-

cessing workloads (§7.2), followed by detailed perfor-

mance analysis (§7.3). Then we present a sensitivity

study on different consumption policies (§7.4), and a

distributed (inter-node) performance study (§7.5).

7.1 General Methodology

Hardware. EDGEWISE is designed for the Edge, so ex-

periments use an intermediate-class computing device

936 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/VTLeeLab/EdgeWise-ATC-19
https://github.com/VTLeeLab/EdgeWise-ATC-19

Figure 6: Tested Topolo-

gies in RIoTBench [68]:

(a) PREDictive analytics, (b)

model TRAINinig, (c) Ex-

tract, Transform, and Load,

and (d) STATistical summa-

rization. The (tuned) num-

ber of physical operations are

shown as the overlapped, mul-

tiple rectangles: e.g., 3 MQTT

Publish operations in (a).

representative of IoT Edge devices (§3.1): weaker than

Cloud-class servers but stronger than typical embedded

systems. Specifically, we use Raspberry Pi 3 Model

B devices (raspbis), which have a 1.2GHz quad-core

ARM Cortex-A53 with 1GB of RAM and run Raspbian

GNU/Linux 8.0 v4.1.18.

Baseline. We used Storm [15] as the OWPOA base-

line. We set up Storm’s dependencies, Nimbus and a

Zookeeper server, on a desktop machine, and placed the

Storm supervisors (compute nodes) on the raspbis. Be-

cause EDGEWISE optimizes the performance of a sin-

gle compute node, all but our distributed experiment

(§7.5) use a single raspbi. As our raspbis are quad-core,

EDGEWISE uses four worker threads.

Schedulers. In addition to EDGEWISE’s queue-length-

based approach, we also evaluated implementations of

the Min-Memory [18] and Min-Latency [25] schedulers,

as well as a Random scheduler. All schedulers used our

At-most-50 data consumption policy (§4.2), based on our

sensitivity study §7.4.

Benchmarks. We used the RIoTBench benchmark

suite [68], a real-time IoT stream processing benchmark

implemented for Storm4. The RIoTBench benchmarks

perform various analyses on a real-world Smart Cities

data stream [22]. Each input tuple is 380 bytes. The sizes

of intermediate tuples vary along the topology.

Figure 6 shows RIoTBench’s four topologies. We iden-

tified each physical topology using a search guided by

the server utilization metric (§5.1), resulting in physical

topologies with optimal latency-throughput curves on our

raspbi nodes [40]. We used the same physical topologies

for both Storm and EDGEWISE.

We made three modifications to the RIoTBench bench-

marks: (1) We patched various bugs and inefficiencies.

(2) We replaced any Cloud-based services with lab-based

ones; (3) To enable a controlled experiment, we imple-

mented a timer-based input generator that reads data from

4Other benchmarks [6, 53] seemed too unrealistic for our use case.

a replayed trace at a configurable input rate. To be more

specific, the Smart Cities data [22] is first loaded into the

memory, and a timer periodically (every 100 ms) feeds a

fixed-size batch of them into Spout, the source operator

in Storm. We changed the batch size to vary the input

rate. This simulates a topology measuring sensor data at

different frequencies, or measuring different number of

sensors at a fixed frequency.

Metrics. Measurements were taken during the one

minute of steady-state runs, after discarding couple min-

utes of initial phase. We measured throughput by count-

ing the number of tuples that reach the MQTT Publish

sink. Measuring throughput at the sink results in differ-

ent throughput rates for each topology at a given input

rate, since different topologies have input-output tuple

ratios: e.g., 1:2 in PRED, 1:5 in STATS. We measured la-

tency by sampling 5% of the tuples, assigning each tuple

a unique ID and comparing timestamps at source and

the same sink used for the throughput measurement. We

measured operation utilization using ρw (Equation (11)).

Each experiment was performed 5 times with each con-

figuration. The error bars indicate one standard deviation

from the average. Most data points had small variances.

7.2 Throughput-Latency Performance

We measured the throughput-latency performance curve

for each of the RIoTBench applications on one raspbi

across a range of input rates. The curves for PRED, STATS,

and ETL are shown in Figure 7; the curve for the TRAIN

application (not shown) looks like that of the ETL ap-

plication. In general, both Storm and EDGEWISE have

excellent performance when the system is under-utilized

(low throughput). Latency performance collapses at high

throughput rates as a result of frequent backpressure.

The results show that an SPE with an engine-level op-

eration scheduler and a worker pool (WP) significantly

outperforms Storm (an OWPOA-based SPE) at the Edge,

in effect shifting the Storm throughput-latency curve

down (lower latency) and to the right (higher throughput).

First, the gaps between Storm and WP+Random indicate

USENIX Association 2019 USENIX Annual Technical Conference 937

600 1200 1800 2400 3000 3600 4200 4800 5400
0

100

200

300

400

500

WP+MinLat

EdgeWise

 Storm

 WP+Random

 WP+MinMem

 WP+MinLat

 EdgeWise

L
a

te
n

c
y
 (

m
s
)

Throughput
0 1000 2000 3000 4000 5000 6000 7000 8000

0

50

100

150

200

250

300

L
a

te
n

c
y
 (

m
s
)

Throughput

 Storm

 WP+Random

 WP+MinMem

 WP+MinLat

 EdgeWise

600 800 1000 1200 1400 1600
0

50

100

150

200

250

300

WP+MinMem

WP+MinLat

EdgeWise

 Storm

 WP+Random

 WP+MinMem

 WP+MinLat

 EdgeWise

L
a

te
n

c
y
 (

m
s
)

Throughput

Figure 7: Throughput-latency of (a) PRED, (b) STATS, and (c) ETL topologies.

600 1200 1800 2400 3000 3600 4200
0.0

0.2

0.4

0.6

0.8

C
o

e
ff
ic

ie
n

t
o

f
V

a
ri

a
ti
o

n
 o

f
C

a
p

a
c
it
y

Throughput

 Storm

 EdgeWise

Figure 8: In PRED, as the input rate (thus throughput)

increases, the coefficient of variation (CV) of capacities

grows in Storm, but it decreases in EDGEWISE.

the benefit of avoiding unnecessary contentions in OW-

POA. More importantly, the engine-level schedulers in

effect push the backpressure point to a higher input rate,

allowing the SPEs to achieve higher throughput at a low

latency. The high variance in the Storm curves at higher

throughput rates indicate early, random backpressure.

Among the variants that use a scheduler and WP,

EDGEWISE’s queue-length-based scheduler matches or

outperforms WP+MinLat on latency and throughput,

while WP+MinMem leads to improved (but not the best)

performance as it is optimized for memory. Note that

EDGEWISE does not require profiling per-operation ex-

ecution time and input-output ratio as do MinLat and

MinMem. For PRED, while keeping the latency low (say

≤100 ms), EDGEWISE improves its throughput by 57%

(from 2800 to 4400). EDGEWISE is particularly effective

in the STATS, where it achieves a 3x throughput improve-

ment with low latency. For ETL, EDGEWISE improves

throughput from 1000 to 1350 under 50ms latency.

7.3 Detailed Performance Breakdown

This experiment investigates the underlying causes of the

throughput and latency gains described in §7.2, lending

empirical support to our analysis in §5. We use the PRED

application as a case study, though results were similar

in the other RIoTBench applications.

7.3.1 Fine-Grained Throughput Analysis

Our analysis of throughput in §5.1 predicted that balanc-

ing effective server (operation) utilization would yield

gains in throughput. To measure the extent to which

Storm and EDGEWISE balance server utilization, in this

experiment we calculated the windowed utilization ρw of

each operation using Equation (11) and then computed

the coefficient of variation (CV = stddev
avg

) of this vector.

A lower utilization CV means more balanced server uti-

lization.

Figure 8 plots the coefficient of variation for Storm and

EDGEWISE for different input rates. As the input rate

(and thus output throughput) increases, the utilization CV

increases in Storm, indicating that the operations become

unbalanced as Storm becomes saturated. In contrast, in

EDGEWISE the utilization CV decreases for larger input

rates (and the raw ρw values approach 1). As predicted,

EDGEWISE’s throughput gains are explained by its su-

perior ρw balancing.

7.3.2 Fine-Grained Latency Analysis

Our analysis of latency in §5.2 noted that in a congestion-

blind scheduler, heavier operations would develop longer

queues, and that the queuing time at these operations

would dominate end-to-end latency. We showed that an

SPE that reduced queuing times at heavy operations, even

at the cost of increased queuing times at lighter opera-

tions, would obtain an outsized improvement in latency.

In this experiment we validate this analysis empirically.

For this experiment we break down per-operation la-

tency into its constituent parts (Equation (6)) and analyze

the results in light of our analysis.

Figure 9 shows the per-operation latency for the 6 non-

source operations in the PRED topology in the baseline

Storm. Its logical and physical topology is shown in Fig-

ure 6 (a). Where our physical topology has multiple in-

stances of an operation (two instances of O1, three of O6),

we show the average queuing latency across instances.

Note first that the queue time TQ dominates the per-

operation latency Li. Then, as the input rate increases

from L(ow) to H(igh), the queues of heavier operations

(O1, O6) grow much longer than those of lighter opera-

tions, and the queue time at these operations dominates

the overall latency. Also note that the latency of lighter

operations may decrease at high throughput, as tuples are

938 2019 USENIX Annual Technical Conference USENIX Association

L M H L M H L M H L M H L M H L M H
0

2

4

6

8

10

12

14

16
25

O4O2

L
a

te
n

c
y
 (

m
s
)

O1 O3 O6O5

 T
Q

 queuing time

 T
S
 schedule time

 T
C
 compute time

L - Throughput of 400

M - Throughput of 1600

H - Throughput of 2822

Figure 9: In Storm, as the throughput increases from L(ow)

to M(edium) to H(igh), the queuing latency of heavy oper-

ations (e.g., O1 and O6) increases rapidly.

L M H L M H L M H L M H L M H L M H
0

2

4

6

8

10

12

14

16

 T
Q

 queuing time

 T
S
 schedule time

 T
C
 compute time

L
a

te
n

c
y
 (

m
s
)

L - Throughput of 400

M - Throughput of 1600

H - Throughput of 2800

O1 O2 O3 O4 O5 O6

Figure 10: In EDGEWISE, as the throughput increases,

the queuing latency of heavy operations (e.g., O1 and O6)

increases slowly.

mostly waiting in the queue of heavy operations, reflect-

ing the effects of the non-deterministic OS scheduler.

In contrast, we observed different behavior for

EDGEWISE as shown in Figure 10. The heaviest opera-

tion O1 is still noticeable but its queue time under High

input rate is only 15 ms, much smaller than the 25 ms

of Storm. Of course this penalizes the lighter operations,

but as we argued in §5.2 this is not a zero-sum game; the

improvement in end-to-end latency outweighs any small

per-operation latency increase.

The schedule time TS includes both the scheduling

overhead and the waiting time due to contention. Across

all throughput rates and operations, TS remains very

small, implying that the overhead of EDGEWISE’s sched-

uler is negligible.

7.4 Data Consumption Policy

In this experiment we explored the sensitivity of

EDGEWISE’s performance to its data consumption poli-

cies: a constant number (At-most-N) or a number propor-

tional to the queue length (All, Half).

In Figure 11 you can see the effect of these rules in

the STATS topology, as well as the Storm performance

for comparison. As expected, the constant consumption

rules consistently performed well in STATS. The PRED

showed the trend similar to the STATS. The TRAIN and ETL

topologies were not sensitive to the consumption policy.

The At-most-50 rule (solid black line) offers good latency

with the highest throughput for all, so we used it in our

other experiments.

7.5 Performance on Distributed Edge

Streaming workloads can benefit from scaling to multiple

compute nodes, and supporting scaling was one of our

design goals (§3.2). In this experiment we show that

EDGEWISE’s intra-node optimizations benefit an inter-

node (distributed) workload.

We deployed the PRED application across 2, 4, and 8

raspbis connected on a 1G Ethernet lab network, simply

1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

200

250

300

L
a

te
n

c
y
 (

m
s
)

Throughput

 Storm

 EdgeWise - all

 EdgeWise - half

 EdgeWise - 100

 EdgeWise - 50

Figure 11: Sensitivity study on various consumption poli-

cies with STATS topology.

increasing the physical operation instances proportional

to the number of raspbis and assigning them uniformly

across nodes. Identifying an optimal distributed topology

(and optimal partitioning across nodes) is out of scope

for our work, which focuses on the optimal scheduling

of the topology deployed on a single node. Experiments

on visionary hundred- or thousand-node cases are left for

future work. We used the same methodology as in §7.2

to collect metrics.

As expected, EDGEWISE’s intra-node optimizations

prove beneficial in an inter-node setting. Figure 12

shows the maximum throughput achieved by Storm and

EDGEWISE with latency less than 100 ms. The scala-

bility curve shows about 2.5x throughput improvement

with 8 nodes, suggesting that a combination of network-

ing costs and perhaps a non-optimal topology keep us

from realizing the full 8x potential improvement. On this

particular physical topology, EDGEWISE achieves an 18–

71% improvement over Storm’s maximum throughput,

comparable to the 57% improvement obtained in the

1-node experiment.

8 Related Work

To the best of our knowledge, Edgent [12] is the only

other SPE tailored for the Edge. Edgent is designed for

data preprocessing at individual Edge devices rather than

USENIX Association 2019 USENIX Annual Technical Conference 939

1 2 4 8
0

2500

5000

7500

10000

12500
T

h
ro

u
g

h
p

u
t

Nodes

 Storm

 EdgeWise

Figure 12: The maximum throughput achieved with the

latency less than 100 ms, using the PRED topology with

1, 2, 4, and 8 distributed nodes (log-scale). EDGEWISE’s

intra-node optimizations extend to a distributed setting.

full-fledged distributed stream processing. We believe

the Edge is powerful enough for more intelligent services,

and thus EDGEWISE targets a more expressive SPE lan-

guage with balanced throughput and latency.

Targeting distributed Cloud settings, a variety of aca-

demic [26, 39, 52, 62, 73] and industry/open-source [15,

49, 66] SPEs have been proposed. Some [8, 9, 11, 13, 14]

support both stream and batch processing. Most use the

OWPOA design and differentiate themselves on large-

scale distributed processing and fault tolerance. None has

our notion of an engine-level scheduler.

Researchers have studied distributed “job placement”

schedulers for Storm [10, 23, 60, 77] and Spark Stream-

ing [47, 51]. They determine where to distribute comput-

ing workloads across nodes in the Cloud. EDGEWISE

does not focus on how to partition a physical topology

for distributed computing.

Recent single-node SPE solutions leverage modern

many-core and heterogeneous architectures. For exam-

ple, GStream [78] describes an SPE tailored to GPUs,

while Saber [48] is a hybrid SPE for mixed CPU/GPU

computing that schedules operations on different hard-

ware depending on where they perform better. Stream-

Box [56] explores the high-end server space, demonstrat-

ing high throughput by extracting pipeline parallelism

on a state-of-the-art 56-core NUMA server. StreamBox

uses a worker pool (like EDGEWISE) to maximize CPU

utilization, but does not maintain a queue for each opera-

tion, making it hard to apply the Storm-like distributed

stream processing model. EDGEWISE targets the oppo-

site end of the spectrum: a compute cluster composed of

Edge-class devices where intra-node scale-up is limited

but inter-node scale-out is feasible. Thus, EDGEWISE

adopts the general distributed streaming model (scale-

out) and enables additional intra-node scale-up.

The Staged Event Driven Architecture (SEDA) [75]

was proposed to overcome the limitations of thread-

based web server architectures (e.g., Apache Httpd [1]):

namely, per-client memory and context-switch overheads.

EDGEWISE shares the same observation and proposes

a new congestion-aware scheduler towards a more effi-

cient EDA, considering how to stage (schedule) stream

processing operations.

Mobile Edge Computing (MEC) [42, 59] uses mo-

bile devices to form an Edge. Unlike EDGEWISE, they

focus on mobile-specific issues: e.g., mobility, LTE con-

nections, etc. Two works support stream processing on

mobile devices. Mobile Storm [57] ported Apache Storm

as is. MobiStreams [74] focuses on fault tolerance when

a participating mobile disappears. On the other hand,

Mobile-Cloud Computing (MCC) [30, 34, 37, 45, 63]

aims to offload computation from mobile to the Cloud.

There will be a good synergy between EDGEWISE and

MEC/MCC. EDGEWISE could be viewed as a local

cloud to which they can offload computations.

Lastly, queueing theory has been used to analyze

stream processing. The chief difference between pre-

vious analyses and our own lies in the assumption about

worker sharing. In traditional queueing theory, each oper-

ation is assumed to fairly share the workers. For example,

Vakilinia et al. [71] uses queueing network models to

determine the smallest number of workers under the la-

tency constraint, under the assumption that workers are

uniformly shared among operations. The same is true for

the analyses of Mak et al. [54] for series-parallel DAG

and Beard et al. [19] for heterogeneous hardware. On

the other hand, our analysis identifies the benefit of a

non-uniform scheduling weight, assigning more workers

to heavy-loaded operations.

9 Conclusion

Existing stream processing engines were designed for

the Cloud and behave poorly in the Edge context. This

paper presents EDGEWISE, a novel Edge-friendly stream

processing engine. EDGEWISE improves throughput and

latency thanks to its use of a congestion-aware scheduler

and a fixed-size worker pool. Some of the ideas behind

EDGEWISE were proposed in the past but forgotten by

modern stream processing engines; we enhance these

ideas with a new scheduling algorithm supported by a

new queuing-theoretic analysis. Sometimes the answers

in system design lie not in the future but in the past.

Acknowledgments

We are grateful to the anonymous reviewers and to our

shepherd, Dilma Da Silva, for their thoughts and guid-

ance. This work was supported in part by the National

Science Foundation, under grant CNS-1814430.

940 2019 USENIX Annual Technical Conference USENIX Association

References

[1] The apache http server. http://httpd.apache.org.

[2] EdgeX Foundry. https://www.edgexfoundry.org/.

[3] Ispout api documentation.

https://storm.apache.org/releases/1.1.2/javadocs/

org/apache/storm/spout/ISpout.html.

[4] Kafka - A distributed Streaming Platform.

https://kafka.apache.org/.

[5] OpenFog. https://www.openfogconsortium.org/.

[6] Storm benchmark. https://github.com/intel-

hadoop/storm-benchmark.

[7] Daniel J Abadi, Yanif Ahmad, Magdalena Bal-

azinska, Ugur Cetintemel, Mitch Cherniack, Jeong-

Hyon Hwang, Wolfgang Lindner, Anurag Maskey,

Alex Rasin, Esther Ryvkina, et al. The design of

the borealis stream processing engine. In Cidr,

volume 5, pages 277–289, 2005.

[8] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava

Chernyak, Josh Haberman, Reuven Lax, Sam

McVeety, Daniel Mills, Paul Nordstrom, and Sam

Whittle. Millwheel: fault-tolerant stream process-

ing at internet scale. Proceedings of the VLDB

Endowment, 6(11):1033–1044, 2013.

[9] Tyler Akidau, Robert Bradshaw, Craig Chambers,

Slava Chernyak, Rafael J. Fernández-Moctezuma,

Reuven Lax, Sam McVeety, Daniel Mills, Frances

Perry, Eric Schmidt, and Sam Whittle. The dataflow

model: A practical approach to balancing correct-

ness, latency, and cost in massive-scale, unbounded,

out-of-order data processing. Proceedings of the

VLDB Endowment, 8:1792–1803, 2015.

[10] Leonardo Aniello, Roberto Baldoni, and Leonardo

Querzoni. Adaptive online scheduling in storm.

In Proceedings of the 7th ACM international con-

ference on Distributed event-based systems, pages

207–218. ACM, 2013.

[11] Apache. Apache beam. https://flink.apache.org/.

[12] Apache. Apache Edgent - A Commu-

nity for Accelerating Analytics at the Edge.

https://edgent.apache.org/.

[13] Apache. Apache flink. https://flink.apache.org/.

[14] Apache. Apache spark. a fast and gen-

eral engine for large-scale data processing.

http://spark.apache.org/.

[15] Apache. Apache storm. an open source

distributed realtime computation system.

http://storm.apache.org/.

[16] Arvind Arasu, Brian Babcock, Shivnath Babu,

Mayur Datar, Keith Ito, Itaru Nishizawa, Justin

Rosenstein, and Jennifer Widom. Stream: The stan-

ford stream data manager (demonstration descrip-

tion). In Proceedings of the 2003 ACM SIGMOD

International Conference on Management of Data,

SIGMOD ’03, pages 665–665, New York, NY, USA,

2003. ACM.

[17] Michael Armbrust, Armando Fox, Rean Griffith,

Anthony D. Joseph, Randy Katz, Andy Konwinski,

Gunho Lee, David Patterson, Ariel Rabkin, Ion Sto-

ica, and Matei Zaharia. A view of cloud computing.

Commun. ACM, 53(4):50–58, April 2010.

[18] Brian Babcock, Shivnath Babu, Mayur Datar, Ra-

jeev Motwani, and Dilys Thomas. Operator schedul-

ing in data stream systems. The VLDB Jour-

nal—The International Journal on Very Large Data

Bases, 13(4):333–353, 2004.

[19] Jonathan C Beard and Roger D Chamberlain. Anal-

ysis of a simple approach to modeling performance

for streaming data applications. In 2013 IEEE 21st

International Symposium on Modelling, Analysis

and Simulation of Computer and Telecommunica-

tion Systems, pages 345–349. IEEE, 2013.

[20] Sean Boland. Ranking popular distributed comput-

ing packages for data science, 2018.

[21] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and

Sateesh Addepalli. Fog computing and its role

in the internet of things. In Proceedings of the First

Edition of the MCC Workshop on Mobile Cloud

Computing, MCC ’12, pages 13–16, 2012.

[22] Data Canvas. Sense your city: Data art challenge.

http://datacanvas.org/sense-your-city/.

[23] Valeria Cardellini, Vincenzo Grassi, Francesco

Lo Presti, and Matteo Nardelli. Distributed qos-

aware scheduling in storm. In Proceedings of the

9th ACM International Conference on Distributed

Event-Based Systems, pages 344–347. ACM, 2015.

[24] Don Carney, Ugur Cetintemel, Mitch Cherniack,

Christian Convey, Sangdon Lee, Greg Seidman,

Michael Stonebraker, Nesime Tatbul, and Stan

Zdonik. Monitoring streams: a new class of data

management applications. In Proceedings of the

USENIX Association 2019 USENIX Annual Technical Conference 941

28th international conference on Very Large Data

Bases, pages 215–226. VLDB Endowment, 2002.

[25] Don Carney, Uğur Çetintemel, Alex Rasin, Stan

Zdonik, Mitch Cherniack, and Mike Stonebraker.

Operator scheduling in a data stream manager. In

Proceedings of the 29th international conference on

Very large data bases-Volume 29, pages 838–849.

VLDB Endowment, 2003.

[26] Raul Castro Fernandez, Matteo Migliavacca, Evan-

gelia Kalyvianaki, and Peter Pietzuch. Integrating

scale out and fault tolerance in stream processing

using operator state management. In Proceedings

of the 2013 ACM SIGMOD International Confer-

ence on Management of Data, SIGMOD ’13, pages

725–736, New York, NY, USA, 2013. ACM.

[27] Sirish Chandrasekaran, Owen Cooper, Amol Desh-

pande, Michael J. Franklin, Joseph M. Hellerstein,

Wei Hong, Sailesh Krishnamurthy, Samuel R. Mad-

den, Fred Reiss, and Mehul A. Shah. Telegraphcq:

Continuous dataflow processing. In Proceedings

of the 2003 ACM SIGMOD International Confer-

ence on Management of Data, SIGMOD ’03, pages

668–668, New York, NY, USA, 2003. ACM.

[28] Mitch Cherniack, Hari Balakrishnan, Magdalena

Balazinska, Donald Carney, Ugur Cetintemel, Ying

Xing, and Stanley B Zdonik. Scalable distributed

stream processing. In CIDR, volume 3, pages 257–

268, 2003.

[29] Sanket Chintapalli, Derek Dagit, Bobby Evans,

Reza Farivar, Thomas Graves, Mark Holderbaugh,

Zhuo Liu, Kyle Nusbaum, Kishorkumar Patil,

Boyang Jerry Peng, et al. Benchmarking stream-

ing computation engines: Storm, flink and spark

streaming. In Parallel and Distributed Processing

Symposium Workshops, 2016 IEEE International,

pages 1789–1792. IEEE, 2016.

[30] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis,

Mayur Naik, and Ashwin Patti. Clonecloud: Elastic

execution between mobile device and cloud. In

Proceedings of the Sixth Conference on Computer

Systems, EuroSys ’11, pages 301–314, New York,

NY, USA, 2011. ACM.

[31] Cisco. Cisco Kinetic Edge &

Fog Processing Module (EFM).

https://www.cisco.com/c/dam/en/us/solutions/

collateral/internet-of-things/kinetic-datasheet-

efm.pdf.

[32] Rebecca L Collins and Luca P Carloni. Flexible

filters: load balancing through backpressure for

stream programs. In Proceedings of the seventh

ACM international conference on Embedded soft-

ware, pages 205–214. ACM, 2009.

[33] Mckinsey & Company. The internet of things: Map-

ping the value beyond the hype, 2015.

[34] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki

Cho, Alec Wolman, Stefan Saroiu, Ranveer Chan-

dra, and Paramvir Bahl. Maui: Making smartphones

last longer with code offload. In Proceedings of the

8th International Conference on Mobile Systems,

Applications, and Services, MobiSys ’10, pages 49–

62, New York, NY, USA, 2010. ACM.

[35] Abhinandan Das, Johannes Gehrke, and Mirek

Riedewald. Approximate join processing over data

streams. In Proceedings of the 2003 ACM SIGMOD

International Conference on Management of Data,

SIGMOD ’03, pages 40–51, New York, NY, USA,

2003. ACM.

[36] Eclipse. Eclipse kura. open-source framework for

iot. http://www.eclipse.org/kura/.

[37] Mark S. Gordon, D. Anoushe Jamshidi, Scott

Mahlke, Z. Morley Mao, and Xu Chen. Comet:

Code offload by migrating execution transparently.

In Proceedings of the 10th USENIX Conference

on Operating Systems Design and Implementation,

OSDI’12, pages 93–106, Berkeley, CA, USA, 2012.

USENIX Association.

[38] Donald Gross. Fundamentals of queueing theory.

John Wiley & Sons, 2008.

[39] Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta

Patino-Martinez, Claudio Soriente, and Patrick Val-

duriez. Streamcloud: An elastic and scalable data

streaming system. IEEE Transactions on Parallel

and Distributed Systems, 23(12):2351–2365, 2012.

[40] HortonWorks. Apache storm

topology tuning approach.

https://community.hortonworks.com/articles/62852/

feed-the-hungry-squirrel-series-storm-topology-

tun.html.

[41] HortonWorks. Hortonworks best

practices guide for apache storm.

https://community.hortonworks.com/articles/550/

unofficial-storm-and-kafka-best-practices-

guide.html.

942 2019 USENIX Annual Technical Conference USENIX Association

[42] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit

Sprecher, and Valerie Young. Mobile edge com-

puting—a key technology towards 5g. ETSI White

Paper, 11(11):1–16, 2015.

[43] International Electrotechnical Commission

(IEC). Iot 2020: Smart and secure iot plat-

form. http://www.iec.ch/whitepaper/pdf/iecWP-

loT2020-LR.pdf.

[44] C. Jennings, Z. Shelby, J. Arkko, and A. Keranen.

Media types for sensor markup language (senml).

2016.

[45] Yiping Kang, Johann Hauswald, Cao Gao, Austin

Rovinski, Trevor Mudge, Jason Mars, and Lingjia

Tang. Neurosurgeon: Collaborative intelligence

between the cloud and mobile edge. In Proceedings

of the Twenty-Second International Conference on

Architectural Support for Programming Languages

and Operating Systems, ASPLOS ’17, pages 615–

629, New York, NY, USA, 2017. ACM.

[46] Leonard Kleinrock. Queueing systems, volume 2:

Computer applications, volume 66. wiley New

York, 1976.

[47] Dzmitry Kliazovich, Pascal Bouvry, and Samee Ul-

lah Khan. Dens: Data center energy-efficient

network-aware scheduling. Cluster Computing,

16(1):65–75, March 2013.

[48] Alexandros Koliousis, Matthias Weidlich, Raul Cas-

tro Fernandez, Alexander L. Wolf, Paolo Costa,

and Peter Pietzuch. Saber: Window-based hybrid

stream processing for heterogeneous architectures.

In Proceedings of the 2016 International Confer-

ence on Management of Data, SIGMOD ’16, pages

555–569, New York, NY, USA, 2016. ACM.

[49] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu,

Vikas Kedigehalli, Christopher Kellogg, Sailesh

Mittal, Jignesh M Patel, Karthik Ramasamy, and

Siddarth Taneja. Twitter heron: Stream processing

at scale. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data,

pages 239–250. ACM, 2015.

[50] Franck L Lewis et al. Wireless sensor networks.

Smart environments: technologies, protocols, and

applications, 11:46, 2004.

[51] Zhen Li, Bin Chen, Xiaocheng Liu, Dandan Ning,

Qihang Wei, Yiping Wang, and Xiaogang Qiu.

Bandwidth-guaranteed resource allocation and

scheduling for parallel jobs in cloud data center.

Symmetry, 10(5):134, 2018.

[52] Wei Lin, Haochuan Fan, Zhengping Qian, Junwei

Xu, Sen Yang, Jingren Zhou, and Lidong Zhou.

Streamscope: Continuous reliable distributed pro-

cessing of big data streams. In NSDI, volume 16,

pages 439–453, 2016.

[53] Ruirui Lu, Gang Wu, Bin Xie, and Jingtong Hu.

Stream bench: Towards benchmarking modern dis-

tributed stream computing frameworks. In Proceed-

ings of the 2014 IEEE/ACM 7th International Con-

ference on Utility and Cloud Computing, UCC ’14,

pages 69–78, Washington, DC, USA, 2014. IEEE

Computer Society.

[54] Victor W Mak and Stephen F. Lundstrom. Predict-

ing performance of parallel computations. IEEE

Transactions on Parallel and Distributed Systems,

1(3):257–270, 1990.

[55] Dennis McCarthy and Umeshwar Dayal. The archi-

tecture of an active database management system.

In Proceedings of the 1989 ACM SIGMOD Inter-

national Conference on Management of Data, SIG-

MOD ’89, pages 215–224, New York, NY, USA,

1989. ACM.

[56] Hongyu Miao, Heejin Park, Myeongjae Jeon, Gen-

nady Pekhimenko, Kathryn S. McKinley, and Fe-

lix Xiaozhu Lin. Streambox: Modern stream pro-

cessing on a multicore machine. In Proceedings of

the 2017 USENIX Conference on Usenix Annual

Technical Conference, USENIX ATC ’17, pages

617–629, Berkeley, CA, USA, 2017. USENIX As-

sociation.

[57] Qian Ning, Chien-An Chen, Radu Stoleru, and Con-

gcong Chen. Mobile storm: Distributed real-time

stream processing for mobile clouds. In Cloud Net-

working (CloudNet), 2015 IEEE 4th International

Conference on, pages 139–145. IEEE, 2015.

[58] A. Papageorgiou, E. Poormohammady, and

B. Cheng. Edge-computing-aware deployment of

stream processing tasks based on topology-external

information: Model, algorithms, and a storm-based

prototype. In 2016 IEEE International Congress

on Big Data (BigData Congress), pages 259–266,

June 2016.

[59] Milan Patel, B Naughton, C Chan, N Sprecher,

S Abeta, A Neal, et al. Mobile-edge computing

USENIX Association 2019 USENIX Annual Technical Conference 943

introductory technical white paper. White Paper,

Mobile-edge Computing (MEC) industry initiative,

2014.

[60] Boyang Peng, Mohammad Hosseini, Zhihao Hong,

Reza Farivar, and Roy Campbell. R-storm:

Resource-aware scheduling in storm. In Proceed-

ings of the 16th Annual Middleware Conference,

pages 149–161. ACM, 2015.

[61] Donald E Porter, Silas Boyd-Wickizer, Jon Howell,

Reuben Olinsky, and Galen C Hunt. Rethinking the

library os from the top down. In ACM SIGPLAN

Notices, volume 46, pages 291–304. ACM, 2011.

[62] Zhengping Qian, Yong He, Chunzhi Su, Zhuojie

Wu, Hongyu Zhu, Taizhi Zhang, Lidong Zhou, Yuan

Yu, and Zheng Zhang. Timestream: Reliable stream

computation in the cloud. In Proceedings of the 8th

ACM European Conference on Computer Systems,

EuroSys ’13, pages 1–14, New York, NY, USA,

2013. ACM.

[63] Moo-Ryong Ra, Anmol Sheth, Lily Mummert, Pad-

manabhan Pillai, David Wetherall, and Ramesh

Govindan. Odessa: Enabling interactive percep-

tion applications on mobile devices. In Proceed-

ings of the 9th International Conference on Mobile

Systems, Applications, and Services, MobiSys ’11,

pages 43–56, New York, NY, USA, 2011. ACM.

[64] H. P. Sajjad, K. Danniswara, A. Al-Shishtawy, and

V. Vlassov. Spanedge: Towards unifying stream

processing over central and near-the-edge data cen-

ters. In 2016 IEEE/ACM Symposium on Edge Com-

puting (SEC), pages 168–178, Oct 2016.

[65] Jerome H Saltzer, David P Reed, and David D

Clark. End-to-end arguments in system design.

ACM Transactions on Computer Systems (TOCS),

2(4):277–288, 1984.

[66] Scott Schneider and Kun-Lung Wu. Low-

synchronization, mostly lock-free, elastic schedul-

ing for streaming runtimes. ACM SIGPLAN No-

tices, 52(6):648–661, 2017.

[67] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge

computing: Vision and challenges. IEEE Internet

of Things Journal, 3(5):637–646, Oct 2016.

[68] Anshu Shukla, Shilpa Chaturvedi, and Yogesh

Simmhan. Riotbench: a real-time iot benchmark

for distributed stream processing platforms. arXiv

preprint arXiv:1701.08530, 2017.

[69] Michael Stonebraker, Uǧur Çetintemel, and Stan

Zdonik. The 8 requirements of real-time stream

processing. ACM SIGMOD Record, 34(4):42–47,

2005.

[70] Nesime Tatbul, Uğur Çetintemel, Stan Zdonik,

Mitch Cherniack, and Michael Stonebraker. Load

shedding in a data stream manager. In Proceed-

ings of the 29th International Conference on Very

Large Data Bases - Volume 29, VLDB ’03, pages

309–320. VLDB Endowment, 2003.

[71] Shahin Vakilinia, Xinyao Zhang, and Dongyu Qiu.

Analysis and optimization of big-data stream pro-

cessing. In 2016 IEEE global communications con-

ference (GLOBECOM), pages 1–6. IEEE, 2016.

[72] Deepak Vasisht, Zerina Kapetanovic, Jongho Won,

Xinxin Jin, Ranveer Chandra, Sudipta N Sinha,

Ashish Kapoor, Madhusudhan Sudarshan, and Sean

Stratman. Farmbeats: An iot platform for data-

driven agriculture. In NSDI, pages 515–529, 2017.

[73] Shivaram Venkataraman, Aurojit Panda, Kay

Ousterhout, Michael Armbrust, Ali Ghodsi,

Michael J. Franklin, Benjamin Recht, and Ion Sto-

ica. Drizzle: Fast and adaptable stream processing

at scale. In Proceedings of the 26th Symposium on

Operating Systems Principles, SOSP ’17, pages

374–389, New York, NY, USA, 2017. ACM.

[74] Huayong Wang and Li-Shiuan Peh. Mobistreams:

A reliable distributed stream processing system for

mobile devices. In Parallel and Distributed Pro-

cessing Symposium, 2014 IEEE 28th International,

pages 51–60. IEEE, 2014.

[75] Matt Welsh, David Culler, and Eric Brewer. Seda:

An architecture for well-conditioned, scalable in-

ternet services. In Proceedings of the Eighteenth

ACM Symposium on Operating Systems Principles,

SOSP ’01, pages 230–243, New York, NY, USA,

2001. ACM.

[76] Jennifer Widom and Stefano Ceri. Active database

systems: Triggers and rules for advanced database

processing. Morgan Kaufmann, 1996.

[77] Jielong Xu, Zhenhua Chen, Jian Tang, and Sen Su.

T-storm: Traffic-aware online scheduling in storm.

In Distributed Computing Systems (ICDCS), 2014

IEEE 34th International Conference on, pages 535–

544. IEEE, 2014.

944 2019 USENIX Annual Technical Conference USENIX Association

[78] Yongpeng Zhang and Frank Mueller. Gstream: A

general-purpose data streaming framework on gpu

clusters. In Parallel Processing (ICPP), 2011 In-

ternational Conference on, pages 245–254. IEEE,

2011.

USENIX Association 2019 USENIX Annual Technical Conference 945

Analysis of Large-Scale Multi-Tenant GPU Clusters

for DNN Training Workloads

Myeongjae Jeon†*, Shivaram Venkataraman‡*, Amar Phanishayee*,
Junjie Qian*, Wencong Xiao§*, and Fan Yang*

†
UNIST

‡
University of Wisconsin

§
Beihang University

*
Microsoft Research

Abstract

With widespread advances in machine learning, a number of
large enterprises are beginning to incorporate machine learn-
ing models across a number of products. These models are
typically trained on shared, multi-tenant GPU clusters. Similar
to existing cluster computing workloads, scheduling frame-
works aim to provide features like high efficiency, resource
isolation, fair sharing across users, etc. However Deep Neu-
ral Network (DNN) based workloads, predominantly trained
on GPUs, differ in two significant ways from traditional big
data analytics workloads. First, from a cluster utilization per-
spective, GPUs represent a monolithic resource that cannot
be shared at a fine granularity across users. Second, from
a workload perspective, deep learning frameworks require
gang scheduling reducing the flexibility of scheduling and
making the jobs themselves inelastic to failures at runtime. In
this paper we present a detailed workload characterization of
a two-month long trace from a multi-tenant GPU cluster in
Microsoft. By correlating scheduler logs with logs from indi-
vidual jobs, we study three distinct issues that affect cluster
utilization for DNN training workloads on multi-tenant clus-
ters: (1) the effect of gang scheduling and locality constraints
on queuing, (2) the effect of locality on GPU utilization, and
(3) failures during training. Based on our experience running
a large-scale operation, we provide design guidelines pertain-
ing to next-generation cluster schedulers for DNN training
workloads.

1 Introduction

Recent advances in machine learning have led to tremendous
improvements in tasks ranging from object detection [31] to
speech recognition [34] and language translation [47]. As a
result a number of enterprises are now incorporating machine
learning models in various products [1,4]. To facilitate model
training, enterprises typically setup a large cluster shared by
users belonging to a number of different production groups.
Similar to clusters setup for big data analysis [12, 50], using

shared clusters can facilitate better utilization and reduce
development overheads.

However deep learning workloads pose a number of new
requirements or constraints on cluster management systems.
Since machine learning algorithms are floating point com-
putation intensive, these workloads require hardware accel-
erators like GPUs. However, unlike CPUs, accelerators do
not typically have proper hardware support for fine-grained
sharing [21]. While there are software mechanisms to enable
sharing, they often have high overhead making it challenging
to share resources across jobs [40, 53]. Furthermore, training
on large datasets often requires the use of multiple GPUs [20]
and machine learning frameworks typically require that tasks
on each GPU be scheduled at the same time, i.e., gang sched-
uled [18]. This increases the risk of resource fragmentation
and low utilization in shared clusters. Finally, multi-GPU
training also implies synchronization of model parameters
across GPUs and hence it is important to achieve better local-

ity while scheduling to allow for the use of faster interconnects
for both intra- and inter-machine communication.

Despite their growing popularity, to the best of our knowl-
edge, there has been no systematic study of multi-tenant clus-
ters used to train machine learning models. In this paper, we
present the design of a large, multi-tenant GPU-based cluster
used for training deep learning models in production. We
describe Philly, a service in Microsoft for training machine
learning models that performs resource scheduling and cluster
management for jobs running on the cluster. Using data from
this system, we then present a detailed workload characteriza-
tion and study how factors such as gang scheduling, locality
requirements and failures affect cluster utilization.

Our analysis spans across two months and uses around
100,000 jobs run by hundreds of users. We combine logs
from Apache YARN [48], our cluster scheduler, utilization
information from Ganglia [33], and logs from each job to
perform a systematic analysis of cluster utilization.

We study two main aspects of how locality-aware schedul-
ing affects performance and utilization. First, we study how
waiting for locality constraints can influence queuing delays

USENIX Association 2019 USENIX Annual Technical Conference 947

before training jobs are run. Training jobs need to be gang
scheduled, as hyper-parameters are picked for specific GPU
count configurations. Given that training jobs take a long time
to run, and greater locality improves performance due to the
availability of faster interconnects for parallel training [52],
the scheduler in Philly waits for appropriate availability of
GPUs before beginning to run the training job. Our study
shows that as one might expect, relaxing locality constraints
reduces queueing delays, especially for jobs that use many
GPUs – our emphasis here is not on presenting this as a new
insight, but instead on highlighting this using real-world data
from production clusters.

Next, we study how locality-aware scheduling can affect
the GPU utilization for distributed training jobs. Even though
most GPUs within a cluster are allocated to users, thus sug-

gesting high cluster utilization, this metric alone is misleading.
We show that the hardware utilization of GPUs in use is only
around 52% on average. We investigate two reasons which
contribute to low GPU utilization: (1) the distribution of in-

dividual jobs across servers, ignoring locality constraints, in-
creases synchronization overheads, and (2) the colocation or
packing of different jobs on same server leads to interference
due to contention for shared resources.

Finally, we look at why jobs might fail to complete success-
fully and offer a detailed characterization of the causes for
such failures in our clusters. Around 30% of jobs are killed or
finish unsuccessfully due to failures. Failures are caused by
errors across the stack, with programming errors dominating
failures and occurring early in the training process; failures
due to cluster components like HDFS tend to occur much
later in the training lifecycle.

Based on the lessons learnt from data analysis and our ex-
periences running a large-scale operation over the years, we
provide three guidelines to improve the next generation of
cluster schedulers for DNN workloads. First, because the lack
of locality impacts both utilization and job runtime, and be-
cause DNN training jobs are long running, schedulers should
trade queueing delay for adhering to locality constraints. Sec-
ond, different jobs that share a single server may interfere
with each other and thus adversely affect their training time.
Schedulers should thus aim to isolate the jobs on dedicated
servers while implementing techniques like migration for de-
fragmentation, to support the locality constraints of jobs that
need more GPUs. Third, many failures ought to be caught
early, well before they are scheduled on a larger shared clus-
ter. This can be achieved by scheduling each incoming job
on a small dedicated pool of servers or even using a single
GPU should be able to catch simple programming and config-
uration errors from multi-GPU jobs. Furthermore, an online
analysis of failures at runtime can let schedulers adapt their
retry policies thus avoiding wasteful re-execution.

Philly’s design does not stand in isolation. There are many
open platforms for DNN job scheduling that use designs simi-
lar to Philly, e.g., OpenPAI [36] and Submarine [44]. We hope

that insights and data from our study, and the accompanying
traces, inform the burgeoning work of scheduling research for
machine learning workloads.

2 Philly: System Overview

In this section we provide an overview of the design and ar-
chitecture of Philly. First, we describe the workloads that are
supported in our system and then describe the hardware char-
acteristics of the clusters. Next, we describe the lifecycle of a
job. Finally, we explain our data collection pipeline and high-
light the data we use to perform our analysis in subsequent
sections. The authors would like to note that Philly has been
developed over the past few years by a team of developers in
our company and has gone through multiple generations of
design.

2.1 Workloads

Philly is designed to support workloads that perform super-
vised machine learning where jobs learn a model given train-
ing data and the corresponding labels. This includes training
jobs from production groups developing products that use
models for image classification, speech recognition, etc. The
system supports jobs written using any machine learning
framework like TensorFlow [5], CNTK [42], Caffe [29], and
PyTorch [39]. Jobs are based on recently proposed learn-
ing architectures like convolutional neural networks [31],
LSTMs [45] and RNNs [35].

All jobs, irrespective of the framework or model being used,
rely on iterative optimization methods [19] like stochastic
gradient descent (SGD). In each iteration, the gradient compu-
tation is performed by translating the model components into
code that can be executed on accelerators like GPUs. The gra-
dient values are then aggregated to compute a model update
and these iterations are repeated until convergence. Training
a model could require thousands to millions of iterations [46],
and result in multiple passes or epochs over the entire dataset.

To scale training across larger datasets, a number of jobs
use distributed training across machines. Distributed training
typically uses data parallelism where each worker loads a
complete copy of the model into its own memory. In each
iteration, every worker performs training using a subset of the
input data, and at the end of the iteration all workers exchange
gradients to synchronize model updates. This synchronization
phase is performed using either parameter servers [32] or high
performance libraries for collective communication (such as
MPI, NCCL, etc).

2.2 Cluster Architecture

Our system is deployed on large GPU clusters shared across
many groups in the company. Our clusters has grown signif-
icantly over time, both in terms of the number of machines

948 2019 USENIX Annual Technical Conference USENIX Association

Exit

Place

Job B

Queue 3

HDFS

Server ServerServer Server

Server ServerServer Server

RDMA domain

RDMA domain

Training
data

R
es

ou
rc

e
sc

he
du

le
r

Queue 2

Queue 1

Queue n

Job A

1 2

3

Figure 1: The lifecycle of deep learning jobs in Philly.

(5⇥ increase in one year) as well as the number of GPUs per
machine (2-GPU to 8-GPU servers).

Our clusters have high-speed network connectivity among
servers and GPUs in the cluster. This is to speed up dis-
tributed training where workers need to exchange model
updates promptly for every iteration. There is a hierarchy
of network links available in our cluster for communication
across GPUs. For example, machines within the same rack
(RDMA domain) are connected via 100-Gbps RDMA (Infini-
Band) network, while cross-rack traffic goes through Ethernet.
To improve communication performance, workers in a dis-
tributed training job must either be colocated on the same
machine or preferably communicate over a higher-speed net-
work such as say InfiniBand. Thus, our framework considers
both GPUs and network connectivity for scheduling.

Similar to existing big data analytics clusters, our clusters
use HDFS [43] as the distributed storage system and our re-
source manager is based off Apache YARN [48]. Input data
for the machine learning jobs is stored in HDFS and read by
jobs during training. Users provide a Docker container with
their training code and its dependencies. Each training job
requests 1 or more GPUs which can be allocated across mul-
tiple machines. Philly instantiates one container per machine
allocated to the job when it is scheduled for execution.

2.3 Job Scheduling and Execution Workflow

Figure 1 shows the lifecycle of a deep learning job in Philly
and the various stages of execution that it goes through.
Incoming jobs and queueing 1 . As a part of job submis-
sion, users specify the number of GPUs required. To facilitate
host resource allocation, we perform an allocation of CPU
cores and memory capacity proportional to the requested
GPU count. Once a job has been received by the scheduler
it is queued while the necessary GPUs are allocated. To sup-
port multiple production groups we create a virtual cluster for
each group and associate a resource share or quota in terms
of number of GPUs to each virtual cluster. Each virtual cluster
has a separate allocation queue in Apache YARN and we use
the Fair Scheduler to manage these queues [2]. Our scheduler
not only respects the configured resource shares but also allo-
cates unused GPUs to a queue which has additional demand.
Jobs can be preempted based on fair share of resources among

virtual clusters. Our scheduler starts preemption only when a
majority (90%) of total GPUs are being used.

For distributed learning, deep learning frameworks require
all the GPUs to be available at the same time [22]. Thus
the scheduler needs to perform gang scheduling while be-
ing locality-aware, i.e., pack a job’s GPUs onto the smallest
number of servers and within an RDMA domain. Locality
awareness improves training time by bringing down the time
needed for parameter synchronization [22,52] due to the avail-
ability of: (i) fast intra-server interconnects (such as PCIe and
NVLink), and (ii) for jobs that do not fit on a single server,
high-bandwidth links available within an RDMA domain.
We implement these goals by acquiring resources for a job
as GPUs become available and waiting for a pre-specified
timeout (2–3 minutes in our setup) to acquire all the neces-
sary GPUs with the locality constraints. To facilitate locality-
aware GPU scheduling, our job scheduler keeps track of all
idle GPUs in the cluster and ranks the corresponding racks
and servers. Specifically, racks are ranked by increasing or-
der of allocation or occupancy, and the machines in a rack
are ordered the same way. This allows the scheduler to first
consider racks and then servers within those racks that have
most GPUs available.

If the request is not fulfilled by the timeout, any partially
acquired resources are relinquished and we retry scheduling
after a back-off (2 minutes in our setup). To avoid starva-
tion, the locality constraints are relaxed after a scheduling
request has been retried a fixed number of times. We analyze
corresponding queuing delays in Section 3.1.
Job placement and utilization 2 . While the scheduler tries
to maximize locality for distributed jobs as described before,
at the same time the scheduler also aims to avoid fragmen-
tation of resources from smaller jobs (e.g., 1-GPU jobs) by
packing them into a fewer servers. However colocating differ-
ent jobs on the same server could lead to lower GPU utiliza-
tion due to interference in shared system resources such as
PCIe bus [52]. In order to better understand this trade-off we
study the effects of colocation vs. distribution and measure
how that affects utilization.

Once the job is scheduled to run, its GPUs are not shared

with other jobs. This is because model training can be compu-
tation intensive and we need consistent performance among
workers of the job without having stragglers. However, ded-
icated GPUs may be underutilized for many reasons, e.g.,
inefficiencies in the code generated by the machine learn-
ing frameworks or programs blocking on I/O when reading
data from storage. GPU underutilization also comes from dis-
tributed training where computation may block during model
synchronization among the workers. We analyze the effects
of job placement and GPU utilization in Section 3.2.

Table 1 qualitatively compares Philly with the state-of-the-
art DNN cluster schedulers, showing both similarities and
differences exist. Nonetheless, locality and colocation are the
common issue for all contemporary clusters, and that insights

USENIX Association 2019 USENIX Annual Technical Conference 949

Table 1: Comparison of DNN cluster schedulers. JCT means job completion time.
Philly Gandiva [52] Optimus [38] Tiresias [22]

Objective Consolidation Consolidation Average JCT Average JCT
Algorithm Locality-based Time-sharing SRTF Gittins Index & LAS
Input Arrival time N/A Remaining time Attained service
Preemption Model checkpoint Context switch Model checkpoint Model checkpoint

obtained in this study are widely valuable.
Training progress and completion 3 . Jobs can finish with
one of three statuses: passed, killed, or unsuccessful. Passed
indicates that the job completed successfully, while killed
indicates that the job was terminated by the user.

Among successful jobs, every job runs a number of itera-
tions to improve the model incrementally, and the number of
iterations to run is typically a static parameter set by the user.
In cases where a job is configured with too many iterations, it
is possible to deliver the same (or similar) quality of trained
model with fewer iterations. Failed jobs in our system are
retried a fixed number of times. This is useful for overcoming
non-deterministic failures and if the job does not succeed after
retries then it is marked as unsuccessful. As failures also con-
tribute to ineffective cluster utilization, we perform a detailed
study to understand the reasons behind failures in Section 4.2.

While our focus in this section is specifically about the
lifecycle and execution flow in Philly, there are many open
platforms for ML job scheduling that use a similar design.
Platforms like OpenPAI [36] and Submarine [44] also use
a centralized scheduler with support for running machine
learning frameworks as Docker containers. While the details
of the scheduling algorithm vary across systems, a number of
aspects we study in this paper are independent of the choice of
scheduler: e.g., failures due to programming errors and bugs
in popular frameworks, effect of distributed training across
machines, etc. Thus, we believe that lessons from Philly are
generally applicable to other clusters as well.

2.4 Data Collection and Analysis

The cluster under study consists of hundreds of machines
accounting for thousands of GPUs of the same model. The
cluster has 2 server SKUs – one with 2 GPUs per server and
another with 8 GPUs per server; RDMA domains are homo-
geneous with respect to server SKUs. To get a comprehensive
understanding of the characteristics of our system and work-
loads, we developed a data collection and analysis pipeline
and collect logs over a 75-day period from Oct. 2017 to Dec.
2017. Our logs contain a total of 96260 jobs over 14 virtual
clusters.

The analysis pipeline combines three main log sources in
our system as follows. (1) We collect the YARN scheduler
logs to obtain job arrival time, number of GPUs requested,
GPU allocation status, and job finish status. (2) We collect
stdout and stderr logs from the machine learning frameworks

Figure 2: CDF of job run times for 1 GPU, 2-4 GPU, 5-8
GPU, and >8 GPU jobs.

that execute scheduled jobs. (3) We collect logs from Gan-
glia monitoring system that reports per-minute statistics on
hardware usage on every server, including CPU, memory, net-
work, GPU utilizations. Combined with GPU allocation status
in YARN scheduler logs, we can track how a scheduled job
utilizes cluster hardware resources.

Our collected data contains jobs from a wide spectrum in
terms of their run times and sizes, and consequently cluster
resources demands. Jobs run from minutes to days or even
weeks, as shown in Figure 2. In contrast, in big data analytics,
job execution times range from only tens of milliseconds to a
few hours [11,37,41]. Furthermore, we see that our workload
has significant skewness in run time, with 0.5% jobs taking
more than a week to be finished. Figure 2 also shows how
jobs of different sizes vary in terms of execution times. We
see that jobs with more GPUs tend to run longer. This results
in most of the cluster resources demands coming from the
larger jobs, and resource availability status changing relatively
slowly over time.

3 Impact of Locality Awareness

Our scheduler trades off locality for lower waiting. Thus place-
ment choices made by the scheduler affects the efficiency of
DNN training in two parts: queueing delay (before job ex-
ecution) and hardware utilization of in-use GPUs (after job
execution). The effect of locality constraints on queuing de-
lays has been extensively explored in large-scale resource
allocation [7, 11, 26, 54]. Machine learning workloads intro-
duce similar constraints driven by gang scheduling and the
requirement for using fast interconnects. In Section 3.1, we an-

950 2019 USENIX Annual Technical Conference USENIX Association

(a) VC1 (b) VC2 (c) VC3 (d) VC4 (e) VC5

Figure 3: CDF of scheduler queueing delay for five of the largest virtual clusters in our deployment. Note that VC4 contains no
jobs with >8 GPU.

Figure 4: For a given GPU count, relaxing locality constraints
reduces queueing delays (VC2).

alyze queueing delays in the context of DNN training cluster
using real-world data in detail. Next, we study utilization of
processing cycles for GPUs allocated to training jobs in Sec-
tion 3.2. In particular, while prior work discusses efficiency
of distributed training for a certain job size or a configured
placement [22, 52], we perform an analysis on the aggregated
efficiency for a range of job sizes for the first time.

3.1 Queueing Delays

We first consider overall queueing delay observed during job
scheduling. We plot the CDF of queueing delay in Figure 3
for all jobs in five of the largest virtual clusters (VCs). Jobs
that need more than 4 GPUs tend to have a slightly longer
tail in the distribution of queueing delays compared to their 1
GPU and 2-4 GPU counterparts. For example for VC2, 25%
of jobs using >4 GPUs, which include both 5-8 GPU and >8
GPU, experience a queueing delay of at least 10 minutes; in
comparison, only 10% of 1 GPU jobs experience a queueing
delay of at least 10 minutes.

But overall, queuing delays for jobs, irrespective of their
GPU demand, are not markedly distinct. This is partially a
consequence of our scheduling policy that chooses to relax
locality constraints in order to start a job without incurring
a very long queueing delay penalty. To highlight the rela-
tion between locality constraints and queueing delays, we
next consider jobs with 5-8 GPU and >8 GPU. We correlate
scheduler waiting times with number of servers on which the

Delay 2-4 GPU 5-8 GPU >8 GPU
Fair-share 5168 (40.6%) 3793 (25.8%) 66 (2.1%)

Fragmentation 7567 (59.4%) 10928 (74.2%) 3117 (97.9%)

Table 2: Frequencies of two types of queueing delay.

jobs are placed, and show the results in Figure 4. As expected,
most of jobs with 5-8 GPU are scheduled with high local-
ity, i.e., placed on one or two servers. On the other hand, we
find that jobs with >8 GPU are spread across a wider range
from 2 to 16 servers. Clearly, when jobs end up running on 16
servers, they start execution much sooner than running on 2 or
4 servers. This confirms how our scheduler works in practice
to trade-off locality for lower scheduling delay.

While effective, we find that this decision affects the GPU
utilization as discussed in Section 3.2. We next look at more
details on the queuing delay characteristics and break down
the delay by different causes.

3.1.1 Impact of Locality-Driven Scheduling

Queuing delay can be caused by two primary factors: fairness
(which is common in conventional data analytics clusters),
and locality requirement and resource fragmentation (which
is more prevalent in deep learning clusters). We call queueing
caused by the first factor as fair-share delay, as it happens
when the virtual cluster uses up its assigned quota (i.e., num-
ber of GPUs). However, it is possible that a job arrives within
the quota but fails to be scheduled, mainly because resource
fragmentation makes it hard to find enough GPUs with high
locality. We call this queuing delay as fragmentation delay.
In practice, we find that resource fragmentation is very com-
mon. For example, we observe that (i) when two thirds of
the total GPUs are being used, the fraction of servers that are
completely empty is less than 4.5% and that (ii) these servers
are spread across RDMA domains.

We next see how frequently fair-share delay and fragmenta-
tion delay occur for different job sizes in our workloads. Since
some jobs are quickly terminated, we only consider jobs that
run for at least one minute. Further, since fragmentation in-
fluences distributed training jobs only, we consider jobs that

USENIX Association 2019 USENIX Annual Technical Conference 951

(a) Passed (b) Killed (c) Unsuccessful

Figure 5: CDF of per-minute GPU utilization for passed, killed, unsuccessful jobs in different sizes.

use 2 or more GPUs. Table 2 shows the frequencies for the
two types of delay. For jobs with 5-8 GPU, fragmentation de-
lay is responsible for 74.2% of occurrences, and it dominates
for larger jobs. In contrast, for smaller jobs, we see that the
two causes are more balanced. Further, we also observe that
across all jobs fragmentation delay is responsible for around
80% of the delay in terms of waiting time. This is because
fair-share delays are easy to mitigate with preemption, but
fragmentation delays are much harder to overcome in our
current design.

Finally, we note that the queuing delay fractions vary across
virtual clusters. Among the five largest virtual clusters, VC5
often over-subscribes its quota and thus the proportion of
fair-share delay is overall higher at 37%.

Does out-of-order scheduling exacerbate job queueing?

Given the resource fragmentation and the fact that the YARN
scheduler is work-conserving, larger jobs could be addition-
ally negatively affected by out-of-order scheduling. To see
how, consider a job that requires 24 GPUs spread across three
machines. While this job is waiting for such configuration, if
a smaller job requests 2 GPUs, it is scheduled on machines
where two GPUs become available. This could cause fur-
ther fragmentation and lead to the 24-GPU job needing to
retry after a backoff. In our workload, out-of-order scheduling
is quite common, with 38.1% of scheduling decisions, and
occurs 100% for jobs with 5-8 GPU or >8 GPU. However,
we find that most out-of-order scheduling decisions do not
greatly affect the waiting time for resource-intensive jobs. For
example, for out-of-order scheduling occurrences of jobs with
5-8 GPU or >8 GPU, as much as 85.0% corresponds to cases
where idle GPUs are effectively utilized without prolonging
the scheduling time of those waiting jobs.

In summary, our analysis shows why it makes sense to relax
locality over time to mitigate queuing delays for distributed
training. We also find that in addition to fair-share queuing
delay, the need for gang scheduling and locality introduces
fragmentation delay for machine learning jobs.

Job size Passed Killed Unsuccessful All
1 GPU 53.51 37.02 62.82 52.38
4 GPU 51.13 34.39 50.95 45.18
8 GPU 51.09 60.63 64.34 58.99
16 GPU 44.88 36.98 39.02 40.39

All 52.43 42.98 60.43 52.32

Table 3: Mean GPU utilization for different job sizes.

3.2 GPU utilization

GPUs are the most expensive resources in our cluster and this
makes their efficiency an important factor in assessing the
cost-effectiveness across the entire cluster. For each individual
GPU, Ganglia [33] reports aggregate performance counters
every minute, including utilization of processing cycles and
memory, temperature, power usage, etc [3]. We next present
how efficiently training jobs use processing cycles in their
(exclusively) allocated GPUs. Note that our current generation
of GPUs only report coarse-grained utilization for processing
cycles that can only be used to detect if any of the streaming
multiprocessors (SMs) are being utilized [3]. They do not
report what fraction of the SMs are being actually used within
a single GPU. Therefore, our analysis presents an “upper
bound” of actual effective SM utilization.

Overall, deep learning training jobs underutilize GPU pro-
cessing cycles regardless of their job sizes. Figure 5 shows
CDFs of per-minute GPU utilization of passed, killed, and
unsuccessful jobs for different sizes. Table 3 reports averages
for each job size, including averages for different job status;
we use these job sizes as representative of small, medium and
large jobs based on the GPU request distribution in our clus-
ter. Surprisingly we find that around 47.7% of in-use GPUs’
cycles are wasted across all jobs, with jobs using 16 GPUs
exhibiting the lowest utilization at 40.39%. Moreover, across
job status in Figure 5, the median utilization for 16 GPU
jobs is 45.00%, 34.24%, 39.54% for Passed, Killed, and
Unsuccessful, respectively. These are 6.46%, 40.25%, and
42.63% lower than the 8 GPU jobs in the corresponding job
status. We study the efficiency of such jobs in the next section
in detail.

952 2019 USENIX Annual Technical Conference USENIX Association

Metric SameServer DiffServer IntraServer InterServer
GPU util. 57.7 49.6 37.5 36.5
Images/s 114.8 98.0 75.6 74.1

Table 4: Mean GPU utilization and training performance of
ResNet-50 over different locality/colocation configurations.

3.2.1 Impact of Distributed Learning

Given that the 8 GPUs mounted in each server can commu-
nicate more efficiently without using the network, our job
scheduling strategy is to favor intra-server locality when as-
signing each job to available GPUs. At the same time, the
scheduler attempts to pack small jobs into fewer servers to
avoid fragmentation. This leads to job colocation on the same
server and consequently could lead to interference in shared
system resources (e.g., RDMA and PCIe) [52]. This creates
an interesting utilization spectrum for multi-GPU jobs. In par-
ticular, jobs using more than 8 GPUs must distribute training
instances across multiple servers and may be dynamically
colocated with other jobs. This scenario also involves com-
munication overheads since each server has to periodically
wait for model aggregation to happen over the network.

To confirm that such distribution and colocation factors in-
deed relate to the efficiency of GPUs in use, we first character-
ize utilization of processing cycles for various job placement
scenarios using a popular image recognition model, ResNet-
50 [23]. Specifically we train ResNet-50 with 2 GPUs using
TensorFlow and perform offline experiments with placements
that exercise shared resources differently. Then using our
telemetry data, we attempt to infer correlations between those
factors and the observed efficiency in our cluster.
Analysis using ResNet-50. Table 4 shows the impact of
distribution only, by comparing a ResNet-50 job placed in a
single server (SameServer) with the job placed in two servers
connected with RDMA network (DiffServer). Each server
has four NVIDIA Tesla P100 GPUs attached to a CPU socket.
The table reports GPU utilization when processing a batch
size of 32 images during training. First we observe that the
training does not fully utilize GPUs even for single machine
execution. In particular, SameServer achieves utilization of
57.7% for GPUs in use. It increases to 71.1% for twice the
batch size but only increases marginally for larger batches.
Also the table shows that using distributed training achieves
lower utilization of 49.6% in DiffServer. This shows that
even for 2-GPU jobs, there is a cost to not achieving locality.

Given a distributed training setup, contention for shared
resources like RDMA and PCIe further lowers the efficiency
of utilized GPUs. To show this we set DiffServer as our
baseline and measure changes in the efficiency while popu-
lating additional ResNet-50 jobs in the same servers. First,
we measure GPU utilization when the colocated jobs do not
use RDMA network at all: we place two SameServer jobs,
one on each server in the same CPU socket as the job under

Figure 6: GPU utilization when running 8 and 16 GPU jobs
on dedicated servers.

study. Thus, these jobs interfere with the job under study in
the use of PCIe buses while reading training inputs, aggre-
gating model updates, and so on. The observed efficiency
is shown as IntraServer in Table 4, and we see that hav-
ing such intra-server interference lowers the utilization by as
much as 12.1%. We also study if such interference matters
for the RDMA network in InterServer. For this setup we
use two DiffServer jobs instead of two SameServer jobs as
background traffic, so that all the jobs are distributed across
two servers and share the RDMA network. In this case, we
see a 13.1% decrease in utilization compared to the baseline.

Our experimental study reveals that efficiency of allocated
GPUs varies according to locality and colocation scenarios
that could occur in the cluster. Further, any placement that
causes lowered GPU utilization also results in slowdown in
training performance (i.e., images processed per second) as
shown in Table 4. Next, we analyze utilization for our aggre-
gate workload. We note that unlike the controlled experiment,
the type of model trained and the batch sizes used vary across
jobs in our aggregate workload making it harder to establish
a baseline utilization without distribution or inference.

Distributed training with dedicated servers. First, to study
the effects of distribution, we restrict our study to look at 8
GPU and 16 GPU jobs that are packed on one or two servers.
In this case, the 8 GPU jobs uses all 8 GPUs in a single server
while the 16 GPU jobs uses all the GPUs in two servers.
The network over which the servers for these jobs are con-
nected to each other is shared. Figure 6 shows the results of
our comparison. Compared to the 8 GPU jobs, we see that
16 GPU jobs, which have the additional model aggregation
step in distributed mode, have significantly lower utilization.
Specifically, for 8 GPU jobs, GPU cycles are utilized 56.9%
of time on average while this is only 34.3% for 16 GPU jobs.
Furthermore, the median is 73.12% for 8 GPU jobs, which is
1.67x the median in the 16 GPU case.

Distributed training with shared servers. When locality
constraints are relaxed, a job may have to be distributed over
many servers while sharing them with other jobs. Distributing
a job over many shared servers can further lower utilization
of GPUs. This drop in utilization occurs not only due to a
higher network overhead but also because of interference from

USENIX Association 2019 USENIX Annual Technical Conference 953

Figure 7: Host resource utilization.

Degree Mean 50%ile 90%ile 95%ile
2 servers 43.66 43.69 91.77 97.06
4 servers 40.94 39.85 83.28 91.97
8 servers 28.56 25.71 65.68 78.85

Table 5: GPU utilization for 16-GPU jobs that are spread over
2, 4, and 8 servers.

unrelated but co-located jobs. To study this, we see how the
GPU utilization of 16-GPU jobs varies as as we move from
dedicated GPUs to a larger number of shared servers. Table 5
shows the average and percentiles for GPU utilization across
the different allocation scenarios.

When running on 2 8-GPU servers, a 16-GPU job has
dedicated servers. When running on 4 servers, the 16-GPU
job may occupy 4 GPUs on each server, and will be colocated
with other jobs on those servers. We find that the degree of
interference is larger if the job is distributed on more servers.
Table 5 shows that in addition to the inefficiency caused by
distribution (Figure 6) there is additional underutilization
caused by colocation. We see that for 16-GPU jobs distributed
across 8 servers, the average utilization is as low as 28.26%
and more than 90% of jobs have less than 66% utilization.

Among host resources, our scheduler dedicates CPU and
memory along with GPU to each job. In deep learning clusters,
these host resources are used for many useful tasks includ-
ing caching training inputs, model aggregation, and periodic
model validation and progress report. By default, we allo-
cate CPU and memory capacity proportional to the number
of requested GPUs. Figure 7 shows CDFs of utilization of
these host resources observed in our servers. In general, many
servers underutilize CPU cycles yet highly utilize memory.
This indicates that a useful feature in the scheduler would be
to observe if a particular job requires disproportionate amount
of host memory and isolate memory used by jobs colocated
on the same server.

In summary, our data analysis shows how GPUs are un-
derutilized in shared clusters. We presented correlations of
how distribution and interference affect utilization and vali-
dated this using a controlled experiment to break down the
importance of locality and interference. We discuss some
implications for scheduler design in Section 5.

Status Count(%) GPU times used (%)
Passed 66696 (69.3%) 44.53%
Killed 12996 (13.5%) 37.69%

Unsuccessful 16568 (17.2%) 17.76%
Total 96260 (100.0%) 100.0%

Table 6: Distribution of jobs by their final status.

4 Training Progress and Completion

Jobs in our system finish with one of three statuses: passed,
killed or unsuccessful. Similar to iterative online computa-
tions [6, 16], our machine learning job utilizes cluster re-
sources to improve the model over time. However as opposed
to prior study on big data traces [30], we see a significant frac-
tion of jobs (30.7% as shown in Table 6) are either terminated
unsuccessfully or killed by users. They constitute around 55%
of the total GPU time used during our trace collection period.
Thus it is important to understand the reason behind these
failures as fewer unsuccessful jobs would mean that more of
the cluster resources can be used for successful jobs.

4.1 Effectiveness of Training Iterations

Most deep learning jobs optimize a non-convex loss function
and the optimization algorithms do not necessarily guarantee
that the loss always decreases with more training. Thus, sim-
ilar to [22], users in our system submit model training jobs
using a larger number of epochs than necessary to get the op-
timal model. To analyze the magnitude of this effect we study
how the training loss for a job varies across epochs and mea-
sure the epoch at which we achieve the best training loss. As
this information is not printed in the log by every user/frame-
work, we are only able to obtain convergence information for
around 2502 jobs.

First, Figure 8(a) shows the fractions of epochs required to
reach the lowest loss across all passed jobs. From the figure
we see that around 80% of passed jobs require all the epochs
executed to reach the lowest loss. We repeat this study for
killed jobs and see a similar pattern as shown in Figure 8(b).

However we also see that a majority of jobs improve the
loss marginally using a large fraction of epochs. In particular,
Figure 8(a) shows the fraction of epochs required to reach
within 0.1% of the lowest loss across all passed jobs. Around
75% of jobs reach within 0.1% of the lowest loss using only
40% of the epochs. Again, a similar pattern is shown for killed
jobs in Figure 8(b). While we do not present data from user
surveys, this suggests that machine learning practitioners can
early terminate jobs to save use of GPU times considerably
when the loss change is less than a particular threshold in
successive epochs. Essentially, we look into much resources
are used to improve 0.1% of convergence accuracy in terms
of the fraction of GPU times for each job. In our workload,
this accounts for 62% and 56% on average for passed jobs
and killed jobs, respectively.

954 2019 USENIX Annual Technical Conference USENIX Association

(a) Passed jobs (b) Killed jobs

Figure 8: Fraction of epochs necessary to achieve a particular
loss threshold for (a) passed jobs and (b) killed jobs.

4.2 Job Failures

We next present a detailed analysis on job failures, including
why/when/how frequently jobs fail and what their impact
is on effective cluster usage. We remind the reader that in
our cluster scheduler, a job is retried upon failure. If the job
repeatedly fails it is marked as unsuccessful as further retries
are deemed no longer effective. Figure 9 presents a high-level
summary of job retries/failures and shows that jobs using
more than 4 GPUs not only retry execution more often but
also finish unsuccessfully at higher rate. The reasons behind
job retries/failures are diverse, and failures occur at different
times during job execution. We thus investigate failures by
classifying them across layers of our system stack.

4.2.1 Failure Classification

Table 7 presents analysis results of failures based on two clas-
sification factors. First, failures are classified from different
sources (Column 2): the sources include (i) Infrastructure
(IF) which includes YARN, HDFS and all other framework
components, (ii) AI Engine (AE) which includes TensorFlow,
Torch, and any other platforms, and (iii) User (U) which rep-
resents programmers. Column 1 lists a number of reasons for
failures we observe from the workload.

Most failure reasons in the table are self-explanatory, and
we describe six important ones in more detail here.
(1) Incorrect inputs: Model files or input data stored in the
external HDFS storage cannot be read.

(2) Semantic error: Errors that happen due to library version
mismatch or other dependencies of the user training program
not being setup correctly.

(3) Model checkpoint error: The job is not able to success-
fully create a model checkpoint after a certain number of
epochs complete. This is usually due to either transient error
in HDFS or HDFS name node recovery.

(4) MPI runtime failure: This is usually due to either a fail-
ure of network connection to peer MPI process, or possibly

(a) Retries (b) Unsuccessful jobs

Figure 9: (a) Average number of job retries for using different
number of GPUs, and (b) subsequent unsuccessful jobs.

an internal failure of the MPI daemon itself.

(5) Job preempted: YARN reclaims any GPU currently in
use to schedule another job.

(6) Invalid memory access: Training job dies because of vi-
olating access on memory address space e.g., using an invalid
pointer value, or having race condition while copying data.
This failure is observed in both CPU memory and memory
allocated for GPU access.
While bridging failure category and failure reason, we observe
that a failure reason can appear in multiple categories, even
in all involved categories, as shown in Column 2 of Table 7.
Building failure classifier. There exists causality among
various failure reasons. For example, traceback from crash is a
consequence of an invalid memory access. Our first mission in
building a classifier is identifying signatures of failure reasons
closer to the root cause. We capture root-cause signatures
from stdout or stderr logs of a failed job. If not explicit from
the logs, we then attempt to capture implicit ones such as
traceback from crash. In consequence, our classifier has in
total more than 230 rules to find both explicit signatures and
implicit signatures. If there is no signature for a failure, we tag
it as no signature, which constitutes 4.2% of the total failures.

4.2.2 Failure Frequency

Column 3 of Table 7 summarizes the occurrence frequency
of the classified failure reason. Trial counts the number
of failure events observed in our workload: failure reasons
are sorted by it. We further group Trial occurrences by job
ID (Job) and user ID (User) to see if failures are localized
according to the same job or user.
Failures repeat for the same job/user. Our analysis shows
that across failure reasons, failures repeat at both job level
and user level. In particular, we measure repetition factors
(i.e., Trial divided by Job or User) for top-8 failure reasons,
which cover 88.9% of the total failures. The measured repe-
tition factors are 2.3 and 38.8 on average for Job and User,
respectively, meaning a single job and a single user on average
cause 2.3 and 38.8 occurrences of failure, respectively, during

USENIX Association 2019 USENIX Annual Technical Conference 955

Failure Reason
Category Num Occurrences RTF: Runtime to Failure (mins) GPU Demand

RTF⇥Demand (%)IF AE U Trial Job User 50%ile 90%ile 95%ile Total % 1 2-4 >4
CPU out of memory 3 3 12076 2803 65 13.45 17.73 33.97 6.62 11465 235 376 3982320 (8.05)
Incorrect inputs 3 3 9690 4936 208 1.87 404.83 2095.73 30.43 5844 2638 1208 11979474 (24.21)
Semantic error 3 3 2943 2049 159 2.72 376.00 1436.88 9.22 1603 494 846 8442835 (17.06)
Core dump 3 3 2912 1784 122 0.85 72.75 431.65 3.35 1936 496 480 1493632 (3.02)
Invalid mem access 3 2602 1235 108 1.03 403.50 1357.38 3.82 712 774 1116 2352994 (4.75)
Model ckpt error 3 1995 948 85 181.67 3728.93 8196.02 21.73 743 384 868 8080374 (16.33)
CUDA failure 3 1484 571 70 1.32 19.87 82.17 0.62 133 1153 198 357119 (0.72)
Syntax error 3 3 1132 883 110 0.58 5.02 12.00 0.19 780 184 168 130094 (0.26)
Traceback from crash 3 3 3 777 271 44 1.02 894.33 1394.07 2.34 356 277 144 863130 (1.74)
MPI error 3 634 166 28 1.62 3015.27 5143.98 3.70 456 54 124 613059 (1.24)
GPU out of memory 3 487 261 35 18.53 353.62 2740.28 1.08 237 70 180 1040249 (2.10)
MPI runtime failure 3 478 420 96 1389.48 13778.60 18090.88 14.63 240 141 97 7593398 (15.34)
Permission error 3 299 151 37 1.00 8.15 15.85 0.07 56 202 41 15185 (0.03)
Import error 3 3 148 148 41 0.67 4.58 10.73 0.06 108 30 10 10803 (0.02)
Job preempted 3 147 95 34 559.08 2682.85 5892.23 1.66 25 95 27 2338772 (4.73)
CUDA init failed 3 141 69 20 1.08 2.18 4.63 0.03 16 66 59 64512 (0.13)
Model diverged 3 84 30 5 1.48 44.37 76.53 0.01 78 5 1 2562 (0.01)
CUDA ver. mismatch 3 49 49 19 0.83 1.65 1.67 0.00 1 1 47 421 (0.00)
GPU ECC error 3 10 10 2 26.82 671.92 2035.02 0.03 1 5 4 23575 (0.05)
Output node error 3 3 3 1 0.85 0.95 0.95 0.00 3 0 0 2 (0.00)
Cannot load libs 3 1 1 1 0.12 0.12 0.12 0.00 1 0 0 0.12 (0.00)
No signature 1684 698 94 1.87 28.00 95.17 0.42 1235 294 155 102138.03 (0.21)

Table 7: Failures classified into failure reasons (sorted based on the number of occurrences). There are largely three categories
that cause the failures: Infrastructure (IF), AI Engine (AE), and User (U). A failure reason may be observed in multiple categories.

the data collection period. The most critical one is CPU out

of memory, where we see 185.7 as the User repetition factor.
Interestingly, profiling shows that a certain engineer issued a
number of training jobs, all of which suffer from the same out-
of-memory issue, resulting in high concentration of failures.
This motivates the need for runtime detection mechanisms
that can correlate errors from the same user even though her
jobs are independent from job management point of view.
User/programming errors lead to a lot of failures. Fail-
ures incurred by user errors, such as configuration/syntax/se-
mantic errors in program and script, are dominant. These
failures are very prevalent across our top-8 failure reasons.
As explained, CPU out of memory is the most frequent with
its failures significantly concentrated on a few users. Other
frequent failures such as incorrect inputs and semantic error

are more spread out across different users. From our profiling,
the primary factor that causes those failures is a lot of inde-
pendent components involved in a training job. For example,
by definition, incorrect inputs happens when there is a failure
in reading model or input data stored in external HDFS store.
This is due to any error ranging from the data path is not
correct, data format is inconsistent, data itself is corrupted
on HDFS etc. Often, issues in data format affect multiple
engineers in the same team (e.g., speech recognition team) as
they often share the same training data or reference model.

4.2.3 Runtime to Failure

Column 4 of Table 7 presents runtime to failure (RTF) for
each classified failure reason. To capture the summary of RTF

distribution, in addition to the average, we also present the
50th-percentile (or median) and higher percentiles such as
90th-percentile and 95th-percentile.

The runtime to failure (RTF) exhibits high variability,

with mainly short RTFs. Many failures of training jobs
happen quickly, for example within 10 mins. This is mostly
the case for failures driven by users in syntax, semantic, and
configuration errors, which we can also infer from low 50P
RTFs in the corresponding failure reasons. Note that most of
those failures are deterministic and are caught when the run-
time begins to execute the program. One of exceptions that is
noteworthy is failure corresponding to inconsistent/corrupted
input data. We can only detect this at the moment we actually
read the erroneous data and attempt to parse it. This is the
primary reason for having high 95P in incorrect inputs.

Infrastructure failures occur infrequently but have much

longer runtime to failure (RTF). This analysis focuses on
two failure reasons in infrastructure category: model check-

point error and MPI runtime failure. They represent program-
to-storage and program-to-program communication, which
are both critical for reliable distributed deep learning training.
In general, these errors are relatively infrequent compared
to other common errors, constituting only 6.2% of the total
Trials. However, our analysis shows that these errors tend to
appear after a long execution duration, and thus dominate the
time until failure detection. In particular, Table 7 shows that
when the corresponding RTFs are summed up (i.e. Total), the
two failure reasons, model checkpoint error and MPI runtime

error, occupy as much as 21.73% and 14.63%, respectively.

956 2019 USENIX Annual Technical Conference USENIX Association

4.2.4 Impact of GPUs Allocated

For jobs with the same RTF, the impact on the amount of
utilized resources is proportional to the number of allocated
GPUs. The larger the allocation, the bigger the impact.
Large jobs with programming semantic errors tend to

fail a while after execution. Column 5 of Table 7 presents
GPU demand across failure reasons. To simplify the analysis,
we select four most-dominant failure reasons each contribut-
ing around 10% or more of failures. When we correlate RTF
with GPU demand, among the four failure types, semantic

error exhibits a markedly distinct trend, with jobs that have
higher GPU demand having relatively large RTFs, as com-
pared to jobs having lower GPU demand. This results in
disproportional impact on the actual resources utilized by
failed jobs. We show this in Column 6 of Table 7.

Column 6 presents actual GPU times for failures while mul-
tiplying RTF by GPU demand. As the results show, compared
to the RTF only, the impact of semantic error increases up
to 17.06% from 9.22% while the other three types of failure
are either decreased or unchanged. This corresponds to the
fact that semantic error is relatively frequent in larger-demand
larger-RTF jobs. Looking deeper, we observe that training
program instances sometimes send, receive, and access data in
an inconsistent way during model parameters synchronization.
As a consequence, semantic error ranks the second in terms
of GPU resources used among failures in our workload.

5 Design Implications for Future Schedulers

Based on our experiences and data-driven analysis so far, in
this section we discuss guidelines pertaining to the design of
next-generation schedulers for DNN training workloads.
Prioritizing locality. One of the main results from our anal-
ysis of GPU scheduling was that lack of locality impacts both
utilization and job running time. Our current scheduler adopts
a classic approach where it waits for a limited time to see if
locality can be achieved and if not the job is scheduled with
the resources available at relaxed locality. The main reason
for this approach is to keep queuing time low as longer wait
times affect user experience.

However given that deep learning jobs run for many hours
or even days, incurring a 10% or 20% drop in efficiency could
extend the job running time by multiple hours. Thus in such
scenarios, waiting for locality for a longer time could be more
beneficial. However this requires inferring long-running jobs
and appropriately setting user expectations. An alternate strat-
egy could be to migrate a job to machines with better locality
if resources become available during the execution.
Mitigating interference. Another critical guideline for
schedulers would be to consider job placement policies to
mitigate inter-job interference. Instead of packing different

small jobs on a single server, one option would be place them

on dedicated servers, reducing sharing and thus interference
among such jobs. Such an option would increase fragmenta-
tion and will result in larger jobs having to wait for longer
if we have to prioritize for intra-job locality. Support for job
migration to defragment the cluster [52], especially applied
to smaller jobs, will mitigate interference for small jobs, and
will improve intra-job locality for large jobs.
Improving failure handling. A large number of job failures
we see come from user errors in code or configuration. This
is primarily because programming languages in use are typi-
cally not strongly typed. We have found that simple syntax
checking could prevent many errors (e.g., missing quotes or
parenthesis) and some of the more sophisticated runtime fail-
ures can be captured by running the first iteration of training.
We plan to set up a pool of cheaper VMs to pre-run jobs. Even
running multi-GPU jobs on a single GPU will catch such er-
rors before they run on larger shared clusters and thus prevent
wasted GPU cycles on them. Training failures also happen
due to erroneous data format (e.g., inconsistent columns in
samples). We plan to investigate having a well defined schema
for datasets used in machine learning, and perform a schema
check while accessing data to reduce such errors.

Another useful extension for multi-tenant GPU clusters
would be to develop a system to predictively mitigate failures
by proactively observing related failures. The main goal of
such a system would be to (i) classify error messages in real
time from logs that training jobs generate, and (ii) adapting
scheduling parameters per job (e.g., number of retries) as
well as across jobs (e.g., input data blacklisting) to reduce
failure occurrences. For example, the scheduler could stop
retrying for failure categories like incorrect data/model input
and continue retrying for network timeouts.

6 Related Work

Failure analysis of data analytics jobs in shared clusters.

Prior work has looked at designing large-scale data analyt-
ics platforms assuming that failures are common [10, 17, 50].
They focus on framework support for fault-tolerance and reli-
able job execution. In this paper, we focus instead on under-
standing job failures in deep learning specific platforms.

Kavulya et al. conducted a detailed characterization for job
failures in a production MapReduce cluster [30]. Some of
their findings include: (1) Many jobs fail within a few minutes
while the worst-case job takes up to 4.3 days for its failure to
be detected. These failures occur due to data copy errors and
are similar to HDFS-related failures that we observe taking
much longer to detect; (2) Many failures are related to either
exceptions due to array indexing errors or IO exceptions. We
again see some similarity to our work where coding errors
lead to a number of failure cases.
Scheduler and runtime for efficient machine learning

execution. SLAQ schedules concurrent machine learning

USENIX Association 2019 USENIX Annual Technical Conference 957

training jobs based on quality improvement for resource us-
age, allocating cluster resources for average quality improve-
ment [56]. While this may improve the quality across jobs,
each individual job may take longer time to finish. Opti-
mus [38] leverages the convergence curve to predict job re-
maining time for dynamic resource scheduling and reduces av-
erage job completion time. It adopts an online fitting model to
derive a proper number of servers and workers for MxNet [15]
jobs in parameter server architecture. Tiresias [22] reduces
job completion times when many training jobs undergo a trial-

and-error exploration where job remaining time to complete
training cannot be estimated from the convergence curve. In
this work, we found that a large job experiences highly vary-
ing efficiency over placement spectrum (e.g., Table 5), and
that future schedulers may need to consider the trade-off be-
tween reducing queueing time and reducing job running time
more carefully over a wide range of locality choices.

We also note that an earlier technical report of our work [27]
was used to motivate new scheduling primitives in recent
work on scheduling like Gandiva [52]. More importantly, our
paper presents a systematic study of a large-scale production
cluster, covering the whole lifecycle of deep learning jobs
including queuing, execution, and failure. We hope that our
study of large clusters dedicated to deep learning workloads
will continue to motivate novel research in deep learning
platforms and schedulers for these workloads.

GPU resource management for machine learning. There
are recent efforts on GPU sharing for simpler machine learn-
ing tasks. Baymax [14] explores GPU sharing as a way to
mitigate both queuing delay and PCIe contention. Following
that, Prophet [13] proposes an analytical model to predict
performance of GPU workloads. Gandiva [52] proposes GPU
time-sharing in shared GPU clusters through checkpointing at
low GPU memory usage of training job. Future work includes
integrating these prior work to improve cluster utilization and
capacity to run more jobs.

Many training networks are memory bound, especially by
capacity. Ryu et al. analyzed memory allocation for Ima-
geNet [25], with recent VGG-16 model consuming up to
28 GB of memory [40]. Therefore, vDNN [40] proposes vir-
tualized memory manager, and SuperNeurons [51] adopts
fine-grained layer-wise memory control to schedule memory
flexibly between CPU and GPU. Our work shares some simi-
larity with prior findings (i.e., some large networks do not fit
in GPU memory) in real-world data.

Approximate data processing. Approximate data pro-
cessing allows trading off accuracy for earlier completion
times [6, 9, 16, 24, 28, 55]. In databases, online aggregation
has been studied in the context of SQL queries [16, 24, 55].
More recently, approximation has been used in batch pro-
cessing [6, 8, 49]. Machine learning training presents a fertile
ground for exploring trading off accuracy for early completion.
In this paper, for the training workloads run on our clusters,

we quantify how trading off a very small amount of accuracy
(0.1%) can result in significant savings in GPU execution
time.

7 Conclusion

In this paper we analyzed a trace of deep learning jobs run
on a large multi-tenant cluster of GPUs and studied various
factors that affect cluster utilization. Our findings indicated
the importance of locality for distributed training jobs and
also how interference from other colocated jobs could lead to
lower GPU utilization. We also performed a detailed analysis
of various failure causes and showed how errors from various
parts of the stack contribute to failures. Based on our data
analysis and experiences running a large-scale operation, we
also described guidelines that could help future research and
development of machine learning schedulers.

Finally, we have publicly released the scheduler trace con-
taining information about job arrivals, job size, placement and
runtime to the community. As far as we know, this is the only
trace that includes rich information about deep learning train-
ing jobs run in production. By making such a trace available,
we hope to spur future research in this area.

Acknowledgments

We thank our shepherd, David Nellans, and the anonymous
reviewers for their valuable comments and suggestions. We
also thank Lidong Zhou, Chris Basoglu, Daniel Li, Ashish
Raniwala, Swapnil Palod and the rest of the Microsoft Philly
team for their unwavering help and support. This work was
supported in part by NRF-2018R1C1B5086586.

References

[1] Deep Learning for Siri’s Voice. https://machinelearning.apple.
com/2017/08/06/siri-voices.html.

[2] Hadoop: Fair Scheduler. https://hadoop.apache.org/docs/r2.7.
2/hadoop-yarn/hadoop-yarn-site/FairScheduler.html.

[3] NVIDIA Management Library. https://developer.nvidia.com/
nvidia-management-library-nvml.

[4] Using Deep Learning to Create Professional-Level Pho-
tographs. https://research.googleblog.com/2017/07/
using-deep-learning-to-create.html.

[5] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. TensorFlow: A System for Large-Scale Machine
Learning. In OSDI, 2016.

[6] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner,
Samuel Madden, and Ion Stoica. BlinkDB: Queries with Bounded
Errors and Bounded Response Times on Very Large Data. In EuroSys,
2013.

[7] Ganesh Ananthanarayanan, Sameer Agarwal, Srikanth Kandula, Albert
Greenberg, Ion Stoica, Duke Harlan, and Ed Harris. Scarlett: Coping
with Skewed Content Popularity in Mapreduce Clusters. In EuroSys,
2011.

958 2019 USENIX Annual Technical Conference USENIX Association

[8] Ganesh Ananthanarayanan, Michael Chien-Chun Hung, Xiaoqi Ren,
Ion Stoica, Adam Wierman, and Minlan Yu. GRASS: Trimming Strag-
glers in Approximation Analytics. In NSDI, 2014.

[9] Brian Babcock, Surajit Chaudhuri, and Gautam Das. Dynamic Sample
Selection for Approximate Query Processing. In SIGMOD, 2003.

[10] Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. Web Search for a
Planet: The Google Cluster Architecture. IEEE Micro, 23(2):22–28,
March 2003.

[11] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zheng-
ping Qian, Ming Wu, and Lidong Zhou. Apollo: Scalable and Coordi-
nated Scheduling for Cloud-scale Computing. In OSDI, 2014.

[12] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren
Shakib, Simon Weaver, and Jingren Zhou. SCOPE: Easy and Efficient
Parallel Processing of Massive Data Sets. VLDB, 2008.

[13] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa Kannan, Jason
Mars, and Lingjia Tang. Prophet: Precise QoS Prediction on Non-
Preemptive Accelerators to Improve Utilization in Warehouse-Scale
Computers. In ASPLOS, 2017.

[14] Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang. Baymax:
QoS Awareness and Increased Utilization for Non-Preemptive Acceler-
ators in Warehouse Scale Computers. In ASPLOS, 2016.

[15] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. MXNet:
A Flexible and Efficient Machine Learning Library for Heterogeneous
Distributed Systems. arXiv preprint arXiv:1512.01274, 2015.

[16] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, John
Gerth, Justin Talbot, Khaled Elmeleegy, and Russell Sears. Online Ag-
gregation and Continuous Query Support in MapReduce. In SIGMOD,
2010.

[17] Jeffrey Dean and Luiz André Barroso. The Tail at Scale. Commun.

ACM, 56(2):74–80, February 2013.

[18] Dror G Feitelson. Packing schemes for gang scheduling. In Workshop

on Job Scheduling Strategies for Parallel Processing, pages 89–110.
Springer, 1996.

[19] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.
Deep Learning, volume 1. MIT press Cambridge, 2016.

[20] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming
He. Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour.
arXiv preprint arXiv:1706.02677, 2017.

[21] Jiazhen Gu, Huan Liu, Yangfan Zhou, and Xin Wang. DeepProf: Per-
formance Analysis for Deep Learning Applications via Mining GPU
Execution Patterns. CoRR, abs/1707.03750, 2017.

[22] Juncheng Gu, Kang G. Chowdhury, Mosharaf abd Shin, Yibo Zhu,
Myeongjae Jeon, Junjie Qian, Hongqiang Liu, and Chuanxiong Guo.
Tiresias: A GPU Cluster Manager for Distributed Deep Learning. In
NSDI, 2019.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
Residual Learning for Image Recognition. In CVPR, 2016.

[24] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. Online
Aggregation. In SIGMOD, 1997.

[25] ImageNet, 2016. http://image-net.org.

[26] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal
Talwar, and Andrew Goldberg. Quincy: Fair Scheduling for Distributed
Computing Clusters. In SOSP, 2009.

[27] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Jun-
jie Qian, Wencong Xiao, and Fan Yang. Multi-tenant GPU Clusters
for Deep Learning Workloads: Analysis and Implications. Technical
Report MSR-TR-2018-13, 2018.

[28] Chris Jermaine, Subramanian Arumugam, Abhijit Pol, and Alin Dobra.
Scalable Approximate Query Processing with the DBO Engine. ACM

Trans. Database Syst., 33(4):23:1–23:54, December 2008.

[29] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe:
Convolutional Architecture for Fast Feature Embedding. In MM, 2014.

[30] Soila Kavulya, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan. An
Analysis of Traces from a Production MapReduce Cluster. In CCGRID

’10, 2010.

[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. In NIPS,
2012.

[32] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing
Su. Scaling Distributed Machine Learning with the Parameter Server.
In OSDI, 2014.

[33] Matthew L Massie, Brent N Chun, and David E Culler. The Ganglia
Distributed Monitoring System: Design, Implementation And Experi-
ence. Parallel Computing, 30(7):817–840, 2004.

[34] Avner May, Alireza Bagheri Garakani, Zhiyun Lu, Dong Guo, Kuan
Liu, Aurélien Bellet, Linxi Fan, Michael Collins, Daniel Hsu, Brian
Kingsbury, et al. Kernel Approximation Methods for Speech Recogni-
tion. arXiv preprint arXiv:1701.03577, 2017.

[35] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and San-
jeev Khudanpur. Recurrent Neural Network Based Language Model.
In Eleventh Annual Conference of the International Speech Communi-

cation Association, 2010.

[36] Open Platform for AI, 2018. https://github.com/microsoft/pai.

[37] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. Spar-
row: Distributed, Low Latency Scheduling. In SOSP, 2013.

[38] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong
Guo. Optimus: An Efficient Dynamic Resource Scheduler for Deep
Learning Clusters. In EuroSys, 2018.

[39] PyTorch, 2018. https://pytorch.org/.

[40] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and
Stephen W Keckler. vDNN: Virtualized Deep Neural Networks for
Scalable, Memory-efficient Neural Network Design. In MICRO, 2016.

[41] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and
John Wilkes. Omega: Flexible, Scalable Schedulers for Large Compute
Clusters. In EuroSys, 2013.

[42] Frank Seide and Amit Agarwal. CNTK: Microsoft’s Open-Source
Deep-Learning Toolkit. In KDD, 2016.

[43] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The Hadoop Distributed File System. In MSST, 2010.

[44] Apache Hadoop 3.2.0 Submarine, 2019. https://hadoop.apache.
org/docs/r3.2.0/hadoop-yarn/hadoop-yarn-applications/
hadoop-yarn-submarine/.

[45] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. LSTM Neural
Networks for Language Modeling. In Thirteenth Annual Conference

of the International Speech Communication Association, 2012.

[46] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going Deeper With Convolutions. In CVPR, 2015.

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
Is All You Need. In NIPS, 2017.

[48] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe,
Hitesh Shah, Siddharth Seth, et al. Apache Hadoop YARN: Yet Another
Resource Negotiator. In SoCC, 2013.

USENIX Association 2019 USENIX Annual Technical Conference 959

[49] Shivaram Venkataraman, Aurojit Panda, Ganesh Ananthanarayanan,
Michael J. Franklin, and Ion Stoica. The Power of Choice in Data-aware
Cluster Scheduling. In OSDI, 2014.

[50] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. Large-scale Cluster Management
at Google with Borg. In EuroSys, 2015.

[51] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuai-
wen Leon Song, Zenglin Xu, and Tim Kraska. Superneurons: Dynamic
GPU Memory Management for Training Deep Neural Networks. In
PPoPP, 2018.

[52] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian
Sivathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng,
Hanyu Zhao, Quanlu Zhang, Fan Yang, Lidong Zhou. Gandiva: Intro-
spective Cluster Scheduling for Deep Learning. In OSDI, 2018.

[53] Hangchen Yu and Christopher J. Rossbach. Full Virtualization for
GPUs Reconsidered. In Workshop on Duplicating, Deconstructing,

and Debunking (WDDD), 2017.

[54] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmele-
egy, Scott Shenker, and Ion Stoica. Delay Scheduling: A Simple Tech-
nique for Achieving Locality and Fairness in Cluster Scheduling. In
EuroSys, 2010.

[55] Kai Zeng, Sameer Agarwal, and Ion Stoica. iOLAP: Managing Uncer-
tainty for Efficient Incremental OLAP. In SIGMOD, 2016.

[56] Haoyu Zhang, Logan Stafman, Andrew Or, and Michael J. Freedman.
SLAQ: Quality-driven Scheduling for Distributed Machine Learning.

In SoCC, 2017.

960 2019 USENIX Annual Technical Conference USENIX Association

Lessons and Actions:
What We Learned from 10K SSD-Related Storage System Failures

Erci Xu
Ohio State University

Mai Zheng
Iowa State University

Feng Qin
Ohio State University

Yikang Xu
Alibaba Group

Jiesheng Wu
Alibaba Group

Abstract
Modern datacenters increasingly use flash-based solid state
drives (SSDs) for high performance and low energy cost.
However, SSD introduces more complex failure modes com-
pared to traditional hard disk. While great efforts have been
made to understand the reliability of SSD itself, it remains
unclear what types of system level failures are related to
SSD, what are the root causes, and how the rest of the sys-
tem interacts with SSD and contributes to failures. Answer-
ing these questions can help practitioners build and maintain
highly reliable SSD-based storage systems.

In this paper, we study the reliability of SSD-based storage
systems deployed in Alibaba Cloud, which cover near half a
million SSDs and span over three years of usage under repre-
sentative cloud services. We take a holistic view to analyze
both device errors and system failures to better understand
the potential casual relations. Particularly, we focus on fail-
ures that are Reported As “SSD-Related” (RASR) by system
status monitoring daemons. Through log analysis, field stud-
ies, and validation experiments, we identify the characteris-
tics of RASR failures in terms of their distribution, symp-
toms, and correlations. Moreover, we derive a number of
major lessons and a set of effective methods to address the
issues observed. We believe that our study and experience
would be beneficial to the community and could facilitate
building highly-reliable SSD-based storage systems.

1 Introduction

Flash-based solid state drives (SSDs) have become an indis-
pensable component of modern datacenters due to its supe-
rior performance and low power draw [6]. Various applica-
tions, including databases [14], social network [15], and on-
line shopping [41], have been supported by large-scale SSD-
based storage systems. Therefore, the reliability of such sys-
tems is of critical importance.

However, it is challenging to maintain the high reliability
of SSD-based storage systems. First, unlike hard disk drives
(HDDs), SSDs may experience unique flash errors (e.g. pro-

gram errors [20, 38]) which are sensitive to the environment
(e.g., temperature [30]). Therefore, our decades of collective
wisdom on HDDs is not fully applicable. Second, issues in
the traditional HDD-based storage stack (e.g., faulty inter-
connection and human mistakes [28]) may continue to haunt
SSD-based storage systems. In addition, due to the complex-
ity of storage systems, the potential correlations among var-
ious events across different levels/components are not well-
understood, rendering extreme difficulty in pinpointing the
root causes of system failures or comping up with effective
fixes.

To address the challenges, substantial efforts have been
made to understand the reliability of SSD itself [24, 33, 38,
44]. For example, Schroeder et al. [38] study flash errors and
discover correlations between flash errors and other device
attributes (e.g., age, wear, lithography). Zheng et al. [44] an-
alyze the behavior of SSDs under power faults. Narayanan
et al. [33] analyze a diverse set of device factors (e.g., design
and provisioning) and their correlations with failed SSDs.
Hao et al. [24] study the performance instability involv-
ing millions of drive hours, especially the device latency in
RAID groups. While these studies provide valuable insights
on the characteristics of SSDs, it remains unclear how SSDs
interact with the rest of the system and contribute to system
failures.

Besides the work on SSDs, studies on HDD-based stor-
age systems are also abundant [7, 8, 28, 35, 37]. Apart
from understanding HDD errors in the field [7, 35, 37], re-
searchers analyze the correlations between HDD errors and
system failures [8, 28]. However, since SSD-based systems
are significantly different from HDD-based systems (e.g., the
TRIM command support throughout the OS kernel [2]), it is
unlikely that these studies and findings are directly applica-
ble to SSD-based storage systems.

In this paper, we look into the storage systems deployed
in 7 datacenters of Alibaba Cloud, which includes around
450,000 SSDs over 3 years’ deployment. Similar to other
large-scale deployed systems [16, 17, 29, 42], our target
systems are equipped with system monitoring daemons de-

USENIX Association 2019 USENIX Annual Technical Conference 961

ployed on each node of the clusters. The daemon monitors
abnormal behaviors by constantly checking the BIOS mes-
sages at boot time, the kernel syslog at runtime, and the func-
tionality and availability of the cloud services. Upon an ab-
normal event, the daemon will report a failure ticket with the
timestamp, the component involved, and a snippet of corre-
sponding logs.

Among all failure tickets, we focus on failures that are
Reported As “SSD-Related” (RASR) in this paper. Also,
we collect the corresponding repair logs of the failures as
well as the SMART [4] logs of the SSDs involved. By holis-
tically analyzing the three datasets (i.e., failure tickets, re-
pair logs, and SMART logs) in the context of the storage
systems design and deployment, we identify a number of in-
teresting characteristics of RASR failures in terms of dis-
tributions, symptoms, and correlations. Moreover, we per-
form field studies and validation experiments to understand
in depth the factors affecting RASR failures, and to derive
a number of major lessons as well as realistic remedies for
hardware architects, software engineers, and system admin-
istrators. More specifically, our contributions include the fol-
lowing:
(1) Characteristics of RASR Failures. We collect about
over 150K failure tickets in total from the target systems.
Among these failure tickets, we find that 5.6% are RASR
failures (i.e., about 10K instances), which manifested in five
symptoms: Node Unbootable, File System Unmountable,
Drive Unfound, Buffer IO Error, and Media Error. By corre-
lating the RASR failures with the repair logs, we find that a
significant number (34.4%) of RASR failures are not caused
by the SSD device. For example, plugging SSDs into wrong
drive slots, a typical human mistake, accounts for 20.1%
of RASR failures. Moreover, for RASR failures caused by
SSDs, we find that both the location of devices (i.e., in dif-
ferent datacenters) and the type of cloud services may affect
SSD failure rates.
(2) Lessons and Actions for Hardware Architects. We find
that the suboptimal intra-node SSD stacking and intra-rack
node placement can lead to passive heating (i.e., heating on
idle SSDs by neighboring active SSDs), which may in turn
cause a large number of device errors and high failure rates.
Moreover, by experimenting on a dedicated cluster with con-
tinuous temperature monitoring, we are able to verify that the
poor rack architecture can increase the temperature of idle
SSDs by up to 28 C◦, resulting in 57% more device errors
after 128 hours of passive heating.

To reduce the impact of passive heating, we formulate a
new strategy for intra-rack node placement. Furthermore, we
propose a proactive approach to alleviate the passive heating
by routinely scanning the entire device to trigger the FTL in-
ternal read refresh [11]. Different from the traditional data
scrubbing [5, 31], the scanning is lightweight enough to be
scheduled more frequently to reduce the effect of passive
heating. Our results show that performing a scanning every

4 hours can offset most negative impact of passive heating.
Although not observed in our experiments, the scanning may
potentially lead to more read disturbs [10], affecting the de-
vice negatively. Therefore, we believe it would be ideal for
the vendors to implement the proactive scanning at the FTL.

(3) Lessons and Actions for Software Engineers. We find
that both the data allocation scheme in the service software
stack and the I/O pattern of cloud services play important
roles in affecting SSD reliability and leading to RASR fail-
ures. For example, the Block service, empowered by a di-
rect mapping based data allocation scheme, can cause severe
imbalance of SSD usage when running on top of an HDFS-
like distributed file system (DFS): 15-20% SSDs are overly
used, which causes up to 77.3% more device errors and up
to 18.7% higher device failure rate. Inspired by the log-
structured file system [36], we optimize the data allocation
scheme on the target systems by adding a shared appending
log, and thus mitigate the imbalance issue.

(4) Lessons and Actions for System Administrators. By
co-analyzing device-level and system-level logs, we discover
a strong correlation between one type of RASR failures (i.e.,
those caused by faulty interconnection) and one type of de-
vice errors (i.e., Ultra-DMA CRC or UCRC). Based on this
observation, we design an indicator for the faulty intercon-
nection issue based on the accumulation of UCRC errors,
which significantly improves the repair procedure of rele-
vant failures. In addition, we find that SSDs on the target
systems serve three different purposes (i.e., system drives,
storage, and buffering), but they all use the same SATA inter-
face. This causes much confusion for system administrators
who need to replace drives. To reduce the chance of plug-
ging SSDs into wrong drive slots (cause of 20.1% RASR
failures), we adapt the systems to use different SSD inter-
faces for different purposes (e.g., U.2/M.2 for system drives
and SATA for storage). This optimization effectively elimi-
nates the confusion and reduce the corresponding failures.

To the best of our knowledge, our work is the first effort on
understanding the characteristics of RASR failures as well as
the causal relation between SSD errors and the system design
and usage, in large-scale production systems. Based on this
study, we have significantly improved the reliability of prac-
tical systems through a number of simple yet effective mech-
anisms (e.g., proactive data scanning, UCRC-based indicator
and specializing interfaces). We believe that our study and
lessons would be beneficial to the community, and could fa-
cilitate building highly-reliable SSD-based storage systems.

The rest of the paper is organized as follows: §2 intro-
duces our methodology; §3 analyzes the characteristics of
RASR failures; §4 - §6 discusses our lessons and actions
for hardware architects, software engineers, and system ad-
ministrators, respectively; §7 discusses related work, and §8
concludes the paper.

962 2019 USENIX Annual Technical Conference USENIX Association

Figure 1: Architecture of target systems.

Model Capacity Lithography Age Vendor
M1 480 GB 20 nm 2-3 yrs A
M2 800 GB 20 nm 2-3 yrs A
M3 480 GB 16 nm 1-2 yrs A
M4 480 GB 20 nm 2-3 yrs B
M5 480 GB 20 nm 1-2 yrs C
Table 1: Characteristics of SSDs in the target systems.

2 Methodology

2.1 System Architecture
We study SSD-based large-scale storage systems deployed
in 7 datacenters. The architecture of the target systems is
shown in Figure 1.

At the device level, the systems include around 450,000
SSDs spanning three years of deployment. As shown in
Table 1, these SSDs cover a spectrum of variability in terms
of capacity, lithography, age, and vendors. Note that all five
models in our dataset are using SATA interfaces and based
on MLC NAND cells.

Each node in the systems employs one of three different
setups of SSDs: (1) Single: a node contains one SSD for
storing temporary data; (2) Multiple: a node contains 12 to
18 SSDs for persistent storage; (3) Hybrid: a node contains
2 SSDs and 12 to 36 HDDs where the SSDs are used for
buffering incoming writes. In addition, each node has one
SSD serving as the system drive.

A rack consists of 16 to 48 nodes, and a DFS cluster spans
12 to 18 racks. On top of the DFS, the system supports three
types of cloud services, including Block service, NoSQL ser-
vice, and Big Data service. As shown in Table 2, the cloud
services may run on different setups where the SSDs are used
for different purposes.

2.2 Raw Datasets
The target systems include sophisticated monitoring mecha-
nisms, similar to other large-scale systems [16, 17, 29, 42].
The monitoring daemons are deployed on each node of the
clusters, and they log various events either periodically or
upon the occurrence of an event.

At the system level, the daemons monitor BIOS messages,

Service SSD Model Setup Usage
Block all models Hy/Mul Pers/Buf
NoSQL M1, M3, M4, M5 Hy/Mul Pers/Buf
Big Data M1, M2, M4 Single Temp

Table 2: Cloud services and SSD usages. Hy: Hybrid; Mul:
Multiple; Pers: Persistent storage; Buf: Buffering writes; Temp:
Temporarily storing intermediate data.

kernel syslogs, and the service-level verification of data in-
tegrity. Upon an abnormal event, the daemon reports a fail-
ure ticket with the timestamp, the related hardware compo-
nent, and a log snippet describing the failure. Each failure
ticket is tagged based on the component involved. For ex-
ample, if an SSD appears to be missing from the system, the
failure ticket is tagged as ”SSD-related”. If there is no clear
hardware component recorded in the logs, the ticket would
be tagged as Unknown.

At the device level, the daemons record SMART at-
tributes [4] on a daily basis, which cover a wide set of device
behaviors (e.g., total LBA written, uncorrectable errors).

Besides the failure tickets and SMART logs, we collect the
repair logs of all RASR failures, which are generated by on-
site engineers after fixing the failures. For each failure event,
the corresponding repair log records the failure symptom, the
diagnosis procedure, and the successful fix.

2.3 Study Approaches
After collecting the failure tickets, the SMART logs, as well
as the repair logs, we apply the following approaches to de-
rive insights:
• Log analysis: We calculate the distributions of failure

events along multiple dimensions (e.g., hardware types,
manifestation symptoms). Moreover, since the number
and the variety of events in the logs is large, we leverage
classic statistical algorithms (e.g., Spearman Rank Corre-
lation Coefficient [12]) to analyze the characteristics of in-
dividual events as well as the potential correlations among
different events.

• Field studies: Besides the log analysis, we visit the dat-
acenters in person to investigate the potential variance
of target systems in terms of cluster architectures, which
turns out to be critical for discovering the passive heating
phenomenon (§4). Also, we discuss with on-site engineers
to empirically verify our hypothesis on RASR failures.

• Validation. We build a dedicated cluster to validate our
hypothesis. Moreover, to address the issues exposed in our
study, we design a set of remedy methods, and validate the
effectiveness and practicability on production systems.

2.4 Limitations
Failure Reporting. Our study relies on the failure tickets
reported by distributed daemons that automatically monitor
the health condition of system components from hardware
to software. The daemons may fail to record (e.g. network

USENIX Association 2019 USENIX Annual Technical Conference 963

RASR Failure Symptom Meaning Distribution
Node Unbootable Unable to boot the OS on a node 2.6%
File System Unmoutable Unable to mount a local file system 7.4%
Drive Unfound A device cannot be found by the system software 53.7%
Buffer IO Error Unable to write data from memory buffer to the device 17.3%
Media Error Unable to read correct data from the device 19.0%

Table 3: Distribution of RASR failures based on manifestation symptoms. This table shows five different symptoms of RASR failures and
the corresponding percentage.

Hardware Type Distribution
CPU 0.7%

Memory 8.5%
Network 34.0%

Motherboard 5.4%

Storage HDD 22.1%
SSD 5.6%

Unknown 23.7%
Table 4: Distribution of failure tickets based on hardware types.
This table shows the distribution of failure tickets that are tagged as
related to major hardware components.

failure during log collection) or inaccurately tag the events
(e.g. a node crash tagged as “Unknown” due to insufficient
logs). However, to the best of our knowledge, the way the
tickets are reported is the common practice widely used in
major large-scale production systems and previous studies
on large-scale deployed systems also rely on similar mecha-
nisms for collecting datasets [16, 17, 29, 42].
Software Stack Design. Our software stack includes OS,
DFS and service components. Apart from using a major dis-
tribution of Linux, our DFS and service software are not
open-source. Nonetheless, they share generic similarities
with popular large-scale storage systems such as HDFS [39]
and Google File System [19], and similar high-level services
are provided by other companies such as EBS [1] and Data-
Store [3].
Hardware Products. Like previous works [32, 33], the
target systems use off-the-shelf hardware products such as
SSDs and interconnects. Many products are also widely de-
ployed in the datacenters of other organizations. Therefore,
users from other organizations may encounter the same or
similar hardware-related issues, and we hope they can bene-
fit from our experiences.

3 Characteristics of RASR Failures

3.1 Overview of Failure Tickets
We collect all failure tickets reported as related to hardware
components, over 150K tickets in total. Table 4 shows the
distribution of the failure events based on the types of hard-
ware components involved, including CPU, Memory, Net-
work, Motherboard, HDD/SSD, and Unknown. The Un-

RASR
Failure Symptom

Affected Rate (‰)
M1 M2 M3 M4 M5

Node Unbootable 0.24 0.42 0.15 0.13 0.07
FS Unmountable 1.28 1.05 0.42 2.90 2.04
Drive Unfound 11.19 8.58 5.31 11.51 4.38
Buffer IO Error 3.73 1.34 1.36 4.06 1.21

Media Error 3.42 5.24 2.81 5.73 1.33
Table 5: Distribution of RASR failures among five SSD models.
This table shows the affected rate of each SSD model (M1-M5),
which is the number of SSDs involved in one type of RASR failures
divided by the total number of SSDs with the same model.

known type refers to the failures where a relevant compo-
nent is not specified in the daemon-reported ticket. The sec-
ond column shows the percentage of failure events for each
type of hardware. According to our daemon setup, no failure
event is tagged with more than one type.

As shown in Table 4, storage components (i.e., HDD and
SSD combined) contribute to 27.7% (i.e., 22.1% + 5.6%) of
all hardware-related failure events. RASR failures alone ac-
count for 5.6%. Compared with other hardware components
(e.g., Network which accounts for 34.0%), RASR failures
are much fewer in our dataset. This is consistent with the
findings from previous studies that SSD is a relatively reli-
able component among all hardware components deployed
in datacenters [6, 33].

Nonetheless, since the total number of failure events is
large (i.e., over 150K), even a relatively small percentage
(i.e. 5.6%) of failures cannot be ignored. Therefore, we per-
form an in-depth analysis on RASR failures in this study and
present detailed results in the following sections.

3.2 Symptoms of RASR Failures
After analyzing all RASR failure logs, we find that RASR
failures can manifest in multiple ways. As shown in Table 3,
there are five different types of manifestation symptoms, in-
cluding Node Unbootable, File System Unmountable, Drive
Unfound, Buffer IO Error, and Media Error. The meaning of
each symptom is described in the second column of the ta-
ble. Also, the distribution of each type of symptoms is listed
in the last column of Table 3.

Among the five symptoms, the Drive Unfound type, which
means the device cannot be found by the system software,
is the dominant one (i.e., accounts for 53.7%). Based on

964 2019 USENIX Annual Technical Conference USENIX Association

Node
Unbootable

File System
Unmountable

Drive
Unfound

Buffer IO
Error

Media
Error

1.Slot Check(53.8%) 1.Mnt. Opt. Check(5.4%) 1.Rebooting(22.2%) 1.FSCK(79.8%) 1.Data Check(30.2%)
2.Repl. SSD(46.2%) 2.FSCK(40.5%) 2.Slot Check(34.8%) 2.Repl.SSD(20.2%) 2.Repl. SSD(69.8%)

3.Repl. SSD(54.1%) 3.Repl. Cable(25.9%)
4.Repl. SSD(16.1%)

Table 6: Repairing procedures of RASR Failures and their successful rates grouped by symptom. The first row shows five manifestation
symptoms of RASR failures. The 2nd row lists repairing procedures for each symptom. The repairing follows an order as indicated by the
number before each fix approach. The rate in the parentheses after each fix indicates within that symptom group the percentage of failures
fixed by that approach. Repl.: replacing; Mnt. Opt.: Mount Options.

RASR
Failure Symptom

Affected Rate (‰)
Block NoSQL BigData

Node Unbootable 0.27 0.12 0.35
FS Unmountable 1.43 1.05 1.42
Drive Unfound 13.25 10.58 9.31
Buffer IO Error 5.73 2.34 5.36

Media Error 8.42 3.24 3.77
Table 7: Distribution of RASR failures among cloud services.
This table shows the affected rate of each cloud service (i.e. Block
service, NoSQL service and Big Data service), which is the number
of M1 SSDs involved in one type of RASR failures divided by the
total number of M1 SSDs within the same cloud service.

RASR
Failure Symptom

Affected Rate (‰)
DC1 DC2 DC3 DC4 DC5

Node Unbootable 0.35 0.31 0.21 0.27 0.23
FS Unmountable 1.08 1.25 1.42 1.90 1.04
Drive Unfound 10.33 12.72 13.31 13.96 14.10
Buffer IO Error 2.95 2.14 1.98 1.86 2.12

Media Error 2.06 3.04 2.85 7.73 3.75
Table 8: Distribution of RASR failures among datacenters. This
table shows the affected rate of each M1 SSD under the Block ser-
vice from 5 datacenters (DC1-DC5), which is the number of M1
SSDs involved in one type of RASR failures divided by the total
number of M1 SSDs under the Block service within the same data-
center.

our discussion with on-site engineers, a Drive Unfound event
may be masked by the system software (e.g., automatic re-
direction of I/O requests and re-replication of data), and may
not necessarily lead to data loss. However, the event can
still cause additional latency on the I/O requests involved,
and usually requires engineers to diagnose the issue on site.
Similarly, other types of RASR failures may also affect sys-
tem performance and consume manual efforts. Therefore, it
is important to understand the root causes of RASR failures
and improve the failure handling. We discuss the analysis on
fix procedures in §3.3.

After observing the distribution of RASR failure symp-
toms, we further study the correlation between RASR failure
symptoms and other important factors, including SSD mod-
els, service workloads, and datacenter locations.

As mentioned in Table 1, there are five different SSD mod-
els in our target systems. To further understand the potential
impact of SSD models on RASR failures, we calculate the
failure affected rate for each model, which is the number
of SSDs involved in one type of RASR failures divided by
the total number of SSDs with the same model. As sum-
marized in Table 5, the five RASR failure symptoms have
been observed on all five SSD models (M1-M5). The af-
fected rate ranges from 0.07‰ (i.e., M5 SSDs with the Node
Unbootable symptom) to 11.51‰ (i.e., M4 SSDs with the
Drive Unfound symptom). We do not observe statistically
significant difference among SSD models in terms of the af-
fected rate of RASR failures, which suggests that RASR fail-
ures may not be directly related to the characteristics of SSD
models.

To study the correlation between RASR failures and ser-
vice workloads running on the target systems, we use M1
SSDs, a popular model accounting for 35% of the drive pop-
ulation. Table 7 shows the affected rates of M1 SSDs un-
der three cloud services. We observe that the Block service
(2nd column) has the highest affected rates in four out of
five types of RASR failures (except Node Unbootable). This
finding motivates us to further investigate the cloud services
with their designs, drive usage and device level errors in §5.

In addition, we study whether the location (i.e. datacen-
ters) plays a role in RASR failures. We evaluate the affected
rates of M1 SSDs under the Block service (i.e. the main ser-
vice accounting for for 57% of SSD deployment) in different
datacenters (DCs). Table 8 summarizes the results. Note that
M1 SSDs of the Block service are only used in five datacen-
ters, i.e., from DC1 to DC5. From the table, we observe that
while no DC dominates all failure types, DC4 has substan-
tially more Media Errors (i.e. last row), indicating more data
corruptions. To better understand the potential root causes,
we study the uniqueness of DC4 in terms of hardware archi-
tectures, especially the SSD placement in §4.

3.3 Fixes of RASR Failures
To understand the potential root causes of RASR failures, we
further analyze the corresponding repair logs. For each fail-
ure, administrators apply a symptom-based repairing proce-
dure, i.e., trying a pre-defined sequence of fix candidates one
by one based on the failure symptom until the failure dis-

USENIX Association 2019 USENIX Annual Technical Conference 965

appears. Each repair log records the repairing process and
the successful fix of a failure event. Table 6 summarizes the
pre-defined sequence of fix candidates for each RASR failure
symptom. Also, for each fix candidate, we calculate its suc-
cessful rate in the group of failures with the same symptom
(shown in the parentheses).

For instance, after observing a Drive Unfound failure (3rd
column of Table 6), administrators will first attempt to re-
motely reboot the node to check whether the failure is tran-
sient (“Rebooting”). If not, administrators will manually
check whether the device is plugged into the correct slot
(“Slot Check”). If the slot is correct, administrators will then
try replacing the cable (“Repl. Cable”), followed by replac-
ing SSD (“Repl. SSD”) as a final resort until the failure is
resolved. Note that all RASR failures are eventually fixed by
replacing SSDs if previous attempts do not work.

One observation on Table 6 initially puzzling us is that
the first fix attempt is not always the most effective one
within each group of failures. For example, “Mnt. Opt.
Check” (Mount Options Check) works only for around 5%
of File System Unmountable failures (2nd column). Simi-
larly, “Data Check” cures 30.2% of Media Error events (last
column). After discussing with administrators, we realize
that the symptom-based repairing procedure overall is sim-
ple yet effective. Specifically, the order of the fix candidates
for each failure symptom is first based on their costs, fol-
lowed by their effectiveness. As a result, the set of software-
based fixes (i.e., checking mount options, rebooting, FSCK,
and data check) are always preferred over the set of man-
ual or hardware-based ones (i.e., slot check, replacing ca-
ble, and replacing SSD). The order within either set of fix
candidates is based on their effectiveness to solve the failure
symptoms in administrators’ past experiences. The sequence
of fix candidates for repairing Drive Unfound (3rd column)
clearly demonstrates the ordering consideration.

Although existing fix procedure is effective to certain de-
gree, it is a black-box approach (trail-and-error) since the ad-
ministrators do not know the root causes before applying the
fix candidates. This motivates us to conduct in-depth study
on the potential root causes of RASR failures for helping
system administrators with better fix strategy. As will be dis-
cussed in §6, we identify an accurate indicator for one type
of failures (§6.1) and propose a method for avoiding another
type of failures (§6.2).

3.4 SMART Logs under RASR Failures

The device level SMART [4] log is an important dataset for
analyzing SSD behaviors and failures in the field [32, 33,
38]. Similar to previous studies [32, 33, 38], we analyze a
subset of SMART attributes (as shown in Table 9) on our
target systems in depth and observe a number of characteris-
tics which are consistent with the prior work (e.g., the preva-
lence of uncorrectable errors and the high raw bit error rate
on failed drives). Due to space limit, we do not discuss the

Device Level Event Definition

Host Read Total amount of host
LBA read from SSD

Host Write Total amount of host
LBA write to SSD

Program Error Total # of errors in NAND
programming operation

Raw Bit Error Rate
(RBER)

Total bit corrupted divided
by total bits accessed

End-to-End Error
(E2E)

Total # parity check failures
between drive and host

Uncorrectable Error Total # of data corruption
beyond ECC’s ability

UDMA CRC Error
(UCRC)

Total # of CRC check failures
during Ultra-DMA

Table 9: Device level events collected in our study.. Device level
events are collected via SMART [4]. All events are recorded in a
cumulative manner.

observations or the distribution of SMART attributes that are
similar to prior work. Instead, we correlate the SMART logs
with RASR failures in later sections and analyze the impact
of different factors (e.g., hardware architecture and software
design) on drive behaviors.

4 Lessons & Actions for Hardware Architects

During our characteristics study of RASR failures (§3), we
observe that SSDs deployed in one particular datacenter
(DC4) experience much more Media Error under the Block
Storage service (Table 8). Moreover, these SSDs have higher
Raw Bit Error Rate (RBER) and Uncorrectable Bit Error
Rate (UBER) based on the SMART logs.

To understand why the Block service in DC4 is so unique,
we perform field studies at DC4 and other datacenters. We
find that there are two potential factors. First, in DC4, about
27.1% Block service nodes are equipped with 18 SSDs,
while in other datacenters less than 5.3% Block service
nodes have 18 SSDs (most nodes have 12 SSDs). Second,
in DC4, nodes for different services are often co-located in
the same rack, while in other datacenters a rack is exclu-
sively used for a single service. In this paper, we refer to the
two factors as intra-node SSD stacking and intra-rack node
placement, respectively, both of which affect the SSD place-
ment in the systems. Since NAND flash memory is known to
be less reliable under higher temperature [9] due to the Ar-
rhenius Law[34], we suspect that the SSD placement may
affect the airflow in nodes and racks, which may in turn
affect the operating temperature of neighboring SSDs, and
then lead to abnormal behaviors. We refer to this hypothesis
as passive heating.

Note that passive heating is different from heating mech-
anisms used in prior work for analyzing NAND flash or

966 2019 USENIX Annual Technical Conference USENIX Association

Figure 2: Intra-node SSD stacking and the airflow. This fig-
ure shows the stacking of SSDs within a node, which include three
groups:front, middle and back. The arrows indicate the direction
of the airflow for cooling. Note that due to confidentiality, we can-
not show the real photo of the node deployed in our target systems;
however, the actual node is very similar to this example.

SSD under high temperatures. Specifically, in the studies on
NAND retention errors, NAND chips are heated to high tem-
perature without power supply (e.g., heating in the oven) [9].
Differently, SSDs in our study are always powered on, where
the FTL may proactively reduce NAND errors. In previous
studies on the impact of SSD temperatures, they mostly fo-
cus on active heating, i.e., heating the SSDs by heavily ac-
cessing them. In such case, high temperature may trigger
the throttling mechanism in FTL to reduce errors [32]. On
the contrary, the passing heating we observe may affect idle
SSDs, which cannot be remedied by throttling (because there
is no heavy on-the-fly flash operations to throttle). Therefore,
we believe it is necessary to investigate the passive heating
further.

4.1 Identify and Verify Passive Heating
With the help of on-site engineers, we identify three poten-
tial scenarios where SSDs may suffer from excessive passive
heating:
• Hot Airflow. Figure 2 shows an example of stacking of

multiple SSDs within a node and the airflow for cooling.
In this design, idle SSDs at the outlet of the airflow may be
heated up when the front SSDs are being accessed heavily.

• Hot Neighbors. If an idle node is close to another node
running intensive workloads, SSDs in the idle node may
be heated up by the hot neighboring node.

• Hot Air Recirculation. When a node is removed out of
the rack, the empty node slot may serve as a channel for
tunneling hot airflow and passing heat to nearby nodes
(one empty node slot away).
To verify and measure the passive heating, we build an ex-

perimental cluster with continuous monitoring of SSD tem-
peratures and controlled workloads. The cluster includes 8
nodes in a dedicated rack, and each node has 18 SSDs. We
perform the following experiments to analyze the passive
heating in each of the aforementioned scenarios.

For Hot Airflow, we first record the initial temperature of
the SSDs near the outlet of the airflow when a node is just
powered on. Then, we run intensive workloads to access the
6 front SSDs (i.e. SSDs close to the inlet of the airflow), but

leave the remaining 12 SSDs idle. We compare the temper-
atures of the idle drives before and after running the work-
loads.

For Hot Neighbors, we run intensive workloads on some
nodes, and keep monitoring the temperatures of the SSDs
on the neighboring idle nodes. We try three configurations
where the hot neighbor(s) is atop, below, or are at both sides
of the idle node.

For Hot Air Recirculation, we remove a node from the
rack and examine whether the temperature of the SSDs of an
idle node can be affected by a hot neighbor that is one node
slot away.

Our experiments show that for an idle SSD initially at 25
C◦, it can be heated up by 23 C◦, 9 C◦, and 17 C◦ (i.e., reach-
ing 48 C◦, 34 C◦, and 42 C◦) via Hot Airflow, Hot Neighbors,
and Hot Air Recirculation, respectively. Moreover, when
combining the three effects, an idle SSD can be heated up
by 28 C◦ (i.e., reaching 53 C◦) on our cluster.

4.2 Effects of Passive Heating on SSDs
After verifying that the suboptimal SSD placement may gen-
erate undesirable passive heating on SSDs, we look into the
impact of passive heating on SSDs’ behavior. In this set of
experiments, we compare the raw bit errors of SSDs at three
levels of temperatures under passive heating: 35C◦, 45C◦,
and 55C◦. Note that we use a fixed temperature interval (i.e.,
10C◦) to make the correlation between errors and passive
heating more clear.

Specifically, in each experiment, we heat up idle SSDs
(initially 25C◦) through passive heating until they reach one
of the three levels of higher temperatures, i.e., 35C◦, 45C◦,
or 55C◦. At each level, we maintain the same temperature for
a range of time durations, i.e., from 1 to 128 hours, by care-
fully adjusting the workloads on neighboring nodes based
on the feedback of the measured SSD temperature. After the
stable passive heating period finishes, we scan the whole de-
vice and measure the Raw Bit Errors1 newly generated dur-
ing the heating period.

Figure 3 summarizes the results. We find that all three
levels of passive heating (i.e., 35C◦, 45C◦, and 55C◦) may
lead to more Raw Bit Errors compared with normal case (i.e.,
25C◦). Additionally, a higher level of passive heating (e.g.,
55C◦) for a longer period of time (e.g., 64 hours) can gen-
erate more Raw Bit Errors, and the increasing trend is non-
linear. Moreover, after 128 hours of heating, we observe that
idle SSDs suffer from 57% more Raw Bit Errors.

Note that our observation in this set of experiments (i.e.,
higher temperature leads to more retention errors) aligns well
with previous studies and industry standards[27, 32]. How-
ever, it contradicts to a recent study on 3D NAND flash chips
[30]. This is likely because the structure and characteristics
of 3D NAND are different from those used in our systems

1We do not use the Raw Bit Errors Rate (RBER) attribute directly be-
cause it is a cumulative value over the entire lifespan of a device.

USENIX Association 2019 USENIX Annual Technical Conference 967

1

1.1

1.2

1.3

1.4

1.5

1.6

1h 2h 4h 8h 16h 32h 64h 128h

25°C 35°C 45°C 55°C

57%
More
Errors

Figure 3: Raw Bit Errors generation under passive heating
through time

(e.g., charging trap versus floating gate).
Although in our small scale experiments we do not ob-

serve uncorrectable errors or RASR failures, we believe that
the results (e.g., increasing Raw Bit Errors) indicate that
SSDs may become less reliable due to passive heating, and
the phenomenon deserves more attention.

4.3 Offset the Impact of Passive Heating
Since the idle SSDs that are suffered from passive heating do
not serve any I/O (before measuring the Raw Bit Errors), the
increased Raw Bit Errors are most likely due to a retention
issue. Classic techniques like data scrubbing can effectively
mitigate retention issue by scanning and checking data in-
tegrity. However, it is unrealistic to apply such techniques
frequently due to the prohibitive performance overhead.

On the other hand, we realize that the FTL in SSDs usu-
ally has a mechanism called Read Refresh [11] to correct bit
errors and reallocate data during reading. So we propose to
apply a lightweight regular software-based scanning to trig-
ger read refresh (without computing checksums) to offset the
negative impact of passing heating on idle SSDs. To verify
our proposed method, we experiment on different intervals
of scanning (e.g., 1 to 128 hours) and measure the reduction
of Raw Bit Errors. Our experimental results are very promis-
ing: a routine scanning of every 4 hours can effectively con-
trol Raw Bit Errors without incurring too much overhead in
our target systems. For example, after we perform a 4-hour
routine scanning on the idle SSD during its 128 hours of pas-
sive heating under 55 C◦, we only observe 1% more Raw Bit
Errors, which is in stark contrast to 57% more Raw Bit Er-
rors without scanning. Further increasing the frequency of
scanning do not reduce the errors much. Therefore, the 4-
hour-scanning routine achieves a good balance between the
effectiveness and overhead in our systems.

While triggering read refresh by routine scanning is help-
ful for offsetting the impacts from passive heating, there
are other potential issues with its direct deployment on pro-
duction systems. First, the routine scanning requires fine-
grained temperature monitoring to detect passive heating.
Currently, the SSD temperature on our target systems is ob-

tained by querying the SMART logs. Similar to other cloud
companies [32, 33], the SMART logs are pulled on a daily
basis in our production systems, which is insufficient for
monitoring passive heating. Increasing the query rate re-
quires changes to the distributed monitoring daemons and
may affect the quality of service. While some hardware-
based temperature querying methods (e.g., IoT sensors [18])
are relatively lightweight, integrating them into production
systems may require significant efforts.

Second, the scanning might introduce more read disturb
errors [10]. Although the scanning does not necessarily read
the entire disk (i.e. only the stored data) or blindly get exe-
cuted every 4 hours (i.e. only when SSD is in passive heating
for more than four hours), the SSD may still suffer from in-
creasing device errors due to read disturbance. This may fur-
ther deteriorate as the lithography becomes smaller. There-
fore, while effective, it is difficult to directly apply the rou-
tine scanning used in our experiments to production systems.

Alternatively, it is possible to implement our proposed
technique of detecting and remedying passive heating in FTL
with vendors’ support. First, many SSDs today support heat
throttling in the FTL, which implies that the temperature is
already closely monitored by the device. Second, the FTL
has the best knowledge of which parts of the data have higher
error rates, and thus can react accordingly by proactively
read refreshing the corresponding data. Therefore, the FTL-
based solution may be more effective. We hope our study
can raise the awareness of passive heating and facilitate ad-
dressing the issue.

5 Lessons & Actions for Software Engineers

As shown in Table 7, the SSDs under the Block service suffer
more RASR failures than the devices under the other two
services. This finding motivates us to further investigate the
behavior differences of the SSDs among the three services,
as well as the potential causes and fixes.

5.1 Usage Imbalance in Block Service
We start with the SSD usage, the most fundamental statistics
of device behaviors. The three cloud services (i.e. Block,
NoSQL, and Big Data Analytics) supported by our target
systems are intrinsically different in terms of data placement
policies and I/O patterns, which may lead to different usage
patterns of SSDs. To understand the basic usage, we com-
pare two device-level events: Host Read and Host Write,
which measure the amount of data read from or written to
the device by the host.

More specifically, we measure the hourly average value
of host read/write (i.e., total sizes of host read/write divided
by total power-on hours) on all SSDs under each cloud ser-
vice. Moreover, we calculate the variability of the two met-
rics among SSDs under the same service using the coefficient
of variation (CV), which is the ratio of standard deviation to

968 2019 USENIX Annual Technical Conference USENIX Association

Host Read Host Write
Avg.
Value
/Hour

Block 7.69 GB 6.56 GB
NoSQL 6.10 GB 5.28 GB
BigData 1.57 GB 1.22 GB

CV Block 35.5% 24.9%
NoSQL 3.2% 6.2%
BigData 1.8% 3.7%

Table 10: Comparison of SSD usages under three services in
terms of host read and host write. CV: Coefficient of Variance,
the ratio of standard deviation to mean.

Figure 4: Distribution of SSDs under three services. This figure
shows the distribution of SSDs in terms of hourly host write under
three services. The arrows mark the bimodal usage under the Block
service.

mean. Intuitively, a higher CV indicates that the hourly host
read/write varies more across SSDs.

Table 10 summarizes the results. We can see that the
hourly average value of host read and host write of the Block
service are 7.68 GB and 6.56 GB, respectively, which are
similar to those of the NoSQL service. However, the Block
service has much higher variances for the two metrics (i.e.,
35.5% and 24.9%), which implies that the usage of SSDs
under this service is much more unbalanced.

Figure 4 further illustrates the distribution of SSDs in
terms of hourly host write under the three services by using
a histogram with 0.5 GB buckets along the x-axis. Each dot
on the line (e.g., solid line for Big Data) represents the cu-
mulative count of SSDs in the corresponding usage bucket.
We can see from the figure that the majority of SSDs under
NoSQL and Big Data Analytics services have similar usages
(i.e., one major spike on the corresponding curve). In con-
trast, the SSDs under Block Storage service shows bimodal
usages (i.e., two spikes far apart) as marked in the figure.
Further analysis shows that the overly used drives (i.e. the
right spike) account for around 17% of all SSDs in the Block
Storage service and have 227.1% more write usage. The dis-
tribution of SSDs in terms of hourly host read exhibits simi-
lar pattern.

With such an unbalanced usage pattern, the overly-used
set of SSDs may be worn out quickly. As a result, compared
with averagely-used SSDs (i.e., balanced usage), overly-used

Figure 5: Comparison of overly used SSDs and averagely used
SSDs. This figure shows overly used SSDs exhibit more device
level errors and RASR failures compared with averagely used SSDs.
RBER: raw bit error rate; UBER: uncorrectable bit error rate; PE:
program error count; DU: Drive Unfound; BIOE: Buffer IO Error;
ME: Media Error.

Figure 6: The data path of an update operation (original).

SSDs may exhibit more device-level errors and potentially
lead to more RASR failures. To verify this hypothesis, we
quantitatively measure such difference based on our dataset.
We use the classic 80/20 rule to group the SSDs. The SSDs
with top 20% usage within the Block Service are labeled as
overly-used and the rest are labeled as averagely-used. As
shown in Figure 5, overly-used SSDs have noticeably higher
numbers of device errors including RBER (1.77X), UBER
(1.20X) and PE (1.25X). Moreover, they tend to incur more
RASR failures including Drive Unfound (1.05X), Buffer IO
Error (1.15X), and Media Error (1.18X). This result suggests
that load balancing is indeed important.

5.2 Root Causes of Usage Imbalance
After looking into the design of software stacks of the three
cloud services, we identify two major factors for the unbal-
anced usage of SSDs in the Block service: the update policy
and the user I/O patterns.

Figure 6 shows the simplified update policy in the Block
service (for clarity, irrelevant details such as sharding and
replication are omitted). The Block service offers users
the storage capacity at the granularity of chunks. The left
part of the figure shows that USER1 subscribes one chunk
(“Chunk1”) from the service. The software stack of the
Block service maintains a mapping table from the chunk to
a fixed SSD (i.e., storing “Chunk1” on“SSD1”).

USENIX Association 2019 USENIX Annual Technical Conference 969

Figure 7: The data path of an update operation (optimized).

Upon an update operation, shown in the right part of
Figure 6, the software stack queries the mapping table and
writes the updated chunk to the same SSD (i.e., ”Updated
Chunk1” on ”SSD1”). In other words, in the Block service
performs in-place updates, i.e., updates are always flushed to
the initially-allocated SSDs.

In addition, we find that the Block service receives a di-
verse set of I/O requests from different users. Some users
generate many update operations while others do not. This
diversity and the in-place update policy lead to the unbal-
anced usage of SSDs under the Block service.

Unlike Block Service, the other two cloud services do not
cause severe usage imbalance because they have a different
update policy or I/O pattern. Particularly, the NoSQL ser-
vice merges small updates together and always generates a
new chunk for the updated data, which can be mapped to a
different SSD. In the Big Data service, reading and adding
new data are consistently much more frequent than updating
existing ones. Therefore, SSDs under both services have a
relatively balanced usage.

5.3 Mitigating Usage Imbalance
To address the usage imbalance issue, we optimize the soft-
ware stack of the Block service by adding a shared append-
only log, similar to LFS [36].

Figure 7 shows the update operation after the optimiza-
tion. Similar to Figure 6, USER1 subscribes a chunk from
the Block Service. Unlike the original design, the chunk is
now maintained in a log which appends the latest update to
its end. Upon receiving an update, the software stack invali-
dates the previous chunk (marked with an “X”), appends the
update to the log, and changes the mapping table to map the
updated chunk to a new SSD (“SSD2”). The outdated chunk
will be invalidated for garbage collection. This log-based de-
sign mitigates the usage variance among SSDs, as each up-
dated chunk will be allocated to a different SSD based on the
wear among available drives. Note that, in certain cases, the
updated chunk may still mapped to the original SSD if the
original one happens to be the most appropriate candidate.

After applying the optimized design on a subset of our
target systems for 7 months, we observe that the coefficient

Fix Percentage Root Cause
Rebooting 11.9% Transient
Mount Options Check 0.4% Human Mistake
FSCK 16.5% Undetermined
Data Check 6.0% Undetermined
Slot Check 20.1% Human Mistake
Replacing Cable 13.9% Faulty Cable
Replacing SSD 31.2% Failed Device

Table 11: Working fixes of RASR failures. The first column
shows working fixes of RASR failures. The 2nd column lists the
percentage of RASR failures repaired by each fix. The 3rd column
lists the corresponding root cause derived from the working fix.

of variance (CV) of host read/write under the Block service
reduces significantly (i.e., from 24.9% to 5.2% among all
SSDs under the same service). The log-structured design
also provides other benefits for our target systems (e.g., bet-
ter support for snapshots), which are beyond the scope of this
paper.

6 Lessons & Actions for System Admins

To help system administrators with better fix strategy, we
need better understanding of the root causes of RASR fail-
ures. While the repair log of a RASR failure does not explic-
itly state the root cause, we can infer the potential root cause
based on the successful fix in the log. For example, if a fail-
ure can only be fixed by replacing the SSD, it is likely that
the root cause is a failed SSD. Table 11 shows all the seven
fixes deployed in the repairing procedure of RASR failures,
the percentage of RASR failures being successfully repaired
by each fix, and the potential root causes.

We observe that not all RASR failures are caused by
failed SSDs. There are two main non-SSD causes for RASR
failures: (1) human mistakes contribute 20.5% of RASR
failures, including plugging the device to the wrong slot
(“Slot Check”) and incorrect configuration (“Mount Options
Check”); and (2) faulty interconnections fixed by replacing
cable, which is outside of SSD, account for 13.9% of RASR
failures. Note that, although “Replacing SSD” accounts for
the most (31.2%) of RASR failures, we still leave it as the
last resort in the fix strategy due to the high cost of the de-
vices and labors. Hence, we are interested in whether faulty
interconnections and human mistakes can be quickly diag-
nosed or largely avoided.

6.1 Faulty Interconnection
Faulty interconnection is a well-known issue in large-scale
storage systems [28]. To fix the RASR failures (Drive Un-
found) caused by faulty interconnection, replacing the cable
between SSD and host is an effective method. However, our
symptom-based repairing procedure (shown in Table 6) lists
replacing cable as the third step to try out if a Drive Unfound

970 2019 USENIX Annual Technical Conference USENIX Association

Fix Heavy Group Light Group
Rebooting 4.4% 25.0%
Slot Check 7.6% 35.7%
Repl. Cable 70.6% 24.2%
Repl. SSD 17.4% 15.1%

Table 12: Success rates of fixes in two SSD groups. This table
shows the success rate of each fix for the “Drive Unfound” failures
in two SSD groups classified by the indicator.

failure occurs. This incentivizes us to quest for good indica-
tors of faulty interconnection. If successful, administrators
can directly replace cable instead of trying the first two failed
attempts – significantly improving the repairing procedures
of Drive Unfound (a major source of RASR failures).

6.1.1 Identifying Potential Indicators

To find a suitable indicator for faulty interconnection, we
study the correlation between five representative device er-
rors (i.e., Ultra-DMA CRC (UCRC), RBER, Uncorrectable
Errors, Program Errors, and End-to-End Errors) and faulty
interconnection by using Spearman Rank Correlation Coef-
ficient [12]. The result shows that only the UCRC has strong
correlation with faulty interconnection. This generally indi-
cates that the more UCRC errors an SSD has, the more likely
a Drive Unfound failure is caused by faulty interconnection.
Therefore, we select the number of UCRC errors for design-
ing the indicator.

6.1.2 Refining the Indicator

Since UCRC errors may also occasionally caused by tran-
sient factors (e.g., voltage spike), it is necessary to set a
proper threshold for indicating faulty interconnection. To
this end, we apply a set of classic statistics methods (e.g.,
Kolmogorov-Smirnov Test [13]) to analyze the UCRC er-
rors and derive the optimal threshold. We find that the dis-
tribution of UCRC errors follows the 80/20 rule (i.e., Pareto
Law [13]). So if the accumulation of UCRC errors on an
SSD is in the top 20% among all drives, we assign the SSD
to the “Heavy” group. Our analysis shows that 17 is the best
threshold for our systems. In other words, when an SSD has
17 or more UCRC errors, it is a strong indication of a faulty
interconnection in the target systems. Note that the threshold
can be re-calculated and updated periodically for the change
of systems and environment (e.g., aging of SSDs, workload
changes). We leave the sensitivity study of the threshold as
future work.

6.1.3 Verifying the Indicator

We further use our existing dataset to verify the effectiveness
of the UCRC-based indicator. Specifically, we first divide
all SSDs into two groups based on the threshold: “Heavy”
(above or equal to the threshold) and “Light” (below the
threshold). Then, we calculate the successful rate of each fix
candidate for the “Drive Unfound” failures in each group.

Table 12 demonstrates that our indicator for faulty inter-
connection would be very effective for improving the repair-
ing procedure of Drive Unfound failures. Most (i.e., 70.6%)
SSDs in the “Heavy” group have been successfully repaired
by replacing cable. On the contrary, only 12.0% of SSDs in
the group are fixed by the first two candidates (i.e., node re-
booting and slot check). This result suggests that, it can sig-
nificantly improve the successful rate of the first attempt if
we directly replace cables for the drives that are severely af-
fected with UCRC errors. As for the “Light” group of SSDs,
whose root causes are not identified as faulty interconnec-
tion by our indicator, the successful rate of replacing cable
is similar to the first two fix candidates. This shows that the
existing repair procedure is good for “Light” group of SSDs.

6.1.4 Benefits of Using Indicator

We have applied the UCRC-based indicator to our target sys-
tems. With the new repairing procedure for Drive Unfound
failures, if the number of UCRC errors in SSD is higher than
the threshold, on-site engineers will start with replacing ca-
ble first.

One might think that rebooting is simple and it should be
the first attempt no matter what the root cause is. However,
the side effect of rebooting can be notable and cascading in
large-scale production systems. For example, a node may
hang at BIOS during reboot if the system drive is inacces-
sible due to a faulty cable, which may further trigger large
data transfer in a 3-replica system. Therefore, when the root
cause is likely to be a faulty cable (i.e., the heavy group), we
use cable replacement first.

Based on the feedback of the on-site engineers on the new
89 cases of Drive Unfound (not included in our dataset), the
indicator helps them reduce the repairing time by 21.1%, be-
cause of the saving on time that would have been spent on
the first two unsuccessful attempts (i.e., node rebooting and
slot check).

6.2 Human Mistakes & Solution
As shown in Table 11, human mistake is another major
source of RASR failures. Particularly, plugging the device
to the wrong slot (i.e., fixed by “Slot Check”) accounts for
20.1% RASR failures. Although it may be part of human
nature to err, we believe such mistakes should be avoided.

To address the issue, we design an approach called One
Interface One Purpose (OIOP) for our latest and future de-
ployment, where SSDs serve for different purposes use dif-
ferent hardware interfaces. Table 13 lists the interface for
each type of SSD functionality in our target systems. We use
U.2/M.2 interface for system drives as our motherboard usu-
ally has 1 or 2 such sockets. The NVMe interface is used for
temporary storage and buffering as these SSDs require high
bandwidth and low latency. The SATA interface is used for
persistent storage for compatibility concerns (i.e., re-using
current SSDs on new racks). With such an OIOP design, the

USENIX Association 2019 USENIX Annual Technical Conference 971

SSD Functionality SSD Interface
System drive U.2/M.2

Temporary storage NVMe
Buffering writes NVMe
Persistent storage SATA

Table 13: Mapping between SSD functionality and interface.

SSDs and slots for different purposes are easily differentiable
by system administrators. Note that these interfaces are un-
likely to be transitional as each interface has its unique mar-
ket/purpose (e.g., U.2/M.2 for embedded, NVMe for high-
performance).

Although simple, the OIOP design has effectively reduced
the RASR failures caused by human mistakes in practice.
In the 6-month deployment of an OIOP storage system with
about 100K SSDs, we only observe 3 RASR failures caused
by plugging a device to a wrong slot. In stark contrast, we
observe an average of 47 such cases on comparable size of
current storage systems without OIOP.

Besides OIOP, another possible solution is to use a sta-
tus light to differentiate the functionalities of drives. Sta-
tus light has been used for indicating drive status in RAID
systems [40], and it can be applied to motherboards without
multiple interfaces. However, adding status lights requires
support from hardware manufacturers.

7 Related Works
Our work is mainly related to the following three lines of
research studies: (1) reliability of SSDs and SSD-based stor-
age systems, (2) reliability of HDD-based storage system,
and (3) large-scale failure studies.

Great efforts have been made on analyzing the reliabil-
ity of SSDs and SSD-based storage systems [32, 33, 38, 43,
44, 45]. For example, Schroeder et al. [38] conduct a large-
scale field study covering millions of drive days and ana-
lyze a wide range of device characteristics and errors (espe-
cially RBER and UBER) as well as their correlation. Meza
et al. [32] study flash memory failures in the field as well as
their correlation with other factors (e.g., data written from
OS). Narayanan et al. [33] analyze the correlation between
failed SSDs and other factors (e.g., hardware utilization).
Our work is different in a number of ways. First, we fo-
cus on RASR failures, which have not been studied before.
Second, our study covers system-level failure symptoms, re-
pair procedures, root causes, as well as the casual relations
among events. Third, we design and validate a set of sim-
ple yet effective solutions. Therefore, we believe our work is
complementary to the existing efforts.

Research efforts on HDD-based storage stack are also
abundant [7, 8, 28, 35]. For example, Jiang et al. [28] study
the logs from around 40K storage systems and discover sev-
eral findings including the significant contribution of physi-
cal components and protocol stacks in failures, the “bursty”

failure pattern, and the benefit of using redundant intercon-
nection. Bairavasundaram et al. [7] analyze over 1.5 million
hard drives and find out the severity differences of data cor-
ruption among enterprise and nearline disks, the spatial and
temporal locality of checksum mismatches, and the correla-
tion of data corruption across different disks. Based on the
same dataset, Bairavasundaram et al. [8] also analyze fac-
tors that contribute to the latent sector errors along with the
trends and further explore possible remedies towards build-
ing a more robust storage subsystem. However, due to the
difference in both hardware design and software support,
their findings may not be directly applicable to SSD-based
storage systems.

In addition, our work is closely related to two groups of
studies on large-scale failures. The first group focuses on us-
ing failure reports (e.g., news and descriptive records) to un-
derstand failures in modern storage systems [21, 22, 23, 43].
For example, Gunawi et al. [23] collect around 100 hard-
ware fail-slow reports across multiple large-scale deploy-
ments from several institutions and study the behaviors, root
causes and lessons for dianosis of fail-slow failures. In the
second group of studies, researchers have made efforts on
diagnosing and detecting failures from software perspective.
For instance, Huang et al. [25, 26] analyze the production
systems deployed at Microsoft and discover a key feature
of the gray failure, differential observability, which leads
them to build a fast detection tool. Regarding the first group,
our work is different as we use multiple log sources (e.g.
SMART logs, kernel logs) to conduct quantitative analysis
and further derive the causal relationships of the failures.
Compared with the second group, our work targets the vari-
ous aspects of system reliability maintenance, including not
only the software but also the hardware and administration.

8 Conclusions
We study the characteristics of RASR failures in large-scale
storage systems in this paper. Our study reveals the distri-
bution, symptoms, and causes of RASR failures. Moreover,
we derive several lessons on system reliability, including the
passive heating phenomenon, the usage imbalance, human
mistakes, etc. In addition, we design and validate a set of
simple yet effective methods to address the issues observed.
We believe our findings and solutions would be beneficial to
the community, and could facilitate building highly-reliable
SSD-based storage systems.

Acknowledgments
We thank the anonymous reviewers and Mahesh Balakrish-
nan (our shepherd) for their insightful feedback. We also
thank Yong Wang, Qingda Lu, Cheng He in Alibaba for the
invaluable discussion.

972 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Amazon elastic block store, 2018. https://aws.
amazon.com/ebs/.

[2] fstrim(8) - linux man page, 2018. https://linux.
die.net/man/8/fstrim.

[3] Google cloud datastore, 2018. https://cloud.
google.com/datastore/.

[4] Self-monitoring, analysis and reporting technol-
ogy (s.m.a.r.t.) attributes, 2018. https://en.
wikipedia.org/wiki/S.M.A.R.T.

[5] AMVROSIADIS, G., BROWN, A. D., AND GOEL, A.
Opportunistic storage maintenance. In Proceedings of
the 25th Symposium on Operating Systems Principles
(SOSP) (2015).

[6] ANDERSEN, D. G., AND SWANSON, S. Rethinking
Flash in the Data Center. IEEE Micro 30, 4 (2010),
52–54.

[7] BAIRAVASUNDARAM, L. N., ARPACI-DUSSEAU,
A. C., ARPACI-DUSSEAU, R. H., GOODSON, G. R.,
AND SCHROEDER, B. An analysis of data corruption
in the storage stack. ACM Transactions on Storage
(TOS) 4, 3 (2008), 8:1–8:28.

[8] BAIRAVASUNDARAM, L. N., GOODSON, G. R., PA-
SUPATHY, S., AND SCHINDLER, J. An analysis of
latent sector errors in disk drives. In Proceedings of
the 2017 ACM International Conference on Measure-
ment and Modeling of Computer Systems (SIGMET-
RICS) (2007).

[9] CAI, Y., HARATSCH, E. F., MUTLU, O., AND MAI,
K. Error patterns in mlc nand flash memory: Measure-
ment, characterization, and analysis. In Proceedings of
the 2012 Design, Automation Test in Europe Confer-
ence Exhibition (DATE) (2012).

[10] CAI, Y., LUO, Y., GHOSE, S., AND MUTLU, O. Read
disturb errors in mlc nand flash memory: Character-
ization, mitigation, and recovery. In Proceedings of
the 45th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (2015).

[11] CHO, S. Nand reliability improvement with controller
assisted algorithms in ssd. In Proceedings of the 2013
Flash Memory Summit (2013).

[12] CORDER, G., AND FOREMAN, D. Nonparametric
Statistics: A Step-by-Step Approach. Wiley, 2014.

[13] DANIEL, W. Applied nonparametric statistics. PWS-
Kent Publ., 1990.

[14] DEBNATH, B., SENGUPTA, S., AND LI, J. Flash-
store: High throughput persistent key-value store. In
Proceedings of the 36th International Conference on
Very Large Data Bases (VLDB) (2010).

[15] DONG, S., CALLAGHAN, M., GALANIS, L.,
BORTHAKUR, D., SAVOR, T., AND STRUM, M. Opti-
mizing space amplification in rocksdb. In Proceedings
of the 8th biennial Conference on Innovative Data Sys-
tems Research (CIDR) (2017).

[16] FORD, D., LABELLE, F., POPOVICI, F. I., STOKELY,
M., TRUONG, V.-A., BARROSO, L., GRIMES, C.,
AND QUINLAN, S. Availability in globally distributed
storage systems. In Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI) (2010).

[17] GARRAGHAN, P., TOWNEND, P., AND XU, J. An
empirical failure-analysis of a large-scale cloud com-
puting environment. In Proceedings of the 15th IEEE
International Symposium on High-Assurance Systems
Engineering (2014).

[18] GARULLI, N., BONI, A., CASELLI, M., MAG-
NANINI, A., AND TONELLI, M. A low power tem-
perature sensor for iot applications in cmos 65nm tech-
nology. In Proceedings of the 7th IEEE International
Conference on Consumer Electronics - Berlin (ICCE-
Berlin) (2017).

[19] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-
T. The google file system. In Proceedings of the
19th ACM Symposium on Operating Systems Principles
(SOSP) (2003).

[20] GRUPP, L. M., CAULFIELD, A. M., COBURN, J.,
SWANSON, S., YAAKOBI, E., SIEGEL, P. H., AND
WOLF, J. K. Characterizing flash memory: Anoma-
lies, observations, and applications. In Proceedings of
the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO) (2009).

[21] GUNAWI, H. S., HAO, M., LEESATAPORNWONGSA,
T., PATANA-ANAKE, T., DO, T., ADITYATAMA, J.,
ELIAZAR, K. J., LAKSONO, A., LUKMAN, J. F.,
MARTIN, V., AND SATRIA, A. D. What bugs live in
the cloud? a study of 3000+ issues in cloud systems.
In Proceedings of the 5th ACM Symposium on Cloud
Computing (SoCC) (2014).

[22] GUNAWI, H. S., HAO, M., SUMINTO, R. O., LAK-
SONO, A., SATRIA, A. D., ADITYATAMA, J., AND
ELIAZAR, K. J. Why does the cloud stop computing?:
Lessons from hundreds of service outages. In Proceed-
ings of the 7th ACM Symposium on Cloud Computing
(SoCC) (2016).

USENIX Association 2019 USENIX Annual Technical Conference 973

[23] GUNAWI, H. S., SUMINTO, R. O., SEARS, R., GOL-
LIHER, C., SUNDARARAMAN, S., LIN, X., EMAMI,
T., SHENG, W., BIDOKHTI, N., MCCAFFREY, C.,
GRIDER, G., FIELDS, P. M., HARMS, K., ROSS,
R. B., JACOBSON, A., RICCI, R., WEBB, K., AL-
VARO, P., RUNESHA, H. B., HAO, M., AND LI, H.
Fail-slow at scale: Evidence of hardware performance
faults in large production systems. In Proceedings of
the 16th USENIX Conference on File and Storage Tech-
nologies (FAST) (2018).

[24] HAO, M., SOUNDARARAJAN, G., KENCHAMMANA-
HOSEKOTE, D. R., CHIEN, A. A., AND GUNAWI,
H. S. The Tail at Store - A Revelation from Millions of
Hours of Disk and SSD Deployments. In Proceedings
of the 14th USENIX Conference on File and Storage
Technologies (FAST) (2016).

[25] HUANG, P., GUO, C., LORCH, J. R., ZHOU, L., AND
DANG, Y. Capturing and enhancing in situ system ob-
servability for failure detection. In Proceedings of the
13th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI) (2018).

[26] HUANG, R., GUO, C., ZHOU, L., LORCH, J., DANG,
Y., CHINTALAPATI, M., AND YAO, R. Gray failure:
The achilles’ heel of cloud-scale systems. In Proceed-
ings of the 16th Workshop on Hot Topics in Operating
Systems (HotOS) (2017).

[27] JEDEC. Solid-State Drive (SSD) Requirements and
Endurance Test Method., Sept. 2010.

[28] JIANG, W., HU, C., ZHOU, Y., AND KANEVSKY, A.
Are disks the dominant contributor for storage failures?
ACM Transactions on Storage 4, 3 (2008), 1–25.

[29] LIANG, Y., ZHANG, Y., SIVASUBRAMANIAM, A.,
JETTE, M., AND SAHOO, R. Bluegene/l failure anal-
ysis and prediction models. In Proceedings of the 36th
Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN) (2006).

[30] LUO, Y., GHOSE, S., CAI, Y., HARATSCH, E. F.,
AND MUTLU, O. Heatwatch: Improving 3d nand flash
memory device reliability by exploiting self-recovery
and temperature awareness. In Proceedings of the 2018
IEEE International Symposium on High Performance
Computer Architecture (HPCA) (2018).

[31] MAHDISOLTANI, F., STEFANOVICI, I., AND
SCHROEDER, B. Proactive error prediction to
improve storage system reliability. In Proceedings of
the 2017 USENIX Annual Technical Conference (ATC)
(2017).

[32] MEZA, J., WU, Q., KUMAR, S., AND MUTLU, O.
A Large-Scale Study of Flash Memory Failures in the
Field. In Proceedings of the 2015 ACM SIGMETRICS
International Conference on Measurement and Model-
ing of Computer Systems (SIGMETRICS) (2015).

[33] NARAYANAN, I., WANG, D., JEON, M., SHARMA,
B., CAULFIELD, L., SIVASUBRAMANIAM, A., CUT-
LER, B., LIU, J., KHESSIB, B. M., AND VAID, K.
SSD Failures in Datacenters - What? When? and Why?
In Proceedings of the 9th ACM International on Sys-
tems and Storage Conference (SYSTOR) (2016).

[34] PAPANDREOU, N., PARNELL, T., POZIDIS, H., MIT-
TELHOLZER, T., ELEFTHERIOU, E., CAMP, C.,
GRIFFIN, T., TRESSLER, G., AND WALLS, A. Using
adaptive read voltage thresholds to enhance the reliabil-
ity of mlc nand flash memory systems. In Proceedings
of the 24th Edition of the Great Lakes Symposium on
VLSI (GLSVLSI) (2014).

[35] PINHEIRO, E., WEBER, W.-D., AND BARROSO,
L. A. Failure Trends in a Large Disk Drive Popula-
tion. In Proceedings of the 5th USENIX Conference on
File and Storage Technologies (FAST) (2007).

[36] ROSENBLUM, M., AND OUSTERHOUT, J. K. The de-
sign and implementation of a log-structured file system.
ACM Transactions on Computer Systems (TOCS) 10, 1
(1992), 26–52.

[37] SCHROEDER, B., AND GIBSON, G. A. Disk Failures
in the Real World - What Does an MTTF of 1, 000,
000 Hours Mean to You? In Proceedings of the 5th
USENIX Conference on File and Storage Technologies
(FAST) (2007).

[38] SCHROEDER, B., LAGISETTY, R., AND MERCHANT,
A. Flash Reliability Production - The Expected and
the Unexpected. In Proceedings of the 14th USENIX
Conference on File and Storage Technologies (FAST)
(2016).

[39] SHVACHKO, K., KUANG, H., RADIA, S., AND
CHANSLER, R. The hadoop distributed file system.
In Proceedings of the IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST) (2010).

[40] SUN MICROSYSTEMS. Sun StorEdge 3000 Family In-
stallation, Operation, and Service Manual.

[41] VERBITSKI, A., GUPTA, A., SAHA, D., BRAH-
MADESAM, M., GUPTA, K., MITTAL, R., KRISH-
NAMURTHY, S., MAURICE, S., KHARATISHVILI, T.,
AND BAO, X. Amazon aurora: Design considerations
for high throughput cloud-native relational databases.
In Proceedings of the 2017 ACM International Confer-
ence on Management of Data (SIGMOD) (2017).

974 2019 USENIX Annual Technical Conference USENIX Association

[42] VISHWANATH, K., AND NAGAPPAN, N. Characteriz-
ing cloud computing hardware reliability. In Proceed-
ings of the 1st ACM Symposium on Cloud Computing
(SoCC) (2010).

[43] XU, E., ZHENG, M., QIN, F., WU, J., AND XU,
Y. Understanding SSD reliability in large-scale cloud
systems. In Proceedings of the 3rd IEEE/ACM Inter-
national Workshop on Parallel Data Storage & Data
Intensive Scalable Computing Systems (PDSW-DISCS)
(2018).

[44] ZHENG, M., TUCEK, J., QIN, F., AND LILLIBRIDGE,
M. Understanding the robustness of ssds under power
fault. In Proceedings of the 11th USENIX Conference
on File and Storage Technologies (FAST) (2013).

[45] ZHENG, M., TUCEK, J., QIN, F., LILLIBRIDGE, M.,
ZHAO, B. W., AND YANG, E. S. Reliability analysis
of ssds under power fault. ACM Transactions on Com-
puter Systems (TOCS) 34, 4 (2017), 10:1–10:28.

USENIX Association 2019 USENIX Annual Technical Conference 975

Who’s Afraid of Uncorrectable Bit Errors?
Online Recovery of Flash Errors with Distributed Redundancy

Amy Tai
Princeton University and

VMware Research

Andrew Kryczka
Facebook Inc.

Shobhit O. Kanaujia
Facebook Inc.

Kyle Jamieson
Princeton University

Michael J. Freedman
Princeton University

Asaf Cidon
Columbia University

Abstract
Due to its high performance and decreasing cost per bit, flash
storage is the main storage medium in datacenters for hot data.
However, flash endurance is a perpetual problem, and due to
technology trends, subsequent generations of flash devices
exhibit progressively shorter lifetimes before they experience
uncorrectable bit errors. In this paper, we present an approach
for addressing the flash lifetime problem by allowing devices
to operate at much higher bit error rates. We present DIRECT,
a set of techniques that harnesses distributed-level redundancy
to enable the adoption of new generations of denser and less
reliable flash storage technologies. DIRECT does so by us-
ing an end-to-end approach to increase the reliability of dis-
tributed storage systems.

We implemented DIRECT on two real-world storage sys-
tems: ZippyDB, a distributed key-value store in production
at Facebook that is backed by and supports transactions on
top of RocksDB, and HDFS, a distributed file system. When
tested on production traces at Facebook, DIRECT reduces
application-visible error rates in ZippyDB by more than 100⇥
and recovery time by more than 10,000⇥. DIRECT also al-
lows HDFS to tolerate a 10,000–100,000⇥ higher bit error
rate without experiencing application-visible errors. By sig-
nificantly increasing the availability of distributed storage
systems in the face of bit errors, DIRECT helps extend flash
lifetimes.

1 Introduction
Flash has become the dominant storage medium for hot data in
datacenters [64, 72], since it offers significantly lower latency
and higher throughput than hard disks. Many storage sys-
tems are built atop flash, including databases [6, 11, 15, 44],
caches [5, 36, 57, 58, 78], and file systems [48, 67].

However, a perennial problem of flash is its limited en-
durance, or how long it can reliably correct raw bit errors.
As device writes are the main contributor to flash wear, its
lifetime is measured in the number of writes or program-erase
(P/E) cycles the device can tolerate before exceeding an un-
correctable bit error threshold. Uncorrectable bit errors are

errors that are exposed externally and occur when there are
too many raw bit errors for the device to correct.

In hyper-scale datacenters, operators constantly seek to re-
duce flash wear by limiting flash writes [21, 64]. At Facebook,
for example, a dedicated team monitors application writes to
ensure they do not prematurely exceed manufacturer-defined
device lifetimes. Even worse, each subsequent flash gener-
ation tolerates a smaller number of writes before reaching
end-of-life (see Figure 1a) [42]. Further, given the scaling
challenges of DRAM [49, 56] and the increasing cost gap
between DRAM and flash [2, 37, 38], many operators are
migrating services from DRAM to flash [7, 37], increasing
the pressure on flash lifetime.

There is a variety of work that attempts to extend flash
lifetime by delaying the onset of bit errors [6, 12, 30, 36,
47, 59, 61, 62, 63, 77, 82, 83]. This paper takes a contrarian
approach. We observe that flash endurance can be extended by
allowing devices to go beyond their advertised uncorrectable
bit error rate (UBER) and embracing the use of flash disks
that exhibit much higher error rates; Google recently released
a whitepaper suggesting a similar approach [28]. We can do
so without sacrificing durability because datacenter storage
systems replicate data on remote servers, and this redundancy
can correct bit error rates orders of magnitude beyond the
hardware error correction mechanisms implemented on the
device. However, the challenge with higher flash error rates
is maintaining availability and correctness.

We introduce Distributed error Isolation and RECovery
Techniques (DIRECT), which is a set of three simple general-
purpose techniques that, when implemented, enable dis-
tributed storage systems to achieve high availability and cor-
rectness in the face of uncorrectable bit errors:

1. Minimize data error amplification. DIRECT detects
errors using existing error detection mechanisms (e.g.,
checksums) and recovers data from remote servers at the
smallest possible granularity.

2. Minimize metadata error amplification. A corruption
in local metadata (e.g., database index), often requires a
large amount of data to be re-replicated. DIRECT avoids

USENIX Association 2019 USENIX Annual Technical Conference 977

●

●
●

●
●Usable in

 any workload Limited Read−only1
10

100
1,000

10,000
100,000

1,000,000
10,000,000

SLC
(1 bits/cell)

MLC
(2 bits/cell)

TLC
(3 bits/cell)

QLC
(4 bits/cell)

Future
generation

Flash Technology

P/
E

C
yc

le
s

Existing P/E Cycle Limit

(a) Existing hardware-based error correction.

●

●
●

●
●

Usable in
 any workload Limited1

10
100

1,000
10,000

100,000
1,000,000

10,000,000

SLC
(1 bits/cell)

MLC
(2 bits/cell)

TLC
(3 bits/cell)

QLC
(4 bits/cell)

Future
generation

Flash Technology

P/
E

C
yc

le
s

P/E Cycle Limit with DIRECT

(b) Augmenting existing error correction with DIRECT.
Figure 1: For each generation of flash bit density, the average number of P/E cycles after which the uncorrectable bit error rate falls below
the manufacturer specified level (10�15). Beyond MLC, the number of flash writes the application can issue is limited [29]. With current
hardware-based error correction, QLC technology and beyond can only be used for applications that are effectively read-only [8, 22, 76].
DIRECT enables the adoption of denser flash technologies by handling errors in the distributed storage application. We use the model from §3
to compute the UBER tolerated by DIRECT, while the UBER to P/E conversion was derived from data in a Google study [72].

this by adding redundancy locally to local metadata.
3. Ensure safe recovery semantics by treating recovery

operations as write operations. DIRECT serializes re-
covery operations on corrupted data against concurrent
operations with respect to the system’s consistency guar-
antees.

The difficulty of implementing DIRECT depends on two
properties of the underlying storage system. The first property
is whether the system is physically or logically replicated.
Physically-replicated systems replicate data blocks between
servers, while logically-replicated systems replicate the com-
mands (e.g., write, update, delete). In physically-replicated
systems, a certain object is stored in the same block or file
on another server and therefore can be recovered efficiently
by simply re-replicating the remote data block. This does
not work for logically-replicated systems, where physical
blocks are not identical across replicas. The second prop-
erty is whether the data store supports versioning. In systems
with versioning, we need to guarantee the recovered object
does not override a more up-to-date version.

We demonstrate how to generalize DIRECT techniques
by implementing them in two popular systems that are rep-
resentative of two different classes of storage systems: (1)
the Hadoop Distributed File System (HDFS), which is a
physically-replicated storage system without versioning, and
(2) ZippyDB, a distributed system that implements logical
replication and transactions on top of RocksDB, a popular
key-value store that supports key versioning. Objects in HDFS
are physically-replicated, so it is straightforward for DIRECT
to find the corrupt object in another replica and recover it
at a high granularity (§4.1). On the other hand, recovery is
challenging in ZippyDB since the corrupted region of one
replica is stored in a different location on another replica,
so the recovered key-value pairs might not have consistent
versions ZippyDB (§4.2).

DIRECT Limitations and Lessons Learned. We chose
to implement DIRECT by retrofitting existing datacenter stor-
age applications, rather than as a general-purpose application
library. The latter design would be particularly challenging

since DIRECT depends on application-specific details such as
file layout and recovery semantics. Note that the storage sys-
tems we retrofitted (HDFS and RocksDB) and their relatives
serve as the base layer for many storage services and databases
(e.g., MyRocks, Ozone, HBase, Cassandra). Furthermore, we
learned that to implement the first and third DIRECT tech-
niques, storage systems must have a key requirement: we
must be able to infer logical objects from the physical loca-
tion (on the application’s file format) of the bit error. In §6 we
discuss PostgreSQL, which does not satisfy this requirement,
and therefore is difficult to retrofit with DIRECT.

DIRECT leads to significant increases in device life-
time, since systems can maintain the same probability of
application-visible errors (durability) at much higher device
UBERs. In Figure 1b, we estimate the number of P/E cy-
cles gained with DIRECT using an empirical UBER vs P/E
cycle comparisons in a Google study [72]. Depending on
workload parameters and hardware specifications, DIRECT
can increase the lifetime of devices by 10-100⇥. This allows
datacenter operators to replace flash devices less often and
adopt lower cost-per-bit flash technologies that have lower
endurance. DIRECT also provides the opportunity to rethink
the design of existing flash-based storage systems, by remov-
ing the assumption that the device fixes all corruption errors.
Furthermore, while this paper focuses on flash, DIRECT’s
principles also apply in other storage mediums, including
NVM, hard disks, and DRAM.

In summary, this paper makes several contributions:
1. We observe flash lifetime can be extended by allowing

devices to operate at much higher bit error rates.
2. We propose DIRECT, general software techniques that

enable storage systems to maintain performance and
high availabily despite high hardware bit error rates.

3. We design and implement DIRECT in two storage sys-
tems, HDFS and ZippyDB, that are representative of
physical and logical replication, respectively. Applying
DIRECT results in significant end-to-end availability im-
provements: it enables HDFS to tolerate bit error rates
that are 10,000⇥-100,000⇥ greater, reduces application-

978 2019 USENIX Annual Technical Conference USENIX Association

visible error rates in ZippyDB by more than 100⇥, and
speeds up recovery time in ZippyDB by 10,000⇥.

2 Motivation
What Limits Flash Endurance? Flash chips are composed
of memory cells, each of which stores an analog voltage value.
The flash controller reads the value stored in a certain memory
cell by sensing the voltage level of the cell and applying quan-
tization to determine the discrete value in bits. The more bits
stored in a cell, the narrower the voltage range that maps to
each discrete bit, so more precise voltage sensing is required
to get a correct read. A primary way to reduce cost per bit is
to increase the number of bits per cell, which means that even
small voltage perturbations can result in a misread.

Multiple factors cause voltage drift in a flash cell. The
dominant source, especially in datacenter settings where most
data is “hot,” is the program-erase (P/E) cycle, which involves
applying a large high voltage to the cell in order to drain its
stored charge, thus wearing the insulating layer in the flash
cell [30]. This increases the voltage drift of subsequent values
in the cell, which gradually leads to bit errors.

3D NAND is a recent technology that has been adopted for
further increasing flash density by stacking cells vertically.
While 3D NAND relaxes physical limitations of 2D NAND
(traditional flash) by enabling vertical stacking, 3D NAND
inherits the reliability problems of 2D NAND and further
exacerbates them, since a cell in 3D NAND has more adjacent
(vertical) neighbors. For example, voltage retention is worse,
because voltage can now leak in three dimensions [54, 63, 65].
Similarly, disturb errors that occur when adjacent cells are
read or programmed are also exacerbated [50, 75].
Existing Hardware Reliability Mechanisms and Limita-
tions. To correct bit errors, flash devices use error correcting
codes (ECC), which are implemented in hardware. After the
ECC pass, there could still be incorrect bits on the page. To
address this, SSDs also employ internal RAID across the dies
of a flash device [16, 19]. After applying coding and RAID
within the device, there will remain a certain rate of uncor-
rectable bit errors (UBER). Together, ECC and internal RAID
mechanisms can drive the error rates of SSDs from the raw bit
error rate of around 10�6 down to the 10�17 to 10�20 UBER
range typical of enterprise SSDs [14]. “Commodity” SSD
devices typically guarantee an UBER of 10�15.

While it is possible to create stronger ECC engines, the
higher the corrective power of the ECC, the more costly the
device [4, 10]. Furthermore, the level of internal RAID strip-
ing is constant across generations, because the number of dies
inside a flash device remains constant. This means that the
corrective power of RAID is fixed.

Similarly, while RAID across devices [53, 69, 74] can add
redundancy, a main design goal of DIRECT is to avoid adding
unnecessary overhead. We avoid turning to RAID because it
is inflexible since its recovery power is fixed at deployment
time, and, more importantly, it imposes storage and write

unreliable flash

hardened file system
(e.g., ZFS)

local data store
. . .

Distributed Coordination / Replication Layer

unreliable flash

hardened file system
(e.g., ZFS)

local data store

unreliable flash

hardened file system
(e.g., ZFS)

local data store

DIRECT

Figure 2: DIRECT fixes errors in the local data store, sometimes
requiring interaction with the distributed coordination layer.

overheads, in particular generating additional flash writes that
further reduce endurance.
Implications of Limited Flash Endurance. Flash technol-
ogy has already reached the point where its endurance is
inhibiting adoption and operation in various datacenter use
cases. For example, QLC was recently introduced as the next
generation flash cell technology. However, in the worst case,
it can only tolerate ⇠150 P/E cycles [8, 22, 76], so it can
only be used for read-heavy use cases, e.g., a 2 TB QLC drive
with a lifetime of 150 P/E cycles can only write at a rate of
2 MB/s or less in order to preserve its advertised lifetime of 5
years. In the best case, some QLC devices can tolerate ⇠1000
P/E cycles for completely sequential write workloads, due to
an internal SLC cache [8]. But since datacenter applications
like databases and analytics that deal with hot data typically
need to update objects frequently, the adoption of QLC has
been more limited and is the reason that Facebook has avoided
QLC flash. Subsequent cell technology generations will suffer
from even greater problems.

Operational issues also often dictate a device’s usage life-
time. Flash is typically only used for its advertised lifetime
to simplify operational complexity [72]. Further, in a hyper-
scale datacenter where it is common to source devices from
multiple vendors, the most conservative estimate of device
lifetime across vendors is typically chosen as the lifetime for
a fleet of flash devices, so that the entire fleet can be installed
and removed together. If the distributed storage layer could
tolerate much higher device error rates, then datacenter opera-
tors would no longer have to make conservative and wasteful
estimates about entire fleets of flash devices.

Finally, because of the increase in DRAM prices due to its
scaling challenges and tight supply [2, 38, 49, 56], datacenter
operators are migrating services from DRAM to flash [7,
37]. This means flash will be responsible for many more
workloads, further exacerbating its endurance problem.

3 DIRECT Design
DIRECT is a set of techniques that enables a distributed stor-
age system to maintain high availability and correctness in
the face of high UBER.

We define a distributed storage system as a set of many
local stores coupled with a distributed protocol layer that repli-
cates data and coordinates between the local stores. Figure 2

USENIX Association 2019 USENIX Annual Technical Conference 979

shows an ideal storage stack that runs on unreliable flash
(flash that exposes high UBERs). Note that there is existing
work on how to make local file systems tolerate corruption
errors (we survey these in §6), so our efforts in this paper
focus on hardening the application-level storage system.

We observe that redundancy already exists in distributed
storage systems in the form of distributed replication [27, 32,
40], which maintains multiple remote copies of each piece of
data, or distributed erasure coding [45, 71, 80], which main-
tains remote parity bits for each piece of data. However, many
systems do not systematically use this redundancy to recover
individual bit errors [39], even though it can significantly
boost resilience to bit errors. We focus on using distributed
replicas to correct bit errors, but the DIRECT principles pre-
sented in the paper also apply to systems that use erasure
coding; for example, error amplification — the number of
bits required to recover an error — can be reduced in erasure
coding schemes by reducing the size of a stripe.
Distributed Redundancy. Consider the following example
of a physically replicated storage system, such as HDFS. Sup-
pose the minimum unit of recovery is a data block1, which is
replicated in each of three data stores. If the block has size
B, and the uncorrectable bit error rate (UBER) is E, then the
expected number of errors in the block will be B ·E. Since the
block is replicated across R different servers, the only way that
the storage system would encounter an application-observable
read error is when at least one error exists in every copy of
the block. Therefore, the probability of an application-level
read error can be expressed as:

P[error] = (1� (1�E)B)R ⇡ (B ·E)R

where we assume B ·E << 1 and use a Taylor series approxi-
mation.

Then, for an UBER of E = 10�15, a block size of B =
128 MB (typical of distributed file systems), and a replication
factor of R = 3, the probability of a read error is 10�18 (files
are measured in bytes, while UBER is in bits).

However, with relatively large blocks, the probability of
encountering at least one error in all block replicas quickly
increases as UBER increases. For example, for an UBER of
E = 10�10, the expected number of errors in a single block
will be B ·E = 0.1 for 128 MB blocks (Table 1). Then in this
case P[error] ⇡ 0.001. We observe that reducing B ·E, by
reducing B, will dramatically reduce the probability of error.
Minimizing Error Amplification of Data Blocks. DI-
RECT captures this intuition with the notion of error am-
plification (B in the previous example), or the number of
bytes required to recover a bit error. DIRECT observes that
the lower the error amplification, the lower the probability
of error and the faster recovery can occur. This similarly
implies a shorter period of time spent in degraded durability

1Note that in HDFS while errors can be detected using checksums at a
smaller granularity than the block size, actual recovery and replication is
conducted at the granularity of a block.

Probability of Application-Observable Error
UBER Block Recovery Chunk Recovery

10�10 1 ·10�3 3 ·10�10

10�15 1 ·10�18 1 ·10�28

Table 1: Probability of application-observable error comparing
block-by-block recovery to chunk-by-chunk recovery, with an UBER
of 10�10, and 10�15. Finer granularity recovery provides signifi-
cantly higher protection against corruptions.

.

X X
.

X X

DataNode A DataNode B DataNode C

10111010
01010010

10101010
01010110

10111010
11010110

Majority voting

10111010
01010110

.

. . .
Figure 3: Even if the same chunk is corrupted on all replicas, bit-
by-bit majority voting can reconstruct the correct chunk, by taking
the majority vote of each bit across all chunks.

and thus higher availability.
In the example above, suppose the system can recover data

at a finer granularity, for example, at chunk size C = 64 KB.
Then a read error would occur if all three replicas of the same
chunk have at least one bit error. The revised probability of
read error becomes:

P[error] = 1� (1� (1� (1�E)C)R)
B
C

Assuming E ·C << 1, Taylor series approximation leads to
(1� (1�E)C)R)⇡ (E ·C)R, and assuming this value is much
smaller than B

C , the probability of an application-observable
error when correcting chunk-by-chunk is:

P[error]⇡ (E ·C)R · B
C

When C = 64 KB and E = 10�10, this probability is 3 ·10�10,
which is much lower than the probability when recovering at
the block level (see Table 1).

We can further reduce B by using bit-by-bit majority voting,
i.e., the recovered value of a bit in the chunk is the majority
vote across the three chunk replicas (Figure 3). Bit-by-bit
majority voting further reduces the application-observable
error beyond chunk-by-chunk recovery, because the only way
an application-observable error would occur is if an error
occurs in the same bit across two chunks or more.

In a physically-replicated system like HDFS, minimiz-
ing error amplification is straightforward because corrupted
blocks (and even bits) can be directly recovered from remote
replicas. For a logically-replicated system like ZippyDB, how-
ever, blocks are not identical across replicas. This makes min-
imizing error amplification more challenging, since DIRECT
cannot simply recover from a remote physical chunk. For ex-
ample, bit-by-bit majority voting is not possible in ZippyDB,
because the replicas do not store the same physical bits. For
such systems, DIRECT must instead first isolate the region
where the error might have occurred and then retrieve objects
one-by-one from the other servers (see §4.2).

980 2019 USENIX Annual Technical Conference USENIX Association

Minimizing Metadata Error Amplification. Error ampli-
fication can be even more severe if the error occurs in local
metadata. For example, a corrupt index in a key-value store
can prevent a data store from starting up, which can mean re-
replication of hundreds of GBs of data. Thus even though the
likelihood of errors in metadata is lower than in data blocks
(metadata typically takes up less space than data), it still re-
quires protection. Hence DIRECT either locally duplicates
metadata or applies local software error correction.
Safe Recovery Semantics. DIRECT must also ensure re-
covery operations preserve the correctness of the distributed
storage system, which might be dealing with concurrent write
and read operations.

This is relatively straightforward in systems that do not sup-
port versioning or transactions, such as HDFS, since an object
is up-to-date as soon as it is recovered from a remote replica.
Systems like RocksDB which support versioning are more
challenging, because if the system re-writes an object from a
remote replica, recovery might overwrite a newer version with
a stale version. In particular, the versions of the corrupted key-
value pairs are not known, because (a) the corruption prevents
the data from being read and (b) due to logical replication, the
data’s location does not provide information on its version.
Hence to correctly recover corrupted key-value pairs, the sys-
tem must locate some consistent (up-to-date) version of each
pair. To do this, DIRECT forces recovery operations to go
through a fault-tolerant log (for ZippyDB we use its existing
Paxos log), which can provide correct ordering (§4.2.3).

DIRECT Techniques. To summarize, DIRECT includes
the following techniques.

1. Systems must reduce error amplification of data objects
and fix corruptions from remote replicas.

2. Systems must reduce local metadata error amplification,
which is much higher than data error amplification.

3. Systems must ensure safe recovery semantics.
Note that the first and second techniques apply exclusively

to the local data store and affect performance, while the third
technique may require that the local data store interact with
the distributed coordination layer to ensure correctness.

4 Implementing DIRECT
To demonstrate the use of the DIRECT approach, we inte-
grate it into two systems: HDFS, a popular distributed file
system, and ZippyDB, a distributed key-value store backed
by RocksDB. The techniques used to implement DIRECT
in HDFS can be applied to other physically replicated sys-
tems, such as GFS [40], Windows Azure Storage [31], and
RAMCloud [66], which write objects into large immutable
blocks that are replicated across several servers. Similarly,
the techniques used to implement DIRECT in ZippyDB and
RocksDB can be applied to other logically replicated systems,
such as Cassandra [79], MongoDB [9], and CockroachDB [1].
In these systems a distributed coordination layer manages
the replication of objects across different servers and uses

versioning to execute transactions.

4.1 HDFS-DIRECT
4.1.1 HDFS Overview.
HDFS is a distributed file system that is designed for storing
large files that are sequentially written and read. Files are
divided into 128MB blocks, and HDFS replicates and reads
at the block level.

There are three types of HDFS servers: NameNode, Jour-
nalNode, and DataNode. The NameNode and JournalNodes
store cluster metadata by running a protocol similar to Multi-
Paxos; we note that this protocol can tolerate bit errors by
writing an additional entry per Paxos entry (for more infor-
mation, see PAR [20]). DataNodes (the local data stores in
Figure 2) store HDFS data blocks, and they respond to client
requests to read blocks. If a client encounters errors while
reading a block, it will continue trying other DataNodes from
the offset of the error until it can read the entire block. After
an error on a DataNode, the client will not try that node again.
If there are no more DataNodes and the block is not fully read,
the read fails and that block is considered missing.

Additionally, HDFS has a configurable background “block
scanner” that periodically scans data blocks and reports cor-
rupted blocks for re-replication. But the default scan interval
is three weeks, and the scanner still recovers at the 128 MB
block granularity. If there is a bit error in every replica of a
block, then HDFS cannot recover the block.

4.1.2 Implementing DIRECT
Minimizing Error Amplification of Data Blocks. We
leverage the observation that HDFS checksums every 512
bytes in each 128 MB data block. Corruptions thus can be
narrowed down to a 512 byte chunk; verifying checksums
adds no overhead, because by default HDFS will verify check-
sums during every block read. For streaming performance, the
smallest-size buffer that is streamed during a data block read
is 64 KB, so we actually repair 64 KB everytime there is a
corruption. To mask corruption errors from clients, we repair
a data block synchronously during a read. Under DIRECT,
the full read (and recovery) protocol is the following.

Each 128 MB block in HDFS is replicated on three DataN-
odes, call them A,B,C. An HDFS read of a 128 MB block is
routed to one of these DataNodes, say A. A will stream the
block to the client in 64 KB chunks, verifying checksums be-
fore it sends a chunk. If there is a checksum error in a 64 KB
chunk, then A will attempt to repair the chunk by requesting
the 64 KB chunk from B. If the chunk sent by B also contains
a corruption, then A will request the chunk from C.

If C also sends a corrupted chunk, then A will attempt to
construct a correct version of the chunk through bit-by-bit ma-
jority voting: the value of the bit in the chunk is the majority
vote across the three versions provided by A, B, and C. After
reconstructing the chunk via majority voting (Figure 3), A will
verify the checksums again; if the checksums fail, then the

USENIX Association 2019 USENIX Annual Technical Conference 981

read fails. Majority voting allows HDFS-DIRECT to tolerate
on the order of 104 �105 times more bit errors than HDFS.
In fact, as we show in Section 5.1, UBERs can be as high
as 10�5 before majority voting failures are detectable in our
experimental framework
Safe Recovery Semantics. Safety is straightforward in
HDFS because data blocks are immutable once written, so
there are never updates that will conflict with chunk recovery.
Before a client does a block read, it first contacts the Name-
Node to get the DataNode IDs of all the DataNodes on which
the block is replicated. In HDFS-DIRECT, when a client
sends a block read request to a DataNode, it also sends this
set of IDs. Because blocks are immutable and do not contain
versions, these IDs are guaranteed to be correct replicas of the
block, if they exist. It could be that a concurrent operation has
deleted the block. In this case, if chunk recovery cannot find
the block on another DataNode because it has been deleted,
then it cannot perform recovery, so it will return the original
checksum error to the client. This is correct, because there is
no guarantee in HDFS that concurrent read operations should
see the instantaneous deletion of a block.
Minimizing Metadata Error Amplification. Each server
in HDFS has local metadata files that must be correct, oth-
erwise it cannot start. These files include a VERSION file,
as well as special files on the NameNode and JournalNode.
Metadata files are not protected in HDFS, thus a single cor-
ruption will prevent the server from starting. DIRECT adds a
standard CRC32 checksum at the beginning of each file and
replicates the file twice so that there are three copies of the
file on disk.

4.2 ZippyDB-DIRECT
4.2.1 ZippyDB Overview

We also implemented DIRECT on a logically replicated sys-
tem, ZippyDB, a distributed key-value store used within Face-
book that is backed by RocksDB (i.e., RocksDB is the local
data store in Figure 2), which is a versioned key-value store.

ZippyDB runs on tens of thousands of flash-provisioned
servers at Facebook, which makes it an ideal target for DI-
RECT. ZippyDB provides a replication layer on top of
RocksDB. ZippyDB is logically separated into shards, and
each shard is fully replicated at least three ways. Each shard
has a primary replica as well as a number of secondary repli-
cas, wherein each replica is backed by a separate RocksDB in-
stance residing on some server. Each ZippyDB server contains
hundreds of shards, including both primary and secondary
replicas. Hence, each ZippyDB server actually contains a
large number of separate RocksDB instances.

ZippyDB runs a Paxos-based protocol for shard operations
to ensure consistency. The primary shard acts as the leader for
the Paxos entry, and each shard also has a Paxos log to persist
each Paxos entry. Writes are considered durable when they
are committed by a quorum of shards, and write operations are

Data	
block	1	 .	 .	 .	

Data	
block	N	

Metadata	
block	1	

Metadata	
block	2	 .	 .	 .	 Index	

block	

.	 .	 .	 Footer	

Figure 4: RocksDB SST file format. Index block entries point to
keys within data blocks. Therefore, consecutive index entries form
a key range. DIRECT modifies this file format by writing each
metadata block at least twice in-line.

applied to the local RocksDB store in the order that they are
committed. A separate service is responsible for monitoring
the primary and triggering Paxos role changes.

4.2.2 RocksDB Overview

RocksDB is a local key-value store based on a log-structured
merge (LSM) tree [68]. RocksDB batches writes in-memory—
each write receives a sequence number that enables key
versioning—and flushes them into immutable files of sorted
key-value pairs called sorted string table (SST) files. SST files
are composed of individually checksummed blocks, each of
which can be a data block or a metadata block. The metadata
blocks include index blocks whose entries point to the keys
at the start of each data block (see Figure 4) [13].

SST files are organized into levels. A key feature of
RocksDB and other LSM tree-backed stores is background
compaction, which periodically scans SST files and compacts
them into lower levels, as well as performs garbage collection
on deleted and overwritten keys.

4.2.3 Implementing DIRECT

ZippyDB has high error amplification since a single bit error
can cause migration of terabytes of data: if a compaction
encounters a corruption, an entire server, which typically has
hundreds of gigabytes to terabytes of data, will shutdown
and attempt to drain its RocksDB shards to another machine.
Meanwhile, this sudden crash causes spikes in error rates
and increases the load on other replicas while the server is
recovering. To make matters worse, the new server could
reside in a separate region, further delaying time to recovery.

Minimizing Error Amplification of Data Blocks. We ob-
serve that checksums in RocksDB are applied at the data
block level, so a data block is the smallest recovery granu-
larity. Data blocks are lists of key-value pairs, and key-value
pairs are replicated at the ZippyDB layer. A corrupted data
block can be recovered by fetching the pairs in the data block
from another replica. However, this is challenging for two
reasons.

First, compactions are non-deterministic in RocksDB and
depend on a variety of factors, such as available disk space
and how compaction threads are scheduled. Hence, two repli-
cas of the same RocksDB instance will have different SST
files, making it impossible to find an exact replica of the cor-
rupted SST file and the corrupted data block, unlike in HDFS.
Second, because the block is corrupted, it is impossible to
know the exact key-value pairs that were stored in that block.

982 2019 USENIX Annual Technical Conference USENIX Association

Patch
request

t

. . .
Write1
Write2

.

.

WriteN

Write1
Write2

.

.

WriteN

Write1
Write2

.

.

WriteN

. . .

Figure 5: To serialize a patch properly, we add it as a request in the
Paxos log. If the patch request is serialized at point t, then it must
reflect all entries t 0 < t (shaded). Furthermore, the patch request is
not batched with any writes to ensure atomicity.

Therefore, not only do we not know what data to look for on
the other replica, we also don’t know where to find it.

Instead of repairing the exact keys that are lost, we rewrite
a larger key range that covers the keys in the corrupted block.
The key range is determined from index blocks, which are a
type of metadata block in SST files that has an entry for the
first key of each data block (Figure 4). Hence, consecutive
index block entries form a key range which is guaranteed to
contain the lost keys. Note that relying on these index entries
requires that the index block, a metadata block, be error-free.
See below for how we ensure the index block is uncorrupted.

Unfortunately, just knowing the key range is not enough:
the existence of key versions in RocksDB and quorum repli-
cation in ZippyDB compounds the problem. In particular,
a key must be recovered to a version greater than or equal
to the lost key version, which could mean deleting it as key
versions in RocksDB can be deletion markers. Additionally,
if we naïvely fetch key versions from another replica, we may
violate consistency.

Safe Recovery Semantics. To guide our recovery design,
we introduce the following correctness requirement. Suppose
we learn from the index entries that we must re-replicate key
range [a,b]. This key range is requested from another replica,
which assembles a set of fresh key-value pairs in [a,b], which
we call a patch.

Safety Requirement: Immediately after patch insertion,
the database must be in a state that reflects some prefix of the
Paxos log. Furthermore, this prefix must include the Paxos
entries that originally updated the corrupted data block.

In other words, patch insertion must bring ZippyDB to
some consistent state after the versions of the corrupted keys;
otherwise, if the patch inserts prior versions of the keys, then
the database will appear to go backwards.

Because the Paxos log serializes updates to ZippyDB, the
cleanest way to find a prefix to recover up to is to serialize the
patch insertion via the Paxos log. Then if patch insertion gets
serialized as entry t in the log, the log prefix the patch must
reflect is all Paxos entries t 0 < t, as shown in Figure 5. Serial-
izing a patch at index t tells us exactly how to populate the
patch. In particular, each key in the patch must be recovered
to the largest entry s < t such that s is the index of a Paxos
entry that updates that key.

Furthermore, patch insertion must be atomic. Otherwise, it
could be interleaved with updates to keys in the patch, which
would violate the safety requirement, because then the version

X
RocksDB
ZippyDB

(1)

RocksDB
ZippyDB

Corrupted
key range

(2)

Secondary Primary

(3)
Patch

request

(4)

RocksDB
ZippyDB

Secondary

(4)

patch(6)

(5)

patch
patch

(5)

Patch
request

Patch
request

Figure 6: The process of recovering a corrupted RocksDB data
block: (1) RocksDB compaction iterator determines the corrupted
key range(s) based on the index blocks of the SST files and reports
it to ZippyDB. (2) ZippyDB reports this error to the primary of
that replica. (3) Primary shard adds patch request to Paxos log. (4)
Paxos engine replicates the request to all replicas. (5) Each replica
tries to process the patch request. If the processing shard is not the
corrupted shard (which it knows because the patch request contains
the shard ID of the corrupted shard), then it prepares a patch from
its local RocksDB state and sends it to the corrupted shard. If the
processing shard is the corrupted shard, then it waits for a patch from
any replica. (6) Corrupted shard applies the fresh patch to its local
RocksDB store.

of the key in the patch would not reflect a prefix of t. This
is actually a subtle point because ZippyDB batches many
writes into a single Paxos entry, as shown in Figure 5. If patch
insertion is batched with other writes, then the patch will not
reflect the writes that are in front of it in the batch. Hence, we
force the patch insertion to be its own Paxos entry.
Minimizing Metadata Error Amplification. There are
two flavors of metadata in RocksDB: metadata files and meta-
data blocks in SST files. Metadata files are only read during
startup and then cached in memory. We can easily protect
them with local replication, which adds a minimal space over-
head (on the order of kilobytes per server). We protect meta-
data blocks by writing them several times in-line in the same
SST file. In our implementation, we write each metadata block
twice2. Protecting metadata enables us to isolate errors to a
single data block, rather than invalidating an entire SST file.

As with the HDFS JournalNode, we can protect against
errors in the ZippyDB Paxos log with an additional entry [20].

4.2.4 DIRECT Recovery in ZippyDB
ZippyDB-DIRECT triggers a recovery procedure when
RocksDB encounters a corruption error during compaction.
For user reads, ZippyDB does not synchronously recover cor-
rupted blocks, unlike in HDFS. Instead, it returns the error
to the client, which will retry on a different replica, and Zip-
pyDB will then trigger a manual compaction involving the
file of the corrupted data block.

Figure 6 depicts this process. Importantly, we do not re-
lease a compaction’s output files until the recovery procedure

2For increased protection, metadata blocks can be locally replicated more
than twice or protected with software error correction.

USENIX Association 2019 USENIX Annual Technical Conference 983

finishes; otherwise, stale key versions may reappear in the key
ranges still undergoing recovery. Fortunately, because com-
paction is a background process, we can wait for recovery
without affecting client operations.

Step (1) is implemented entirely within RocksDB. A
RocksDB compaction iterator will record corrupted key
ranges as they are encountered and withhold them from ap-
pearing in the compaction’s result. At the end of the iterator’s
lifetime, ZippyDB is notified about the corrupted key range.
Note that the compaction may encounter multiple corrupt key
ranges, which are batched into a single patch request.

In step (2), the patch is reported to the primary. Step (3)
must go through the primary because the primary is the only
shard that can propose entries to the Paxos log. Note this
does not mean primaries cannot recover from corrupted data
blocks. The patch request in the Paxos log is simply a no-op
that reserves a point of reference for the recovery procedure
and includes information necessary for recovery, such as the
corrupted key ranges and the ID of the corrupted shard. Any
replica that encounters the patch request in the log is by defi-
nition up-to-date to that point in the Paxos log, which means
any replica that isn’t the corrupted replica is eligible to send a
patch to the corrupted replica. In step (4), ZippyDB waits for
the Paxos log to replicate the Paxos entry as well as for other
replicas to consume the log until they encounter the patch
request.

In step (5), an uncorrupted replica assembles a patch on the
specified key range(s) with a RocksDB iterator. To do this, the
uncorrupted replica opens a range scan iterator on each key
range. Note that this replica might encounter a bit corruption
while assembling the patch. In practice the probability of this
is small because the number of keys covered by the patch is on
the order of kilobytes (§5.2), and any scans to find such keys
would predominantly look through metadata blocks, such
as bloom filter or index blocks. However, if a replica does
encounter a corruption while assembling a patch, it simply
does not send a patch. Therefore, for the patch request to
fail, both (or more, if the replication factor is more than 3)
uncorrupted replicas will have to encounter a bit corruption,
and this probability is low.

Step (6) is also implemented at the RocksDB level. When
a replica applies a patch, simply inserting all the key-value
pairs present in the patch is insufficient because of deleted
keys. In particular, any key present in the requested key range
and not present in the patch is an implicit delete. Therefore, to
apply a patch, the corrupted shard must also delete any keys
that it can see that aren’t present in the patch. This case is pos-
sible because RocksDB deletes keys by inserting a tombstone
value inline in SST files, but such a tombstone might have
already been compacted away on the replica providing the
patch. Hence the corrupted data block may contain tombstone
operators that delete a key, and these must be preserved.

4.2.5 Transactions and Invalidating Snapshots
ZippyDB uses RocksDB snapshots to execute transactions.
RocksDB snapshots are represented by a sequence number, s.
Then, for as long as the snapshot s is active, RocksDB will
not compact any version, s0, of a key where s0 is the greatest
version of the key such that s0 < s. If RocksDB invalidates a
snapshot, then the ZippyDB transaction using that snapshot
will abort and retry.

A subtle side-effect of a corrupted data block is snapshot
corruption. For example, suppose the RocksDB store has
a snapshot at sequence number 100 and the corrupted data
block contains a key with sequence number 90. Because the
data block is corrupted, it cannot be read, so we do not know
whether the corruption affects snapshot 100. Then for safety,
we need to invalidate all local snapshots, because any of them
could have been affected by the corrupted key range. In prac-
tice, this is reasonable because most ZippyDB transactions
(and hence RocksDB snapshots) have short lifetimes.

More generally, any transactional system that relies on ver-
sioning (e.g., MyRocks that is built on RocksDB), through
either optimistic concurrency control or multi-version concur-
rency control (MVCC) can similarly deal with corruptions by
aborting ongoing transactions.

4.3 Cascading Errors
In both HDFS-DIRECT and ZippyDB-DIRECT, the system
will visit multiple replicas if necessary to resolve a bit error.
However, currently DIRECT ignores and does not try to fix
any cascading errors encountered during this process. For
example, if a replica tries to assemble a patch in ZippyDB-
DIRECT and fails because the iterator encounters a corrup-
tion, the replica will simply cleanup, ignore the patch request,
and move to executing the next request in the Paxos log. We
ignore cascading errors for simplicity but can easily incorpo-
rate recovery of cascaded errors in the future.

5 Evaluation
This section evaluates DIRECT by answering the follow-
ing questions: (1) By how much does DIRECT decrease
application-level errors in both HDFS and ZippyDB? In
HDFS, how far can DIRECT drive UBER while avoiding
application-level errors? (2) How much does DIRECT de-
crease time to recovery from corruption errors in ZippyDB?

Note we do not measure recovery time in HDFS because
DIRECT handles bit errors synchronously, which means read
errors only propagate to the application level if DIRECT can-
not fix them. Therefore, “recovery time” can be measured
by its effect on read latency. On the other hand, in ZippyDB,
DIRECT handles bit errors asynchronously because recov-
ery procedures must go through the coordination layer, as
described in Section 4.2.
Experimental Setup. To evaluate ZippyDB, we set up a
cluster of 60 Facebook servers that capture and duplicate
live traffic from a heavily loaded service used in computing

984 2019 USENIX Annual Technical Conference USENIX Association

1e−14
1e−12
1e−10

1e−8
1e−6
1e−4
1e−2

1

1e−14 1e−12 1e−10 1e−8 1e−6 1e−4
UBER

R
ea

d
Er

ro
r R

at
es

HDFS (analyzed)
HDFS (measured)
HDFS−DIRECT Chunk (analyzed)
HDFS−DIRECT Chunk (measured)
HDFS−DIRECT Majority (analyzed)
HDFS−DIRECT Majority (measured)

Figure 7: Read error rate for HDFS with varying UBER. HDFS-
DIRECT Chunk is based on chunk-by-chunk recovery, while HDFS-
DIRECT Majority is computed on bit-by-bit majority. The analyzed
data is computed using the formulas in §3.

user feeds. To evaluate HDFS, we set up an HDFS cluster on
machines with 8 ARMv8 cores at 2.4 GHz, 64 GB of RAM,
and 120 GB of flash. The cluster has three DataNode ma-
chines, and four machines act as HDFS clients. The machines
are connected with 10Gb links. HDFS experiments have a
load and read phase: in the load phase, we load the cluster
with 500, 128MB files with random data. In the read phase,
clients randomly select files to read. After the load phase, we
clear the page cache.

Error Injection. To simulate UBERs, we inject bit errors
into the files of both systems. In ZippyDB, we inject errors
with a custom RocksDB environment that flips bits as they
are read from a file. In HDFS, we run a script in between
the load and read phases that flips bits in on-disk files and
flushes them. For an UBER of µ, e.g. µ = 10�11, we inject
errors at the rate of 1 bit flip per 1/µ bits read. We tested with
UBERs higher than the manufacturer advertised 10�15 to test
the system’s performance under high error rates, and so that
we can measure enough bit errors during an experiment time
of 12 hours rather than several days (or years)3.

Baselines. We compare against unmodified HDFS and Zip-
pyDB, both systems used in production for many years.
Although unmodified HDFS does compute checksums for
chunks, it does not recover at that granularity. HDFS-DIRECT
leverages these checksums during recovery, which allows it
to recover blocks synchronously within client reads. In un-
modified ZippyDB, when a RocksDB instance encounters a
compaction error, the entire ZippyDB server crashes. While
this may seem like an overly aggressive baseline, due to the
difficulty of recovering an individual object in a logically-
replicated system, we did not find an alternative baseline that
was correct and easier to implement. One possible strawman
is to recover the individual RocksDB instance that encoun-
tered a bit error. Even this approach has significant error
amplification (tens of GBs per bit error), and suffers from
high implementation complexity, as ZippyDB has no existing
logic for recovering individual RocksDB instances.

3 Note that an UBER 10�11 is 10,000⇥ higher than 10�15.

UBER HDFS Thruput
[GB/s]

HDFS-DIRECT
Thruput [GB/s]

10�7 0.00±0.00 2.09±0.08
10�8 0.00±0.00 2.56±0.09
10�9 2.46±0.08 2.55±0.07
10�10 2.89±0.10 2.84±0.07
No errors 2.83±0.07 2.88±0.07

Table 2: Throughput of HDFS and HDFS-DIRECT. At UBER of
10�8, HDFS throughput collapses due to bit errors.

0.00
0.25
0.50
0.75
1.00

0 300 600 900
HDFS Read Latency [ms]

noerr
UBER=e−10
UBER=e−9

0.00
0.25
0.50
0.75
1.00

0 300 600 900
HDFS−DIRECT Read Latency [ms]

noerr
UBER=e−10
UBER=e−9
UBER=e−8
UBER=e−7

Figure 8: Read latencies (128 MB) of HDFS and HDFS-DIRECT.
All reads fail in HDFS an UBER of 10�8 and higher. (Note that all
latencies in HDFS-DIRECT are shifted slightly to the left, and this
is due to temporal variations in our shared, experimental testbed.)

5.1 HDFS

UBER Tolerance. The main advantage of HDFS-DIRECT
over HDFS is the ability to tolerate much higher UBERs
with chunk-level recovery and majority voting. Figure 7 re-
ports block read error rates of HDFS with varying UBERs. In
HDFS, read errors are also considered data loss, because the
data is unreadable (and hence unrecoverable) even after trying
all 3 replicas. The figure shows the measured read error on our
HDFS experimental setup, within the UBER range in which
we could effectively measure errors, as well as the computed
read error based on the computation presented in §3. We com-
pared unmodified HDFS, with chunk-by-chunk recovery and
bit-by-bit majority. The experimental read error is collected
by running thousands of file reads and measuring how many
fail. The measured results are relatively close to the analyti-
cal results, and in fact experience even fewer errors than the
analytical model (the measured curves are shifted to the right
of the analytic curves). We believe the primary reason is that
the Taylor’s approximation used in the analytical model does
not hold for high UBERs. As expected, bit-by-bit majority
(green lines) reduces the read error rate even further due to
its lower error amplification (it can recover bit-by-bit). Both
our analysis and the experimental results show that HDFS-
DIRECT can tolerate a 10,000⇥–100,000⇥ higher UBER
and maintain the same read error rate.

USENIX Association 2019 USENIX Annual Technical Conference 985

0
25
50
75

100
125
150
175
200

0 1 2 3 4 5 6 7 8 9 10 11 12
Time [hours]

R
ea

d
Er

ro
rs

pe
r S

ec
on

d
ZippyDB

ZippyDB−DIRECT

UBER = e−10

0
25
50
75

100
125
150
175
200

0 1 2 3 4 5 6 7 8 9 10 11 12
Time [hours]

R
ea

d
Er

ro
rs

pe
r S

ec
on

d

ZippyDB

ZippyDB−DIRECT

UBER = e−11

0
5

10
15
20
25

0 1 2 3 4 5 6 7 8 9 10 11 12
Time [hours]

R
ea

d
Er

ro
rs

pe
r S

ec
on

d

ZippyDB

ZippyDB−DIRECT

UBER = e−12

0
5

10
15
20
25

0 1 2 3 4 5 6 7 8 9 10 11 12
Time [hours]

R
ea

d
Er

ro
rs

pe
r S

ec
on

d

ZippyDB

ZippyDB−DIRECT

UBER = e−13

Figure 9: Read error rates over time in ZippyDB and ZippyDB-DIRECT, under varying UBERs.

UBER Time to Complete Benchmark (s)

10�7 177.4±2.5
10�8 169.4±2.1

No errors 166.2±1.8

Table 3: Time for HDFS-DIRECT to complete TeraSort benchmark.
Note that we do not present results for unmodified HDFS, because
for the UBERs tested, HDFS cannot complete any reads.

Overhead of DIRECT. Because DIRECT corrects bit errors
synchronously in HDFS, error correction poses an overhead
on reads that encounter bit errors. Table 2 shows the through-
put of both systems, measured by saturating the DataNodes
with four, 64-threaded clients that are continuously reading
random files. The throughput of HDFS goes to zero at an
UBER of 10�8, because it cannot complete any reads due
to corruption errors. Such failures do not occur in HDFS-
DIRECT, although its throughput decreases modestly due
to the overhead of synchronously repairing corrupt chunks
during reads.

For HDFS-DIRECT, we are also interested in latency in-
curred by synchronous chunk recovery. We compare the CDF
of read latencies of 128 MB blocks for different UBERs in
Figure 8. The higher the UBER, the more chunk recovery
requests that need to be made during a block read and the
longer these requests will take. The results in Figure 8 (and
Table 2) highlight the fine-grained tradeoff between perfor-
mance and recoverability that is exposed by DIRECT. We also
report HDFS read latencies, but there is little difference across
UBERs because only latency for successful block reads are
included; again, we do not report results for UBERs higher
than 10�8, since at those error rates HDFS cannot successfully
read any blocks.

We also note that the latencies reported are the time it
takes to read an entire 128 MB file, which is composed of
many (64K) chunks. Hence Figure 8 hides a small chunk tail
latency introduced by DIRECT. For example, chunks can now
encounter errors on 0, 1, 2, or 3 of its replicas. Most chunks
will encounter 0 errors, but some may encounter errors on all
3 of its replicas, which will require a relatively costly majority

voting round. However, these disparate chunk latencies are
hidden in the file latency, because all files have almost the
expected number of errors (128 MB·UBER).

Interestingly, these overheads become minimal when we
run an end-to-end benchmark. We ran the TeraSort bench-
mark, a canonical Hadoop benchmark. We configured Tera-
Sort to generate and sort 20 GB of data. Table 3 shows the
time it takes HDFS-DIRECT to complete the TeraSort bench-
mark. Note that at an UBER of 10�8, the time it takes to
complete the benchmark is similar to when there are no er-
rors (in fact, we do not report results for UBERs lower than
10�8 because they are so similar to results when there are no
errors). Even at an UBER of 10�7, the performance overhead
is relatively low, because TeraSort is dominated by sort time
in the mappers and reducers, rather than the time it takes to
read the data into memory. These results suggest that even at
very high UBERs, DIRECT imposes a low recovery overhead
in workloads that are not disk-bound.

5.2 ZippyDB
UBER Tolerance. One main difference between unmodified
ZippyDB and ZippyDB-DIRECT is that ZippyDB-DIRECT
avoids crashing when encountering a bit error. To character-
ize how many server crashes are mitigated with DIRECT, we
measured the average rate of compaction errors per hour per
server, over 12 hours. The results are shown in Table 4. Fig-
ure 9 shows the read error rate over time of both systems, and
Table 4 also shows the number of read errors as a percentage
of all reads. Note that the error rate patterns across UBERs are
different because they are run during different time intervals,
so each UBER experiment sees different traffic. We did try to
ensure read/write QPS and query distribution remain steady
throughout the experiments4.

The error rate is much higher for ZippyDB than ZippyDB-
DIRECT because not only do clients see errors from regular
read operations, but also they experience the spike in errors
when a server shuts down due to a compaction corruption.

4Unfortunately, there is no tracing system set up for ZippyDB, so we
were unable to capture and replay traces for consistency.

986 2019 USENIX Annual Technical Conference USENIX Association

Read Errors Compaction Errors
per Hour per Server

UBER ZippyDB ZippyDB-DIRECT ZippyDB

10�10 2.7308% 0.1865% 0.1991±0.1077
10�11 1.9808% 0.0400% 0.0621±0.0455
10�12 0.2650% 0.0008% 0.0038±0.0035
10�13 0.0108% 0.0002% 0.0003±0.0005

Table 4: Read and compaction errors with ZippyDB and ZippyDB-
DIRECT. The read errors are a percentage of the total number of
reads, and the compaction errors are the number of errors per hour
per server. ZippyDB-DIRECT is able to fix all compaction errors in
our experiment, while the server crashes in ZippyDB.

Time Spent in Reduced Durability. With DIRECT, we also
seek to minimize the amount of time spent in reduced durabil-
ity to decrease the likelihood of simultaneous replica failures.
Figure 10 shows a CDF of the time it takes to recover from
compaction errors in ZippyDB-DIRECT. The graph shows
the amount of time it takes for replicas to process the Paxos
log up until the patch request, as well as the overhead of con-
structing and inserting the patch. With DIRECT, this recovery
time is on the order of milliseconds. In contrast, the period
of reduced durability in unmodified ZippyDB due to a com-
paction error is on the order of minutes, depending on the
amount of data stored in the crashed ZippyDB server. This is
due to the high error amplification of ZippyDB, which inval-
idates 100s of RocksDB shards due to a single compaction
bit error. With DIRECT, ZippyDB can reduce its recovery
time due to a bit error by around 10,000⇥. Even with a more
reasonable baseline that only invalidates the single RocksDB
shard that experienced the error, we estimate that DIRECT
can reduce the recovery time by around 100x.

We also found that the recovery latency is dependent on the
size of the patch required to correct the corrupted key range.
Figure 11 presents a CDF of the size of the patches generated
during the recovery process. Patch size is also interesting
because the recovery mechanism described in Section 4.2.4
recovers a range of keys, since the exact keys on the corrupted
data block are impossible to identify. As we see in Figure 11,
even though recovering a range can in theory increase error
amplification, the number of keys required for recovery is
still low (a single RocksDB instance contains on the order
of millions of key-value pairs). Figure 11 also confirms that,
generally, as the UBER increases, patch sizes increase due to
more key ranges getting corrupted during a single compaction
operation. We note that UBER=10�12 yielded an anomalous
line, but by the time we analyzed the data, we no longer
had access to the experimental system to rerun the results.
We speculate that a variety of factors could have caused the
anomaly: 1) The corruption error could have occurred on a
particularly dense subset of the key space. 2) the corruption
error might have occurred during a read to a bottom-level
SST file in RocksDB; due to compaction, key-ranges used
for recovery grow progressively larger in lower levels of the
RocksDB LSM tree.

0.00
0.25
0.50
0.75
1.00

0 100 200 300
Recovery Latency [ms]

UBER=e−13
UBER=e−12
UBER=e−11
UBER=e−10

Figure 10: CDF of compaction recovery latencies in ZippyDB-
DIRECT. ZippyDB-DIRECT takes milliseconds to recover from
corruptions, while ZippyDB takes minutes.

0.00
0.25
0.50
0.75
1.00

0 250 500 750 1000
Number of Repaired Keys per Compaction Error

UBER=e−13
UBER=e−12
UBER=e−11
UBER=e−10

Figure 11: CDF of patch sizes generated during the ZippyDB-
DIRECT recovery process. The patch size is small, which means
low error amplification.

Measuring Cost. DIRECT trades off higher reliability and
longer device lifetime for engineering and operational costs.
We are unable to capture these costs in our evaluation but
describe the changes to the software stack needed in order to
run DIRECT in production. For example, ZippyDB-DIRECT
required around 1200 lines of C++ code and HDFS-DIRECT
required around 450 lines of Java code. As we discuss in
Section 6, a DIRECT stack will also require running a hard-
ened filesystem, such as ZFS, so that the local filesystem can
continue functioning after encountering bit errors.

6 Discussion
Local File System Error Tolerance. When devices exhibit
higher UBERs, local file systems also experience higher
UBERs. DIRECT protects application-level metadata and
data, which are data blocks to the local file system. Pro-
tecting local file system metadata such as inodes, the FS
journal, etc. is beyond the scope of this paper. Several
existing file systems protect metadata against bit corrup-
tions [3, 17, 18, 43, 55, 70, 81]. The general approach is to
add checksums and locally replicate for error correction. An-
other approach is to use more reliable hardware for metadata
and less reliable hardware for data blocks [55].
Support for DIRECT. Some simple device-level mecha-
nisms would help datacenter operators run devices past their
manufacturer defined UBER. First, it would be beneficial if
devices have a less aggressive “bad block policy”, which is a
firmware protocol for retiring blocks once they reach some
heuristic-defined level of errors.

Second, it would be helpful if devices return the content of
corrupted pages, although this is not a hard requirement This
enables distributed storage applications to minimize recovery
amplification by recovering data at a granularity smaller than

USENIX Association 2019 USENIX Annual Technical Conference 987

a device page. For example, to use majority voting, a system
operator must use devices that return the content of corrupted
pages, such as Open-Channel SSDs [25]. Fortunately, major-
ity voting is optional and only applicable to block-replicated
systems, and all other aspects of DIRECT apply if the sys-
tem operator uses traditional flash devices. In case corrupt
pages cannot be read, copies of local metadata must be stored
on separate physical pages. Otherwise, a page error could
invalidate all copies of the metadata.
Retrofitting PostgreSQL. As we discussed earlier, Post-
greSQL is difficult to retrofit with DIRECT. This is because
Postgres pages do not have indexing information; indexes in
Postgres are stored on separate pages, if at all (no indexes are
built without explicit user commands). Postgres checksums
are at the page granularity, so if there is a bit error on a data
page, DIRECT would need to figure out all the tuples stored
on the page in order to both minimize error amplification and
do correct recovery (Postgres uses MVCC to support trans-
actions). The only way to determine these tuples and their
versions is to comb through the index pages for any point-
ers to the corrupt page: in particular, we observe that what
we need for DIRECT is a reverse index, one that maps from
pages to tuples, rather than from tuples to pages. Generally,
for DIRECT to be efficient in logically-replicated systems, the
page layout must provide insight into what tuples are stored
on a page. For example, RocksDB builds such a reverse index
implicitly in the index blocks of its file format.
Network Partitions. Because DIRECT uses remote redun-
dancy to correct bit errors, network failures can now affect
the recovery process. Fortunately, real-world studies have
shown that the most common kind of network failure— link
failures — do not greatly affect application availability, be-
cause there are enough redundant paths built into the network
topology [41]. In future work, we plan to both model and
evaluate how transient or permanent network failures affect
both recovery latency and error rate.

7 Related Work
Our work departs from existing work on data integrity in
data storage systems [24, 26, 53, 73] because we expose bit
corruptions at the distributed layer, rather than containing
them in the storage layer. Furthermore, DIRECT does not
stop at identifying corruptions but introduces a principled and
performant way of fixing them to achieve high availability.
Software-level Redundancy. DIRECT is related to
PAR [20] and PASC [33], which demonstrate how consensus-
based protocols can be adapted to address bit-level errors.
Unlike both of these works, which only address consensus
protocols, our work tackles bit-level errors in general purpose
storage systems. We also show how increasing the resiliency
to bit errors can significantly reduce storage costs and
improve live recovery speed in datacenter environments.

Other related work use different approaches. HARDFS [35]
hardens local HDFS nodes by augmenting each node with a

lightweight version that verifies its behavior. HDFS-DIRECT
generalizes HARDFS, by only applying local protection to
metadata and leveraging distributed replicas to recover data.
FlexECC [46] and Duracache [60] are flash-based key-value
caches that use less reliable disks by treating devices errors
as cache misses. D-GRAID is a RAID storage system that
gracefully degrades by minimizing the amount of data needed
to recover from bit corruptions [74]. AHEAD and EDB-Tree
apply software-level error detection and correction to address
DRAM corruption in databases [51, 52].

There is a large number of distributed storage systems that
use inexpensive, unreliable hardware, while providing consis-
tency and reliability guarantees [23, 34, 40]. However, these
systems treat bit corruptions similar to entire-node failures
and suffer from high recovery amplification.

Hardware-level Redundancy. Several studies explore ex-
tending SSD lifetime via more aggressive or adaptive hard-
ware error correction. Tanakamuru et al. [77] propose adapt-
ing codeword size based on the device’s wear level to improve
SSD lifetime. Cai et al. [30] and Liu et al. [61] introduce tech-
niques to dynamically learn and adjust the cell voltage levels
based on retention age. Zhao et al. [83] propose using the soft
information with LDPC error correction to increase lifetime.
Our approach is different: instead of improving hardware-
based error correction, we leverage existing software-based
redundancy to address bit-level errors.

8 Conclusion and Future Work
This paper presents DIRECT, a set of general techniques that
use the inherent redundancy that exists in distributed storage
applications for live recovery of bit corruptions. We showed
with implementations of DIRECT in HDFS and ZippyDB
that these techniques are widely applicable and, once imple-
mented, can increase the bit error rate tolerance of distributed
systems by orders of magnitude.

We envision extending the DIRECT approach in several
directions. First, distributed storage systems can control error
correction depending on how sensitive particular data is to bit
corruptions (e.g. critical metadata). Second, distributed stor-
age systems can control hardware mechanisms that influence
the reliability as well as the performance of the device. For
example, storing fewer bits per cell may reduce the latency
of the device (at the expense of its capacity), and offer higher
reliability. Certain applications may prefer to use a hybrid
of low latency and low capacity devices for hot data, while
reserving the high capacity devices for colder data.

9 Acknowledgements
We thank Mikhail Antonov, Siying Dong, Kim Hazelwood,
Binu John, Chris Petersen, Muhammad Waliji, and the ex-
tended ZippyDB and RocksDB teams for their support on this
project. We also thank our shepherd, Bianca Schroeder, and
the anonymous reviewers for their excellent feedback.

988 2019 USENIX Annual Technical Conference USENIX Association

References
[1] CockroachDB docs. https://www.cockroachlabs.com/docs/stable/.

[2] DRAM prices continue to climb. https://epsnews.com/2017/08/
18/dram-prices-continue-climb/.

[3] Ext4 metadata checksums. https://
blogs.msdn.microsoft.com/b8/2012/01/16/
building-the-next-generation-file-system-for-windows-refs/.

[4] High-efficiency SSD for reliable data storage systems.
https://www.flashmemorysummit.com/English/Collaterals/
Proceedings/2011/20110810_T2A_Yang.pdf.

[5] Introducing Lightning: A flexible NVMe JBOF.
https://code.facebook.com/posts/989638804458007/
introducing-lightning-a-flexible-nvme-jbof/.

[6] LevelDB. http://leveldb.org.

[7] McDipper: A key-value cache for flash storage. https:
//www.facebook.com/notes/facebook-engineering/
mcdipper-a-key-value-cache-for-flash-storage/
10151347090423920/.

[8] Micron 5210 ION SSD. https://www.micron.com/solutions/
technical-briefs/micron-5210-ion-ssd.

[9] MongoDB docs. https://docs.mongodb.com/.

[10] Novel 4k error correcting code for QLC NAND. https:
//www.flashmemorysummit.com/English/Collaterals/
Proceedings/2017/20170809_FE22_Kuo.pdf.

[11] Project Voldemort: A distributed key-value storage system. http:
//www.project-voldemort.com/voldemort.

[12] RocksDB. http://rocksdb.org.

[13] RocksDB block based table format. https://github.com/
facebook/rocksdb/wiki/Rocksdb-BlockBasedTable-Format.

[14] SanDisk datasheet. https://www.sandisk.com/
business/datacenter/resources/data-sheets/
fusion-iomemory-sx350_datasheet.

[15] Under the hood: Building and open-sourcing RocksDB.
http://www.facebook.com/notes/facebook-engineering/
under-the-hood-building-and-open-sourcing-rocksdb/
10151822347683920.

[16] What is R.A.I.S.E? https://www.kingston.com/us/ssd/raise.

[17] XFS reliable detection and repair of metadata corruption.
http://xfs.org/index.php/Reliable_Detection_and_
Repair_of_Metadata_Corruption.

[18] The Z File System (ZFS). https://www.freebsd.org/doc/
handbook/zfs.html.

[19] NAND flash media management through RAIN. Technical report,
Micron, 2013.

[20] R. Alagappan, A. Ganesan, E. Lee, A. Albarghouthi, V. Chidambaram,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Protocol-aware
recovery for consensus-based storage. In 16th USENIX Conference on
File and Storage Technologies (FAST 18), pages 15–32, Oakland, CA,
2018. USENIX Association.

[21] C. Albrecht, A. Merchant, M. Stokely, M. Waliji, F. Labelle, N. Coehlo,
X. Shi, and E. Schrock. Janus: Optimal flash provisioning for cloud
storage workloads. In USENIX Annual Technical Conference, pages
91–102, 2013.

[22] P. Alcorn. Facebook asks for QLC NAND, Toshiba answers with
100TB QLC SSDs with TSV. http://www.tomshardware.com/
news/qlc-nand-ssd-toshiba-facebook,32451.html.

[23] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and
V. Vasudevan. FAWN: A fast array of wimpy nodes. In Proceedings of
the ACM SIGOPS 22Nd Symposium on Operating Systems Principles,
SOSP ’09, pages 1–14, New York, NY, USA, 2009. ACM.

[24] L. N. Bairavasundaram, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau,
G. R. Goodson, and B. Schroeder. An analysis of data corruption in
the storage stack. ACM Transactions on Storage (TOS), 4(3):8, 2008.

[25] M. Bjørling, J. González, and P. Bonnet. Lightnvm: The linux open-
channel {SSD} subsystem. In 15th {USENIX} Conference on File and
Storage Technologies ({FAST} 17), pages 359–374, 2017.

[26] N. Borisov, S. Babu, N. Mandagere, and S. Uttamchandani. Dealing
proactively with data corruption: Challenges and opportunities. In
Data Engineering Workshops (ICDEW), 2011 IEEE 27th International
Conference on, pages 34–39. IEEE, 2011.

[27] D. Borthakur. HDFS block replica placement in your
hands now! http://hadoopblog.blogspot.com/2009/09/
hdfs-block-replica-placement-in-your.html.

[28] E. Brewer, L. Ying, L. Greenfield, R. Cypher, and T. T’so. Disks for
data centers. Technical report, Google, 2016.

[29] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai. Error patterns in MLC
NAND flash memory: Measurement, characterization, and analysis.
In Proceedings of the Conference on Design, Automation and Test in
Europe, pages 521–526, Dresden, Germany, 2012.

[30] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and O. Mutlu. Data retention
in MLC NAND flash memory: Characterization, optimization, and
recovery. In Proceedings of the 21st International Symposium on High
Performance Computer Architecture, pages 551–563, San Francisco,
CA, 2015.

[31] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McK-
elvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas, C. Uddaraju,
H. Khatri, A. Edwards, V. Bedekar, S. Mainali, R. Abbasi, A. Agarwal,
M. F. u. Haq, M. I. u. Haq, D. Bhardwaj, S. Dayanand, A. Adusumilli,
M. McNett, S. Sankaran, K. Manivannan, and L. Rigas. Windows
Azure Storage: A highly available cloud storage service with strong
consistency. In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP ’11, pages 143–157, New York,
NY, USA, 2011. ACM.

[32] A. Cidon, S. Rumble, R. Stutsman, S. Katti, J. Ousterhout, and
M. Rosenblum. Copysets: Reducing the frequency of data loss in
cloud storage. In Presented as part of the 2013 USENIX Annual Tech-
nical Conference (USENIX ATC 13), pages 37–48, San Jose, CA, 2013.

[33] M. Correia, D. G. Ferro, F. P. Junqueira, and M. Serafini. Practical hard-
ening of crash-tolerant systems. In Proceedings of the 2012 USENIX
Conference on Annual Technical Conference, USENIX ATC’12, pages
41–41, Berkeley, CA, USA, 2012. USENIX Association.

[34] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s highly available key-value store. SIGOPS Operating Systems
Review, 41(6):205–220, Oct. 2007.

USENIX Association 2019 USENIX Annual Technical Conference 989

[35] T. Do, T. Harter, Y. Liu, H. S. Gunawi, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. HARDFS: Hardening HDFS with selective
and lightweight versioning. In Presented as part of the 11th USENIX
Conference on File and Storage Technologies (FAST 13), pages 105–
118, San Jose, CA, 2013. USENIX.

[36] A. Eisenman, A. Cidon, E. Pergament, O. Haimovich, R. Stutsman,
M. Alizadeh, and S. Katti. Flashield: a key-value cache that minimizes
writes to flash. CoRR, abs/1702.02588, 2017.

[37] A. Eisenman, D. Gardner, I. AbdelRahman, J. Axboe, S. Dong, K. M.
Hazelwood, C. Petersen, A. Cidon, and S. Katti. Reducing DRAM
footprint with NVM in Facebook. In Proceedings of the Thirteenth
EuroSys Conference, EuroSys 2018, Porto, Portugal, April 23-26, 2018,
pages 42:1–42:13, 2018.

[38] D. Exchange. DRAM supply to remain tight with its annual bit growth
for 2018 forecast at just 19.6%. www.dramexchange.com.

[39] A. Ganesan, R. Alagappan, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Redundancy does not imply fault tolerance: Analysis of
distributed storage reactions to single errors and corruptions. In 15th
USENIX Conference on File and Storage Technologies, pages 149–166,
Santa Clara, CA, 2017. USENIX Association.

[40] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System. In
Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, SOSP ’03, pages 29–43, New York, NY, USA, 2003. ACM.

[41] P. Gill, N. Jain, and N. Nagappan. Understanding network failures
in data centers: measurement, analysis, and implications. ACM SIG-
COMM Computer Communication Review, 41(4):350–361, 2011.

[42] L. M. Grupp, J. D. Davis, and S. Swanson. The bleak future of NAND
flash memory. In Proceedings of the 10th USENIX Conference on File
and Storage Technologies, pages 17–24, San Jose, CA, 2012.

[43] H. S. Gunawi, V. Prabhakaran, S. Krishnan, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Improving file system reliability with I/O
shepherding. In Proceedings of Twenty-first ACM SIGOPS Symposium
on Operating Systems Principles, SOSP ’07, pages 293–306, New York,
NY, USA, 2007. ACM.

[44] T. Harter, D. Borthakur, S. Dong, A. Aiyer, L. Tang, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Analysis of HDFS under HBase:
A Facebook messages case study. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies, pages 199–212, Santa
Clara, CA, 2014.

[45] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
S. Yekhanin, et al. Erasure coding in Windows Azure Storage. In
Usenix annual technical conference, pages 15–26. Boston, MA, 2012.

[46] P. Huang, P. Subedi, X. He, S. He, and K. Zhou. FlexECC: Partially re-
laxing ECC of MLC SSD for better cache performance. In Proceedings
of the 2014 USENIX Annual Technical Conference, pages 489–500,
Philadelphia, PA, 2014.

[47] J. Jeong, S. S. Hahn, S. Lee, and J. Kim. Lifetime improvement of
NAND flash-based storage systems using dynamic program and erase
scaling. In FAST, pages 61–74, 2014.

[48] K. Kambatla and Y. Chen. The truth about MapReduce performance
on SSDs. In Proceedings of the 28th Large Installation System Admin-
istration Conference, pages 118–126, Seattle, WA, 2014.

[49] U. Kang, H.-s. Yu, C. Park, H. Zheng, J. Halbert, K. Bains, S. Jang, and
J. S. Choi. Co-architecting controllers and DRAM to enhance DRAM
process scaling. In The memory forum, pages 1–4, 2014.

[50] H. Kim, S.-J. Ahn, Y. G. Shin, K. Lee, and E. Jung. Evolution of NAND
flash memory: From 2D to 3D as a storage market leader. In Memory
Workshop (IMW), 2017 IEEE International, pages 1–4. IEEE, 2017.

[51] T. Kolditz, D. Habich, W. Lehner, M. Werner, and S. T. de Bruijn.
AHEAD: Adaptable data hardening for on-the-fly hardware error de-
tection during database query processing. In Proceedings of the 2018
International Conference on Management of Data, SIGMOD ’18, pages
1619–1634, New York, NY, USA, 2018. ACM.

[52] T. Kolditz, T. Kissinger, B. Schlegel, D. Habich, and W. Lehner. Online
bit flip detection for in-memory B-trees on unreliable hardware. In
Proceedings of the Tenth International Workshop on Data Management
on New Hardware, DaMoN ’14, pages 5:1–5:9, New York, NY, USA,
2014. ACM.

[53] A. Krioukov, L. N. Bairavasundaram, G. R. Goodson, K. Srinivasan,
R. Thelen, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Parity
lost and parity regained. In FAST, volume 2008, page 127, 2008.

[54] J. Lee, J. Jang, J. Lim, Y. G. Shin, K. Lee, and E. Jung. A new ruler
on the storage market: 3D-NAND flash for high-density memory and
its technology evolutions and challenges on the future. In Electron
Devices Meeting (IEDM), 2016 IEEE International, pages 11–2. IEEE,
2016.

[55] S. Lee, K. Ha, K. Zhang, J. Kim, and J. Kim. FlexFS: A flexible flash
file system for MLC NAND flash memory. In Proceedings of the 2009
Conference on USENIX Annual Technical Conference, USENIX’09,
pages 9–9, Berkeley, CA, USA, 2009. USENIX Association.

[56] S.-H. Lee. Technology scaling challenges and opportunities of memory
devices. In Electron Devices Meeting (IEDM), 2016 IEEE Interna-
tional, pages 1–1. IEEE, 2016.

[57] C. Li, P. Shilane, F. Douglis, H. Shim, S. Smaldone, and G. Wallace.
Nitro: A capacity-optimized SSD cache for primary storage. In Pro-
ceedings of the 2014 USENIX Annual Technical Conference, pages
501–512, 2014.

[58] C. Li, P. Shilane, F. Douglis, and G. Wallace. Pannier: A container-
based flash cache for compound objects. In Proceedings of the 16th
Annual Middleware Conference, pages 50–62, Vancouver, BC, 2015.

[59] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky. SILT: A memory-
efficient, high-performance key-value store. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, SOSP
’11, pages 1–13, New York, NY, USA, 2011.

[60] R. Liu, C. Yang, C. Li, and G. Chen. DuraCache: a durable SSD cache
using MLC NAND flash. In Proceedings of the 50th Annual Design
Automation Conference 2013, pages 166–171, Austin,TX, 2013.

[61] R.-S. Liu, C.-L. Yang, and W. Wu. Optimizing NAND flash-based
SSDs via retention relaxation. In Proceedings of the 10th USENIX
conference on File and Storage Technologies, San Jose, CA, 2012.

[62] L. Lu, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
WiscKey: Separating keys from values in SSD-conscious storage. In
14th USENIX Conference on File and Storage Technologies (FAST 16),
pages 133–148, Santa Clara, CA, Feb. 2016.

[63] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu. Improving 3D
NAND flash memory lifetime by tolerating early retention loss and pro-
cess variation. In Abstracts of the 2018 ACM International Conference
on Measurement and Modeling of Computer Systems, SIGMETRICS
’18, pages 106–106, New York, NY, USA, 2018. ACM.

[64] J. Meza, Q. Wu, S. Kumar, and O. Mutlu. A large-scale study of
flash memory failures in the field. In Proceedings of the 2015 ACM
SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems, pages 177–190, Portland, Oregon, 2015.

990 2019 USENIX Annual Technical Conference USENIX Association

[65] R. Micheloni et al. 3D Flash memories. Springer, 2016.

[66] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosen-
blum. Fast crash recovery in RAMCloud. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, SOSP ’11,
pages 29–41, New York, NY, USA, 2011. ACM.

[67] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang.
SDF: Software-defined flash for web-scale Internet storage systems.
SIGARCH Computing Architecture News, 42(1):471–484, 2014.

[68] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-structured
merge-tree (LSM-tree). Acta Informatica, 33(4):351–385, 1996.

[69] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant
arrays of inexpensive disks (RAID). In Proceedings of the 1988 ACM
SIGMOD International Conference on Management of Data, pages
109–116, Chicago, Illinois, 1988.

[70] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gunawi,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Iron file systems.
In Proceedings of the twentieth ACM symposium on Operating systems
principles, 2005.

[71] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur. XORing elephants: Novel erasure
codes for big data. In Proceedings of the 39th International Conference
on Very Large Data Bases, pages 325–336, Trento, Italy, 2013.

[72] B. Schroeder, R. Lagisetty, and A. Merchant. Flash reliability in pro-
duction: The expected and the unexpected. In Proceedings of the 14th
USENIX Conference on File and Storage Technologies, pages 67–80,
Santa Clara, CA, 2016.

[73] G. Sivathanu, C. P. Wright, and E. Zadok. Ensuring data integrity in
storage: Techniques and applications. In Proceedings of the 2005 ACM
workshop on Storage security and survivability, pages 26–36. ACM,
2005.

[74] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Improving storage system availability with D-GRAID. Trans.
Storage, 1(2):133–170, May 2005.

[75] A. S. Spinelli, C. M. Compagnoni, and A. L. Lacaita. Reliability of
NAND flash memories: Planar cells and emerging issues in 3D devices.
Computers, 6(2):16, 2017.

[76] B. Tallis. QLC NAND arrives for consumer
SSDs. https://www.anandtech.com/show/13078/
the-intel-ssd-660p-ssd-review-qlc-nand-arrives.

[77] S. Tanakamaru, M. Fukuda, K. Higuchi, A. Esumi, M. Ito, K. Li, and
K. Takeuchi. Post-manufacturing, 17-times acceptable raw bit error rate
enhancement, dynamic codeword transition ECC scheme for highly
reliable solid-state drives, SSDs. Solid-State Electronics, 58(1):2–10,
2011.

[78] L. Tang, Q. Huang, W. Lloyd, S. Kumar, and K. Li. RIPQ: Advanced
photo caching on flash for Facebook. In Proceedings of the 13th
USENIX Conference on File and Storage Technologies, pages 373–386,
Santa Clara, CA, 2015.

[79] The Apache Software Foundation. Apache Cassandra. http://
cassandra.apache.org/.

[80] H. Weatherspoon and J. D. Kubiatowicz. Erasure coding vs. repli-
cation: A quantitative comparison. In P. Druschel, F. Kaashoek, and
A. Rowstron, editors, Peer-to-Peer Systems, pages 328–337, Berlin,
Heidelberg, 2002. Springer Berlin Heidelberg.

[81] J. Xu and S. Swanson. NOVA: A log-structured file system for hybrid
volatile/non-volatile main memories. In 14th USENIX Conference on
File and Storage Technologies (FAST 16), pages 323–338, Santa Clara,
CA, 2016. USENIX Association.

[82] G. Zemor and G. D. Cohen. Error-correcting WOM-codes. IEEE
Transactions on Information Theory, 37(3):730–734, 1991.

[83] K. Zhao, W. Zhao, H. Sun, X. Zhang, N. Zheng, and T. Zhang. LDPC-
in-SSD: Making advanced error correction codes work effectively in
solid state drives. In Presented as part of the 11th USENIX Conference
on File and Storage Technologies (FAST 13), pages 243–256, San Jose,
CA, 2013.

USENIX Association 2019 USENIX Annual Technical Conference 991

Dayu: Fast and Low-interference Data Recovery in Very-large Storage Systems

Zhufan Wang†, Guangyan Zhang†∗, Yang Wang‡, Qinglin Yang†, Jiaji Zhu§

†Tsinghua University, ‡The Ohio State University, §Alibaba Cloud

Abstract
This paper tries to accelerate data recovery in a large-scale
storage system with minimal interference to foreground traffic.
By investigating I/O and failure traces from a real-world large-
scale storage system, we find that because of the scale of the
system and the imbalanced and dynamic foreground traffic,
no existing recovery protocols can generate a high-quality
recovery strategy in a short time.

To address this problem, this paper proposes Dayu, a
timeslot-based recovery protocol, which only schedules a sub-
set of tasks which are expected to finish in one timeslot: this
approach reduces the computation overhead and naturally can
cope with the dynamic foreground traffic. In each timeslot,
Dayu incorporates four key algorithms, which enhance exist-
ing solutions with heuristics motivated by our trace analysis.

Our evaluations in a 1,000-node real cluster and in a 25,000-
node simulation both confirm that Dayu can outperform exist-
ing recovery protocols, achieving high speed and high quality.

1 Introduction

This paper describes our experience and methods to accelerate
data recovery in Pangu [1] , a real-world large-scale storage
system with 10K nodes and tens of TBs of storage per node.

As a cloud storage provider, AliCloud, the owner of Pangu,
needs to make a promise of data durability to its customers
(i.e., the chance of data loss is smaller than a threshold). For
marketing reasons, the owner has a strong motivation to im-
prove data durability, so that its promise can be appealing
compared to its competitors. This motivates us to investigate
whether it is possible to accelerate data recovery in Pangu,
because recovery speed is one of the determining factors of
data durability [2].

Similar to previous works [3–7], Pangu divides data into
chunks (usually tens of MBs), replicates these data chunks,
and distributes these replicas to different nodes. When a node
fails, Pangu re-replicates its data chunks: since the replicas of
∗Corresponding author: gyzh@tsinghua.edu.cn

these chunks are distributed to different nodes, Pangu asks all
these nodes to copy chunks in parallel [4, 8].

To re-replicate data chunks of the failed node, the recov-
ery protocol needs to schedule a source, a destination, and a
bandwidth for each of these data chunks. An ideal scheduling
algorithm should achieve at least the following two goals: first,
the algorithm should generate a high-quality strategy, which
should allow data re-replication to be completed as soon as
possible under the constraint that it has minimal impact on
foreground traffic; second, the speed of the scheduling algo-
rithm itself should be high enough so that it does not become
the bottleneck of data recovery.

To understand the quality and speed of existing scheduling
algorithms, we analyze the failure and I/O traces from a real
deployment of Pangu. We find none of the existing algorithms
can achieve both acceptable quality and acceptable speed,
because of the following challenges:

• Very-large scale: the largest deployment of Pangu has
more than 10K nodes and up to 72 TBs of storage (about
1.5M chunks) per node. Therefore, when a node fails,
the algorithm needs to decide how to recover all these
data chunks and each chunk has about 10K nodes as
candidate destinations.

• Tight time constraint: given the scale of the system, data
chunks of a failed node can be re-replicated with a high
degree of parallelism. Our simulation shows that if the
idle bandwidth can be fully utilized, the recovery can be
finished within tens of seconds, which means the schedul-
ing algorithm itself should complete within seconds.

• Imbalanced foreground traffic and available data: we
find a two-fold imbalance, which poses challenges to the
quality of scheduling. First, a number of nodes can have
significantly heavier foreground traffic than the others;
and second, some nodes can have more data chunks
available for re-replication.

• Dynamic foreground traffic: the foreground traffic can
change dramatically over time. To cope with such dy-
namic traffic, the recovery protocol needs to adjust its

USENIX Association 2019 USENIX Annual Technical Conference 993

plan when it observes a significant change in the fore-
ground traffic, which again calls for fast scheduling.

Our simulation of existing scheduling algorithms shows
that, on the one hand, simple and decentralized algorithms
like random selection or best-of-two-random [9] can finish
scheduling quickly (i.e., high speed), but they often cause a
small number of nodes to be overloaded, increasing the recov-
ery time and impairing the performance of foreground traffic
(i.e., low quality). On the other hand, sophisticated and cen-
tralized algorithms, such as Mixed-Integer Linear Program-
ming [10–12], can effectively utilize available bandwidth and
avoid overloading a node (i.e., high quality), but they can take
prohibitively long to compute a plan given the scale of our
target system (i.e., low speed).

This paper proposes Dayu, a high-speed and high-quality
recovery protocol for large-scale, imbalanced, and dynamic
storage systems. The key idea of Dayu is motivated by the
observation that, to cope with dynamic foreground traffic,
we need to periodically monitor the foreground traffic and
adjust the recovery plan: in such a design, scheduling for
all data chunks of the failed node together is both computa-
tionally heavy and unnecessary, since the plan is likely to be
adjusted later. Following this observation, Dayu incorporates
a timeslot-based solution: it divides time into multiple slots,
whose length is determined by how frequent the underlying
storage system monitors and reports idle bandwidth; based
on such report, Dayu tries to schedule a subset of chunks so
that they can be re-replicated within the current timeslot; if
the actual re-replication of some chunks takes longer than
expected for whatever reason, Dayu will re-schedule them in
the next timeslot.

This approach brings two benefits: first, it reduces the com-
putation overhead of scheduling because in each timeslot, the
algorithm only needs to schedule a subset of tasks (about one
third on average in our experiments). Second, this solution
can naturally cope with the dynamic foreground traffic be-
cause Dayu’s decision is based on the information collected
at the beginning of each timeslot.

To realize this idea, Dayu incorporates four key techniques,
which enhance existing algorithms based on our observations:

• Greedy algorithm with bucket convex-hull optimization
to schedule tasks: Dayu uses a greedy algorithm to it-
eratively choose the most under-utilized candidate as
the source and destination for each task, till it finds
enough tasks to fill a timeslot. To reduce the computation
overhead, Dayu incorporates the convex-hull optimiza-
tion [13] and further proposes a bucket approximation
to reduce the size of the candidate set.
• Prioritizing nodes with high idle bandwidth but few avail-

able chunks: Our observation shows that such nodes
are likely to get under-utilized, if the scheduling algo-
rithm decides to replicate their chunks from other nodes.
Therefore, Dayu enhances the aforementioned greedy

algorithm with the following heuristic: if a chunk to be
re-replicated has a replica in such a prioritized node,
Dayu will assign the node as the source.
• Iterative WSS to allocate bandwidth for each task: To

minimize the completion time of chosen tasks, Dayu
enhances the weighted shuffle scheduling algorithm
(WSS) [14]: in each iteration, Dayu uses WSS to iden-
tify the bottlenecks in the remaining tasks, assigns a
weighted fair share of bandwidth to each task correspond-
ingly, and removes the bottleneck tasks and allocated
bandwidth.
• Re-scheduling stragglers: Straggler tasks will inevitably

occur due to mis-prediction of the foreground traffic or
unexpected hardware faults, so Dayu has to re-schedule
them in the next timeslot. Straggler tasks are different
from new tasks, since we prefer keeping their destina-
tions unchanged: otherwise, we will lose their existing
progress. Dayu first estimates whether it is worth chang-
ing their destinations, and then re-computes their sources
and allocated bandwidth.

Our evaluation of Dayu on a real deployment of 1,000
nodes shows that, compared to Pangu, Dayu increases the
recovery speed by 2.96× and increases the p90 latency (i.e.,
tail latency at 90th percentile) of the foreground traffic during
recovery by only 3.7%. Our simulation shows that Dayu out-
performs various existing solutions and can scale to a cluster
of 25K nodes.

2 Background and Observations

2.1 Background of Pangu
Pangu is the underlying storage system of AliCloud, one of
the largest public cloud providers in Asia [1]. Pangu inherits
the classic distributed file system architecture from previous
works like GFS [3], HDFS [5], Cosmos [6], and Azure [7].
It splits data into multiple chunks (the most common chunk
size is 64MB) and stores data chunks on a large number of
data servers called ChunkServers. A metadata server called
MetaServer maintains the metadata of the distributed file sys-
tem, such as the locations of data chunks. Given its very
large scale, Pangu incorporates multiple MetaServers, each
responsible for a subset of metadata [15–17]. Besides, Pangu
incorporates a RootServer to route clients to the correspond-
ing MetaServer. To achieve uniform data distribution, Pangu
uses random or weighted random mechanism to place data on
different ChunkServers.

Like most existing systems, Pangu replicates data chunks
(most chunks have three replicas) so that if a node fails, Pangu
can recover its data chunks by copying from other replicas.
For each data chunk to be recovered, Pangu needs to choose a
source and a destination for data copy: there are usually a few
candidate sources depending on the number of replicas and a

994 2019 USENIX Annual Technical Conference USENIX Association

large number of candidate destinations. The current version
of Pangu randomly picks a source and a destination for each
data chunk to be recovered.

In the current deployment of Pangu, we observe that the
network bandwidth is usually the bottleneck when performing
such data recovery: most Pangu nodes are equipped with 1Gb
or 10Gb Ethernet, whose bandwidth is smaller than the aggre-
gate disk bandwidth; the deployment of high-speed devices,
such as Infiniband, is limited due to cost reasons. Pangu’s
core network switches are organized using CLOS topology
or fat-tree topology [18–21], so that there is no oversubscrip-
tion. The core-to-rack link may be oversubscribed depending
on the configuration: if the link is oversubscribed, the rack
switch is usually the bottleneck; if not, the NICs of end-hosts
are the bottlenecks.

During data recovery, Pangu is still servicing foreground
applications, which may contend for network bandwidth. To
limit the interference of data recovery on foreground traffic,
Pangu provides a mechanism to limit the bandwidth utiliza-
tion of one or a group of links on a node. With this mechanism,
we can set a limit on the bandwidth of the recovery traffic,
depending on how much interference one is willing to tolerate
and the bandwidth of the foreground traffic. In Dayu, we limit
the bandwidth of the recovery traffic on each node to be

Brecover = max(α×Btotal−B f oreground ,Bmin) (1)

In this equation, Btotal is the total bandwidth of the node;
B f oreground is the bandwidth of the foreground traffic; and
α is a parameter to control the interference of the recovery
traffic on the foreground traffic. We set α to be 75% and our
experiments show that using this setting will incur negligible
impact on p90 latency of the foreground traffic. As a storage
system mainly designed for large files, Pangu does not aim at
optimizing extreme tail latency (e.g. 99.9 percentile [22]), so
this setting can satisfy our requirement, and if one is targeting
even smaller interference, he/she can further decrease α. Bmin
is the minimal bandwidth the node will assign for recovery,
which is to ensure that recovery will not be too slow. Both
Pangu and Dayu set Bmin to 30MB/s.

2.2 Observations
In this subsection, we analyze the workload and data place-
ment from one deployment of Pangu to understand how they
affect data recovery. We acquire such information from a data
center of approximately 3500 nodes, each with two 1G NICs
and 11 2TB hard drives. In this case, the aggregate bandwidth
of hard drives is larger than that of the NICs. The storage
system mainly serves online data processing service (ODPS),
including MapReduce and data query. What we analyze in-
cludes 1) a checkpoint of a MetaServer in April 2018, which
records the metadata related to the size and distribution of
the data chunks, and 2) the trace of the foreground traffic
and background recovery traffic in the coming week. Unless

otherwise noted, our simulation experiments are on this 3500-
node cluster throughout this paper. We study the scalability
of Dayu beyond 3500 nodes in Section 5.2.

We make the following observations from the analysis:

Observation 1 Each node stores hundreds of thousands
of chunks.

Figure 1(a) shows the CDF of the number of chunks on
each node. We can observe that a majority of the nodes have
around 250K chunks per node. This observation suggests two
things: first, a recovery protocol needs to schedule how to
recover so many chunks when a node fails. Second, when one
node fails, each of the remaining nodes will participate in the
re-replication of about 70 chunks on average (250K/3500).

Observation 2 The foreground traffic consumes less than
half of the bandwidth on average. If all available bandwidth
(computed using Equation 1) can be used for recovery, the
system can recover 250K chunks in 51 seconds on average.

We calculate the optimal recovery time for 50 different
cases, assuming all available bandwidth can be utilized, and
present the CDF of the recovery time in Figure 1(b).

This observation suggests that, although there are a large
number of chunks to recover for each node failure, the highly
parallel recovery in a large-scale system can recover these
chunks in a short time, which calls for fast scheduling during
the recovery protocol. However, the actual recovery in the
trace often takes 2-4 minutes, i.e. 2.35−4.70× of the ideal
recovery time, which motivates our further investigation.

Observation 3 The foreground traffic is experiencing sig-
nificant short-term load imbalance.

The trace we analyze records the foreground bandwidth
of each node every 15 seconds. To understand whether the
foreground traffic is balanced, we compute the coefficient
of variation (CoV, standard deviation as a percentage of the
mean) of foreground bandwidth in each timeslot, which is
a standard metric to measure the variation of values. Then
we draw the distribution of CoVs of different timeslots in
Figure 1(c) and Figure 1(d). As shown in this figure, the CoVs
of most timeslots are between 0.4 and 0.6, which is quite
significant. Interestingly, if we measure such imbalance in a
coarser granularity (i.e. one hour and one day), the imbalance
becomes much smaller. Such results indicate that the system is
relatively load balanced in a long term, but more imbalanced
in a short term, which creates a challenge for data recovery:
traditional load balancing techniques, such as data migration,
mainly targets long-term imbalance, because they cannot run
very frequently; data recovery, however, is mainly affected
by short-term imbalance, because it can finish within tens to
a few hundred seconds. This observation suggests that our
recovery protocol must take such short-term imbalance into
consideration, without relying on load balancing techniques.

USENIX Association 2019 USENIX Annual Technical Conference 995

250K 500K 750K

Number of chunks

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

fr
ac

ti
on

(a) OB1: CDF of the number of
chunks on each node

0 25 50 75 100

Recovery time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

fr
ac

ti
on

(b) OB2: CDF of the optimal recov-
ery time with 50 cases

0.2 0.4 0.6 0.8
CoV of foreground traffic

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

fr
ac

ti
on

15 secs.

1 hour

1 day

(c) OB3: CoV of outgoing band-
width utilization

0.2 0.4 0.6 0.8
CoV of foreground traffic

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

fr
ac

ti
on

15 secs.

1 hour

1 day

(d) OB3: COV of incoming band-
width utilization

20 40 60 80

Size of common chunks (GB)

0

150

300

450

N
um

b
er

of
no

de
s

(e) OB4: Distribution of SC100
j .

0.2 0.4 0.6 0.8

CoV of common chunk size

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

fr
ac

ti
on

(f) OB4: CoV of SCi
j for each node i

0 25 50 75 100

Common chunk size (GB)

0

10

20

30

40

T
ra

ns
m

is
si

on
si

ze
(G

B
)

(g) OB4: Correlation between recov-
ery traffic of node j and SC100

j

−100 0 100

Delta bandwidth(MB/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

fr
ac

ti
on

p97.5 = 34

p2.5 = -36

(h) OB5: Bandwidth utilization vari-
ance.

Figure 1: Observations from a 3500-node real-world system

Observation 4 Replicas of chunks on a given nodes are
distributed unevenly among the other nodes.

To understand how replicas of chunks on a given node are
distributed among the other nodes, we define SCi

j as the size
of the chunks held by both node i and node j, which shows
how much data node j can provide as source during recovery
if node i fails.

We first sample a specific node i = 100. Figure 1(e) shows
the distribution of SC100

j for different j values. We can see that
the histogram of the distribution fits the bell curve: this is ac-
tually mathematically provable (i.e. Central Limit Theorems)
if we assume chunk placement is random. To understand such
imbalance in the whole cluster, for each node i, we calculate
the CoV of all the SCi

j values and then we draw the CDF of
CoVs of all nodes in Figure 1(f). One can observe that for a
large portion of nodes, the distribution of SCi

j is not balanced.
To understand how such imbalance affects recovery, we

simulate the failure of node 100 with Pangu’s random node
selection strategy (Figure 1(g)) and find that there is a strong
correlation between the size of outgoing recovery traffic of
node j and SC100

j . That means a node with a few (many) com-
mon chunks with the failed node will do little (much) work
during recovery, but if the node has much (little) available
bandwidth, it will get under-utilized (overloaded).

Observation 5 Foreground traffic usually fluctuates within
14.4% of max bandwidth, but sometimes can change dra-
matically.

Figure 1(h) shows how one node’s foreground traffic
changes in 5 hours. The delta bandwidth is the difference

of the average bandwidth utilization in two adjacent timeslots.
We can observe that in more than 95% of the cases (between
“p2.5” and “p97.5” in Figure 1(h)), the absolute delta band-
width is lower than 36MB/s, which is 14.4% of the maximum
bandwidth (250 MB/s since each node has two 1Gb NICs).
However, in the remaining 5% cases, the delta bandwidth can
reach up to two thirds of the maximum bandwidth. Although
the percentage of such extreme cases is small, they frequently
happen in recovery, because the highly parallel recovery usu-
ally involves many nodes. Our simulation shows that they can
create stragglers in recovery and thus are one of the major
reasons why recovery speed is not ideal.

3 Dayu Overview

We call the re-replication of one data chunk a “recovery task”
in the rest of the paper. Dayu achieves fast data recovery
and low application interference by introducing a centralized
scheduler called an ObServer, which performs timeslot-based
recovery task scheduling.

Dayu assumes all the data servers periodically report their
chunk placement and network utilization to the ObServer,
and all the metadata servers send information of the recovery
tasks to the ObServer. The rest of this paper presents the
ObServer’s scheduling algorithm, which decides the source,
the destination, and the bandwidth of a recovery task.

To achieve high-speed and high-quality scheduling, the
key idea of Dayu is to schedule recovery tasks in multiple
batches, instead of scheduling all of them together. This de-
sign choice is motivated by several reasons: first, since each
node is usually involved in tens of recovery tasks (Observa-

996 2019 USENIX Annual Technical Conference USENIX Association

Replication begin Replication finish

Time

Gathering

Scheduling

Transmitting
Timeslot 0

Timeslot 1

Timeslot 2

Figure 2: Timeslot-based scheduling in Dayu

Ttimeslot Length of a timeslot
Bi

recover_in/out Node i’s available incoming/outgoing
bandwidth for recovery (by Equation 1)

st Size of recovery task t
ci

in/out Total size of incoming/outgoing recov-
ery tasks assigned to node i

α, β Parameters

Table 1: Denotations

tion 1), scheduling tasks in multiple batches can still allow
each node to fully participate in each batch and thus fully
utilize its available bandwidth; second, scheduling tasks in
batches can naturally cope with dynamic foreground traffic
and infrequent measurement errors, because when observing
any changes in the foreground traffic, Dayu can make adjust-
ment in the next batch; finally, scheduling tasks in batches
naturally reduces the computation overhead of the scheduling
algorithm, because for each batch, the algorithm only needs
to schedule a subset of tasks.

To implement this idea, as shown in Figure 2, Dayu di-
vides the whole recovery time into multiple fixed-length time
slices (called timeslots throughout the paper). At the begin-
ning of a timeslot, the ObServer collects the latest state of the
data servers. Using the state obtained, the ObServer chooses
and schedules a subset of recovery tasks in this timeslot, in-
cluding those recovery tasks scheduled in the last timeslot but
unfinished yet. To fully utilize the available bandwidth, Dayu
overlaps multiple timeslots so that the information gathering
and task scheduling of slot n is executed before the end of
slot n− 1. The length of a timeslot is determined by how
frequently the underlying storage system collects and reports
state.

As mentioned in Section 2.1, the bottleneck of data recov-
ery is either the NICs of the end hosts or the rack switch, and
to simplify description, the following text assumes the NICs
of the end hosts are bottlenecks, and one can easily extend it to
support bottleneck rack switches. Table 1 lists the denotations
used in the paper.

Goals. Dayu tries to achieve the following goals.

• Goal 1: Utilize the available bandwidth as much as
possible. This is a natural goal to minimize the overall
recovery time. If we were to fully utilize the available

bandwidth in one timeslot, the total size (S) of the chunks
that can be replicated in the timeslot would be:

S = min(∑
i∈Nodes

Bi
recover_in, ∑

i∈Nodes
Bi

recover_out)×Ttimeslot (2)

• Goal 2: Finish as many tasks as possible in the target
timeslot. We hope that the scheduled tasks can actually
finish within the target timeslot: otherwise, we have to
re-schedule them again, which increases the computa-
tion overhead. This goal may look similar to the first one,
but it is not: the first goal suggests us to oversubscribe
the network bandwidth (i.e. schedule more tasks than the
bandwidth can handle), so that if the foreground traffic
drops, we can still utilize such extra available bandwidth;
the second goal, however, suggests us to undersubscribe
the network bandwidth so that if the foreground traffic
increases, we can still finish the scheduled tasks. There-
fore, Dayu has to make a trade-off between these two
goals.
• Goal 3: Minimize the chance of significant stragglers.

Because we cannot accurately predict the future fore-
ground traffic, stragglers will inevitably occur. We prefer
many small stragglers to a few significant stragglers, be-
cause many small stragglers can be re-scheduled and
executed in parallel to minimize the recovery time. How-
ever, this goal obviously contradicts with the second goal,
so Dayu has to make a trade-off as well.

Overview of Dayu’s algorithm. To achieve these goals,
Dayu incorporates four key techniques, by enhancing existing
algorithms with heuristics and approximations motivated by
our observations: 1) a greedy algorithm with bucket convex
hull optimization to select the source and the destination for
each recovery task (§4.1); 2) a heuristic-based algorithm to
prioritize nodes with a few common chunks with the failed
node but a high available bandwidth (§4.2); 3) an iterative
WSS algorithm to assign bandwidth for each task (§4.3);
and 4) a heuristic-based algorithm to minimize the cost of
re-scheduling straggler tasks (§4.4).

4 Design of Dayu

4.1 Selecting Source and Destination
Dayu iteratively scans all tasks and determines the source and
the destination for each task, till it can find enough tasks to
fill S (Equation 2). The candidate sources of a task include all
nodes which hold a replica of the corresponding chunk; the
candidate destinations of a task include all nodes which are
not in the same rack of its sources.

To achieve the goals given in Section 3, Dayu incorporates
a greedy algorithm: for each task, Dayu chooses the most
under-utilized node in its candidate sources and destinations;

USENIX Association 2019 USENIX Annual Technical Conference 997

(B
i
,c

i
)

(0,-st)
Available bandwidth

A
c
cu

m
u
la

te
d

 s
iz

e

(a) Convex hull optimization

Available bandwidth

A
c
c
u

m
u
la

te
d

 s
iz

e
(b) Bucket approximation

Figure 3: Reduce computation overhead with dynamic convex
hull optimization. Bi and ci are short for Bi

recover_in and ci
in.

if Dayu finds that even the most under-utilized candidate is
going to be saturated, Dayu will skip this task.

The first question we need to answer is how to quantita-
tively measure the utilization of a node. We have tried several
options, and through simulation, we decide to use the expected
task finish time

cin/out
Brecover_in/out

(cin/out is the total size of the in-
coming/outgoing tasks assigned to this node) as the metric to
evaluate the utilization of a node, because this metric achieves
a nice balance between our first two goals.

Therefore, when choosing the source for task t, Dayu scans
all its candidate nodes and chooses the one with the minimal

st+cout
Brecover_out

as the source. Such scanning is not computationally
expensive, since most chunks have three replicas and one
of them is already lost. Afterward, Dayu checks whether
assigning task t to the source will saturate the source, i.e. its

st+cout
Brecover_out

> Ttimeslot : if so, Dayu will drop task t, because this
means there is no way to complete task t in this timeslot.

Likewise, when choosing the destination for task t, Dayu
chooses the node with the minimal st+cin

Brecover_in
. However, naively

scanning all candidate destinations is computationally heavy,
since the number of candidate destinations is large. To make
things worse, greedy algorithms cannot be parallelized be-
cause each iteration depends on the result of the previous
iteration. Our simulation on a 3500-node cluster shows that
naively scanning all candidate destinations for each task can
only achieve a speed of less than 30,000 tasks per second.
Since our statistics shows that in one timeslot, Dayu can
usually complete 60,000—150,000 tasks, this means naively
scanning itself will take 2-5 seconds, which is not ideal. To
address this challenge, we incorporate the dynamic convex
hull optimization to accelerate this computation.

One can refer to [13] for the formal description of the
convex hull optimization, and here we present an intuitive
description. For each surviving node i, we draw a point
(Bi

recover_in,c
i
in) in Cartesian coordinate system, as shown in

Figure 3(a). Then for task t with size st , we draw another
point (0,−st) in Figure 3(a). Afterward, we draw a line from
(0,−st) to each other point: since the slope of each line is

ci
in+st

Bi
recover_in

, finding the destination node for task t is equivalent

to finding the line with the lowest slope.

We can maintain a dynamic convex hull to quickly search
the line with the lowest slope. In a two-dimensional space,
a convex hull is like a rubber band that wraps all the points
tightly, where the lower convex shell is the lower part of
this convex hull. We refer the point set of the lower convex
shell as H (here we connect points in H together to form
the lower convex shell as shown in Figure 3(a)). The points
in H are connected counterclockwise. Then for a point ph
with precursor point and successor point in set H, the slope of
line ph−1→ ph must be less than or equal to the slope of line
ph→ ph+1. We can find the node c in set H whose connection
with point (0,−st) has the smallest slope using binary search
and the time complexity is O(log |H|).

After Dayu assigns task t to node i, its ci
in is incremented

by st . Therefore, Dayu needs to adjust the point of node i as
well as the lower convex shell H: when a point ph in H moves
up, Dayu identifies the precursor (ph−1) and successor (ph+1)
of ph in original H, and scans all the points between them to
find the new member(s) of H. The convex hull optimization
reduces the complexity of scanning destination nodes from
linear to sub-linear, without affecting the results of the greedy
algorithm.

We further propose an approximate solution to reduce the
candidate set of the lower convex shell, in turn boosting the
speed of the algorithm. As shown in Figure 3(b), we divide the
range of available incoming bandwidth into multiple equal-
sized buckets. If nodes i and j are in the same bucket, they are
considered to have approximately identical available band-
width, i.e. Bi

recover_in ≈ B j
recover_in. Without loss of generality,

we suppose ci > c j. Then node i cannot be the member of the
lower convex shell. Therefore, only the lowest node within
the same bucket can become the member of the lower convex
shell. All those lowest nodes (hollow circles in Figure 3(b))
form a reduced candidate set, denoted C. We can construct
the convex shell H from this reduced candidate set C, instead
of the full set of nodes. After Dayu assigns a task to a node, it
adjusts the point of this node as well as the reduced candidate
set.

The bucket size determines the reduction degree of the
bucket approximation. We use 1 MB/s as the bucket size in our
experiments, and our simulation shows an average reduction
factor of 22.8, and as a result, Dayu can complete selecting
sources and destinations for about 210,000 chunks within one
second—this is seven times faster than naive scanning.

Such bucket approximation certainly brings inaccuracy to
the greedy algorithm, but such inaccuracy already exists as
a result of measurement errors and fluctuation of foreground
traffic. Therefore, as long as the bucket size is small, our ap-
proximation should not significantly increase such inaccuracy.

998 2019 USENIX Annual Technical Conference USENIX Association

4.2 Prioritizing Underemployed Nodes

Our simulation on our greedy algorithm reveals the same
problem as our Observations 3 and 4: nodes with high avail-
able bandwidth but only a small number of available chunks
are likely to get under-utilized, which violates our first goal.
We call them underemployed nodes in the rest of the paper.
For example, suppose node A has an available outgoing band-
width of 50MB/s and can be the source of Tasks 1 and 2; node
B has an available outgoing bandwidth of 60MB/s and can be
the source of Tasks 1-4; all tasks have the same size. In this
example, the optimal schedule should let A be the source of
Tasks 1 and 2, and B be the source of Tasks 3 and 4. However,
if our greedy algorithm scans Task 1 first, it will assign it to
node B, because B has more available bandwidth than A at
this moment.

This observation suggests that, for a chunk which has a
replica in an underemployed node, it’s better to use the un-
deremployed node as the source. To achieve this goal, we
incorporate a distribution-driven prioritizing strategy: the Ob-
Server first sorts all the nodes according to their available
outgoing bandwidth in descending order, and sorts all the
nodes according to their total sizes of common chunks in
ascending order. Then, the ObServer picks the first β (5% in
our typical settings) nodes from those two node lists respec-
tively to form two sets, and gets the underemployed node set
by computing the intersection of those two sets. Next, the
ObServer selects all the recovery tasks that have replicas in
the underemployed nodes, and puts them in a queue called
“prioritized queue”; the ObServer puts the rest of the tasks in
another queue called “normal queue”.

We modify our greedy algorithm (§4.1) to incorporate this
heuristic: the ObServer will first scan tasks in the prioritized
queue and directly use the corresponding underemployed
server as the source, instead of using the most under-utilized
candidate. There are two corner cases: 1) it is possible that a
prioritized task has replicas in more than one underemployed
servers. In this case, the ObServer chooses the most under-
utilized one among them; 2) though rare, it is possible that the
underemployed server is saturated. In this case, the ObServer
degrades the prioritized task into the normal queue, so that
later we can still try its non-prioritized candidates.

Overhead. When searching underemployed nodes, Dayu
maintains two heaps, whose keys are the available outgoing
bandwidth and the total size of common chunks respectively,
and whose values are the IDs of nodes. The ObServer will
first build these two heaps, which is an O(n) operation (n
is the number of nodes) [23], and then pop 5% entries from
these two heaps, with each pop an O(logn) operation. Our
experiment shows that heapifying 10,000 entries and then
popping up 5% of them only take a few miliseconds.

4.3 Allocating Bandwidth for Each Task

Given the source and destination of each recovery task, we
need to answer how fast each task should proceed. A naive
solution is to set a coarse-grained limit on all tasks within one
node using Brecover_in/out and let them compete for bandwidth.
However, our experiments have revealed two problems with
this approach: first, this approach may cause a congestion
when the source’s outgoing limit is larger than the destina-
tion’s incoming limit. Although TCP can resolve such con-
gestion eventually, it will cause packet drops and slow down
recovery. Second, the competition may cause one task to be
significantly slower than others, causing a significant straggler
and violating our third goal.

Therefore, in this step, Dayu tries to set a constant rate
for each task in one timeslot, with the goal of maximizing
bandwidth utilization. Recall that we assume the NICs of the
end hosts are the bottlenecks, so this step only considers the
bandwidth utilization at the end hosts. Even so, this is still a
challenging problem, since allocating bandwidth for a task
will consume the bandwidth on both sides.

Dayu’s solution is based on weighted shuffle scheduling
(WSS) [14], a mature network scheduling algorithm designed
for scheduling large data flows like data shuffle in MapRe-
duce [24]. The key idea of WSS is that, to finish all the pair-
wise transfers at the same time, it guarantees that 1) transfer
rates are proportional to data sizes for each transfer, and 2) at
least one link is fully utilized. With WSS, only the bottleneck
links (quite a minority) are fully used, while all the others
have an amount of bandwidth left. In our scenario, however,
WSS is not ideal: when considering unpredictable growth in
foreground traffic, which may cause a non-bottleneck link to
become a bottleneck in the middle of a timeslot, WSS may
cause a waste of bandwidth, because Dayu could utilize more
bandwidth of this link at the beginning.

To this end, Dayu introduces an iterative WSS solution to
allocate bandwidth for each task. Its key idea is that, without
delaying the bottleneck tasks, we should finish other tasks as
early as possible, so as to reduce their completion time and to
improve bandwidth utilization. Following this idea, if there is
any remaining bandwidth after running one iteration of WSS,
Dayu will use another iteration of WSS to identify the next
bottleneck and allocate the remaining bandwidth.

To be specific, Dayu maintains a remaining incoming and
outgoing bandwidth Bi

remain_in and Bi
remain_out for each node,

whose initial values are Bi
recover_in and Bi

recover_out . In each

iteration, Dayu first finds the node with the longest ci
in

Bi
remain_in

or ci
out

Bi
remain_out

, denoted T ∗: the corresponding tasks are the bot-

tlenecks. Then, Dayu allocates Bt =
st
T ∗ bandwidth to each

task t, indicating that to minimize the completion time, the
bottleneck tasks must be assigned a weighted fair share of the
bandwidth, such that the weight of the share is proportional
to st . Afterward, Dayu updates the remaining bandwidth as

USENIX Association 2019 USENIX Annual Technical Conference 999

Bi
remain_in−=

ci
in

T ∗ and Bi
remain_out−= ci

out
T ∗ for each node i, re-

moves the bottleneck tasks from their corresponding nodes,
and updates the cin/out values of these nodes. Then Dayu
moves to the next iteration with the remaining tasks, till there
are no tasks remaining or the remaining tasks have an accept-
able transmission time (i.e., less than or equal to the length
of a timeslot) with their allocated bandwidth. Note that if a
task goes through multiple iterations, its allocated bandwidth
is the sum of the allocated bandwidth in each iteration.

Iterative WSS overcomes the drawbacks of WSS: since
iterative WSS tries to allocate all bandwidth, it is not possible
for the system to waste bandwidth when there are tasks that
can utilize such bandwidth.

Our experiment shows that for a 3500-node cluster, each
iteration will take at most 15 ms. Since dynamic convex hull
node selection algorithm keeps the “ c

B " values of most nodes
to be close, the iterative WSS algorithm can usually finish
within five iterations (i.e. 75 ms), which is acceptable.

4.4 Re-scheduling Straggling Tasks
Due to inaccurate workload estimation, sub-optimal schedul-
ing, hardware exceptions, and etc., some tasks could not be
finished at the end of one timeslot. Dayu has to re-schedule
such straggler tasks in the next timeslot, but cannot simply
treat them as new tasks, because changing the destination
of one straggler task requires re-transmitting the task from
the beginning, causing waste of bandwidth. Therefore, Dayu
should avoid changing the destination when possible—this is
a constraint new tasks do not have.

Identifying stragglers. Recall that Dayu overlaps different
timeslots so that the scheduling phase of the current timeslot
happens a short period of time (denoted as Tschedule) before
the end of the last timeslot (Figure 2). Therefore, Dayu has to
predict which tasks will become stragglers: for one unfinished
task, Dayu uses its speed so far to estimate its speed till the
end of the last timeslot; if the task cannot finish given the
estimated speed, Dayu puts those tasks into a straggler set.

Prediction can certainly be inaccurate. If Dayu marks a task
as a straggler but it actually finishes with the last timeslot, the
corresponding nodes will simply ignore the new transmission
plan scheduled by Dayu. Conversely, if a task is not marked
as a straggler but it cannot finish within the last timeslot, the
corresponding node will not get a new transmission plan,
and thus will stick with the old plan. Both cases may cause
inefficiency, but since Tschedule is much smaller than Ttimeslot ,
these two kinds of misidentification have little impact in our
experiments.

Scheduling stragglers. First, Dayu will check whether the
straggler set itself will saturate some nodes in the current
timeslot. If any, the ObServer iteratively evicts the least fin-
ished task from each saturated node until it is no longer sat-
urated. Those evicted tasks are categorized into two groups:

RootServer

ObServer

ChunkServer
...

data
migration

...

instruction

state

state collectMetaServer

generate
task

ChunkServer

data
migration

...

Figure 4: Our implementation of Dayu on Pangu. Gray boxes
stand for functions or components Dayu adds to Pangu.

tasks evicted from their sources and tasks evicted from their
destinations. They are rescheduled in different manners.
• For each straggler task in the first group, the ObServer

chooses a source and a transfer rate (the same as a new
task), while keeping the destination unchanged, which
means the task can resume from its current progress.
• For each straggler task in the second group, the ObServer

reschedules it as a new task.

For unevicted straggler tasks, Dayu keeps their sources and
destinations unchanged, and allocates the bandwidth with the
iterative WSS algorithm. They can resume from their current
progress.

Compared to treating stragglers as new tasks, Dayu tries
to minimize re-transmitting data, since it only changes the
destination of the second group of stragglers (quite a minority)
and re-transmits their data. Compared to letting stragglers
continue with their original plans, our experiments show that
the introduction of straggler adjustment improves the overall
recovery speed by 15.6%.

It should also be noted that how to detect and report slow
hardware is an orthogonal problem [25–27]. Dayu assumes
the system has some mechanism to measure and report the
actual bandwidth of each node.

5 Evaluation

Our evaluation tries to answer the following questions:
1. How fast can Dayu complete one typical full node re-

covery and how much interference does Dayu introduce
between background and foreground? (§5.1)

2. Could Dayu scale to even larger systems? (§5.2)
3. In Dayu, how much benefit does each key technology

bring? (§5.3)
4. How does the setting of the parameters affect the perfor-

mance of Dayu? (§5.4)

Implemention. We implement Dayu upon Pangu, by mod-
ifying MetaServers, RootServer, and ChunkServers of Pangu
and introducing Dayu’s ObServer into Pangu, as shown in
Figure 4. The ObServer is aware of the information of all
the recovery tasks as well as the global information provided
by the RootServer, such as the chunk placement and the net-
work utilization at each ChunkServer. As Pangu monitors
and reports the states of ChunkServers every 15 seconds, the

1000 2019 USENIX Annual Technical Conference USENIX Association

timeslot length of this implementation is set to 15 seconds.
Upon detection of a node failure in Pangu, MetaServers report
all the data chunks of the failed node to the ObServer, which
schedules how to re-replicate these data chunks. Afterwards,
the ObServer instructs the ChunkServers to execute recovery
tasks (i.e. re-replicate data chunks). Finally, after a recovery
task is completed, the ObServer updates the MetaServers to
reflect the locations of the newly-re-replicated chunk.

Testbed. We have deployed the Pangu-based Dayu imple-
mentation on a 1000-node cluster. Each node has two 12-core
Intel E5-2630 processors, 96GB DDR4 memory, two 10Gbps
NICs, 10 or 11 2TB hard disks, and Linux 3.10.0. Since our
traces are collected from a cluster with 1Gbps NICs but our
testbed is equipped with 10Gbps NICs, we add a traffic control
to our testbed so that each NIC can only use 1Gbps bandwidth.

We have also built a simulation environment to test Dayu
with the scale of 3,500 nodes or more. We run the simulation
in a server with two 16-core Intel E5-2620 processors, 64GB
DDR4 memory, and Linux 3.10.0.

Methodology. For experiments on real-world systems, we
trigger data recovery by shutting down one ChunkServer.
When performing recovery, we replay the trace collected from
the real-world cluster system (§2.2). Since our testing cluster
is smaller than the cluster where the trace is from, we reshape
the trace to fit the cluster size by trimming or redirecting
some requests, while keeping the ratio of read and write, the
pressure on each node, and the degree of imbalance among
nodes [28]. We record both the recovery time and the inter-
ference between the foreground and recovery traffic, which is
measured by comparing the p90 latency (i.e., tail latency at
90th percentile) of the foreground requests with and without
recovery traffic.

In the simulation experiments, we simulate the failure of a
ChunkServer by sending its chunk information to Dayu. Since
we do not actually run the system, we need to simulate the
interference between the foreground and the recovery traffic.
Due to the scale of the system, request level simulation takes
very long, so we use flow level simulation as in [29, 30]. It
simulates the bandwidth utilization of each link and periodi-
cally updates the utilization according to the foreground and
recovery traffic information. We define the interference fac-
tor as the ratio between the overload traffic size and the link
bandwidth, as follows:

Bi
overload = max(Bi

recover +Bi
f oreground−75%×Bi

total ,0) (3)

Finter f erence =
∑i∈Nodes Bi

overload

∑i∈Nodes Bi
total

(4)

The reason we define such an interference factor is that if the
total bandwidth utilization exceeds 75% of the NIC’s band-
width, the foreground latency will increase significantly. To
quantitatively understand this simulated interference factor,

we map them to the p90 latency in the real-world experi-
ments (§5.4): the short conclusion is that an interference factor
smaller than 2% indicates very small interference and a factor
close to or larger than 6.5% indicates very large interference.
In our simulation experiments, we simulate 50 failure cases
by randomly choosing 50 pairs of failed nodes and their fail-
ure time. For each algorithm, we simulate its performance on
all the 50 cases and report its average performance numbers.

In our following experiments, Figure 5 presents the results
from the real-world systems and the other figures present the
results from the simulation experiments.

Comparison. In the experiments on the real-world sys-
tems, we compare Dayu with Pangu’s original re-replication
strategy, which adopts disk utilization aware random data
placement and static rate control. We use three configura-
tions Pangu-slow (limit recovery traffic to 30MB/s, which
is the default configuration in production systems), Pangu-
mid (90MB/s), Pangu-fast (150MB/s) as the baselines.

In the simulation experiments, we compare Dayu with dif-
ferent scheduling algorithms used in state-of-the-art systems
(Table 2), with the exception of MCMF since its optimized
solver is not open sourced. For fairness, we keep the node
prioritizing and straggler adjustment part of Dayu, and plug
in different node selection and bandwidth allocation algo-
rithms. Specifically, when selecting the destination of recov-
ery tasks, we compare Dayu’s bucket dynamic convex hull
algorithm (C) to the following algorithms: 1) Random (R),
which randomly selects a node as the transmission source and
destination; 2) Best-of-two-random (B2R), which first chooses
two ChunkServers randomly, and then picks the lighter-loaded
one as the source or destination [4, 9]; 3) Weighted ran-
dom (WR), which uses the available bandwidth as the weight
to randomly select a node; 4) Greedy1 (G1), which scans all
candidate ChunkServers as [31, 32], then in our scenario finds
the one with minimal c

B . 5) Greedy2 (G2), which chooses the
lightest-loaded ChunkServer, by maintaining a red-black tree.
All greedy algorithms, including Dayu, are executed using a
single thread; all random-based algorithms are executed us-
ing 16 threads. Note that although random-based algorithms
can be distributed to reach even higher speed, we find their
speed is not the bottleneck anyway in our experiments. We
also test the MILP algorithm with a state-of-the-art MILP
solver Gurobi [33], but find it can only finish computation for
a small-scale cluster; for a 3500-node cluster and only 2000
tasks, it cannot finish computation after 125 seconds and thus
we do not report its results. When determining the rate of each
task, we compare Dayu’s iterative WSS (W) with deadline-
based allocation (DA), which assigns a rate of st

Ttimeslot
to task

t so that a task can be finished in one timeslot.

5.1 Overall Performance
Evaluation on the Real-world Systems. Figure 5 shows
the recovery times and the p90 latency of the foreground re-

USENIX Association 2019 USENIX Annual Technical Conference 1001

System Algorithm
Commons [3, 5–7] Random placement

RAMClould [4] Best-of-two-random
CAR [31] Greedy1
PPR [32] Greedy1

Mirador [34] Greedy2
DH-HDFS [35] MILP
Sparrow [36] Best-of-two-random

Firmament [37] MCMF
Table 2: State-of-the-art systems and their algorithms.

260

280

300

Pangu-fast

150 175 200 225 250
0

20

40

Ideal Dayu

Pangu-mid

500 525 550 575 600

Pangu-slow

Recovery time(s)

P
90

la
te

nc
y

(m
s)

Figure 5: The recovery time and the p90 latency during recov-
ery in real-world experiments

quests during recovery. In this test, we shutdown a server to
create 15TB of data to recover, and approximately 990 sur-
viving ChunkServers are responsible for recovery. For com-
parison, we add an “Ideal” entry in Figure 5, which estimates
the optimal recovery time assuming all available bandwidth
(α = 75%) can be utilized, and introduces no interference on
the foreground traffic (i.e., the foreground latency is identical
to the one without recovery).

As shown in the figure, Dayu achieves near-optimal re-
covery speed as well as low interference. First, Dayu is ap-
proaching the ideal recovery speed, as its recovery time is
1.19× longer than “Ideal”: this is 2.96× and 1.24× faster
than Pangu-slow (default) and Pangu-mid configurations re-
spectively. Compared with the Pangu-fast configuration, al-
though Dayu has a slightly slower recovery speed (0.93×),
it introduces far less interference on the foreground traffic.
Considering the interference of the recovery traffic on the
foreground traffic, Dayu’s p90 latency is only 1.04× longer
than “Ideal”. Pangu-slow has a slightly lower interference
with its p90 latency nearly the same as “Ideal”; Pangu-mid
and Pangu-fast create unacceptable interference as their p90
latencies are 4.23-48.14× higher than “Ideal”. Due to the
high interference to the foreground traffic, Pangu-mid and
Pangu-fast are seldom used on production clusters. In sum-
mary, compared with the different settings in Pangu, Dayu
achieves close-to-optimal recovery time and interference.

Evaluation on the Simulation Systems. Figure 6 shows
the results of simulation experiments. Again, compared with
other algorithms, Dayu achieves a good balance between re-
covery speed and interference.

40 50 60 70 80 90 100 110

0

1

2

3

4

5

Ideal

C+W

G2+W

G1+W

B2R+W
WR+W

C+DA

G2+DA

G1+DA

B2R+DA

R+DA

WR+DA

150 160 170

R+W

Recovery time(s)

In
te

rf
er

en
ce

fa
ct

or
(%

)

Figure 6: Data recovery in simulation (Dayu uses C+W)

In terms of recovery speed, Dayu’s combination of dy-
namic convex hull node selection and iterative WSS (C+W)
can achieve the shortest recovery time among all algorithms,
which is 1.14× longer than the ideal recovery time. Com-
pared to other algorithms, dynamic convex hull node selec-
tion achieves the fastest recovery speed, which is 1.12× faster
than G1, the second best one. Note that though G1 is close
to Dayu in this experiment, it does not scale well due to its
high computation overhead (§5.2). For the greedy-based al-
gorithms including Dayu, iterative WSS is slightly faster than
deadline-based allocation, because the former can finish the
last timeslot early when tasks are rare, while the latter must
finish tasks at the end of the last timeslot. For random-based
algorithms, such effect is unclear because the recovery speed
is mainly determined by the selection of the sources and des-
tinations.

In terms of interference on foreground, Dayu has accept-
able interference factor (recall that a factor of 2% is small
and a factor larger than 6.5% is unacceptable). With the same
bandwidth allocation strategy, Dayu’s node selection algo-
rithm and other greedy algorithms have slightly larger inter-
ference than those random based algorithms, because greedy
algorithms usually utilize more estimated available bandwidth.
When the estimation of the foreground traffic has some errors,
the interference will be slightly larger. With the same node
selection algorithm, iterative WSS consistently brings lower
interference than deadline-based allocation (DA).

5.2 Scalability

5000 7500 10000 12500 15000 17500 20000 22500 25000

Cluster size

0

1

2

3

R
ec

ov
er

y
th

ro
ug

hp
ut

(T
B

/s
)

Ideal

Dayu

G1

G2

WR

R

B2R

Figure 7: Dayu’s scalability

1002 2019 USENIX Annual Technical Conference USENIX Association

We evaluate the scalability of Dayu beyond 3,500 nodes. To
measure the full capability of different algorithms, we assume
there are infinite number of recovery tasks and simulate how
much data each algorithm can recover in 20 timeslots. As the
scale of the simulated clusters are larger than our observed
cluster, we randomly generate block placement based on the
statistics from our collected traces; we randomly pick the
foreground trace from one real node for one simulated node.

As shown in Figure 7, Dayu can scale to 25,000 nodes
and till that point, the performance of Dayu is higher than all
other algorithms. We do not test even larger scales because
they are too far away from our target (10K nodes). Besides
Dayu, all random algorithms scale pretty well, which is as
expected, though their performance is not as good as Dayu. G1
does not scale to more than 5,000 nodes because of its high
computation overhead. Note that as greedy algorithms, Dayu
and G2 will eventually stop scaling at some point because
of their centralized computation, but at least for the scale we
target now and in the near future, the simulation shows that
Dayu is fast enough and can provide better quality.

5.3 Effects of Individual Techniques

58 60 62 64 66 68 70 72 74

1.9

2.0

2.1

2.2

2.3

2.4

C+W

C+W+P

C+W+AAll

Recovery time(s)

In
te

rf
er

en
ce

fa
ct

or
(%

)

Figure 8: Effects of prioritizing underemployed node (P) and
re-scheduling stragglers (A)

We further investigate the effects of prioritizing underem-
ployed nodes (P) and re-scheduling stragglers (A) described
in Section 4.2 and 4.4. We use Dayu equipped with convex
hull node selection (C) and iterative WSS bandwidth alloca-
tion (W) as the baseline (C+W), which scans tasks with no
prioritization and executes stragglers with the original plan
(i.e. P and A are disabled). Note that in this baseline, Dayu
is aware of those stragglers and will use their information to
schedule the current timeslot but won’t re-schedule stragglers.

Figure 8 presents Dayu’s schedule results with and with-
out P and A. As shown in the figure, the re-scheduling of
stragglers is keen to the performance: compared with the
baseline (C+W), re-scheduling stragglers (C+W+A) reduces
recovery time by 15.6% and reduces the interference as well.
Though prioritizing underemployed nodes has limited ef-
fect without re-scheduling stragglers, it accelerates the re-
covery speed by 7.2% when straggler re-scheduling is already
equipped (compare “All” to the case C+W+A).

5.4 Impacts of Key Parameters
Finally, we measure the impacts of key parameters of Dayu.
The first one is α in Equation 1, which controls the inter-
ference of recovery traffic on foreground traffic. Figure 9(a)
plots the recovery time and interference factor as α increases
from 65% to 85% with the step size of 5%. One can see that
the larger the α, the shorter the recovery time but the larger
the interference factor. In this figure, we further map some of
these simulated interference factors to the p90 latencies from
the real-world experiments, so that we can quantitatively un-
derstand the values of the simulated interference factors. Our
decision to use the value 75% for α is mainly based on these
p90 latencies from real-world experiments: with α = 75%,
Dayu achieves close-to-optimal recovery time and p90 latency
(§5.1); with α= 80%, although Dayu decreases recovery time
by 9.1%, it almost triples the p90 latency of the foreground
traffic.

50 55 60 65 70
Recovery time(s)

0

5

10

In
te

rf
er

en
ce

fa
ct

or
(%

)

65%70%

75% (p90: 6ms)

80% (p90: 17ms)

85%

(a) Tuning α

59 60 61 62
Recovery time(s)

1.83

1.84

1.85

1.86

1.87

In
te

rf
er

en
ce

fa
ct

or
(%

)

0

2.5%
5%

7.5%

10%

(b) Tuning β

Figure 9: Effects of tuning α and β

The next parameter, β, denotes the ratio of selected
nodes from two sorted lists when choosing underemployed
ChunkServers in Section 4.2. We change β from 0% to 10%
with the step size of 2.5%. As shown in Figure 9(b), the value
of β has no significant impact on the interference factor and
setting it to 5% achieves the lowest recovery time, which is
why Dayu sets β to 5%.

Another important parameter is the length of a timeslot
(Ttimeslot), but since this parameter affects the overall overhead
of Pangu, we were not allowed to change it in the production
system and thus we were not able to record and analyze a
trace with a different Ttimeslot . In general, shorter Ttimeslot will
benefit Dayu by allowing it to react to foreground fluctuation
more quickly but will increase the overhead of Pangu.

6 Related Work

Data Recovery. Popular distributed filesystems such as
GFS [3], HDFS [5], Cosmos [6], and Windows Azure Stor-
age [7] use random node selection and static rate control
for data recovery, same as Pangu. RAMCloud [4, 38] uses
the best-of-two-random algorithm to select the source and
destination for a recovery task. Constrained by the deter-
ministic placement, consistent hashing based storage sys-
tems [17, 22, 39–41] have little flexibility to choose the desti-
nation. Our work shows that randomized algorithms may not
have a good quality in a highly imbalanced environment.

USENIX Association 2019 USENIX Annual Technical Conference 1003

Some works improve data recovery in erasure-coded stor-
age, by accelerating recovery of one failed block [31, 42, 43]
or designing new recovery-efficient codes [44–47]. Applying
Dayu to erasure-coded storage is our future work.

Data migration. Data recovery can be viewed as a subtopic
of data migration. A number of distributed filesystems [3, 5]
trigger data migration with a simple strategy or even manu-
ally (e.g., running HDFS balancer [48]). Mirador [34] uses a
priority queue to greedily migrate data objects according to
pre-defined rules. However, experiments in [34] report it does
not scale well due to its greedy algorithm. Curator [49] uses a
reinforcement learning solution to determine when to start a
migration task, but it does not choose sources and destinations
for data migration. DH-HDFS [35] utilizes MILP solver to
manage migration of large scale storage system, but for our
problem, MILP is too slow.

Constrained data placement strategies. Besides consis-
tent hashing based storage systems [17, 22, 39–41], there are
other systems restricting the data placement. Facebook [50]
modifies native HDFS to constrain the placement of block
replicas into smaller node groups (i.e., with a smaller scatter
width), reducing the probability of losing data due to simulta-
neous node failures. With a fixed scatter width, CopySets [51]
and Tiered Replication [52] further try to minimize the num-
ber of the distinct copysets in the whole system to reduce the
probability of data loss due to correlated node failures. We
plan to investigate the applicability and effectiveness of Dayu
on these strategies in the future.

Large scale scheduling. Many large-scale computation
platforms need to schedule computation tasks, which is sim-
ilar to schedule recovery tasks in Dayu. Most centralized
schedulers [53, 54] have poor computation performance at
a large scale, and thus distributed schedulers are widely dis-
cussed [36, 55, 56]. However, due to the lack of coordination
and the latest state, these schedulers often fail to generate
high quality decisions [37]. Firmament [37], a centralized
scheduler, succeeds to scale to a 12500-node cluster [57] , but
experiments in [37, 58] report it has limited scalability with
massive short tasks, which is exactly our scenario (§2.2).

7 Conclusion

Our work shows that a centralized scheduler has better
scheduling quality, especially in a dynamic and imbalanced
environment; its weakness, i.e. relatively low speed compared
to the decentralized schedulers, can be mitigated by different
optimizations (e.g. timeslot-based scheduling, convex hull
optimization, etc). As a result, it can support a reasonably
large system we target.

8 Acknowledgment

We thank all reviewers for their insightful comments, and
especially our shepherd Sudarsun Kannan for his guidance
during our camera-ready preparation. We also thank Tianyang
Jiang for helpful discussions, and Alibaba Cloud for provid-
ing us the evaluation cluster. This work was supported by
the National key R&D Program of China under Grant No.
2018YFB0203902, and the National Natural Science Founda-
tion of China under Grant No. 61672315.

References

[1] Zujie Ren, Weisong Shi, Jian Wan, Feng Cao, and Jiangbin
Lin. Realistic and scalable benchmarking cloud file systems:
Practices and lessons from alicloud. IEEE Transactions on
Parallel and Distributed Systems, 28(3272-3285):1, 2017.

[2] Backblaze. Backblaze Durability is 99.999999999% —
And Why It Doesn’t Matter. https://www.backblaze.
com/blog/cloud-storage-durability/, 2018. Online; ac-
cessed 2018-12-25.

[3] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The
Google file system. In Proceedings of the 19th ACM Sympo-
sium on Operating Systems Principles (SOSP’03), volume 37.
ACM, 2003.

[4] Diego Ongaro, Stephen M Rumble, Ryan Stutsman, John
Ousterhout, and Mendel Rosenblum. Fast crash recovery in
RAMCloud. In Proceedings of the 23rd ACM Symposium on
Operating Systems Principles (SOSP’11), pages 29–41. ACM,
2011.

[5] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and
Robert Chansler. The Hadoop distributed file system. In
Proceedings of 26th IEEE symposium on Mass storage systems
and technologies (MSST’10), pages 1–10. IEEE, 2010.

[6] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey,
Darren Shakib, Simon Weaver, and Jingren Zhou. Scope: easy
and efficient parallel processing of massive data sets. Proceed-
ings of the VLDB Endowment (VLDB’08), 1(2):1265–1276,
2008.

[7] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild
Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav,
Jiesheng Wu, Huseyin Simitci, et al. Windows Azure Storage:
a highly available cloud storage service with strong consis-
tency. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles (SOSP’17), pages 143–157.
ACM, 2011.

[8] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh,
Deborah A Wallach, Mike Burrows, Tushar Chandra, Andrew
Fikes, and Robert E Gruber. Bigtable: A distributed storage
system for structured data. ACM Transactions on Computer
Systems (TOCS), 26(2):4, 2008.

1004 2019 USENIX Annual Technical Conference USENIX Association

https://www.backblaze.com/blog/cloud-storage-durability/
https://www.backblaze.com/blog/cloud-storage-durability/

[9] Andrea W Richa, M Mitzenmacher, and R Sitaraman. The
power of two random choices: A survey of techniques and
results. Combinatorial Optimization, 9:255–304, 2001.

[10] Yuchao Zhang, Junchen Jiang, Ke Xu, Xiaohui Nie, Martin J
Reed, Haiyang Wang, Guang Yao, Miao Zhang, and Kai Chen.
BDS: a centralized near-optimal overlay network for inter-
datacenter data replication. In Proceedings of the Thirteenth
European Conference on Computer Systems (Eurosys’18),
pages 10:1–10:14. ACM, 2018.

[11] Jun Woo Park, Alexey Tumanov, Angela Jiang, Michael A
Kozuch, and Gregory R Ganger. 3Sigma: distribution-based
cluster scheduling for runtime uncertainty. In Proceedings
of the Thirteenth European Conference on Computer Systems
(Eurosys’18), page 2. ACM, 2018.

[12] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A
Kozuch, Mor Harchol-Balter, and Gregory R Ganger.
TetriSched: global rescheduling with adaptive plan-ahead
in dynamic heterogeneous clusters. In Proceedings of the
Eleventh European Conference on Computer Systems (Eurosys’
16), page 35. ACM, 2016.

[13] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark
Overmars. Computational geometry: algorithms and applica-
tions. Springer-Verlag TELOS, 2008.

[14] Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I.
Jordan, and Ion Stoica. Managing data transfers in computer
clusters with Orchestra. In Proceedings of the ACM SIGCOMM
2011 Conference on Applications, technologies, architectures,
and protocols for computer communication (SIGCOMM’11),
pages 98–109, New York, NY, USA, 2011. ACM.

[15] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes,
Christopher Frost, Jeffrey John Furman, Sanjay Ghemawat,
Andrey Gubarev, Christopher Heiser, Peter Hochschild, et al.
Spanner: Google’s globally distributed database. ACM Trans-
actions on Computer Systems (TOCS), 31(3):8, 2013.

[16] Apache. HDFS Federation. https://hadoop.apache.
org/docs/stable/hadoop-project-dist/hadoop-hdfs/
Federation.html, 2018. Online; accessed 2018-04-16.

[17] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell
D. E. Long, and Carlos Maltzahn. Ceph: A scalable, high-
performance distributed file system. In Proceedings of the
7th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’06), pages 307–320, 2006.

[18] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth
Kandula, Changhoon Kim, Parantap Lahiri, David A Maltz,
Parveen Patel, and Sudipta Sengupta. VL2: a scalable and
flexible data center network. In Proceedings of the ACM SIG-
COMM 2009 conference on Applications, technologies, ar-
chitectures, and protocols for computer communication (SIG-
COMM’09), volume 39, pages 51–62. ACM, 2009.

[19] Albert Greenberg, Parantap Lahiri, David A Maltz, Parveen
Patel, and Sudipta Sengupta. Towards a next generation data

center architecture: scalability and commoditization. In Pro-
ceedings of the ACM workshop on Programmable routers for
extensible services of tomorrow (PRESTO’08), pages 57–62.
ACM, 2008.

[20] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farring-
ton, Nelson Huang, Pardis Miri, Sivasankar Radhakrishnan,
Vikram Subramanya, and Amin Vahdat. Portland: a scalable
fault-tolerant layer 2 data center network fabric. In Proceed-
ings of the ACM SIGCOMM 2009 conference on Applications,
technologies, architectures, and protocols for computer com-
munication (SIGCOMM’09), volume 39, pages 39–50. ACM,
2009.

[21] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat.
A scalable, commodity data center network architecture. In
Proceedings of the ACM SIGCOMM 2008 conference on Ap-
plications, technologies, architectures, and protocols for com-
puter communication (SIGCOMM’08), volume 38, pages 63–
74. ACM, 2008.

[22] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-
navardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and Werner
Vogels. Dynamo: Amazon’s highly available key-value store.
In Proceedings of the 21st ACM Symposium on Operating Sys-
tems Principles (SOSP’07), volume 41, pages 205–220. ACM,
2007.

[23] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and
Clifford Stein. Introduction to algorithms. MIT press, 2009.

[24] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simpli-
fied data processing on large clusters. Proceedings of the 6th
Conference on Symposium on Opearting Systems Design and
Implementation (OSDI’04), 51(1):107–113, 2004.

[25] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears, Casey
Golliher, Swaminathan Sundararaman, Xing Lin, Tim Emami,
Weiguang Sheng, Nematollah Bidokhti, Caitie McCaffrey,
Gary Grider, Parks M. Fields, Kevin Harms, Robert B. Ross,
Andree Jacobson, Robert Ricci, Kirk Webb, Peter Alvaro, H. Bi-
rali Runesha, Mingzhe Hao, and Huaicheng Li. Fail-slow at
scale: Evidence of hardware performance faults in large pro-
duction systems. In 16th USENIX Conference on File and
Storage Technologies (FAST’18), pages 1–14, Oakland, CA,
2018. USENIX Association.

[26] Thanh Do, Mingzhe Hao, Tanakorn Leesatapornwongsa,
Tiratat Patana-anake, and Haryadi S. Gunawi. Limplock: Un-
derstanding the impact of limpware on scale-out cloud systems.
In Proceedings of the 4th Annual Symposium on Cloud Com-
puting (SOCC’13), pages 14:1–14:14, New York, NY, USA,
2013. ACM.

[27] Peng Huang, Chuanxiong Guo, Jacob R. Lorch, Lidong Zhou,
and Yingnong Dang. Capturing and enhancing in Situ system
observability for failure detection. In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’18),
pages 1–16, Carlsbad, CA, 2018. USENIX Association.

USENIX Association 2019 USENIX Annual Technical Conference 1005

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html

[28] Mosharaf Chowdhury, Srikanth Kandula, and Ion Stoica. Lever-
aging endpoint flexibility in data-intensive clusters. In Proceed-
ings of the ACM SIGCOMM 2013 Conference on Applications,
technologies, architectures, and protocols for computer commu-
nication (SIGCOMM’13), volume 43, pages 231–242. ACM,
2013.

[29] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath
Raghavan, Nelson Huang, and Amin Vahdat. Hedera: Dynamic
flow scheduling for data center networks. In Proceedings of the
7th USENIX Conference on Networked Systems Design and Im-
plementation (NSDI’10), Berkeley, CA, USA, 2010. USENIX
Association.

[30] Chi-Yao Hong, Matthew Caesar, and P Godfrey. Finishing
flows quickly with preemptive scheduling. In Proceedings of
the ACM SIGCOMM 2012 conference on Applications, tech-
nologies, architectures, and protocols for computer communi-
cation (SIGCOMM’12), pages 127–138. ACM, 2012.

[31] Zhirong Shen, Jiwu Shu, and Patrick PC Lee. Reconsidering
single failure recovery in clustered file systems. In Proceed-
ings of 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN ’16), pages 323–334.
IEEE, 2016.

[32] Subrata Mitra, Rajesh Panta, Moo-Ryong Ra, and Saurabh
Bagchi. Partial-parallel-repair (ppr): a distributed technique
for repairing erasure coded storage. In Proceedings of the
Eleventh European Conference on Computer Systems (Eu-
rosys’16), page 30. ACM, 2016.

[33] Gurobi. Gurobi 8.0. URL:http://www.gurobi.com, 2018.
Online; accessed 2018-12-25.

[34] Jake Wires and Andrew Warfield. Mirador: An active control
plane for datacenter storage. In Proceedings of 15th USENIX
Conference on File and Storage Technologies (FAST’17), pages
213–228, Santa Clara, CA, 2017. USENIX Association.

[35] Pulkit A. Misra, Inigo Goiri, Jason Kace, and Ricardo Bian-
chini. Scaling distributed file systems in resource-harvesting
datacenters. In Proceedings of 2017 USENIX Annual Technical
Conference (ATC’17), pages 799–811, Santa Clara, CA, 2017.
USENIX Association.

[36] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Sto-
ica. Sparrow: Distributed, low latency scheduling. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 69–84, New York, NY,
USA, 2013. ACM.

[37] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert N. M.
Watson, and Steven Hand. Firmament: Fast, centralized cluster
scheduling at scale. In Proceedings of 12th USENIX Sym-
posium on Operating Systems Design and Implementation
(OSDI’16), pages 99–115, Savannah, GA, 2016. USENIX As-
sociation.

[38] Ryan Scott Stutsman. Durability and crash recovery in dis-
tributed in-memory storage systems. PhD thesis, Stanford
University, 2013.

[39] Edmund B Nightingale, Jeremy Elson, Jinliang Fan, Owen S
Hofmann, Jon Howell, and Yutaka Suzue. Flat datacenter
storage. In Proceedings of the 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI’12),
pages 1–15, 2012.

[40] Gluster. GlusterFS documention. URL:https://docs.
gluster.org/en/latest/, 2018. Online; accessed 2018-
12-25.

[41] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek,
and Hari Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. Proceedings of the ACM
SIGCOMM 2001 conference on Applications, technologies, ar-
chitectures, and protocols for computer communication (SIG-
COMM’01), 31(4):149–160, 2001.

[42] Runhui Li, Xiaolu Li, Patrick PC Lee, and Qun Huang. Repair
pipelining for erasure-coded storage. In Proceedings of the
2017 USENIX Annual Technical Conference (ATC’17), pages
567–579, 2017.

[43] Subrata Mitra, Rajesh Panta, Moo-Ryong Ra, and Saurabh
Bagchi. Partial-parallel-repair (PPR): a distributed technique
for repairing erasure coded storage. In Proceedings of the
Eleventh European Conference on Computer Systems (Eu-
rosys’16), page 30. ACM, 2016.

[44] Alexandros G Dimakis, P Brighten Godfrey, Yunnan Wu, Mar-
tin J Wainwright, and Kannan Ramchandran. Network coding
for distributed storage systems. IEEE Transactions on Infor-
mation Theory, 56(9):4539–4551, 2010.

[45] KV Rashmi, Preetum Nakkiran, Jingyan Wang, Nihar B Shah,
and Kannan Ramchandran. Having your cake and eating it too:
Jointly optimal erasure codes for I/O, storage, and network-
bandwidth. In Proceedings of 13th USENIX Conference on
File and Storage Technologies (FAST’15), pages 81–94, 2015.

[46] Myna Vajha, Vinayak Ramkumar, Bhagyashree Puranik,
Ganesh Kini, Elita Lobo, Birenjith Sasidharan, P Vijay Kumar,
Alexandar Barg, Min Ye, Srinivasan Narayanamurthy, et al.
Clay codes: Moulding MDS codes to yield an MSR code. In
Proceedings of 16th USENIX Conference on File and Storage
Technologies (FAST’18), volume 2018, pages 139–154, 2018.

[47] Min Ye and Alexander Barg. Explicit constructions of optimal-
access MDS codes with nearly optimal sub-packetization.
IEEE Transactions on Information Theory, 63(10):6307–6317,
2017.

[48] Apache. HDFS Balancer Command. URL:https://hadoop.
apache.org/docs/r2.7.2/hadoop-project-dist/
hadoop-hdfs/HDFSCommands.html, 2019. Online; accessed
2019-01-10.

[49] Ignacio Cano, Srinivas Aiyar, Varun Arora, Manosiz Bhat-
tacharyya, Akhilesh Chaganti, Chern Cheah, Brent Chun,
Karan Gupta, Vinayak Khot, and Arvind Krishnamurthy. Cu-
rator: Self-managing storage for enterprise clusters. In Pro-
ceedings of 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’17), pages 51–66, Boston,
MA, 2017. USENIX Association.

1006 2019 USENIX Annual Technical Conference USENIX Association

URL: http://www. gurobi. com
URL: https://docs.gluster.org/en/latest/
URL: https://docs.gluster.org/en/latest/
URL: https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/HDFSCommands.html
URL: https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/HDFSCommands.html
URL: https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/HDFSCommands.html

[50] Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kan-
nan Muthukkaruppan, Nicolas Spiegelberg, Hairong Kuang,
Karthik Ranganathan, Dmytro Molkov, Aravind Menon,
Samuel Rash, et al. Apache hadoop goes realtime at facebook.
In Proceedings of the 2011 ACM SIGMOD International Con-
ference on Management of data (SIGMOD’11), pages 1071–
1080. ACM, 2011.

[51] Asaf Cidon, Stephen Rumble, Ryan Stutsman, Sachin Katti,
John Ousterhout, and Mendel Rosenblum. Copysets: Reducing
the frequency of data loss in cloud storage. In Proceedings
of the 2013 USENIX Annual Technical Conference (USENIX
ATC’13), pages 37–48, 2013.

[52] Asaf Cidon, Robert Escriva, Sachin Katti, Mendel Rosenblum,
and Emin Gun Sirer. Tiered replication: A cost-effective alter-
native to full cluster geo-replication. In 2015 USENIX Annual
Technical Conference (USENIX ATC’15), pages 31–43, 2015.

[53] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder,
Kunal Talwar, and Andrew Goldberg. Quincy: Fair scheduling
for distributed computing clusters. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles
(SOSP’09), pages 261–276. ACM, 2009.

[54] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Gh-
odsi, Anthony D. Joseph, Randy Katz, Scott Shenker, and Ion

Stoica. Mesos: A platform for fine-grained resource sharing in
the data center. In Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation (NSDI’11),
NSDI’11, pages 295–308, Berkeley, CA, USA, 2011. USENIX
Association.

[55] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren
Zhou, Zhengping Qian, Ming Wu, and Lidong Zhou. Apollo:
Scalable and coordinated scheduling for cloud-scale comput-
ing. In Proceedings of the 11th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI’14), pages
285–300, Broomfield, CO, 2014. USENIX Association.

[56] Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec, and
Willy Zwaenepoel. Hawk: Hybrid datacenter scheduling. In
Proceedings of the 2015 USENIX Annual Technical Conference
(ATC’15), pages 499–510, Santa Clara, CA, 2015. USENIX
Association.

[57] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H
Katz, and Michael A Kozuch. Heterogeneity and dynamicity
of clouds at scale: Google trace analysis. In Proceedings of
the Third ACM Symposium on Cloud Computing (SOCC’12),
page 7. ACM, 2012.

[58] Ionel Corneliu Gog. Flexible and efficient computation in large
data centres. PhD thesis, University of Cambridge, 2018.

USENIX Association 2019 USENIX Annual Technical Conference 1007

OPTR: Order-Preserving Translation and Recovery Design
for SSDs with a Standard Block Device Interface

Yun-Sheng Chang and Ren-Shuo Liu
Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan

Abstract
Consumer-grade solid-state drives (SSDs) guarantee very few
things upon a crash. Lacking a strong disk-level crash guaran-
tee forces programmers to equip applications and �lesystems
with safety nets using redundant writes and �ushes, which in
turn degrade the overall system performance. Although some
prior works propose transactional SSDs with revolutionized
disk interfaces to o�er strong crash guarantees, adopting
transactional SSDs inevitably incurs dramatic software stack
changes. Therefore, most consumer-grade SSDs still keep
using the standard block device interface.

This paper addresses the above issues by breaking the
impression that increasing SSDs’ crash guarantees are typ-
ically available at the cost of altering the standard block
device interface. We propose Order-Preserving Translation
and Recovery (OPTR), a collection of novel �ash translation
layer (FTL) and crash recovery techniques that are realized
internal to block-interface SSDs to endow the SSDs with
strong request-level crash guarantees de�ned as follows: 1) A
write request is not made durable unless all its prior write
requests are durable. 2) Each write request is atomic. 3) All
write requests prior to a �ush are guaranteed durable. We
have realized OPTR in real SSD hardware and optimized ap-
plications and �lesystems (SQLite and Ext4) to demonstrate
OPTR’s bene�ts. Experimental results show 1.27× (only Ext4
is optimized), 2.85× (both Ext4 and SQLite are optimized),
and 6.03× (an OPTR-enabled no-barrier mode) performance
improvement.

1 Introduction
Storage systems are constructed layerwise; thus the overall
system performance depends on an appropriate division
of labor between layers. For example, for applications and
�lesystems that run on top of �ash-based solid-state drives
(SSDs), if the underlying SSDs focus too much on optimizing
their own performance and maintain too weak guarantees
upon a crash or power loss (crash for short), programmers
are forced to equip the applications and �lesystems with
safety nets using redundant writes and �ushes [24,26,33,41],
which in turn complicate the overall system and degrade the
overall performance.

That being said, widely used, consumer-grade SSDs (base-
line SSDs for short) guarantee very few things upon a crash:

System
ChangesMinor

Performance

Significant

Baseline SSD + Ext4 + SQLite

OPTR SSD + Ext4optr + SQLite

OPTR SSD + Ext4optr + SQLiteoptr

OPTR SSD + Ext4nb + SQLite

Baseline SSD + Ext4nb + SQLite

Transactional
SSD

1

2

3

4

5
6

Figure 1: OPTR SSD vs baseline and transactional SSDs.
Ext4optr and SQLiteoptr denote our optimized versions of Ext4
and SQLite, respectively. Ext4nb denotes Ext4 mounted with
the -o nobarrier option.

each individual sector that is written since the last �ush may
either be done or left undone, which means there is an enor-
mous set of post-crash states for applications and �lesystems
to handle. Lacking a strong disk-level crash guarantee has
caused deep, long-term consequences. For example, the or-
dering constraint among user data, metadata, journal, and
commit records should be enforced to prevent sensitive user
data and inconsistent states from being accidentally exposed.
However, disks are not obligated to preserve any write or-
der, and �lesystems are reluctant to use �ushes to enforce a
write order due to severe performance penalties. Therefore,
Linux Ext3 even turned o� �ushes for many years at the
risk of crash vulnerabilities [20]. Another alarming example
is that since the crash guarantees of underlying disks are
weak, various �lesystems struggle to provide a standardized
and strong crash guarantee at their level, and this struggle
consequently makes applications have di�culty ensuring
correct recovery from a crash. For example, LevelDB and Git
were recently found to contain many crash vulnerabilities
owing to this reason [39].

Despite many issues, SSDs with a weak crash guarantee
are still widely used for two reasons. First, the weak crash
guarantee has existed since the hard disk drive (HDD) era.
This design choice was unavoidable for optimizing HDD per-
formance and remains as a matter of course for optimizing
SSD performance. For example, HDDs were permitted to
freely reorder requests according to the position of pickup

USENIX Association 2019 USENIX Annual Technical Conference 1009

Baseline SSD

Ext4

SQLite

Journal Flush Commit

OPTR SSD

Ext4optr

SQLite

Flush Journal Commit Flush

OPTR SSD

Ext4optr

SQLiteoptr

Journal Commit Flushfdatasync()

Journal Commitfdatafence()

5 fdatasync() 5 fdatasync() 4 fdatafence()1 fdatasync()

NA NA

OPTR SSD

Ext4
-o nobarrier

SQLite

5 fdatasync()

Journal Commit

NA

1 2 3 4

standard
block interface

standard
block interface

standard
block interface

standard
block interface

Figure 2: Usage modes of OPTR SSDs and their �lesystem and disk interfaces. fdatafence is our newly proposed �lesystem
primitive that incurs no �ush. More details on the original �ve fdatasync and the use of fdatasync are in Section 4.

heads to minimize seek and rotational latency, and thus, SSDs
are also allowed to reorder or parallelize requests to maxi-
mize their internal channel- and chip-level parallelism. The
second reason is that although novel SSDs with revolution-
ized interfaces that o�er transaction-level crash guarantees
(transactional SSDs for short) [28,32,37,40,44] have recently
been studied, the fact is that there has been a vast body of
software and systems developed based on a standard block
device interface (block interface for short, e.g., SATA). There-
fore, as shown in Figure 1, although transactional SSDs (±)
can potentially o�er much higher performance than baseline
SSDs (¬), only few systems can adopt such dramatic changes.
Not surprisingly, most consumer-grade SSDs keep using the
block interface, and thus, the bene�ts of transactional SSDs
are not widely available.

This paper addresses the above issues by breaking the
impression that increasing SSDs’ crash guarantees is typi-
cally available at the cost of altering the block interface. We
propose Order-Preserving Translation and Recovery (OPTR),
a collection of novel �ash translation layer (FTL) and crash
recovery techniques that are realized internal to a block-
interface SSD to endow the SSD with strong request-level
crash guarantees as de�ned as follows:

1. Pre�x Semantics: The SSD does not make a write re-
quest durable unless all the write requests received pre-
viously by the SSD are durable (stronger than baseline
SSDs).

2. Request Atomicity: Each write request received by
the SSD is atomic regardless of the request size (i.e.,
number of sectors) (stronger than baseline SSDs).

3. Flush Semantics: The SSD guarantees durability to all
write requests that are received prior to a �ush (identical

to baseline SSDs).
Figure 3 uses a four-sector SSD to demonstrate the strong

request-level crash guarantees. The four sectors initially store
four version numbers, 0, 0, 0, and 0, respectively. The SSD
receives four write requests and one �ush request before a
crash occurs. Each write request is speci�ed by its lba and
size in parentheses. We assume that write requests always
increment the version number(s) of the written sector(s). For
example, the �rst write request touches the �rst and second
sectors, and thus the four version numbers become 1, 1, 0,
and 0. As shown in the �gure, each sector of a baseline SSD
can exhibit two to three valid post-crash version numbers;
therefore, the baseline SSD can exhibit 2×2×3×3=36 valid
post-crash results. In comparison, an OPTR SSD guarantees
to complete write requests in order and atomically, and there
are only two write requests after the last �ush; therefore, the
number of valid results is signi�cantly con�ned to three.

The strong request-level crash guarantees and our inten-
tional choice to use a standard block interface bring several
bene�ts. First, for programmers who want to develop new
applications or �lesystems, since the crash guarantees of
OPTR SSDs are truly intuitive, the chance of making mistakes
decreases. Additionally, since OPTR signi�cantly con�nes
the number of valid post-crash states, testing or verifying
the correctness of a program becomes more manageable.
Second, in addition to developing new programs, it is also
simple for programmers to optimize existing applications
and �lesystems to bene�t from OPTR. For example, Ext4 and
SQLite resort to �ushes to realize barriers because barriers
are unavailable to most SSDs [45]. We refer to these �ushes
as unnecessary flushes. With OPTR’s strong request-level
crash guarantees, we can optimize Ext4 and SQLite to remove

1010 2019 USENIX Annual Technical Conference USENIX Association

=

Post-crash baseline SSD

1 2 1 0 2 3 2 1 2 3 3 2or or

Post-crash OPTR SSD

1

2

1

2

3

2

3

0

1

2

= 36 results

= 3 results

or or
or or

or or

0 00 0
write(lba = 0, size = 2)

001 1

1 02 1

1 2 1 0

2 3 2 1

2 3 3 2

write(1, 2)

flush

write(0, 4)

write(2, 2)

Ti
m

e

Increment

Durable state

Transient state

crash

Figure 3: Post-crash states of OPTR SSDs vs. those of baseline
SSDs.

unnecessary �ushes (Section 4). The changes made to SQLite
and Ext4 code are minor, and the achieved performance is
signi�cant, as illustrated by ­ (optimizing Ext4 only) and ®
(optimizing both Ext4 and SQLite) in Figures 1 and 2. Finally,
all existing, unmodi�ed applications and �lesystems can still
run on OPTR SSDs, and this backward compatibility enables
an OPTR-enabled no-barrier mode as described as follows.

In the OPTR-enabled no-barrier mode, a �lesystem is
mounted with a no-barrier option (e.g., -o nobarrier for Ext4)
and run on top of an OPTR SSD, as illustrated by ¯ in Fig-
ures 1 and 2. In contrast to mounting the �lesystem with
the no-barrier option on a baseline SSD (° in Figure 1), this
mode achieves the best of both worlds, i.e., high performance
(which is the reason why Ext3 used to disable �ushes [20])
and consistency guarantees (because OPTR preserves order
without the need for explicit �ushes). This mode is practical
and useful for smartphones, consumer-grade computers, and
less-critical database systems such as SQLite [3] and some
key-value stores [18]1.

This work makes the following contributions.
• This is the �rst SSD work with strong request-level crash
guarantees and a standard block interface. We change
the impression that increasing SSDs’ crash guarantees
is typically available at the cost of altering the standard
block device interface. We present the address transla-
tion, garbage collection (GC), and crash recovery algo-
rithms internal to SSDs to achieve OPTR.

• We extend and restructure the FTL of an academic do-
main SSD project (OpenSSD [2]) to equip it with a write
cache as our baseline. This FTL implementation is more

1Note that this mode is not suitable for critical systems such as �nancial
transaction processing systems because it relaxes durability.

sophisticated and modularized.
• We extend the FTL mentioned above to realize OPTR.
• We develop a functional simulator that can simulate an

FTL given IO requests and crash events at high speed
to test whether the FTL can recover from a crash and
meet the OPTR requirement. We have validated this
simulator and our implemented FTLs against each other.
We anticipate that the simulator itself will be a useful
tool for future FTL research.

• We exploit the strong request-level crash guarantees by
optimizing the fsync primitive of Ext4 and newly propos-
ing an �ence primitive for Ext4. These two primitives
help to eliminate unnecessary �ushes. We also demon-
strate optimizing a database system, SQLite, to exploit
the two primitives.

The rest of this paper is organized as follows. Section 2
describes the background of SSDs. Section 3 presents the de-
tailed design and implementation of OPTR. Section 4 demon-
strates the �lesystem and application optimizations enabled
by OPTR. Section 5 shows the results of validating OPTR
using our developed functional simulator. Section 6 evaluates
OPTR’s gain and overhead. Section 7 analyzes the FTL in
more detail. Section 8 surveys related work, and Section 9
concludes this work.

2 Background
2.1 Flash Translation Layers
In the core of an SSD lies an FTL. FTLs are responsible for
translating a sequence of host-issued requests, including
write, read and �ush, into a sequence of �ash operations,
including page-program,page-read, and block-erase. Both read
and write requests specify the address range of the data at the
sector granularity; �ush instructs an SSD not to acknowledge
the host until the SSD persists all cached writes on stable
media.

Upon receiving a write request, the FTL segments the write
data into pages based on the given address range. A write re-
quest involves modi�cations to the logical-to-physical (L2P)
mapping table. Many mapping schemes have been proposed
(e.g., page-level, block-level, and hybrid) for various cost-
performance tradeo�s. This work is based on page-level
FTLs. Page-level FTLs divide the logical address space of
SSDs into pages, which are indexed by a logical page num-
ber (LPN). Each entry in the L2P table maps an LPN to the
location of a �ash page indexed by a physical page number
(PPN).

To handle a read request, the FTL translates the address
range into LPNs and performs L2P table lookups to obtain
the PPNs of the requested pages. If the cache happens to
have a requested page, the contents are returned to the host;
otherwise, a page-read is performed to retrieve the contents
from the �ash memory.

Flush requests are synchronous; thus, upon receiving a
�ush, the FTL must persist all dirty data in the write cache

USENIX Association 2019 USENIX Annual Technical Conference 1011

and ensure no ongoing page-program operation exists before
returning a success acknowledgment to the host.

As �ash memory forbids in-place updates, overwriting
data is done by writing the updated data to a free page and
leaving the outdated data in the original page. A dedicated
routine, called GC, is designed to reclaim these invalid pages,
which store outdated data. The GC routine starts with choos-
ing a victim block based on, e.g., the greedy policy [29, 42].
Then, this routine performs a series of page-reads and page-
programs to relocate the valid data in the victim block. Fi-
nally, the victim block is erased and added to the free-block
list.

2.2 High-Performance Schemes
Modern SSDs achieve signi�cant performance mainly ow-
ing to the following three schemes: internal parallelism, re-
quest scheduling, and write caching. Note that these high-
performance schemes all break the write order.

SSDs typically consist of multiple independent internal
channels for transferring data and commands. Each channel
connects to multiple �ash chips. The internal parallelism
of SSDs comes from these channels and chips, which can
perform �ash operations independently.

The goals of request scheduling are to increase the num-
ber of parallelized �ash operations and to decrease the latency
of each request. The former can be achieved by reordering
requests to reduce resource con�icts [34]. The latter can be
achieved by prioritizing requests with lower latency [22, 27].

Write caching removes slow storage accesses from the
critical path. As the access speed of �ash memory is often
orders of magnitude slower than that of DRAM, most com-
mercial SSDs employ a DRAM-based write-back cache for
better performance. Another advantage of write caching is
write coalescing. Multiple writes targeting the same LPN
have the opportunity to be merged into one page-program
operation, resulting in higher throughput and longer �ash
lifetimes.

2.3 SSD Recovery
The recovery mechanism of SSDs rebuilds the L2P table
after a system crash. Some previous works have studied
SSD recovery [7, 8, 11, 17, 30]. Leaving LPN information in
the spare area of each written page during writes is the
most common strategy [7], and the L2P information can be
reconstructed after a crash by scanning this information.
As multiple physical pages may contain the same LPN, a
sequence number is often used to determine their validity.

The process of rebuilding the L2P table may need to read
the spare areas of an enormous number of pages, leading to
long recovery times. For an SSD with 512 GB capacity, assum-
ing that each page is 32 KB and reading 32 pages in parallel
takes 100 µs, reading the spare area of all the �ash pages can
cost up to three minutes, which is unacceptable in most situ-
ations. Therefore, optimization to reduce the recovery time
has been proposed. Birrell et al. store the abovementioned

per page recovery information in the last page of a block
when the block is fully written [8]. This design eliminates
the need to read an entire block. Bjorling et al. take partial
and full checkpoints of the L2P table and persist the images
in a reserved area [9]. During recovery, these images are
loaded as the initial L2P table, and pages written after the
latest checkpoint are subsequently remapped.

3 OPTR SSD Design
We realize the following �ve components internal to an
SSD to achieve strong request-level crash guarantees with-
out changing the standard block interface: 1) tracking the
completion of write requests to ensure request atomicity, 2)
tracking the coalescing between write requests, 3) periodic
mapping table checkpointing, 4) tracking the availability of
blocks for GC, and 5) order-preserving recovery.
3.1 Write Completion Tracking
Request atomicity is one of OPTR’s guarantees. To achieve
this coarse-grained atomicity, OPTR determines the comple-
tion and incompletion of each individual write request using
a simple strategy: a write request that involves N pages is
completed if and only if those N pages do exist in �ash after
a crash.

More speci�cally, OPTR leaves the following three kinds of
clues in the spare area of each written �ash page to facilitate
determining the completion of a write request afterward.
The �rst is a unique sequence number of the write request
(wid, an 8-byte integer) assigned by the FTL according to
the order in which the request is received. The second is the
size of the write request in number of pages (size, a 4-byte
integer). The third is the logical page number (lpn, a 4-byte
integer) of the written page.

To determine which writes are completed and which are
not, the recovery procedure divides �ash pages into groups
according to their write request identi�ers (wid), counts the
appearance of each wid, and then compares this count with
size for each write request. The entire write request is com-
pleted if and only if the count matches the request size.
3.2 Write Coalescing Tracking
Two or more write requests may coalesce in the write cache
of SSDs; we refer to the involved write requests as coalesced
write requests. This situation reduces the in-�ash appearance
count of wid of the involved write requests.

OPTR allows write coalescing to happen instead of avoid-
ing it. To this end, OPTR detects and records each coalesced
page. Each page in the write cache is tagged with a dirty
�ag, a wid tag, and a size tag. By doing so, whenever a dirty
cache page is overwritten, OPTR detects that a coalesced
page exists (and anticipates that the appearance of the corre-
sponding wid in �ash decrements). For each coalesced page,
OPTR records (in a DRAM bu�er) the request IDs of the two
involved write requests and the size of the prior write request.
For example, as shown in Figure 4, a coalescing record with

1012 2019 USENIX Annual Technical Conference USENIX Association

cached page

dirty flag

request size

Coalescing Records

1 63 1 63 0 25 1 14

wid

replac
e

coales
ce

coales
ce

coales
ce

……… …….

<3, 7>, 6
<3, 7>, 6
<4, 7>, 1

…

Incoming write (wid = 7)

Write cache

Figure 4: Write cache and generated coalescing records.

“<3, 7>, 6” denotes that a prior write request whose ID is 3
coalesces with a later write request whose ID is 7, and the
size of the prior write request is 6 pages. If a write involves
multiple coalesced pages, multiple pieces of information are
recorded. A batch of coalescing records are committed to
�ash when the bu�er is full or when the SSD is requested
to perform a �ush (either issued externally by the host or
internally by OPTR mechanisms).

It is hard to de�ne the completion of each single write re-
quest that coalesces with other requests because the comple-
tion of multiple coalesced write requests needs to be atomic
(which OPTR guarantees). In contrast, it is relatively sim-
ple to de�ne incompletion as follows. Let Pi be the number
of pages whose wid = i, Di be the number of recorded
< x, y > pairs with x = i, and Sizei be the size of the
write request with wid = i. A coalesced write request with
wid = i is incomplete if Pi +Di < Sizei.

3.3 Mapping Table Checkpointing
The L2P mapping table is checkpointed to �ash to speed up
recovery. More speci�cally, we reserve the �rst few �ash
blocks of each �ash chip for checkpoints. OPTR keeps two
types of checkpoints, a full checkpoint and several incre-
mental checkpoints, as shown in Figure 5. The two types
of checkpoints di�er in that a full checkpoint snapshots the
entire L2P table, while an incremental checkpoint records
only the di�erences in the L2P table since the latest check-
point (either full or incremental). In addition to the L2P table,
both types of checkpoints record a seal page at the end of
a checkpoint that includes 1) the latest wid at the time the
checkpoint is made and 2) the PPNs of the next free �ash
pages at the time the checkpoint is made. OPTR employs
incremental checkpoints by default. When the �ash area for
storing incremental checkpoints is full, OPTR creates a new
full checkpoint and then clears the incremental checkpoints.
OPTR employs a shadow for the full checkpoint to ensure its
integrity, and the wid can be used to determine the recency
between the full and incremental checkpoints after a crash.
The PPNs of the next free �ash pages allow L2P updates after
the latest checkpoint to be retrievable. More speci�cally, for
each PPN, subsequent written pages in the same block are
available as pages within a block are sequentially written,

seal

ppn
...
…
...
…

of

 lo
gi

ca
l p

ag
es

wid

shadow

L2P differencesFull L2P table
next free pages

ppn
...
…
...
…

lpn ppn
... ...
… …
… ...
… …

Full Checkpoint Incremental Checkpoints
seal

of

 w
ri

te
 p

oi
nt

er
s wid

next free pages

ppn
...
…
...
…

of

 w
ri

te
 p

oi
nt

er
s

Figure 5: Full and incremental checkpoints.

and the summary page of the block can direct OPTR to the
subsequent written block and so on. Then, the L2P updates
can be derived from the LPN information in the spare area
of these retrieved pages.
3.4 Garbage Collection
Flash pages that store outdated data are commonly consid-
ered invalid and useless, but it is these pages that OPTR lever-
ages to rollback a disk from a crash to an order-preserved
state. Thus, we enforce two constraints on the GC routine.
The �rst constraint forbids GC from reclaiming pages pro-
grammed after the latest checkpoint. Since OPTR determines
the completion of a write issued after the latest checkpoint
by the number of pages owned by the write, reclaiming pages
written prior to a �ush but after the latest checkpoint would
result in a �ush semantics violation.

The second constraint forces an internal �ush before per-
forming GC. This �ush ensures that every page being erased
by GC has a stable counterpart that can always survive across
a crash. To reduce the performance penalty of an internal
�ush, we amortize its cost by conducting GC to a batch of
blocks (16 blocks in our case).
3.5 Order-Preserving Recovery
The recovery process is divided into the following phases: 1)
recover the L2P table according to the latest full checkpoint,
2) sequentially incorporate the L2P di�erences recorded in
the incremental checkpoints into the L2P table under recov-
ery, 3) count the wid of �ash pages written after the latest
checkpoint according to the page pointers recorded in the lat-
est checkpoint, and determine the completion/incompletion
of each write request, 4) recover write requests after the lat-
est checkpoint using a �ow network, which we will describe
shortly, and 5) sequentially incorporate the L2P changes of
the write requests after the latest checkpoint.

The fourth phase above needs awareness of the order, com-
pletion, and coalescing of write requests to recover the disk
to a state that satis�es our claimed guarantees. To this end,
we formulate the task as a �ow network problem as follows.
As shown in Figure 6, write requests are represented by ver-
tices. The order of immediately successive write requests is

USENIX Association 2019 USENIX Annual Technical Conference 1013

1 2 3 4 5 6

s t

Incomplete write requests

7

Non-incomplete write request

Immediately successive

Coalescing

Latest
checkpoint Requests that have arrived in flash memory

1 2 5 6

Valid:✓ ✓

3 4

Figure 6: Determining the optimal recovery point by �nding
a cut in a �ow network.

denoted by the straight directed edges pointing from request
wid = n to request wid=n+1, and coalescing between write
requests is denoted by bent directed edges pointing from the
earlier request to the later request. Each vertex is labeled by
a wid and a Boolean value that denotes whether the write
request is incomplete. Two additional vertices, s and t, are
connected to the �rst and last vertices, respectively, to form
a �ow network from source (s) to sink (t), where s can be
viewed as the latest checkpoint.

With such a formulation, �nding a valid order-preserving
recovery point is equivalent to �nding an s-t cut such that 1)
the cut size is equal to one (i.e., only a straight edge but not
bent edges crosses the cut) and 2) the subgraph that contains
vertex s (referred to as subgraph S for short) needs to contain
no vertex denoting that the corresponding write request is
incomplete. The rationales are as follows. The construction
of the graph ensures that the write requests in subgraph S
must preserve the order. A cut whose size is equal to one
implies that coalesced write requests must be atomic. Since
all write requests in subgraph S are not incomplete, it is valid
for OPTR to recover them and drop others.

Let us take Figure 6 as an example. There are six write re-
quests (1 to 6) present after the latest checkpoint, and some of
their data pages have arrived in �ash memory. The construc-
tion of the �ow network reveals seven possible s-t cuts, 1 to
7, each representing a potential recovery point. Among the
seven cuts, only 1 and 3 are valid. Cuts 5 to 7 are invalid re-
covery points because request 4 is incomplete, which breaks
the order-preserving guarantee. Cuts 2 and 4 are invalid re-
covery points because they both cause coalesced requests to
tear apart. Let us take Cut 4 as an example. Since some pages
of request 3 are coalesced by request 5, request 3 cannot exist
alone without request 5.

Note that OPTR can also handle multiple coalesces to the
same page by creating multiple curved edges in the �ow
network. Again, take Figure 6 as an example. Consider a
scenario where request 5 modi�es a dirty cached page written
by request 3, and then request 6 modi�es the same page while
this page is still dirty in the cache. This scenario would result
in one curved edge from 3 to 5 and one from 5 to 6, as shown
in Figure 6.

The optimal order-preserving recovery point should in-
clude as many write requests as possible. Therefore, �nding
this point is equivalent to �nding the abovementioned s-
t cut with the maximal subgraph S. A naive algorithm to
�nd the optimal order-preserving recovery point is to start
from a subgraph S containing only vertex s and gradually
add vertices to subgraph S from left to right, one vertex at
a time. Each time a vertex is added, the cut is checked to
determine whether its size is equal to one and no request in
S is incomplete. By doing so, the optimal recovery point is
available.

In addition to the naive approach, we use a more e�cient
algorithm when implementing OPTR as follows. Let widinc
be thewid of the earliest incomplete write and C be the set of
all coalescing records generated after the latest checkpoint.
As in Section 3.2, a coalescing record is in the form of an
< x, y > pair. The pseudocode is provided in Algorithm 1.

Algorithm 1 Find Optimal Recovery Point
Input: widinc, C
Output: the optimal recovery point

1: widrec ← widinc;
2: Sort C by x in descending order;
3: for c ∈ C do
4: if c.x < widrec ∧ c.y >= widrec then
5: widrec ← c.x;
6: end if
7: end for
8: return widrec;

4 Filesystem and Application Optimiza-
tions

We demonstrate Ext4 �lesystem and SQLite database opti-
mizations that exploit the bene�ts of OPTR SSDs as follows.

At the Ext4 level, we optimize an existing �lesystem prim-
itive, fsync (and its variant, fdatasync) and introduce a new
�lesystem primitive, �ence (and its variant, fdatafence). For
brevity, we refer to fdatasync as fsync and fdatafence as �ence
in this section. Conventional fsync issues two �ush com-
mands to a disk, one after fsync transfers a journal to the
disk and the other after fsync transfers a commit record to
the disk. Our optimized fsync uses the same order to transfer
the journal and commit record to the disk but only issues the
second �ush request to the disk. Conventional fsync requires
the �rst �ush to prevent SSDs from persisting the commit
record prior to the journal. With OPTR SSDs, which preserve
order, the �rst �ush becomes safely omissible. Note that the
second �ush of the optimized fsync still can guarantee the
same durability semantics as the original fsync does.

The newly introduced�ence resembles the optimized fsync.
This primitive also uses the same order to transfer the journal
and commit record to the disk but omits both �ush requests.
Therefore, �ence is a pure barrier for applications to de�ne

1014 2019 USENIX Annual Technical Conference USENIX Association

page is
erased?

lpn tag

N -
N

N -
Y -

data necessary to the FTL
32

X

10

X

Figure 7: Emulated �ash pages in VST.

the required partial order of transferring write requests to
disks. With OPTR SSDs and the newly introduced �ence,
applications can use fsync sparingly only when immediate
durability is needed.

At the SQLite level, we modify SQLite to use �ence when-
ever a barrier alone is su�cient and to use the optimized fsync
when immediate durability is required. To commit a single
INSERT transaction, SQLite (version 3.19) calls fsync four
times in its default con�guration (journal_mode=DELETE
and synchronous=FULL) [1]. Since the default con�gura-
tion fails to guarantee durability on Ext4 (because unlink is
not synchronous [3]), we set the con�guration to the syn-
chronous=EXTRA mode, which incurs one additional fsync
on the parent directory after unlink to persist the deletion [4].
The objectives of the �rst four fsyncs are as barriers instead
of requesting immediate durability. The �rst fsync is a bar-
rier after writing the content of a rollback journal �le. The
second fsync is a barrier to enforce that the rollback journal
�le exists in the directory before the db �le is modi�ed. The
third fsync is a barrier after writing the header of the rollback
journal. The fourth fsync is a barrier after writing the db �le.
Therefore, we change these four fsyncs to �ences. For the
�fth fsync, we change it to the optimized fsync.

Some applications and �lesystems, such as SQLite and
OptFS, do not strictly demand immediate durability. For ex-
ample, SQLite developers deliberately choose to avoid the
�fth fsync by default and to allow loss of durability follow-
ing a power loss event [3]. In this case, the OPTR-enabled
no-barrier mode is the best solution.

5 OPTR Design Validation
Validating the functional correctness and crash guarantees
of an FTL poses two challenges to FTL designers. First, the
validation process is inherently time consuming since it re-
quires extensive stress tests to create a large number of crash
points. FTL operations such as GC, which are not invoked
until a su�cient number of writes occur, make the issue even
worse. Second, one may lack necessary hardware support
during development of a new FTL. For example, the OpenSSD
platform [2] on which we implement OPTR does not allow
access to the spare area of �ash, which OPTR demands during
recovery.

To address this issue, we extend an FTL testing framework
named Virtual Stress Testing (VST) [31] and use it to validate
our OPTR implementation. Please note that we still evaluate

page is
erased?

lba tag

of sectors per page

version

N 2048 -3

N X X

N 640 -12

Y X -X

data necessary to the FTL

N 2048 -3 N N 640 12 Y

crash image

dump emulated flash to generate a crash image

-

spare area

Figure 8: Extensions for crash-guarantee validation.

the performance on real OpenSSD hardware [2]. We use the
same FTL code in the two experimental environments and
make slight modi�cations to overcome hardware limitations
(e.g., accessing the spare area).

5.1 VST Testing Framework
VST [31] is a simulation framework designed for validating
the functional correctness of FTLs. This framework enables
one to execute FTLs on PCs or servers that emulate the
SRAM, DRAM and �ash required by the FTLs. VST outper-
forms traditional FTL stress tests that use real SSDs by orders
of magnitude. To validate an FTL, VST issues an extensive
number of read and write requests to the FTL and reports a
bug if the FTL violates any prede�ned rule such as incorrect
page contents or a nonsequential program within a block.

The core data structure of VST is the emulated �ash mem-
ory. As shown in Figure 7, an emulated �ash page contains
three �elds: an erased �eld that denotes whether a page has
been erased, an lpn tag that records the LPN of the page,
and a data pointer that points to the FTL metadata stored
in the page. The design of storing an lpn tag for host data
rather than the actual contents dramatically decreases the
memory requirement for simulation and speeds up the test.
Thus, VST is particularly suitable for our validation purposes,
as we want to generate a very large number of crash images.

5.2 Extending VST for Crash Recovery Tests
We largely extend VST to support crash recovery tests, which
the original VST does not touch at all. For example, Figure 8
depicts the extensions we made to the emulated �ash mem-
ory. We divide each emulated page into multiple 512-byte
sectors to match the granularity of IO requests and further
add a version attribute to each emulated sector. The version
of a sector starts with 0 and increments by 1 when the sector
is updated. For crash simulation, we fork a separate thread
to periodically take snapshots of the emulated �ash memory
and store the snapshots as crash images.

The process of validating whether an FTL obeys pre�x
semantics and request atomicity is described as follows. First,
we compile the FTL under test to a Linux shared object,
execute the FTL on the extended VST, drive the FTL using

USENIX Association 2019 USENIX Annual Technical Conference 1015

a trace �le, and generate a number of crash images. Then,
VST deserializes each crash image back into the form of the
emulated �ash memory and triggers the recovery procedure
of the FTL. After recovery is done, VST queries the �rmware
for the last write it has recovered, which we call the recovery
point, and replays the same trace separately until the recovery
point to construct the golden disk, which represents the result
of bug-free and crash-free execution. Finally, for each written
sector in the golden disk, VST issues a read targeting the
sector and checks if the LBA and version returned by the FTL
match with those in the golden disk. If any inconsistency
exists, our extended VST framework reports a violation.

We can also validate whether the FTL obeys �ush seman-
tics. We insert �ushes into the request sequence and record
the ID of the last �ushed write in the header of a crash image.
If the FTL fails to recover any write prior to the last �ush,
our VST framework also reports a violation.

5.3 Validation Results
We select 12 write-heavy traces from the MSRC I/O
traces [35], which cover a variety of server-level access pat-
terns [46], to drive the FTL tests. Our validation process con-
sists of three runs. In the �rst run, we execute the �rmware
without crashes being simulated to validate its functional
correctness. Similar to the validation approach in [31], we
repeat each trace until the write amount reaches 1 TB. In
the second run, we let the �rmware recover from a total of
2,400 crash images created without any �ush issued to vali-
date whether the FTL correctly obeys pre�x semantics and
request atomicity. The �nal run is similar to the previous
run, but we additionally insert a �ush for every 1,000 writes
to validate whether the FTL also obeys the �ush semantics.

Table 1 shows the �nal validation results. Our imple-
mented OPTR passes all three runs of tests. Please note that
these results also suggest that our extended VST simulation
framework passes the stress test, and this �nding makes the
simulator a much more reliable platform for future research.

Table 1: Validation results for our OPTR FTL.

Functional
Correctness

Prefix Semantics
Preserved

Flush Semantics
Obeyed

1-TB stress test V

2400 images w/o flushes V

2400 images w/ flushes V V

6 Evaluation
6.1 Experimental Setups
We implement the OPTR FTL on a real SSD (OpenSSD [2])
with an ARM7 core at 87.5 MHz, 96 KB on-chip SRAM, 64
MB DRAM, and 128 GB �ash memory. We organize a total

sqlite
ext4
optr

sqlite
ext4

baseline

sqlite
ext4optr

optr

sqliteoptr

ext4optr

optr

sqlite
ext4nb

optr

sqlite
ext4nb

baseline

0
60

120
180
240
300

Th
ro

ug
hp

ut
 (t

xn
s/

s)

0.
99

x

1.
0x 1.
27

x 2.
85

x

6.
03

x

6.
18

x

Figure 9: Performance of the three OPTR usage modes. In
addition to the three usage modes and the baseline, we plot
two additional bars: The leftmost bar represents running un-
modi�ed SQLite and Ext4 on OPTR to demonstrate OPTR’s
overhead for enforcing ordering. The rightmost bar repre-
sents running unmodi�ed SQLite and Ext4 mounted with
the no-barrier option; this con�guration guarantees neither
durability nor consistency and is for demonstrating the upper
bound.

of 16 �ash chips into four channels, each channel connects
to four chips, each chip contains approximately 4,000 blocks,
and each block contains 128 16-KB pages. The SSD adopts
a static allocation strategy, which allocates a logical page
to a certain �ash chip based on modulo [22]. We allocate 8
MB of DRAM as the write cache of the SSD and adopt the
LRU cache replacement policy. We adopt the greedy policy
for GC [29, 42]. We store the per page recovery information
(i.e., the wid, size and lpn described in Section 3.1) in the
last page of each �ash block. For the OPTR-speci�c settings,
we reserve 32 blocks for full checkpoints and 32 blocks for
incremental checkpoints and coalescing records.

All the experiments are performed on a server with a 6-
core Intel i7-8700 CPU and 32 GB DRAM running Ubuntu
16.04. We erase the entire SSD before conducting each ex-
periment. More experimental setups are described in the
captions of each experimental results �gure.
6.2 System-Level Performance
In this set of experiments, we evaluate three usage modes of
OPTR as mentioned previously. The �rst mode (­ in Figure 2)
runs unmodi�ed SQLite and the optimized version of Ext4;
the second mode (® in Figure 2) runs the optimized versions
of SQLite and Ext4 (details of the optimizations are described
in Section 4). The third mode is the OPTR-enabled no-barrier
mode (¯ in Figure 2). This mode guarantees consistency
but achieves only eventual durability instead of immediate
durability.

We use a microbenchmark that keeps generating trans-
actions for a time interval of �ve minutes. Each transaction
inserts a key-value pair into the SQLite database. Figure 9
shows the throughput performance of the three usage modes
of OPTR. Removing the �rst �ush of fdatasync (the third bar)
improves the performance by 1.27×; invoking fdatafences
(the fourth bar) for ordering constraints yields 2.85× im-

1016 2019 USENIX Annual Technical Conference USENIX Association

sqlite
ext4
optr

sqlite
ext4

baseline

sqlite
ext4optr

optr

sqliteoptr

ext4optr

optr

sqlite
ext4nb

optr

sqlite
ext4nb

baseline

0

5

10

15

20

Pa
ge

 U
sa

ge
 (p

ag
es

/t
xn

)

1.
0x

1.
0x 1.

13
x

0.
6x

0.
31

x

0.
31

x

data coalescing incr chkpt full chkpt

Figure 10: Endurance impact of the three OPTR usage modes.

provement; �nally, the OPTR-enabled no-barrier mode per-
forms 6.03× better than the baseline, and this result is very
close to the upper bound of 6.18×. We conduct the experi-
ments ten times, and the errors are within± 0.7%. To quantify
the FTL overhead of enforcing the order, we compare unmod-
i�ed SQLite and Ext4 atop OPTR SSDs (the �rst bar) with
unmodi�ed SQLite and Ext4 atop baseline SSDs (the second
bar). The overhead is unnoticeable (hidden by the �ushes
of the workload). This result is consistent with our analy-
sis in Section 7. However, we would like to emphasize that
OPTR is not overhead-free (as shown in Section 7, OPTR can
decrease the performance by up to 11.1% in some synthetic
workloads).

In terms of SSD endurance impact, OPTR may improve
endurance because removing �ushes results in a greater
chance of write coalescing; OPTR may also hurt endurance
because OPTR stores checkpoints and coalescing records into
�ash memory for the sake of crash recovery. Figure 10 shows
the overall endurance impact of the three OPTR usage modes.
The y-axis denotes the average number of �ash pages written
per transaction. We break down written pages into user data
(data) and OPTR-related data (i.e., incremental checkpoints,
full checkpoints, and coalescing records).

The �rst usage mode of OPTR (the third bar) slightly in-
creases the number of written pages per transaction (1.13×).
The second usage mode (the fourth bar) lowers the frequency
of �ush operations and thereby decreases the number of writ-
ten pages per transaction to 0.6×. The third usage mode does
not incur any �ush, and thus, the number of written pages
is 0.31× that of the baseline.

Figure 11 shows the cumulative latency distribution of
transactions. Flushes are slow in nature, and thus, partially
or fully removing them is expected to achieve shorter latency.
The experimental results show that the average latencies of
OPTR in the �rst, second and third usage modes are 0.78×,
0.35× and 0.17× that of the baseline, respectively.

7 FTL Analyses
In this section, we analyze the FTL in more detail. We �rst
report the extra �ash page-programs caused by OPTR. Next,
we analyze the extra GC constraints and report the overhead

0 10 20 30 40 50
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

sqlite/ext4/baseline
sqlite/ext4optr/optr

sqliteoptr/ext4optr/optr

sqlite/ext4nb/optr

Figure 11: Latency of the three OPTR usage modes.

in terms of throughput performance. The above experiments
are conducted using synthetic workloads that comprise ran-
dom writes with di�erent access localities (high: 1 MB foot-
print, medium: 80 MB footprint, and low: 1 GB footprint),
di�erent access granularities (large: 1 MB, small: 16 KB, and
hybrid: half large and half small), and di�erent �ush inter-
vals (1, 4, ..., to 16,384 writes). Note that these analyses are
pessimistic because OPTR does not bene�t from reducing
�ush requests in the synthetic workloads. Finally, we discuss
the memory overhead (i.e., extra SRAM, DRAM, and �ash
space) caused by OPTR, and then, we estimate the recovery
time.

7.1 Extra Flash Page-Programs
OPTR incurs extra �ash page-programs because of incre-
mental checkpoints, coalescing records, full checkpoints, and
internally invoked �ushes.

The overhead of incremental checkpoints is negligible
(<0.075%), as shown in Figure 12a. The overhead is low be-
cause writing each user data page (e.g., 16 KB) incurs only an
8-byte L2P table change record, which constitutes incremen-
tal checkpoints. The overhead of incremental checkpoints is
even low if write requests coalesce in the write cache. For
example, the overhead is less than 0.01% for the workload
with high access locality and a long �ush interval (e.g., the
high-large workload with a �ush interval greater than 16
writes).

The overheads of coalescing records and full check-
points are also negligible for most workloads. An exception
is the workload with high locality and small access granu-
larity (i.e., high-small) when the �ush interval is between
four and 64 writes (Figures 12b and 12c). High write local-
ity tends to incur write coalescing. With more coalescing
records, the checkpoint area is �lled quickly, and OPTR in-
vokes full checkpoints more frequently. If the �ush interval
is one write, �ushes happen to suppress the occurrence of
write coalescing. If the �ush interval is long (e.g., >256 writes)
or if the size of the write granularity is large, the overhead
decreases because approximately 800 coalescing records re-
sult in an extra 16 KB page-program (each coalescing record
is 20 bytes in our implementation).

USENIX Association 2019 USENIX Annual Technical Conference 1017

1 4 16 64 256 1024 4096 16384
Flush Interval (# of writes)

0.00

0.03

0.06

0.09

Pe
rc

en
ta

ge
 o

f E
xt

ra
Pa

ge
-P

ro
gr

am
s

(%
)

high-small
high-large
high-hybrid

1 4 16 64 256 1024 4096 16384
Flush Interval (# of writes)

0.00

0.03

0.06

0.09

Pe
rc

en
ta

ge
 o

f E
xt

ra
Pa

ge
-P

ro
gr

am
s

(%
)

medium-small
medium-large
medium-hybrid

1 4 16 64 256 1024 4096 16384
Flush Interval (# of writes)

0.00

0.03

0.06

0.09

Pe
rc

en
ta

ge
 o

f E
xt

ra
Pa

ge
-P

ro
gr

am
s

(%
)

low-small
low-large
low-hybrid

(a) Incremental Checkpoint

1 4 16 64 256 1024 4096 16384
Flush Interval (# of writes)

 0.0

 1.5

 3.0

 4.5

 6.0

Pe
rc

en
ta

ge
 o

f E
xt

ra
Pa

ge
-P

ro
gr

am
s

(%
)

high-small
high-large
high-hybrid

1 4 16 64 256 1024 4096 16384
Flush Interval (# of writes)

 0.0

 1.5

 3.0

 4.5

 6.0

Pe
rc

en
ta

ge
 o

f E
xt

ra
Pa

ge
-P

ro
gr

am
s

(%
)

medium-small
medium-large
medium-hybrid

1 4 16 64 256 1024 4096 16384
Flush Interval (# of writes)

 0.0

 1.5

 3.0

 4.5

 6.0

Pe
rc

en
ta

ge
 o

f E
xt

ra
Pa

ge
-P

ro
gr

am
s

(%
)

low-small
low-large
low-hybrid

(b) Coalescing Record

1 4 16 64 256 1024 4096 16384
Flush Interval (# of writes)

0

1

2

3

4

5

Pe
rc

en
ta

ge
 o

f E
xt

ra
Pa

ge
-P

ro
gr

am
s

(%
)

high-small
high-large
high-hybrid

1 4 16 64 256 1024 4096 16384
Flush Interval (# of writes)

0

1

2

3

4

5

Pe
rc

en
ta

ge
 o

f E
xt

ra
Pa

ge
-P

ro
gr

am
s

(%
)

medium-small
medium-large
medium-hybrid

1 4 16 64 256 1024 4096 16384
Flush Interval (# of writes)

0

1

2

3

4

5

Pe
rc

en
ta

ge
 o

f E
xt

ra
Pa

ge
-P

ro
gr

am
s

(%
)

low-small
low-large
low-hybrid

(c) Full Checkpoint

1 4 16 64 256 1024 4096 16384
Flush Interval (# of writes)

0

6

12

18

Pe
rc

en
ta

ge
 o

f E
xt

ra
Pa

ge
-P

ro
gr

am
s

(%
)

high-small
high-large
high-hybrid

1 4 16 64 256 1024 4096 16384
Flush Interval (# of writes)

0

6

12

18

Pe
rc

en
ta

ge
 o

f E
xt

ra
Pa

ge
-P

ro
gr

am
s

(%
)

medium-small
medium-large
medium-hybrid

1 4 16 64 256 1024 4096 16384
Flush Interval (# of writes)

0

6

12

18

Pe
rc

en
ta

ge
 o

f E
xt

ra
Pa

ge
-P

ro
gr

am
s

(%
)

low-small
low-large
low-hybrid

(d) OPTR-Incurred Flush

Figure 12: Page write overhead analysis using synthetic workloads. The pre�x in the legends indicates the locality:
high/medium/low access 1 MB/80 MB/1 GB of �ash. The su�x indicates the access granularity: small/large write 16 KB/1 MB
of data per request, and hybrid writes 16 KB or 1 MB of data per request, each with a 50% chance.

The percentages of page-programs caused by internally
invoked �ushes are shown in Figure 12d. In our OPTR
implementation, the FTL internally �ushes the write cache
under the following four conditions: before an incremental
checkpoint, before a full checkpoint, before GC, and every
�ve seconds. The �rst three types of �ushes are for correct re-
covery in case a crash happens, and the fourth type of �ushes
is for bounding the longest time duration for which dirty
data can reside in the write cache. We observe a reasonable
trend: if the �ush interval is short (e.g., every four writes),
the page-programs caused by internally invoked �ushes only
account for a small percentage (less than 4%). In comparison,
if the �ush interval is long (e.g., every 64 writes), the page-
programs caused by internally invoked �ushes account for a
high percentage (up to 17%). Note that the page-programs
analyzed here are for user data instead of OPTR’s metadata,
and baseline SSDs also need to �ush their write caches at
some points. Therefore, the above analysis is a conservative
overestimation of overhead.

7.2 GC Constraints
Although OPTR constrains GC from selecting recently writ-
ten �ash blocks to guarantee recoverability, this constraint
does not cause signi�cantly adverse e�ects. The reasons are
two-fold. First, OPTR constrains GC from selecting �ash
blocks written after the latest full or incremental checkpoint.
According to our analysis, this type of blocks accounts for
only 0.2% of the total blocks on average. Second, sophisticated
GC policies such as age-aware GC policies avoid selecting re-
cently written blocks in the expectation of data invalidation
due to write locality.

7.3 Performance Overhead
Figures 13a, 13b, and 13c show the throughput performance
(MB/s). Dotted lines denote the throughput of the baseline,
and solid lines denote that of OPTR. Overall, OPTR incurs less
than 2% performance overhead on average and up to 11.1%
performance overhead for the synthetic workloads. Note
that OPTR can slightly outperform the baseline for some
workloads when OPTR’s mechanisms happen to match the

1018 2019 USENIX Annual Technical Conference USENIX Association

workload characteristics. For example, for workloads with a
high locality, age-aware GC is better than greedy GC. OPTR
happens to achieve some e�ects of age-aware GC because
OPTR constrains GC from selecting recently written �ash
blocks.

7.4 Memory Overhead
The DRAM and SRAM overheads for implementing OPTR
are analyzed as follows. First, OPTR associates each entry
in the write cache with two extra attributes, wid (8 bytes)
and size (4 bytes). In our implementation, the write cache is
8 MB (16 KB × 512 entries). Therefore, the space for storing
wid is 8 × 512 = 4 KB (in DRAM in our implementation),
and the space for storing size is 4× 512 = 2 KB (in SRAM in
our implementation). Second, we employ a 256 KB DRAM
area to bu�er incremental checkpoints. Third, OPTR stores
coalescing records in a DRAM bu�er, whose size is equal to
a �ash page, e.g., 16 KB. Finally, the memory space for crash
recovery can overlay that for regular FTL operation, so we
do not consider this space as additional overhead.

The �ash memory overhead for implementing OPTR is
described as follows. First, OPTR additionally stores wid
and size (8 bytes and 4 bytes, respectively) in the spare area
of �ash memory. Modern �ash memory with 16 KB page
size equips each page with a 2,208-byte spare area (i.e., page
size = 16,384 + 2,208 = 18,592 bytes) [6]. Since OPTR only
consumes 12 bytes out of the 2,208 bytes, the overhead is
only 12/2,208=0.5%, and the impact on the ratio of the error
correction code rate is only 16,384/18,580 - 16,384/18,592 =
0.06%. Second, OPTR stores the lpn of each �ash page in
the spare area and summarizes the lpn of a block of pages
in the last page of the block. We anticipate that baseline
SSDs also do so. Third, OPTR keeps incremental checkpoints,
coalescing records, and full checkpoints in �ash memory.
We set the area for storing incremental checkpoints and
coalescing records to 64 MB. The size of a full checkpoint is
equivalent to that of the L2P table. Given an SSD with 128 GB
�ash memory and 16 KB pages, the size of a full checkpoint
and its shadow is at most 128 GB/16 KB × 4 B × 2 = 64 MB.

7.5 Recovery Time
OpenSSD does not provide an access approach to the spare
area of �ash pages, so we are not able to measure recovery
time using OpenSSD. Instead, we conduct a worst-case esti-
mation. We anticipate that accessing �ash memory, which is
slower than SRAM, DRAM, and computation, dominates the
recovery time.

Recovery begins with reading the full checkpoint, whose
size is approximately 32 MB (2,048 pages) for a 128 GB SSD.
Second, OPTR sequentially scans the 64 MB area (4,096 pages)
for storing incremental checkpoints and coalescing records.
Third, OPTR scans the summary pages programmed after
the latest checkpoint. Given a 256 KB bu�er for incremental
checkpoints, the number of summary pages after the latest
checkpoint can be up to 256. Finally, each �ash chip can

1 4 16 64 256 1024 4096 16384
)lush Interval (# oI writes)

 0

 50

100

150

200

Th
ro

ug
hp

ut
 (0

B
/s

)

high-small
high-large
high-hybrid

-1.0% -1.8% -6.4%
-4.8%

-5.3%

-8.1%
-9.4% -6.7%

+4.0%

-7.3%

-8.8%
-7.1% -7.4% -11.1% -11.1% -11.1%

+1.5%
-6.4%

-7.3%

-6.7%
-7.4% -7.4% -11.1% -11.1%

(a) High Access Locality

1 4 16 64 256 1024 4096 16384
)lush Interval (# oI writes)

 0

 15

 30

 45

 60

Th
ro

ug
hp

ut
 (0

B
/s

)

medium-small
medium-large
medium-hybrid-0.2%

+0.4%
+0.6%

+0.6% +2.2%

+3.7% +2.9% +4.0%+3.0% +3.1%
+3.8% +3.1% +4.2%

+5.3% +4.2% +4.2%

+1.4% +2.3%
+3.6%

+3.0% +3.2%

+3.2% +3.2% +4.3%

(b) Medium Access Locality

1 4 16 64 256 1024 4096 16384
)lush Interval (# oI writes)

 0

 10

 20

 30

 40

 50

Th
ro

ug
hp

ut
 (0

B
/s

)
low-small
low-large
low-hybrid-0.7%

-0.8%
-0.6%

-1.2% -0.7%
-2.4% -4.1% -4.1%

-0.0% -0.0%
-1.6% -3.4% -3.4%

-3.4% -3.4% -2.6%

-1.3% -0.7%
-1.6%

-3.4% -3.5%

-3.5% -3.5% -3.5%

(c) Low Access Locality

Figure 13: Performance overhead for preserving write order.

have a partially written block, and OPTR needs to access
these pages during recovery. We assume that the number of
�ash pages of partially written blocks is 4,096. Overall, there
are 10,496 pages. We conservatively assume that reading
each �ash page costs 100 µs and no internal parallelism is
available; then, the worse-case recovery time is 10,496× 100
µs = 1 s, which is acceptable in general.

8 Related Work
OptFS [15], BarrierFS [45], and Featherstitch [23] are related
�lesystem and IO stack works that propose to decouple order-
ing from durability. Unlike this work, they do not focus on the
FTL design and recovery process of SSDs. OptFS presents a
�lesystem that requires disks to support asynchronous dura-
bility noti�cation, which noti�es a host when certain blocks
become persistent. BarrierFS presents a �lesystem and an
IO stack that require disks to support the cache barrier com-
mand, which is only available in a few eMMC (embedded
multimedia card) products [45] but unavailable in the stan-
dard block device interfaces of o�-the-shelf SATA, SAS, and
NVMe SSDs. BarrierFS [45] implements an FTL to support
the barrier write command in a commercial eMMC prod-
uct. OPTR is complementary to both OptFS and BarrierFS
and can simplify their designs. For instance, OptFS requires
checksum encoding/decoding to enforce the ordering con-

USENIX Association 2019 USENIX Annual Technical Conference 1019

straint between journal metadata and the commit record, and
BarrierFS uses explicit cache barrier primitives to declare
order; with OPTR, both can be simpli�ed out because OPTR
implicitly preserves the write order.

Mime [13], the Logical Disk [21], Stasis [43], TxFlash [40],
Beyond Block IO [37], Mars [19], LightTx [32], X-FTL [28],
and Isotope [44] propose transactional storage with full or
partial supports to ACID at the disk level. The notion of
transaction is stronger than OPTR’s guarantees, but these
works all propose changing the standard block device in-
terface, which inevitably incurs signi�cant software stack
changes. Among these works, Mime [13] also advocates the
bene�ts of request atomicity and ordering, which are in line
with OPTR’s design. Compared with OPTR, Mime [13] is fun-
damentally di�erent because it is HDD design instead of SSD
design. In addition, Mime does not allow write coalescing in
a write cache, which OPTR can handle.

Increasing the disk-level crash guarantee not only can
improve system performance but also, more importantly,
helps to reduce crash vulnerabilities. In this sense, just re-
placing baseline SSDs with OPTR SSDs is bene�cial. Crash
vulnerabilities are serious problems. Pillai et al. [39] �nd
60 application-level crash vulnerabilities in widely used ap-
plications such as LevelDB and Git. Zheng et al. [47] also
�nd ACID violations in many database systems. These vul-
nerabilities are mainly caused by the weak and vague crash
guarantees provided by the underlying �lesystems. Thus,
Bornholt et al. present crash-consistency models [10], and
Pillai et al. [39] specify a set of persistent properties. These
approaches aim to con�ne and standardize the crash behav-
iors of �lesystems, and OPTR can help to achieve these aims.

Several studies have attempted to reduce the usage or
overhead of �ush operations at the application or �lesystem
level. BarrierFS [45] and [5] replace unnecessary �ushes with
cache barrier commands. Our previous work-in-progress re-
port [12] proposes to directly omit unnecessary �ushes by
considering order-preserving SSDs that achieve strong request-
level crash guarantees. iJournaling [38] performs �ne-grained
journaling per �le to mitigate the interference between fsync-
intensive threads. NoFS [16] proposes backpointer-based
consistency to fully eliminate ordering constraints but at
the cost of not being able to implement atomic operations
(e.g., rename). Xsyncfs [36] introduces external synchrony, in
which a write is not immediately persisted (i.e., asynchronous
writes) unless an external observer sees the write; thereby,
this method provides the simplicity of synchronous writes
and approaches the performance of asynchronous writes.
Chen et al. identify the sync ampli�cation issue in virtual-
ized environments and propose solutions using journaling
techniques at the virtual-disk level [14].

One can equip SSDs with supercapacitors, which may
help to preserve write order. However, they are not widely
adopted. In previous work [48], power interrupt tests are
performed on 15 SSDs, and only four out of the 15 tested SSDs

are equipped with supercaps. In addition, supercapacitors
may be su�cient to protect an FTL from corruption, but they
may not be su�cient to preserve write order. Among the four
tested supercapped SSDs in [48], two still exhibit shorn or
unserializable writes under power faults. Finally, capacitors
are sensitive to temperature- and aging-related degradation
and failures [25].

9 Conclusion
In common practice, consumer-grade SSDs (whose write
cache is not battery-backed) cannot guarantee the order and
atomicity of write requests upon a crash because SSD perfor-
mance optimization strategies including write caching, write
coalescing, request scheduling, and parallel �ash program-
ming all tend to break the guarantee. The lack of a strong
crash guarantee at the disk level complicates the design of
applications and �lesystems and degrades the overall system
performance. By exploiting the fact that SSDs adopt out-of-
place updates, this work proposes order-preserving transla-
tion and recovery design (OPTR) that maintains SSD perfor-
mance while preserving an illusion that write requests are
completed in order and atomically. We realize the required
address translation, garbage collection, and crash recovery
techniques internal to a real SSD to achieve OPTR. We also
develop a functional simulator to validate the correctness of
OPTR.

Three usage modes of OPTR SSDs are identi�ed and eval-
uated: 1) optimizing �lesystems to remove the unnecessary
�ushes of fdatasync, 2) optimizing both applications and
�lesystems to further replace fdatasync with fdatafence prim-
itives, and 3) combining the performance advantages of the
no-barrier mode of �lesystems and the strong request-level
crash guarantees of OPTR SSDs. Real system experiments
based on SQLite, Ext4, and a real SSD show that these three
modes achieve 1.27×, 2.85×, and 6.03× performance im-
provement, respectively.

This work is the �rst SSD work with strong request-level
crash guarantees and the standard block device interface. In
comparison with previous works on transactional SSDs, we
change the impression that increasing SSDs’ crash guaran-
tees is typically available at the cost of altering the standard
block interface. We anticipate that OPTR can inspire more
future application and �lesystem designs.

Acknowledgments
We thank our shepherd, Youjip Won, and the anonymous
reviewers for their valuable feedback. This research is sup-
ported in part by NOVATEK Fellowship and in part by the
Ministry of Science and Technology (MOST) of Taiwan un-
der grants 108-2218-E-007-023, 108-2218-E-007-021, and 107-
2218-E-007-001. We also thank the National Center for High-
performance Computing (NCHC) of Taiwan for computer
time and facilities.

1020 2019 USENIX Annual Technical Conference USENIX Association

References
[1] Atomic commit in SQLite.

https://www.sqlite.org/atomiccommit.html.

[2] OpenSSD (www.openssd-project.org/).

[3] Potential bug in crash-recovery code:
unlink() and friends are not synchronous.
http://sqlite.1065341.n5.nabble.com/Potential-bug-
in-crash-recovery-code-unlink-and-friends-are-not-
synchronous-td68885.html.

[4] Pragma statements supported by SQLite.
https://www.sqlite.org/pragma.html#pragma_synchronous.

[5] Using cache barriers in lieu of REQ_FLUSH | REQ_FUA
for eMMC 5.1. https://www.spinics.net/lists/linux-
ext4/msg48992.html.

[6] SpecTek NAND �ash detail: TLC 8192Gb.
https://www.spectek.com/menus/�ash_detail.aspx?mem
Type=TLC+8192Gb, 2019.

[7] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber,
John D. Davis, Mark Manasse, and Rina Panigrahy. De-
sign tradeo�s for SSD performance. In Proceedings of
the 2008 USENIX Annual Technical Conference (ATC ’08),
Boston, Massachusetts, USA, 2008.

[8] Andrew Birrell, Michael Isard, Chuck Thacker, and Ted
Wobber. A design for high-performance �ash disks.
SIGOPS Oper. Syst. Rev., 41(2):88–93, April 2007.

[9] Matias Bjørling, Javier González, and Philippe Bonnet.
Lightnvm: The Linux open-channel SSD subsystem. In
Proceedings of the 15th USENIX Conference on File and
Storage Technologies (FAST ’17), Santa Clara, California,
USA, 2017.

[10] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind
Krishnamurthy, Emina Torlak, and Xi Wang. Specify-
ing and checking �le system crash-consistency models.
In Proceedings of the 21st International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’16), Atlanta, Georgia, USA,
2016.

[11] Yu-Ming Chang, Ping-Hsien Lin, Ye-Jyun Lin, Tai-Chun
Kuo, Yuan-Hao Chang, Yung-Chun Li, Hsiang-Pang Li,
and KC Wang. An e�cient sudden-power-o�-recovery
design with guaranteed booting time for solid state
drives. In Proceedings of the 8th IEEE International Mem-
ory Workshop (IMW ’16), Paris, France, 2016.

[12] Yun-Sheng Chang and Ren-Shuo Liu. Improving the
performance of SQLite and Ext4 using order-preserving
SSDs. In 17th USENIX Conference on File and Storage
Technologies Work-in-Progress Reports (FAST WiPs ’19),
Boston, Massachusetts, USA, 2019.

[13] Chia Chao, Robert English, David Jacobson, Alexander
Stepanov, Er Stepanov, John Wilkes, Richard Wagner,
and Scene I. Mime: A high performance parallel stor-
age device with strong recovery guarantees. Technical
Report HPL–CSP–92–9 rev 1, Hewlett-Packard Labora-
tories, 1992.

[14] Qingshu Chen, Liang Liang, Yubin Xia, Haibo Chen, and
Hyunsoo Kim. Mitigating sync ampli�cation for copy-
on-write virtual disk. In Proceedings of the 14th Usenix
Conference on File and Storage Technologies (FAST ’16),
Santa Clara, California, USA, 2016.

[15] Vijay Chidambaram, Thanumalayan Sankaranarayana
Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Optimistic crash consistency. In Proceedings
of the 24th ACM Symposium on Operating Systems Prin-
ciples (SOSP ’13), Farminton, Pennsylvania, USA, 2013.

[16] Vijay Chidambaram, Tushar Sharma, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Consistency
without ordering. In Proceedings of the 10th USENIX
Conference on File and Storage Technologies (FAST ’12),
San Jose, California, USA, 2012.

[17] Jin-Yong Choi, Eyee Hyun Nam, Yoon Jae Seong,
Jin Hyuk Yoon, Sookwan Lee, Hong Seok Kim, Jeongsu
Park, Yeong-Jae Woo, Sheayun Lee, and Sang Lyul Min.
Hil: A framework for compositional FTL development
and provably-correct crash recovery. ACM Trans. Stor-
age, 14(4):36:1–36:29, December 2018.

[18] James Cipar, Greg Ganger, Kimberly Keeton, Charles B.
Morrey, III, Craig A.N. Soules, and Alistair Veitch. Lazy-
base: Trading freshness for performance in a scalable
database. In Proceedings of the 7th ACM European
Conference on Computer Systems (EuroSys ’12), Bern,
Switzerland, 2012.

[19] Joel Coburn, Trevor Bunker, Meir Schwarz, Rajesh
Gupta, and Steven Swanson. From ARIES to MARS:
Transaction support for next-generation, solid-state
drives. In Proceedings of the 24th ACM Symposium
on Operating Systems Principles (SOSP ’13), Farminton,
Pennsylvania, USA, 2013.

[20] Jonathan Corbet. Barriers and journaling �lesystems.
https://lwn.net/Articles/283161/, 2008.

[21] Wiebren de Jonge, M. Frans Kaashoek, and Wilson C.
Hsieh. The logical disk: A new approach to improving
�le systems. In Proceedings of the 14th ACM Symposium
on Operating Systems Principles (SOSP ’93), Asheville,
North Carolina, USA, 1993.

[22] Nima Elyasi, Mohammad Arjomand, Anand Sivasub-
ramaniam, Mahmut T. Kandemir, Chita R. Das, and

USENIX Association 2019 USENIX Annual Technical Conference 1021

Myoungsoo Jung. Exploiting intra-request slack to
improve SSD performance. In Proceedings of the 22nd
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS
’17), Xi’an, China, 2017.

[23] Christopher Frost, Mike Mammarella, Eddie Kohler, An-
drew de los Reyes, Shant Hovsepian, Andrew Matsuoka,
and Lei Zhang. Generalized �le system dependencies.
In Proceedings of 21st ACM Symposium on Operating
Systems Principles (SOSP ’07), Stevenson, Washington,
USA, 2007.

[24] Gregory R. Ganger, Marshall Kirk McKusick, Craig A. N.
Soules, and Yale N. Patt. Soft updates: A solution to the
metadata update problem in �le systems. ACM Trans.
Comput. Syst., 18(2), May 2000.

[25] Feng Gao and Dave Verburg. SSD’s reliability failure
mode and it’s supercapacitor failure. In Proceedings
of South East Asia Technical Conference on Electronics
Assembly Technologies, Penang, Malaysia, 2016.

[26] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoungbum
Son, and Youjip Won. I/O stack optimization for smart-
phones. In Proceedings of the 2013 USENIX Annual Tech-
nical Conference (ATC ’13), San Jose, California, USA,
2013.

[27] Myoungsoo Jung, Ellis H. Wilson, III, and Mahmut Kan-
demir. Physically addressed queueing (PAQ): Improving
parallelism in solid state disks. In Proceedings of the
39th International Symposium on Computer Architecture
(ISCA ’12), Portland, Oregon, USA, 2012.

[28] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Gi-
Hwan Oh, and Changwoo Min. X-FTL: Transactional
FTL for SQLite databases. In Proceedings of the 2013
ACM International Conference on Management of Data
(SIGMOD ’13), New York, New York, USA, 2013.

[29] Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Mo-
toda. A �ash-memory based �le system. In Proceedings
of the 1995 USENIX Technical Conference (TCON ’95),
New Orleans, Louisiana, USA, 1995.

[30] Dongwook Kim, Youjip Won, Jaehyuk Cha, Sungroh
Yoon, Jongmoo Choi, and Sooyong Kang. Exploiting
compression-induced internal fragmentation for power-
o� recovery in SSD. IEEE Transactions on Computers,
65(6):1720–1733, June 2016.

[31] Ren-Shuo Liu, Yun-Sheng Chang, and Chih-Wen Hung.
VST: A virtual stress testing framework for discover-
ing bugs in SSD �ash-translation layers. In Proceed-
ings of the 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD ’17), Irvine, California,
USA, 2017.

[32] Youyou Lu, Jiwu Shu, Jia Guo, Shuai Li, and Onur Mutlu.
LightTx: A lightweight transactional design in �ash-
based SSDs to support �exible transactions. In Pro-
ceedings of the 31st IEEE International Conference on
Computer Design (ICCD ’13), Asheville, North Carolina,
USA, 2013.

[33] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pira-
hesh, and Peter Schwarz. ARIES: A transaction recovery
method supporting �ne-granularity locking and par-
tial rollbacks using write-ahead logging. ACM Trans.
Database Syst., 17(1):94–162, March 1992.

[34] Eyee Hyun Nam, Bryan Suk Joon Kim, Hyeonsang Eom,
and Sang Lyul Min. Ozone (O3): An out-of-order �ash
memory controller architecture. IEEE Trans. Comput.,
60(5):653–666, May 2011.

[35] Dushyanth Narayanan, Austin Donnelly, and Antony
Rowstron. Write o�-loading: Practical power manage-
ment for enterprise storage. Trans. Storage, 4(3):10:1–
10:23, November 2008.

[36] Edmund B. Nightingale, Kaushik Veeraraghavan, Pe-
ter M. Chen, and Jason Flinn. Rethink the sync. ACM
Trans. Comput. Syst., 26(3):6:1–6:26, September 2008.

[37] Xiangyong Ouyang, David Nellans, Robert Wipfel,
David Flynn, and Dhabaleswar K. Panda. Beyond block
I/O: Rethinking traditional storage primitives. In Pro-
ceedings of the 17th IEEE International Symposium on
High Performance Computer Architecture (HPCA ’11),
Washington, DC, USA, 2011.

[38] Daejun Park and Dongkun Shin. iJournaling: Fine-
grained journaling for improving the latency of fsync
system call. In Proceedings of the 2017 USENIX Annual
Technical Conference (ATC ’17), Santa Clara, California,
USA, 2017.

[39] Thanumalayan Sankaranarayana Pillai, Vijay Chi-
dambaram, Ramnatthan Alagappan, Samer Al-Kiswany,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. All �le systems are not created equal: On the
complexity of crafting crash-consistent applications. In
Proceedings of the 11th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI ’14),
Broom�eld, Colorado, USA, 2014.

[40] Vijayan Prabhakaran, Thomas L. Rodehe�er, and Li-
dong Zhou. Transactional �ash. In Proceedings of the
8th USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’08), San Diego, California,
USA, 2008.

[41] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS: The
Linux B-tree �lesystem. Trans. Storage, 9(3):9:1–9:32,
August 2013.

1022 2019 USENIX Annual Technical Conference USENIX Association

[42] Mendel Rosenblum and John K. Ousterhout. The de-
sign and implementation of a log-structured �le system.
ACM Trans. Comput. Syst., 10(1):26–52, February 1992.

[43] Russell Sears and Eric Brewer. Stasis: Flexible transac-
tional storage. In Proceedings of the 7th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI ’06), Seattle, Washington, USA, 2006.

[44] Ji-Yong Shin, Mahesh Balakrishnan, Tudor Marian, and
Hakim Weatherspoon. Isotope: ACID transactions for
block storage. ACMTrans. Storage, 13(1):4:1–4:25, Febru-
ary 2017.

[45] Youjip Won, Jaemin Jung, Gyeongyeol Choi, Joontaek
Oh, Seongbae Son, Jooyoung Hwang, and Sangyeun
Cho. Barrier-enabled IO stack for �ash storage. In
Proceedings of the 16th USENIX Conference on File and
Storage Technologies (FAST ’18), Oakland, California,
USA, 2018.

[46] Yiying Zhang, Gokul Soundararajan, Mark W. Storer,
Lakshmi N. Bairavasundaram, Sethuraman Subbiah, An-

drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Warming up storage-level caches with bon�re. In Pro-
ceedings of the 11th USENIX Conference on File and Stor-
age Technologies (FAST ’13), San Jose, California, USA,
2013.

[47] Mai Zheng, Joseph Tucek, Dachuan Huang, Feng Qin,
Mark Lillibridge, Elizabeth S. Yang, Bill W. Zhao, and
Shashank Singh. Torturing databases for fun and pro�t.
In Proceedings of the 11th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI ’14),
Broom�eld, Colorado, USA, 2014.

[48] Mai Zheng, Joseph Tucek, Feng Qin, and Mark Lillib-
ridge. Understanding the robustness of SSDs under
power fault. In Proceedings of the 11th USENIX Con-
ference on File and Storage Technologies (FAST ’13), San

Jose, California, USA, 2013.

USENIX Association 2019 USENIX Annual Technical Conference 1023

Optimizing CNN Model Inference on CPUs

Yizhi Liu*, Yao Wang*, Ruofei Yu, Mu Li, Vin Sharma, Yida Wang
Amazon Web Services

{yizhiliu, wayao, yuruofei, mli, vinarm, wangyida}@amazon.com

Abstract
The popularity of Convolutional Neural Network (CNN) mod-
els and the ubiquity of CPUs imply that better performance of
CNN model inference on CPUs can deliver significant gain
to a large number of users. To improve the performance of
CNN inference on CPUs, current approaches like MXNet
and Intel OpenVINO usually treat the model as a graph and
use the high-performance libraries such as Intel MKL-DNN
to implement the operations of the graph. While achieving
reasonable performance on individual operations from the off-
the-shelf libraries, this solution makes it inflexible to conduct
optimizations at the graph level, as the local operation-level
optimizations are predefined. Therefore, it is restrictive and
misses the opportunity to optimize the end-to-end inference
pipeline as a whole. This paper presents NeoCPU, a com-
prehensive approach of CNN model inference on CPUs that
employs a full-stack and systematic scheme of optimizations.
NeoCPU optimizes the operations as templates without rely-
ing on third-parties libraries, which enables further improve-
ment of the performance via operation- and graph-level joint
optimization. Experiments show that NeoCPU achieves up
to 3.45× lower latency for CNN model inference than the
current state-of-the-art implementations on various kinds of
popular CPUs.

1 Introduction

The growing use of Convolutional Neural Network (CNN)
models in computer vision applications makes this model
architecture a natural focus for performance optimization
efforts. Similarly, the widespread deployment of CPUs in
servers, clients, and edge devices makes this hardware plat-
form an attractive target. Therefore, performing CNN model
inference efficiently on CPUs is of critical interest to many
users.

The performance of CNN model inference on CPUs leaves
significant room for improvement. Performing a CNN model

*Equal contribution

inference is essentially executing a computation graph con-
sisting of operations. In practice, people normally use high-
performance kernel libraries (e.g. Intel MKL-DNN [27] and
OpenBlas [51]) to obtain high performance for CNN opera-
tions. While these libraries tune very carefully for common
operations with normal input data shapes (e.g. 2D convolu-
tions), they only focus on the (mostly, convolution) operations
but miss the opportunities to further optimize the end-to-end
model inference at the graph level. The graph-level optimiza-
tion is often handled by the deep learning frameworks, e.g.
TensorFlow [5] and MXNet [8].

However, the graph-level optimization such as operation fu-
sion and data layout planing that a framework can do is limited
because the operation implementation is already predefined
in the third-party libraries. Therefore, the optimizations in the
frameworks do not work in concert with the optimizations
in the kernel library, which leaves significant performance
gains unrealized in practice. Furthermore, different CPU ar-
chitectures rely on different high-performance libraries and
integrating a library into a deep learning framework requires
error-prone and time-consuming engineering effort. Lastly,
although those libraries are highly optimized, they present
as third-party plug-ins, which may introduce contention is-
sues with other libraries in the framework. As an example,
TensorFlow originally used the Eigen library [4] to handle
computation on CPUs. Later on, MKL-DNN was also in-
troduced. As a consequence, at runtime MKL-DNN threads
coexist with Eigen threads, resulting in resource contention.
In summary, this kind of framework-specific approach for
CNN model inference on CPUs is inflexible, cumbersome,
and sub-optimal.

Because of the constraint imposed by the framework, opti-
mizing the performance of CNN model inference end-to-end
without involving a framework (i.e. a framework-agnostic
method) is of obvious interest to many deep learning prac-
titioners. Recently, Intel launched a universal CNN model
inference engine called OpenVINO Toolkit [16]. This toolkit
optimizes CNN models in the computer vision domain on In-
tel processors (mostly x86 CPUs) and claims to achieve better

USENIX Association 2019 USENIX Annual Technical Conference 1025

performance than the deep learning frameworks alone. Yet,
OpenVINO could only provide limited graph-level optimiza-
tion (e.g. operation fusion as implemented in ngraph [15]) as
it still relies upon MKL-DNN to deliver performance gains
for the carefully-tuned operations. Therefore, the optimiza-
tion done by OpenVINO is still not sufficient for most of the
CNN models.

Based on the previous observation, we argue that in order
to further improve the CNN model inference performance on
CPUs, being able to do the flexible end-to-end optimization is
the key. In this paper, we propose NeoCPU, a comprehensive
approach to optimize CNN models for efficient inference on
CPUs. NeoCPU is full-stack and systematic, which includes
operation- and graph-level joint optimizations and does not
rely on any third-party high-performance libraries. At the
operation level, we follow the well-studied techniques to op-
timize the most computationally-intensive operations like
convolution (CONV) in a template, which is applicable to dif-
ferent workloads on multiple CPU architectures and enables
us for flexible graph-level optimization. At the graph level, in
addition to the common techniques such as operation fusion
and inference simplification, we coordinate the individual op-
eration optimizations by manipulating the data layout flowing
through the entire model for the best end-to-end performance.
In summary, NeoCPU does the end-to-end optimization in a
flexible and automatic fashion, while the existing works rely
on third-party libraries and lack comprehensive performance
tuning.

NeoCPU is built upon a deep learning compiler stack
named TVM [9] with a number of enhancements. TVM
enables the possibility of using own operation-level opti-
mizations instead of third-party high-performance libraries,
which make it flexible to apply our operation- and graph-level
joint optimization. However, there was only one customized
operation-level optimization on ARM CPUs for convolutions
with specific data shapes and no operation- and graph-level
joint optimization in the original TVM stack before our work.
In addition, there exist other deep learning compilers such as
Tensor Comprehensions [46] and Glow [40]. Unfortunately,
they either do not target on CPUs or not optimize the CPU
performance well, e.g. based on the paper description and our
own experiments, Glow only optimizes the single-core per-
formance for CPUs. Therefore we do not incorporate those
works as the baseline. Table 1 summarizes the features of
NeoCPU compared to others. To the best of our knowledge,
NeoCPU achieves competitive performance for CNN model
inference on various kinds of popular CPUs.

Specifically, this paper makes the following contributions:

• Provides an operation- and graph-level joint optimiza-
tion scheme to obtain high CNN model inference perfor-
mance on different popular CPUs including Intel, AMD
and ARM, which outperforms the current state-of-the-art
implementations;

Op-level opt Graph-level opt Joint opt Open-source
NeoCPU 3 3 3 3

MXNet [8]/TensorFlow [5] 3rd party limited 7 3
OpenVINO [16] 3rd party limited ? 7

Original TVM [9] incomplete 3 7 3
Glow [40] single core 3 7 3

Table 1: Side-by-side comparison between NeoCPU and ex-
isting works on CNN model inference

• Constructs a template to achieve good performance of
convolutions, which is flexible to apply to various con-
volution workloads on multiple CPU architectures (x86
and ARM) without relying on high-performance kernel
libraries;

• Designs a global scheme to look for the best layout
combination in different operations of a CNN model,
which minimizes the data layout transformation over-
head between operations while maintaining the high
performance of individual operations.

It is worth noting that, this paper primarily deals with direct
convolution computation, while NeoCPU is compatible to
other optimziation works on the computationally-intensive
kernels, e.g. CONVs via Winograd [7, 29] or FFT [52].

We evaluated NeoCPU on CPUs with both x86 and ARM
architectures. In general, NeoCPU delivers the best perfor-
mance for 13 out of 15 popular networks on Intel Skylake
CPUs, 14 out of 15 on AMD EYPC CPUs, and all 15 models
on ARM Cortex A72 CPUs. It is worthwhile noting that the
baselines on x86 CPUs were more carefully tuned by the chip
vendor (Intel MKL-DNN) but the ARM CPUs were less opti-
mized. While the selected framework-specific (MXNet and
TensorFlow) and framework-agnostic (OpenVINO) solutions
may perform well on one case and less favorably on the other
case, NeoCPU runs efficiently across models on different
architectures.

In addition, NeoCPU produces a standalone module with
minimal size that does not depend on either the frameworks
or the high-performance kernel libraries, which enables easy
deployment to multiple platforms. NeoCPU is used in Ama-
zon SageMaker Neo Service 1, enabling model developers
to optimize for inference on CPU-based servers in the cloud
and devices at the edge. Using this service, a number of ap-
plication developers have deployed CNN models optimized
for inference in production on several types of platforms.
All source code has been released to the open source TVM
project2.

The rest of this paper is organized as follows: Section 2
reviews the background of modern CPUs as well as the typical
CNN models; Section 3 elaborates the optimization ideas
that we propose and how we implement them, followed by
evaluations in Section 4. We list the related works in Section 5
and summarize the paper in Section 6.

1https://aws.amazon.com/sagemaker/neo/
2https://github.com/dmlc/tvm

1026 2019 USENIX Annual Technical Conference USENIX Association

https://aws.amazon.com/sagemaker/neo/
https://github.com/dmlc/tvm

2 Background

2.1 Modern CPUs
Although accelerators like GPUs and TPUs demonstrate their
outstanding performance on the deep learning workloads, in
practice, there is still a significant number of deep learning
computation, especially model inference, taking place on the
general-purpose CPUs due to the high availability. Currently,
most of the CPUs equipped on PCs and servers are manu-
factured by Intel or AMD with x86 architecture [1], while
ARM CPUs with ARM architecture occupy the majority of
embedded/mobile device market [2].

Modern CPUs use thread-level parallelism via multi-
core [21] to improve the overall processor performance given
the diminishing increasing of transistor budgets to build larger
and more complex uniprocessor. It is critical to avoid the in-
terference among threads running on the same processor and
minimize their synchronization cost in order to have good
scalability on multi-core processors. Within the processor, a
single physical core achieves the peak performance via the
SIMD (single-instruction-multiple-data) technique. SIMD
loads multiple values into wide vector registers to process
together. For example, Intel introduced the 512-bit Advanced
Vector Extension instruction set (AVX-512), which handles
up to 16 32-bit single precision floating point numbers (totally
512 bits) per CPU cycle. And the less advanced AVX2 pro-
cesses data in 256-bit registers. In addition, these instruction
sets utilize the Fused-Multiply-Add (FMA) technique which
executes one vectorized multiplication and then accumulates
the results to another vector register in the same CPU cy-
cle. The similar SIMD technique is embodied in ARM CPUs
as NEON [3]. As shown in the experiments, our proposed
solution works on both x86 and ARM architectures.

In addition, it is worth noting that modern server-side CPUs
normally supports hyper-threading [37] via the simultaneous
multithreading (SMT) technique, in which the system could
assign two virtual cores (i.e. two threads) to one physical core,
aiming at improving the system throughput. However, the
performance improvement of hyper-threading is application-
dependent [35]. In our case, we do not use hyper-threading
since one thread has fully utilized its physical core resource
and adding one more thread to the same physical core will nor-
mally decrease the performance due to the additional context
switch. We also restrict our optimization within processors
using the shared-memory programming model as this is the
typical system setting for CNN model inference. The Non-
Uniformed Memory Access (NUMA) pattern occurred in the
context of multiple processors on the same motherboard is
beyond the scope of this paper.

2.2 Convolutional neural networks
Convolutional neural networks (CNNs) are commonly used
in computer vision workloads [23, 26, 33, 36, 41–43]. A CNN

model is normally abstracted as a computation graph, essen-
tially, Directed Acyclic Graph (DAG), in which a node rep-
resents an operation and a directed edge pointing from node
X to Y represents that the output of operation X serves as (a
part of) the inputs of operation Y (i.e. Y cannot be executed
before X). Executing a model inference is actually to flow
the input data through the graph to get the output. Doing the
optimization on the graph (e.g. prune unnecessary nodes and
edges, pre-compute values independent to input data) could
potentially boost the model inference performance.

Most of the computation in the CNN model inference at-
tributes to convolutions (CONVs). These operations are essen-
tially a series of multiplication and accumulation, which by
design can fully utilize the parallelization, vectorization and
FMA features of modern CPUs. Existing works [19, 24, 27]
have demonstrated that it is possible to achieve high per-
formance of convolution operations on CPUs by arranging
the data layout and consequently, the computation, in an
architecture-friendly way. The remaining challenge is how
to manage the data layout flowing through these operations
efficiently to get the high performance out of the end-to-end
CNN model inference.

The rest of the CNN workloads are mostly memory-bound
operations associated to CONVs (e.g. batch normalization,
pooling, activation, element-wise addition, etc.). The common
practice [9] is fusing them to CONVs so as to increase the
overall arithmetic intensity of the workload and consequently
boost the performance.

The computation graph of CNN model training has no es-
sential difference with inference, just being larger (adding in
backwards operations) and with some more computationally-
trivial operations (e.g. loss function). Therefore, the optimiza-
tion work done for CNN model inference is applicable to
training as well.

3 Optimizations

This section describes our optimization ideas and implemen-
tations in detail. The solution presented in this paper is end-
to-end for doing the CNN model inference. Our proposed
solution is generic enough to work for a wide range of com-
mon CNN models as we will show in the evaluation. The
basic idea of our approach is to view the optimization as an
end-to-end problem and search for a globally best optimiza-
tion. That is, we are not biased towards a local performance
optimal of a single operation as many previous works. In
order to achieve this, we first present how we optimized the
computationally intensive convolution operations at low-level
using a configurable template (Section 3.1). This makes it
flexible to search for the best implementation of a specific
convolution workload on a particular CPU architecture, and
to optimize the entire computation graph by choosing proper
data layouts between operations to eliminate unnecessary
data layout transformation overhead (presented in Section 3.2

USENIX Association 2019 USENIX Annual Technical Conference 1027

and 3.3).
We implemented the optimization based on the TVM

stack [9] by adding a number of new features to the com-
piling pass, operation scheduling and runtime components.
The original TVM stack has done a couple of generic graph-
level optimizations including operation fusion, pre-computing,
simplifying inference for batch-norm and dropout [9], which
are also inherited to this work but will not be covered in this
paper.

3.1 Operation optimization

Optimizing convolution operations is critical to the overall
performance of a CNN workload as it takes the majority of
computation. This is a well-studied problem but the previous
works normally go deep to the assembly code level for high
performance [24,27]. In this subsection, we show how to take
advantage of the latest CPU features (SIMD, FMA, paral-
lelization, etc.) to optimize a single CONV without going into
the tedious assembly code or C++ intrinsics. By managing
the implementation in high-level instead, it is then easy to
extend our optimization from a single operation to the entire
computation graph.

3.1.1 Single thread optimization

We started from optimizing CONV within one thread. CONV
is computationally-intensive which traverses its operands mul-
tiple times for computation. Therefore, it is critical to man-
age the layout of the data fed to the CONV to reduce the
memory access overhead. We first revisit the computation
of CONV to illustrate our memory management scheme. A
2D CONV in CNN takes a 3D feature map (height × width
× channels) and a number of 3D convolution kernels (nor-
mally smaller height and width but the same number of chan-
nels) to convolve to output another 3D tensor. The calculation
is illustrated in Figure 1, which implies loops of 6 dimen-
sions: in_channel, kernel_height, kernel_width, out_channel,
out_height and out_width. Each kernel slides over the input
feature map along the height and width dimensions, does
element-wise product and accumulates the values to produce
the corresponding element in the output feature map, which
can naturally leverage FMA. The number of kernels forms
out_channel. Note that three of the dimensions (in_channel,
kernel_height and kernel_width) are reduction axes that can-
not be embarrassingly parallelized.

We use the conventional notation NCHW to describe the
default data layout, which means the input and output are 4-D
tensors with batch size N, number of channels C, feature map
height H, feature map width W, where N is the outermost and
W is the innermost dimension of the data. The related layout
of kernel is KCRS, in which K, C, R, S stand for the output
channel, input channel, kernel height and kernel width.

Following the common practice [27, 45], we organized the

in_height

in_width

kernel_width

kernel_heigh
t

out_width

out_heig
ht

out_channel

(# of kernel)

in_channel

ow_inner

inputs kernels

ZMM_0

ZMM_1 -
ZMM_{ow_inner}

+ ×

DRAM

outputs

vectorized FMA

Figure 1: The illustration of CONV and the efficient imple-
mentation in AVX-512 instructions as an example. There
are three kernels depicted in dark blue, green and light pink.
To do efficient FMA, multiple kernel values are packed into
one ZMM register and reused to multiply with different input
values and accumulate to output values in different ZMM
registers.

feature map layout as NCHW[x]c for better memory access
patterns i.e. better cache locality, in which c is a split sub-
dimension of channel C in super-dimension, and the number x
indicates the split size of the sub-dimension (i.e. #channels =
sizeo f (C)× sizeo f (c), where sizeo f (c) = x). The output has
the same layout NCHW[y]c as the input, while the split factor
can be different. Correspondingly, the convolution kernel is
organized in KCRS[x]c[y]k, in which c with split size x and
k with split size y are the sub-dimensions of input channel C
and output channel K, respectively. It is worth noting that a
significant amount of data transformation overhead needs to
be paid to get the desired layout.

In addition to the dimension reordering, for better uti-
lizing the latest vectorization instructions (e.g. AVX-512,
AVX2, NEON, etc.), we split out_width to ow_outer and
ow_inner using a factor reg_n and move the loop of ow_inner
inside for register blocking. For example, on a CPU fea-
tured AVX-512, we can utilize its 32 512-bit width registers
ZMM0−ZMM31 [28] as follows. We maintain the loop hier-
archy to use one ZMM register to store the kernel data while
others storing the feature map. The kernel values stored in
one ZMM register (up to 512 bits, a.k.a, 16 output channels
in float32) are used to multiply with a number of input feature
map values continuously stored in the DRAM via AVX-512F
instructions [28], whose results are then accumulated to other
ZMM registers storing the output values. Figure 1 illustrates
this idea. For other vectorized instructions, the same idea ap-
plies but the split factor of out_width (i.e. reg_n) may change.

1028 2019 USENIX Annual Technical Conference USENIX Association

Algorithm 1 summarizes our optimization of CONV in sin-
gle thread, which essentially is about 1) dimension ordering
for friendly memory locality and 2) register blocking for good
vectorization instruction utilization, as in previous works.
However, unlike others, we made it a template in high-level
language , in which the block size (x, y), the number of utilized
registers (reg_n), and the loop-unroll strategy (unroll_ker) are
easily configurable. Consequently, the computing logic can
be adjusted according to different CPU architectures (cache
size, registered vector width, etc.) as well as different work-
loads (feature map size, convolution kernel size, etc.). This is
flexible and enables graph-level optimization we will discuss
later.

Algorithm 1 CONV operation algorithm via FMA

1: PARAM: x > 0 s.t. in_channel mod x = 0
2: PARAM: y > 0 s.t. out_channel mod y = 0
3: PARAM: reg_n > 0 s.t. out_width mod reg_n = 0
4: PARAM: unroll_ker ∈ {True,False}
5: INPUT: IFMAP in NCHW[x]c
6: INPUT: KERNEL in KCRS[x]c[y]k
7: OUTPUT: OFMAP in NCHW[y]c
8: for each disjoint chunk of OFMAP do . parallel
9: for ow.outer:= 0→ out_width/reg_n do

10: Initialize V _REG1 to V _REGreg_n by~0
11: for ic.outer:= 0→ in_channel/x do
12: for each entry of KERNEL do . (opt) unroll
13: for ic.inner:= 0→ x do
14: vload(KERNEL,V _REG0) . y floats
15: for i:= 1→ reg_n+1 do . unroll
16: v f madd(IFMAP,V _REG0,V _REGi)
17: end for
18: end for
19: end for
20: end for
21: for i:= 1→ reg_n+1 do
22: vstore(V _REGi,OFMAP)
23: end for
24: end for
25: end for

3.1.2 Thread-level parallelization

It is a common practice to partition CONV into disjoint pieces
to parallelize among multiple cores of a modern CPU. Kernel
libraries like Intel MKL-DNN usually uses off-the-shelf multi-
threading solution such as OpenMP. However, we observe
that the resulting scalability of the off-the-shelf parallelization
solution is not desirable (Section 4.2.4).

Therefore, we implemented a customized thread pool to
efficiently process this kind of embarrassing parallelization.
Basically, in a system of N physical cores, we evenly divided
the outermost loop of the operation into N pieces to assign to
N threads. Then we used C++11 atomics to coordinate threads

during fork-join and an single-producer-single-consumer lock-
free queue between the scheduler and every working thread to
assign tasks. Active threads are guaranteed to run on disjoint
physical cores via thread binding to minimize the hardware
contention, and no hyper-threading is used as discussed in
Section 2.1. For the global data structure accessed by multiple
threads such as the lock-free queues, we inserted cache line
padding as needed to avoid false sharing between threads.
In summary, this customized thread pool employs deliber-
ate mechanism to prevent resource contention and reduce
the thread launching overhead, which makes it outperform
OpenMP according to our evaluation.

3.2 Layout transformation elimination
In this subsection, we extend the optimization scope from a
single operation to the entire computation graph of the CNN
model. The main idea here is to come up with a generic solu-
tion at the graph level to minimize the data layout transforma-
tion introduced by the optimization in Section 3.1. Previous
works [19, 24, 27] which focus on individual operation op-
timization normally do not consider about the data layout
transformation overhead between highly optimized opera-
tions.

Since NCHW[x]c is efficient for CONVs which takes the
majority of the CNN model computation, we should make
sure that every CONV is executed in this layout. However,
other operations between CONVs may only be compatible
with the default layout, which makes each CONV transform
the input data layout from default (NCHW or NHWC) to
NCHW[x]c before the computation and transform it back at
the end. This transformation introduces significant overhead.

Fortunately, from the perspective of the graph level, we
can take the layout transformation out of CONV to be an
independent node, and insert it only when necessary. That is,
we eliminate the transformation taking place in the CONV
operation and maintain the transformed layout flow through
the graph as far as possible.

In order to determine if a data transformation is necessary,
we first classify operations into three categories according to
how they interact with the data layout as follows:

1. Layout-oblivious operations. These operations process
the data without the knowledge of its layout, i.e. it can
handle data in any layout. Unary operations like ReLU,
Softmax, etc., fall in this category.

2. Layout-tolerant operations. These operations need to
know the data layout for processing, but can handle a
number of layout options. For example, CONV, in our
case, can deal with NCHW, NHWC and NCHW[x]c lay-
outs. Other operations like Batch_Norm, Pooling, etc.,
fall in this category as well.

3. Layout-dependent operations. These operations process
the data only in one specific layout, that is, they do not

USENIX Association 2019 USENIX Annual Technical Conference 1029

Data

CONV

CONV

FLATTEN

NCHW

NCHW

NCHW

NCHW

Kernel

Kernel

Data

CONV_NCHW16c

CONV_NCHW16c

FLATTEN

NCHW16c

NCHW16c

Pre-transformed
Kernel

NCHW
LayoutTransform

NCHW16c

OIHW16i16o

KCRS

LayoutTransform

NCHW16c

NCHW

OIHW16i16o

optimized
layout

AlterOpLayout

Layout-
tolerant

operators,
e.g., pooling,

relu,
broadcast

operators, etc.

Pre-transformed
Kernel

Layout-tolerant
operators, e.g.,
pooling, relu,

broadcast
operators, etc.

The optimized layout
(NCHW16c) passes through

the operators without any
layout-transform overhead.

KCRS

Figure 2: Layout optimization of a simple CNN model. The notation on an edge represents the layout of the data passing through
this edge. The left side depicts the network with default data layout. Each CONV node in pink needs to pay additional overhead
to transform the data into a favorable layout to achieve good performance and then transform back to default. The network in the
right side is optimized at the graph level to minimize the data layout transformation during the runtime. The CONV nodes in
green do not need to transform any data before and after computation.

tolerate any data transformation. Therefore, the layout
has to be transformed to a certain format before passing
to a layout-dependent operation. Transformation opera-
tions like Flatten, Reshape, etc, fall in this category.

Operations between CONVs in typical CNN models are
either layout-oblivious (e.g. ReLU, SoftMax, Concat, and El-
emwiseAdd) or layout-tolerant (e.g. Batch_Norm, Pooling),
making it possible to keep the data layout being NCHW[x]c
across convolution layers. Layout transformation from NCHW
to NCHW[x]c happens before the first CONV. Data layout
between CONVs can be maintained the same (i.e. NCHW[x]c
sharing the same x value) without transformation. Only if
getting to a layout-dependent operation, e.g. Flatten, the data
layout is transformed back from NCHW[x]c to NCHW.

In practice, we first traverse the computation graph to infer
the data layout of each node as illustrated in the left side of
Figure 2, then we alter the layout of CONVs from default
to NCHW[x]c for better performance. Note that in order to
prevent further transformation, we make x a constant number
(e.g. 16) across all CONVs. However, this value may vary
across different CONVs in order to get the optimal perfor-
mance, which requires layout transformation. We will explain
more about this in Section 3.3. Finally, the LayoutTransform
nodes are inserted to the graph accordingly. Thus, we still
have NCHW input and output for the network, but the internal
layouts between CONV layers are in optimized NCHW[x]c,
as shown in the right part of Figure 2. It is worth noting that,
the layout of the model parameters such as convolution ker-
nel weights and the mean and variance of Batch_Norm are
invariant so can be pre-transformed during the compilation.

We also illustrate this in the right part of Figure 2.
We implemented the ideas by introducing multiple graph-

level optimization passes to the TVM stack. By keeping trans-
formed data layout invariant between CONV layers as much
as possible and pre-transforming the layout of convolution
kernel weights at compilation time, we further improve the
end-to-end performance of CNN model inference.

3.3 Optimization scheme search

We came up with the aforementioned optimization schemes,
especially, how to layout the data, based on our understand-
ing of the hardware, e.g. cache size, vectorization unit width,
memory access pattern, etc. However, it is tedious and im-
practical to exhaust all possible optimal cases by hand. As
a trade-off, Section 3.2 assumes that the split factor of the
channel, i.e. x in NCHW[x]c, stays the same during the entire
network, while having various x values in different CONVs
may lead to a better performance. In addition, the split fac-
tor of the output width, i.e. reg_n, also needs to adjust for
different vectorization instruction sets.

Therefore, an automatic search for the best scheme is in
demand to further improve the performance. Basically, we
should build a system to allow the domain experts to con-
struct the search space for the machine to explore for the best
scheme resulting in the shortest execution time. The search
is two-stage, first local to find optimization scheme candi-
dates for the individual computationally-intensive operations,
then global to select and combine the individual schemes for
the optimal end-to-end results. It is feasible to conduct this

1030 2019 USENIX Annual Technical Conference USENIX Association

kind of search given the optimization template described in
Section 3.1.

3.3.1 Local search

The first step is to find the optimal schedules for each
computationally-intensive operations, i.e. CONVs in a CNN
model. We used a tuple (ic_bn, oc_bn, reg_n, unroll_ker) to
represent a convolution schedule, whose items are chosen
to cover different CPU architectures and generations for dif-
ferent convolution workloads. The first two terms ic_bn and
oc_bn stand for the split factors of input and output channels
(i.e. x in the NCHW[x]c notation), which are relevant to the
cache sizes of a specific CPU. The third term reg_n is the
number of SIMD registers to be used at the inner loop, which
varies among different CPU architectures and generations.
Also, we observed that utilizing all SIMD registers in a single
thread does not always return the best performance. The last
term unroll_ker is a boolean deciding whether to unroll the
for loop involving convolution kernel computation (line 12 of
Algorithm 1), as in some scenarios unrolling this loop may
increase the performance by reducing branch penalties and
such. The local search uses the template discussed in 3.1.1
to find the best combination of these values to minimize the
CONV execution time, similar to the kernel optimization step
in [31].

Specifically, the local search works as follows:

1. Define the candidate lists of ic_bn and oc_bn. To exhaust
the possible cases, we include all factors of the number
of channels. For example, if the number of channels is
64, [32, 16, 8, 4, 2, 1] are listed as the candidates.

2. Define the candidate list of reg_n. In practice, we choose
the reg_n value from [32, 16, 8, 4, 2].

3. Define the candidate list of unroll_ker to be [True, False].

4. Walk through the defined space to measure the execu-
tion time of all combinations, each of which will be run
multiple times for averaging to cancel out the possible
variance rooted from the unexpected interference from
the operating system and/or other processes. This eventu-
ally generates a list of combinations ascendingly ordered
by their execution time.

It is worth noting that we designed the above tuple in a con-
figurable way, which means that we can always revise the
tuple (e.g. adding or removing items, modifying the candidate
values of an item) as needed.

Empirically, the local search of a CNN model takes a few
hours using one machine, which is acceptable as it is one-time
work. For example, it took about 6 hours to search for the 20
different CONV workloads of ResNet-50 on an 18-core Intel
Skylake processor. In addition, we can maintain a database to
store the results for every convolution workload (defined by
the feature map and convolution kernel sizes) on every CPU

type to prevent repeating search for the same convolution in
different models.

Local search works well for each individual operation and
indeed finds better optimization scheme than our manual work.
However, greedily adopting the local optimal of every oper-
ation may not lead to the global optimal. Consider two con-
secutive CONV operations conv_0 and conv_1, if the output
split factor (oc_bn) of conv_0 is different from the input split
factor (ic_bn) of conv_1, a LayoutTransform node needs to be
inserted to the graph as discussed in Section 3.2. This trans-
formation overhead can be too expensive to take advantage
of the benefit brought by the local optimal, especially when
the data size of the network is large. On the other hand, if we
maintain the same split factor throughout the entire network
(as we did in Section 3.2), we may miss the opportunity to
optimize some CONVs. Therefore, a trade-off should be made
using a global search.

3.3.2 Global search

In this subsection, we extend the optimization search to the
entire computation graph. The idea is to allow each CONV
freely choosing the split factor x (i.e. ic_bn and oc_bn), and
take the corresponding data layout transformation time into
consideration. According to Section 3.2, the operations be-
tween CONVs are either layout-oblivious or layout-tolerant,
so they can use whatever x decided by the CONV operation.

We extract a snippet of a typical CNN model in Figure 3 to
illustrate the idea. From the figure we see that each CONV has
a number of candidate schemes specified by different (ic_bn
and oc_bn) pairs. The shortest execution time achieved by
each pair can be obtained in the local search step. The number
of pairs is bound to 100 since both ic_bn and oc_bn usually
have choices less than 10. Choosing different schemes will
introduce different data transformation overheads (denoted in
dashed boxes between CONVs) or no transformation (if the
oc_bn of the CONV equals the ic_bn of its successor). For
simplicity, in the figure we omit the operations which do not
impact the global search decision such as ReLU, Batch_Norm
between two CONVs. However, operations like Element-
wise_Add could not be omitted since it requires the layout of
its two input operands (outputs of CONVj and CONVk in the
figure) to be the same.

Naively speaking, if a CNN model consists of n CONVs,
each of which has ki candidate schemes, the total number of
options of the global scheme will be ∏

n
i=1 ki, very easy to

become intractable as the number of layers n grows. Fortu-
nately, in practice, we can use a dynamic programming (DP)
algorithm to efficiently solve this problem. Note that when
choosing the scheme for a CONV, we only need to consider
the data layout of it and its direct predecessor(s) but not any
other ancestor CONVs as long as the so-far globally optimal
schemes up to the predecessor(s) are memorized.

Therefore, a straightforward algorithm is constructed in

USENIX Association 2019 USENIX Annual Technical Conference 1031

CONVi
LayoutTransform CONVj

LayoutTransform CONVk
LayoutTransform

CONVl

ELEWISE_ADD

LayoutTransform

CONV

LayoutTransform ?1 2 3

N-2 N-1 N

Yes

No

CONV schemes

CONV computing time: varies along
with different CONV schemes

Layout Transform time: varies
along with different CONV schemes

Figure 3: Global search for CNN model inference. LayoutTransform may or may not be in invoked according to the global
decision. If invoked, an additional overhead of data transformation denoted in yellow needs to be paid.

Algorithm 2. In practice, a lot of CNN models has the struc-
ture as simple as a list, in which each CONV only has one
predecessor [33, 41]. In this case, after a CONV is done, the
intermediate states stored for its predecessor can be safely re-
moved. For networks with more complex structure like using
Elementwise_Add to add two CONV outputs to feed to the
next CONV [23], it is trickier since the schemes of a CONV
may need to be saved for a future use (e.g. in Figure 3 CONVl
needs the schemes of CONVj via Elementwise_Add).

Algorithm 2 Global search algorithm

1: Sort the nodes of the graph in topological order
2: Initialize the optimal schemes of the CONVs without

dependency using the execution time of their candidate
schemes

3: for CONVi in topological order do
4: for each candidate scheme CSI j of CONVi do . j is

the jth scheme of CONVi
5: t = execution_time(CSI j)
6: GSI j = MAX . initialize global optimal scheme

of CONVi under scheme j
7: for each so-far globally optimal scheme GSXk of

predecessor x do . k is the kth scheme of CONVx
8: cur_opt = t + trans f orm_time(k, j)+GSXk
9: if cur_opt < GSI j then

10: GSI j = cur_opt
11: end if
12: end for
13: end for
14: end for
15: return last node’s shortest scheme

However, if the model structure becomes too compli-
cated with many data dependency links between CONVs, the
straightforward DP algorithm could go intractable, too. For
example, in the object detection model SSD [36], the number
of states can reach the order of trillions due to the occurrence
of many concatenation blocks. In this case, we introduced an
approximate solution to accelerate the search. Particularly, we
reduced our global search problem to the register allocation

problem in the canonical compiler domain with minor modifi-
cation as follows. The register allocation problem is modeled
as graph representation in which each node (variable) has
a candidate list containing all possible register options, and
each edge is associated with a cost matrix indicating the avail-
ability of registers between two nodes [20]. Similarly in our
global search, each CONV has a list of candidate schemes
and each edge is associated with the layout transformation
cost matrix generated by the scheme lists of two CONVs. For
other non-CONV nodes like Elementwise_Add which require
all inputs in the same layout, we fixed the layout of one in-
put and convert all other input layouts to it. Therefore, we
defined the candidate list of a non-CONV node to be the same
as the first input CONV and the cost matrix on the edge be-
tween these two nodes as all diagonal elements being 0 and all
the other elements being infinite. For the edges between this
non-CONV node and other input nodes, cost matrices are gen-
erated from the first input node and other input nodes. After
such modification, all nodes and edges in our graph have the
valid properties which are required by the register allocation
modeling. This enables us to apply a heuristic solver based
on partitioned boolean quadratic programming (PBQP) to our
problem as it is done in register allocation [20].

In order to verify the result of this approximation algorithm,
we compared it with the result of DP (the guaranteed best)
on some simple networks where DP is tractable. It turns out
that the approximation algorithm gets at least 88% of the best
available result. Empirically, a typical DP search completes
in 1 minute for most CNN models. In practice, we switch to
the approximation algorithm if DP does not complete in 5
minutes. The approximation algorithm completes quickly, e.g.
in 10 seconds. For the 15 popular networks we evaluated in
Section 4, only SSD was done approximately.

4 Evaluation

This section evaluates the performance of our proposed solu-
tion, NeoCPU, by answering the following questions:

1. What is the overall performance of NeoCPU comparing

1032 2019 USENIX Annual Technical Conference USENIX Association

with the start-of-the-art alternatives on various kinds of
CPUs?

2. What is the individual contribution of each optimization
idea we proposed?

All experiments were done on Amazon EC2 instances. We
evaluated NeoCPU on three kinds of CPUs, Intel Skylake
(C5.9xlarge, 18 physical cores, featured with AVX-512),
AMD EPYC (M5a.12xlarge, 24 physical cores, featured with
AVX2) and ARM Cortex A72 (A1.4xlarge, 16 physical cores,
featured with NEON). Although testing on the cloud, our
results of ARM CPUs apply to the ones at the edge devices
such as Raspberry Pi and Amazon Echo Dot due to the same
architecture. All cores have uniformed memory access.

NeoCPU was built on top of the code base of the TVM
stack 0.4.0. For CPUs with x86 architecture, we chose two
framework-specific solutions and one framework-agnostic so-
lution as baselines for comparison. For the framework-specific
solution, we investigated a wide range of options and figured
out that MXNet 1.3.1 with Intel MKL-DNN v0.15 enabled
has the widest model coverage with the best inference perfor-
mance compared to others (e.g. Intel Caffe). In addition, we
chose TensorFlow 1.12.0 with ngraph v0.12.0-rc0 integration
(empirically proved to be better than TensorFlow XLA on
CPUs) due to its popularity. TensorFlow is known to have
better performance on CPUs than another popular deep learn-
ing framework PyTorch [14]. The latest Intel OpenVINO
Toolkit 2018 R5.445 served as the framework-agnostic solu-
tion. We used the official image-classification sample 3 and
object-detection-ssd sample 4 for benchmarking. For ARM
CPUs, we chose MXNet 1.3.1 with OpenBlas 0.2.18 and Ten-
sorFlow 1.12.0 with Eigen fd68453 5 as the baselines. No
framework-agnostic comparison was performed as on ARM
CPUs there is no counterpart of OpenVINO to x86 CPUs.
In addition, OpenMP 4.5 implemented in GCC 7.3 was used
in the comparison with our own thread pool for multi-thread
scalability. As a note, all implementations used direct convo-
lution. Incorporating the advanced convolution algorithms to
further improve the performance remains for future work.

We ran the model inference on a number of popular CNN
models, including ResNet [23], VGG [41], DenseNet [26],
Inception-v3 [43], and SSD [36] using ResNet-50 as the base
network. Models consumed by MXNet and OpenVINO were
from the Gluon Model Zoo 6. Models consumed by Tensor-
Flow were obtained mostly from TF-SLim 7 and for some

3https://docs.openvinotoolkit.org/latest/
_inference_engine_samples_classification_sample_README.html

4https://docs.openvinotoolkit.org/latest/
_inference_engine_samples_object_detection_sample_ssd_README.html

5https://github.com/tensorflow/tensorflow/blob/r1.12/
tensorflow/workspace.bzl#L128

6https://mxnet.incubator.apache.org/api/python/gluon/
model_zoo.html

7https://github.com/tensorflow/tensorflow/tree/master/
tensorflow/contrib/slim

missing ones (e.g. ResNet-34, DenseNet-169) we manually
created them. The same model in different formats are seman-
tically identical. As inherited from the TVM stack, NeoCPU
is compatible to both Gluon and TF-slim formats, and in the
evaluation we used the former one. The input data of the
model inference are 224×224 images, except for the Incep-
tion Net (299×299) and SSD (512×512) by following the
popular convention. Since the most important performance
criterion of model inference is the latency, we did all experi-
ments with batch size 1, i.e. each time only one image was
fed to the model, to measure the inference time. Therefore,
we fix the value N in NCHW [x]c as 1. NeoCPU works for
larger batch sizes as well, in which cases we just need to add
the N value to our configuration tuple.

Since our optimization does not change the semantics of
the model, we do not expect any change of the model output.
As a sanity check, we compared the results generated by
NeoCPU with other baselines (prediction accuracy for image
classification models and mean accuracy prediction for object
detection models) to validate the correctness.

4.1 Overall Performance

We first report the overall performance we got for 15 popu-
lar CNN models comparing with the baselines on different
CPUs in Table 2. The results were obtained by averaging the
execution times of 1000 samples, doing inference for one at
a time. In general, NeoCPU is more efficient across differ-
ent models on different CPU architectures than any of the
baselines (up to 11× speedup without considering the sus-
picious OpenVINO outliers which will be explained later).
Compared to the best available baseline result for each model,
NeoCPU gets 0.94-1.15× performance on the Intel Skylake
CPU, 0.92-1.72× performance on the AMD EYPC CPU, and
2.05-3.45× performance on the ARM Cortex A72 CPU.

As framework-specific solutions, MXNet and TensorFlow
were suboptimal for CNN inference on CPUs because it is
lacking of flexibility to perform sufficient graph level op-
timization (e.g. flexible data layout management). MXNet
has active MKL-DNN support from Intel so it performed
quite well on CPUs with the x86 architecture. MXNet per-
formed worse than TensorFlow on ARM due to the scalability
issue (demonstrated in Figure 4c). TensorFlow performs sig-
nificantly worse on SSD as it introduces branches to this
model, which requires dynamic decisions to be made during
the runtime. Comparatively, the framework-agnostic solution
provided by the OpenVINO tries to further boost the perfor-
mance by removing the framework limitation. However, the
performance of OpenVINO was unstable across models. Al-
though it gets appealing results on some cases, OpenVINO
sometimes performed extremely slowly on certain models
(e.g. 45× slower than us for ResNet-152 on AMD) for un-
known reasons. When summarizing the speedup results, we
do not include these outliers. It is also worth noting that the

USENIX Association 2019 USENIX Annual Technical Conference 1033

https://docs.openvinotoolkit.org/latest/_inference_engine_samples_classification_sample_README.html
https://docs.openvinotoolkit.org/latest/_inference_engine_samples_classification_sample_README.html
https://docs.openvinotoolkit.org/latest/_inference_engine_samples_object_detection_sample_ssd_README.html
https://docs.openvinotoolkit.org/latest/_inference_engine_samples_object_detection_sample_ssd_README.html
https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/workspace.bzl#L128
https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/workspace.bzl#L128
https://mxnet.incubator.apache.org/api/python/gluon/model_zoo.html
https://mxnet.incubator.apache.org/api/python/gluon/model_zoo.html
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim

Unit: ms ResNet-18 ResNet-34 ResNet-50 ResNet-101 ResNet-152 VGG-11 VGG-13 VGG-16

MXNet 2.77, .01 4.85, .02 6.60, .00 12.90, .04 18.58, .07 12.05, .00 15.16, .00 18.55, .00
TensorFlow 4.07, .00 6.95, .00 11.93, .01 20.36, .00 37.33, .02 18.78, .01 24.28, .00 27.64, .02
OpenVINO 3.54, .00 5.43, .00 7.95, .00 12.55, .00 17.32, .01 138.07, .12 137.51, .14 140.95, .33

NeoCPU 2.64, .00 5.14, .00 5.73, .00 11.15, .01 17.24, .01 11.91, .00 14.91, .00 18.21, .00
VGG-19 DenseNet-121 DenseNet-161 DenseNet-169 DenseNet-201 Inception-v3 SSD-ResNet-50

MXNet 21.83, .00 14.72, .00 31.07, .01 19.73, .00 26.66, .00 10.43, .00 42.71, .00
TensorFlow 35.94, .00 18.65, .01 32.97, .00 23.03, .01 29.19, .01 16.39, .04 358.98, .13
OpenVINO 147.41, .12 9.03, .00 18.55, .01 11.80, .01 14.92, .01 10.65, .00 30.25*, .01

NeoCPU 21.77, .00 8.04, .01 17.45, .04 11.21, .01 13.97, .03 10.67, .01 31.48, .00

(a) Overall performance on a system with 18-core Intel Skylake CPU

Unit: ms ResNet-18 ResNet-34 ResNet-50 ResNet-101 ResNet-152 VGG-11 VGG-13 VGG-16

MXNet 7.84, .36 14.66, .14 22.48, .48 40.57, 2.54 58.92, 3.21 49.17, 1.75 59.19, 1.35 72.57, 2.74
TensorFlow 13.95, .24 25.02, .49 38.14, .35 74.41, .56 108.38, .24 60.30, .22 71.16, .33 96.33, .22
OpenVINO 8.56, 1.02 15.18, .60 21.95, .42 1711.42, 1.59 2515.08, 2.51 662.09, 1.73 709.58, 1.78 828.17, 2.09

NeoCPU 7.15, .49 14.10, .68 18.79, 1.01 39.32, .87 55.71, .54 28.58, .74 38.17, .29 57.63, .68
VGG-19 DenseNet-121 DenseNet-161 DenseNet-169 DenseNet-201 Inception-v3 SSD-ResNet-50

MXNet 84.76, 1.91 35.00, 1.06 79.58, .63 47.82, 1.67 63.67, .15 30.12, .09 132.73, 2.59
TensorFlow 121.04, .38 45.87, .15 98.39, .93 57.49, .28 77.37, .24 48.78, .45 747.78, 2.24
OpenVINO 1113.17, 2.39 22.36, .24 818.86, 1.39 438.72, 1.27 453.12, 1.75 25.75, .83 93.65*, .81

NeoCPU 63.78, .18 24.30, .54 49.37, .09 31.70, .47 46.12, .51 26.37, .32 97.26, .54

(b) Overall performance on a system with 24-core AMD EYPC CPU

Unit: ms ResNet-18 ResNet-34 ResNet-50 ResNet-101 ResNet-152 VGG-11 VGG-13 VGG-16

MXNet 75.82, 1.31 135.24, 2.49 149.65, 2.37 252.76, 3.25 351.60, 3.49 385.50, 2.39 505.06, 3.28 575.80, 2.98
TensorFlow 50.50, .07 96.50, .11 107.50, .12 223.83, .17 336.56, .19 245.97, .18 336.05, .27 381.46, .21

NeoCPU 19.26, .08 37.20, .14 45.73, .02 86.77, .08 126.65, .13 87.66, .21 124.75, .05 162.49, .14
VGG-19 DenseNet-121 DenseNet-161 DenseNet-169 DenseNet-201 Inception-v3 SSD-ResNet-50

MXNet 642.27, 4.30 211.54, 3.22 389.33, 2.98 264.36, 3.82 315.10, 3.49 275.28, 3.27 657.22, 3.29
TensorFlow 459.91, .27 122.48, .07 301.51, .11 159.39, .08 204.79, .10 142.00, .07 1020.16, .47

NeoCPU 201.03, .49 44.00, .09 87.36, .15 58.93, .65 65.48, .54 84.00, .08 318.48, .11

(c) Overall performance on a system with 16-core ARM Cortex A72 CPU

Table 2: Overall performance of NeoCPU and the selected baselines. Each entry contains the mean value of 1000 runs and the
corresponding standard error. The best performance of each model is in bold. (*OpenVINO on Intel and AMD CPUs does not
measure the entire SSD execution time)

OpenVINO measures the execution time of SSD without tak-
ing into account a significant amount of operations including
multibox detection. Since OpenVINO is not open-sourced, we
were not able to modify it for apples-to-apples comparison on
the SSD model. OpenVINO does not work for ARM CPUs
as it relies on MKL-DNN which optimizes only for CPUs
with x86 architecture. NeoCPU outperforms the baselines
mostly because of the advanced optimization techniques we
presented in Section 3. In addition, all baselines largely rely
on the third-party libraries (MKL-DNN, OpenBlas, Eigen)
to achieve good performance. NeoCPU, on the other hand,
is independent from those high-performance libraries, which
gives us more room to optimize the model inference as a
whole.

4.2 Optimization Implications
This subsection breaks up the end-to-end performance gain
of NeoCPU by investigating the performance boost of each

individual optimization technique we described in Section 3.
For the sake of space, in each comparison we only pick one
network from a network family, respectively. Other networks
in the same family share the similar benefits. We only report
the performance results on Intel CPUs in Section 4.2.1-4.2.3.
The optimization effect applies to AMD and ARM CPUs, too.
Basically, Section 4.2.1 is the operation-level optimization,
and Section 4.2.2 and 4.2.3 cover the operation- and graph-
level joint optimization.

4.2.1 Layout optimization of CONV

Firstly, we compare the performance with and without orga-
nizing the data in a memory access and vectorized instruction
utilization friendly layout (NCHW{x}c) for the CONV opera-
tions at the second row of Table 3. This is the operation-level
optimization that is commonly applied by the compared base-
lines in Section 4.1. We replicate it as a template using TVM
scheduling schemes without touching the assembly code or

1034 2019 USENIX Annual Technical Conference USENIX Association

Speedup ResNet-50 VGG-19 DenseNet-201 Inception-v3 SSD-ResNet-50
Baseline 1 1 1 1 1
Layout Opt. 5.34 8.33 4.08 7.41 6.34
Transform Elim. 8.22 9.33 5.51 9.11 9.32
Global Search 12.25 10.54 6.89 11.85 12.49

Table 3: The individual speedup brought by our optimization
compared to the NCHW baseline. The speedup of row n was
achieved by applying the optimization techniques till this row.

intrinsics, which enables the subsequent optimization for var-
ious CNN models on different CPU architectures. From row
2 of Table 3 we see significant improvement compared to
the default data layout (NCHW), whose performance is nor-
malized to baseline 1. Both implementations are with proper
vectorization and thread-level parallelization, as well as basic
graph-level optimizations introduced by the original TVM
stack, e.g. operation fusion, pre-computing, inference simpli-
fication, etc.

4.2.2 Layout transformation elimination

Secondly, we evaluate the performance boost brought by elim-
inating the data layout transformation overhead as discussed
in Section 3.2. The results were summarized at the third row
of Table 3. Compared to the layout optimization of CONV
(second row of Table 3), layout transformation elimination fur-
ther accelerates the execution time by 1.1−1.5×. NeoCPU
uses a systematic way to eliminate the unnecessary data lay-
out transformation by inferring the data layout throughout the
computation graph and inserting the layout transformation
nodes only if needed, which is not seen in other works.

4.2.3 Optimization scheme search

Next, we compare the performance between the optimiza-
tion schemes produced by our search algorithm and the ones
carefully picked by us manually. By comparing the third and
fourth row of Table 3, our algorithm (described in Section 3.3)
is able to find the (approximately) best combination of data
layouts which outperforms the manually picked results by
1.1−1.5×. ResNet-50 (and its variants) gains more speedup
from global search because the network structure is more com-
plicated, hence leaving more optimization room. In contrast,
VGG-19 (and its variants) gains less since the structure of this
model is relatively simple. SSD utilizes the approximation
algorithm and gets significant speedup, too. The results also
verify that, with automatic search, we can get rid of the te-
dious manual picking of parameters by producing even better
results. To the best of our knowledge, NeoCPU is the only
one that does this level of optimization.

4.2.4 Multi-thread parallelization

Lastly, we did a strong scalability experiment using the multi-
threading implementations backed by our own thread pool

described at Section 3.1.2 and the commonly used OpenMP
API implemented in the GCC compiler. We also included
the result of MXNet, TensorFlow and OpenVINO using Intel
MKL-DNN, OpenBlas or Eigen (all realizing multi-threading
via OpenMP) for comparison. We configured OpenMP via
environment variables to make sure that the jobs are statically
partitioned and each thread runs on a disjoint core, which
resemble the behavior of our thread pool for apples-to-apples
comparison. Figure 4 summarizes the number of images a
model can inference one by one (i.e. batch size = 1) in a
second as a function of the number of threads the model infer-
ence uses. For the sake of space, we demonstrate one result
for one CPU type. The figure shows that our thread pool
achieves better scalability than OpenMP in NeoCPU as well
as in the baselines. Although the tasks are embarrassingly
parallelizable, each model inference consists of a number of
parallelization regions. The overhead of OpenMP to launch
and suppress threads before and after a region is larger than
our thread pool, which attributes to the less scalability of
OpenMP. Furthermore, sometimes we observed that the per-
formance obtained by OpenMP jitters, or even drops, while
adding threads. In addition, the performance of OpenMP may
differ across different implementations. In summary, our eval-
uation suggests that in our use cases, it is preferable to have a
self-customized thread pool with full control.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
threads

0
30
60
90

120
150
180

im

ag
es

/s
ec

MXNet
TensorFlow

OpenVINO
NeoCPU w/ OMP

NeoCPU w/ thread pool

(a) ResNet-50 on a system with 18-core Intel Skylake CPU

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
threads

0

5

10

15

im

ag
es

/s
ec

(b) VGG-19 on a system with 24-core AMD EPYC CPU

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
threads

0

5

10

15

im

ag
es

/s
ec

(c) Inception-v3 on a system with 16-core ARM Cortex A72 CPU

Figure 4: Scalability comparison between different multi-
threading implementations. The standard errors (< 0.4) are
too small to be visible in the diagrams.

USENIX Association 2019 USENIX Annual Technical Conference 1035

5 Related Works

As deep learning demonstrates more and more power in the
real-world applications, there is a significant amount of ef-
fort being made to accelerate the deep learning workloads
on all kinds of hardware ranging from CPUs [24, 27, 44, 53],
GPUs [11, 13], FPGAs [18, 22, 49], to special-purpose ac-
celerators [12, 32]. Modern deep learning frameworks nor-
mally leverage these optimized implementations to run deep
learning training and inference on the corresponding hard-
ware targets. There are also works tailored for inference to
address the inference-specific requirement such as low la-
tency and small binary size on different hardware targets (e.g.
GPUs [38], ASICs [22]). NeoCPU is more flexible and com-
bines the operation- and graph-level optimization intelligently.
Although this paper focuses on CPUs, the ideas are applicable
to other hardware targets.

NeoCPU is based on the TVM stack [9], an end-to-end
framework inspired by Halide [39], which expresses a deep
learning model into intermediate representations (IRs) and
compiles to the machine code. There are several other simi-
lar deep learning compilers such as TensorFlow XLA [34],
Tensor Comprehensions [46], Glow [40] and DLVM [47].
However, so far none of them has reported CPU inference
results on par with what we did (e.g. Glow only optimized
single-core performance on CPUs). We believe our proposed
solution could be an integral part to these frameworks.

We follow the well-studied ideas implemented in
other high-performance libraries [27, 51] to optimize the
computationally-intensive CONV operations. In addition to
the libraries, there are also highly customized optimization
works for convolutions and matrix multiplications on Intel
CPUs [19, 24]. These works are mostly about individual
operation-level optimizations, which do not consider main-
taining data layouts through the entire network. Specifically,
they carefully investigate the computation nature of convo-
lutions as well as the available CPU resources to fine tune
the operations. This kind of optimization is able to maximize
the convolution performance on the targeted CPUs but is
not very flexible to extend to other platforms and to do joint
optimization. Unlike others, we make the optimization as a
configurable template so that it is flexible to fit to different
CPU architectures and enable the opportunity to surpass man-
ually tuned performance via operation- and graph-level joint
optimization.

Our work utilizes auto search to look for optimal solu-
tions. Similar auto-tuning ideas were used in other works as
well [10, 46, 48]. However, they all focused on performance
tuning for single operations, while ours extends the scope to
the entire CNN model to search for optimal solutions glob-
ally. Recently, we also observed other work optimizing the
DNN workloads at the graph level [30]. This work attempts
to obtain better global performance using relaxed graph sub-
stitutions which may harm the local performance within a

few operations. Its non-greedy search idea is conceptually
similar to ours and potentially applicable to our solution. The
approximation algorithm we employed to deal with the global
search for the models with complicated structures (e.g. SSD)
is inspired by the application of PBQP in the register alloca-
tion problem [6, 17, 20]. This paper leverages the previous
idea and applies to a new domain by minor modification.

6 Conclusion

In this paper, we proposed an end-to-end solution to com-
pile and optimize convolutional neural networks for efficient
model inference on modern CPUs. The experiments show that
we are able to achieve up to 3.45× speedup on 15 popular
CNN models on the various kinds of CPUs (Intel Skylake,
AMD EPYC and ARM Cortex A72) compared to the per-
formance of the state-of-the-art solutions. The future work
includes extending to other convolution computation algo-
rithms such as Winograd and FFT, handling model inference
in quantized values (e.g. INT8) and extending our operation-
and graph-level joint optimization ideas to work on other
hardware platforms (e.g. NVidia GPUs compared with Ten-
sorRT). Supporting the optimized model inference in dynamic
shapes (e.g. RNNs [25, 50]) is another interesting direction to
explore.

Acknowledgments

We would like to thank our shepherd Peter Pietzuch and the
anonymous reviewers of the USENIX ATC program commit-
tee for their valuable comments which improved the paper a
lot. We are also grateful to Tianqi Chen and Animesh Jain for
helpful discussion and constructive suggestion.

References

[1] Amd vs intel market share. https://
www.cpubenchmark.net/market_share.html. [On-
line; accessed 13-May-2019].

[2] Arm holdings. https://en.wikipedia.org/wiki/
Arm_Holdings. [Online; accessed 13-May-2019].

[3] Neon. https://developer.arm.com/technologies/
neon. [Online; accessed 13-May-2019].

[4] Eigen: a C++ Linear Algebra Library. http://
eigen.tuxfamily.org/, 2017. [Online; accessed 13-
May-2019].

[5] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,

1036 2019 USENIX Annual Technical Conference USENIX Association

https://www.cpubenchmark.net/market_share.html
https://www.cpubenchmark.net/market_share.html
https://en.wikipedia.org/wiki/Arm_Holdings
https://en.wikipedia.org/wiki/Arm_Holdings
https://developer.arm.com/technologies/neon
https://developer.arm.com/technologies/neon
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/

Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. Tensorflow: A system for large-
scale machine learning. In OSDI, volume 16, pages
265–283, 2016.

[6] Cooper K.D. Torczon L. Briggs, P. Improvements to
graph coloring register allocation. ACM Trans. Program.
Lang. Syst. 16(3) 428–455, 1994.

[7] David Budden, Alexander Matveev, Shibani Santurkar,
Shraman Ray Chaudhuri, and Nir Shavit. Deep
tensor convolution on multicores. arXiv preprint
arXiv:1611.06565, 2016.

[8] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. Mxnet: A flexible and efficient ma-
chine learning library for heterogeneous distributed sys-
tems. arXiv preprint arXiv:1512.01274, 2015.

[9] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen
Shen, Eddie Yan, Leyuan Wang, Yuwei Hu, Luis Ceze,
Carlos Guestrin, and Arvind Krishnamurthy. Tvm: End-
to-end optimization stack for deep learning. arXiv
preprint arXiv:1802.04799, 2018.

[10] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang,
Thierry Moreau, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. Learning to optimize tensor programs.
arXiv preprint arXiv:1805.08166, 2018.

[11] Xie Chen, Yongqiang Wang, Xunying Liu, Mark JF
Gales, and Philip C Woodland. Efficient gpu-based train-
ing of recurrent neural network language models using
spliced sentence bunch. In Fifteenth Annual Conference
of the International Speech Communication Association,
2014.

[12] Yunji Chen, Tianshi Chen, Zhiwei Xu, Ninghui Sun,
and Olivier Temam. Diannao family: energy-efficient
hardware accelerators for machine learning. Communi-
cations of the ACM, 59(11):105–112, 2016.

[13] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch,
Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan
Shelhamer. cuDNN: Efficient Primitives for Deep Learn-
ing. arXiv preprint arXiv:1410.0759, 2014.

[14] Cody Coleman, Deepak Narayanan, Daniel Kang, Tian
Zhao, Jian Zhang, Luigi Nardi, Peter Bailis, Kunle
Olukotun, Chris Ré, and Matei Zaharia. Dawnbench: An
end-to-end deep learning benchmark and competition.
NIPS ML Systems Workshop, 2017.

[15] Scott Cyphers, Arjun K Bansal, Anahita Bhiwandi-
walla, Jayaram Bobba, Matthew Brookhart, Avijit
Chakraborty, Will Constable, Christian Convey, Leona
Cook, Omar Kanawi, Robert Kimball, Jason Knight,

Nikolay Krovaiko, Varun Kumar, Yixing Lao, Christo-
pher R. Lishka, Jaikrishnan Menon, Jennifer Myers,
Sandeep Aswath Narayana, Adam Procter, and Tristan J.
Webb. Intel ngraph: An intermediate representation,
compiler, and executor for deep learning. arXiv preprint
arXiv:1801.08058, 2018.

[16] Deanne Deuermeyer and Andrey Z. Openvino toolkit re-
lease notes. https://software.intel.com/en-us/
articles/OpenVINO-RelNotes. [Online; accessed
13-May-2019].

[17] Erik Eckstein. Code optimizations for digital signal pro-
cessors. PhD thesis, Vienna University of Technology,
2003.

[18] Clément Farabet, Cyril Poulet, Jefferson Y Han, and
Yann LeCun. CNP: An FPGA-based Processor for Con-
volutional Networks. In Field Programmable Logic and
Applications, 2009. FPL 2009. International Conference
on, pages 32–37. IEEE, 2009.

[19] Evangelos Georganas, Sasikanth Avancha, Kunal Baner-
jee, Dhiraj Kalamkar, Greg Henry, Hans Pabst, and
Alexander Heinecke. Anatomy of high-performance
deep learning convolutions on simd architectures. In
SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
830–841. IEEE, 2018.

[20] Lang Hames and Bernhard Scholz. Nearly optimal reg-
ister allocation with pbqp. JMLC 2006. LNCS, vol.4228,
pp. 346-361, 2016.

[21] Lance Hammond, Benedict A Hubbert, Michael Siu,
Manohar K Prabhu, Michael Chen, and K Olukolun. The
stanford hydra cmp. IEEE micro, 20(2):71–84, 2000.

[22] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin
Li, Yubin Li, Dongliang Xie, Hong Luo, Song Yao,
Yu Wang, et al. ESE: Efficient Speech Recognition
Engine with Sparse LSTM on FPGA. In FPGA, pages
75–84, 2017.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[24] Alexander Heinecke, Greg Henry, Maxwell Hutchinson,
and Hans Pabst. LIBXSMM: Accelerating Small Ma-
trix Multiplications by Runtime Code Generation. In
SC16: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
981–991. IEEE, 2016.

USENIX Association 2019 USENIX Annual Technical Conference 1037

https://software.intel.com/en-us/articles/OpenVINO-RelNotes
https://software.intel.com/en-us/articles/OpenVINO-RelNotes

[25] Connor Holmes, Daniel Mawhirter, Yuxiong He, Feng
Yan, and Bo Wu. Grnn: Low-latency and scalable rnn
inference on gpus. In Proceedings of the Fourteenth
EuroSys Conference 2019, page 41. ACM, 2019.

[26] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and
Kilian Q Weinberger. Densely connected convolutional
networks. In CVPR, 2017.

[27] Intel. Intel math kernel library for deep neural net-
works (intel mkl-dnn). https://github.com/intel/
mkl-dnn, 2018. [Online; accessed 13-May-2019].

[28] James R. (Intel). Intel avx-512 instructions.
https://software.intel.com/en-us/blogs/
2013/avx-512-instructions, 2013. [Online;
accessed 13-May-2019].

[29] Zhen Jia, Aleksandar Zlateski, Fredo Durand, and Kai
Li. Optimizing n-dimensional, winograd-based convo-
lution for manycore cpus. In Proceedings of the 23rd
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’18, pages 109–123.
ACM, 2018.

[30] Zhihao Jia, James Thomas, Todd Warszawski, Mingyu
Gao, Matei Zaharia, and Alex Aiken. Optimizing dnn
computation with relaxed graph substitutions. In SysML,
2019.

[31] Ziheng Jiang, Tianqi Chen, and Mu Li. Efficient deep
learning inference on edge devices. In SysML, 2018.

[32] Norman P. Jouppi, Cliff Young, Nishant Patil, David
Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick
Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,
Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean,
Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Got-
tipati, William Gulland, Robert Hagmann, C. Richard
Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt,
Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch,
Naveen Kumar, Steve Lacy, James Laudon, James Law,
Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke,
Alan Lundin, Gordon MacKean, Adriana Maggiore,
Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps,
Jonathan Ross, Matt Ross, Amir Salek, Emad Samadi-
ani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan,
Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle,
Vijay Vasudevan, Richard Walter, Walter Wang, Eric
Wilcox, and Doe Hyun Yoon. In-datacenter performance
analysis of a tensor processing unit. In Proceedings of

the 44th Annual International Symposium on Computer
Architecture, ISCA ’17, pages 1–12. ACM, 2017.

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. ImageNet Classification with Deep Convolutional
Neural Networks. In Advances in Neural Information
Processing Systems, pages 1097–1105, 2012.

[34] Chris Leary and Todd Wang. Xla: Tensorflow, compiled.
TensorFlow Dev Summit, 2017.

[35] Tau Leng, Rizwan Ali, Jenwei Hsieh, Victor
Mashayekhi, and Reza Rooholamini. An empiri-
cal study of hyper-threading in high performance
computing clusters. Linux HPC Revolution, 45, 2002.

[36] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In European
conference on computer vision, pages 21–37. Springer,
2016.

[37] Debbie Marr, Frank Binns, D Hill, Glenn Hinton,
D Koufaty, et al. Hyper-threading technology in the
netburst R© microarchitecture. 14th Hot Chips, 2002.

[38] NVIDIA. Nvidia tensorrt. https://
developer.nvidia.com/tensorrt, 2018. [Online;
accessed 13-May-2019].

[39] Jonathan Ragan-Kelley, Connelly Barnes, Andrew
Adams, Sylvain Paris, Frédo Durand, and Saman Ama-
rasinghe. Halide: A language and compiler for optimiz-
ing parallelism, locality, and recomputation in image
processing pipelines. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’13, pages 519–530.
ACM, 2013.

[40] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Sum-
mer Deng, Roman Dzhabarov, James Hegeman, Roman
Levenstein, Bert Maher, Satish Nadathur, Jakob Olesen,
Jongsoo Park, Artem Rakhov, and Misha Smelyanskiy.
Glow: Graph lowering compiler techniques for neural
networks. arXiv preprint arXiv:1805.00907, 2018.

[41] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[42] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. Going
Deeper with Convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 1–9, 2015.

1038 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/intel/mkl-dnn
https://github.com/intel/mkl-dnn
https://software.intel.com/en-us/blogs/2013/avx-512-instructions
https://software.intel.com/en-us/blogs/2013/avx-512-instructions
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt

[43] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception
architecture for computer vision. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2818–2826, 2016.

[44] Linpeng Tang, Yida Wang, Theodore Willke, and Kai
Li. Scheduling Computation Graphs of Deep Learning
Models on Manycore CPUs. ArXiv e-prints, July 2018.

[45] Tensorflow. Tensorflow performance guide.
https://www.tensorflow.org/performance/
performance_guide#data_formats, 2018. [Online;
accessed 13-May-2019].

[46] Nicolas Vasilache, Oleksandr Zinenko, Theodoros
Theodoridis, Priya Goyal, Zachary DeVito, William S
Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions. arXiv
preprint arXiv:1802.04730, 2018.

[47] Richard Wei, Lane Schwartz, and Vikram Adve. Dlvm:
A modern compiler framework for neural network dsls.
In Neural Information Processing Systems, Workshop
on Machine Learning Systems, 2017.

[48] R Clinton Whaley and Jack J Dongarra. Automatically
tuned linear algebra software. In Supercomputing, 1998.
SC98. IEEE/ACM Conference on, pages 38–38. IEEE,
1998.

[49] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan,
Bingjun Xiao, and Jason Cong. Optimizing FPGA-
based Accelerator Design for Deep Convolutional Neu-
ral Metworks. In Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable Gate
Arrays, pages 161–170. ACM, 2015.

[50] Minjia Zhang, Samyam Rajbhandari, Wenhan Wang,
and Yuxiong He. Deepcpu: Serving rnn-based deep
learning models 10x faster. In 2018 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 18), pages
951–965, 2018.

[51] Xianyi Zhang, Qian Wang, and Zaheer Chothia. Open-
blas. http://xianyi.github.io/OpenBLAS, 2014.
[Online; accessed 13-May-2019].

[52] Aleksandar Zlateski, Zhen Jia, Kai Li, and Fredo Durand.
Fft convolutions are faster than winograd on modern
cpus, here is why. arXiv preprint arXiv:1809.07851,
2018.

[53] Aleksandar Zlateski, Kisuk Lee, and H Sebastian Seung.
ZNN–A Fast and Scalable Algorithm for Training 3D
Convolutional Networks on Multi-core and Many-Core
Shared Memory Machines. In 2016 IEEE International
Parallel and Distributed Processing Symposium, pages

801–811. IEEE, 2016.

USENIX Association 2019 USENIX Annual Technical Conference 1039

https://www.tensorflow.org/performance/performance_guide#data_formats
https://www.tensorflow.org/performance/performance_guide#data_formats
http://xianyi.github.io/OpenBLAS

Accelerating Rule-matching Systems with Learned Rankers

Zhao Lucis Li?‡ Chieh-Jan Mike Liang‡ Wei Bai‡ Qiming Zheng†‡

Yongqiang Xiong‡ Guangzhong Sun?
?University of Science and Technology of China ‡Microsoft Research †Shanghai Jiao Tong University

Abstract
Infusing machine learning (ML) and deep learning (DL)

into modern systems has driven a paradigm shift towards
learning-augmented system design. This paper proposes the
learned ranker as a system building block, and demonstrates
its potential by using rule-matching systems as a concrete
scenario. Specifically, checking rules can be time-consuming,
especially complex regular expression (regex) conditions. The
learned ranker prioritizes rules based on their likelihood of
matching a given input. If the matching rule is successfully
prioritized as a top candidate, the system effectively achieves
early termination. We integrated the learned rule ranker as a
component of popular regex matching engines: PCRE, PCRE-
JIT, and RE2. Empirical results show that the rule ranker
achieves a top-5 classification accuracy at least 96.16%, and
reduces the rule-matching system latency by up to 78.81% on
a 8-core CPU.

1 Introduction

Machine learning (ML) and deep learning (DL) bring new
possibilities to modern system designs [9, 15, 17, 23, 24],
which traditionally rely on human-written heuristics. Under
the learning-augmented design, system logic is implemented
with both heuristics and ML/DL to better address performance
bottlenecks. Such design has the following advantages. First,
compared to heuristics, ML/DL has been shown to excel in
learning complex data patterns to enable classification, regres-
sion and prediction. Second, while traditional heuristics are
designed to be general purpose and computation-efficient, sys-
tems such as web services can have a workload that is highly
dynamic and scenario-specific. Adapting to workload charac-
teristics can enable highly optimized algorithmic operations
and system components.

This work was done when Zhao Lucis Li and Qiming Zheng were interns
at Microsoft Research. Chieh-Jan Mike Liang is the corresponding author.

However, formulating ML/DL tasks into system building
blocks is non-trivial. Given that ML/DL is stochastic in na-
ture, inference uncertainties should not impact the system
correctness. And, inference should not impose a significant
resource overhead on the end-to-end system performance. Re-
cently, the industry has had success in using learning-driven
space exploration as a system building block, for scenarios
such as system configuration tuning [9, 17, 23]. Building on
this success, this paper explores the potential and feasibility
of another building block for learning-augmented systems –
the learned ranker.

Particularly, we use rule-matching systems as a concrete
scenario for learned rankers. One common task of rule-
matching systems is to match the given input to one rule
in the ruleset as fast as possible, and the performance bot-
tlenecks come from two observations. For rulesets that do
not impose a mandatory ordering on rule checking, the naïve
practice of sequentially going through rules can result in pro-
cessing many unnecessary rules. The problem exacerbates
when we consider that rules can have non-trivial conditions
written in regular expressions (regex). Since regex matching
engines typically rely on either deterministic finite automa-
ton (DFA) or non-deterministic finite automaton (NFA), its
overhead largely depends on the length and complexity of
regex patterns and inputs. In the worst case, the backtracking
problem can result in O(2n) time complexity for an input
string of size n [13], rather than the expected O(n).

To reduce the rule matching latency, common optimization
techniques include string-matching pre-filters [7, 12], just-in-
time compilation [4], and specialized hardware-based regex
acceleration [20, 25]. The learned ranker enables a different
but complementary technique – after the string-matching pre-
filter removes unlikely inputs, it performs per-input rule priori-
tization for the regex matching engine, based on the likelihood
of a given input to match each rule. Conceptually, if the match-
ing rule can be prioritized as one of the top candidates, the
rule-matching system effectively achieves early-termination,
thus minimizing unnecessary rule checking.

Designing learning-augmented systems with the learned

USENIX Association 2019 USENIX Annual Technical Conference 1041

Figure 1: A learning-augmented design of rule-matching sys-
tems. Complementing existing acceleration techniques, we
introduce a learned rule ranker to dynamically prioritize rules
for each input. The goal is to minimize unnecessary rule pro-
cessing and achieve early-termination.

ranker as a building block should go beyond simply select-
ing the most accurate ML/DL model – although the ranker
helps to reduce the computation load for other system compo-
nents, it is crucial to balance the trade off between inference
accuracy and cost, with respect to the end-to-end system per-
formance. To evaluate the benefits of the learned ranker as
a building block for learning-augmented systems, we have
integrated it into popular regex matching engines: PCRE [3],
PCRE-JIT [4], and RE2 [5]. We benchmark with two publicly
available rulesets: ModSecurity CRS [2] and Snort [6]. Empir-
ical results show that the learning-augmented design reduces
the rule-matching system latency by as much as 78.81%; in
particular, the learned rule ranker can achieve a top-5 ranking
accuracy at least 96.16%, and this reduces the average num-
ber of per-input regex matching invocations by as much as
98.54%.

2 System Overview

Figure 1 illustrates the learning-augmented design of rule-
matching systems. The rule ranker exploits the fact that many
rulesets do not fix a mandatory ordering of rules, and it dy-
namically re-orders rules according to how likely they would
match the given input. If the ranker successfully prioritizes
the matching rule among the top N candidates, then the regex
matching engine can effectively early-terminate after check-
ing at most N rules. The figure also illustrates that the learned
rule ranker can complement many existing optimization solu-
tions. First, there is a string-matching pre-filter that first re-
moves inputs unlikely to match any rule [7,12]. Second, there
are efforts on reducing the regex matching engine latency,
e.g., PCRE’s just-in-time compilation [4] and hardware-based
regex acceleration [20, 25].

The rule ranker can take different realizations and ML/DL
models. While ranking accuracy is a primary consideration
in designing the ranker, achieving high accuracy typically
comes with the cost of computation overhead and latency.
This trade-off is crucial, as each input incurs the inference
cost. Therefore, it is possible that a ranker does not speed
up the overall system performance – in the context of rule-
matching systems, these worst cases happen when a given

input triggers a large amount of rule processing. Possible
reasons include (1) the string-matching pre-filter fails to first
remove unlikely inputs, or (2) the ranker fails to optimally
prioritize rules.

2.1 Strawman Solutions for Rule Ranker

Static and heuristics-based solutions. If the overall system
workload exhibits a long tail in the rule hit distribution (e.g.,
some rules account for a majority of matches), then both static
and heuristics-based solutions can be effective. In particular,
for cases where system workloads are assumed to rarely ex-
hibit temporal dynamics, system operators can sort rules by
statistically counting the number of rule hits in historical
logs. Otherwise, heuristics such as least recently used (LRU)
and least frequently used (LFU) can be used to improve the
adaptability to sporadically temporal dynamics.

While both strawman solutions are simple, they can be sub-
optimal due to the following reasons. First, while inputs are
independent, these solutions rank rules based on the historical
hit distribution, rather than any features of the current in-
put. Second, they are suitable only for scenarios with known
or long-tailed rule hit distributions. For cases and systems
where different inputs can match different rules, LRU and
LFU might not work well if the principle of locality does not
hold.

Classification-based solutions. The rule-matching problem
can be formulated as a multi-class classification problem in
the machine learning domain. Specifically, assuming each rule
is one class, we aim to predictively classify an input and rank
rules by the likelihood score of each class. One widely-used
non-DL classification technique is the logistic regression (LR).
While being used traditionally for single-class classification,
LR can be extended for multi-class classification through
the one-vs-rest strategy. Unlike linear regression and support
vector machine (SVM), LR is able to output probabilistic
values, rather than binary answers. Probabilistic values are
useful in comparing the relative likelihood of rules in a ruleset.

As a strawman solution, LR can be sub-optimal due to the
following reasons. First, since the one-vs-rest-strategy [11]
requires one model for each rule, a ruleset with r rules would
result in r LR models. In addition to the training cost, each
input effectively forces inferences over all r models. Second,
since LR commonly targets linearly separable datasets, it is
inadequate to model the space of matching inputs for rules
of complicated regex conditions. §5 compares LR with DL-
based solutions.

3 Learned Rule Ranker

Recent advances from deep learning communities have driven
the availability of off-the-shelf DL models such as the popular

1042 2019 USENIX Annual Technical Conference USENIX Association

fully connected Deep Neural Networks (DNN) and Recur-
rent Neural Networks (RNN). DL models have the following
advantages in the context of realizing learned rankers for mod-
ern systems. First, DL models can model complex non-linear
datasets (e.g., rules with complicated conditions in our case).
Second, DL models have hyper-parameters (e.g., number of
hidden layers and neurons) that can easily be tuned to op-
timize the trade off between model accuracy and inference
latency. Third, although DL models have been known to re-
quire a large amount of training data, rule-matching system
inputs can be randomly generated and cheaply labeled.

Deploying DL models for learned rule ranker involves the
following considerations and customizations.

Model selection. Given that inputs are strings, we consider
the use of both DNN models (for their simplicity) and RNN
models (for their ability to handle an arbitrary length of texts).
As §5 shows, DNN typically has a lower inference latency,
and RNN typically has a higher accuracy in prioritizing the
matching rule among the top-N candidates. However, we ar-
gue that model selection goes beyond simply selecting the
most accurate model configuration. Being a system building
block, the learned ranker design must consider how the infer-
ence accuracy and costs would impact the end-to-end system
performance. We illustrate this consideration with Figure 1 –
if the regex matching engine is fast, having a relatively inac-
curate rule ranker might be a reasonable design, especially if
the overhead of checking one unnecessary rule is lower than
the inference overhead of more accurate rankers. At the same
time, a relatively inaccurate rule ranker might hurt the overall
system performance, especially if the reduction in the amount
of unnecessary rule checking does not adequately compensate
the inference overhead.

Model inputs and outputs. The input layer of a neural net-
work takes in a vector of real numbers. Since inputs in our
case are a string of characters, they go through the process of
word embedding to convert individual characters into 8-bit
numbers in ASCII encoding. Furthermore, we note that DNN
needs to take the entire input string at once, which forces the
DNN input layer size to be at least as large as the input string.
While the maximum input string length needs to be decided
beforehand, system operators usually have statistics on the
typical system workload. If an input string is shorter than
the maximum length, we pad "0" at the end of the vectorized
input. On the other hand, since RNN can take the input string
in chunks, it can handle inputs of arbitrary length.

The output layer has a set of neurons where each neuron
corresponds to a particular rule. Each neuron outputs a num-
ber between 0 and 1 representing the classification probability.
We use these outputs to rank rules.

Input Generator. In addition to real-world traces of rule-
matching system inputs, ranker training can happen with artifi-
cially generated matching/unmatching inputs. One advantage

that the input generator offers is the large quantity of training
data necessary for training DL models. To generate training
inputs for a rule, our input generator runs Xeger [21] and
Exrex [22], which are popular Python libraries for generating
random strings from a given regex. Then, we randomly repeat-
edly choose S random characters from each of these gener-
ated inputs, and replace them with random characters. These
mutated strings are then classified as either the matching
and unmatching, by running the regex matching engine. The
value of S is a crucial parameter – a larger S produces a nearly
random unmatching string, and a smaller S changes only a
few characters to simulate "near-miss" cases in the real world.

Training. With training inputs collected in the real world or
generated by the input generator, we follow the popular train-
ing method of backward propagation with gradient descent.
Since training data are labeled, the training is effectively a
supervised learning. We use batch training, and each batch
contains one input for each rule and one unmatching input.
In addition, we train the DL model with 1,000 epochs, we
use ReLu as the activation function at hidden layers and we
use softmax at the output layer for outputting classification
probabilities.

4 Implementation

We implement our learned ranker in Python 3.6 and Tensor-
Flow 1.10.0. Our current implementation consists of ∼1,400
lines of Python code. In order to optimize the performance
of TensorFlow on a CPU, we recompile the library with SSE
4.2, AVX and FMA instructions. We also enable just-in-time
compilation for TensorFlow graphs.

To expose the target rule-matching system for the purpose
of labelling inputs, we write a client stub. The client stub
receives input strings from our input generator, and calls the
target system’s API. The communication between the input
generator and the client stub happens over HTTP with mes-
sages in the JSON format.

5 Evaluation

Our major results include – (1) a learned rule ranker can
reduce the average number of per-input regex matching invo-
cations by as much as 98.54%, with a top-5 ranking accuracy
of at least 96.16%. (2) Factoring in the rule ranker inference
overhead, the learning-augmented design reduces the rule
matching latency by as much as 78.81%. (3) We demonstrate
that the ranking model design should consider a global opti-
mization strategy, as having the most accurate model does not
necessarily benefit the end-to-end system performance.

USENIX Association 2019 USENIX Annual Technical Conference 1043

5.1 Methodology

Rulesets. While a learned rule ranker is not limited to security-
related scenarios, two popular rulesets that are publicly avail-
able are ModSecurity CRS v3.0 [2] and Snort v3.0 [6]. The
former is a web application firewall module, and the latter
is a network-based intrusion detection system. We are inter-
ested in rules with complicated regular expressions with meta-
characters, rather than simple string matching – our RSCRS
ruleset consists of 69 regex rules ranging from 20 to 3447 char-
acters, and RSSnort ruleset consists of 196 regex rules ranging
from 21 to 243 characters. We note that rules can have match-
ing criteria on multiple input fields, e.g., ARGS, ARGS_NAMES,
REQUEST_COOKIES, and REQUEST_COOKIES_NAMES in CRS,
and HTTP_header, HTTP_uri, and HTTP_method in Snort.

Workload datasets. Our experiments are based on following
rule-matching system workloads: (1) the public ECML data
set, WLECML [1], and (2) artificial data sets generated from the
CRS and Snort rulesets, WLCRS and WLSnort. The former is
primarily used as testing dataset. The latter can drive training
and testing, by separately generating multiple sets of inputs.

For the artificial data sets, an input generator (c.f. §3) out-
puts random matching and unmatching strings, with respect
to the given regex pattern. Unmatching strings allow us to test
rules that require only some of the specified fields to match.
The tool can generate a balanced workload to simulate the
worst case where all rules are likely to be hit.

Testbed environment. We run popular rule-matching engines
including PCRE [3], PCRE-JIT [4], and RE2 [5]. PCRE is
the most widely used open-source regex matching engine,
and the JIT optimization minimizes unnecessary parsing of
the internal bytecode representation, especially the matching
engine can contain many unused code branches from if and
switch statements. RE2 is a fast and thread-friendly regex
matching engine. We use Python and carry out experiments
on a Ubuntu-based Azure VM with access to 8 cores of Intel
Xeon E5-2673 running at 2.4 GHz and 3 GB of RAM.

5.2 Rule Ranking Accuracy

The primary goal of the learned rule ranker is to minimize
unnecessary regex rule matching, and the system performance
gain depends on its effectiveness in correctly prioritizing the
matching rule as a top candidate. We quantify the effective-
ness by the top-N accuracy, or the probability that the rule
ranker successfully prioritizes the matching rule to be one
of the first N rules to check. This subsection evaluates the
different factors of the top-N accuracy.

Impacts of model selection. One factor that can impact the
rule ranker’s top-N accuracy is the learning model, and we
empirically evaluate rule rankers implemented by DNN mod-
els (with two hidden layers of 128, 256, and 512 neurons),

Model Top-1 Top-3 Top-5 Latency (µs)
DNN(128) 81.85% 94.39% 97.05% 11.65
DNN(256) 83.37% 95.18% 97.45% 14.68
DNN(512) 83.72% 95.61% 97.52% 21.44
RNN(128) 89.44% 97.51% 98.82% 33.43
RNN(64) 92.98% 98.55% 99.30% 39.88
RNN(32) 95.02% 99.23% 99.71% 48.02
LR 67.69% 82.89% 88.18% 48.25

(a) RSCRS
Model Top-1 Top-3 Top-5 Latency (µs)
DNN(128) 80.08% 93.34% 96.16% 11.75
DNN(256) 83.14% 94.69% 97.27% 15.42
DNN(512) 84.45% 95.34% 97.41% 22.44
RNN(128) 85.59% 96.88% 98.26% 41.62
RNN(64) 91.33% 98.19% 99.18% 46.21
RNN(32) 94.45% 99.22% 99.63% 56.21
LR 83.83% 93.29% 95.65% 93.19

(b) RSSnort

Table 1: One factor that impacts rule ranking accuracy is the
learning model selection: DNN (with two hidden layers of
128, 256, and 512 neurons), RNN (with input chunk size of 32,
64, and 128 characters), and logistic regression (LR). Results
illustrate the trade off between top-N accuracies and ranking
latency.

Predicted Ranking for the Matching Rule

N
um

 In
pu

ts
 (%

)

0 5 10 15 20 25

0
20

40
60

80
10

0

83
.37

9.6
2

2.1
7

1.5 0.7
5

0.6
4

0.5
6

0.3
1

0.2
7

0.1
5

0.0
3

0.0
2

0.0
2

0.0
2

Figure 2: Distribution of the predicted ranking for matching
rules. For 83.37% of inputs, the rule ranker is able to prioritize
the matching rule as the first candidate.

RNN models (with input chunk size of 32, 64, and 128 char-
acters), and logistic regression (LR). We train each model
with 100,000 inputs from WLCRS and WLSnort. Table 1a and
1b show empirical measurements for WLCRS and WLSnort,
respectively. We make the following observations. RNN and
LR have the highest and lowest top-N accuracies, respectively.
While DNN (512) exhibits a 2.19% lower top-5 accuracy than
RNN (32), it is ∼ 2.24× faster. This trade-off suggests that
simply using top-N accuracies as the selection metric might
not benefit the entire system, and we further discuss how
the trade-off between top-N accuracies and inference costs
impacts the end-to-end rule matching throughput in §5.3.

Next, we look at inputs where the rule ranker fails to prop-
erly prioritize rules. Since these inputs require the regex
matching engine to process more rules, they have a higher
rule matching latency. Figure 2 illustrates the distribution
of the predicted ranking for matching rules in the case of

1044 2019 USENIX Annual Technical Conference USENIX Association

Num Training Data (K)

Ra
nk

in
g

Ac
cu

ra
cy

 (%
)

0 10 20 30 40 50 60 70 80 90 100

20
40

60
80

10
0

DNN
RNN

LR

(a) Top-1 accuracy

Num Training Data (K)

Ra
nk

in
g

Ac
cu

ra
cy

 (%
)

0 10 20 30 40 50 60 70 80 90 100

20
40

60
80

10
0

DNN
RNN

LR

(b) Top-5 accuracy

Figure 3: Increase in ranking accuracy in terms of training
data size, in the case of RSCRS.

DNN(256). For 83.37% of inputs, the rule ranker is able to
prioritize the matching rule as the first candidate. For 2.55%
of inputs, it fails to prioritize the matching rule as a top-5
candidate. Interestingly, most of these inputs are relatively
short, and the excessive padding might cause the ranker to
infer those inputs incorrectly.

Impacts of training dataset size. Another factor that can im-
pact the rule ranker’s top-N accuracy is the amount of training
data. Figure 3 shows how the accuracy increases for different
DL/ML models in the case of RSCRS, and we evaluate the
accuracy by testing 1,000 randomly generated inputs (after
each training iteration with 2,000 generated inputs). We note
that our models generally start to converge after being trained
with ∼90,000 inputs.

Impacts from imbalanced workload distributions. We ac-
knowledge that, if the system operator has a complete prior
knowledge of the workload distributions, it is possible to hard-
code a static rule checking order. One case where this is par-
ticularly useful is the long-tailed rule hit distribution. In other
words, the workload is imbalanced such that a majority of in-
puts match only a subset of the ruleset. Compared to WLCRS
and WLSnort, the ECML dataset is relatively imbalanced. And,
empirical results show that static order can significantly re-
duce the number of rules that the regex matching engine needs
to process for WLECML.

However, given that the learned rule ranker is able to prior-
itize rules with each input’s features, it can actually achieve
a larger reduction – compared to static ordering, the DNN-
based rule ranker reduces by 88.70% and 56.04% for RSCRS
and RSSnort in the case of WLECML, respectively.

Regex engine Without rule ranker With rule ranker Reduction
PCRE 1878.79 µsec 404.36 µsec 78.47%
PCRE-JIT 773.82 µsec 185.65 µsec 78.81%
RE2 206.01 µsec 55.15 µsec 73.22%

Table 2: Latency for matching one input with DNN(256)-
based ranking model, on the RSCRS ruleset.

Ruleset No rule ranker Rule ranker Reduction
RSCRS 22.38 1.68 92.49%
RSSnort 91.56 1.34 98.54%

Table 3: Average number of regex rules that the regex match-
ing engine needs to process for each input.

5.3 Rule Matching Latency Reduction
We next evaluate the rule matching latency reduction from the
learned rule ranker, and we integrate the learned rule ranker
into the PCRE, PCRE-JIT, and RE2 engines.

Table 2 shows the latency reduction for processing one
input with different regex matching engines, on the RSCRS
ruleset. Each experiment runs 10,000 different inputs to avoid
measurement noise. By fixing the ranking model, we observe
that the reduction varies with different regex matching engines
– the reduction ranges from 73.22% to 78.47%. This reduction
in latency is correlated with the reduction in the number of
rules that a regex matching engine needs to process. Table 3
shows that, for RSCRS, the average number of regex matching
invocations is 1.68, which is a 92.49% reduction from 22.38.
The reduction in the case of RSSnort is 98.54%. We note that,
since both WLCRS and WLSnort are fairly balanced workloads
(i.e., the number of matching inputs for each rule is roughly
the same), per-input rule prioritization is key to reduction.
And, the learned ranker exhibits a higher gain in cases where
the overhead of processing an unnecessary rule is higher.

Finally, we highlight that the design of learning-augmented
systems should consider the trade off between the learning’s
interference costs and the system’s global performance gain.
Figure 4 illustrates results from a DNN-based ruler ranker.
Although having larger hidden layers improves DNN model
accuracy, it does not necessarily benefit the end-to-end match-
ing latency. This is due to the fact that, not only does an
accurate model reduce unnecessary rule checking, but it also
imposes higher inference costs to the end-to-end system per-
formance. Unfortunately, the optimal model configuration
depends on the execution environment and system configu-
rations – in our case, the selection of regex matching engine
and ruleset. For instance, Figure 4 shows that the optimal
DNN hidden layer size is ∼192 neurons for RE2 with RSCRS
ruleset, ∼128 neurons for RE2 with RSSnort ruleset, ∼256
neurons for PCRE-JIT with RSCRS ruleset, and ∼64 neurons
for PCRE with RSSnort ruleset.

Discussion. We note that certain ruleset characteristics are
also factors that potentially impact the overall rule matching

USENIX Association 2019 USENIX Annual Technical Conference 1045

DNN Hidden Layer Size (neurons)

La
te

nc
y

(µ
s)

0 100 200 300 400 500 600 700 800 900 1000

0
10

0
20

0
30

0

CRS ruleset Snort ruleset

(a) PCRE-JIT rule-matching engine

DNN Hidden Layer Size (neurons)

La
te

nc
y

(µ
s)

0 100 200 300 400 500 600 700 800 900 1000

0
10

0
20

0
30

0

CRS ruleset Snort ruleset

(b) RE2 rule-matching engine

Figure 4: This figure illustrates that, although having larger
hidden layers improves DNN model accuracy, it does not
necessarily benefit the end-to-end matching latency. The rea-
son behind this observation is the correlation between model
accuracy and inference costs.

performance. One prominent example is the number of rules
in the ruleset. Specifically, as the ruleset becomes larger, suc-
cessfully prioritizing the matching rule means more rules can
be skipped. On the other hand, a larger ruleset requires more
complicated ML/DL models, which can impose additional
overhead on the system performance. Given the lack of tools
to automatically generate rulesets of different characteristics,
our experiments in this section are based on two public rule-
sets, RSCRS and RSSnort. We leave the evaluation of ruleset
characteristics as future work.

6 Related Work

Accelerating rule matching. The realization of regular ex-
pression patterns as finite state automata was first proposed by
Kleene et al. [14] in the 1950s, and NFA and DFA have been
widely used to formalize the description of regex patterns.
Since most rule-based systems (such as traffic detection, data
retrieving, and even DNA sequence matching) rely on regular
expression patterns for condition matching, there have been
efforts in speeding up regex pattern matching.

Some efforts focus on software optimizations for finite
state automaton. PCRE-JIT [4] uses the just-in-time (JIT)
library to minimize unnecessary parsing of the internal byte-
code representation. Recently, Choi et al. proposed DFC [12],
a memory-efficient and cache-friendly data structure that min-
imizes CPU stalls to maximize instruction-level parallelism.

Kumar et al. [16] proposed a representation of regular ex-
pression patterns called Delayed Input DFA (D2FA), which
reduces the space requirement as compared to DFA. Further
efforts build upon D2FA [10, 18], and compress states and
transitions. Finally, some efforts leverage hardware capabil-
ities to speed up automaton – Mitra et al. [20] and Yuan et
al. [26] explored the use of FPGAs and GPUs, respectively.

Being a system building block, the learned rule ranker
should complement many existing optimizations.

Learning-augmented systems. Auto-tuning system param-
eters is a popular scenario for learning-augmented systems.
OtterTune [8] is a database optimization tool. It uses a combi-
nation of supervised and unsupervised machine learning meth-
ods to reduce the parameter dimension, characterize observed
workloads, and recommend configurations. CherryPick [9]
demonstrates the potential of using Bayesian optimization
and Gaussian process in predicting the best-performing cloud
configuration for a given machine learning computation work-
load. Metis [17] addresses challenges that systems introduce
to hinder the tuning robustness.

Furthermore, the networking community [24] has been
applying ML and DL techniques to traffic prediction, traffic
classification, resource management, network adaption, etc.
To improve the QoS metric of video streaming, Mao et al. [19]
used reinforcement learning in the rate adapting mechanism
to continuously and adaptively adjust the streaming bit rate.

Finally, Kraska et al. [15] proposed the learned index to
replace common indexes in databases. The learned index for-
mulates the problem of database indexes as a DL predictive
problem. It offers similar semantic guarantees, and a signifi-
cant improvement in speed and memory efficiency.

Building on the success of these efforts, we explore whether
the learned ranker can be a building block of learning-
augmented systems.

7 Conclusion

This paper explores the potential and feasibility of learned
ranker as a building block for learning-augmented systems.
Particularly, we use rule-matching systems as a concrete sce-
nario. To evaluate the benefits of the learned ranker, we have
integrated it into popular regex matching engines. As future
work, we plan to study challenges in training learned rankers,
and apply learned rankers to other system scenarios.

Acknowledgments

We thank anonymous reviewers and our shepherd, Dr. Julia
Lawall, for their constructive feedback and suggestions. This
work is partly supported by the Youth Innovation Promotion
Association of CAS and the National Natural Science Foun-
dation of China (No.61772485 and No.61432016).

1046 2019 USENIX Annual Technical Conference USENIX Association

References

[1] ECML/PKDD 2007 Discovery Challenge - An-
alyzing Web Traffic. http://www.lirmm.fr/
pkdd2007-challenge.

[2] ModSecurity - Open Source Web Application Firewall.
https://modsecurity.org.

[3] PCRE - Perl Compatible Regular Expressions. http:
//www.pcre.org.

[4] PCRE JIT. http://www.pcre.org/original/doc/
html/pcrejit.html.

[5] RE2. https://github.com/google/re2.

[6] Snort. https://www.snort.org.

[7] Hyperscan: Turbo Boosting Regular Expression Match-
ing for Network Security Applications. In NSDI (Oper-
ational Systems Track). USENIX, 2019.

[8] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon,
and Bohan Zhang. Automatic Database Management
System Tuning Through Large-scale Machine Learning.
In SIGMOD. ACM, 2017.

[9] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen,
Shivaram Venkataraman, Minlan Yu, and Ming Zhang.
CherryPick: Adaptively Unearthing the Best Cloud Con-
figurations for Big Data Analytics. In NSDI. USENIX,
2017.

[10] Michela Becchi and Patrick Crowley. An Improved
Algorithm to Accelerate Regular Expression Evaluation.
In ANCS. ACM, 2007.

[11] Christopher M Bishop. Pattern recognition and machine
learning. springer, 2006.

[12] Byungkwon Choi, Jongwook Chae, Muhammad
Jamshed, Kyoungsoo Park, and Dongsu Han. DFC:
Accelerating String Pattern Matching for Network
Applications. In NSDI, 2016.

[13] Russ Cox. Regular Expression Matching Can Be
Simple And Fast (But Is Slow in Java, Perl, PHP,
Python, Ruby, ...). http://swtch.com/~rsc/regexp/
regexp1.html, 2007.

[14] Stephen Cole Kleene. Representation of Events in Nerve
Nets and Finite Automata. Technical report, United
States Air Force, 1951.

[15] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and
Neoklis Polyzotis. The Case for Learned Index Struc-
tures. In SIGMOD. ACM, 2018.

[16] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick
Crowley, and Jonathan Turner. Algorithms to Acceler-
ate Multiple Regular Expressions Matching for Deep
Packet Inspection. In ACM SIGCOMM Computer Com-
munication Review. ACM, 2006.

[17] Zhao Lucis Li, Chieh-Jan Mike Liang, Wenjia He, Lian-
jie Zhu, Wenjun Dai, Jin Jiang, and Guangzhong Sun.
Metis: Robustly Optimizing Tail Latencies of Cloud
Systems. In ATC. USENIX, 2018.

[18] Alex X Liu and Eric Torng. An Overlay Automata Ap-
proach to Regular Expression Matching. In INFOCOM.
IEEE, 2014.

[19] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.
Neural Adaptive Video Streaming with Pensieve. In
SIGCOMM. ACM, 2017.

[20] Abhishek Mitra, Walid Najjar, and Laxmi Bhuyan. Com-
piling PCRE to FPGA for Accelerating Snort IDS. In
ANCS. ACM, 2007.

[21] Colm O’Connor. Xeger. https://pypi.org/
project/xeger/, 2018.

[22] Adam Tauber. Exrex. https://pypi.org/project/
exrex/, 2018.

[23] Shivaram Venkataraman, Zongheng Yang, Michael
Franklin, Benjamin Recht, and Ion Stoica. Ernest: Effi-
cient Performance Prediction for Large-Scale Advanced
Analytic. In NSDI. USENIX, 2016.

[24] Mowei Wang, Yong Cui, Xin Wang, Shihan Xiao, and
Junchen Jiang. Machine Learning for Networking:
Workflow, Advances and Opportunities. IEEE Network,
2018.

[25] Norio Yamagaki, Reetinder Sidhu, and Satoshi Kamiya.
High-speed Regular Expression Matching Engine Using
Multi-character NFA. In FPL. IEEE, 2008.

[26] Yuan Zu, Ming Yang, Zhonghu Xu, Lin Wang, Xin Tian,
Kunyang Peng, and Qunfeng Dong. GPU-based NFA
Implementation for Memory-efficient High-speed Regu-

lar Expression Matching. In PPoPP, 2012.

USENIX Association 2019 USENIX Annual Technical Conference 1047

http://www.lirmm.fr/pkdd2007-challenge
http://www.lirmm.fr/pkdd2007-challenge
https://modsecurity.org
http://www.pcre.org
http://www.pcre.org
http://www.pcre.org/original/doc/html/pcrejit.html
http://www.pcre.org/original/doc/html/pcrejit.html
https://github.com/google/re2
https://www.snort.org
http://swtch.com/~rsc/regexp/regexp1.html
http://swtch.com/~rsc/regexp/regexp1.html
https://pypi.org/project/xeger/
https://pypi.org/project/xeger/
https://pypi.org/project/exrex/
https://pypi.org/project/exrex/

MArk: Exploiting Cloud Services for Cost-Effective, SLO-Aware
Machine Learning Inference Serving

Chengliang Zhang Minchen Yu Wei Wang
HKUST

{czhangbn, myuaj, weiwa}@cse.ust.hk

Feng Yan
University of Nevada, Reno

fyan@unr.edu

Abstract
The advances of Machine Learning (ML) have sparked a

growing demand of ML-as-a-Service: developers train ML
models and publish them in the cloud as online services to
provide low-latency inference at scale. The key challenge of
ML model serving is to meet the response-time Service-Level
Objectives (SLOs) of inference workloads while minimizing
the serving cost. In this paper, we tackle the dual challenge of
SLO compliance and cost effectiveness with MArk (Model
Ark), a general-purpose inference serving system built in
Amazon Web Services (AWS). MArk employs three design
choices tailor-made for inference workload. First, MArk dy-
namically batches requests and opportunistically serves them
using expensive hardware accelerators (e.g., GPU) for im-
proved performance-cost ratio. Second, instead of relying on
feedback control scaling or over-provisioning to serve dy-
namic workload, which can be too slow or too expensive for
inference serving, MArk employs predictive autoscaling to
hide the provisioning latency at low cost. Third, given the
stateless nature of inference serving, MArk exploits the flex-
ible, yet costly serverless instances to cover the occasional
load spikes that are hard to predict. We evaluated the per-
formance of MArk using several state-of-the-art ML models
trained in popular frameworks including TensorFlow, MXNet,
and Keras. Compared with the premier industrial ML serving
platform SageMaker, MArk reduces the serving cost up to
7.8× while achieving even better latency performance.

1 Introduction

Driven by the sustained advances of Machine Learning (ML),
the past few years have seen a surging demand of ML-as-
a-Service (MLaaS). A typical workflow of MLaaS covers
the two phases of ML in the cloud: training and inference.
In the training phase, developers build ML models from the
training dataset using an array of ML frameworks. Efficient
training in cloud environments has been well explored in the
recent work [43, 56, 75]. In the inference phase, the trained
models are published as online services in data center or cloud
and can be queried by end users with new input. The service

makes prediction decisions (inference) for a given input using
the trained model [30] (e.g., recognizing human faces in a
given photo), and returns the inference results to the querier.

Unlike training which runs offline and may take hours to
days to complete, inference must be performed in real-time
on dynamic queries with stringent latency requirements (e.g.,
tens to hundreds of milliseconds per query). These require-
ments are often specified as the response-time Service-Level
Objectives (SLOs) [41], such as at least 98% of inference
queries must be served in 200 ms. Failing to comply with the
SLOs results in compromised quality of service or even finan-
cial loss, e.g., end users will not be charged for queries not
responded in time. Therefore, an ML model serving system
should strive to meet the target SLOs while minimizing the
cost of provisioning the serving instances in the cloud.

However, achieving these two objectives can be challeng-
ing. Cloud providers like Amazon [11], Google [37], and
Microsoft [52] offer a rich selection of service provisioning
options, ranging from VMs and containers to the emerging
serverless functions. For each provisioning option, there is a
large configuration space (e.g., CPU, memory, and hardware
accelerators) coupled with diverse pricing models offering
tradeoffs between service guarantees and cost savings (e.g.,
on-demand and spot instances [17]). A key challenge of pro-
visioning model serving in the cloud is: how should a serving
system choose from a bewildering array of cloud services to
provide low-latency, cost-effective inference at scale?

Unfortunately, there is no general guideline given by
the cloud providers, nor has it been studied in the prior
work [10, 25, 42, 45, 58, 59, 63, 70] which mainly targets
at general workload. To bridge this gap, we perform exten-
sive measurement studies of inference serving in AWS [11]
and Google Cloud [37] by means of VMs (IaaS), containers
(CaaS), and serverless functions (FaaS). We briefly summa-
rize three key findings as follows.

First, our measurements suggest that among the three op-
tions, IaaS offers the best performance-cost ratio for inference
serving, but it incurs long instance provisioning latency and
is hence unable to quickly adapt to the changing workload.
CaaS suffers from a similar problem as IaaS (though less

USENIX Association 2019 USENIX Annual Technical Conference 1049

severe) with worse performance-cost ratio. Compared to IaaS
and CaaS, FaaS scales much faster but is the most expensive.

Second, inference serving can gain significant benefits from
batching when performed using costly hardware accelerators
(e.g., GPU and TPU). Nevertheless, the benefits are not always
guaranteed but critically depend on the batch size control
knobs and their interactions with query arrivals: when there is
not enough load, serving inference queries using GPUs is not
economically justified. Therefore, a serving system should
judiciously determine when to scale up from CPU to GPU
instances and how to perform batching over GPUs.

Third, ML inference usually performs stateless compu-
tations. This opens up an opportunity of using serverless
functions as a handover service when the system is provi-
sioning new instances for scaling up/out. Also, many ML
models, especially deep learning, have deterministic infer-
ence time [41, 74]—they take fixed-size input vectors and
have input-independent control flows. This also brings an
opportunity for better resource planing and latency control.

Motivated by these observations, in this paper, we propose
MArk (Model Ark), a low-latency, cost-effective inference
serving system in the public cloud. MArk takes use of the
unique characteristics of ML model serving while also ad-
dressing the distinctive challenges posed by it. In particular,
MArk allows developers to specify the target SLOs through
common APIs. To attain high performance-cost ratio, it uses
IaaS as the primary means of provisioning while employing
FaaS to quickly fill the service gap when the system is un-
dergoing horizontal/vertical scaling. MArk uses predictive
scaling to hide the instance provisioning latency in IaaS. Un-
predicted load spikes are covered by serverless functions to
reduce over-provisioning. Based on the predicted workload,
MArk opportunistically uses costly GPU instances to serve
batched queries for improved performance-cost ratio. To fur-
ther bring down the cost, MArk also supports the use of the
discounted, yet interruptible instances (e.g., spot instances)
with an interruption-tolerant mechanism that uses transient
servers to handle instance interruptions at low cost.

We have prototyped MArk as a general-purpose serving
platform in AWS [11] with pluggable backend model servers
supporting a range of ML frameworks such as Tensorflow
Serving [55], MXNet Model Server [24], and customized
Keras [29] server with Theano [26] backend. We have evalu-
ated MArk on AWS using several state-of-the-art ML mod-
els for image recognition, language modeling, and machine
translation: Inception-V3 [67], NASNet [76], LSTM-ptb [51],
and OpenNMT [47]. The results show that MArk yields up
to 7.8× cost reduction while achieving comparable or even
better latency compared to the state-of-the-practice solution
SageMaker [13], and also comply with the predefined SLO
requirements. MArk is open-sourced for public access.1

1https://github.com/marcoszh/MArk-Project

2 Background and Related Work

In this section, we survey related work on model serving sys-
tems and autoscaling techniques. We also provide background
information on cloud services and their pricing models.

2.1 Machine Learning Model Serving

A wide array of ML inference serving systems have been
proposed to facilitate model deployment [7, 8, 24, 30, 55, 72].
These systems place the trained models in containers and han-
dle model inference requests through REST APIs. For exam-
ple, systems like Clipper [30], Rafiki [72], and MXNet Model
Server [24] host each model in a separate Docker [4] con-
tainer to ensure process isolation; TensorFlow Serving [55]
deploy models as servables, which are executed as black box
containers and can also be used for version management. In
order to provide low-latency inference, these systems employ
a number of model-agnostic optimizations such as batching,
buffering, and caching [30]. The recently proposed white box
model serving [49] enables model-specific optimizations with
fine-grained resource sharing and parameter re-use.

However, existing inference serving systems mainly focus
on streamlining model deployment in server machines, with-
out addressing the scalability and cost minimization issues for
model serving on the public cloud. Microsoft’s Swayam [41]
is among a few inference serving systems that focus on in-
frastructure scalability and resource efficiency. Yet, Swayam
is a proprietary system for model deployment in Microsoft’s
private MLaaS clusters, where the cloud provisioning options
(e.g., IaaS, CaaS, FaaS) and their pricing models are not rele-
vant. Amazon’s SageMaker [13] offers scalable model serving
over EC2 [1] instances. However, it only supports IaaS provi-
sioning and requires manual specification of the provisioning
instances. SageMaker is also agnostic to the response-time
SLOs and serves inference queries in a best-effort manner. In
contrast, MArk meets SLOs at low cost by choosing from a
complex selection of provisioning services in AWS [11].

2.2 Autoscaling Dynamic Workload in Cloud

There is a large body of work on autoscaling dynamic work-
load for general web services hosted in the cloud. We refer
to [59] for an extensive survey of this topic and compare some
related work with MArk in Table 1. In general, there are two
scaling approaches used to serve dynamic workload.

Feedback control scaling. This approach monitors hosted
applications and reactively adjusts resource provisioning
based on the monitored metrics (e.g., utilization, throughput,
and latency). Feedback control scaling is adopted in many
industrial serving platforms to autoscale dynamic workload,
e.g., SageMaker in AWS [12, 13] and Kubernetes in Google
Cloud [38, 39]. These systems perform scaling following
some customized rules such as “adding 2 instances if CPU

1050 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/marcoszh/MArk-Project

Table 1: A comparison of MArk and existing work on autoscaling dynamic workload in the cloud.

Autoscaler Scaling approach Means of Provisioning SLO-aware Heterogeneous
instances

Interruptible
instances

Hardware
accelerators

MBRP [33] Feedback control Private cluster X X × ×
Ali-Eldin et al. [9] Predictive IaaS × × × ×
Barrett et al. [25] Predictive IaaS × × × ×
Urgaonkar et al. [70] Predictive IaaS X × × ×
Han et al. [42] Predictive IaaS X × × ×
Qu et al. [58] Feedback control IaaS × X X ×
SpotCheck [63] – IaaS × X X ×
He et al. [45] – IaaS × X X ×
Swayam [41] Predictive Private cluster X × – ×
SageMaker [13] Feedback control IaaS × × × X
MArk Predictive IaaS and FaaS X X X X

utilization reaches 70%,” or tracking a target such as “main-
taining 100 queries per minute per instance” [15].

Feedback control scaling makes no prediction about the
future and is easy to implement. However, owing to its reac-
tive nature, it incurs long instance provisioning delay when
used to serve changing workload [59]. Over-provisioning is
therefore needed in case of load spikes. For example, Sage-
Maker recommends to start with 100% over-provisioning and
adjust thereafter [16]. As ML model serving is often compute-
intensive and requires costly CPU/GPU instances, solely rely-
ing on over-provisioning is economically not viable.

Predictive scaling. This approach makes predictions about
the future workload, based on which it proactively autoscales
the serving instances to reduce over-provisioning. Predictive
scaling has been widely employed to serve general work-
load (e.g., web services and VM demands) using a number
of time-series based prediction algorithms, such as linear
regression [27], autoregressive models [34, 61], and neural
networks [19, 53, 57, 65]. Predictive scaling is often com-
plemented with feedback control scaling, where the two ap-
proaches operate at different time scales [42,70]. For example,
predictive scaling can be used for resource planning at the
time scale of hours or days, while reactive provisioning op-
erates in minutes to respond to flash crowds or unexpected
deviations from long-term behaviors [70].

However, due to the mismatch of target workload, existing
predictive autoscalers do not work well for ML model serving.
As summarized in Table 1, they only consider provisioning
over homogeneous instances in IaaS [9, 25, 42, 70]. They
also do not support hardware accelerators (e.g., GPUs) and
cheaper, yet interruptible instances (e.g., spot servers), hence
missing opportunities of cutting provisioning cost. In addition,
many predictive autoscalers are unaware of the response-time
SLOs and only provide best-effort services [9, 25].

2.3 Cloud Provisioning Services
Compared with private clusters, model serving in public
clouds is more complex. Leading cloud platforms such as
AWS [11], Google Cloud [37], and Microsoft Azure [52] of-

fer a variety of provisioning services that can be used for
model serving. We briefly review these services, with a main
focus on AWS.

Infrastructure-as-a-Service (IaaS). With IaaS, cloud cus-
tomers run virtual instances (VMs) of various configurations
in terms of vCPUs, memory, storage, network, and accelera-
tors (e.g., GPU, TPU, and FPGA). Customers can then con-
figure and deploy ML model serving softwares [24,30,68] on
running instances to serve model inference requests.

IaaS cloud provides flexible pricing options to allow cus-
tomers to choose between service guarantees and cost savings.
Taking Amazon EC2 [1] as an example, customers can run in-
stances on-demand and pay for compute capacity by per hour
or per second depending on the instance types. Alternatively,
customers can run spot instances at steep discounts compared
to the on-demand price, under the condition that a running
spot instance can be interrupted indefinitely [17]. EC2 also
allows customers to reserve an instance in a long term by mak-
ing an upfront payment [21]. During the reservation period,
the instance usage is subject to a heavy discount compared to
the on-demand price. All three IaaS pricing options are also
available in Google Cloud [37].

Container-as-a-Service (CaaS). With CaaS, customers en-
capsulate services and implementations in containers (e.g.,
Docker images [4]), and run containers with specified resource
configurations in the cloud, e.g., Amazon ECS [2] and Google
Kubernetes Engine [6]. Compared with IaaS, CaaS simplifies
software configurations and deployment without the complex-
ity of maintaining the server infrastructure. In Amazon ECS,
users pay for the container capacity by per second, where the
pricing is based on requested vCPU cores and memory.

Function-as-a-Service (FaaS). With FaaS, customers run
applications as serverless functions in the cloud without pro-
visioning or managing servers, e.g., AWS Lambda [3] and
Google Cloud Functions [5]. In Lambda, customers can only
specify the memory allocation for an instance, and pay for the
total number of requests and the duration of compute time [3].
FaaS is particularly suitable for stateless computations and

USENIX Association 2019 USENIX Annual Technical Conference 1051

Table 2: Cost ($) and average latency (t) of serving 1 million
requests of three ML models in AWS. We choose c5.large
EC2 instance (2 vCPUs and 4GB memory) as it is the most
cost-effective. Each ECS container is allocated the same vC-
PUs and memory as c5.large; each Lambda instance has
3GB memory to achieve comparable latency with c5.large.

ML Model EC2 ECS Lambda
$ t (ms) $ t (ms) $ t (ms)

Inception-v3 5.0 210 9.17 217 19.0 380
Inception-ResNet 9.3 398 16.4 411 39.3 785
OpenNMT-ende 51.5 2180 96.3 2280 155 3100

has recently been used to provision ML model serving [69].
Given a complex selection of provisioning options in the

public cloud, which one should be used for ML model serv-
ing? We answer this question in the next section.

3 Characterizing Model Serving in the Cloud

In this section, we characterize ML serving performance with
IaaS, CaaS, and FaaS as well as their configuration space. Our
characterizations are mainly based on AWS [11] (§3.1-3.4), a
leading cloud platform offering the most diversified service
options. We validate the major results in Google Cloud [37]
where possible (§3.5).

3.1 What service to use: IaaS, CaaS, or FaaS?
We choose three representative ML models, Inception-v3 [67],
Inception-ResNet [66], and OpenNMT-ende [47], for common
prediction tasks such as image classification and machine
translation, and evaluate their peak inference performance
with TensorFlow Serving [55]. Table 2 summarizes the cost
and average latency of serving 1 million requests using AWS
EC2 (IaaS), ECS (CaaS), and Lambda (FaaS), respectively.2

IaaS vs. CaaS. In EC2 [1], customers can choose among
predefined instance types with fixed vCPU and memory allo-
cation. In Table 2, we choose the cheapest compute-optimized
instance c5.large as the reference, since it is proven to be
the most cost-effective one in §3.3. AWS’s container service
ECS [2], on the other hand, lets users choose the number of
vCPUs they want. We allocate each container with 2 vCPUs
to match the capacity of c5.large, and with the minimum
memory allowed. Compared with c5.large, the ECS con-
tainer has similar serving latency but is more expensive.

FaaS. As for the serverless computing service Lambda [3],
the pricing is per-request based, and the cost per request de-
pends on the resource allocation and runtime of the request.
Customers specify memory allocation in Lambda, and CPU
resource is allocated proportionally to memory [14]. For a
fair comparison, we compare the Lambda cost of serving the
same amount of requests c5.large can serve in an hour, with

2Costs of instances are all based on AWS us-east-1 region.

the maximum memory allocated for best performance. The
cost is significantly higher, and the latency is longer, too.

Scalability. EC2 has long provisioning overhead (e.g., sev-
eral minutes), because additional time is needed to load and
set up large ML model serving atop standard overhead, as
Microsoft suggests with their production traces [41]. The
overhead makes it challenging to accommodate demand surge
without high margin of over-provisioning. The high launch-
ing overhead also penalizes frequent provisioning and de-
provisioning, since customers are billed during the instance
launching period as well. Similar to EC2, ECS also needs
dozens of seconds of provisioning overhead. Lambda, on the
contrary, is able to spawn thousands of new ML inference
instances in less than a few seconds, and once an instance is
ready, it can continuously serve requests without incurring
additional overhead [48]. The cold start overhead of Lambda
can be amortized by warming up [48]. Compared with EC2
and Lambda, ECS shows no obvious advantage.

Summary. A natural question is that can we exploit the cost-
effectiveness of IaaS service while also taking advantage of
the high scalability of FaaS? Conventional cloud provisioning
schemes have to over-provision because of the weak scala-
bility of IaaS or CaaS. Now that ML serving is eligible for
the highly scalable FaaS, we can reduce over-provisioning by
combining IaaS and FaaS. IaaS is used as the primary serving
option, while FaaS can provide transient service while new
IaaS instances are launching. Moreover, FaaS can potentially
handle the short lasting demand surges (short spikes), so that
the overhead of frequent provisioning and deprovisioning can
be eliminated. Although FaaS is costly, we believe the cost
reduction from less over-provisioning can justify its price.

With IaaS as the primary serving option, we shall determine
how to choose from a bewildering array of instance families
and sizes, which we answer in the following subsections.

3.2 IaaS: Can we use burstable instances?
IaaS providers typically categorize instances into families.
Within a family, instances share the similar physical hard-
ware but may have various sizes in terms of vCPUs, memory,
and network bandwidth. For CPU instances, EC2 offers four
main instance families: the general-purpose m-family, the
compute-optimized c-family, the burstable t-family, and
the memory-optimized r-family.

Among all instance types, burstable instances (t-family)
have the lowest hourly rate, but they are aggressively multi-
plexed on overbooked servers [71, 73]. Burstable instances
provide a baseline level (10% in AWS) of CPU performance
with the ability to burst when required by the workload, yet
with limited timespan according to a throttle policy (a new t2
instance can sustain 100% utilization for 30 minutes) [22,23].

We profiled t2 instances’ performance for ML serving and
show the results in Table 3. We see that the latency drops lin-
early with the CPU allocation but adding more memory does

1052 2019 USENIX Annual Technical Conference USENIX Association

Table 3: The average latency (t) and cost ($) of serving 1
million model inferences with bursted t2 instances.

AWS t2 Instance Size micro small medium large

Inception-v3 t (ms) 268.6 268.3 140.37 142.5
$ 0.87 1.71 1.81 3.75

Inception-ResNet t (ms) 603.0 593.2 311.8 309.8
$ 1.94 3.79 4.01 7.96

OpenNMT-ende t (s) 4.30 4.19 2.20 2.14
$ 13.85 24.83 28.36 56.71

large xlarge 2xlarge4xlarge
0

1

2

3

c
o
s
t:

 b
a
r

M1 M2 M3

0.2

0.4

0.6

0.8

1.0

la
te

n
c
y
:

li
n
e

(a) c5 instances
large xlarge 2xlarge4xlarge

0

1

2

3

4

c
o
s
t:

 b
a
r

M1 M2 M3

0.25

0.50

0.75

1.00

1.25

la
te

n
c
y
:

li
n
e

(b) m5 instances

Figure 1: The latency (lines) and cost (bars) of serving 1
million model inference requests with c5 and m5 instances.
M1, M2, and M3 respectively denote Inception-v3, Inception-
ResNet, and OpenNMT-ende. The values are normalized by
that of c5.large (182.5ms with $4.3 for M1; 389ms with
$9.4 for M2; 2.18s with $51.5 for M3).

not benefit inference performance. Although it seems that t2
instances are of low cost with viable latency for ML serving,
these results are obtained in the bursted mode and do not sus-
tain a long time. This fatal disadvantage means that burstable
instances are not for compute-intensive services [50].

Summary. Burstable instances are plausible for transient
ML serving usage, but not as the main long-running resources.

3.3 IaaS: Big instances or small instances?

We further investigate CPU instance families compute-
optimized c-family and general-purpose m-family, where
we focus on the latest generation c5 and m5. We exclude
memory-optimized instances (r-family) from consideration,
as our measurements on t2 instances indicate that 4GB of
memory already does not bound the inference performance.
In EC2, the configurations (vCPUs and memory) and prices
of m5 and c5 instances are proportional to their sizes, so it
is important to see how scaling up to larger instances would
affect the ML serving performance.

Figs. 1a and 1b depict the measured latency (lines) and
cost (bars) of serving 1 million inference requests of three
ML models using c5 and m5 instances of different sizes. In
general, c5 instances are cheaper and have lower latency than
m5 instances because of more advanced CPU models, even
though the latter have higher memory than the former. Our
results also suggest that, for CPU instances of the same fam-
ily, smaller instances are more cost-effective, as the serving

throughput grows sub-linearly with the instance size. At the
same time, by scaling from a smaller instance to a bigger one,
the latency drops sub-linearly as well.

Summary. To sum up, smaller instances with advanced CPU
models (c5.large in AWS) are preferable as they achieve
higher performance-cost ratio. Moreover, owing to the finer
provisioning granularity, using smaller instances to serve dy-
namic workload improves the resource utilization. Note that
the cost analysis presented here is based in on-demand market.
Once we switch to the spot market, the cost-effectiveness is
variable w.r.t. the change of spot price.

3.4 IaaS: How does GPU compare with CPU?
Many high-end IaaS instances are equipped with hardware ac-
celerators, such as GPU and TPU (exclusive in Google Cloud),
that can be used to speed up ML training and inference. The
questions are: how would those hardware accelerators im-
prove the latency of ML serving, and if such performance
benefit can justify their high cost? In this subsection, we fo-
cus on GPU instances, as GPU is the most accessible and
popular general-purpose ML accelerator. We will extend our
study to TPUs in Google Cloud in §3.5.

A GPU instance is more expensive than a CPU instance, but
it can achieve up to 40× speedup due to its massive parallel
nature according to NVIDIA [54]. In order to unleash the full
power of its computing capability, it is essential to batch multi-
ple inference requests and serve them in one go [68]. Batching
benefits the performance in two ways. First, it amortizes the
overhead of operations such as RPC calls and inter-device
memory copy. Second, it can take advantage of batch opera-
tion optimization from both software and hardware [30, 62].

To disclose the intriguing performance difference between
CPU instances and GPU instances as well as batching, we
compare the inference performance of three ML models on
c5 CPU instances and GPU instances p2.xlarge. We choose
p2.xlarge as it is the smallest GPU instance in AWS (the
next size available is p2.8xlarge which has 8 GPUs and is
too expensive). Fig. 2 shows the cost and latency of serving
1 million inference requests with various batch sizes (# of
requests served in one batch) on c5 and p2.xlarge instances.
For smaller CPU instances such as c5.large and c5.xlarge,
the serving cost (bars) and latency improvement (lines) over
batching is marginal (latency growing proportionally as the
batch size), while bigger CPU instance (c5.4xlarge) dis-
plays certain improvement when batch size increases within
a small range. GPU instances, on the other hand, benefit sig-
nificantly from batching: the larger the batch, the lower the
cost per request. This phenomenon suggests that batching can
significantly improve the cost-effectiveness of larger CPU
instances and GPU instances.

Summary. With an appropriate batch size, GPU instances
can achieve lower per-request cost and shorter inference la-
tency than CPU instances. However, batch size cannot be in-

USENIX Association 2019 USENIX Annual Technical Conference 1053

1 2 4 8 16 32

batch size

0.0

0.5

1.0

c
o
s
t:

 b
a
r

M1 M2 M3

0

10

20

30

la
te

n
c
y
:

li
n
e

(a) c5.large

1 2 4 8 16 32

batch size

0.0

0.5

1.0

c
o
s
t:

 b
a
r

M1 M2 M3

0

10

20

30

la
te

n
c
y
:

li
n
e

(b) c5.xlarge

1 2 4 8 16 32

batch size

0.0

0.5

1.0

c
o
s
t:

 b
a
r

M1 M2 M3

0

10

20

30

la
te

n
c
y
:

li
n
e

(c) c5.4xlarge

1 2 4 8 16 32

batch size

0.0

0.5

1.0

c
o
s
t:

 b
a
r

M1 M2 M3

0

10

20

30

la
te

n
c
y
:

li
n
e

(d) p2.xlarge

Figure 2: The cost and batch latency of 1 million model infer-
ence with batching of various sizes. M1, M2, M3 represents
inception-v3, inception-resnet, and OpenNMT-ende. The cost
and batch latency are normalized by the values when batch
size is set to 1.

creased arbitrarily: increasing batch size leads to both longer
queuing latency and batch inference latency [30]. We will
further discuss the batching configuration in §4 and formulate
the problem in a latency-aware context.

3.5 Characterization in Google Cloud
So far, all our profiling experiments are based on AWS. To val-
idate whether our main observations also apply to ML serving
in the other cloud platforms, we extend our characterization
to Google Cloud [37] which offers similar service and pric-
ing options as AWS, along with the Tensor Processing Unit
(TPU), the state-of-the-art ML ASIC.

IaaS remains the best option. We first compare the cost
and latency performance of ML serving using Google’s IaaS,
CaaS, and FaaS with the same workloads as in §3.1. All the
experiments were run in us-central1 region. Among the
three provisioning options, IaaS remains the best with the low-
est cost and shortest latency. For instance, the average latency
and total cost of serving 1 million Inception-v3 requests on an
customized IaaS instance with 1 vCPU and 2GB memory are
317ms and $3.70, respectively. In comparison, it takes 319ms
and $4.17 using the cheapest CaaS instance n1-standard-1
(1 vCPU and 3.75GB memory), and 527ms and $17.4 using
Google Cloud Functions (FaaS) with 2GB memory.
Small instances win on performance-cost ratio. We then
compare the cost and latency performance of CPU instances
of various sizes within the same family. We made the sim-
ilar observations as in AWS (§3.3): smaller instances offer
higher performance-cost ratio than the bigger ones, though
the latter leads to shorter latency. In particular, when serv-

1 2 4 8 16 32

batch size

0

5

10

15

c
o
s
t

($
):

 b
a
r

CPU GPU TPU

0

10

20

30

la
te

n
c
y
:

li
n
e

(a) Inception-v3

1 2 4 8 16 32

batch size

0

2

4

6

8

10

c
o
s
t

($
):

 b
a
r

CPU GPU TPU

0

10

20

30

la
te

n
c
y
:

li
n
e

(b) ResNet50

Figure 3: The cost and batch latency of serving 1 million in-
ference requests with various batch sizes. The batch latencies
are normalized by the latency when there is no batching.

ing 1 million Inception-v3 requests with n1-standard-1,
n1-standard-2, and n1-standard-4, the cost (average la-
tency) ends up with $4.16 (319ms), $7.82 (296ms), and
$11.98 (227ms), respectively.

CPU, GPU, or TPU? Finally, we compare the cost and la-
tency performance of using CPU, GPU, and TPU instances for
ML serving with various batch sizes. We chose two popular
image classification models, Inception-v3 and ResNet50 [44].
The results are shown in Fig. 3, where we used a customized
CPU instance with 1 vCPU and 2 GB memory (CPU), the
same instance with a K80 GPU attached to it (GPU), and a
Cloud TPU-v2 instance (TPU). We observe the similar trend
of cost and latency w.r.t. batch size for CPU and GPU in-
stances as in AWS (§3.4). As for TPU, we find that its high
price tag does not justify the performance benefit. In fact,
TPU is a massively parallel accelerator optimized for training
throughput rather than inference latency. Note that in Fig. 3,
the batch size for TPU is calculated per core. As TPUv2 has 8
cores, the device batch size is actually 8 times the value. The
design of TPU calls for large batch sizes to fully exploit its
computing capacity [40]. However, the stringent latency re-
quirement of real-time inference cannot wait for large batches
to accumulate, leading to extremely low hardware utilization.
In summary, TPUs are not suitable for real-time ML serving.

3.6 Characterization Summary

We summarize our key findings as follows: (1) IaaS achieves
the best cost and latency performance for ML model serv-
ing, and combining it with FaaS can potentially reduce over-
provisioning while remaining scalable to spiky workloads. (2)
Burstable instances are viable to cover transient ML serving
demand. (3) In on-demand CPU market, smaller instances
have higher performance-cost ratio than the bigger ones, even
though the latter provides shorter latency. (4) Only with ap-
propriate batching can the use of GPU instances be justifiable
to achieve lower cost and shorter latency than CPU instances.

1054 2019 USENIX Annual Technical Conference USENIX Association

response

request

load metric

request

queue

request

Batch
Manager

Load
Balancer

Proactive
Controller

EC2

P
er-instance
B

ouncer

request

response

Lambda

function
instances

provision

health
check warm up

MArk Cloud Services

SLO
Monitor add ins

data flow
control flow

on-demand
instances

spot
instances

burstable
instances

BE

BE

BE

!

"

#

$

%

&

Figure 4: An overview of the MArk model serving system.

4 MArk

In this section, we present MArk (Model Ark), a scalable
system that provides cost-effective, SLO-aware ML inference
serving in AWS. While MArk is built in AWS, nothing pre-
vents our design from being extended to the other cloud plat-
forms with similar service offerings, such as Google Cloud.

4.1 Overview

Following our observations in §3, MArk uses EC2 as the pri-
mary means of provisioning ML serving. It also uses Lambda
to quickly cover the service gap when there is a need to scale
out/up. Fig. 4 illustrates the overall architecture of MArk. In
particular, requests from clients are deposited to a request
queue, and are grouped into batches by the Batch Manager
(details in §4.3). MArk periodically measures the workload
metrics, such as the request arrival rate, and sends them to
a Proactive Controller which makes predictions and plans
instances in advance to reduce over-provisioning (§2.2). The
controller then sends the launching and destroying requests
to EC2 instances, on which custom service backends such as
Tensorflow Serving [55] are hosted. The controller also moni-
tors the health status of all running instances. With predictive
scaling, further actions are needed to handle prediction errors
and unexpected load surges. On each running EC2 instance,
there is a Bouncer monitoring serving metrics and performing
request admission control. If an incoming request cannot be
served within a specified time RTmax, it will be handled by
Lambda instances immediately. In addition, MArk employs
an SLO Monitor that keeps track of and maintains the SLO
compliance with the method described in §4.4.

SLO requirements. Following Swayam [41], we set two
SLO requirements for MArk. (1) Response Time Threshold:
A request is deemed fulfilled only if its response time is below
RTmax. (2) Service Level: The service is considered satisfac-
tory only if at least SLmin percent of requests are fulfilled.

4.2 Workload Prediction

MArk employs predictive scaling to reduce over-provisioning.
To expose the long-term cost trade-off between different in-
stances and resource provisioning, we need to estimate the
maximum request rate in the near future, which requires
multi-step workload prediction. Existing works employ many

well-established resource estimation methods, such as linear
regression [27], autoregressive models [34, 61], and neural
networks [19, 53, 57, 65]. As the accuracy of prediction de-
pends on the underlying workload, there is no such a universal
method that works perfectly in all cases. Therefore, MArk
exposes an API through which users can implement their
own workload prediction methods that best fit their applica-
tions. The challenge is how to gracefully handle unavoidable
prediction errors and unexpected load surges.

We have implemented a vanilla version of long short-term
memory (LSTM) network [36] for multi-step workload pre-
diction, as it is reported to give the state-of-the-art perfor-
mance [64]. In our implementation, the prediction unit (time
interval) is Pu, and the prediction window is Pw, meaning
MArk updates the predicted load for the next PwPu interval
every Pu time units. During each unit, MArk keeps sampling
the arrival rate in consecutive short sample windows of Ps. It
keeps track of the maximum arrival rate of the unit, and gets
the maximum arrival rate array for the next Pw units. In our
evaluations, we set the [Pu,Pw,Ps] to [1min,60,5s]. Prediction
unit is set to 1 minute, as EC2 charges at least 1 minute for
new instances. Prediction window is set to 60 steps, since 1
hour of future trend is good enough to expose the long term
trade-offs. The sample size is set to 5 seconds, since the arrival
rate can be treated as stable in short time slots [74]. MArk
is designed to work for all ML serving workloads, so users
can fine-tune this prediction algorithm or replace it with their
own implementations for better prediction results.

4.3 Instance Provisioning and Batching
With workload prediction, we need to determine what and
how many instances should be used to serve the requests.
In general, this problem can be formulated as a compilation
of queueing system [74], where instances of each type are
modeled as an M/D/c queue with deterministic processing
time and the predicted request arrival rate. However, as shown
in [74], this problem has no closed-form solution even without
considering request batching and instance pricing. Given this
hardness result, we turn to a heuristic solution: instead of
jointly considering batching and instance provisioning, we
solve the two problems separately using heuristics.

Batching. Inspired by the adaptive batching in [30], we in-
troduce two hyperparameters to control the batching behavior
of an instance type: Wbatch which is the maximum waiting

USENIX Association 2019 USENIX Annual Technical Conference 1055

time window for request batching, and Nbatch which is the
maximum batch size. The Batch Manager fetches requests
from the queue, and submits the batched requests if either
of the two limits is reached (Fig. 4). We tune the two hy-
perparameters to meet the following two requirements: (1)
No SLO requirements can be violated, meaning the waiting
time window and the processing time of the batch together
should be capped by response time threshold RT max; (2) the
throughput with batching enabled must be greater than that of
no batching. That is, the waiting time window and the batch
processing time together should be less than the time needed
to process all those requests sequentially without batching.

In practice, hyperparameter tuning requires light profiling
for the target instance. We first profile the optimal processing
rate of the target instance without batching, denoted by µ∗nb.
We then gradually increase the batch size from 1 until at least
one of the following constraints no longer holds, where b is
the batch size, and Tb is the time needed to process a batch:

Wbatch +Tb ≤ RT max,

Wbatch +Tb ≤
b

µ∗nb
.

Now that we have the optimal batch size Nbatch← b and
the maximum processing rate µ∗ under this configuration,
together with their corresponding Wbatch, we can simply treat
the target instance as a black box with processing rate µ∗.

Instance provisioning. We now solve the instance provi-
sioning problem using an online heuristic algorithm that con-
siders both long-term cost-effectiveness and the launch over-
head, while at the same time attaining high utilization of
running instances.

We first introduce the notations. Suppose there are n types
of instances that can be used for serving. At a given time t0,
let R = {r1,r2, · · · ,rn} be the set of running instances and
F = (F1, · · · ,Fm) the predicted maximum request arrival rate
for the next m steps, where Ft is the predicted maximum
rate in step t. For each instance type i, let Ci be the instance
capacity, measured by the maximum throughput of a given
model (requests per hour). Let Pi be its unit price, and Oi its
launch overhead, i.e., cost due to the instance provisioning
latency. Finally, let I be the set of available instance types.
Given R, F , I and the target SLO, our problem is to determine
what instances to launch and which instances to destroy at t0,
so as to minimize the cost while meeting the target SLO.

The challenge of finding the optimal solution in the long
run is how to deal with the running instances at t0. They may
not be the most cost-effective in the next m steps, yet keeping
using them avoids additional launch overhead. We propose a
greedy solution in Algorithm 1. Our intuition is to greedily
find the most cost-effective instance from time period t0 to tm
considering both the pay-as-you-go fee and launch overhead.
The running instances at t0 can be treated as special ones
without launch overhead.

Algorithm 1 Greedy Algorithm
procedure SCHEDULE(F,R, I,SLO)

S← S∪R . Running instances are treated as special ones
with zero launch overhead

for all instance i in S do
if instance i cannot meet SLO requirement then

S = S\{i} . Remove i from S
if S = /0 then

Report error . No candidate instance can meet SLO
instance_plan← /0 . initialize provisioning plan
FILL(F,S, instance_plan)
Launch instances in instance_plan but not in R
Destroy instances in R but not in instance_plan

procedure FILL(F,S, instance_plan)
Csum← total capacity of all instance i in instance_plan
for t = 1 to m do

Λt = Ft −Csum . Unfulfilled requests predicted at step t
if Λτ ≤ 0 then . Planned capacity is enough at step τ

return
Find the largest e such that there are unfulfilled requests from

steps τ to e, i.e., Λt ≤ 0 for all τ≤ t ≤ e
min_cost← ∞ . Greedily search the instance with the lowest

per-request cost to cover unfilled requests from τ to e
for all instance type i ∈ S do

cost← (Oi +(e− τ)Pi)/N, where N is the number of un-
fulfilled requests that will be served by an instance i in [τ,e]

if cost < min_cost then
min_cost← cost
j← i

instance_plan← instance_plan∪{ j}
FILL(F,S, instance_plan)

In our algorithm, assuming most instances can get ready
in τ time units after launching, we use the predicted load at
t0 + τ as the provisioning target, as it is safe to make instance
provisioning decisions τ time units in advance. The values of
τ can be easily adjusted based on the actual scenario. In our
setup, τ is set to 5 minutes, and the scheduling time unit is set
to 1 minute. In this case, the scheduling decisions are made
every minute, targeting the load in 5 minutes. The launching
requests should be sent right away once the instance_plan is
ready, while destroying requests should be sent after a prede-
fined cool-down period to ensure better service quality [59].

It is worth mentioning that Algorithm 1 trivially meets the
SLO requirement by ensuring that the latency performance of
each selected instance comply to the target SLO individually.

4.4 SLO tracking

The heuristic in Algorithm 1 plans instance capacity based
on predictions. Yet not all demand surges are predictable,
and such surges would result in SLO violations if solely re-
lying on proactive provisioning [59]. To further improve the
SLO compliance, MArk actively monitors request latency,

1056 2019 USENIX Annual Technical Conference USENIX Association

and reactively scales the cluster as soon as SLO violations
are detected. MArk constantly checks if the last M requests
satisfy the SLO requirements, if not, L instances of type T
will be launched (c5.large by default). All those parameters
can be tuned for specific models and SLO requirements.

4.5 Spot Instance and Lambda Cold Start

Use of spot instances. Note that Algorithm 1 does not differ-
entiate between on-demand and spot instances, which allows
MArk to exploit the price discount of spot instances. However,
the adoption of spot instances poses the challenge of instance
interruptions. Although the interruption of a spot instance will
be notified 2 minutes in advance, such a grace period may
not be long enough for a substitute spot instance to get ready.
The question is how can we handle the outstanding requests
in the presence of instance interruptions? Lambda seems to
be a choice, but it would take a toll on the latency and cost.

Our answer to this challenge is the burstable instance. As
shown in §3.2, burstable instances are cheap instances which
can sustain full utilization for about 30 minutes. The low cost
and high peak performance make them a perfect fit for tran-
sient backups in case of short-term interruptions. Moreover,
burstable instances can be resumed from stopped state in less
than 2 minutes thanks to their small sizes. Therefore, when
we use spot instances with MArk, we reserve a few stopped
burstable instances as cold standbys. Once MArk receives
interruption notices, it resumes the corresponding amount of
burstable instances to handle the transient requests until the
regular spot instances capacity is back to normal, after which
those burstable instances are stopped.

Lambda cold start. Another potential challenge MArk
faces is the cold starts in Lambda [71]. Every time a new
Lambda instance is launched, it needs to load the ML model,
framework library and code in memory, which results in a
much longer inference delay. Nevertheless, cold starts only oc-
cur when the request rate exceeds the concurrency, measured
by the number of currently available lambda instances [32,73].
Existing benchmarking shows that a Lambda instance is re-
cycled after it stays inactive for 45 to 60 minutes [31]. Our
evaluations further confirm that, with more than 3 million
requests, the cold start rate never exceeds 0.23%. Therefore,
the latency impact of cold starts is limited. The cost impact is
also negligible. Our profiling shows that $1 can spin up 7K
inception-v3 Lambda instances, which is capable of serving
more than 20K requests per second. Algorithm 1 hence does
not consider the cost impact of Lambda cold starts.

Despite the negligible impacts of Lambda cold start, our
implementation employs strategical concurrency warm-up to
further amortize its impact. When a potential Lambda request
surge is expected, such as spot interruptions and unexpected
workload surges, MArk sends concurrent pings to Lambda to
warm up more instances as described in [32].

Table 4: ML models and frameworks used in evaluation.

Model Type Framework Size
Inception-v3 Image Classification Tensorflow Serving 45MB
NASNet Image Classification Keras 343MB
LSTM-ptb Language Modeling MXNet Model Server 16MB
OpenNMT-ende Machine Translation Tensorflow Serving 330MB

5 Experimental Evaluation

We have prototyped the proposed MArk system and con-
ducted extensive experimental evaluations on AWS to vali-
date its effectiveness and robustness. We first compare the
performance of MArk using on-demand instances and spot in-
stances respectively with the premier industrial ML platform
SageMaker against production traces from Twitter. To ensure
MArk’s performance does not mainly rely on prediction ac-
curacy, we then examine whether MArk is able to maintain
its advantage under unpredictable, highly bursty workload.
After that, we run a few microbenchmarks to demonstrate the
robustness of MArk in terms of handling spot interruptions,
and the ability to handle unexpected demand surges.

5.1 Evaluation Setup

MArk. We have prototyped MArk on top of Amazon EC2
and Lambda services in two versions, MArk-ondemand which
only uses on-demand instances, and MArk-spot which uses
spot instances with interruption-tolerant mechanism, i.e., us-
ing burstable servers for smooth transition during unexpected
instance interruption (§4.5).

Testbed. We use AWS as the testbed for conducting exten-
sive experiments. The types of instance used in our evalua-
tion include all the c5 and m5 instances as examples of CPU
instances and p2.xlarge instances as an example of GPU ac-
celerators. In our experiments, we used up to 42 c5 instances,
10 m5 instances, and 12 p2.xlarge instances.

ML models. We use four popular ML models that are of
various sizes and cover diverse domains deployed in three
popular ML serving software frameworks to evaluate MArk’s
performance, which are summarized in Table 4. To config-
ure the batching of the ML models on EC2 instance, we
performed lightweight profiling following the instructions de-
tailed in §4.3. The optimal batching hyperparameters Wbatch
and Nbatch for p2.xlarge instance found by our tuning al-
gorithm outlined in §4.3 are 200ms and 8 for Inception-v3,
750ms and 16 for NASNet, 490ms and 16 for OpenNMT-ende.
For LSTM-ptb, we only performed experiments on CPU as
MXNet Model Server does not support batching at the time
of writing. For OpenNMT-ende on CPU instance, the optimal
batching hyperparameter Nbatch is found to be 2, and Wbatch is
set accordingly. For the other models on CPU instance, we do
not use batching as it does not bring benefits (see Fig. 2).

SLO. Recall that the SLO requirement is specified as at

USENIX Association 2019 USENIX Annual Technical Conference 1057

200 250 300 350 400
2000

3000

4000

5000
truth

predicted

(a) Twitter

50 100 150 200

1000

2000

3000

4000
truth

predicted

(b) MMPP

Figure 5: Snapshots of the arrival process using Twitter and
MMPP with the prediction results of LSTM based algorithm.

least SLmin percent of requests must be served in RTmax time
(§4.1). We set SLmin to 98% for all models, and set RTmax as
600ms, 1000ms, 100ms, and 1400ms for Inception-v3, NAS-
Net, LSTM-ptb, and OpenNMT-ende respectively.

Workload. In our evaluation, we drive the arrival process
of ML workloads in two different ways. First, as there is no
publicly available traces for ML serving, we synthesize ML
requests based on the tweets traces from Twitter [20]. We
believe that the Twitter traces serve as a good benchmark,
as it represents a popular web service with highly dynamic
load. The trace exhibits typically characteristics of ML in-
ference workloads, containing recurring patterns (e.g., hour
of the day, day of the week) as well as unpredictable load
spikes (e.g., breaking news). In particular, the peak request
rate in the traces is 4 times higher than the valley, a result of
transient demand surges commonly found in industrial-scale
web applications. Fig. 5a(a) illustrates a snapshot of the trace.

Second, to further evaluate the performance sensitivity of
MArk w.r.t the workload, we synthesize random and bursty
ML request load using Markov-Modulated Poisson process
(MMPP) [28,35,60]. The load generated by MMPP are highly
unpredictable, as the occurrence and duration of demand
surges are completely random, as shown in Fig. 5b.

In summary, we use the Twitter traces to evaluate how well
MArk performs against synthesized real workload that can
be largely predicted. Using MMPP-generated workload, we
stress test MArk’s performance in the presence of frequent,
unpredictable load spikes.

Baseline. We use SageMaker [13] as the baseline for the eval-
uation. SageMaker is AWS’s leading ML training and hosting
system. SageMaker hosting employs AWS’s new target track-
ing autoscaling policy [16,18]. Given the dynamics in request
arrival rate (i.e., the arrival rate can increase more than double
in just a few minutes), to ensure service quality, we follow
the AWS guidelines [16] and set the over-provisioning factor
to 2 for SageMaker. We will show in Fig. 7 that even so the
over-provisioning is still incapable of handling the volatile
workload of the Twitter traces.

MO MS SM
Serving Options

200

400

600

800

la
te

n
c
y
 (

m
s
)

mean

median

(a) Latency of Inception-v3 on TFS

MO MS SM
Serving Options

600

800

1000

1200

1400

la
te

n
c
y
 (

m
s
)

mean

median

(b) Latency of NASNet on Keras

MO MS SM
Serving Options

0

20

40

60

80

100

la
te

n
c
y
 (

m
s
)

mean

median

(c) Latency of LSTM-ptb on MMS

MO MS SM
Serving Options

1000

2000

3000

4000

la
te

n
c
y
 (

m
s
)

mean

median

(d) Latency of OpneNMT on TFS

Figure 6: Latency comparison of MArk-ondemand (MO),
MArk-spot (MS), and SageMaker (SM) on 4 ML models
using Twitter workload.

5.2 Macrobenchmarks

Workload prediction. For Twitter traces, we use the data
of the first 5 months to train the workload prediction model.
For MMPP-generated arrival process, we use a period of 24-
hour data for training. Fig. 5b demonstrates snapshots of
the prediction results. We see that the prediction accuracy is
in general good for the Twitter traces, yet very poor for the
MMPP case. Since striving for the best workload prediction
is NOT the focus of this paper, and we mainly use the LSTM
based algorithm as an example of the pluggable workload
prediction component, we do not provide detailed evaluation
of the prediction algorithm in the interest of space.

Experimental results using Twitter traces. We first com-
pare MArk-ondemand, MArk-spot, and SageMaker on the
ML models described in §5.1 by feeding the arrival rate ex-
tracted from Twitter traces. The experiments were performed
on AWS spanning more than 8 hours each. We report two
metrics: request latency in Fig. 6, and cost breakdown in Ta-
ble 5. The request latency is measured as the time between
request arriving at the serving system and getting response
back, while the cost is the charge billed by AWS. The compar-
ison results suggest that MArk can significantly reduce both
the cost and latency compared with SageMaker. For cost re-
duction, compared with SageMaker, MArk-ondemand respec-
tively achieves 3.63×, 2.79×, 2.41×, and 3.15× for the four
ML models; MArk-spot achieves 6.21×, 5.91×, 6.64×, and
7.83×, respectively. For latency, MArk-ondemand achieves
up to 57% reduction and MArk-spot achieves up to 60% re-
duction compared with SageMaker.

The latency advantage of MArk over SageMaker comes
in three-fold. First, with appropriate batching configuration,

1058 2019 USENIX Annual Technical Conference USENIX Association

Table 5: Cost ($) comparison of MArk-ondemand (MO),
MArk-spot (MS), and SageMaker (SM) on 4 ML models
using Twitter workload.

Setting Inception-v3 NASNet
MO MS SM MO MS SM

EC2 20.94 9.83 80.98 24.21 10.71 68.1
Lambda 1.34 3.2 NA 0.19 0.81 NA

Total 22.28 13.03 80.98 24.40 11.52 68.1

Setting LSTM-ptb OpenNMT-ende
MO MS SM MO MS SM

EC2 6.17 2.24 14.9 27.54 10.79 87.1
Lambda 0 0.04 NA 0.12 0.33 NA

Total 6.17 2.28 14.9 27.66 11.12 87.1

GPU instances can reduce the overall latency by performing
more efficient parallel computation. Second, the SLO-aware
design of MArk helps reduce the queuing delay. In addition,
the predictive scaling and SLO-awareness together form an
efficient hybrid approach that enjoys the benefits in both proac-
tive and reactive designs. It is worth pointing out the different
performance behaviors between MArk-ondemand and MArk-
spot. As shown in the latency box plots in Fig. 6, MArk-spot
has longer latency tails, since more requests are handled by
Lambda compared with MArk-ondemand, in case of interrup-
tions. However, the average and median latencies of MArk-
spot are usually the same or even better than MArk-ondemand.
This is because in spot market, the performance-cost ratio is
highly dynamic, which allows MArk-spot to opportunistically
use large instances and GPU instances at cheaper price than
on-demand, leading to better latency performance.

MArk’s cost reduction comes from the following aspects.
First, predictive scaling together with Lambda services brings
a more judicious over-provisioning design that can reduce
the cost. The 2× cost reduction over SageMaker in MArk-
ondemand using only CPU instances for LSTM-ptb is a good
example. Second, GPU instances can further reduce the cost
during high arrival rate as batching increases the efficiency of
computing. The cost reduction is more significant for Open-
NMT as it benefits the most from batching as shown in Fig. 2d.
MArk-spot further brings down the cost by enjoying the spot
market discounts. Note that although Lambda service used
by MArk is expensive in price, but the cost of Lambda can be
well justified by enabling more judicious over-provisioning.

We have also performed a case study of SLO compliance
and report the Complementary Cumulative Distribution Func-
tion (CCDF) of request latency in Fig. 7. As expected, MArk
managed to maintain its compliance with SLO requirements,
thanks to the SLO-aware design. SageMaker, on the other
hand, is SLO-oblivious, so the queuing delay adds up during
high arrival periods, and the SLO is violated.

Experimental results using MMPP-generated load. Next
we evaluate MArk using the more challenging, less pre-
dictable MMPP workload. We still use the same four ML
models, and each experiment lasts about 4 hours on AWS. In

MRK TWT SM TWT MRK MP SM MP

100 600

latency(ms)

100

0.88
3.89

0.01

31.72

C
C

D
F
 (

%
)

(a) Inception-v3

200 1000

latency(ms)

100

10.41

0.01

C
C

D
F
 (

%
)

(b) NASNet

100 1000

latency(ms)

100

1.63

0.11

C
C

D
F
 (

%
)

(c) LSTM-ptb

700 1400

latency(ms)

100

0

10.8

C
C

D
F
 (

%
)

(d) OpneNMT

Figure 7: CCDF of latency comparison between MArk and
SageMaker. RTmax is drawn as a black dashed vertical line (the
black dashed horizontal line shows the corresponding CCDF
value of RTmax). MRK and SM represents MArk and Sage-
Maker, while TWT and MP represents Twitter and MMPP
workload respectively.

the interest of space, we only demonstrate the SLO compli-
ance results in Fig. 7. Fig. 7a shows that the SLO compliance
of SageMaker is significantly degraded from Twitter case to
MMPP case due to the much more dynamic and bursty be-
haviors in MMPP. However, MArk can still meet the SLO
requirements even when the workload is highly dynamic and
unpredictable, thanks to the SLO Monitor that can detect the
failure of proactive prediction and timely add backup ma-
chines based on the feedback control algorithm. Note that
we only evaluated SageMaker with MMPP-driven arrival pro-
cess on Inception-v3 model as it is too expensive for us to
run all of them. However, given the SLO-oblivious nature of
SageMaker, we expect the behavior would be similar.

5.3 Microbenchmarks

In this section, we evaluate the robustness of MArk by taking
a closer look at how MArk handles unexpected demand surges
and spot interruptions.

Robustness against unexpected surge. MArk harvests per-
formance and cost benefits by using a judicious over-
provisioning scheme. One important question is whether
MArk can handle unexpected demand surges well in the
presence of unforeseeable flash crowds or poor workload
prediction accuracy. To answer this question, we increase the
request rate for LSTM-ptb serving by 50%, 75%, and 100% in
2 minutes and compare the latency over time between MArk

USENIX Association 2019 USENIX Annual Technical Conference 1059

0 10 20 30

time slot (min)

0

50

100

150

200

250

a
v
e
ra

g
e
 l
a
te

n
c
y
 (

m
s
) 50% MArk

50% SageMaker

(a) 50% surge in 2 min

0 10 20 30

time slot (min)

0

50

100

150

200

250

a
v
e
ra

g
e
 l
a
te

n
c
y
 (

m
s
) 75% SageMaker

75% MArk

(b) 75% surge in 2 min

0 10 20 30

time slot (min)

0

100

200

300

a
v
e
ra

g
e
 l
a
te

n
c
y
 (

m
s
) 100% MArk

100% SageMaker

(c) 100% surge in 2 min

1 3 5 7 9 11 13 15 17 19

time slot (min)

140

160

180

200

220

240
a
v
e
ra

g
e
 l
a
te

n
c
y
 (

m
s
) 40%

20%

80%

(d) spot instance interruption

Figure 8: Microbenchmark results. (a), (b), (c): The latency
change comparison during unexpected demand surge between
MArk and SageMaker, where the surge starts at the 11th min
shown by the dashed line. (d): The latency change when differ-
ent percentages of spot instances are interrupted in MArk-spot,
where the interruption notice is received at the 7th min.

and SageMaker in Figs. 8a, 8b, and 8c. 3 Since the surge is
unpredictable, both MArk and SageMaker handle it reactively.
The results suggest that MArk acts faster and effectively than
SageMaker during the unforeseeable surge, i.e., the increased
latency period and amount are much smaller, thanks to the
Lambda-based fallback mechanism, which can immediately
take over and cap the latency to prevent queue building up
like in SageMaker. In addition, MArk’s SLO Monitor can
detect the SLO violations and issue backup instance requests
right away to adapt to the new arrival rate, while SageMaker
is only able to react in the next scaling cycle.

Robustness against spot interruption. MArk-spot utilizes
spot instances to reduce the cost. However, the interruption
of spot instance can cause performance degradation if not
handled properly. We evaluate MArk-spot by zooming in
the interruption handling periods under different interruption
ratio of instances. We launched a 20-instance Inception-v3
cluster, and manually interrupted 20%, 40%, and 80% of the
instances respectively. Fig. 8d illustrates the latency change
during the interruption. The interruption happens at the 7th
minute (vertical dashed line), and MArk resumes t2 instances
as transient resources upon receiving interruption notice. The
proactive controller then adjusts the provisioning plan and
requests new instances. At the 13th minute new spot instances
are ready, and the latency goes back to normal. The average
latency drops during transient period because burstable t2 in-
stances can have temporal boosted performance as discussed

3Given that we only compare latency here, we show the results of MArk-
spot as the latency results of MArk-ondemand can only be better.

in §3.2. The short latency bump at the 13th minute is due to
the switching overhead (i.e., warm up of new instances).

To sum up, the results above confirm that MArk can handle
unexpected surge and spot interruption robustly.

6 Discussion

Cloud platform. The measurements and evaluations in this
paper are mainly based on AWS. However, the main design
of MArk can be generally extended to other major cloud
platforms, as they offer both IaaS and FaaS services, as well as
flexible pricing models. Nevertheless, some hyperparameters
used in the algorithm are platform-dependent, and must be
re-tuned. Also, we have not considered reserved instances, as
they require a long-term usage commitment. We believe they
will bring down the cost of serving stable inference demands
in a long run, and will leave it as a future work.

Large models. Deep learning models are becoming increas-
ingly large and may not fit into the memory of Lambda (or
even IaaS) instances. A possible solution goes to distributed
inference under the model parallel scheme, which is not sup-
ported in our current design. We will leave it as a future work.

Hardware accelerator. We used the most common ML accel-
erator GPU as an example of utilizing hardware accelerators.
The same batching formulation can be applied to other accel-
erators (e.g., FPGA) as they benefit from batching similarly.

MArk’s architecture requires a master machine to make
provisioning decisions. While such design has limitations
on scalability and is vulnerable to the single point of failure,
these problems can be easily addressed with mature industrial
solutions such as Zookeeper [46].

7 Concluding Remark

In this paper, we conducted a systematic study of serving
ML models on cloud and concluded that combining FaaS
and IaaS can achieve scalable ML serving with low over-
provisioning cost. Driven by the unique characteristics of ML
model serving, we proposed MArk, a cost-effective and SLO-
aware ML serving system. We prototyped MArk on AWS
and showed that compared with the premier autoscaling ML
platform SageMaker, MArk yields significant cost reduction
(up to 7.8×) while complying with the SLO requirements
with even better latency performance.

Acknowledgement

This work was supported in part by RGC ECS grant 26213818,
NSF grant CCF-1756013, and IIS-1838024 (using resources
provided by AWS as part of the NSF BIGDATA program).
Chengliang Zhang and Minchen Yu were supported by the
Hong Kong PhD Fellowship Scheme and the Huawei PhD
Fellowship Scheme, respectively.

1060 2019 USENIX Annual Technical Conference USENIX Association

References
[1] Amazon EC2. https://aws.amazon.com/ec2/, 2018.

[2] Amazon ECS. https://aws.amazon.com/ecs/, 2018.

[3] AWS Lambda. https://aws.amazon.com/lambda/, 2018.

[4] Docker. https://www.docker.com, 2018.

[5] Google Cloud Functions. https://cloud.google.com/
functions/, 2018.

[6] Google Kubernetes Engine. https://cloud.google.com/
kubernetes-engine/, 2018.

[7] PredictionIO. https://predictionio.apache.org, 2018.

[8] RedisML. https://github.com/RedisLabsModules/redis-ml,
2018.

[9] ALI-ELDIN, A., KIHL, M., TORDSSON, J., AND ELMROTH, E. Ef-
ficient provisioning of bursty scientific workloads on the cloud using
adaptive elasticity control. In Proceedings of the 3rd ACM Workshop
on Scientific Cloud Computing (2012).

[10] ALI-ELDIN, A., TORDSSON, J., AND ELMROTH, E. An adaptive
hybrid elasticity controller for cloud infrastructures. In IEEE Network
Operations and Management Symposium (2012).

[11] AMAZON. Amazon Web Services. https://aws.amazon.com/,
2018.

[12] AMAZON. AWS autoscaling. https://aws.amazon.com/
autoscaling/, 2018.

[13] AMAZON. Build, train, and deploy machine learning models at scale.
https://aws.amazon.com/sagemaker/, 2018.

[14] AMAZON. Configuring Lambda functions. https://docs.aws.
amazon.com/lambda/latest/dg/resource-model.html, 2018.

[15] AMAZON. Dynamic scaling for Amazon EC2 auto scaling. https:
//amzn.to/2W2jvhc, 2018.

[16] AMAZON. Load testing for variant automatic scaling.
https://docs.aws.amazon.com/sagemaker/latest/dg/
endpoint-scaling-loadtest.html, 2018.

[17] AMAZON. New Amazon EC2 spot pricing model: Simplified purchas-
ing without bidding and fewer interruptions. https://aws.amazon.
com/blogs/compute/new-amazon-ec2-spot-pricing/, 2018.

[18] AMAZON. Target tracking scaling policies for Amazon EC2
auto scaling. https://docs.aws.amazon.com/autoscaling/ec2/
userguide/as-scaling-target-tracking.html, 2018.

[19] ANIELLO, L., BONOMI, S., LOMBARDI, F., ZELLI, A., AND BAL-
DONI, R. An architecture for automatic scaling of replicated services.
In Networked Systems. Springer, 2014, pp. 122–137.

[20] ARCHIVETEAM. Twitter streaming traces, 2017.

[21] AWS. Amazon EC2 reserved instances. https://aws.amazon.com/
ec2/pricing/reserved-instances/, 2018.

[22] AWS. Burstable performance instances. https://amzn.to/2APg4hG,
2018.

[23] AWS. Right sizing: Provisioning instances to match workloads. https:
//amzn.to/2VdIiK9, 2018.

[24] AWSLABS. MXNet model server. https://github.com/awslabs/
mxnet-model-server, 2018.

[25] BARRETT, E., HOWLEY, E., AND DUGGAN, J. Applying reinforce-
ment learning towards automating resource allocation and application
scalability in the cloud. Concurrency and Computation: Practice and
Experience 25, 12 (2013), 1656–1674.

[26] BERGSTRA, J., BASTIEN, F., BREULEUX, O., LAMBLIN, P., PAS-
CANU, R., DELALLEAU, O., DESJARDINS, G., WARDE-FARLEY, D.,
GOODFELLOW, I., BERGERON, A., ET AL. Theano: Deep learning on
GPUs with Python. In NeuralPS, Big Learning Workshop (2011).

[27] BODÍK, P., GRIFFITH, R., SUTTON, C., FOX, A., JORDAN, M. I.,
AND PATTERSON, D. A. Statistical machine learning makes automatic
control practical for internet datacenters. In USENIX HotCloud (2009).

[28] CASALE, G., ZHANG, E. Z., AND SMIRNI, E. Trace data characteri-
zation and fitting for markov modeling. Perform. Eval. 67, 2 (2010),
61–79.

[29] CHOLLET, F., ET AL. Keras: Deep learning library for Theano and
TensorFlow. https://keras.io, 2015.

[30] CRANKSHAW, D., WANG, X., ZHOU, G., FRANKLIN, M. J., GONZA-
LEZ, J. E., AND STOICA, I. Clipper: A low-latency online prediction
serving system. In NSDI (2017), pp. 613–627.

[31] CUI, Y. How long does AWS Lambda keep your idle functions around
before a cold start? https://bit.ly/2tb7bLJ, 2018.

[32] CUI, Y. I’m afraid you’re thinking about aws lambda cold starts all
wrong. https://bit.ly/2Q1rrcr, 2018.

[33] DOYLE, R. P., CHASE, J. S., ASAD, O. M., JIN, W., AND VAHDAT,
A. Model-based resource provisioning in a web service utility. In
USENIX Symposium on Internet Technologies and Systems (2003),
vol. 4, pp. 5–5.

[34] FANG, W., LU, Z., WU, J., AND CAO, Z. Rpps: a novel resource
prediction and provisioning scheme in cloud data center. In IEEE
International Conference on Services Computing (2012).

[35] FISCHER, W., AND MEIER-HELLSTERN, K. The Markov-modulated
Poisson process (MMPP) cookbook. Perform. Eval. 18, 2 (1993),
149–171.

[36] GERS, F. A., SCHMIDHUBER, J., AND CUMMINS, F. Learning to for-
get: Continual prediction with LSTM. In 9th International Conference
on Artificial Neural Networks (1999).

[37] GOOGLE. Google cloud. https://cloud.google.com/, 2018.

[38] GOOGLE. Google cloud autoscaling. https://cloud.google.com/
compute/docs/autoscaler/, 2018.

[39] GOOGLE. Kubernetes horizontal scaling. https://kubernetes.io/
docs/tasks/run-application/horizontal-pod-autoscale/,
2018.

[40] GOOGLE. Cloud TPU performance guide. https://cloud.google.
com/tpu/docs/performance-guide, 2019.

[41] GUJARATI, A., ELNIKETY, S., HE, Y., MCKINLEY, K. S., AND
BRANDENBURG, B. B. Swayam: distributed autoscaling to meet
slas of machine learning inference services with resource efficiency.
In Proceedings of ACM/IFIP/USENIX Middleware Conference (2017),
ACM, pp. 109–120.

[42] HAN, R., GHANEM, M. M., GUO, L., GUO, Y., AND OSMOND, M.
Enabling cost-aware and adaptive elasticity of multi-tier cloud applica-
tions. Future Generation Computer Systems 32 (2014), 82–98.

[43] HARLAP, A., TUMANOV, A., CHUNG, A., GANGER, G. R., AND
GIBBONS, P. B. Proteus: Agile ML elasticity through tiered reliability
in dynamic resource markets. In Proceedings of ACM EuroSys (2017).

[44] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep residual learning
for image recognition. In Proceedings of IEEE CVPR (2016).

[45] HE, X., SHENOY, P., SITARAMAN, R., AND IRWIN, D. Cutting the
cost of hosting online services using cloud spot markets. In Proceedings
of the 24th International Symposium on High-Performance Parallel
and Distributed Computing (2015), ACM, pp. 207–218.

[46] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED, B. Zookeeper:
Wait-free coordination for internet-scale systems. In Proceedings of
USENIX ATC (2010).

[47] KLEIN, G., KIM, Y., DENG, Y., SENELLART, J., AND RUSH, A. M.
Opennmt: Open-source toolkit for neural machine translation. arXiv
preprint arXiv:1701.02810 (2017).

USENIX Association 2019 USENIX Annual Technical Conference 1061

https://aws.amazon.com/ec2/
https://aws.amazon.com/ecs/
https://aws.amazon.com/lambda/
https://www.docker.com
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://predictionio.apache.org
https://github.com/RedisLabsModules/redis-ml
https://aws.amazon.com/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://amzn.to/2W2jvhc
https://amzn.to/2W2jvhc
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-scaling-loadtest.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-scaling-loadtest.html
https://aws.amazon.com/blogs/compute/new-amazon-ec2-spot-pricing/
https://aws.amazon.com/blogs/compute/new-amazon-ec2-spot-pricing/
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scaling-target-tracking.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scaling-target-tracking.html
https://aws.amazon.com/ec2/pricing/reserved-instances/
https://aws.amazon.com/ec2/pricing/reserved-instances/
https://amzn.to/2APg4hG
https://amzn.to/2VdIiK9
https://amzn.to/2VdIiK9
https://github.com/awslabs/mxnet-model-server
https://github.com/awslabs/mxnet-model-server
https://keras.io
https://bit.ly/2tb7bLJ
https://bit.ly/2Q1rrcr
https://cloud.google.com/
https://cloud.google.com/compute/docs/autoscaler/
https://cloud.google.com/compute/docs/autoscaler/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://cloud.google.com/tpu/docs/performance-guide
https://cloud.google.com/tpu/docs/performance-guide

[48] LEE, H., SATYAM, K., AND FOX, G. Evaluation of production server-
less computing environments. In Proceedings of IEEE CLOUD (2018).

[49] LEE, Y., SCOLARI, A., CHUN, B.-G., SANTAMBROGIO, M. D.,
WEIMER, M., AND INTERLANDI, M. PRETZEL: Opening the black
box of machine learning prediction serving systems. In Proceedings of
USENIX OSDI (2018).

[50] LEITNER, P., AND SCHEUNER, J. Bursting with possibilities: An
empirical study of credit-based bursting cloud instance types. In Pro-
ceedings of IEEE/ACM Utility and Cloud Computing (2015).

[51] MERITY, S., KESKAR, N. S., AND SOCHER, R. Regularizing and
optimizing LSTM language models. arXiv preprint arXiv:1708.02182
(2017).

[52] MICROSOFT. Microsoft Azure cloud computing platform & services.
https://azure.microsoft.com/en-us/, 2018.

[53] NIKRAVESH, A. Y., AJILA, S. A., AND LUNG, C.-H. Towards an
autonomic auto-scaling prediction system for cloud resource provision-
ing. In Proceedings of IEEE International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (2015).

[54] NVIDIA. NVIDIA TensorRT. https://developer.nvidia.com/
tensorrt, 2018.

[55] OLSTON, C., FIEDEL, N., GOROVOY, K., HARMSEN, J., LAO, L., LI,
F., RAJASHEKHAR, V., RAMESH, S., AND SOYKE, J. TensorFlow-
Serving: Flexible, high-performance ML serving. arXiv preprint
arXiv:1712.06139 (2017).

[56] PENG, Y., BAO, Y., CHEN, Y., WU, C., AND GUO, C. Optimus: an
efficient dynamic resource scheduler for deep learning clusters. In
Proceedings of ACM EuroSys (2018).

[57] PRODAN, R., AND NAE, V. Prediction-based real-time resource pro-
visioning for massively multiplayer online games. Future Generation
Computer Systems 25, 7 (2009), 785–793.

[58] QU, C., CALHEIROS, R. N., AND BUYYA, R. A reliable and cost-
efficient auto-scaling system for web applications using heterogeneous
spot instances. Journal of Network and Computer Applications 65
(2016), 167–180.

[59] QU, C., CALHEIROS, R. N., AND BUYYA, R. Auto-scaling web
applications in clouds: A taxonomy and survey. ACM Computing
Surveys (CSUR) 51, 4 (2018), 73.

[60] RAJABI, A., AND WONG, J. W. MMPP characterization of web
application traffic. In Proceedings of IEEE MASCOTS (2012).

[61] ROY, N., DUBEY, A., AND GOKHALE, A. Efficient autoscaling in the
cloud using predictive models for workload forecasting. In Proceedings
of IEEE CLOUD (2011).

[62] SANDERS, J., AND KANDROT, E. CUDA by example: an introduction
to general-purpose GPU programming. Addison-Wesley Professional,
2010.

[63] SHARMA, P., LEE, S., GUO, T., IRWIN, D., AND SHENOY, P.
Spotcheck: Designing a derivative iaas cloud on the spot market. In
Proceedings of ACM EuroSys (2015).

[64] SHI, X., CHEN, Z., WANG, H., YEUNG, D.-Y., WONG, W.-K., AND
WOO, W.-C. Convolutional lstm network: A machine learning ap-
proach for precipitation nowcasting. In Proc. NeuralPS (2015).

[65] SONG, B., YU, Y., ZHOU, Y., WANG, Z., AND DU, S. Host load
prediction with long short-term memory in cloud computing. The
Journal of Supercomputing (2017), 1–15.

[66] SZEGEDY, C., IOFFE, S., VANHOUCKE, V., AND ALEMI, A. A.
Inception-v4, inception-resnet and the impact of residual connections
on learning. In AAAI (2017), vol. 4, p. 12.

[67] SZEGEDY, C., VANHOUCKE, V., IOFFE, S., SHLENS, J., AND WOJNA,
Z. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE CVPR (2016).

[68] TENSORFLOW. TensorFlow Serving batching guide. https://bit.
ly/2VOpb9O, 2018.

[69] TU, Z., LI, M., AND LIN, J. Pay-per-request deployment of neural
network models using serverless architectures. In Proceedings of
NAACL: Demonstrations (2018).

[70] URGAONKAR, B., SHENOY, P., CHANDRA, A., GOYAL, P., AND
WOOD, T. Agile dynamic provisioning of multi-tier internet appli-
cations. ACM Transactions on Autonomous and Adaptive Systems
(TAAS) 3, 1 (2008), 1.

[71] WANG, C., URGAONKAR, B., GUPTA, A., KESIDIS, G., AND LIANG,
Q. Exploiting spot and burstable instances for improving the cost-
efficacy of in-memory caches on the public cloud. In Proceedings of
ACM EuroSys (2017).

[72] WANG, W., WANG, S., GAO, J., ZHANG, M., CHEN, G., NG, T. K.,
AND OOI, B. C. Rafiki: Machine learning as an analytics service
system. arXiv preprint arXiv:1804.06087 (2018).

[73] YAN, F., REN, L., DUBOIS, D. J., CASALE, G., WEN, J., AND
SMIRNI, E. How to supercharge the amazon t2: Observations and
suggestions. In Proceedings of IEEE CLOUD (2017).

[74] YAN, F., RUWASE, O., HE, Y., AND SMIRNI, E. SERF: efficient
scheduling for fast deep neural network serving via judicious paral-
lelism. In Proceedings of IEEE/ACM SC16 (2016).

[75] ZHANG, H., STAFMAN, L., OR, A., AND FREEDMAN, M. J. SLAQ:
Quality-driven scheduling for distributed machine learning. In Pro-
ceedings of ACM SoCC (2017).

[76] ZOPH, B., VASUDEVAN, V., SHLENS, J., AND LE, Q. V. Learning
transferable architectures for scalable image recognition. arXiv preprint
arXiv:1707.07012 2, 6 (2017).

1062 2019 USENIX Annual Technical Conference USENIX Association

https://azure.microsoft.com/en-us/
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://bit.ly/2VOpb9O
https://bit.ly/2VOpb9O

Cross-dataset Time Series Anomaly Detection for Cloud Systems

Xu Zhang1,2, Qingwei Lin2, Yong Xu2, Si Qin2, Hongyu Zhang3, Bo Qiao2, Yingnong Dang4, Xinsheng
Yang4, Qian Cheng4, Murali Chintalapati4, Youjiang Wu4, Ken Hsieh4, Kaixin Sui2, Xin Meng2, Yaohai

Xu2, Wenchi Zhang2, Furao Shen1, and Dongmei Zhang2

1Nanjing University, Nanjing, China
2Microsoft Research, Beijing, China

3The University of Newcastle, NSW, Australia
4Microsoft Azure, Redmond, USA

Abstract

In recent years, software applications are increasingly de-
ployed as online services on cloud computing platforms. It
is important to detect anomalies in cloud systems in order
to maintain high service availability. However, given the ve-
locity, volume, and diversified nature of cloud monitoring
data, it is difficult to obtain sufficient labelled data to build
an accurate anomaly detection model. In this paper, we pro-
pose cross-dataset anomaly detection: detect anomalies in a
new unlabelled dataset (the target) by training an anomaly
detection model on existing labelled datasets (the source).
Our approach, called ATAD (Active Transfer Anomaly De-
tection), integrates both transfer learning and active learning
techniques. Transfer learning is applied to transfer knowl-
edge from the source dataset to the target dataset, and active
learning is applied to determine informative labels of a small
part of samples from unlabelled datasets. Through experi-
ments, we show that ATAD is effective in cross-dataset time
series anomaly detection. Furthermore, we only need to label
about 1%-5% of unlabelled data and can still achieve signif-
icant performance improvement.

1 Introduction

In recent years, we have witnessed increasing adoption of
cloud service systems. Many software applications are now
deployed on cloud computing platforms such as Microsoft
Azure, Google Cloud Platform, and Amazon Web Services
(AWS). As the cloud systems could be used by millions of
users around the world on a 24/7 basis, high service reliabil-
ity and availability are critical.

However, cloud systems, like other software systems, may
exhibit some anomalous behaviors. These anomalies could
seriously affect service availability and reliability and could
even lead to huge financial loss. The anomalies could be
caused by a variety of factors (such as software bugs, disk
failures, memory leaks, network outage, etc.) and reflected
by a variety of cloud monitoring data (such as KPI, per-

formance counters, usage statistics, system metrics, logs,
etc.). The cloud monitoring data are usually time series data,
which have high velocity and enormous volume because of
the scale and complexity of cloud systems. To maintain high
service reliability and availability, it is important yet chal-
lenging to detect anomalies from a large amount of cloud
monitoring data precisely and timely.

Specifically, anomaly detection in practice encounters sev-
eral challenges due to the characteristics of cloud systems. A
large cloud system is composed of a variety of services and
each service is associated with some monitoring data. For
some types of data, the characteristics of anomalies are com-
mon across many services. While for some other types of
data, the characteristics of anomalies could differ from ser-
vice to service. For example, 90% CPU utilization is normal
for computation intensive services but anomalous for other
services. Therefore, simple threshold-based anomaly detec-
tors can hardly perform well for a variety of services.

Over the years, many machine-learning based anomaly
detection methods have been proposed, including super-
vised [22, 25] and unsupervised methods [2, 41, 38]. How-
ever, it is not trivial to detect anomalies in a large and di-
versified set of time series data in real cloud environment
where labelled data is scarce but a high detection perfor-
mance is demanded. Unsupervised learning methods can
deal with a large amount of data as they do not require la-
belled data. However, the performance achieved by these
methods is rather low [13]. Although supervised learn-
ing methods can achieve higher accuracy than the unsuper-
vised counterparts, it is time-consuming and tedious to man-
ually label the anomalies due to the volume and diversity of
cloud monitoring data. Therefore, supervised-learning based
methods are difficult to be applied to anomaly detection in
practice.

Facing the above challenges, to build an accurate and ef-
ficient anomaly detection model, we propose ATAD, which
enables cross-dataset anomaly detection for cloud systems.
The main idea of cross-dataset is to perform anomaly detec-
tion on an unlabelled dataset (the target dataset) by learning

USENIX Association 2019 USENIX Annual Technical Conference 1063

from existing, labelled datasets (the source datasets). For ex-
ample, a detector can be learned from a public dataset such
as NAB [23], and then applied to an unlabelled dataset col-
lected from a real-world system.

ATAD consists of two major components: 1) Transfer
Learning, which transfers the common anomalous behavior
learned from a labelled time series data to a large volume
of target unlabelled dataset. Through transfer learning, the
commonalities across datasets could be leveraged and the
labelling effort for the target dataset could be reduced. 2)
Active Learning, which improves the detection performance
by labelling only a small number of selected samples in the
target dataset. Through active learning, the diversified data
with specific characteristics can be addressed with a small
amount of labelling effort.

In particular, in the Transfer Learning component, we
identify multiple features of cloud monitoring data and per-
form clustering to select an appropriate subset of existing
labelled data as the sub source domain. Then the CORAL
algorithm [37] is applied to narrow the feature difference be-
tween the source and target domain. In the Active Learn-
ing component, we utilize the UCD (Uncertainty-Context-
Diversity) method to recommend informative data points to
be labelled. The labelled points are used to retrain the clas-
sifier trained from the Transfer Learning component. In this
way, we aim at minimizing the labelling effort and improv-
ing the performance of the detector as much as possible.

We have conducted experiments on public datasets to ver-
ify the effectiveness of our method. The experimental re-
sults show that using ATAD we can achieve cross-dataset
anomaly detection with good accuracy. We test the effec-
tiveness on both public datasets and real-world cloud mon-
itoring data. On public datasets, ATAD shows higher accu-
racy than existing methods when performing anomaly detec-
tion on a target dataset (i.e. Yahoo) by the detector learned
from a source dataset (Non-Yahoo, like AWS, Twitter and
Artificial datasets). Furthermore, labelling about 1%-5% of
unlabelled data could achieve much higher F1-score than the
related methods. We also train an ATAD model using pub-
lic datasets and apply the trained model to detect anomalies
in real-world cloud monitoring data of Microsoft. ATAD
achieves the best F1-Score, which is much higher than those
achieved by other methods.

The contributions of this paper are as follows:

• We propose a new anomaly detection method called
ATAD, which enables cross-dataset anomaly detection
for cloud systems.

• To the best of our knowledge, we are among the first to
detect anomalies in time series cloud data using a com-
bination of transfer learning and active learning tech-
niques.

• We have performed an extensive evaluation of the pro-
posed approach using public and real-world datasets.

This paper is organized as follows: we first elaborate the
background and motivation of our work in Section 2. In Sec-
tion 3, the details of ATAD are described. Section 4 reports
the experiments and corresponding results. Next, we discuss
threats to validity in Section 5. We introduce the related work
in Section 6, before concluding the paper in Section 7.

2 Background and Motivation

For cloud service vendors like Microsoft Azure, Google
Cloud Platform, and Amazon Web Services (AWS), there
are millions of servers and virtual machines providing a va-
riety of services to users. Despite many quality assurance
methods, it is difficult to avoid system failures in reality. A
severe system failure can cause damage to user’s operation
and vendor’s reputation. Recovering system from failures in
time is of great importance. In order to do that, quick and
accurate anomaly detection is essential.

Anomaly detection is the identification of rare items,
events or observations which raise suspicions by differing
significantly from the majority of the data [43]. Anomaly
detection in cloud is usually performed on Cloud Monitoring
Data (such as KPI, performance counters, CPU utilization,
VM downtime, system workload, etc.). The cloud monitor-
ing data is often presented in time series, that is a series of
numerical data points recorded in time order.

Unlike a general anomaly detection problem, it is much
more difficult to detect anomalies in a large-scale cloud ser-
vice system. We identify the following challenges:

• Diverse characteristics of anomalies: in a large-scale
cloud service system, different usage scenarios and
components have different levels of tolerance to anoma-
lies. For example, a minor system deviation occurring
in a certain key component, like storage cluster, may
become an anomaly and lead to the failure of the whole
system [11, 21]. However, such a deviation may not
cause serious problems in other components. It is dif-
ficult to set accurate thresholds of anomalies for each
usage scenario and system component [11]. Therefore
simple threshold-based anomaly detection methods are
not suitable for cloud service systems.

• Anomaly detection in time series data: cloud monitor-
ing data is large-scale time series data that has tempo-
ral property. Many commonly-used machine learning
algorithms cannot be directly applied because the time
series data does not satisfy the independent and iden-
tically distributed (i.i.d) assumption. Although some
deep learning models, like LSTM [17], could capture
the temporal property, they require enormous labelled
data to train an accurate model. Thus, an appropriate
approach to incorporate the temporal property of time
series data is important.

1064 2019 USENIX Annual Technical Conference USENIX Association

• Unsatisfactory performance of unsupervised learning:
unsupervised machine learning techniques such as Iso-
lation Forest [26] or Seasonal Hybrid ESD [16] can
be applied to anomaly detection. These methods de-
tect anomalies by checking outliers/deviations from the
normal data distribution. However, the effectiveness of
unsupervised anomaly detection algorithms is often un-
satisfactory [13]. The false alarm rate of unsupervised
models is higher, which requires much more effort for
engineers to check the status of the cloud system.

• Lacking labels for supervised learning: As mentioned
above, if the temporal property of time series data can
be well incorporated into the labelled data, supervised
machine learning methods such as SVM or Random
Forest are good to be used to learn and predict anomaly
patterns [29]. However, due to the scale and complexity
of a cloud service system, labelling the whole dataset
requires enormous human effort and is an almost im-
possible task. The problem of lacking labelled data
limits the application of supervised anomaly detection
methods to cloud service systems.

3 Proposed Approach

In order to address the challenges mentioned above, in this
paper, we propose a novel time series anomaly detection
method called ATAD (Active Transfer Anomaly Detection),
which combines transfer learning and active learning tech-
nologies for anomaly detection in cloud monitoring data.
Fig. 1 shows the overall workflow of ATAD.

Unlabelled

Time Series Tu

Labelled Time

Series Tl

Transfer Learning

Component
Base Detection

model

Final Detection

model
Active Learning

Component

Figure 1: The overall workflow of ATAD

There are two sets of input data, one is the unlabelled time
series data Tu on which anomaly detection will be conducted,
the other is labelled time series data Tl collected from the
public domains or the other components of the cloud system.
In Tl , each point in the time series has been manually labelled
as either anomaly or normal.

Our approach consists of two main components, namely
Transfer Learning component and Active Learning compo-
nent. In transfer learning, to incorporate temporal property
of time series data, multiple general features are extracted
from the raw dataset Tl and form the feature dataset Fl .
Feature-based and instance-based transfer learning methods

are then applied on Fl to learn a base detection model. Af-
ter that, the unlabelled time series Tu goes through the same
feature extraction process and forms the feature dataset Fu.
The active learning component recommends a small number
of informative samples from Fu for labelling through Uncer-
tainty and Context Diversity (UCD) strategy. Then the la-
belled data is used to retrain the base detection model. After
T rounds of active learning, we obtain the final anomaly de-
tector.

We will describe more details about ATAD in the follow-
ing sections.

3.1 Transfer Learning Component
Many machine learning methods assume that the distribu-
tions of labelled and unlabelled data are the same. However,
transfer learning, in contrast, allows the domains, tasks, and
distributions used in training and testing to be different [30].
In order to achieve knowledge transfer among different time
series datasets, we utilize an efficient and effective trans-
fer method for large-scale cloud monitoring data. For the
anomaly detection problem in cloud systems, it is non-trivial
to perform transfer learning directly. We need to consider
the following factors when we design our transfer learning
component.

• Cloud monitoring data is usually presented in the form
of time series. Time series is not independent data,
but a set of data points with temporal dependence.
Thus the anomaly patterns of time series have contex-
tual relevance. How to incorporate this relevance into
anomaly detection is a challenge. In our work, we
extract time series related features at each data point.
Each data point is transformed from the original single-
dimensional scalar into a high-dimensional feature vec-
tor, and the contextual information is preserved by these
features. In ATAD, we not only take account of the
simple descriptive features (statistical values), but also
the order-aware features (forecasting error features and
temporal features).

• For a time series, it is a problem what granularity trans-
fer learning should be performed at. We can conduct
transfer learning on entire time series, subseries, or dis-
crete time points. If transfer learning is performed at a
coarse-granularity (e.g. the entire time series or sub-
series) that contains several different anomalous pat-
terns, it is not conducive to distinguish them. Further,
coarse-granularity anomaly detection leads to the diffi-
culty of locating and retrieving the cause of anomalies.
In this work, we aim to conduct anomaly detection at
a fine granularity (i.e. for each data point), and so we
perform transfer learning at the level of data point.

• Transfer learning requires that the source domain and

USENIX Association 2019 USENIX Annual Technical Conference 1065

the target domain have the underlying similarity. How-
ever, the time series generated from various components
in a large-scale cloud system could be very different.
We should guarantee that the source domain and the tar-
get domain come from similar services or have similar
characteristics. Thus, during the transfer learning pro-
cess, we need to filter out those source-domain samples
that are not similar to the counterpart in the target do-
main.

Fig. 2 shows the workflow of the Transfer Learning Com-
ponent. The following subsections describe our algorithm in
detail.

Feature

Extraction

Feature

Extraction
Clustering

Assigment

Unlabelled

Time Series

Sub Source Domains

Unlabelled

Feature

Dataset

Labelled

Feature

Dataset

Labelled

Time Series

CORAL

Sub Source Domains

after Transformation

Feature

Transformation

Figure 2: Transfer Learning Component

3.1.1 Feature Identification

The feature engineering process of ATAD converts each data
point in a time series (Tl) into a set of features (Fl), which can
capture both contextual and temporal information around the
point. These features can be categorized into three groups:
statistical features, forecasting error features, and temporal
features.

Before computing the value of these features, we use Dis-
crete Fourier Transform (DFT) to estimate the period p of
the most dominant frequency. Different periods determine
different sizes of the sliding window used in the following
process.

Statistical features: Statistical features describe some basic
characteristics around each data point in time series. We hold
a view that the statistical features are able to describe the
basic characteristics of different time series generated from
various sources in cloud systems, and it is conducive to de-
tecting anomalies that violate the basic characteristics. For
example, in an active-running computation intensive service,
if the average CPU utilization over a time window tends to
be low, it may be an indicator that part of the computation
process on it halts unexpectedly.

We identify features for depicting statistical characteris-
tics of time series data (as listed in Table 1). These descrip-
tive features are all calculated in a rolling window derived
from the period p. They can represent short-period aspects
of time series data such as mean, variance, autocorrelation,
trend, remainder, and stationary test.

Table 1: Statistical Features
Feature Description

Mean Mean.
Var Variance.
Crossingpoint[18] The number of crossing points.
ACF1 First order of autocorrelation.
ACFremainder Autocorrelation of remainder.
Trend Strength of trend.

Linearity [18]
Strength of linearity computed on
trend of STL [5] decomposition.

Curvature [18]
Strength of curvature computed on
trend of STL [5] decomposition.

Entropy [18] Spectral entropy [12].

ARCHtest.p [9]
P value of Lagrange Multiplier
(LM) test for ARCH model [8].

GARCHtest.p [24]
P value of Lagrange Multiplier
(LM) test for GARCH model [8].

Forecasting error features: Following the prior work [22],
we use a set of error metrics resulted from time series fore-
casting as features. The intuition is that if the value of current
point deviates from the forecasting result, there is more likely
to be an anomaly. We use ensemble models to carry out fore-
casting and apply different models based on the seasonal-
ity of the time series. The models leverage classical fore-
casting techniques, namely SARIMA [27], Holt [19], Holt-
Winters [19], and STL [5] for seasonal data, and SARIMA,
Holt, Holt-Winters, and Polynomial Regression [15] for non-
seasonal data, respectively. The metric RMSE (Root Mean
Squared Error) is used to endow different forecasting meth-
ods with different weights at a fixed time. More weight
should be assigned to more precise forecasting model. The
weighted prediction result of the ensemble model from M
models at time t is calculated by:

Ŷt =
M

∑
m=1

Ŷm,t

M−1
· (1−

RMSEm,t
M
∑

n=1
RMSEn,t

) (1)

where Ŷm,t is the prediction by model m at time t, RMSEm,t is
the prediction error of model m at time t, Ŷt is the ensemble
prediction at time t.

After gaining the ensemble prediction Ŷt , we calculate 5
metrics on 3 rolling time windows to measure the bias be-
tween predicted and actual values. The metrics are shown

1066 2019 USENIX Annual Technical Conference USENIX Association

in Table 2, where Ŷ is the predicted value, Y represents the
actual value, and N is the size of the time window.

Table 2: Metrics used as forecasting error features

Features Formula Description

ME ∑(Yi−Ŷi)
N Mean Error.

RMSE

√
∑(Yi−Ŷi)

2

N Root Mean Squared Error.

MAE ∑|Yi−Ŷi|
N Mean Absolute Error.

MPE 1
N ·∑

Yi−Ŷi
Y Mean Percentage Error.

MAPE 1
N ·∑

|Yi−Ŷi|
Y Mean Average Percentage Error.

Temporal features: Generally speaking, the drastic changes
of system metrics are likely to be anomalies. For example,
the sharp decline of disk I/O traffic rate may be caused by
the hardware failure in the disk array. To understand the
changes of time series data over time, we identify tempo-
ral features (as shown in Table 3) by comparing data in two
consecutive windows. We also compute the difference be-
tween current values and previous w values (e.g., the dif-
ference between xn−w and xn). In our implementation, we
set w = p/2, p,2p,wpr,wpr/2, respectively to get the corre-
sponding different values (Diff-w). wpr is selected according
to some prior knowledge. For example, if a time series is
recorded by hours, we can set wpr = 24.

Table 3: Temporal Features

Features Description

Max level shift Max trimmed mean between two con-
secutive windows.

Max var shift Max variance shift between two con-
secutive windows.

Max KL shift
Max shift in Kullback-Leibler diver-
gence between two consecutive win-
dows.

Lumpiness Changing variance in remainder.

Flatspots
Discretize time series values into ten
equal-sized intervals. Find maximum
run length within the same bucket. [18].

Diff-w The differences between the current
value and the w-th previous value.

In summary, with original time series value, we extract
total 37 features used to capture the characteristics of time
series data. It is also worth mentioning that all those features
are normalized in order to make them comparable among
different time series.

3.1.2 The Transfer between Source Domain and Target
Domain

In order to transfer knowledge between the source and target
domains, it is necessary to narrow the difference between the
two domains. Considering the effectiveness and efficiency
requirements in the anomaly detection task, we propose a
transfer method combining the instance-based transfer learn-
ing and feature-based transfer learning.

In transfer learning, we should guarantee that the source
domain and the target domain come from similar fields (such
as similar monitoring data) or own similar characteristics
(such as trend or period). However, the source domain may
consist of various time series data. Thus, the first step of
transfer learning is to collect the time series data from the
source domain that are similar to the data in the target do-
main. In ATAD, we use instance-based method to filter out
those source-domain samples which are not similar to the
counterpart in the target domain.

The idea of instance-based transfer learning is to select the
source-domain samples which are similar to samples in the
target domain so that the difference between two domains
can be reduced. For source domain, after identifying fea-
tures and converting Tl into Fl , we perform K-means [29]
algorithm on Fl to build K clusters. Each cluster F i

l i ∈ [1,K]
is a subset of Fl without overlap, which can be regarded as a
sub source domain. To select the similar samples, firstly, the
same feature extraction process is applied to the unlabelled
time series data Tu to form feature dataset Fu. Then we cal-
culate the Euclidean distance between each unlabelled sam-
ple and the central point of each cluster. Each target-domain
sample will be assigned to the nearest sub source domain F i

l .
We denote the testing samples which are assigned into the
same cluster as F i

u i ∈ [1,K].
After the instance-based transfer, we need to further nar-

row the difference between target domains and correspond-
ing sub source domains from the perspective of feature
space, because the distribution of features may still remain
different. In ATAD, we conduct CORrelation ALignment
(CORAL) [37] on each cluster, which is the idea of the
feature-based transfer learning process. CORAL is a domain
adaption algorithm, which can align the second-order statis-
tics, namely, the co-variance of the source and target features
in an unsupervised manner. Specifically, CORAL aims to
minimize the Frobenius norm between co-variance matrices
of the target and source domains, as shown in Eq. 2.

min
A

∥∥ATCi
lA−Ci

u
∥∥2

F (2)

where A is a linear transformation matrix, Ci
l is the co-

variance matrix of labelled data in cluster i, and Ci
u is the

co-variance matrix of unlabelled data in cluster i. We can get
the optimal solution of A by whitening source data and re-
coloring with target co-variance method, i.e. CORAL. More

USENIX Association 2019 USENIX Annual Technical Conference 1067

details can be referred in [37]. Finally, we can get the new
sub source domain features data F̂ i

l after transformation.
In the last step, we train a base supervised model, like Ran-

dom Forest (RF) or Support Vector Machine (SVM), on each
sub source domain F̂ i

l . In the end, we can get K independent
base models.

Some notes about the proposed transfer learning compo-
nent:

• Base model: we use Random Forest as the supervised
machine learning model (i.e. the base model) in our
implementation. Random Forest can be implemented
in a parallel way thus it owns high efficiency.

• Computational framework: we emphasize that this
component can be regarded as a computational frame-
work. In fact, the choices of distance measurement,
clustering method, and base model are flexible.

• Assignment complexity analysis: when assigning unla-
belled samples, we need to calculate the distance be-
tween each sample in the unlabelled set and the cen-
ter points of all clusters (sub source domains). This
time complexity is O (m ·K), where K is the number
of clusters and m is the size of Fu. K is generally
much less than m and can be regarded as a constant, so
O (m ·K) ≈ O (m). Therefore, our assignment process
has linear complexity.

• Parallel processing: it is worth noting that the sub
source domains are completely independent to each
other, which means that the follow-up processes for
each sub source domain could be conducted in a par-
allel manner. This can help improve the efficiency of
anomaly detection.

3.2 Active Learning Component
Due to the high complexity of the cloud service systems, the
time series generated from different components are charac-
terized by great diversity. Thus, transfer learning technique
is not enough to achieve satisfactory results on various time
series in cloud. In ATAD, leveraging active learning method,
the diversified data with specific characteristics can be ad-
dressed with a small amount of labelling effort.

Active learning focuses on minimizing the labeling effort
of users and improving the accuracy of the prediction model.
In this work, we utilize an active learning method that con-
siders Uncertainty and Context Diversity of samples during
sampling. We call it UCD for short.

3.2.1 Uncertainty

Most active learning methods use uncertainty as the principle
to select samples for labelling [33] because it is believed that
if a model is less certain about the classification results of

some samples, labelling such samples would be more helpful
to the base model. In our approach, we use the base model
(Random Forest) to estimate the probability of an unlabelled
data to be normal or anomalous. We then use the following
formula to calculate the uncertainty for unlabelled samples:

Uncertainty =−|Prob(Normal)−Prob(Anomaly)| (3)

where Prob represents the probability given by the base
model.

We calculate the uncertainty according to Eq. 3 and sort
them in descending order. The larger the uncertainty, the
more it needs to be labelled.

3.2.2 Context Diversity

To recommend samples to be labelled, diversity is also an
important factor to be considered. Sometimes, two samples
are very similar or may belong to the same anomaly pattern.
It is unnecessary to label both of them.

Traditional diversity methods are generally based on clus-
tering [7], which do not consider the context of samples in
time series scenario. In cloud systems, time series of system
metrics, such as CPU utilization or traffic load, are continu-
ous without drastic breakpoints. Thus, samples that are ad-
jacent in time series tend to be similar. Our active learning
algorithm makes full use of this property in time series.

Specifically, we sort all samples by uncertainty and scan
them sequentially. If a new sample we scanned is in the con-
text of another sample in the candidate set, i.e. these two
samples are adjacent to each other, we hold a view that the
information embedded in them could also be similar. We
thus ignore the new sample because it may contain redun-
dant information. If the new sample does not appear in the
context of all samples in the candidate set, it is added to the
candidate set. In our work, the context of sample xt is con-
trolled by a parameter α , which represents a range from xt−α

to xt+α in a time series. Fig. 3 illustrates the concept of con-
text diversity in a time series. More details can be found in
Algorithm 1.

Time

Value

t

 α α

Context

t+ αt-α

Figure 3: Context in time series

1068 2019 USENIX Annual Technical Conference USENIX Association

For each source domain, we perform active learning on
its own testing data F i

u. We recommend d diverse and uncer-
tain samples to be labelled, and add the labelled samples into
the training set to retrain the base model. After repeating T
rounds of this process, we obtain the final detection model.

Algorithm 1: Active Learning Component
Input:

labelled feature data from source domain Fl ;
unlabelled feature data from target domain Fu;
base model Mbase obtained from Fl ;
the number of samples at each round d;
context parameter α;
the number of rounds T ;

Output: Final model M f inal ;
1 M = Mbase
2 for i = 1 to T do
3 Candidate Set, S =∅
4 Prob(Normal) ,Prob(Anomaly) = M (Fu)
5 Uncertainty =

−|Prob(Normal)−Prob(Anomaly)|
6 Uncertainty Candidate = argsort (Uncertainty)
7 for j = 1 to S.size() do
8 if S ==∅ then
9 S = S∪Uncertainty Candidate[j]

10 continue
11 end
12 if S.size()> d then
13 break
14 end
15 if Uncertainty Candidate[j] /∈

[xt−α ,xt+α] ,∀xt ∈ S then
16 S = S∪Uncertainty Candidate[j]
17 end
18 end
19 label the S as Ff ed
20 Fl = Fl ∪Ff ed
21 M = M.train(Fl)

22 end
23 return M as M f inal

3.3 Usage of ATAD
Transfer learning and active learning are only conducted in
the training process. Once the training of ATAD finished, a
classifier will be generated and further applied to anomaly
detection task in practice. The detection process of ATAD
is as follows: Firstly, we feed the time series data to be de-
tected into the feature extraction component and extract fea-
tures as the training process does. After that, the features are
input to the trained classifier to get the anomaly probabili-
ties. Finally, the points whose probabilities are higher than a

pre-specified threshold are predicted as anomalies. This pre-
specified threshold can be treated as the sensitivity parameter
for adapting to different requirements of various users and
scenarios.

4 Experiments

In this section, we evaluate the effectiveness of our approach
ATAD through a series of experiments. We aim to answer
the following research questions in evaluation:

RQ1: How effective is the proposed ATAD approach?
RQ2: How effective is the Transfer Learning component?
RQ3: How effective is the Active Learning component?
RQ4: How effective is ATAD in detecting anomalies in a

company’s local dataset based on public datasets?

4.1 Dataset and Setup

We use two public time series anomaly detection datasets,
NAB [23] and Yahoo [22], to evaluate our proposed method.
NAB is a novel benchmark for evaluating anomaly detec-
tion algorithms in streaming, real-time applications. It con-
tains datasets collected from different fields, including AWS,
Twitter, and Artificial, etc. Each dataset contains several
time series of variable length. The AWS dataset contains dif-
ferent server metrics, such as CPU utilization, network traf-
fic, disk write bytes, etc, collected by the Amazon Cloud-
Watch service. The Artificial dataset contains artificially
generated time series data with various types of anomalies,
while the anomaly patterns are much simpler. The Twit-
ter dataset is the collection of Twitter mentions of large
publicly-traded companies such as Google and IBM. The Ya-
hoo dataset consists of metrics of various Yahoo services,
which reflects the status of Yahoo system. All datasets are
given in time series form and every data point is manually
labelled. These time series range in length from hundreds to
thousands. The proportion of anomaly is about 1% ∼ 5%.

In the experiments, we use Yahoo, AWS, Artificial and
Twitter datasets as the testing set (target domain). There are
two reasons for this choice. First, these datasets are related to
cloud monitoring data. Second, the scale of these datasets are
relatively large, or the anomalous points are also much more
than other datasets. More details about datasets are shown
in Table 4. The first column is the average length of time
series. The second and third columns are the total number of
data points and the number of anomalies, respectively. We
also show the percentage of anomaly data points in the last
column.

We perform cross-dataset anomaly detection according to
our setup. The experiments are conducted on four pairs of
datasets, including non-Yahoo→Yahoo, non-AWS→AWS,
non-Twitter→Twitter, and non-Artificial→Artificial. The
right side of the arrow represents the unlabelled testing

USENIX Association 2019 USENIX Annual Technical Conference 1069

Table 4: Summary of datasets

Dataset
time series

mean length
#data
points

#anomaly
points %anomaly

Yahoo 1415 92016 1617 1.76%
AWS 3985 67740 3097 4.57%
Artificial 4032 16128 624 3.87%
Twitter 15862 142765 217 0.15%

dataset, i.e. target domain and the left side of the arrow repre-
sents the labelled dataset from other fields. The labels of the
target domain are not used during the training and transfer
learning process. They are only used during active learning
and evaluation.

4.2 Evaluation Metric
We evaluate the accuracy of anomaly detection methods us-
ing F1-Score, which is defined as follows:

F1 =
2 ·P ·R
P+R

, P =
TP

TP+FP
, R =

TP
TP+FN

(4)

where P and R denote the precision and recall, respectively.
In addition, T P, FP, FN, and T N are referred to as true pos-
itive, false positive, false negative, and true negative, respec-
tively. We might fail to detect potential anomalies if only
focus on the precision. On the other hand, a couple of false
positives might be received when we solely pay attention to
the recall. F1-Score builds up the balance of the precision
and recall, is therefore used as the main evaluation metric in
our experiments.

Under an acceptable recall, we expect the anomaly detec-
tor to achieve as high precision as possible. The more precise
the detector is, the less amount of false alarms will be re-
ported, and thus less human effort is required to investigate.
Therefore, precision can be regarded as an important metric,
which reflects the automation degree of anomaly detection
systems.

4.3 Results
4.3.1 RQ1: How effective is ATAD?

In this section, we evaluate the effectiveness of our pro-
posed approach, ATAD. First, we compare ATAD with some
commonly-used anomaly detection algorithms to examine
the superior performance of the proposed approach. Second,
we present the advantages of ATAD in saving labelling cost,
as a comparison with supervised learning based anomaly de-
tectors.

The comparative anomaly detection algorithms are devel-
oped based on Isolation Forest (iForest) [26], K-Sigma [14],

Seasonal Hybrid ESD (S-H-ESD) [16] and Random Forest
(RF). The iForest model ensembles random split tree mod-
els to identify which points are isolated. K-Sigma is a com-
mon statistics-based method, in which the samples are taken
as anomalies whose values deviate more than k times of the
variance of samples from the corresponding mean. S-H-ESD
builds upon the Generalized ESD test [32], and is able to
detect both global and local anomalies. This algorithm is
incorporated in the well-known AnomalyDetection R pack-
age [39] and thus is widely used. Because the RF is used in
ATAD as the based learning classifier, we exploit a classical
RF based supervised model as a comparison to demonstrate
the superior performance of ATAD. The RF and iForest mod-
els use the same features as the ATAD. The K-Sigma and
S-H-ESD are performed on the raw time series.

In the experiments, we evaluate the metrics under different
settings and present the best results in terms of F1-Score in
the following. Towards this end, the proportion of anomalies
in iForest is set to 0.01, 0.05, 0.10 and 0.20, respectively, and
the integer k varies from 1 to 3 in K-Sigma. In addition, the
maximum proportion of anomalies in S-H-ESD is set to 0.01
and 0.05, respectively. We labelled the same proportion of
samples for RF as the counterpart in ATAD used in the target
domain. In ATAD, the K in the Transfer Learning component
changes from 3 to 5, whereas the number of rounds T and
the labelling ratio are fixed to 3 and 1%, respectively, in the
Active Learning component. The probability threshold is set
to 0.6 ∼ 0.8.

The results are shown in Table 5. It is clear that the ATAD
can achieve much higher F1-Scores than other approaches
on all datasets. Particularly, though the supervised learning
method (RF) achieves better performance than those unsu-
pervised methods, the ATAD outperforms the RF when given
the same number of labels.

In order to demonstrate the advantages of ATAD in saving
labelling efforts, we compare the number of labelled samples
of ATAD and RF under the similar F1-Scores. The relevant
results are presented in Table 6, whose first and third col-
umn depicted the F1-Scores of the supervised model (RF)
and the ATAD, respectively. Their corresponding quanti-
ties of labelled data are included in the second and fourth
column of Table 6. It is evident that the supervised model
generally takes 3∼10 times more labels than the ATAD to
achieve comparable results. The superior performance bene-
fits the transferred knowledge from the source domain in the
Transfer Learning component. As a consequence, a small
number of labels is required in the target domain. Moreover,
the UCD method helps to further reduce the number of labels
because the performance can be improved rapidly and signif-
icantly by the extraordinary informative recommendations in
the Active Learning component.

1070 2019 USENIX Annual Technical Conference USENIX Association

Table 5: Results of Comparative Methods

Dataset Method Precision Recall F1-Score

Non-Yahoo
→ Yahoo

iForest 0.3832 0.2183 0.2781
K-Sigma 0.6499 0.3364 0.4433
S-H-ESD 0.2779 0.6215 0.3840
RF 0.8668 0.2075 0.3348
ATAD 0.8847 0.4040 0.5547

Non-AWS
→ AWS

iForest 0.1523 0.0491 0.0743
K-Sigma 0.6899 0.1992 0.3091
S-H-ESD 0.5382 0.7100 0.6123
RF 0.9999 0.6226 0.7674
ATAD 0.9195 0.8142 0.8637

Non-Artificial
→ Artificial

iForest 0.3477 0.9006 0.5017
K-Sigma 1.000 0.1730 0.2950
S-H-ESD 0.7888 0.4568 0.5785
RF 0.9182 0.9301 0.9241
ATAD 0.9990 0.9850 0.9924

Non-Twitter
→ Twitter

iForest 0.4685 0.3087 0.3722
K-Sigma 0.2608 1.0000 0.2608
S-H-ESD 0.7481 0.4654 0.5739
RF 0.7285 0.4811 0.5795
ATAD 0.8769 0.6951 0.7755

Table 6: Supervised Model (Random Forest) vs. ATAD

RF #labels ATAD #labels

Non-Yahoo
→ Yahoo

0.5440 4600 0.5547 920

Non-AWS
→ AWS

0.8403 763 0.8637 254

Non-Artificial
→ Artificial

0.9755 1612 0.9924 161

Non-Twitter
→ Twitter

0.7126 17131 0.7755 1427

4.3.2 RQ2: How effective is the Transfer Learning
Component?

We evaluate the effectiveness of our Transfer Learning Com-
ponent from the following two aspects:

• The effectiveness of identified features, including fore-
casting error, statistical, and temporal features.

• The effectiveness of our proposed transfer method.

Effectiveness of the identified features Our proposed
transfer learning is based on many time series features in-
cluding forecasting error, statistical, and temporal features.
The conventional transfer learning is only based on statistical
features such as averages and variances [30]. The statistical
features are simple descriptive values that are independent of
the context of time series.

In order to evaluate the validity of features used in ATAD,
we perform an experiment on four dataset pairs. We com-
pare ATAD using statistical features alone and ATAD using
order-aware features (forecasting error features and temporal
features).

Experimental results are shown in Table 7. It can be seen
that using statistical features alone for ATAD leads to poor
results, and when order-aware features are added, the perfor-
mance becomes better. The reason is that the transfer learn-
ing needs to narrow the differences between the source do-
main and the target domain. If only statistical features are
extracted and the characteristics of time series are ignored,
the features do not reflect the context property in time series.
Thus the resulting performance is less satisfactory.

Table 7: The effectiveness of features (F1-Score)

Features Yahoo AWS Artifical Twitter

Statistical 0.2956 0.7387 0.7441 0.6937
Order-aware 0.4200 0.8441 0.7569 0.6622
All features 0.5781 0.8637 0.9924 0.7755

Random Forest also provides a popular approach to fea-
ture ranking. Here we use the Random Forest classifier to
evaluate the importance of the features used in ATAD. The
importance of a feature can be ranked according to the mean
decrease impurity [3]. In Table 8, we show the top-10 most
important features of the RF models in ATAD. The defi-
nitions of these features can be found in Table 1, Table 2
and Table 3. We can see that the forecasting error features
and the original time series are much more informative for
anomaly detection. In addition, some temporal features, such
as Diff-w and Flatspots, also play an important role in the
model. It is also worth noting that the important features of
each dataset are different. It implies that we should consider
all the features comprehensively when conducting transfer
learning between different datasets.

Effectiveness of the proposed transfer method In our
transfer learning, we create multiple independent sub source
domains through clustering and conduct the CORAL algo-
rithm to transform the features of sub source domains. We
expect the transfer learning can reduce the labelling effort
for users, because we can activate the Active Learning com-
ponent directly based on the transfer model, without any
manual labels in the testing set. We validate the effective-
ness of our Transfer Learning component by comparing with

USENIX Association 2019 USENIX Annual Technical Conference 1071

Table 8: Feature Importance Evaluation

Dataset Important Features

Yahoo Original data, RMSE, MAE, ME, Mean,
MPE, Diff-p, Diff-wpr/2, Diff-2p, MAPE

AWS Original data, RMSE, MAE, ME, Mean,
ACF1, Diff-2p, Curvature, Flatspots, Diff-p

Artificial Original data, Mean, Diff-p, MPE, Flatspots,
RMSE, MAE, Diff-2p, Diff-wpr, Lumpiness.

Twitter
Var, RMSE, MAE, ARCHtest.p, Mean,
Flatspots, Original data, Max level shift,
MPE, Original Data

naive active learning applied directly on target domain with-
out transfer methods.

Specifically, in the naive method, we pre-fetch a part of
samples in the testing dataset to train a base model. After
that, we use this base model to conduct the active learning
process. This naive active learning approach needs no auxil-
iary public labelled data as source domain and transfer learn-
ing technique, but it needs more labelling effort for building
the base model, as illustrated in Table. 9.

Table 9: Comparative Experiment of ATAD and Naive Ac-
tive Learning without Transfer Learning (F1-Score)

Naive ATAD
F1-Score #labels F1-Score #labels

Yahoo 0.5691 1380 0.5697 920
AWS 0.8589 381 0.8637 254
Artificial 0.9815 322 0.9924 161
Twitter 0.6164 2855 0.7755 1427

In Table 9, we fix the labelling ratio of the active learning
process to 1% in both Naive method and ATAD. For fairness,
in the naive method, we pre-fetch samples from the testing
set in stratified style to train the base model. From the table,
it can be seen that the number of samples required for the
naive method without transfer learning component is, in av-
erage, 1.56 times than that of ATAD, but its results are still
slightly lower than those achieved by ATAD. We also illus-
trate the number of labels required by the supervised model,
naive active learning model without transfer methods, and
ATAD in Fig 4. It is clear that active learning can signifi-
cantly save labelling effort and ATAD can further reduce the
labelling cost by introducing the transfer learning compo-
nent.

Figure 4: The number of labels required by Supervised
Model, Naive Active Learning without transfer learning and
ATAD

Table 10: The experimental result with active learning alone
(F1-Score)

Dataset Method Base Round1 Round2 Round3

Yahoo
U 0.2090 0.2437 0.2839 0.2695
UCD 0.2090 0.2383 0.3032 0.3814
random 0.2090 0.2275 0.2256 0.2196

AWS
U 0.0443 0.1932 0.6838 0.6799
UCD 0.0443 0.7550 0.8092 0.8879
random 0.0443 0.3227 0.5164 0.6604

Artificial
U 0.6239 0.7272 0.8737 0.9006
UCD 0.6239 0.7340 0.8780 0.9715
random 0.6239 0.6446 0.6275 0.5000

Twitter
U 0.1647 0.2916 0.2959 0.3298
UCD 0.1999 0.3070 0.3703 0.4232
random 0.1647 0.1798 0.1944 0.1689

4.3.3 RQ3: How effective is the Active Learning com-
ponent?

To evaluate the effectiveness of the Active Learning compo-
nent, we use total labelled datasets Fl to train the base model
and do not apply transfer learning on them. We compare the
UCD method with the conventional Uncertainty method (U)
and the random selecting method (random). In all experi-
ments, we conduct 3 rounds of active learning and select 60
samples for labelling at each round. In order to avoid the
data leakage problem [20], all samples labelled by the active
learning component are removed from the testing set. The
experimental results are shown in Table 10.

From Table 10, it can be seen that the UCD method
achieves the best results on all datasets, confirming the use-
fulness of incorporating time series context diversity. We

1072 2019 USENIX Annual Technical Conference USENIX Association

also find that as the number of rounds increases, the F1-
Scores achieved by UCD are also steadily improved. How-
ever, the random selection method cannot guarantee such
trend. The results confirm the validity of the active learning
method.

(a) Yahoo (b) AWS

(c) Artificial (d) Twitter

Figure 5: Experimental results with different α

The hyper-parameters in the Active Learning component
include the number of samples to be labelled per round d,
the number of rounds T , and the context parameter α . Ob-
viously, if T and d are much larger, the entire algorithm will
be closer to supervised learning. Therefore the accuracy will
be improved gradually.

We conduct an experiment to explore the impact of differ-
ent α values on the final results. In Fig. 5, we can see that
as the α value increases, the F1-Score rises rapidly first and
then falls gradually. The larger α means the wider range of
context and more attention to Context Diversity because the
wider context will cause more uncertain candidate samples
to be discarded. The smaller α means the narrower range of
context and more attention to Uncertainty. If α = 1, UCD be-
comes purely U. Therefore, α can be treated as a parameter
which trades off between Context Diversity and Uncertainty.
Too large or too small α value will result in loss of accuracy.
In conclusion, choosing an appropriate α can make full use
of both kinds of information. Through our practice on all
experimental datasets, we empirically set α = 10.

4.3.4 RQ4: How effective is ATAD in detecting anoma-
lies in a company’s local dataset based on public
datasets?

In RQ1, we examined the performance of ATAD on public
datasets. In this RQ, we evaluate its effectiveness by using
practical industrial data from the large-scale cloud system in
Microsoft. More specifically, we hourly record IOPS (I/O
Operations Per Seconds) of the storage service in a cluster
and collect the corresponding time series data in the past few
months. The data is labelled by domain experts in the op-
eration team. All public datasets are utilized as the source
domain, and then the ATAD is applied to the target domain
dataset, i.e., the IOPS data, for anomaly detection. The ex-
periment is conducted as the similar process in RQ1.

Table 11: Experimental result on IOPS dataset of Microsoft

Precision Recall F1-Score

iForest 0.2886 0.3988 0.3349
K-Sigma 0.8170 0.1882 0.3059
S-H-ESD 0.9117 0.1741 0.2924
RF 0.5213 0.6724 0.5873
ATAD 0.8082 0.6188 0.7009

The results are shown in Table 11. It is noted that the tra-
ditional unsupervised methods cannot work well due to the
low recalls and the resulting F1-Scores. The extremely low
recalls exhibit a high probability in failing to detect potential
anomalies, which might cause a huge customer and finan-
cial loss. RF can achieve a higher recall but lower precision,
which means lots of false alarms. In contrast, ATAD can
achieve a higher F1-Score, which is beneficial to improving
the service availability and detection automation.

5 Threats to Validity

• Data quality: in this work, we use public datasets in
evaluation. The labels about anomalies are provided
with the datasets. Although these dataset are of high
quality and are used by several other studies [23, 22],
it is possible that they contain a small degree of noise.
Furthermore, their data volume is also limited. We will
experiment with larger scale datasets in our future work.

• Correctness of labelling: the Active Learning compo-
nent in ATAD requires users to manually label a few
percentages of data and assumes that the labels are cor-
rect. However, in reality, the quality of labeling may
vary (i.e., users may incorrectly label a data point).

• Data leakage: in order to avoid the data leakage prob-
lem, we remove the samples labelled in the active learn-
ing process from the testing set. Since active learning

USENIX Association 2019 USENIX Annual Technical Conference 1073

may recommend different samples to be labelled at dif-
ferent rounds, the resulting testing set could be slightly
different in each experiment, which may cause bias in
comparisons. However, the proportion of samples to be
labelled is very small, so we can ignore this influence
on the final results.

6 Related Work

In recent years, there have been many studies on anomaly
detection problem for time series data. The proposed meth-
ods can be largely divided into supervised methods, semi-
supervised methods, unsupervised methods and statistical-
based methods [4].

Unsupervised methods do not require manual labelling.
These methods assume that normal instances are far more
frequent than anomalies and anomalies deviate from the nor-
mal data distribution. For example, Ahmad, et al. proposed
an unsupervised online sequence memory algorithm called
Hierarchical Temporal Memory to detect anomaly in stream-
ing data [2]. Xu, et al. proposed Donut, an unsupervised
anomaly detection algorithm based on Variational Auto En-
coder (VAE) [41].

Supervised methods aim to build a classification model
for normal and anomaly classes. General supervised ma-
chine learning models can be applied to this problem. Stein-
wart, et al. interpreted anomaly detection problem as a bi-
nary classification task and proposed a supervised frame-
work [36]. The most famous is the anomaly detection system
of Yahoo, called EGADS [22], which used a collection of
anomaly detection and forecasting models with an anomaly
filtering layer for accurate and scalable anomaly detection
on time series. Opperentice [25] used operators’ periodical
labels on anomalies to train a random forest classifier and
automatically select parameters and thresholds.

Semi-supervised methods assume that the training data
has labelled instances for only the normal class. Malhotra, et
al. used stacked LSTM networks trained on non-anomalous
data as a predictor to detect anomaly [28]. Erfani, et al. used
a combination of one-class SVM model and deep learning
model to detect anomaly [10]. Daneshpazhouh, et al. pre-
sented an entropy-based method that consists of two phases,
including reliable negative examples extraction and entropy-
based outlier detection [6].

Statistical-based methods are built up based on the
statistical theory. The most famous method is K-Sigma
method [14], in which the samples are taken as anomalies
whose values deviate more than k times of the variance of
samples from the corresponding average. Recently, more ad-
vanced methods using Extreme Value Theory [34, 42] were
proposed. Compared with K-Sigma method, these methods
do not require prior assumption on the data distribution.

From the view of effectiveness, supervised and semi-
supervised methods generally perform better than unsuper-

vised methods and statistical-based methods. However, due
to the high labelling cost, they are difficult to be applied in
the real world when the scale of dataset is very large. More
recently, transfer learning and active learning techniques are
applied to deal with this important problem. Transfer learn-
ing has been widely applied in many fields like classifica-
tion, regression, and forecasting [30]. For example, Spiegel,
et al. embeds a given set of labelled data into dissimilarity
space, leading to enriched feature representations that fa-
cilitate statistical learning procedures [35]. Vercruyssen, et
al. transferred labelled examples from a source domain to a
target domain where no labels are available and constructed
a nearest-neighbor classifier in the target domain with DTW
measure [40]. Another technique to reduce the labelling ef-
fort is active learning. For example, Abe, et al. used a selec-
tive sampling mechanism based on active learning to the re-
duced classification problem of outlier detection [1]. Pelleg,
et al. proposed a novel active learning method to identify rare
category records in an unlabelled noisy set with a small bud-
get of data points that they are prepared to categorize [31].

In our work, we combine transfer learning and active
learning methods so that we could achieve a balance between
labelling effort and performance. On the one hand, unlike
unsupervised models, ATAD could achieve a high F1-Score.
On the other hand, we only need to label a few number of
samples from the unlabelled dataset. These advantages are
not possessed by the existing methods mentioned above.

7 Conclusion

In this paper, we propose a novel anomaly detection method
ATAD for cloud service systems. ATAD combines transfer
learning and active learning techniques. In transfer learning,
we use an existing labelled dataset as the source dataset. We
extract multiple features, construct source domains, and use
the labelled data in each source domain to train base models
for a target, unlabelled dataset. In active learning, we use
the UCD method to recommend informative samples in the
target dataset to label and retrain the base models. Our ex-
periments on cross-dataset anomaly detection show that we
can achieve satisfactory detection accuracy by labeling only
a small number of samples in the target dataset. We have
also evaluated the effectiveness of ATAD using real-world
data collected from a production cloud system in Microsoft.

8 Acknowledgement

We thank Professor Mickey Gabel (University of Toronto)
for the valuable and constructive suggestions on this paper.

1074 2019 USENIX Annual Technical Conference USENIX Association

References

[1] ABE, N., ZADROZNY, B., AND LANGFORD, J. Out-
lier detection by active learning. In Proceedings of
the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining (2006), ACM,
pp. 504–509.

[2] AHMAD, S., LAVIN, A., PURDY, S., AND AGHA, Z.
Unsupervised real-time anomaly detection for stream-
ing data. Neurocomputing 262 (2017), 134–147.

[3] BREIMAN, L. Random forests. Machine learning 45,
1 (2001), 5–32.

[4] CHANDOLA, V., BANERJEE, A., AND KUMAR, V.
Anomaly detection: A survey. ACM computing surveys
(CSUR) 41, 3 (2009), 15.

[5] CLEVELAND, R. B., CLEVELAND, W. S., AND TER-
PENNING, I. Stl: A seasonal-trend decomposition pro-
cedure based on loess. Journal of Official Statistics 6,
1 (1990), 3.

[6] DANESHPAZHOUH, A., AND SAMI, A. Entropy-based
outlier detection using semi-supervised approach with
few positive examples. Pattern Recognition Letters 49
(2014), 77–84.

[7] DASGUPTA, S., AND HSU, D. Hierarchical sampling
for active learning. In Proceedings of the 25th interna-
tional conference on Machine learning (2008), ACM,
pp. 208–215.

[8] ENGLE, R. Garch 101: The use of arch/garch models
in applied econometrics. Journal of economic perspec-
tives 15, 4 (2001), 157–168.

[9] ENGLE, R. F. Autoregressive conditional het-
eroscedasticity with estimates of the variance of united
kingdom inflation. Econometrica 50, 4 (1982), 987–
1007.

[10] ERFANI, S. M., RAJASEGARAR, S., KARUNASEK-
ERA, S., AND LECKIE, C. High-dimensional and
large-scale anomaly detection using a linear one-class
svm with deep learning. Pattern Recognition 58 (2016),
121–134.

[11] GABEL, M., SCHUSTER, A., BACHRACH, R.-G.,
AND BJØRNER, N. Latent fault detection in large scale
services. In IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2012) (2012),
IEEE, pp. 1–12.

[12] G.GOREG. Forecastable component analysis. 64–72.

[13] GÖRNITZ, N., KLOFT, M., RIECK, K., AND
BREFELD, U. Toward supervised anomaly detection.
Journal of Artificial Intelligence Research 46 (2013),
235–262.

[14] GRAFAREND, E. W. Linear and nonlinear models:
Fixed effects, random effects, and mixed models. Wal-
ter De Gruyter (2006).

[15] HEIBERGER, R. M., AND NEUWIRTH, E. Polynomial
Regression. Springer New York, New York, NY, 2009,
pp. 269–284.

[16] HOCHENBAUM, J., VALLIS, O. S., AND KEJARI-
WAL, A. Automatic anomaly detection in the cloud via
statistical learning. arXiv preprint arXiv:1704.07706
(2017).

[17] HOCHREITER, S., AND SCHMIDHUBER, J. Long
short-term memory. Neural computation 9, 8 (1997),
1735–1780.

[18] HYNDMAN, R. J., WANG, E., AND LAPTEV, N.
Large-scale unusual time series detection. In Data
Mining Workshop (ICDMW), 2015 IEEE International
Conference on (2015), IEEE, pp. 1616–1619.

[19] KALEKAR, P. S. Time series forecasting using holt-
winters exponential smoothing. Kanwal Rekhi School
of Information Technology 4329008 (2004), 1–13.

[20] KAUFMAN, S., ROSSET, S., PERLICH, C., AND
STITELMAN, O. Leakage in data mining: Formula-
tion, detection, and avoidance. ACM Transactions on
Knowledge Discovery from Data (TKDD) 6, 4 (2012),
15.

[21] KAVULYA, S. P., DANIELS, S., JOSHI, K.,
HILTUNEN, M., GANDHI, R., AND NARASIMHAN,
P. Draco: Statistical diagnosis of chronic problems
in large distributed systems. In IEEE/IFIP Interna-
tional Conference on Dependable Systems and Net-
works (DSN 2012) (2012), IEEE, pp. 1–12.

[22] LAPTEV, N., AMIZADEH, S., AND FLINT, I. Generic
and scalable framework for automated time-series
anomaly detection. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (2015), ACM, pp. 1939–1947.

[23] LAVIN, A., AND AHMAD, S. Evaluating real-time
anomaly detection algorithms–the numenta anomaly
benchmark. In Machine Learning and Applications
(ICMLA), 2015 IEEE 14th International Conference on
(2015), IEEE, pp. 38–44.

[24] LEE, J. H. H. A lagrange multiplier test for garch mod-
els. Economics Letters 37, 3 (1991), 265–271.

USENIX Association 2019 USENIX Annual Technical Conference 1075

[25] LIU, D., ZHAO, Y., XU, H., SUN, Y., PEI, D., LUO,
J., JING, X., AND FENG, M. Opprentice: Towards
practical and automatic anomaly detection through ma-
chine learning. In Proceedings of the 2015 Internet
Measurement Conference (2015), ACM, pp. 211–224.

[26] LIU, F. T., TING, K. M., AND ZHOU, Z.-H. Isolation
forest. In Data Mining, 2008. ICDM’08. Eighth IEEE
International Conference on (2008), IEEE, pp. 413–
422.

[27] MAKRIDAKIS, S., AND HIBON, M. Arma models and
the box–jenkins methodology. Journal of Forecasting
16, 3 (1997), 147–163.

[28] MALHOTRA, P., VIG, L., SHROFF, G., AND AGAR-
WAL, P. Long short term memory networks for
anomaly detection in time series. In Proceedings
(2015), Presses universitaires de Louvain, p. 89.

[29] NASRABADI, N. M. Pattern recognition and machine
learning. Journal of electronic imaging 16, 4 (2007),
049901.

[30] PAN, S. J., AND YANG, Q. A survey on transfer learn-
ing. IEEE Transactions on knowledge and data engi-
neering 22, 10 (2010), 1345–1359.

[31] PELLEG, D., AND MOORE, A. W. Active learn-
ing for anomaly and rare-category detection. In
Advances in neural information processing systems
(2005), pp. 1073–1080.

[32] ROSNER, B. Percentage points for a generalized esd
many-outlier procedure. Technometrics 25, 2 (1983),
165–172.

[33] SETTLES, B. Active learning. Synthesis Lectures
on Artificial Intelligence and Machine Learning 6, 1
(2012), 1–114.

[34] SIFFER, A., FOUQUE, P.-A., TERMIER, A., AND
LARGOUET, C. Anomaly detection in streams with
extreme value theory. In Proceedings of the 23rd ACM

SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (2017), ACM, pp. 1067–1075.

[35] SPIEGEL, S. Transfer learning for time series classifi-
cation in dissimilarity spaces. Proceedings of AALTD
(2016), 78.

[36] STEINWART, I., HUSH, D., AND SCOVEL, C. A clas-
sification framework for anomaly detection. Journal of
Machine Learning Research 6, Feb (2005), 211–232.

[37] SUN, B., FENG, J., AND SAENKO, K. Return of
frustratingly easy domain adaptation. In AAAI (2016),
vol. 6, p. 8.

[38] TERZI, D. S., TERZI, R., AND SAGIROGLU, S. Big
data analytics for network anomaly detection from net-
flow data. In Computer Science and Engineering
(UBMK), 2017 International Conference on (2017),
IEEE, pp. 592–597.

[39] TWITTER. Anomalydetection. https://github.

com/twitter/AnomalyDetection, 2015.

[40] VERCRUYSSEN, V., MEERT, W., AND DAVIS, J.
Transfer learning for time series anomaly detection.
IAL@ ECML PKDD 2017, 27.

[41] XU, H., CHEN, W., ZHAO, N., LI, Z., BU, J., LI,
Z., LIU, Y., ZHAO, Y., PEI, D., FENG, Y., ET AL.
Unsupervised anomaly detection via variational auto-
encoder for seasonal kpis in web applications. arXiv
preprint arXiv:1802.03903 (2018).

[42] YUANYAN, L., XUEHUI, D., AND YI, S. Data streams
anomaly detection algorithm based on self-set thresh-
old. In Proceedings of the 4th International Conference
on Communication and Information Processing (2018),
ACM, pp. 18–26.

[43] ZIMEK, A., AND SCHUBERT, E. Outlier detection.
Encyclopedia of Database Systems (2017), 1–5.

1076 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/twitter/AnomalyDetection
https://github.com/twitter/AnomalyDetection

	atc19-duplyakin
	Introduction
	Development and Use of CloudLab
	The Deployed CloudLab Facility
	Hardware Overview
	Usage Patterns
	Resource Availability
	Research Use of CloudLab

	High-Level Effects of Low-Level Decisions
	Resource Mapping
	Interactive Topology Design Feedback
	Reserving Resources

	Related Work
	Conclusion
	Acknowledgments

	atc19-kuszmaul
	Introduction
	FSS Architecture
	Multi-Page Store Conditional
	A Filesystem Schema
	The B-tree
	DASD: Not Your Parent's Disk Drive
	Pipelined Paxos
	Avoiding Conflicts
	Performance
	Related Work
	Conclusion

	atc19-pang
	Introduction
	Model, Language, and API
	Relation Tuples
	Consistency Model
	Namespace Configuration
	Relation Configs and Userset Rewrites

	API
	Read
	Write
	Watch
	Check
	Expand

	Architecture and Implementation
	Storage
	Relation Tuple Storage
	Changelog
	Namespace Config Storage
	Replication

	Serving
	Evaluation Timestamp
	Config Consistency
	Check Evaluation
	Leopard Indexing System
	Handling Hot Spots
	Performance Isolation
	Tail Latency Mitigation

	Experience
	Requests
	Latency
	Availability
	Internals
	Lessons Learned

	Related Work
	Conclusion
	Acknowledgments

	atc19-panda
	atc19-meiklejohn
	Introduction
	Background: Distributed Actors
	Framework Commonalities
	Challenges

	Overlay Networks
	Static, Full-mesh, Client-server Overlays
	Peer-to-peer Overlay

	Latency Reduction
	Parallelism
	Named Channels
	Affinity

	Partisan
	Design
	API
	Implementation
	Configuration
	Bring Your Own Overlay

	Experimental Evaluation
	Microbenchmarks
	Evaluation: Latency Reduction in Riak
	Background: Riak Core
	Modifications to Riak Core to Support Partisan
	Echo Service
	Key-Value Store
	Discussion

	Evaluation: Improving Scalability in Lasp
	Lasp

	Related Work
	Conclusion

	atc19-song
	Introduction
	Background
	Dynamic Binary Translation (DBT)
	Learning Translation Rules

	Issues and Challenges
	An Enhanced Learning-Based Approach
	Overview
	Varying Learning Scopes
	Learning Constrained-Equivalent Rules
	Lightweight Online Analysis
	Handling Predicated Instructions
	Discussion

	Experimental Results
	Experimental Setup
	Performance Results
	Learning Results
	Performance Overhead of Online Analysis

	Related Work
	Conclusion

	atc19-sengupta
	Introduction
	Background & Model
	Smart-home Platforms
	Programming Model
	Failures in IoT Environments

	Problem Study
	Inconsistency
	Dependency
	Analysis and Findings

	Transactuations
	Abstraction & API
	Chaining transactuations

	Relacs
	Relacs Store
	Execution Model
	Relacs Runtime
	Fault Tolerance
	Implementation
	Discussion

	Evaluation
	Programmability
	Correctness
	Overhead

	Related Work
	Conclusion
	Acknowledgment

	atc19-jangda
	Introduction
	From Browsix to Browsix-Wasm
	Browsix-SPEC
	Browsix-SPEC Benchmark Execution

	Evaluation
	PolyBenchC Benchmarks
	SPEC Benchmarks
	Browsix-Wasm Overhead
	Comparison of WebAssembly and asm.js

	Case Study: Matrix Multiplication
	Differences
	Increased Code Size
	Increased Register Pressure
	Extra Branches

	Performance Analysis
	Increased Register Pressure
	Reserved Registers
	Poor Register Allocation
	x86 Addressing Modes

	Extra Branch Instructions
	Extra Jump Statements for Loops
	Stack Overflow Checks Per Function Call
	Function Table Indexing Checks

	Increased Code Size
	Discussion

	Related Work
	Conclusions

	atc19-bijlani
	Introduction
	Background and Extended Motivation
	FUSE
	Generality vs Specialization

	Design
	Overview
	Goals and Challenges
	eBPF
	Architecture
	ExtFUSE APIs and Abstractions
	Workflow

	Implementation
	Optimizations
	Customized in-kernel metadata caching
	Passthrough I/O for stacking functionality

	Evaluation
	Performance
	Use cases

	Discussion
	Related Work
	Conclusion
	Acknowledgments

	atc19-kesavan
	Introduction
	The Building Blocks
	FlexGroup Volumes
	Design Considerations
	Fusing FlexVols via Remote Hardlinks
	Load Balancing
	The Remote Access Layer
	RAL Caches
	Example
	Consistency and Recovery

	Ingest Heuristics
	Input to Heuristics
	Heuristic Probability Tables
	Computing Heuristic Probability Tables

	Topics in Practice
	Evaluation
	Overhead
	Overhead of NFS Operations
	Application and Data Benchmarks

	Workload Scaling
	Customer Experience
	Applicability Beyond WAFL

	Related Work
	Conclusion

	atc19-gao
	Introduction
	Background and Motivation
	Low user-perceived storage space
	Deficiency of existing readonly file systems

	EROFS:Enhanced Compressed File System
	Fixed-sized output compression
	Cached I/O and in-place I/O
	Decompression

	Implementation
	EROFS image layout
	Decompression policy
	Optimizations

	Evaluation
	Evaluation setup
	Micro-benchmarks
	Compression ratio and memory usage
	I/O amplification and I/O patterns
	Throughput and space savings
	Different decompression approaches and optimization
	Real-world applications

	Experience over deployment
	Related Work
	Conclusion and Future Work

	atc19-hu
	Introduction
	Background and Motivation
	Data Compression on Storage Devices
	The Selection of Compression Algorithms
	Hardware-Assisted Data Compression

	System Design
	Implementation & Optimization
	Compression Service Engine
	Compressibility Dependent Offloading
	Selective Offloading by Source Data Size
	Applicability and Availability

	QAT Offloading Module
	Vectored I/O Model
	Data Reconstruction and Memory Zero Copy
	QAT Offloading Organization

	Evaluation
	Evaluation Methodology
	Evaluation Benchmark
	FIO Micro-benchmark
	Scientific Big Data Evaluation
	Shared Deployment Mode
	Separate Deployment Mode

	Bottleneck Analysis
	Related Work
	Conclusions

	atc19-yang-youngseok
	Introduction
	Background
	System Design
	Intermediate Representation
	Transforming an IR DAG
	Ensuring Correctness
	Supported Applications and Runtimes

	Optimization Passes
	Developing and Composing Passes
	Applying Passes

	Runtime Extensions

	Implementation
	Experimental Evaluation
	Fine Control
	Composability
	Reusability

	Related Work
	Discussion
	Conclusion

	atc19-huang
	Introduction
	Immutable and Mutable Abstractions
	Programming Model
	MapUpdate
	Comparison with Existing Frameworks

	Applications
	Bulk Processing
	Iterative Machine Learning
	Vertex-Centric Graph Analytics
	Distributed Crawler
	Pipelined Workloads

	System Design
	Local Task Management
	Partition-Based Progress Control
	Context-Aware Failure Recovery
	Straggler Mitigation
	Communication Optimizations

	Experiments
	Failure Recovery & Straggler Mitigation
	Expressiveness and Efficiency
	Evaluation of System Designs

	Related Work
	Conclusions

	atc19-kim-jin-kyu
	Introduction
	The Cost of Using a Framework
	Programming Effort
	Sequential SGDMF code
	OpenMP Parallel SGDMF
	STRADS-AP Distributed SGDMF
	Spark Distributed SGDMF

	Performance Cost
	Other High-Level Frameworks

	STRADS-AP Programming Interface
	Distributed Data Structures (DDSs)
	STRADS-AP Operators
	Pretraining Operators
	Loop Operators

	Implementation
	Execution of Driver Program
	Reconnaissance Execution
	Distributed Data Structures
	Concurrency Control
	Serializable Engine for AsyncFor
	Data-Parallel Engine for SyncFor

	STRADS-AP Preprocessor

	Debugging STRADS-AP Applications
	Evaluation
	Word2Vec
	Multinomial Logistic Regression
	Matrix Factorization
	User Study
	Scope and Limitations of STRADS-AP

	Related Work
	Conclusion

	atc19-mahgoub
	Introduction
	Overview of Sophia
	Background
	Design of Sophia
	Datasets
	Experimental Results
	Related Work
	Conclusion
	Supplemental Material
	Cost-Benefit Analysis Derivation
	Synthetic HPC Workloads

	atc19-park-soyeon
	Introduction
	Intel MPK Explained
	Hardware Primitives
	Kernel Integration and Standard APIs
	Quantifying Characteristics of Intel MPK

	Challenges of Utilizing Intel MPK
	Potential Security Problem
	Limited Hardware Resources
	Semantic Differences

	Software Abstraction of libmpk
	Threat Model and Assumptions
	libmpk API
	Protection Key Virtualization
	Inter-thread Key Synchronization

	Applications
	OpenSSL
	Just-in-time (JIT) Compilation
	In-Memory Key-Value Store

	Evaluation
	Security Evaluation
	Microbenchmarks
	Application Benchmarks

	Discussion
	Related Work
	Conclusion
	Acknowledgment

	atc19-bai
	Introduction
	Background
	Linux Driver Interface Model
	Concurrency Use-After-Free Bug
	Our Study of Linux Kernel Commits

	Challenges and Key Techniques
	Local-Global Strategy
	Summary-Based Lockset Analysis

	Approach
	Evaluation
	Extracting Concurrent Function Pairs
	Detecting Bugs
	Result Variation
	False Positive and Negative Analysis
	False Positives
	False Negatives

	Sensitivity Analysis

	Discussion
	Related Work
	Detecting Use-After-Free Bugs
	Detecting Concurrency Problems
	Mining Code Rules in Systems Software

	Conclusion

	atc19-narayanan
	Introduction
	Background and Motivation
	LXDs Architecture
	Interface Definition Language
	Asynchronous Execution Runtime
	Fast Cross-Core Messaging

	Decomposition Case-Studies
	Network Device Drivers
	Multi-Queue Block Device Drivers

	Evaluation
	Asynchronous Runtime
	Same-core vs cross-core IPC
	Message Batching
	Dummy Device Driver
	Ixgbe Device Driver
	Multi-Queue Block Device Driver

	Conclusions
	Acknowledgments

	atc19-amit
	Introduction
	Indirect Branches
	Spectre Mitigations
	Indirect Call Promotion
	Alternative Solutions
	JumpSwitches

	JumpSwitch Architecture
	JumpSwitch Types
	Learning and the JumpSwitch Worker
	Patching and Updating
	Linux Integration
	Direct Kernel Entry

	Evaluation
	Microbenchmarks
	Macrobenchmarks
	Dynamic Learning
	Branch Targets
	Post-Spectre Benefits

	Conclusion
	Acknowledgment

	atc19-hedayati-fair-queuing
	Introduction
	Background and Design
	Multi-Queue Fair Queueing
	Fairness Analysis

	Scalability
	Virtual Time
	Available Slots
	Ready and Throttled Queues
	Determining D and T in Practice

	Evaluation
	Fairness and Efficiency
	Scalability
	Design Decisions and Parameters
	Virtual Time
	Unthrottling
	Dispatch Slots

	Related Work
	Conclusion

	atc19-dice
	Introduction
	Related Work
	The BRAVO Algorithm
	Applying BRAVO to the Linux Kernel rwsem
	User-space Evaluation
	Sensitivity to Inter-Lock Interference
	Alternator
	test_rwlock
	RWBench
	rocksdb readwhilewriting
	rocksdb hash_table_bench

	Linux Kernel Experiments
	will-it-scale
	Metis

	Conclusion and Future Work

	atc19-sun
	Introduction
	Backgrounds
	The Cuckoo Hashing
	Pseudoforest Theory
	The Disjoint-set Data Structure

	The CoCuckoo Design
	Intra-thread Operation
	The Case of TwoEmpty
	The Case of OneEmpty
	The Case of ZeroEmpty

	Inter-thread Synchronization Optimization
	The Case of TwoEmpty
	The Case of OneEmpty
	The Case of ZeroEmpty

	Subgraph Management
	Subgraph Number Allocation
	Subgraph Merging
	Item Deletion and Subgraph Splitting

	Performance Evaluation
	Experimental Setup
	Results and Analysis
	Lock Granularity
	Throughput
	Predetermination for Insertion
	Different Key Sizes
	Extra Space Overhead and Impact
	Deletion Latency

	Related Work
	Conclusion
	Acknowledgments

	atc19-eran
	Introduction
	Background
	F-NIC architecture
	FPGA concepts

	Motivation
	F-NICs in data centers
	Use cases for F-NIC acceleration
	AFUs in the cloud

	Design
	Abstractions for inline acceleration
	The ikernel abstraction
	Control plane
	Data plane
	Usability

	Virtualization
	State protection
	Performance isolation

	AFU development
	Discussion

	Implementation
	AFU virtualization
	Software
	Hardware runtime
	Limitations

	Evaluation
	Microbenchmarks
	Application benchmarks
	Transparent memcached cache
	IoT authentication

	Related work
	Conclusion and future work

	atc19-liu-ming
	Introduction
	Background
	Microservices
	SmartNICs
	Benefits of SmartNIC Offload
	Challenges of SmartNIC Offload

	E3 Microservice Platform
	Communication Subsystem
	Addressing and Routing
	Control-plane Manager
	Data-plane Orchestrator
	Failover/Replication Manager

	Implementation
	Evaluation
	Benefit and Cost of SmartNIC-Offload
	Avoiding Host Starvation
	Sharing SmartNIC and Host Bandwidth
	Communication-aware Placement
	Energy Efficiency = Cost Efficiency
	Performance at Scale

	Related Work
	Conclusion

	atc19-ruan
	Introduction
	Background and Related Work
	Emerging Storage Devices: Opportunities and Challenges
	Review of In-Storage Computing

	Insider System Design
	FPGA-Based ISC Unit
	Drive Architecture
	Separating Control and Data Planes
	Accelerator Cluster

	The Host-Side Programming Model
	Virtual File Read
	Virtual File Write
	Concurrency Control

	The Drive-Side Programming Model
	System-Level Pipelining
	Adaptive Bandwidth Scheduler

	Implementation
	The Insider Drive Prototype
	The Insider Software Stack

	Evaluation
	Experiment Setup
	Applications
	Speedup and Its Breakdown
	Optimality and Bottleneck Analysis
	Development Efforts

	Simultaneous Multiprocessing
	Analysis of the Resource Utilization
	Comparing with the ARM-Based System

	Future Work
	Conclusion

	atc19-liu-hang
	atc19-liang
	Introduction
	Background and Preliminaries
	Unstructured Data Retrieval System
	Near data processing & deep learning accelerator

	Cognitive SSD System
	The Cognitive SSD Software: DLG Library
	Hardware Architecture: Cognitive SSD
	The Procedure of data retrieval in Cognitive SSD

	DLG-x Accelerator
	Architecture: Direct Flash Accessing
	I/O Path in Cognitive SSD
	Fusing Deep Learning and Graph Search

	Evaluation
	Hardware Implementation
	Experimental Setup
	Evaluation of DLG algorithm
	Evaluation of DLG-x
	The Single-node System Based on Cognitive SSD
	The Cluster of Connected Cognitive SSDs

	Conclusion

	atc19-vora
	Introduction
	Background & Motivation
	Synchronous Processing Semantics
	Out-of-Core Graph Processing

	Lumos: Dependency-Driven Cross-Iteration Value Propagation
	Characterizing Synchronous Dependencies
	Out-of-core Value Propagation
	Graph Layout
	Intra-Partition Propagation
	Value Propagation v/s Partition Size
	Lumos with DynamicShards

	Lumos for Asynchronous Algorithms
	The Lumos System
	Propagation based Processing Model
	Selective Scheduling
	Graph Layout & Partitioning

	Evaluation
	Experimental Setup
	Performance
	I/O Scalability
	Partitioning Strategies
	Preprocessing

	Related Work
	Conclusion

	atc19-ma
	Introduction
	NeuGraph Programming Abstraction
	Graph Neural Networks
	A Running Example
	SAGA-NN Model

	NeuGraph System
	Graph-Aware Dataflow Translation
	Streaming Processing out of GPU Core
	Parallel Multi-GPU Processing
	Graph Propagation Engine

	Implementation
	Evaluation
	Performance on a Single GPU
	Scaling-up on a Single GPU
	Scaling-out on Multiple GPUs

	Related Work
	Conclusion and Future Work

	atc19-lee-eunjae
	Introduction
	Characteristics of BFS-like Algorithms
	Basics of Disk-based Graph Engines
	Uniform Edge List Reference
	Ineffectiveness of the Page Cache
	Impact of Graph Layout on Disk

	BFS-Aware Static Cache
	The Vertex Pre-Selection Problem
	Vertex Selection for Basc

	Bringing New Order
	Modeling I/O Cost
	Neighborhood Ordering

	Evaluation
	Evaluation of Basc
	Evaluation of Neighborhood Ordering
	Combining Basc and Norder
	BASC with Graphene

	Related Work
	Conclusion

	atc19-fouladi
	Introduction
	Summary of Results

	Related Work
	Design and Implementation
	gg's Intermediate Representation
	Thunk: A Lightweight Container
	gg IR: A Lazily Evaluated Lambda Expression
	Tail Recursion: Supporting Dynamic Execution

	Front-ends
	Back-ends
	Implementation Notes

	Applications
	Software Compilation
	Unit Testing
	Video Encoding
	Object Recognition
	Recursive Fibonacci

	Evaluation
	Startup Overhead
	Software Compilation
	Evaluation Set
	Baselines
	gg's Benchmarks
	Discussion of Evaluation Results

	Unit Tests
	Video Encoding
	Object Recognition

	Limitations and Discussion
	Conclusion

	atc19-hedayati-hodor
	Introduction
	Protected Libraries
	Threat Model
	Virtual Address Space Integrity
	Local Variables and Protected Stack
	Program Loading
	Asynchronous Events and Termination

	Fast Memory Isolation
	Page Table Switching via Syscalls
	Hodor-VMFUNC
	Hodor-PKU
	Safety of Hodor-PKU

	Evaluation
	Microbenchmarks
	Silo
	DPDK TestPMD
	Redis on DPDK
	Discussion
	Cross-Application Sharing

	Related Work
	Fast I/O Systems
	Intra-Process Isolation
	OS and Hypervisor Security

	Conclusions

	atc19-spink
	Introduction
	Overview and Motivating Example
	Contributions

	Retargetable DBT Hypervisor
	Overview
	Offline Stage
	Architecture Description
	Intermediate SSA Form
	Generator Function

	Online Stage
	Instruction Decoding
	Translation
	Register Allocation
	Instruction Encoding

	Exploiting Host Architectural Features
	Floating Point/SIMD Support
	Translated Code Management
	Virtual Memory Management

	Evaluation
	Experimental Set-up
	Application Benchmarks
	Additional Guest Architectures
	JIT Compilation Performance
	Targeted Micro-Benchmarks
	Code Quality
	Impact of offline optimizations
	Hardware Floating-point Emulation

	Comparison to Native Execution

	Related Work
	Summary & Conclusion
	Future Work

	atc19-thimmaraju
	Introduction
	Securing Virtual Switches
	State-of-the-Art
	Threat Model
	Design Principles and Security Levels

	The MTS Architecture
	Overview
	Detailed Architecture

	Evaluating Tradeoffs
	Throughput
	Latency
	Resources

	Workload-based Evaluation
	Workloads and Results

	Discussion
	Related Work
	Conclusion
	Acknowledgments

	atc19-park-heejin
	Introduction
	Background & Motivation
	ARM for Cloud Edge
	Stream Analytics
	Security Threats & Design Objectives

	Security Approach Overview
	Scope
	Approach and Security Benefits

	Design Overview
	Challenges
	StreamBox-TZ in a Nutshell

	Trusted Primitives and Optimizations
	TEE Memory Management
	Unbounded Array
	Placing uArrays in uGroups

	Attestation for Correctness and Freshness
	Implementation
	Evaluation
	TCB Analysis
	Performance & Overhead
	Validation of Key Design Features

	Related Work
	Conclusions

	atc19-orenbach
	Introduction
	Motivation
	Background: page-faults in enclaves
	Limitations of existing enclaves
	Code instrumentation for enclaves

	CoSMIX Design
	Design overview
	Mstore abstraction
	Mstore callbacks
	Pointer access and mpage faults
	Thread safety and memory consistency
	Memory vs. file-backed mstores
	Mstore examples
	Stacking mstores

	CoSMIX compiler and runtime
	Pointer access instrumentation
	Memory management and file I/O calls
	libc support
	Translation caching

	Discussion

	Evaluation
	Mstore performance
	Instrumentation and mstore overheads
	Secure mmap with SQLite
	Optimizing memory-intensive workloads with the SUVM mstore
	Protecting data with the ORAM mstore

	Related Work
	Conclusions
	Acknowledgments

	atc19-ghosn
	Introduction
	Background
	Intel Software Guard Extension
	Building Secured Systems
	SGX Limitations

	Design
	Threat Model
	Quick Overview of Golang
	Secured Routines & Cross-domain Channels
	Runtime Cooperation
	Compatibility With SGX

	Implementation
	Compiler Support for gosecure
	gosec – an SGX Library in Go
	gotee Runtime

	Evaluation
	Code Size
	Microbenchmarks
	A full in-enclave ssh server
	Webserver with enclave-cert
	Keystore based on go-ethereum

	Discussion
	Related Work
	Conclusion

	atc19-mosayyebzadeh
	Introduction
	Threat Model
	Design Philosophy
	Architecture
	Components
	Life Cycle
	Use Cases

	Implementation
	Addressing the Threat Model
	Evaluation
	Infrastructure and methodology
	The cost of encryption
	Elasticity
	Continuous Attestation
	Macro-Benchmarks

	Related Work
	Concluding Remarks
	Acknowledgment

	atc19_interior_603-1086.pdf
	atc19-lee-gyusun
	Introduction
	Background and Motivation
	ULL SSDs and I/O Stack Overheads
	Read Path
	Vanilla Read Path Behavior
	Motivation for Asynchronous Read Path

	Write Path
	Vanilla Write Path Behavior
	Motivation for Asynchronous Write Path

	Motivation for Lightweight Block Layer

	Asynchronous I/O Stack
	Lightweight Block I/O Layer
	Read Path
	Preloading Extent Tree
	Asynchronous Page Allocation/DMA Mapping
	Lazy Page Cache Indexing
	Lazy DMA Unmapping

	Write and fsync Path
	Implementation

	Evaluation
	Methodology
	Microbenchmark
	Read Performance
	Write Performance
	Performance Analysis

	Real-world Applications
	Key-value Store
	Storage Benchmark and OLTP Workload

	Related Work
	Discussion and Future Work
	Conclusion

	atc19-asmussen
	Introduction
	Problem Statement
	Scope
	Contribution

	Background and Motivation
	Related Work
	Design
	System Architecture
	Accelerator Integration
	Activity-aware Communication
	Message Forwarding
	Computing vs. Idling
	Gang Scheduling
	Accelerator Types
	Access to OS Services
	Interruptible Accelerators

	Implementation
	Background on M3
	Virtual Memory Support
	Context Switching Overview
	Kernel Extensions
	DTU Extensions
	RCTMux
	File Protocol Servers
	File Protocol Clients

	Discussion
	Evaluation
	Evaluation Platform
	Fast-Path vs. Forwarding
	Application-level Benchmarks
	Tile Sharing
	Autonomous Request Processing
	Autonomous Stream Processing

	Conclusion
	Acknowledgments

	atc19-yang-qirui
	Introduction
	Analysis of Real-world Device Data
	Design and Implementation
	Design Overview
	Two-level Fingerprint Stores
	Hybrid Deduplication
	Putting Everything Together

	Evaluation
	FIO
	Trace Replay
	DEDISbench
	Adaptive Deduplication
	Fragmentation Resistance

	Related Work
	Conclusions and Future Work
	Acknowledgements

	atc19-duggal
	atc19-brokhman
	Introduction
	Background
	Consistency model considerations
	False sharing with UVM

	Design
	Consistency manager
	Page faults and merge

	Interaction with file I/O
	Discussion

	Implementation
	OS changes
	Integration with GPU driver
	Using the GPU VM management API
	Functional emulation of the API
	Limitations due to UVM

	Evaluation
	Overhead analysis
	Microbenchmarks
	Applications
	Performance of on-demand data I/O
	Dynamic graph processing with Gunrock
	Effects of false sharing in image stitching

	Related work
	Conclusions

	atc19-guo
	Introduction
	Motivations
	Kernel in device suspend/resume
	A peripheral core in a heterogeneous SoC
	OS design space exploration
	Design objective

	The Transkernel Model
	ARK: An ARM Transkernel
	A Scheduler of DBT Contexts
	Interrupt and Exception Handling
	Deferred Work
	Locking
	Memory Allocation
	Delays & Timekeeping

	The Cross-ISA DBT Engine
	Exploiting Similar Instruction Semantics
	Passthrough of CPU registers
	Control Transfer and Stack Manipulation

	Translated -3mu Native Fallback
	Evaluation
	Methodology
	Analysis of engineering efforts
	Measured execution characteristics
	Energy benefits
	Discussions

	Related Work
	Conclusions

	atc19-demoulin
	Introduction
	Motivation
	Background on ADoS Attacks
	Design Goals

	Threat Model
	FineLame Design
	Request-mapping in FineLame
	Resource Monitoring in FineLame
	Background on eBPF
	Resource Monitor Architecture

	Attack Detection in FineLame

	Use Cases and Implementation
	Evaluation
	Experimental setup
	Overhead of FineLame
	Performance of FineLame
	Attacks
	Anomaly Detection Performance

	Related Work
	Conclusion
	Acknowledgments

	atc19-hille
	Introduction
	Background
	Capability Systems
	M3: HW/SW Co-designed Capabilities

	Design
	System Overview
	Distributed Data Lookup (DDL)
	System Call Handling
	Capabilities

	Implementation
	Inter-Kernel Calls
	Multithreaded Kernel
	Distributed Capability Management
	Interference between CMOs
	Capability Exchange
	Capability Revocation

	Evaluation
	Experimental Testbed
	Microbenchmarks
	Application-level Benchmarks
	Experimental Setup
	Results
	Server Benchmark

	Related Work
	Conclusion
	Acknowledgements

	atc19-xie
	Introduction
	Background and Motivation
	Graph Store and Traversal Workload
	Poor Locality and Partitioning
	Live Migration

	Approach and Overview
	Split Live Migration
	Basic Split Migration
	Fully-localized Split Migration
	Full-fledged Split Migration
	Lightweight Monitoring
	Discussion

	Implementation
	Evaluations
	Migration Benefits
	Migration Speed
	Eager Migration vs. Deferred Migration
	Dynamic Workloads
	Application: RDF Graph and SPARQL Query

	Related Work
	Conclusion

	atc19-li-yongkun
	Introduction
	Background & Motivation
	Log-Structured Merge Trees
	Motivation

	Design
	Overview
	Fine-grained Bloom Filter Allocation
	Hotness Identification and Inheritance
	Bloom Filter Management in Memory
	Implementation Issues

	Evaluation
	Experiment Setup
	Micro-benchmarks
	YCSB Benchmarks
	Comparison with Monkey
	Impact of Different Configurations

	Related Work
	Conclusion

	atc19-balmau
	Introduction
	LSM KV background
	LSM KV architecture
	LSM KV operations
	State-of-the-art LSM-based systems

	Performance requirements for LSM KVs
	Experimental study of tail latency
	Experimental environment
	RocksDB
	Rate-limited RocksDB
	RocksDB with increased Cm
	TRIAD
	PebblesDB
	Lessons learned

	SILK
	SILK design principles
	SILK implementation
	Opportunistically allocating I/O bandwidth
	Prioritizing and preempting internal operations

	Evaluation
	Experimental setup
	Nutanix workload
	YCSB benchmarks
	Stress testing for long peaks
	Breakdown

	Related work
	Conclusion

	atc19-stuedi
	Introduction
	Background and Motivation
	Requirements and Challenges
	Limitations of Existing Approaches

	The NodeKernel Architecture
	Storage Kernel and Node Types
	System Architecture
	Low-latency metadata operations
	Metadata partitioning
	Hardware-accelerated storage
	Tiered storage

	Crail
	Metadata plane
	Data plane
	Failure semantics and persistence
	Anatomy of data access

	Evaluation
	Microbenmarks
	Systems-level Benchmarks
	NoSQL workloads
	Spark Integration

	Efficiency of hybrid DRAM/NVM setup

	Conclusion

	atc19-jaffer
	Introduction
	File System Error Injection
	SSD Errors in the Field and their Manifestation
	Comparison with HDD faults
	Device Mapper Tool for Error Emulation
	Test Programs
	Targeted Error Injection
	Detection and Recovery Taxonomy

	Results
	Btrfs
	Read errors
	Corruption
	Write errors
	Shorn Write + Program Read
	Shorn Write + Fsck
	Lost Writes
	Bugs found/reported.

	ext4
	F2FS
	Read errors
	Write errors & Lost Writes
	Corruption
	Shorn Write + Program Read
	Shorn Write + Fsck
	Bugs found/reported

	Related Work
	Implications
	Limitations and Future Work

	atc19-kim-jaeho
	Introduction
	Background: All Flash Array
	Design of SWAN
	Design Goal and Approach
	Flash Array Organization
	Handling Application I/O Requests
	Garbage Collection in SWAN
	Optimizing SWAN Configuration

	Implementation
	Metadata Management
	Optimizing GC using TRIM

	Evaluation
	Micro-benchmarks
	Analysis of GC Behavior
	Real-world Workload
	Analysis with an open-channel SSD

	Discussion
	Related Work
	Conclusion

	atc19-kim-shine
	Introduction
	Practical Erase Suspension
	Motivation
	Immediate Erase Suspension (I-ES)
	Deferred Erase Suspension (D-ES)
	Timeout-based Erase Suspension (T-ES)

	Evaluation
	Methodology
	Random Access Benchmark
	Database Benchmark
	Transaction Processing Benchmark
	Sensitivity to T-ES Timeout Threshold (N)

	Related Work
	Conclusion

	atc19-hajkazemi
	atc19-jajoo
	Introduction
	Motivation
	Our Contribution

	Background and Problem Statement
	Key Idea
	Why is sampling more efficient?
	Why is sampling effective in the presence of skew?

	Philae Design
	Philae architecture
	Sampling pilot flows
	Coflow scheduling with starvation avoidance
	Inter-coflow scheduling policies
	Rate allocation
	Additional design issues

	Scalability Analysis
	Implementation
	Evaluation Highlights
	Simulation
	Pilot flow selection policies
	Piloting overhead and accuracy
	Inter-coflow scheduling policies
	Average CCT improvement
	Robustness to coflow data skew
	Sensitivity analysis

	Testbed Evaluation
	CCT Improvement
	Job Completion Time
	Scalability

	Related Work
	Conclusion

	atc19-jin
	atc19-kogias-R2P2
	Introduction
	Background
	Datacenter RPCs
	Load balancing
	As a queuing theory problem

	R2P2: A transport protocol for RPCs
	Transport considerations
	API
	JBSQ router design considerations

	Implementation
	r2p2-lib
	Router - software implementation
	P4/Tofino implementation

	Evaluation
	Router characterization
	Synthetic Time Microbenchmarks
	Multi-packet Requests Microbenchmark
	Using R2P2 for server work conservation
	Lucene++
	Redis

	Related work
	Conclusion

	atc19-kogias-lancet
	Introduction
	Background
	Taxonomy of tools
	Configuration burden
	Statistics Background

	Experiment Decomposition
	Design
	lancet infrastructure
	Measurement options
	lancet's self-correcting methodology

	Implementation
	Evaluation
	Experimental setup
	Benefits of hardware timestamping
	lancet self-controlling dynamics
	Inter-Arrival distribution Impact
	Server characterization

	Related Work
	Conclusion

	atc19-zhang-lu
	Introduction
	Background
	Non-volatile Main Memory and DAX
	Handling NVMM Media Errors
	NVMM Programming

	Pangolin Design
	Pangolin's Data Organization
	Micro-buffering for NVMM Objects
	Detecting NVMM Corruption
	Fault-Tolerant Transactions
	Parity and Checksum Updates
	Recovering from Faults

	Evaluation
	Evaluation Setup
	Memory Requirements
	Transaction Performance
	Scalability
	Impacts on NVMM Applications
	Error Detection and Correction

	Related Work
	Conclusion

	atc19-gu
	Introduction
	Background & Overview
	Background
	Overview

	Design
	Algorithm
	Log Recycle
	Proof Sketch of Snapshot Isolation
	Crash Consistency

	Optimizations
	Evaluation
	Experimental Setup
	Micro-benchmarks
	Real-world Benchmarks
	Other Performance Analysis

	Related Work
	Summary
	Acknowledgement

	atc19-fu
	Introduction
	Background: Stream Processing
	Dataflow Programming Model
	Stream Processing Engines

	Edge SPE Requirements Analysis
	Our Edge Model
	Edge SPE Requirements
	Shortcomings of OWPOA-style SPEs
	A Lost Lesson: Operation Scheduling

	Design of EdgeWise
	Congestion-Aware Scheduler
	Fixed-size Worker Pool

	Performance Analysis of EdgeWise
	Higher Throughput
	Lower Latency
	Measuring Operation Utilization

	Implementation
	Evaluation
	General Methodology
	Throughput-Latency Performance
	Detailed Performance Breakdown
	Fine-Grained Throughput Analysis
	Fine-Grained Latency Analysis

	Data Consumption Policy
	Performance on Distributed Edge

	Related Work
	Conclusion

	atc19-jeon
	atc19-xu
	atc19-tai
	atc19-wang
	Introduction
	Background and Observations
	Background of Pangu
	Observations

	Dayu Overview
	Design of Dayu
	Selecting Source and Destination
	Prioritizing Underemployed Nodes
	Allocating Bandwidth for Each Task
	Re-scheduling Straggling Tasks

	Evaluation
	Overall Performance
	Scalability
	Effects of Individual Techniques
	Impacts of Key Parameters

	Related Work
	Conclusion
	Acknowledgment

	atc19-chang
	Introduction
	Background
	Flash Translation Layers
	High-Performance Schemes
	SSD Recovery

	OPTR SSD Design
	Write Completion Tracking
	Write Coalescing Tracking
	Mapping Table Checkpointing
	Garbage Collection
	Order-Preserving Recovery

	Filesystem and Application Optimizations
	OPTR Design Validation
	VST Testing Framework
	Extending VST for Crash Recovery Tests
	Validation Results

	Evaluation
	Experimental Setups
	System-Level Performance

	FTL Analyses
	Extra Flash Page-Programs
	GC Constraints
	Performance Overhead
	Memory Overhead
	Recovery Time

	Related Work
	Conclusion

	atc19-liu-yizhi
	atc19-li-zhao-lucas
	Introduction
	System Overview
	Strawman Solutions for Rule Ranker

	Learned Rule Ranker
	Implementation
	Evaluation
	Methodology
	Rule Ranking Accuracy
	Rule Matching Latency Reduction

	Related Work
	Conclusion

	atc19-zhang-chengliang
	Introduction
	Background and Related Work
	Machine Learning Model Serving
	Autoscaling Dynamic Workload in Cloud
	Cloud Provisioning Services

	Characterizing Model Serving in the Cloud
	What service to use: IaaS, CaaS, or FaaS?
	IaaS: Can we use burstable instances?
	IaaS: Big instances or small instances?
	IaaS: How does GPU compare with CPU?
	Characterization in Google Cloud
	Characterization Summary

	MArk
	Overview
	Workload Prediction
	Instance Provisioning and Batching
	SLO tracking
	Spot Instance and Lambda Cold Start

	Experimental Evaluation
	Evaluation Setup
	Macrobenchmarks
	Microbenchmarks

	Discussion
	Concluding Remark

	atc19-zhang-xu
	Introduction
	Background and Motivation
	Proposed Approach
	Transfer Learning Component
	Feature Identification
	The Transfer between Source Domain and Target Domain

	Active Learning Component
	Uncertainty
	Context Diversity

	Usage of ATAD

	Experiments
	Dataset and Setup
	Evaluation Metric
	Results
	RQ1: How effective is ATAD?
	RQ2: How effective is the Transfer Learning Component?
	RQ3: How effective is the Active Learning component?
	RQ4: How effective is ATAD in detecting anomalies in a company's local dataset based on public datasets?

	Threats to Validity
	Related Work
	Conclusion
	Acknowledgement

	Blank Page
	Blank Page
	Blank Page

